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The Sweden Cancerome Analysis Network - Breast
(SCAN-B) Initiative: a large-scale multicenter
infrastructure towards implementation of breast
cancer genomic analyses in the clinical routine
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Abstract

Background: Breast cancer exhibits significant molecular, pathological, and clinical heterogeneity. Current
clinicopathological evaluation is imperfect for predicting outcome, which results in overtreatment for many patients,
and for others, leads to death from recurrent disease. Therefore, additional criteria are needed to better personalize care
and maximize treatment effectiveness and survival.

Methods: To address these challenges, the Sweden Cancerome Analysis Network - Breast (SCAN-B) consortium
was initiated in 2010 as a multicenter prospective study with longsighted aims to analyze breast cancers with
next-generation genomic technologies for translational research in a population-based manner and integrated
with healthcare; decipher fundamental tumor biology from these analyses; utilize genomic data to develop and
validate new clinically-actionable biomarker assays; and establish real-time clinical implementation of molecular
diagnostic, prognostic, and predictive tests. In the first phase, we focus on molecular profiling by next-generation
RNA-sequencing on the Illumina platform.

Results: In the first 3 years from 30 August 2010 through 31 August 2013, we have consented and enrolled 3,979
patients with primary breast cancer at the seven hospital sites in South Sweden, representing approximately 85%
of eligible patients in the catchment area. Preoperative blood samples have been collected for 3,942 (99%) patients and
primary tumor specimens collected for 2,929 (74%) patients. Herein we describe the study infrastructure and protocols
and present initial proof of concept results from prospective RNA sequencing including tumor molecular subtyping
and detection of driver gene mutations. Prospective patient enrollment is ongoing.

Conclusions: We demonstrate that large-scale population-based collection and RNA-sequencing analysis of breast
cancer is feasible. The SCAN-B Initiative should significantly reduce the time to discovery, validation, and clinical
implementation of novel molecular diagnostic and predictive tests. We welcome the participation of additional
comprehensive cancer treatment centers.

Trial registration: ClinicalTrials.gov identifier NCT02306096.
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Background
Breast carcinoma is one of the most common cancers
worldwide and a leading cause of cancer-related death in
women. Approximately one in nine women will be diag-
nosed with breast cancer during their lifetime, and in
Sweden it accounted for 7,087 new diagnoses and 1,401
deaths in 2011 alone [1]. Contemporary treatment, con-
sisting of surgery, radiotherapy, endocrine therapy,
chemotherapy, as well as targeted agents, is driven by
standardized clinicopathological criteria and has led to a
modest decrease in mortality the last two decades. For
example, in the Nordic countries the 5-year survival rate
is over 85% [2]. Despite this encouraging statistic, the
complete portrait is less than ideal. Unfortunately, ap-
proximately 25% of women who survive 5 years will,
within the subsequent 15 years, die from recurrent dis-
ease [3]. This is in stark contrast to many other cancer
types where a 5-year survival is essentially a cure (for ex-
ample, uterine cancer). On the other hand, it is also rec-
ognized that a significant proportion of breast cancer
patients are being overtreated: many patients are likely
cured by locoregional therapy alone, but are enduring
the side effects of unnecessary additional systemic ther-
apies [4]. Our inability to reliably identify such patients
has a significant impact on patient quality of life, and
adds significantly to the direct economic costs of treat-
ing breast cancer as well as the indirect effects on soci-
etal productivity [5,6]. Furthermore, we also have limited
tools to predict which patients will fail on an indicated
therapy due to inherent resistance, or to predict which
therapy among statistically equivalent options will be the
most effective for an individual patient. Thus, there is still
a pressing need for improved biomarkers in breast cancer.
Like all malignancy, breast carcinoma is caused by ab-

errations in the genome of formerly healthy cells. These
aberrations include changes in the normal DNA genetic
sequence (for example gene mutations or gains or losses
of genetic material) as well as changes in the accessibility
and regulation of DNA (such as hypermethylation and
chromatin marks). These genomic aberrations affect
gene function, and, in concert, also manifest themselves
by markedly changing the expression levels of thousands
of genes in the tumor from what is the normal pattern
in the healthy tissue. Moreover, many of these gene-,
genomic-, and gene expression alterations (termed col-
lectively here as biomarkers) are believed to relate to the
patient’s prognosis and response to therapy. In breast
cancer, the study of gene expression alterations and their
relation to clinical outcomes is the most mature,
whereas DNA copy number aberrations and clinical
course has not advanced as far (with one notable excep-
tion, HER2), and much less is understood about somatic
mutations and therapy response and survival. Despite
much study, there are only a handful of examples of
breast cancer biomarkers in clinical use today (for ex-
ample, the estrogen receptor and HER2).
Recent technological advances have opened exciting

new possibilities for studying carcinogenesis at an un-
precedented molecular detail, and for developing new
clinical tools to improve cancer diagnosis, prognosis,
and treatment decision-making. One of the most signifi-
cant of these new technologies is massively-parallel se-
quencing, also called next-generation sequencing or
deep sequencing [7]. Deep sequencing allows one to
‘read’ the sequence of nucleotide bases of DNA or RNA
molecules and identify abnormal sequence variations
such as gene mutations and chromosomal rearrange-
ments. Moreover, deep sequencing is also quantitative:
the number of sequencing reads that map to a given se-
quence is proportional to the number of nucleic acid
molecules (DNA or RNA) with that sequence in the ori-
ginal sample. Therefore, by sequencing a tumor’s DNA
one can measure the DNA copy number of each seg-
ment of the genome, and by sequencing a tumor’s mes-
senger RNA (mRNA), one can quantitate the expression
level of each gene transcript. In contrast to microarray
methods, where expression level or copy number can
only be reported for the pre-determined probe se-
quences that are present on the microarray, an added
advantage of deep sequencing is that it operates at the
whole-genome scale where a complete representation of
the population of DNA or RNA molecules in a sample
can be queried simultaneously. Most next-generation
technologies are also several orders of magnitude more
efficient and less costly than prior sequencing ap-
proaches. The cost of gene expression profiling by RNA
sequencing (RNA-seq) is similar to the cost of a micro-
array gene expression experiment. On the other hand,
whole-genome sequencing or targeted exome sequen-
cing remains significantly more costly per sample than
RNA-seq; however sequencing costs continue to fall.
Therefore, routine clinical tests based on tumor deep se-
quencing can be economically viable, especially consid-
ering that many different test results could be reported
from a single sequencing analysis.
A major challenge to translating a new cancer bio-

marker to the clinic is the study sample size. In the de-
velopment phase, the number of patients studied and its
representation of the natural biological and clinical di-
versity has been inadequate in many studies, usually
numbering in only a few hundred samples in the largest
studies, and often suffering from various types of selec-
tion biases. Validation phase studies often suffer from
similar issues. This leads to several consequences, for ex-
ample the failure to discover potential biomarkers in the
development phase, overfitting of data and non-
generalizability of biomarkers, and biomarker failure at
the validation phase. As a result, thus far there are few
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multigene assays for breast cancer in limited clinical use:
the two most commonly used are a microarray-based
test, MammaPrint (Agendia BV), and the OncotypeDX
qRT-PCR assay (Genomic Health, Inc). However, these
assays are expensive (approximately €3,000 per test), and
due to the fact that they were developed based on rela-
tively small study populations (MammaPrint: 78 pa-
tients) [8] or only one subgroup of the disease
(OncotypeDX: patients with estrogen-receptor-positive
tumors with no involved lymph nodes and treated with
tamoxifen) [9], the overall clinical utility of these tests
beyond the selection of patients with limited benefit
from adjuvant chemotherapy, and whether better tests
could be developed, has been debated [10,11].
To address these clinical and practical challenges and

to continue our efforts to develop improved clinical bio-
marker tests for breast cancer [12-16], we initiated the
multicenter and multidisciplinary consortium, Sweden
Cancerome Analysis Network - Breast (SCAN-B) [17]
(ClinicalTrials.gov identifier NCT02306096). Launched
in the autumn of 2010, the study is fully integrated in
the clinical routine and has enrolled more than 6,000 pa-
tients to date and collected tumors and blood specimens
at a rate of 25 to 30 per week, representing approxi-
mately 85% of all breast cancer diagnoses in southern
Sweden. Based on our prior experiences, in the first
phase we are performing whole-transcriptome RNA-seq
and have sequenced over 3,000 breast tumors to date.
The primary objectives are to develop, validate, and im-
plement clinically beneficial molecular tumor analyses
into the routine healthcare setting for patients with
breast cancer in order to improve their care, quality of
life, and outcome. Herein we present an overview of the
SCAN-B Initiative, our optimized protocols, the status of
patient accrual and sample processing for the first 3 years,
and the results of initial proof of concept RNA-seq ana-
lyses for 49 consecutive patient tumors analyzed in parallel
on gene expression microarrays including tumor subtyp-
ing and analysis of mutations in cancer-associated genes.

Methods
Ethics statement
The study was conducted in accordance with the Declar-
ation of Helsinki and has been approved by the Regional
Ethical Review Board of Lund (diary numbers 2007/155,
2009/658, 2009/659, 2014/8), the county governmental
biobank center, and the Swedish Data Inspection group
(diary number 364-2010). Written information is given
by trained health professionals and all patients provided
written informed consent.

Infrastructure
SCAN-B involves researchers, clinicians, and healthcare
professionals at Lund University Hospital, Division of
Oncology and Pathology, the South Sweden Breast
Cancer Group [18], the Regional Cancer Center South,
and all seven hospital centers treating breast cancer pa-
tients in the Southern Healthcare Region (Malmö,
Lund, Helsingborg, Kristianstad, Halmstad, Växjö and
Karlskrona), and operates under the auspices of the
South Sweden Breast Cancer Group and Regional Cancer
Center South. An overview of the study infrastructure is
presented in Figure 1.

Patients and samples
Patient enrollment is integrated and performed as part of
the clinical routine (Figure 1). From 30 August 2010,
breast cancer patients across the south of Sweden have
been offered inclusion in SCAN-B. The eligibility criterion
was a preoperative diagnosis of primary invasive breast
cancer, and since the autumn of 2012, patients with a pre-
operative suspicion for breast cancer are also eligible as
well as patients receiving neoadjuvant therapy. Patients
who participate in SCAN-B receive the same standard of
care as patients who do not participate, and at the present
time, results from this prospective study are not used to
alter any clinical decisions. The study affects the clinical
routine minimally. At time of routine preoperative/pre-bi-
opsy blood work, three additional study blood tubes are
collected and biobanked as whole blood, buffy coat,
plasma, and serum. Clinical routines at surgery, radiology,
pathology, and oncology proceed normally. After the rou-
tine assessment of the surgical specimen by the patholo-
gist, remainder tumor-cell enriched fresh specimen(s) is
placed in a study sample tube(s) containing RNAlater re-
agent (Ambion) and the time to preservation is recorded.
Very small tumors do not always yield excess material for
the study, and due to clinical considerations, at present it
is difficult to sample cases that appear to be purely or pri-
marily carcinoma in situ. For included patients undergoing
preoperative biopsy, additional study biopsies are taken
and placed in RNAlater. Sample tubes, identified by bar-
codes, are shipped twice per week at 4°C via inter-hospital
transport to the central research laboratory of the Can-
ceromics Branch, Division of Oncology and Pathology,
Lund University Cancer Center [19]. Clinical and patho-
logical information tied to the patient and diagnosis as
well as follow-up data is retrieved from the national qual-
ity registry for cancer patients (INCA) (Figure 1). Postop-
erative blood samples are also collected as above at
6 months, 12 months, and 36 months after primary sur-
gery. In accordance with ethics and privacy guidelines and
laws, clinical and sample information are coded and
strictly confidential.

Tumor sample processing
Tumor specimens sent in RNAlater are processed con-
tinuously in our central laboratory (see Additional file 1
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for detailed protocols) with handling standards that meet
or exceed recommendations of the Breast International
Group (BIG). Each tumor specimen is weighed, and
when possible, partitioned into three parts: one 30 mg
(approximately) piece for simultaneous isolation of
DNA, RNA, and protein; one adjacent 10 mg (approxi-
mately) piece used for manufacture of a formalin-fixed
paraffin-embedded low-density tissue microarray (TMA);
and any remainder is stored frozen for future use. The
TMA is used for estimation of tumor cellularity and as a
research resource. Nucleic acids and protein fraction are
isolated from tumor specimen using the AllPrep method
and automated using QIAcube machines (Qiagen). RNA
and DNA quality control is performed by NanoDrop spec-
trophotometry and BioAnalyzer (Agilent) or Caliper
LabChip XT (PerkinElmer) capillary gel analysis. The
extracted RNA, DNA, and flow-through portion that
contains proteins and short nucleic acids, are stored
frozen for future use. All study information, sampling
information, and analysis information are recorded in a
secure relational data management and analysis system,
BASE [20-22], and user-friendly sample and protocol
workflows are interactively generated by the system to
ensure standard laboratory operating procedures and
efficiency.

Library preparation for RNA-sequencing
Customized protocols for RNA-seq using 1 μg of start-
ing total RNA were developed and automated for a
high-throughput workflow (Figure 1). The complete
methods and protocols are described in the Additional
file 1. In brief, poly(A) mRNA is isolated from the total
RNA in up to 96-well microtiter plate format by two
rounds of purification with Dynabeads Oligo (dT)25
(Invitrogen) using a KingFisher Flex magnetic particle
processor (ThermoScientific). Zinc-mediated fragmenta-
tion (Ambion) is performed and the fragmented mRNA
retrieved using column purification (Zymo-Spin I-96
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plates; Zymo). The sequencing library generation proto-
col is a modification of the dUTP method, which im-
portantly retains the directionality (stranded-ness) of the
sequenced RNA molecules [23,24]. First strand cDNA
synthesis is performed using random hexamers and
standard dNTP mix followed by cleanup using Sephadex
gel filtration (Illustra AutoScreen-96A plates; GE Health-
care), and second strand cDNA synthesis is performed
using dUTP in place of dTTP in the dNTP-mix and
cleanup using Zymo-Spin I-96 plates. The cDNA is end-
repaired and A-tailed, and diluted TruSeq adapters with
barcodes are ligated using a modified protocol (Illumina)
[23]. Adapter-ligated cDNA is then size-selected to re-
move short oligonucleotides using carboxylic acid (CA)
paramagnetic beads (Invitrogen) and polyethylene glycol
(PEG), similar to the previously described methods [25],
and automated on the KingFisher Flex. The second
cDNA strand is digested using uracil-DNA glycosylase
and the product is enriched by 12 PCR cycles (Illumina).
The PCR product undergoes two cycles of size selection
using CA-beads and varying concentrations of PEG, first
to exclude DNA fragments >700 bp and then to exclude
fragments <200 bp. Quality control is performed on con-
trol libraries using Qubit fluorometric measurement
(Life Technologies) and Caliper LabChip XT microcapil-
lary gel electrophoresis. Typically, 10 to 24 barcoded li-
braries are included in a pool and each pool is
sequenced in at least one lane across dual flowcells.
Paired-end sequencing of 50 bp read-length is per-
formed on an Illumina HiSeq 2000 instrument.

RNA-seq gene expression measurements
Raw sequencing read data are demultiplexed using an
in-house software and collated by library barcode into
sample data sets (Figure 1). Each data set is filtered to
remove reads that align (using Bowtie 2 [26] with default
parameters except -k 1 –phred33 –local) to ribosomal
RNA/DNA (GenBank loci NR_023363.1, NR_003285.2,
NR_003286.2, NR_003287.2, X12811.1, U13369.1), phiX174
Illumina control (NC_001422.1), and sequences contained
in the UCSC hg19 RepeatMasker track (downloaded 14
March 2011). The remaining reads are aligned using
TopHat2 [27] to the human genome reference GRCh37/
hg19 (with b37 masked chromosome Y and hs37d5 decoy
sequences) together with 80,884 transcript annotations
from the UCSC knownGenes table (downloaded 10
September 2012). Default TopHat2 parameters are
used except for –mate-inner-dist (average size with
adapters 355, range 268 to 465, measured for each
sample individually) –mate-std-dev 100 –library-type
fr-firststrand –keep-fasta-order –no-coverage-search.
Cufflinks v2.1.1 [28] is used to calculate expression
levels, fragments per kilobase of exon per million mapped
reads (FPKM), using default settings except –frag-bias-
correct –multi-read-correct –library-type fr-firststrand
–compatible-hits-norm. Unmapped reads are processed
to be usable by downstream analysis tools using custom
software [29]. Read duplication statistics and routine qual-
ity assessment were performed using the Bioconductor
Rsamtools v1.12.4 package [30]. Herein we present analysis
for 55 sample libraries generated from 49 tumor speci-
mens, six run with technical replicates using separate ali-
quots of total RNA. RNA-seq read statistics are presented
in Additional file 2: Table S1. Gene expression data were
pre-processed by collapsing on 27,979 unique gene sym-
bols (sum of FPKM values of each matching transcript),
adding to each gene’s expression measurement 0.1 FPKM,
performing a log2 transformation, and centering the gene
expression values by subtracting the row-wise (gene) me-
dian (calculated across the 49 primary data sets) from the
values in each row of data.
Microarray gene expression measurements
To compare to RNA-seq, the same 55 RNA samples as
above (49 tumors, six as technical replicates) were ana-
lyzed on Human HT12 v4 BeadChip microarrays follow-
ing the manufacturer’s standard protocol (Illumina).
Data from each microarray were pre-processed in BASE
[20-22]: background correction was performed, and a
constant of 11 was added to each intensity measure-
ment. Genes with missing values in >10% of samples
were excluded; otherwise missing values were imputed
using k-nearest neighbors implemented in the impute R
package. The data were quantile normalized using the
preprocessCore R package, log2 transformed, and each
gene was median centered across samples as for the
RNA-seq data.
Molecular subtyping
Intrinsic molecular subtyping was performed by nearest
centroid method and Spearman correlation within the
genefu R package, using three published gene lists
(Sørlie, Hu, and PAM50) [31-33]. Mapping of genes be-
tween data sets was performed using the probemapper
1.0.0 R package [34]. For PAM50, all 50 genes were used
for subtyping on both RNA-seq and HT12 platforms; for
the Sørlie classification, 432 genes were matched for
RNA-seq and 434 genes for HT12; and for Hu classifica-
tion, 225 genes and 229 genes, respectively. To facilitate
unbiased between-platform comparison, each tumor was
assigned to the class with the highest correlation. For
visualization, hierarchical clustering was performed
using the ConsensusClusterPlus R package with 1,000
sub-samplings of 80% of samples (or genes; run inde-
pendently), Pearson distance metric, Ward linkage, and
the RNA-seq PAM50 expression values as input. Clus-
ters stabilized at five sample and seven gene clusters.
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RNA-seq mutation analysis
Sequence variants were investigated in known and likely
breast cancer driver genes. A list of candidate driver
genes of interest was compiled based on the union of
genes identified in several large studies: the TCGA
breast cancer study (supplementary table 2 in [35]); the
Sanger 100 breast cancer exome study (supplementary
table 4 in [36]); the Cancer Gene Census of breast can-
cer drivers [37]; and additional genes with evidence for
hereditary breast cancer predisposition. The union re-
sulted in 90 genes (see Additional file 2: Table S2). Using
the TopHat-aligned BAM files, pileup files restricted to
the exonic regions (plus padding of 10 bases) for these
90 genes were created for each sample using samtools
v0.1.18 and read metrics were calculated using bam-
readcount [38]. VarScan v2.3.5 [39] was used to call sin-
gle nucleotide variants (SNVs) and indels using the fol-
lowing settings: –min-coverage 2 –min-reads2 2 –min-
avg-qual 10 –min-var-freq 0.05 –p-value 1. The first six
bases of each read were ignored for mutation analysis in
subsequent steps as mismatches can be introduced by
random hexamer priming during library preparation.
The local reference sequence around each variant was
retrieved using BEDTools [40]. Variant calls were anno-
tated using ANNOVAR [41] with the databases refGene,
snp137NonFlagged, and cosmic65 from the ANNOVAR
website; additional databases of SNVs and indels were
created, tcgaBreast using data from the Level 2.5.1.0
MAF file from the TCGA Data Portal [42], and ste-
phens2012 using data from supplementary table 4 in ref-
erence [36]. To reduce false positive mutation calls,
variants were excluded if they matched any of the fol-
lowing criteria: present in dbSNP137NonFlagged, not
present in cosmic65 or tcgaBreast or stephens2012, lo-
cated in 5′ or 3′ UTRs, synonymous variants, variants
with adjacent homopolymer stretches of ≥5 bases, SNVs
with an average base quality of the variant allele <20,
and variants with an average distance to the 3′ end of
the read <5% of the total read length (after clipping).
Thus, only previously identified somatic mutations
remained. For plotting amino acid variants, Pfam protein
domains were obtained using the biomaRt R package by
first mapping RefSeq transcript identifiers to UniProt
entries within the Ensembl hsapiens_gene_ensembl data
set, and then querying the InterPro protein data set with
these UniProt entries.

Statistics
Enrollment statistics are based on study records in our
relational data management system BASE. The counts
for blood samples and tumor specimens are based on
the number of patients with at least one sample or speci-
men collected. To compare the distribution of patient
and clinicopathological annotations between sets of
patients, Fisher’s exact test was used. A P value less than
0.05 was considered significant.

Bioinformatics implementation
Customized Bash shell scripts, Python, and R code, as
well as relevant software packages as described above,
were used to perform all bioinformatics analyses.

Data availability
The RNA-seq and microarray gene expression data
herein are available from the NCBI Gene Expression
Omnibus [43] under accession GSE60789.

Results
Population-based enrollment
We summarize here the results for the first three years
of patient accrual, from 30 August 2010 to 31 August
2013. During this period, 3,961 women and 18 men en-
rolled in SCAN-B (Figure 2A). For the 2011 and 2012
calendar years, where it was possible to match complete
annual records to the Swedish national breast cancer
registry (INCA), this represents an estimated 85% of the
eligible patient population (with a preoperative diagno-
sis) within the catchment region (Figure 2B). Approxi-
mately 3% of eligible patients decline participation in the
study, and 12% are lost to enrollment. There is no bias
in terms of clinical variables (estrogen receptor status,
progesterone receptor status, HER2 status, patient age,
Nottingham grade, or tumor size) between the included
patients and the population of all eligible breast cancer
diagnoses (Figure 2C-H).
Patients diagnosed with breast cancer are prospectively

enrolled at the rate of 25 to 30 per week. For 99% of in-
cluded patients, preoperative blood samples are bio-
banked (Figure 2A). For 2,929 patients (74%; Figure 2A),
at least one tumor specimen has been submitted to the
central laboratory, usually within 1 to 3 days after bi-
opsy/surgery. Most commonly, the reasons for not sub-
mitting a tumor specimen include it being judged by the
clinical pathologist to be too small for sampling (73%) or
the tumor appearing to be carcinoma in situ only (7%).
The subgroup of patients for which a tumor specimen
was collected does not differ significantly from the
population of enrolled patients with respect to all clin-
ical variables with the exception of tumor size and Not-
tingham grade (Figure 2C-H). The median tumor
specimen ischemia time, from excision from the patient
to placement in preservative solution, is 46 min (inter-
quartile range (IQR), 32 to 65 min), and the median spe-
cimen weight is 63 mg (IQR, 34 to 108 mg).
Processing of tumor specimens is performed in near

real-time in our central laboratory. As of 31 August 2013,
2,890 of 2,929 tumor specimens (99%) had been parti-
tioned for AllPrep, TMA, and reserve piece, processed,
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and the nucleic acids isolated (see Methods and Additional
file 1). In the first round of processing (with half of the spe-
cimen lysate stored frozen for future use), a median of
8.5 μg total RNA (IQR, 3.7 to 16.5 μg) and 15.4 μg DNA
(IQR, 7.6 to 25.5 μg) has been isolated per tumor speci-
men. The isolated nucleic acids are of high purity, with a
median 260/280 ratio of 2.05 (IQR, 2.03 to 2.07) and 260/
230 ratio 1.93 (IQR, 1.61 to 2.08) for the RNA, and median
260/280 ratio of 1.87 (IQR, 1.86 to 1.88) and 260/230 ratio
1.78 (IQR, 1.38 to 1.99) for the DNA. All unused tissue, ly-
sates, and extracted nucleic acids are stored frozen for fu-
ture use. The focus of our molecular analyses is initially on
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whole-transcriptome RNA sequencing using the Illumina
HiSeq 2000 platform. For this purpose, greater than 1 μg
of total RNA was isolated from 95% of patient samples in
the first round of processing, and the median RNA quality
score (RQS) is 8.4 (IQR, 7.8 to 8.7).

RNA sequencing of breast cancer transcriptomes
We have developed a customized high-throughput
RNA-seq library generation protocol (Additional file 1).
Thus far, it has been used to sequence the transcrip-
tomes of over 3,000 breast tumors. Here we present ini-
tial proof of concept results for a representative series of
49 population-based breast cancer patients whose pri-
mary surgery occurred during the fall of 2011 and that
we analyzed in parallel by RNA-sequencing and gene ex-
pression microarrays. From these 49 cases, six were se-
quenced in technical replicates making for a total of 55
libraries. For each library, a median of 47.6 million
passed-filter (PF) paired-reads of 50 bp length were an-
alyzed (IQR, 43.4 to 54.2 million) (Additional file 2:
Table S1). An average of 83.0% (range, 73.0% to 88.6%)
of the paired-reads remain after initial filtering against
a database of non-mRNA targets (passing contamination
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levels derived from RNA-seq compared favorably to
microarray-derived gene expression levels. Replicate ex-
periments for six tumors, performed on both platforms,
show that the measurement range and reproducibility are
higher for RNA-seq, with less apparent noise, as compared
to microarrays (Figure 3B and C). The gene expression
levels for ESR1, which encodes the estrogen receptor alpha
(ER) receptor, was compared to the clinical ER immuno-
histochemistry scores and illustrates the wide dynamic
range of RNA-seq for an important breast cancer bio-
marker (Figure 3D). Corresponding plots are shown for
PGR (progesterone receptor (PgR)) and ERBB2 (HER2) in
Additional file 2: Figure S3.

Mutation screening by RNA sequencing
In addition to these technical attributes, RNA-seq data
can be used to detect gene mutations, splice variants,
and fusion transcripts, opening up new avenues of study.
As proof of principle, we utilized the 49 tumor RNA-seq
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series of population-based cases (Figure 4B and C). Muta-
tions in 18 out of 90 genes investigated could also be reli-
ably detected in the transcriptome, such as KMT2C
(MLL3), MAP3K1, ERBB2, ARID1A, PTEN, and RB1, and
39/49 (80%) of tumors had at least one of these 18 genes
mutated (Figure 4A).
Tissue microarrays, constructed from a piece of each

tumor adjacent to that used for nucleic acid extractions,
were evaluated for cellularity composition by hematoxylin
and eosin staining and scored for invasive tumor, in situ
tumor, normal epithelium, lymphocyte, stroma, and adipo-
cyte content. Generally, approximately 75% of cases con-
tain >50% tumor cells and 15% of cases contain less than
30% tumor cells. Few cases appear to be overtly affected
by tumor cell content with respect to supervised analyses,
for example in the intrinsic molecular subtyping or muta-
tion analysis (Figures 3A and 4A).

Discussion
We have developed a mature infrastructure for prospect-
ive, multicenter, population-based, enrollment of breast
cancer patients, coupled to an optimized genomics plat-
form for gene expression profiling and mutation analysis
by RNA sequencing. Powerful biomarker discovery pro-
jects will be possible after we have studied many hun-
dreds to many thousands of breast tumors and related
these data to patient characteristics, treatment response,
and outcomes. The established infrastructure will enable
SCAN-B-derived biomarker tests to be validated using
independent series of population-based cases from the
ongoing prospective SCAN-B study. In a similar way,
biomarker tests (such as gene expression signatures)
from the literature can be tested and validated within
our patient material. For validated biomarker tests that
are proven to be clinically relevant, the goal is to per-
form the analysis as a diagnostic test and communicate
the result back to the treating physicians within a
clinically-actionable time-frame (within weeks after sur-
gery or biopsy). Thus, within the framework of an initia-
tive such as SCAN-B, the cycle time from biomarker
discovery, to independent validation, to clinical imple-
mentation can be made more rapid and efficient.
With the current participating sites, the SCAN-B Ini-

tiative has and will continue to assemble a very large
series of breast cancer cases over many years, prospect-
ively analyzed with the same methods and platforms.
The first phase of SCAN-B prioritizes the sequencing of
expressed mRNAs because of our prior experience and
interest, the maturity of the field, experimental cost, as
well as the fact that expression level as well as isoform
and variant status can be ascertained simultaneously.
The wealth of small and long non-coding RNAs, DNA-
level aberrations, and epigenetic changes are not yet
investigated. Future analyses will investigate global
mutational portraits and differential expression of gene
isoforms, and ample study material is stored for future
genomic, transcriptomic, and proteomic analyses such as
whole-genome and targeted exome sequencing, sequen-
cing of non-coding RNAs, and studies of active proteins.
The SCAN-B Initiative will enable numerous types of in-
vestigations that are population-based and appropriately
powered. For example, we aim to identify and validate
RNA and DNA biomarkers predicting exceptionally fa-
vorable prognosis without need for adjuvant therapy,
biomarkers for resistance to specific therapies, such as
trastuzumab resistance or resistance to endocrine ther-
apy, and biomarkers to refine the intermediate prognosis
cases, such as tumors of histological grade 2. Within the
coming years, we will have amassed many cohorts of
hundreds to thousands of patients receiving any particu-
lar standard treatment, linked to >5 years follow-up his-
tory, and with corresponding RNA-sequencing data.
Gene expression patterns and mutational patterns, and
other biologically relevant information discernible from
the SCAN-B data such as expression of alternatively
spliced transcripts, fusion genes, and allele-specific ex-
pression, will be analyzed in the context of the clinico-
pathological information, therapy, and patient outcome
in order to develop and validate new biomarker tests for
eventual clinical use. We also aim to use the SCAN-B
infrastructure to identify patients who may benefit from
participation in specific clinical trials, for example to se-
lect patients whose gene expression or gene mutation
status suggests sensitivity to an emergent therapeutic.
Tumor tissues, grossly dissected at pathology, are the

most practical samples to analyze in a large-scale setting
as compared to microdissection; moreover, the non-
tumoral gene expression signals, such as from immune
cells and stroma, may be highly biologically and clinic-
ally relevant. For example, it has been shown that im-
mune response signatures can be predictive of outcome
across a wide range of cancer forms [45-48]. Therefore,
depending on the purpose, we foresee the importance of
interpreting genomic biomarker results in the context of
the estimated compartmental cellularity of each analyzed
specimen.
Comparison of mutation analysis at the level of

mRNA- versus DNA-sequence warrants further investi-
gation and is currently underway. Based on our early ex-
periences as well as the work of others, we posit that
mutations of oncogenes should be efficiently detectable
by RNA-seq, but that some mutations in tumor suppres-
sor genes may be more difficult to detect due to lowered
expression levels, loss of heterozygosity, and/or non-
sense mediated decay [49-51]. We hope to add DNA-
level profiling to the SCAN-B routine in the future. For
example, the BRCAsearch subproject is investigating,
after additional informed consent, the consecutive



Saal et al. Genome Medicine  (2015) 7:20 Page 11 of 12
testing of germline BRCA mutations. Another project
currently in progress is comparing the classification of
the five conventional clinical biomarkers (clinical deter-
minations for ER, PgR, HER2, Ki67, and histological
grade) to paired classifications based on RNA-seq gene
expression signatures. The influence of intra-tumoral
heterogeneity, subclonality, other cell types such as non-
tumoral epithelial and stromal cells, and the limitations
of sampling require further study. For patients receiving
primary medical treatment, we are currently implement-
ing an extensive sampling program including sequential
blood sampling and an additional tumor biopsy after
two cycles of preoperative chemotherapy. We also plan
to soon begin systematic collection and analysis of meta-
static breast cancer samples upon disease relapse, which
will provide a rich and informative platform for studying
tumor progression and tumor evolution. We believe
these results and future results from SCAN-B will com-
plement the existing clinical and pathological evaluation
and can become another part of our armamentarium in
diagnosing, evaluating, and treating breast cancer.
We present the feasibility of large-scale multicenter

collection of population-based breast cancer patient ma-
terial and analysis with next-generation genomic analyt-
ical methods. In our hands, 85% of new diagnoses are
enrolled across a wide geography of Sweden, and the
specimen collection reflects well the clinicopathological
characteristics of breast cancer in the catchment region.
Due to primacy of the clinical diagnostic evaluation, very
small/low-grade tumors are slightly under-sampled. We
anticipate improvements in patient enrollment, and in-
creases in the fraction where a tumor specimen can be
collected, as the procedures become further integrated
into the healthcare routine and the importance of tissue
and blood sampling for genomic analyses becomes fur-
ther evident through forthcoming studies from us and
others. We are expanding the infrastructure to include
patients diagnosed with metastatic breast cancer, and
also drawing blood samples at routine intervals during
the clinical course for liquid biopsy studies.
Lastly, we extend an open invitation to other hospital

systems in Sweden and the Nordic countries to join the
SCAN-B network. Most recently, Uppsala County joined
the network in October 2013. SCAN-B may also serve
as a model for similar translational projects in other
types of cancer and diseases.
Conclusions
In summary, we present the successful implementation
of a multicenter infrastructure for genomic biomarker
development in breast cancer across a wide geography
of Sweden, and the optimization of RNA-seq protocols
for high-throughput analyses. To our knowledge, this is
the largest endeavor of its kind and is distinctive in its
population-based approach.
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