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Abstract

This thesis presents a new method for design of PI and PID controllers
with the level of control signal activity taken into consideration. The
main reason why the D-part is often disabled in industrial control loops
is because it leads to control signal sensitivity of measurement noise.
A frequently varying control signal with too high amplitude will very
likely lead to actuator wear and tear. For this reason it is extremely
important for any PID design method to take this into account.
The proposed controllers are derived using a newly developed de-

sign software that solves an IAE minimization problem with respect
to H∞ robustness constraints on the sensitivity- and complementary
sensitivity function. The software is shown to be fast, easy to use and
robust in giving well-performing controllers.
By extracting measurement noise from the process value of a real

plant, one can estimate its effect on the control signal variance. The
time constant of the low-pass filter, through which measurements are
fed, is varied to design controllers with constrained control signal ac-
tivity. By comparing control signal variance and IAE, the user is also
able to weigh actuator wear to estimated performance.
The proposed PID design method has shown to give very promising

results both on simulated examples and real plants such as a recircu-
lation flow process.
Optimal Youla parametrized controllers are used both as a quality

check of the designed PI and PID controllers and as a tool for de-
termining when these are valid choices compared to more advanced
controllers.
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1

Introduction

This chapter will present some of the main goals of the PID design
method proposed in this thesis. It will be followed by a motivation
for developing new methods for PID design when there are already
several in use giving satisfying results. The chapter will be concluded
with an outline of the thesis, summarizing the content of the respective
chapters.

1.1 Background

Many industrial processes have rather simple dynamics and they are,
therefore, often modeled using straightforward methods like step re-
sponse tests. This will typically lead to models of the form

P(s) = Kp

1+ sT e
−sL, (1.1)

called First Order systems with Time Delay or just FOTD systems.
One way of characterizing these processes is by the normalized time
delay

τ = L

L + T . (1.2)

When τ & 0, the process is called lag dominant, while a process with
τ . 1 is referred to as delay dominant. τ is used extensively in, for
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Chapter 1. Introduction

example, [Åström and Hägglund, 2005]. While τ is introduced for FOTD
systems, it is a measure used for a much broader variety of systems
(through FOTD approximation). For this reason, τ will be frequently
used in this thesis as well.
The PI controller is, by far, the most common controller in industry

today. Although a PI controller may often be sufficient, the main reason
for the rare use of the D-part is due to measurement noise throughput
to the control signal and the complexity of choosing yet another param-
eter. While PI and PID controllers are considered to give rather simple
control laws, there are still a lot of poorly tuned controllers in industry.
Two of the main reasons being lack of knowledge and time among the
operators. As a consequence, many PID controllers have their param-
eters set to default values. So, it is important for any controller design
method to be fast, simple and robust. If not, there is little chance it
will be used.

1.2 What are reasonable control goals for industry?

In order to derive a successful controller design tool, no matter the
controller structure, it is important to set reasonable demands on the
closed loop system. Here follows a brief list of closed loop characteristics
that the proposed design tool was built upon:

• Fast suppression of load disturbances

According to [Åström and Hägglund, 2005], the most important duty
of the industrial controller is to suppress low frequency changes on the
process value. Too high variations in the process value could typically
lead to lower product quality.

• Modeling errors and process alteration not leading to instability

As stated already, the dominating method for derivation of an indus-
trial process model is by running a step response test in open loop. This
will likely result in an FOTD model like (1.1), no matter if the true
process dynamics are much more complex or not. Even if the model is
good to start with, it could very well be that the plant changes slowly

10



1.3 Is there a need for a new PID design method?

over time. In other words, it is important that the closed loop system
is robust to such errors and variations.

• Actuator wear and tear should be low

For anyone that wants to design a PID controller where the D-part is
active, it is extremely important that the control signal activity does
not become too high. In this thesis, it will be assumed that high ampli-
tude and frequency of the control signal are the major villains when it
comes to cause actuator wear and tear. In [Buckbee, 2002], the relation
between high expenses of valve maintenance and controller tuning are
in focus. Buckbee emphasizes the commercial value of proper tuning
in order to keep the control signal activity low.

1.3 Is there a need for a new PID design method?

It has already been mentioned that many industrial control loops are
poorly tuned, often without use of any systematic design method. There
are, however, several design methods that are used rather frequently
in industry. The possibly most common of these is the lambda tuning
method, which will be described in detail in the next chapter. Another
common method is auto-tuning which determines a controller through,
for example, relay and/or step response experiments on the process.
These kinds of design methods are often incorporated in commercial
software programs.
While many control loops can be controlled sufficiently well with

these methods, they often lack guarantees that all three criterias in
Section 1.2 are addressed. It could, for instance, be that a PI design
gives a robust closed loop system with low control signal activity, but
rather bad performance. A PID controller may then be a better op-
tion for fulfilling all demands on the system. The PID design method
proposed in this thesis will take all three criterias into account simul-
taneously and should thus more likely be giving good control. Another
fundamental aspect of the new design method is to choose either PI
or PID control structure depending on which is the most suitable for
the given process. For example, there is no reason to design a more
advanced controller if a PI controller is just as good.

11



Chapter 1. Introduction

Furthermore, the proposed PID design method is software based,
solving an optimization problem off-line (see [Garpinger and Hägglund,
2008]). Many other design methods are formula based, with their origin
from some advanced optimization, like [Kristiansson and Lennartson,
2006] and [Hägglund and Åström, 2004]. But, if it is possible to solve
the optimization directly on a computer, should it then not be better
than using a generalized formula? It was shown in [Garpinger and
Hägglund, 2008] that the proposed software program has good poten-
tial of being both a source for PID knowledge and a tool for further
research. Such a tool can, in other words, be beneficial to people in
industry in need of more PID education, at the same time as it is used
by advanced researchers.
In order to get a quality check of the PI and PID controllers, de-

rived by the proposed design method, Youla parametrized controllers
have been used. A Youla optimization tool was used to derive nearly
optimal linear controllers with the same criterias as the PID design.
This way, one can see how close the controller designs are to the limit
of performance. There will also be an attempt to use Youla controllers
for giving a more general picture of when PI and PID controllers are
useful compared to more advanced controllers.

1.4 Outline

Here follows a brief summary of the different thesis chapters.

Chapter 2

In Chapter 2 follows a presentation of the closed loop system in focus.
In conjunction to this, an optimization problem is stated such that the
criterias in Section 1.2 are taken into consideration. The chapter is also
concerned with giving an introduction to the way Youla parametrized
controllers can be optimized to give good estimates of the best possible
linear controllers. The optimization problem is finally translated into
a Youla parametrization framework for convex optimization.

Chapter 3

Chapter 3 introduces four other PID design methods, some sources of
inspiration and a few other related methods.

12



1.4 Outline

Chapter 4

Chapter 4 contains a detailed explanation of how the proposed software
tool for optimization of robust PID controllers works. The Nelder Mead
algorithm is presented together with a motivation of its worth. The
chapter is concluded with several examples, comparing the PI and PID
controllers to those derived with the MIGO method (for a description
of the MIGO method, see Section 3.1).

Chapter 5

The purpose of Chapter 5 is to describe how the PID design software
can be used to constrain the control signal variance due to measure-
ment noise. Challenges in connection to e.g. measurement data logging
and variance estimation are also discussed. A suggestion on how to
proceed with the method on a real plant is also presented. Several ex-
amples will conclude the chapter and show the potential of the method.
Optimized Youla controllers will be used to validate the quality of the
PI and PID controllers.

Chapter 6

The proposed PID design method has been tried out on an industrial
plant. The chapter describes initial tests, modeling of the plant, con-
troller design and results when the proposed controllers were run on
a recirculation flow process.

Chapter 7

When is it justified to use PI and PID controllers rather than more
advanced controllers? Chapter 7 will aim at giving at least a hint of
the answer to this question. The research on this topic is, however,
not yet finished, so the discussion will mainly serve as a source of
inspiration. It should, however, still be possible to draw quite a few
interesting conclusions from the results.

Chapter 8

The very last chapter will summarize the most important conclusions
and present some ideas for future work in the research area.

13



2

Design Specifications

The following chapter will define the closed loop system of interest in
this thesis. Given this, an optimization problem for design of robust
PID controllers with adjustable control signal noise reduction will be
stated. In addition to this, there will be two sections describing Youla
parametrized controllers and how to rewrite the closed loop system to
fit it into this framework.

2.1 Design criterias

The main purpose of proposed PID controller design tool is to work
well for systems common in process industry. The kind of plants en-
countered there are often stable, monotone and primarily affected by
low frequency load disturbances. This is also why the regulator prob-
lem is considered in this thesis rather than the tracking problem. A
good tracking performance can be achieved using feed-forward design
after the controller have been designed for disturbance rejection, see
e.g. [Åström and Hägglund, 2005] for details.
In order for the controller design to work well on a real process,

with model P(s), it is important to take all system signals into con-
sideration, especially if optimization is used. If not, some signals may
easily blow out of proportions or the closed loop could become sensitive
to changes in the process. Figure 2.1 shows a block diagram of the sys-
tem that the PID (or PI) controller, C(s), is designed for. There are two
external signals entering the system, the load disturbance d (mainly

14



2.1 Design criterias

d

ΣΣ
e u ū ȳ

n

y

–1

C(s) P(s)

Figure 2.1 A load disturbance, d, and measurement noise, n, act on the closed
loop system with process P(s) and PID controller C(s).

low frequency) and measurement noise n (assumed high frequency).
A popular name for the four transfer functions from disturbances to
control signal u and measurement signal y is the gang of four. These
are

(

T(s) P(s)S(s)
C(s)S(s) S(s)

)

=









P(s)C(s)
1+ P(s)C(s)

P(s)
1+ P(s)C(s)

C(s)
1+ P(s)C(s)

1
1+ P(s)C(s)









,

where the top left corner function, T(s), is called the complementary
sensitivity function and the function in the bottom right corner, S(s),
is named the sensitivity function.
The PID controller is assumed to be on parallel form

C(s) = K
(

1+ 1
sTi

+ sTd
)

⋅
1

1+ sTf + (sTf )2/2
,

with a second order low pass filter on the measurement signal. In case
a PI controller is designed instead, it will have the form

C(s) = K
(

1+ 1
sTi

)

⋅
1

1+ sTf
.
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Chapter 2. Design Specifications

Tf is chosen, in both cases, to weigh the degree of measurement noise
rejection against closed loop performance. A low value on Tf will gener-
ally result in better load disturbance rejection, but may lead to strong
noise amplification in the control signal. Therefore, choosing T f is a
balance between getting good performance and keeping the actuator
wear low. A large portion of this thesis will be focused on how to choose
Tf in a sensible way. The low-pass filter has been chosen to be of sec-
ond order, even though it is common in industry to only have low-pass
filter of order one and then often on the derivative part of the con-
troller only. The reason for choosing a second order filter is because it
guarantees roll-off on all sensitivity functions (The Gang of Four). It
does also make sense to filter the P-part of the controller as it could
otherwise lead to considerable noise throughput to the control signal.
It should, however, be possible to use a different low-pass filter setup
for the method described in this thesis if desired, but it would require
some modifications to the software.
The objective of the proposed PID design method is to find the PID

controller giving the least Integrated Absolute Error (IAE) value,

IAE =
∞
∫

0

pe(t)pdt,

when a load disturbance d, modelled as a step, is acting on the closed
loop system. The optimization is done under the constraints that the
open loop Nyquist curve is tangent to one or two prespecified circles in
the complex plane, without entering either of them (see Figure 2.2).
These two circles will be called the Ms- and Mp-circle (although they
will sometimes be referred to as the M -circles), which sizes and posi-
tions are given by

Ms = max
ω
pS(iω )p, Mp = max

ω
pT(iω )p,

hence the names. According to, for example, [Åström and Hägglund,
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2.1 Design criterias
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Figure 2.2 The Ms-circle (dashed), Mp-circle (dash-dotted) and the open loop
Nyquist curve (solid) when the optimization criterias are fulfilled.

2005] the center points and radius of the two circles are given by:

CMs = −1, RMs =
1
Ms
,

CMp = −
M2p

M2p − 1
, RMp =

Mp

M2p − 1
,

where the center points are denoted with C, the radius with R and the
indices refer to the circles.
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Chapter 2. Design Specifications

The resulting, non-convex, optimization problem can be written as

min
K ,Ti,Td∈R+

∞
∫

0

pe(t)pdt = IAEload (2.1)

subject to pS(iω )p ≤ Ms, pT(iω )p ≤ Mp, ∀ω ∈R+,
pS(iω s)p = Ms and/or pT(iω p)p = Mp

where e(t) is the control error, ω s are frequencies for which the open
loop frequency response is tangent to the Ms-circle and vice versa forω p

on the Mp-circle. Either ω s or ω p could be an empty vector, but not at
the same time. Small Ms- and Mp-values result in large circles. In the
software, the maximum allowed Ms- and Mp-values can be prespecified
by the user. The Ms- and Mp- criterias are known to set the closed loop
robustness towards process variations, disturbances and nonlinearities
as described in [Åström and Hägglund, 2005]. Ms = Mp = 1.4 has
been chosen as default values in the optimization software, resulting
in 41.8○ phase margin and a gain margin of 3.5. Some sources list
values spanning from 1.2 to 2 giving reasonable robustness. MIGO on
the other hand uses a simplified robustness criterion called the M -
circle, defined as the smallest circle that encloses both the Ms- and
Mp-circle.
In Chapter 5, a constraint on the control signal variance, due to

measurement noise, will be added. This constraint is, therefore, set on
C(s)S(s) which will be called Sk(s) in the future. When the spectrum
of the measurement noise is taken into consideration, Sk(s)N(s) will
be used instead. N(s) is assumed to be the transfer function filter-
ing white noise into the current measurement noise. In this thesis a
variance constraint on the control signal was selected, such that

qSkq22 =
σ 2u
σ 2n

≤ Vk,

where σ 2n is the variance of the measurement noise and σ 2u is the vari-
ance of the control signal that the noise results in. Vk is the design
parameter and Vk = 1 will correspond to u and n having the same
variance.

18



2.2 Youla parametrized controllers

One could argue that the optimization problem lack a warranty for
time delay robustness. Such a constraint will, however, not be used in
this thesis. Main reason being that PI and PID controllers seldom lead
to closed loop systems with poor robustness towards time delay vari-
ations. The issue will, however, come up when comparing the designs
to more advanced Youla controllers in Chapter 5.

2.2 Youla parametrized controllers

Assume that the process, P(s), is both stabilizable and detectable. A
more general way of representing a closed loop system around P(s)
is shown in Figure 2.3. The feedback scheme presented in Figure 2.1
is just one possible loop among all that can be represented this way.
The signals in w are exogenous disturbances acting on the closed loop,
such as: measurement noise, load disturbances and reference signals.
The exogenous outputs, z, on the other hand represent the closed loop
signals one wants to control. u is simply the control signal, while e
are generally measurements entering the controller. P̄(s) is a more
generalized representation of the process and will be used here when
deriving, so called, Youla parametrized controllers.

C(s)

u e

w

P̄(s)
z

Figure 2.3 A general representation of a closed loop system. P̄ is the gener-
alized process that will be used to find Youla parametrized controllers.

It is known (see for instance [Boyd et al., 1990] and [Wernrud,
2008]) to be possible to parametrize all stable control loops to depend
affinely on the transfer function Q, defined as

Q(s) = C(s)
1+ P(s)C(s) . (2.2)

19



Chapter 2. Design Specifications

Many known control problems can then be written such that they are
closed loop convex in Q. Some examples of closed loop convex cost func-
tions and constraints are:

• l1- and l2-norm costs.

• Time domain envelop constraints on the closed loop.

• Frequency domain upper bound constraints.

• Upper bound on the H2-norm of a closed loop transfer function.

The stability of the controller C(s) can, however, not be guaranteed,
nor can its order be constrained. This means that the controller could
end up having very high order and potentially be unstable. The closed
loop must still be stable of course.
When the closed loop convex optimization problems are solved, it is

commonly done in discrete time. One way of optimizing the controller
is by defining Q as an FIR filter,

Q(z) =
NQ−1
∑

l=0
ql z

−l,

and then have an optimization solver determine the coefficients ql.
The controller can then readily be derived from (2.2). C(z) will be
an estimate of the best possible linear controller for the optimization
problem. The order of the FIR filter will determine how close to the
limit of performance one gets.
The optimization tool used here for deriving Youla parametrized

controllers is described in [Wernrud, 2008]. The main use of these
controllers in this thesis is to show whether or not the PI and PID
controller designs can come close to the limit of performance. As stated
in [Boyd et al., 1990], this would be a very strong point in favour of a
simple controller.
For more information on Youla parametrized controllers one can

read any of the sources; [Norman and Boyd, 1989], [Boyd et al., 1990],
[Boyd and Barratt, 1991], [Boyd and Barratt, 1992], [Wernrud, 2008].
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2.3 System description for Youla optimization

2.3 System description for Youla optimization

In order to derive Youla parametrized controllers for the given problem,
the process has to be written on the general form shown in Figure 2.3.
For this reason, the process P(s) is transformed to state space form

ẋ(t) = Ax(t) + Bū(t) = Ax(t) + B(d(t) + u(t))
ȳ(t) = Cx(t).

The exogenous inputs, w, and outputs, z, are defined as

w(t) =
(

d(t)
n(t)

)

, z(t) =
(

ȳ(t)
ū(t)

)

,

such that the outputs from the general system, P̄, are

(

z(t)
e(t)

)

=







ȳ(t)
ū(t)
e(t)






=







Cx(t)
d(t) + u(t)
–Cx(t)–n(t)






.

The complete state space form of P̄, is thus

ẋ(t) = Ax(t) + ( Bw Bu )
(

w(t)
u(t)

)

= Ax(t) + ( B 0 B )







d(t)
n(t)
u(t)







(

z(t)
e(t)

)

=
(

Cz

Cy

)

x(t) +
(

Dzw Dzu

Dyw Dyu

)

(

w(t)
u(t)

)

=







C

0

–C






x(t) +







0 0 0

1 0 1

0 –1 0













d(t)
n(t)
u(t)






.

Since P often contains time delays and the Youla optimization software
needs a discrete time system, the process model is discretized with
a sampling time h, before P̄ is derived. The form of the state space
realization is, however, not changed by the discretization.
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Chapter 2. Design Specifications

By block diagram calculations, one can easily derive the closed loop
system transfer matrix

H =







P

1+ PC –
PC

1+ PC
1

1+ PC –
C

1+ PC






,

which holds all sensitivity functions of interest for the optimization
problem.
When the Youla optimization is run, the order of the Q-filter needs

to be above a certain number (changes depending on the process) in
order for the final controller to hold an integrator.
The sampling time selection is especially vital for delay dominant

systems. The sampling interval should be chosen short enough to cover
all vital parts of the system dynamics. At the same time it should not
be too small. A sampling interval shorter than the time delay will be
represented in extra states as described in for instance [Åström and
Wittenmark, 1997]. If the sampling time, h, is a lot smaller than the
time delay, L, the discrete time system will be of very high order, typi-
cally leading to very slow optimization and potentially even numerical
problems.
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3

Sources of Inspiration and

Related Design Methods

In this chapter, four methods for design of PID controllers will be pre-
sented. They all have in common that they will be frequently referred
to later within this thesis. In addition to these, the chapter will be con-
cluded by a brief overview of other related methods and some sources
of inspiration.

3.1 Closely related PID design methods

There are many PID design methods available today and some of the
most famous are collected and analysed in [Åström and Hägglund,
2005]. A few of these will briefly be presented in this section as well,
together with a newer method developed in [Nordfeldt, 2005].

Lambda tuning

The lambda tuning method which was first introduced in [Dahlin, 1968]
has grown to be very commonly used in industry (see e.g. [Olsen and
Bialkowski, 2002]). The method is built around the idea of pole place-
ment in relation to the process time constant.
An FOTD model, like (1.1), is first derived through for instance

a step response experiment on the process. The integral time is then
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Chapter 3. Sources of Inspiration and Related Design Methods

chosen to be Ti = T such that the open loop transfer function becomes

P(s)C(s) = KpK
sT
e−sL,

in case of a PI controller. Note that the process pole has been canceled
by the controller zero. Using a Taylor series approximation of the time
delay will now make it possible set an approximate closed loop system
time constant, which will be called Tcl. The lambda tuning formulas
for PI parameters thus becomes

K = 1
Kp

T

L + Tcl
,

Ti = T .

There are PID controller formulas as well, but these are not as com-
monly used.
As stated in [Åström and Hägglund, 2005], the lambda tuning rules

will give good control under certain circumstances. The cancellation of
the process pole will, however, give sluggish load disturbance responses
for lag-dominant processes (τ & 0). The method do have several ad-
vantages as well, since it is both a simple and intuitive method to use.
It should, however, be pointed out that there are no guarantees on
good performance, robustness or low control signal activity. Take for
instance the PI design for

P(s) = 1
0.1s+ 1 e

–s

as an example. According to [Åström and Hägglund, 2005], choosing
Tcl = 3T is normally considered to give good robustness. With this
process, however, one would have to choose Tcl ( 16.8T in order to get
the same robustness as the one, by default, given by the proposed PID
design software. Also, setting this Tcl will lead to a controller giving
very poor performance. Cases like this can of course be taken care of by
people with good control knowledge, but it corresponds to unnecessary
work if there are methods giving good controllers right away.
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3.1 Closely related PID design methods

The MIGO and AMIGO methods

The method used to receive initial controllers in the proposed software
algorithm is called AMIGO (see [Hägglund and Åström, 2004]), which
is a tool for robust PID (and PI) synthesis. To understand AMIGO, it
is also important to understand the MIGO method (see [Panagopoulos
et al., 2002]) for PI and PID design.
The optimization problem that the MIGO design deals with is very

similar to (2.1). But instead of minimizing over the IAE-value, it uses
the Integrated Error,

IEload =
∞
∫

0

e(t)dt,

as cost function and the M -circle as robustness constraint, to determine
the PID parameters.
The IE cost is proportional to 1/ki = Ti/K , which reduces the prob-

lem to maximizing the ki-gain over the robustness area. Such an op-
timization problem is advantageous as it can be solved by known op-
timization routines. There are, however, a few drawbacks related to
the use of the IE-value and it can sometimes be an insufficient cost
function. The IE-cost will decrease if the load disturbance response
assumes negative values, which means that oscillating responses may
be preferred. The M -circle criterion will prevent the worst of the os-
cillatory responses from occurring, but there are examples when even
this is not enough. The problem has been avoided in the final MIGO-
algorithm by a fix that searches for the the best controller for which
the cost function has a defined gradient.
A drawback with the MIGO method is that it requires quite a bit

of preparational work before it can run.
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Chapter 3. Sources of Inspiration and Related Design Methods

The AMIGO design is basically a set of formulas yielding K , Ti and
Td. These were derived using MIGO on a test batch, which includes
134 systems commonly encountered in process industry

P1(s) =
e−s

1+ sT ,

T = 0.02,0.05,0.1,0.2,0.3,0.5,0.7,1,
1.3,1.5,2, 4, 6,8, 10,20,50,100,200,500,1000

P2(s) =
e−s

(1+ sT)2 ,

T = 0.01,0.02,0.05,0.1,0.2,0.3,0.5,0.7,1,
1.3,1.5,2, 4, 6,8, 10,20,50,100,200,500

P3(s) =
1

(s+ 1)(1+ sT)2 ,

T = 0.005,0.01,0.02,0.05,0.1,0.2,0.5,2,5, 10

P4(s) =
1

(s+ 1)n ,

n = 3, 4, 5, 6, 7, 8

P5(s) =
1

(1+ s)(1 +α s)(1+α 2s)(1+α 3s) ,

α = 0.1,0.2,0.3,0, 4,0.5,0.6,0.7,0.8,0.9

P6(s) =
1

s(1+ sT1)
e−sL1 ,

L1 = 0.01,0.02,0.05,0.1,0.2,0.3,0.5,0.7,0.9,1.0, T1 + L1 = 1

P7(s) =
1

(1+ sT)(1 + sT1)
e−sL1 , T1 + L1 = 1,

T = 1,2, 5, 10 L1 = 0.01,0.02,0.05,0.1,0.3,0.5,0.7,0.9,1.0

P8(s) =
1−α s

(s+ 1)3 ,

α = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1

P9(s) =
1

(s+ 1)((sT)2 + 1.4sT + 1) ,

T = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0.

(3.1)

Secondly, each and every process in the batch was approximated as
an FOTD, (1.1). PID-parameter formulas were then derived through
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3.1 Closely related PID design methods

parameter fittings with respect to normalized time delay, τ , resulting
in

K A = 1
Kp

(

0.2+ 0.45T
L

)

T Ai =
0.4L+ 0.8T
L + 0.1T L

T Ad =
0.5LT
0.3L+ T .

The index A denotes the AMIGO parameters. There are also AMIGO
formulas for PI control, namely

K A = 0.15
Kp

+
(

0.35− LT

(L+ T)2
)

T

KpL
,

T Ai = 0.35L+
13LT2

T2 + 12LT + 7L2 ,

which will be used as well.
In contradiction to the lambda tuning method, AMIGO has some

guarantees on both robustness and performance. The PID parameters,
however, tend to blow up in proportions for lag dominant systems.
Take for instance the case when Kp = 1, L = 1 and T = 500. This
gives τ = 0.002, K A = 225.2, Ti = 7.85 and Td = 0.50. The high
proportional gain makes this a controller that people in industry would
be very reluctant to implement due to measurement noise throughput.
In [Åström and Hägglund, 2005] there is a suggested way of detuning
the AMIGO rules, but it does not take the measurement low-pass filter
into consideration.

Pontus Nordfeldt’s Design Method

A further development of the MIGO method, and largely based on the
same optimization problem used in this thesis, was presented in [Nord-
feldt, 2005]. Nordfeldt wrote a Matlab script designing PID controllers
that minimize IAE with respect to an M-circle robustness constraint.
The algorithm used is based on extensive gridding of the cost function,
while choosing K in the same fashion done in this work. The main goal
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Chapter 3. Sources of Inspiration and Related Design Methods

of Nordfeldt’s method was to find controllers for processes like

G(s) = G1(s)e−sL1 + G2(s)e−sL2 ,

where G1 and G2 are stable, rational, linear transfer functions. The
case L1 ,= L2 is, for instance, of interest when a system with two
inputs and two outputs is dynamically decoupled. While the controller
design for advanced process structures was the main aim of Nordfeldt,
this thesis focuses more on the software tool solving the optimization
problem and the usefulness of the same.

3.2 More distantly related methods and sources of
inspiration

There are many good reasons to have a software based tool for control
design and analysis, like the one presented here. In [Åström and Häg-
glund, 2001] it is pointed out that it would be of great value to have
software that can give persons with moderate knowledge of PID con-
trollers a possibility to experiment on those and at the same time be
able to use the program to build controllers for a real plant, by incor-
porating it into an auto-tuning procedure. Besides the proposed design
tool, which is freeware, there are already several commercial software
packages able to provide PID designs using a variety of methods. Many
of these are collected in [Li et al., 2006]. Another method with very sim-
ilar features to the proposed one is presented in [Oviedo et al., 2006].
There are several papers that acknowledge the importance of four

parameter design for PID controllers. One of these is [Isaksson and
Graebe, 2002] that also points out the importance of knowing the struc-
ture of the controller implementation. The authors believe that there is
plenty of use for the D-part in industrial applications. They think that
the main reasons for PI controllers still being dominant in industry are
lack of four parameter design methods and the ease of tuning PI con-
trollers. In addition to this, the authors ask for model-based methods
that can be implemented in software. Another source that highlights
tuning of low-pass measurement filters is [Luyben, 2001].
Two other sources that use similar methods to the one proposed

here are [Marlin, 1995] and [Kristiansson and Lennartson, 2006]. They
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3.2 More distantly related methods and sources of inspiration

both have similar optimization problems and take noise into considera-
tion. It should be mentioned that Marlin design controllers with respect
to all three criterias given in Section 1.2, just like the proposed design
method.

29



4

A Software Tool for Robust

PID Design

This chapter will focus on the Matlab software tool that was written in
order to solve the optimization problem described in Section 2.1. Note
that this tool does not take the control signal variance constraint into
consideration. Deriving controllers with that constraint added will be
covered in the next chapter.
The aim of the new tool is to have a robust and fast way of de-

signing PID controllers, solving the optimization problem (2.1). The
program works on any stable, linear, process model with a phase shift
of at least –90○ for high frequencies. The software should also be
easy to modify, educational and a tool for further research. As a part
of accomplishing these goals, the software can be downloaded from
http://www.control.lth.se/user/olof.garpinger/.
The chapter will start with a motivation of the algorithm used in

the software. All methods used will thereafter be explained in detail.
On top of this, there is a short section about design of PI controllers.
Last, there will be several examples showing that the software tool
works well.

4.1 Algorithm overview

A non-convex optimization problem like (2.1)may have many local min-
ima. It is therefore hard to guarantee that the solution obtained always
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Figure 4.1 In the new design software, the cost (IAE-value), can be drawn as
a function of the PID parameters Ti and Td. The system in this particular case
is the fourth order lag filter G(s) = (s+ 1)−4. The minimum is marked in the
picture.

is the global solution. It is also difficult to draw any general, analytical,
conclusions as the problem is far from trivial. The method of gridding
does, however, give a possibility of drawing surface plots of the cost
function. These can be used to determine whether or not it is likely
that a given solution is in fact the global minimum. This is also the
major reason why gridding is an optional optimization method in the
proposed design program. Figure 4.1, for instance, shows such a sur-
face plot for the fourth order system G(s) = (s+1)−4. Analysis of many
cost function surfaces has shown that if not all, then at least a majority
of them only have one minimum. This finding gave the idea to use a
faster and more advanced optimization tool than gridding, namely the
Nelder Mead (NM) method, [Nelder and Mead, 1965], in order to find
the minimum in the Ti-Td plane.
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Chapter 4. A Software Tool for Robust PID Design

The proportional gain, K , is chosen such that the open loop Nyquist
curve is tangent to one or both robustness circles. It is reasonable to
choose such a gain since it is likely to maximize the speed of the closed
loop system. Optimizations with more general tools, such as Optimica
(see [Åkesson, 2008]), have also shown that solutions with active con-
straints are generally preferred. There are, however, some cases when
the solution is not expected to give active robustness constraints, which
will be dealt with in the end of Section 4.2.
The algorithm can be summarized by

1. Given a linear process model, initial PID parameters are chosen
using the AMIGO method.

2. Nelder Mead optimization finds the PID controller giving the
minimum cost in the Ti-Td plane.

1. For each (Ti,Td), a proportional gain, K , is found such that
the constraints are fulfilled.

2. Simulations are used to calculate IAE-values in the points
through which the Nelder Mead optimization proceeds.

An interactive program menu has been added to make it possible
for the user to change a number of settings in the algorithm as well as
for the presentation of the results. When the program is run in Mat-
lab, the menu will come up unless the opposite is stated by the user.
New default values for the optimization can also be set as input pa-
rameters. This is especially useful for batch runs, when one may want
to choose the settings before a number of program runs are started.
An advanced user should easily be able to modify the program to, for
instance, change the optimization method or at least change the cost
function. For those that download the software tool, there is a small
tutorial included which explains how to get started.

4.2 Algorithm details

In this section, the optimization algorithm will be explained in further
detail.
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4.2 Algorithm details

The Nelder Mead method

Nelder Mead (NM) optimization belongs to the subclass of optimization
methods called direct search methods. The main theme among these is
that they only use function values without creating approximations of
the function gradients explicitly. These methods are especially useful
if, for instance, the cost to evaluate the function is high and if it is
impossible to derive the exact gradient. These statements apply to the
optimization problem (2.1). Whenever the cost function is evaluated,
the feasible proportional gains must be calculated and Simulink sim-
ulations run. The simulations are particularly costly if the given PID
parameters, at a certain grid point, give a very sluggish closed loop.
The Nelder Mead method is a simplex-based method. There are

many papers and books which describe in detail how the NM algo-
rithm works (see for instance [Walters et al., 1991] and [Lagarias et al.,
1998]), but quite few of them deals with the theoretic aspects. [La-
garias et al., 1998] is an exception, in which a convergence proof for
strictly convex functions, in R2, with bounded level sets is given. The
NM method is commonly used in fields of chemistry and medicine.
Two of the reasons why the method is popular are that it is easy to
both understand and implement. The method is also fast compared to
other algorithms and often has a great improvement of performance
in the first few iterations. The Nelder Mead method can be applied to
minimization problems in many dimensions. It is, however, only nec-
essary to consider two dimensional NM optimization when designing
PID controllers and one dimension for PI control. The reason being that
when K is chosen separately to take care of the constraints, it becomes
an unconstrained minimization problem in R2. Two dimensional NM
optimization can be interpreted as triangle search progression with
variable area.
In order to begin the NM optimization, an initial triangle has to

be specified. The function to be minimized, f , is evaluated at all three
edges and the points are sorted in the order:

1. B: Best, lowest function value f (B)

2. G: Good, function value, f (G), in between the other two

3. W: Worst, highest function value f (W)

33



Chapter 4. A Software Tool for Robust PID Design

1.5 2 2.5 3 3.5 4 4.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

W

B G

M

C1

C2

R

E

S

Figure 4.2 The Nelder Mead progression in one iteration. The initial simplex
is the one with corners in B, G and W. The simplex will change its shape
depending on function evaluations in closely situated points.

From this point, the algorithm will proceed along the following steps
(see Figure 4.2):
1. Determine the midpoint M between B and G,

M = B + G
2
,

and reflect the point W through M to achieve R. R is determined
by the formula

R = 2M −W .
If f (B) < f (R) < f (G), the new triangle will be the one with
edges in B, R and G and the algorithm starts over. If this condi-
tion is not fulfilled, continue to step 2.
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4.2 Algorithm details

2. If f (R) < f (B) (if not, proceed to step 3), the chances are good
that the optimization is proceeding in a beneficial direction. The
algorithm will therefore investigate if it is worth expanding the
simplex to the point

E = 2R − M .
If f (E) < f (R), choose the new simplex with corners in B, G
and E. Otherwise, replace W with R. Go back to step one with
the new simplex.

3. If f (R) > f (W) the simplex will be forced to shrink. Evaluate
the function in the two points

C1 =
W + M
2

,

C2 =
R + M
2
.

If any of these evaluations give a value less than f (W), replace
W with C1 or C2 depending on which gives the lowest value and
go back to step 1 with the new simplex. If none of them is lower
than f (W), continue to step 4.

4. If all points given so far (R, E, C1 and C2) result in function
values greater than f (W), shrink the simplex towards B. The
new simplex will have it’s edges in B, M and S, where S is
determined from the relation

S = B +W
2
.

The proposed algorithm will iterate until the termination criterion

1
3
(q(K (B),T (B)i ,T

(B)
d ) − (K (W),T (W)i ,T (W)d )q2+

q(K (B),T (B)i ,T
(B)
d ) − (K (G),T (G)i ,T

(G)
d )q2+

q(K (G),T (G)i ,T
(G)
d ) − (K (W),T (W)i ,T (W)d )q2) ≤ ǫ,

has been fulfilled. The indices refer to the three simplex corners B,
G and W . In this sense, it is possible to achieve a solution with a

35



Chapter 4. A Software Tool for Robust PID Design

somewhat prespecified accuracy in contrast to the gridding method
which is based on luck and brute force rather than precision.
The regular Nelder Mead method is not suited for problems like

(2.1) that only allow the simplexes to progress in R+. This has been
solved in the proposed design method by granting the NM method
access to negative Ti- and Td-values. But the simulations will only
run with the positive PID-parameters, taking the absolute values of
the simplex corner points. For example, if one starts with the simplex
having corners in B = (T (1)i ,T

(1)
d ) = (1, 1), G = (T (2)i ,T

(2)
d ) = (5, 1)

and W = (T (3)i ,T
(3)
d ) = (3, 4). Using the original procedure of the NM

algorithm, R = (3,−2) would be the next grid-point to investigate.
However, the changes made to the algorithm will instead alter this
point to (p3p, p − 2p) = (3, 2). The program could fail if this point would
end up on the same line as B and G in which case the new simplex
becomes a line. The NM method is always depending on the matrix
containing the simplex points to have rank equal to the dimension of
the optimization problem. This is always true when the simplex has an
area greater than zero. The proposed software will therefore monitor
the rank of the simplex matrix and give a warning if the rank is too
low. It could also be a point in giving a warning if the matrix is poorly
conditioned. It may then be a good idea to spread the simplex corners.
Same could be applied if there are series of small simplexes for a very
long time, for example typical for poorly damped systems with a badly
chosen initial simplex. See figure 4.3 for an example of the behaviour,
which is fortunately quite uncommon. None of these fixes have been
implemented in the software though.

Initial values

As seen in Figure 4.3, it would be preferable to have a good initial
guess of where the minimum is located for fast convergence of the NM
optimization.
In the proposed PID design method, the system of interest is ap-

proximated as an FOTD system, (1.1), through a step response test
after which the AMIGO PID parameters are determined. Let the in-
dex A denote these parameters. The AMIGO parameters will then be
used as one of the corners, (T Ad ,T Ai ), in the initial Nelder Mead sim-
plex. In [Walters et al., 1991] it is recommended to start with a big
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Figure 4.3 Nelder Mead progression for a highly oscillatory system. The
shortcomings of the AMIGO method for this and some other types of processes
could lead to a slowly converging Nelder Mead optimization.

initial simplex, which can then shrink to the area around the mini-
mum, rather than starting with a small triangle which will have to
expand before it can shrink again. Taking this into account as well as
that the evaluation time is usually greater far out in the Ti-Td plane,
the other two corners have been set to (0.4T Ad ,T Ai ) and (T Ad , 0.4T Ai ). In
this way it is also avoided that the second simplex end up in any other
quadrant than the first. Even though the modification of the Nelder
Mead method can handle negative values on the PID parameters, it
still seems wise to avoid these if possible since it alters the purpose of
the original Nelder Mead method.
It is known that the AMIGO PID parameters are less suited for

lag dominant systems (τ ( 0) and oscillatory systems (as Figure 4.3
shows). They have also been developed for the case when Ms and Mp are
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both equal to 1.4. This means that the initial NM simplex can be quite
a distance from the minimum in some cases and the method therefore
needs to be quite robust to work properly. This said, a vast majority
of the program runs end up in the global minimum within reasonable
time. If not, then the optimization settings can just be modified until
a satisfying result is given.

Determining the proportional gain K

As stated before, the proportional gain K - given fix values on Ti and
Td - is derived such that the open loop Nyquist curve is tangent to one
or both robustness circles. Finding this gain can, however, be tricky.
This is illustrated with a short example.

EXAMPLE 4.1—SEVERAL SOLUTIONS TO K
Consider the first order system

G(s) = 1
50s+ 1 e

−s.

The goal is to find a controller gain K , such that the PID controller
with Ti = 6.8 and Td = 0.4 puts the open loop Nyquist curve on the Ms-
circle and/or the Mp-circle using Ms = 1.4, Mp = 1.4. Drawing Ms and
Mp versus the proportional gain K , one receives the plot in Figure 4.4.
It is apparent that there are several K -values fulfilling the criteria.
In this particular case, Ms and Mp will both be less than 1.4 when
K = 0 → 0.19 as well as when K = 8.09 → 23.71. Searching for the
K that fulfills the constraints and gives the least IAE may therefore
not be trivial. It could very well be that one ends up with K = 0.19
instead of K = 23.71 which gives the least IAE in this example. The
algorithm in [Nordfeldt, 2005] for finding K has exactly this problem,
while the new algorithm has been designed to take care of these cases
as well.

It was shown in Example 4.1 that finding the optimal proportional
gain, K , is a non-convex problem. Therefore, a new algorithm has been
developed in order to find all possible K -solutions for fix values on Ti
and Td. The key idea is to determine all K -values putting the open
loop Nyquist curve on a circle in the complex plane, at every frequency
point ω , resulting in a function K (ω ). Since the method is numerical,
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Figure 4.4 Ms and Mp as functions of the proportional gain K . The optimiza-
tion constraints says that both should be below or equal to 1.4, but given that
there are two separate intervals when this is feasible can make it challenging
to find the K giving the least IAE.

the frequency span is divided into a finite number of points ω k, k =
1, 2, . . . ,N. In order to determine K (ω ), it will first be assumed that
the open loop frequency response, Go(iω ), can be written as

Go(iω ) = KG ′o(iω ) = K (X (ω ) + iY(ω )). (4.1)

Where X (ω ) and Y(ω ) are the real and imaginary parts of G ′o(iω )
respectively. Circle constraints, like those in (2.1), can be written as

pGo(iω ) − Cp2 = R2, (4.2)

where C is the center of the circle with radius R. Using (4.1) and (4.2),
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but changing K to K (ω ), will lead to

(K (ω )X (ω ) − C)2 + (K (ω )Y(ω ))2 = R2 [ (4.3)

K (ω )2 − 2CX (ω )
X (ω )2 + Y(ω )2 K (ω ) +

C2 − R2
X (ω )2 + Y(ω )2 = 0.

The two solutions correspond to the gains for which the open loop
Nyquist curve crosses the front and back side of the circle respectively
(see Figure 4.5)

K1,2(ω ) =
CX (ω ) ±

√

R2(X (ω )2 + Y(ω )2) − C2Y(ω )2)
X (ω )2 + Y(ω )2 . (4.4)

K1,2(ω ) could for instance look like the function plots in Figure 4.6.
For some frequency points, (4.4) will provide imaginary or negative
numbers, which are discarded. In the intervals for which K assumes
positive real values, there can be multiple minima and maxima.
There are a few observations needed in order to conclude which

K -values will fulfill the constraints.

THEOREM 4.1
The open loop Nyquist curve (4.1) of an arbitrary controlled process
will be tangent to a circle in the complex plane, defined by the center
point C and radius R, if and only if

dK1(ω )
dω

= 0 or dK2(ω )
dω

= 0 (4.5)

PROOF. In vector form, the open loop frequency response is

Go(iω ) = K
(

X (ω )
Y(ω )

)

. (4.6)

There are two conditions that has to be fulfilled in order for the open
loop Nyquist curve to be tangent to the circle at a given frequency point
ω ∗. The open loop Nyquist curve should lie on the circle determined by

(K X (ω ∗) − C)2 + (KY(ω ∗))2 = R2, (4.7)
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Figure 4.5 Proportional gain values K1(ω k), K2(ω k), for which K jG′o(iω k),
j ∈ [1, 2], lies on a circle in the complex plane. G′o(iω k) is the open loop frequency
response with K = 1 and ω k denotes the discrete frequency points.

while the tangent of the open loop Nyquist curve and the vector be-
tween the center point and Nyquist curve should be orthogonal

(

dGo(iω ∗)
dω

)T ( K X (ω ∗) − C
KY(ω ∗)

)

= 0. (4.8)

Denoting X ′(ω ) = dX (ω )/dω , Y ′(ω ) = dY(ω )/dω , (4.8) becomes
(

K X ′(ω ∗)
KY ′(ω ∗)

)T




K X (ω ∗) − C

KY(ω ∗)



 =

K 2X (ω ∗)X ′(ω ∗) − KCX ′(ω ∗) + K 2Y(ω ∗)Y ′(ω ∗) = 0,
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Figure 4.6 A sketch of how the functions K1(ω ) (solid) and K2(ω ) (dashed)
could look for a time delayed system. Only K -values unique in ω - i.e. the first
two minima and first maximum in this case - will fulfill the circle constraints.

and in turn, by solving for K , one ends up with

K = CX ′(ω ∗)
X (ω ∗)X ′(ω ∗) + Y(ω ∗)Y ′(ω ∗) . (4.9)

Consider equation (4.3) once again. Taking the derivative with respect
to ω , given that K ′(ω ) = dK (ω )/dω , leads to

2K K ′X 2+2K 2X X ′ − 2CK ′X − 2CK X ′+ (4.10)
2K K ′Y2 + 2K 2YY ′ = 0,
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where ω has been omitted. Using K ′(ω ) = 0, results in

K (ω )X (ω )X ′(ω ) − CX ′(ω ) + K (ω )Y(ω )Y ′(ω ) = 0[

K (ω ) = CX ′(ω )
X (ω )X ′(ω ) + Y(ω )Y ′(ω ) , (4.11)

which is identical to (4.9) in ω ∗. Since (4.7) is fulfilled for all frequen-
cies in K (ω ), the proof is concluded.

Go(iω ) can, however, be tangent to the circle but still have points within
(thus giving an infeasible solution). To explain why, it is a good idea
to once again view Figure 4.5. At a given frequency point ω k, it is
obvious that all proportional gains between K1(ω k) and K2(ω k) will
place Go(iω ) inside the circle, thus resulting in infeasible K . Looking
at Figure 4.6, this means that only the minima and maxima, for which
K is unique in ω , are feasible. For this particular case, it corresponds
to the first two minima and first maximum.
Once all possible K -values have been determined (the two minima

and the maximum from Figure 4.6 for example), closed loop stability
is evaluated. If there is stability, the optimal proportional gain at a
given point in the Ti-Td plane is then given by the K resulting in the
lowest IAE-value (determined through Simulink simulations).
Up to now it has been assumed that it is just one circle in the

complex plane that the open loop Nyquist curve may be tangent to.
Since the constraints of (2.1) demands that the Nyquist curve is located
outside both the Ms- and Mp-circles, the algorithm has to be run twice.
It is important that the frequency span is sufficiently wide and

dense. If not, it could lead to erroneous results. It may therefore be
needed to change the frequency settings in the software menu. It is
also wise to have a brief check of the open loop Nyquist plot from the
program to see that the curve looks alright.
Finally, a brief summary of the algorithm finding the optimal pro-

portional gain:

1. Determine the functions K1(ω ) and K2(ω ), giving the propor-
tional gains that will put each frequency point ω k on both the
Ms- and the Mp-circle.
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2. Remove all imaginary and negative numbers from K1(ω ) and
K2(ω ).

3. Determine the minimum and maximum of each frequency inter-
val.

4. Pick out the K -values that are not represented in any other in-
terval.

5. Examine closed loop stability for all K -values.

6. Make sure Nyquist curves touching the Ms-circle do not lie within
the Mp-circle and vice versa.

7. Simulate the closed loop system for all feasible K -values and pick
the one resulting in the lowest IAE-value.

A note on choosing K The optimization method is based on choosing
the proportional gain such that the open loop Nyquist curve is tangent
to one or both robustness circles. This has the major advantage that
one can split the optimization problem into two parts; choosing K and
minimizing the cost function in the Ti-Td plane (which generally only
gives one minimum in total). While this proportional gain selection
is generally a clever solution, when minimizing the IAE, it may not
always be optimal. One way to see this is to set Ms = Mp = M and
vary M over a span of different values. Figure 4.7 shows how the IAE
depends on M for the process

P(s) = e−s

(s+ 1)2 .

At M -values around 3.4, the IAE starts to increase again, suggesting
that a smaller value on K is in fact better. The reason for this behaviour
is likely the decrease in robustness giving a less damped step response
which ultimately leads to worse performance too. While this might be
disturbing results, it is mainly a problem for higher values on M . Such
values are not likely to be used in the end, especially not in industry.
Also, the increase in IAE often seem to be quite minor, like in the plot,
suggesting that this is hardly an issue when designing controllers.
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Figure 4.7 Plotting IAE as a function of Ms = Mp = M , for P(s) = e−s(s +
1)−2, shows that it may not always be optimal to choose K such that one or both
constraints are active.

4.3 PI control

There are cases for which the D-part in a PID controller may not be
necessary to use. In order to gain deeper insight into when this occurs,
a one-dimensional Nelder Mead algorithm was implemented in the
software program to derive optimal PI controllers. This controller has
the following transfer function

C(s) = K
(

1+ 1
sTi

)

⋅
1

sTf + 1
.

Note that the second order low-pass filter has been replaced by one of
first order. This will keep the same relative degree in the open loop
transfer function as for the PID design and guarantee roll-off without
introducing unnecessary phase-lag.
The initial controller is given with AMIGO, just as in the PID case.
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The difference being that the PI formula

T
(A)
i = 0.35L+ 13LT2

7L2 + 12LT + T2

is used instead of the PID counterpart. The other initial Ti is set to
0.7T (A)i to not risk having a negative Ti within the next iteration. If
one, after all, ends up with negative Ti-values, these will be mirrored
(using pTip) into the positive value as in the PID case. From there, the
Nelder Mead method progresses as follows:

1. Calculate the IAE of the two initial controllers.

2. Set B and W .

3. Set the midpoint to the same point as B and calculate the IAE
for R = 2M–W , f (R).

4. If f (R) < f (B), determine f (E) when E = 2R–M . Replace W
with R if f (R) < f (E), else with E and go back to step 1.

5. If f (R) ≥ f (B), compute the IAE for C1 = (W + M)/2 and C2 =
(M + R)/2. Replace W with whichever of these points gives the
lowest IAE and go back to step 2.

This algorithm is quite similar to the PID counterpart.
As an example, consider PI control of a third order lag process

G(s) = 1
(s+ 1)3 .

Selecting default optimization (Ms = Mp = 1.4, Tf = 0.001), the Nelder
Mead algorithm found the PI controller with K = 0.63, Ti = 1.95 and
IAE = 3.08. This can be compared to the PID controller for the same
problem with K = 3.81, Ti = 1.14, Td = 1.12 and IAE = 0.53. The NM
progression for the PI optimization can be seen in Figure 4.8 together
with the result from gridding the cost function.
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Figure 4.8 The Nelder Mead optimization progression for PI control of G(s) =
(s + 1)–3 is shown as stars. The dashed line shows the cost function derived
through gridding.

4.4 Examples

In this section there will be a couple of examples highlighting the
benefits of the proposed design software and algorithm compared to
other methods. It will also show that the new method is reliable in
many design cases.

EXAMPLE 4.2—THE AMIGO TEST BATCH

In order to compare the new PID design method with the MIGO PID
designs on the AMIGO test batch, (3.1), the proposed software was
modified to use the M -circle as constraint. It took just more than one
hour to run through all sub-batches except the integrating processes
in sub-batch 6. This gives an average time of 30 seconds per process.
The batch was, however, run to get a high accuracy on the optimal
solution rather than optimized for fast designs. If speed is of essence,
the average design time per process could be cut considerably. The
designs were run on an Intel RF Dual-CoreTM, 2.13 GHz with 1 GB RAM
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and Fedora 7 using Matlab RF 7 R2007a. The only two parameters that
had to be modified from the default values depending on the process, in
order for the batch to run through properly, were T f and the frequency
grid.
The PID parameters derived by the proposed algorithm were com-

pared to those given by the MIGO method. Since the MIGO method
do not minimize IAE, the proposed method should always give lower
values. A comparison with the MIGO method does, however, still give
a good indication on whether or not the new algorithm works properly.
The batch run showed that the two methods are very similar. In av-
erage, the new controllers resulted in IAE-values at 95% of what the
MIGO controllers gave over the whole batch. This gives both a strong
indicator that the new program works properly and that the MIGO
method gives essentially IAE minimized controllers for the batch.
To see the benefits of using the Ms- and Mp-circles instead of the

M -circle, the whole batch was compared when the two different con-
straints were used respectively. Figure 4.9 shows that the biggest per-
centual gain is given for low values on the normalized time delay, τ ,
while more delay dominated systems depend less on the choice of the
constraints. This indicates that the performance for lag dominant pro-
cesses is very sensitive to changes in the constraints.
The sub-batch where the proposed design software gave IAE values

with the biggest difference from the MIGO ones was

P(s) = 1
(s+ 1)((sT)2 + 1.4sT + 1) , (4.12)

with T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,

i.e. processes with complex poles. In particular when T = 0.1 the new
IAE is as small as 62.5% of the MIGO IAE, corresponding to a signif-
icant improvement. Figure 4.10 shows the output signal, y, and con-
trol signal, u, when a load disturbance, d, is acting on the process in-
put. The dashed curves correspond to the MIGO controller (K = 3.96,
Ti = 0.46, Td = 0.08), the solid lines to the proposed controller with
the M -circle constraint (K = 5.42, Ti = 0.29, Td = 0.16) and the dash-
dotted line to the new design method with the Ms- and Mp-constraints
(K = 6.53, Ti = 0.22, Td = 0.16). The open loop Nyquist curves for
the three cases are shown in Figure 4.11. It is known that the MIGO
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Figure 4.9 The IAE-values for the test batch was compared using either the
M -circle constraint alone or both the Ms- and Mp-circle. The plot displays 100 ⋅

IAEMs,Mp/IAEM as a function of the normalized time delay τ .

method discards solutions that touches the M -circle twice. This exam-
ple shows that this choice may be overly conservative. It is also evident
that the substitution of the M -circle to the Ms- and Mp-circles gives a
much lower IAE-value in this case.

The previous example showed that the program works well and that
it has the potential to give birth to new findings on PID control. It is
also a lot easier to start using than the MIGO method, which relies
more on the user.
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Figure 4.10 Output (y) and control signal (u), during a load disturbance, for
three different designs on (4.12), T = 0.1. Dashed line: MIGO PID; Solid line:
Proposed PID with M -circle constraint; Dash-dotted line: Proposed PID with the
Ms- and Mp-circle constraints.

EXAMPLE 4.3—AN OSCILLATORY PROCESS
Consider an oscillatory system with the linear transfer function

P(s) = 9
(s2 + s+ 9)(s+ 1) , (4.13)

which has two complex poles with relative damping ζ = 1/6. An IE-cost
function is not suitable for PID design when the system is oscillatory,
ruling out use of the MIGO method. The proposed design algorithm,
however, can derive a PID design without problems. For Ms = Mp = 1.4
the program gave the parameters: K = 0.37, Ti = 0.23, Td = 0.80.
Figure 4.12 shows the control- and output signals. The IAE-value for
the design is 0.94.
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Figure 4.12 Output signal, y, and control signal, u, when the proposed design
method was used to find a controller for the oscillatory process (4.13). Ms =
Mp = 1.4.

51



5

Adjustable Control Signal

Noise Reduction

Methods like MIGO/AMIGO and lambda tuning have the weakness
that they have no systematic way of designing the low-pass filter act-
ing on the measurement signal or the D-part. The same goes for the
approach described in Chapter 4 where the effect of the low-pass fil-
ter was completely ignored. Designing PID controllers without roll-off
can give severe throughput of measurement noise in the control signal
for a real plant. This chapter will, therefore, introduce a new way of
tuning the low-pass filter such that the control signal variance, due
to measurement noise, is constrained. Or in other words, choosing T f
such that

qSkq22 =
∥

∥

∥

C

1+ PC
∥

∥

∥

2

2
= σ 2u

σ 2n
≤ Vk. (5.1)

Sk is the transfer function from measurement noise n to control signal
u, σ 2u is the variance of the control signal and σ 2n is the variance of the
measurement noise. Vk is a design variable that is user specified.
This chapter will begin with a description of the principles of the

new design method. There are also several new challenges associated
with the proposed method, which will be presented in a section of its
own. Finally, the chapter will be concluded by a suggestion of design
algorithm together with several examples on the use of the method.
But, first of all, a short note on the software tool.
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Designing discrete time controllers for real plants

Even though controllers have to be implemented digitally, most PID
design methods are based on continuous time analysis only. The PID
parameters are then used directly in a discrete time approximation
of the controller when implemented. Such an approximation will, how-
ever, introduce phase lag (see e.g. [Åström and Wittenmark, 1997]) and
is thus likely to make the closed loop system less robust than intended.
This problem will be especially severe if the sampling time assigned to
the process has been chosen too long by mistake. This could very well
be the case in industry, which will be shown in Chapter 6. For these
reasons, a discrete time version of the design software has been devel-
oped in parallel with the continuous time version. While the previous
chapter was all about the continuous time version, the discrete time
software will mainly be used in this chapter.
The discrete time controllers have been approximated with forward

Euler on the I-part, backward Euler on the D-part - according to [Årzén,
1996] - and Tustin’s approximation on the low-pass filter such that the
final PID controller becomes

C(z) = K
(

1+ 1

Ti
z−1
h

+ Td
z− 1
zh

)

⋅
1

(

1+ 2(z−1)
h(z+1)Tf +

(

2(z−1)
h(z+1)Tf

)2
/2
) .

The PI controller is very similar.
The discrete time version of the software is not yet released. Anyone

can, however, take the program and redo it in the same fashion. Few
changes are needed from the original version.

5.1 Principle

The idea for finding a controller that fulfills constraint (5.1) will be
illustrated through an example.

EXAMPLE 5.1—THE RELATION BETWEEN Tf AND Vk
Determining the variance ppSkpp22 for a lot of different Tf -values (using
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Figure 5.1 Different processes give similar dependencies between T f and the
control signal variance.

the proposed Matlab software) on the systems

P1(s) =
1
s+ 1 e

–s, P2(s) =
1

(s+ 1)2 e
–s,

P3(s) =
1

(s+ 1)4 , P4(s) =
(−0.5s+ 1)
(s+ 1)3 ,

have shown that there are very similar dependencies between T f and
Vk in all four cases, see Figure 5.1. Having relations like these makes
it possible to use T f as a design variable to fulfill (5.1).
Finding the T f that gives a certain Vk can be done using different
search methods. Another approach, and the one that will ultimately be
used in this thesis, is to determine the relation between performance
(IAE) and noise amplification (Vk). That way, the control designer can
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Figure 5.2 Trade-off curve between noise amplification and performance for
the process P1, in Example 5.1. Note that the noise characteristics used here
was not the same as in Figure 5.1, which explains the difference in Vk-values.

take the trade-off between noise throughput and performance into ac-
count when choosing a suitable controller. Figure 5.2 shows an example
of this relation for process P1.
There are also some other interesting effects one can analyse after

adding the new constraint into the picture. Like for instance:

• For which types of systems will the D-part be most important?

• When will the low-pass filter make the least difference?

Here is one example showing some interesting effects.
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Table 5.1 The effect of the low-pass filter time constant on the control of first
order systems with time constant T and delay L = 1. Vk was set to 1.

T h (s) K Ti Td T f IAEinc (%)

0.1 0.02 0.21 0.42 0.14 0.014 0.7

1 0.05 0.59 1.04 0.44 0.13 12.6

50 1.5 2.44 21.8 11.4 12.4 1647

EXAMPLE 5.2—FOTD SYSTEMS WITH VARIANCE CONSTRAINT

Take three FOTD systems

P(s) = 1
Ts+ 1 e

–s, T = 0.1, 1, 50,

which have τ = 0.91, 0.5 and 0.02 respectively. Assume furthermore
that the measurement noise in all three cases is white, unit variance,
noise (each sampled with different sampling time h). As will be ex-
plained in Section 5.2, it is not trivial to compare different systems, so
these three cases will be treated without comparison.
Vk will be set to 1 when designing controllers for all three pro-

cesses, such that the control signal get the same variance as the white
measurement noise. Table 5.1 shows the results when designing PID
controllers as described in the previous section. The table displays sam-
pling time, PID parameters, low-pass filter time constant as well as
IAE increase compared to an unfiltered controller. Figure 5.3 shows
the Bode plots of all three PID controllers.
Analysing the results, one can see that the most lag dominant sys-

tem (T = 50) has the biggest increase in IAE compared to when the
controller does not include a measurement filter. This relates to what
examples from the previous chapter said about lag dominant systems
being the most sensitive to changes in the optimization problem. It
seems like the same holds for when the variance is limited. Several
similar runs have shown that this example is in no way particular in
this aspect. The performance of lag dominant systems are generally
sensitive to changes, which also makes them quite hard to analyse.
Delay dominant systems, on the other hand, are barely affected at all
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Figure 5.3 Bode diagrams of the PID controllers for the three FOTD systems
in Example 5.2.

by the low-pass filter, which would pretty much mean that one can add
the filter after the controller design if one would want to.
Another very interesting feature, is that the PID controllers for lag

dominant systems are more similar to PI- or even I-controllers. In this
example, it can be seen both in the Bode plots and by comparing Td
and T f which are very close. In other words, the low-pass filter rolls off
close to the frequency where the D-part starts to increase the gain.

Motivation of the constraint and options

It has already been mentioned that one of the main reasons for not
including the D-part in industry is because it makes the control sig-
nal sensitive to measurement noise. Highly fluctuating control signals
are likely leading to wear and tear on actuators, which are typically
very expensive to exchange. This is the main reason for including the
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variance constraint in this chapter. Such a constraint will capture the
variation of the control signal and make the designer able to use the
D-part without fear of getting too much noise throughput.
One disadvantage with using the variance constraint as a measure

is that it does not weigh in for which frequencies the sensitivity is high.
A low frequency sine wave can for instance have the same variance as
a swiftly shifting noise signal. It does, however, seem more likely that
high frequency components in the noise will wear on actuators rather
than the low frequency part. For that reason it is a good idea to weigh
Sk with respect to frequency. In this thesis this will be done by high-
pass filtering measurement data to try to single out the measurement
noise (see Section 5.2). Whether or not this is enough to get the desired
characteristics for the closed loop system will be left for future work to
show.
Another option for a constraint is what was used by for instance

[Kristiansson and Lennartson, 2006], namely qSkq∞. This gives a limit
on how much any frequency can be amplified. The measure is quite
straight forward, but it would ideally need weighting depending on
frequency, just like the variance constraint. There is little point in
lowering the peak of Sk for low frequencies.
Instead of the variance, one could just as well have constrained

the standard deviation or the quantiles of the signal. Both measures
are related to the variance. The standard deviation has a more direct
relation to the magnitude of the control signal than the variance. Using
quantiles would mean that one can specify how large quantity of the
control signal would lie outside a certain limit. This would possibly be
a more easily explainable measure to people in industry. Nevertheless,
the choice of constraint fell on variance for this thesis. It can, however,
easily be translated into these other two quantities.

Why is the method not optimal?

It is important to realize that fulfilling constraint (5.1), choosing a
Tf giving a certain Vk, will not give controllers that are optimal with
respect to the constraint. The software calculates controllers that are
optimal with respect to the two robustness constraints, given a certain
Tf . It could, however, very well be that a different T f could give even
lower IAE, using other controller parameters that alters qSkq22. One
example could be a controller derived with a certain T f that results in
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too high variance. A little less aggressive controller, but with the same
Tf , may still give less IAE than the controller which the proposed
design method chooses.
In Section 4.3 it was shown that unless the control signal variance

constraint is taken into account, the PID controller can be quite supe-
rior to the PI controller regarding IAE. The D-part in a PID controller
will, however, also give a significant raise to the control signal vari-
ance due to measurement noise. Therefore, it is not so straightforward
to assume that a controller always benefits from having a D-part. It
is rather a combination of process characteristics and the amount of
control signal variance allowed that will determine the usefulness of
the D-part.
Depending on the sampling time, it may not be possible for the

control signal variance to reach the Vk that has been set (see Figure
5.4). The reason being that the low-pass filter cut-off frequency would
have to be so far beyond the Nyquist frequency to give Vk that it just
does not affect the variance enough. This is not necessarily negative,
but shows that one could perhaps have used a different controller for
which Vk is higher and the IAE is lower.
The fact that the PI controller may give a control signal variance

lower than Vk makes it a bit difficult to compare with the PID con-
troller. But, it is logical to let the PID controller take whatever T f
gives Vk, even if the PI controller gives qSkq22 < Vk, when comparing.
After all, it is the user that sets the rules and even if both controllers
can not reach the limit, they are both playing by the rules.
Assume that one wants to examine the behaviour of the following

two systems

P1(s) =
e–s

(10s+ 1)2 , P2(s) =
e–s

(50s+ 1) ,

with respect to control signal variance, using both PI and PID control.
The sampling time has been chosen to h = 0.01 seconds with Ms =
Mp = 1.4 in both cases. In Figure 5.5, the IAE-values are plotted versus
qSkq22 for a number of different T f -values. The curves reveal that the
PI controller can actually have lower IAE value than the PID controller
when the control signal variance, qSkq22, is the same. For P1(s), this
occurs when Vk ( 0.002 and for P2(s) when Vk ( 1.75. These results
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Figure 5.4 PI control of G(s) = (s + 1)–3 with different choices of T f is not
necessarily able reach qSkq22 = Vk. In this case for instance, qSkq22 does not take
larger values than 0.42. The measurement noise is here assumed to be white,
unit variance, sampled with h = 0.01s.

lead to two conclusions: The PID controller is not optimal for the new
optimization problem and the closed loop system around P2 seems to
benefit quite a lot less from the D-part than the P1 loop does.
Now that it is known that the selected controllers are not optimal,

one could ask a few justified questions: When would it be smart to
switch to PI control? Are the controllers one gets through the proposed
method still good enough to use? How far from optimality will the PID
(or PI) controllers be? These are questions that to some extent will
have answers at the end of this thesis. In this section, there will be an
attempt to answer the first question.
Analysis of the controllers for P1 and P2 shows that there seems to

be at least one measure that gives an indication of when it is a good
idea to check how well a PI controller would work. That measure is the
relation between Tf and Td of the final PID controller. Figure 5.6 shows
Tf /Td plotted versus T f for P2(s). At T f ( 0.8, this quotient comes very
close to 1, meaning that the final PID controller is pretty much a PI
controller. When comparing this Tf value to the ones in Figure 5.5 for
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Figure 5.5 Processes P1 and P2 were run with several different T f -values
using h = 0.01s. This gave the following relation between IAE and control signal
variance, showing that the PID controllers are not necessarily optimal.

when the PI is better than PID, it shows that for Tf ( 1.15 and above,
the PI controllers are better. This is rather close to 0.8. Experiments
on several other processes in the AMIGO batch have shown that this is
a repeating behaviour for the cases when PI is preferable. Therefore, it
seems like a good idea to first run the PID design and then, if T f/Td (
1, also run the PI algorithm to see if that gives an even better result.
When thought through, it seems quite logical that as Vk goes to zero,
the controller will be given less freedom to increase the gain and phase,
thus becoming more and more like a PI controller or even a pure I
controller for that matter.

5.2 Challenges with the use of a variance constraint

Using variance as a measure of when the control signal is sensitive to
measurement noise is in many ways a simple and intuitive. But there
also comes quite a few challenges together with using the constraint.
Some of these will be presented in this section.
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Figure 5.6 Designing several PID controllers with different T f for process
P2(s) shows that these are almost PI controllers when T f reaches a certain
value (and qSkq22 decreases). Checking if T f /Td ( 1 can then be a measure to
see when it is a point in switching to PI control.

How to calculate the variance?

In order to get a good estimate of the real variance relation σ 2u/σ 2n one
will first need a representative selection of noise data. One possibility
is to run the process in open loop, log the measurement data and then
filter out what is assumed to be the noise. Logging the data could
be done either by having the system run in manual with a constant
control signal or in connection to a step response test on the process.
The latter option seems more attractive since these kinds of tests are
often run on a process to determine an FOTD model just before the
controller design. It would thus be a very natural way to incorporate
noise logging in the normal procedures of controller design. Another
option would be to get the data either through relay tests, which are
common in auto-tuning, or through closed loop runs. If it is possible
to derive good noise data like this it would be advantageous, since the
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process should ideally be in closed loop all the time. In this thesis,
however, it will be assumed that the measurement data is collected in
open loop.
Now assume that one can collect a sequence of representative noise

data. How long does this log need to be in terms of time in order
to provide a good sample for estimation of the variances? And what
method should be used to calculate σ 2n and σ 2u? There will not be any
real analysis in this thesis trying to answer the first question. But
it seems reasonable to believe that, if the step response is used to
collect noise data, it will depend on how fast the process is. If the
process is fast, one may need to hold the process a little longer in
open loop to gather some more noise data. Since one may get very long
measurement logs for a process with slower dynamics, it is more likely
that the length of the noise data will be sufficient in this case. If the
noise data is extensive enough, it should be fine to calculate the noise
variance simply by using the formula

σ 2n =
1
N

N
∑

i=1
(ni − n̄)2,

where N is the number of noise data, n, and n̄ is the mean value of
this data. Another option is to determine a model, N, of the noise such
that

n(k) = N(q)e(k)
where e is white noise. This model can then be used to estimate σ 2u as
well. This approach will be used here when Youla parametrized con-
trollers are compared to PI/PID controllers. When running the PI/PID
design on a real process, however, the actual noise data will be used
as part of a Simulink simulation to estimate σ 2u. The advantage with
the model approach is that it allows for better analysis, but it is bad
in practise since one needs to automatize the model making which is
not trivial. Using the real data is a much easier method. On a whole,
it should be part of future research to look more at how to get repre-
sentative information of the measurement noise.

How to disregard other sources when gathering noise data?

Assume that one wants to extract the measurement noise out of an
open loop run on the system. What part of the signal should be kept
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and which can be thrown away? [Marlin, 1995] points out that the
variations showing in the measurement data are a result of several
effects. Some of them come from the process itself, some from the sen-
sors, while others are due to transmission. All these effects contribute
to the signal over a wide range of frequencies. The idea of the proposed
method is to be able to set the control signal variance such that the
wear on actuators, like valves, can be kept low. Generally speaking, it
is, large, high frequency movements in the control signal that leads
to this wear. Therefore, the idea is to weigh the measurement data by
sending it through a high-pass filter, W(s). The low-frequency part of
the data is thus assumed to have small contribution to actuator wear.
The high-pass filter

W(s) = s2

s2 + 2ζ ω os+ω 2o
, (5.2)

was chosen for this reason. It is discretized, with the current sampling
time of the process, before the measurement data is run through it. The
damping coefficient ζ was set to 0.7 to receive a filter that is steep,
but still does not give much overshoot in a Bode magnitude diagram.
Since the filtering is handled offline, one can use non-causal filters
that are almost ideal high-pass filters. But, since the hardest question
is how to choose ω o properly, it seems like a good idea to keep some of
the lower frequencies in the filtered data as well.
The noise data can roughly be divided into controllable distur-

bances, uncontrollable disturbances and measurement noise. These
three sources will to some degree overlap each other, but it seems rea-
sonable to assume that the measurement noise throughput will mainly
wear on actuators for frequencies above the cut-off frequency of the
closed loop. In many industrial systems, the closed loop is rarely faster
than the process itself. For that reason it is a possibility to choose ω o to
depend on the process model. If the process model is an FOTD system,
ω o could for instance have a default value of 3/T , where T is the time
constant of the process. The user should, however, be ready to change
this value from case to case.

Sampling time issues

When making discrete time controllers, the sampling rate will be dif-
ferent depending on the process. Too slow sampling could introduce
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unnecessary phase lag, thus decreasing the best possible performance
significantly. Really fast sampling may on the other hand not be pos-
sible, due to for instance resource limitations. So, generally speaking,
one should strive to choose sampling time from case to case. This does,
however, also give some additional effects in connection to the variance
constraint that are important to be aware of if one wants to compare
noise effects on different processes.
Assume that one has a certain sensitivity function Sk(s) for some

closed loop system. This system is sampled with the two different sam-
pling times h1 and h2. The variance relation between the continuous
time system and the sampled time systems is

hiqSki(s)q22 = qSki(z)q22,

when zero order hold sampling is used. The index i refers to the dif-
ferent sampling rates. The control signal variance should, however, be
almost the same for both sampling cases, as long as the sampling rate
is chosen properly to avoid aliasing. In other words, energy should be
conserved. It was also shown that, on a water tank process (see Section
5.4), the relation σ 2u/σ 2n was almost constant for two different sampling
rates. The controller was the same in both cases. This observation gives

∥

∥

∥

Sk1(z)√
h1

∥

∥

∥

2

2
=
∥

∥

∥

Sk2(z)√
h2

∥

∥

∥

2

2
,

which will force the relation

qSk1(z)q22 =
∥

∥

∥

√

h1

h2
Sk2(z)

∥

∥

∥

2

2
=
∥

∥

∥

√

1
J
Sk2(z)

∥

∥

∥

2

2
,

between the two cases. J = h2/h1 and corresponds to an up- or down-
sampling ratio. It is very important to take the J-ratio into account
when designing controllers. If not, variance will depend heavily on
sampling rate, such that qSk(z)q22 → 0 as h→ 0. Figure 5.7 shows PID
designs for

P(s) = 1
(50s+ 1) e

–s (5.3)
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Figure 5.7 Three PID controllers determined for process (5.3) with Vk ( 1,
but sampled with different sampling time h.

using three different sampling times h = 0.75, 1.5 and 2 seconds. The
measurement noise was assumed to be white, unit variance, noise sam-
pled with h = 0.01 seconds. Using the noise sampling time as h1 refer-
ence, this resulted in down-sampling ratios of J = 0.75/0.01 = 75, 150
and 200 respectively. As one can see, taking Vk ( 1 gave very similar
controllers. Performance was also almost the same in all three cases.
If J had not been taken into account, however, the controllers would
have been very different, depending on sampling time. In Example 5.2,
this ratio was not part of the design and one could thus not compare
the different designs directly. From now on, when comparing designs
on different systems, J will be part of the procedure. In reality, how-
ever, one will not need to think about this when using the proposed
method. There will only be a series of measurement data which can
then be used to form a noise model or be directly used in simulation
estimations.
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5.3 Suggested procedure for design of PID controllers
on real processes

Below follows one suggestion on how to design PI or PID controllers
for real processes.

1. Collect noise data from the process, detrend it and estimate the
variance σ 2n.

2. Choose a number of different T f values. For each T f :

• design a PI or PID controller using the proposed software.

• simulate the closed loop system using the gathered noise
data and estimate the variance, σ 2u, of the control signal.

3. Plot IAE versus Vk (like in Figure 5.2) to get a picture of how
much performance costs in terms of measurement noise through-
put to the control signal.

4. Choose a suitable controller from the given set, taking the trade-
off curve into consideration.

This new method ought to give the user a systematic way of bringing
the D-part of the PID controller into industrial controller design. The
structure of the controller should, however, be determined with respect
to what specifications are set on the process and not be chosen in
advance. A PI controller should thus be chosen if it is better suited
than a PID and vice versa.
It would also be a good idea to have some software that automatizes

the procedure. The user should, however, be able to modify parameters
like ω o and Vk. A set of different controllers should be kept in case
one would later want to change how sensitive the control signal is to
measurement noise.

5.4 Examples

This section will contain three simulated and one real example of how
the proposed design method can be used. Youla parametrized con-
trollers will be derived for comparison with the PI and PID controllers.
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The three examples, in which simulations are used, will be assumed
to have white measurement noise, with unit variance, acting on the
process value. In the first example, three processes will be compared
as described in the sampling issues part of Section 5.2. In other words,
they will be assumed to have the same, but differently sampled, white
measurement noise. The other two simulated examples will have mea-
surement noise with the same sampling time as the process is sampled
with. The three examples can therefore not be related to one another.
It will be left to Chapter 7 to deal more with comparisons like that.
Before the examples are presented, the IAE measure will be dis-

cussed a bit.

Performance measure for time delayed systems

Assume that a process has a time delay of L = 1 second. This means
that it will take one second until a load disturbance on the control sig-
nal shows up in the measurements. It will then take one more second
before the control signal can affect the process value. So, no matter
which controller is used, it will always take two seconds until the con-
trol signal can alter the process value. This will correspond to a fix
amount of IAE that can not be reduced. Depending on how fast and
time-delayed the system is, this part of the IAE may very well be the
majority of the full IAE. This is especially true for systems with τ ( 1.
Comparing two different controllers with the standard IAE measure
could therefore give a false picture of how close they are in perfor-
mance. For this reason, only the remaining part of the IAE, IAEu (u
denotes IAE affected by the control signal) will be used in the first of
the simulated examples in this section. The new measure will, however,
not be used for the real process example.

The examples

EXAMPLE 5.3—FIRST ORDER TIME DELAYED PROCESSES
PID- and Youla parametrized controllers were derived for the three
different FOTD processes,

P1(s) =
e–s

0.1s+ 1, P2(s) =
e–s

s+ 1, P3(s) =
e–s

500s+ 1,
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Table 5.2 Results when PID and Youla controllers were derived for three
different FOTD systems.

P1 P2 P3

K 0.21 0.61 28.3

Ti 0.42 1.01 44.6

Td 0.13 0.41 0.00

T f 0.0074 0.06 2.58

IAEPIDu 1.09 1.51 1.62

IAEYoulau 0.61 1.20 1.38

IAEincu 78% 26% 17%

where P1 is delay dominant (τ = 0.91), P3 lag dominant (τ = 0.002)
and P2 is somewhere in between, with τ = 0.5. In all three cases,
Vk was set to 1 although it was weighted with the down-sampling
factor J as described before. The three systems were given different
sampling times hP1 = 0.02 s, hP2 = 0.05 s and hP3 = 5 s. The white
measurement noise was assumed sampled with h = 0.01 seconds. In
other words, J = 2, 5 and 500 respectively. Table 5.2 shows data from
each of the three cases. The order of the Q-filter was 140 in all three
Youla optimizations. Note that for P3, a PI controller is given instead
of a PID for the reasons mentioned in Section 5.1. The PID was, in this
case, 27% worse than the PI controller regarding IAEu. Let us now go
into more detail on the different control loops.
Figure 5.8-5.13 shows the Bode diagrams and load disturbance re-

sponses of the PI/PID- and Youla controllers respectively for each of
the three processes. The PID controller for P1 gives an IAEu that is
78% higher than that of the Youla controller. This is by far the biggest
difference of the three. Looking at the load disturbance response (Fig-
ure 5.9), it is obvious that the great potential of the Youla controller
makes it quite a lot better performance wise than the PID. The Youla
controller does, however, have several peaks in the Bode diagram re-
sulting in a major phase advance. While this is the secret to the grand
control, it is also likely to give very bad robustness towards time de-
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Figure 5.8 Bode diagram of the PID and Youla controllers for process P1 in
Example 5.3.
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Figure 5.9 Load disturbance responses when the PID and Youla controllers
are used respectively on process P1 in Example 5.3.
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lay variations. A small error in the modeled delay could potentially
make the closed loop system unstable. Therefore, it would be advis-
able to have additional constraints put on the Youla optimization in
order to compare systems really thoroughly. Adding such a constraint
is, however, not trivial since it has to be closed loop convex. Given this,
the PID controller may not give such a bad result after all and one
could argue that a PI controller would be even better to use. The PI
controller is only able to reach qSkq22 = 0.02. Its IAEu-value of 1.39
is, however, only 28% higher than that of the PID controller. So, one
gets an even less advanced controller with this rather small decrease
in performance. It is also a known trick to switch off the D-part when
controlling delay dominant processes (see for instance [Hägglund and
Åström, 1991]). For P2, there are still some peaks left in the Bode plot
of the Youla controller (see Figure 5.10) although not quite as pro-
nounced as for P1. The performance gain in using the Youla controller
is quite a lot smaller than for P1, where IAEu of the PID is just 26%
off. The two load disturbance responses in Figure 5.11 are also quite
similar with the biggest difference being the small undershoot of the
Youla controller. This indicates that the PID controller is a valid choice
in this specific case. With process P3 (see Figures 5.12 and 5.13), a PI
controller actually ends up giving better IAEu than the corresponding
PID controller (27% higher in this specific case), when using the pro-
posed design method. Taking a look at the Youla controller should give
a good hint of why this has happened. The best linear controller is
basically a PI controller. This gives a hint that an alternative way of
designing the controller could be to:

1. Derive a balanced model of the Youla controller

2. Reduce the new model, looking at the Hankel singular values

This way, one would end up with a good controller of low order, which
does not depend on any beforehand given structure. One example of
this type of reduction is given in Example 5.5 and another can be
found in [Norman and Boyd, 1989].
It could be that the careful reader reacts to the PI control parame-

ters being a bit too aggressive for P3. This is, however, merely an effect
of the measurement noise being down-sampled by quite a lot compared
to the other two processes. On a real process it should never be a prob-
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Figure 5.10 Bode diagram of the PID and Youla controllers for process P2 in
Example 5.3.
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Figure 5.11 Load disturbance responses when the PID and Youla controllers
are used respectively on process P2 in Example 5.3.
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Figure 5.12 Bode diagram of the PID and Youla controllers for process P3 in
Example 5.3.
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Figure 5.13 Load disturbance responses when the PID and Youla controllers
are used respectively on process P3 in Example 5.3.
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lem. The controller will only be aggressive if the measurement noise
and user allow for it.
Once again, the measure T f /Td can be used to get an indication

of when a PI controller is preferred. For the PID controller on P3,
Tf /Td = 4.72/2.83 = 1.67, which is quite high above 1.
The Youla controller for process P3 confirms that, for a lag dominant

FOTD, it is less likely that the D-part is valid than for a more delay
dominant system. It also shows that it is reasonable to only have a
first order low-pass filter on the PI controllers derived from the PID
software. Another interesting fact is that all three Youla controllers
have some sort of roll-off. This gives a hint that a PID controller with
second order low-pass filter is the preferred choice of structure. In
industry, however, it is most common to use filters of order one.
Youla parametrization with a finite FIR filter will provide a con-

troller that is approximately the best linear controller. Or rather, it is
the optimal controller for the set of controllers that can be created with
the given Q-filter. The higher the order of the Q-filter is, the better
the approximation of the optimal linear controller will be, such that
it is close to the limit of performance. In the cases considered here,
one can get an estimate of how close the Youla controllers are to this
limit by plotting IAEu versus the filter order, NQ . Figure 5.14 shows
this relation for process P2. NQ = 73 was the smallest value giving
an integrator in the controller. As can be seen, the IAEu changes very
little for NQ greater than 120. This gives an indicator that the Youla
controller, for which NQ = 140, gives an optimum close to the limit
of performance and it will therefore be a good approximation of the
best linear controller. Besides, the difference between the highest and
lowest IAEu is, in fact, only 9%. P1 and P3 have similar looking plots
to Figure 5.14. Making these plots is also a fairly fast way of making
sure that the Youla controller quality is good.

EXAMPLE 5.4—FOURTH ORDER LAG PROCESS
The fourth order lag process

P(s) = 1
(s+ 1)4

was investigated in the same fashion as the FOTD systems in the
previous example. Vk was initially set to 1, when using a sampling time
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Figure 5.14 The relation between IAEu and the order of the Q-filter for pro-
cess P2 in Example 5.3 indicates that the solution of the Youla optimization
comes close to the limit of performance.

of h = 0.25 seconds and a Q-filter of order 150. Bode plots and load
disturbance responses for the PID and Youla controllers are shown in
Figure 5.15 and 5.16. The designed PID controller has the parameters
K = 0.73, Ti = 2.38, Td = 1.29 and Tf = 0.52, with IAE = 4.06. This
can be compared to the IAE of the Youla controller which is 3.43. The
PID controller thus gives about 18% higher IAE compared to the best
possible linear controller. Considering this and how similar the load
disturbance responses look, one gains fairly little from having a more
advanced controller than PID in this case.
Now consider how the Youla controller alters with varying Vk. Fig-

ure 5.17 shows the Youla controllers when Vk = 5, 1, 0.2 and 0.04.
The difference in IAE from the PID counterpart goes from 28 % when
Vk = 5 to basically 0 % when Vk = 0.04. Looking at the Bode diagram,
it is apparent that the controllers get less freedom for lower Vk-values.
The resemblance also goes first towards PID controller and then PI,
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Figure 5.15 Bode diagrams of the PID and Youla controllers for the fourth
order lag process in Example 5.4.
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Figure 5.16 Load disturbance responses when the PID and Youla controller
are used respectively on the fourth order lag process in Example 5.4.

76



5.4 Examples

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

M
ag

ni
tu

de

Frequency (rad/s)

10
−2

10
−1

10
0

10
1

−100

−80

−60

−40

−20

0

20

40

60

Frequency (rad/s)

P
ha

se
 (

de
g)

 

 

V
k
=5

V
k
=1

V
k
=0.2

V
k
=0.04

Figure 5.17 Fourth order lag process: Youla Controllers for four different val-
ues on Vk. As Vk decreases, the controller gradually becomes more and more
similar to a PI controller.

when Vk is really small. For even lower values on Vk, it could even be
that an I controller would be preferred. This means that the preferred
controller structure depends on what expectations one has on the con-
trol signal variance. The level of variance at which a more advanced
controller is preferred does of course vary from process to process.

EXAMPLE 5.5—AN OSCILLATORY PROCESS
The next process to be examined is

P(s) = 9
(s2 + s+ 9)(s+ 1) ,

which was previously considered in Section 4.4. It is a highly oscillatory
process, having two poles with relative damping ζ = 1/6, known to
give PID controllers trouble to quickly damp out load disturbances.
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The process was run with Vk = 1, h = 0.1 seconds and a Q-filter of
order 150. This gave the two controllers shown in Figure 5.18, with
the load disturbance responses in Figure 5.19. The PID controller has
K = 0.30, Ti = 0.30, Td = 0.43 and T f = 0.06 giving IAE = 1.44.
The IAE of the PID is 48% higher than that of the Youla Controller
(IAE = 0.97). This is a more distinct difference than most of the other
cases investigated so far. The Youla controller is also free from the high
peaks that characterized the controller for process P1 in Example 5.3.
If Vk is set to a higher value, the Youla controller will dominate even
more since it has much higher design freedom.
In Figure 5.18, there is also a Bode plot of a sixth order controller

that has been derived by reduction of the Youla controller in the same
fashion described in Example 5.3. This can be compared to the Youla
controller that was of order 151. The new, reduced, controller has the
transfer function

C(z) = 0.80 (z− 0.87)(z− 0.04)(z
2 − 1.85z+ 0.93)(z2 − 1.72z+ 0.92)

(z− 1)(z− 0.68)(z2 − 1.53z+ 0.73)(z2 − 1.74z+ 0.94) ,

giving Ms = 1.44, Mp < 1.4, Vk = 1.0002 and an IAE-value only 0.03%
higher than the Youla controller. These are, in other words, basically
the same controller, which is quite obvious from looking at the Bode
plot. Seeing that there is an almost identical pole/zero couple in C(z),
a controller of order 4 was also derived, in the same fashion. This con-
troller gives the properties Ms = 1.465, Mp < 1.4, Vk = 1.003 and an
IAE-value that is 3.4% higher than that of the original Youla controller.
This shows that the Youla controller can be reduced considerably, giv-
ing new controllers that are very close to optimal. This controller design
method could be carried out on its own by a more advanced user or
just give a good initial guess for further optimization of a controller of
lower order (4 or 6 in this case).
All in all, the Youla optimization seems to be a good tool to have

in combination with the PID design software. The PID software can
quickly derive a large quantity of good PID controllers for simple pro-
cesses. The Youla parametrization software can then be used to justify
the choice of PID controllers. If the PID controllers are not performing
well enough for a given process, the Youla controller could give a hint of
a better design and perhaps even give such a controller through reduc-
tion. The reduction is, however, far from trivial and should therefore
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Figure 5.18 Bode diagrams of the PID controller, Youla parametrized con-
troller and a reduced Youla controller of order 6 for the highly oscillatory pro-
cess in Example 5.5. The Youla controller and reduced order controller can just
barely be distinguished by the eye.
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Figure 5.19 Load disturbance responses when the PID and Youla controllers
are used on the oscillatory process in Example 5.5.
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Pump
h

Figure 5.20 Sketch of a water tank process.

be done with care. It could be that the optimal controller enhances
some aspects that the PID controller does not, like for instance giv-
ing bad delay margins or even give an unstable controller. This should
be carefully investigated before such a controller is implemented. It
should also be made sure that the extra time spent on deriving a more
advanced controller is really worth it.

EXAMPLE 5.6—A WATER TANK PROCESS
The following example will illustrate that the control signal variance
for a real process can be sufficiently estimated. The process of concern
is the water tank system shown in Figure 5.20. The equipment is fre-
quently used in education and therefore well documented. The water
tank itself is cylindrical in its shape, with a cross-section area, A. In
the bottom of the tank is an outlet hole with area a for the water to
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flow out. The tank is provided with a water flow assumed proportional
to the voltage, u, sent to a pump. The objective of the control is to keep
the water tank level, h, close to a certain operating point, which in
this case was chosen to be 10 cm (mid-level). The water level is given
through an instrument, measuring the pressure in the tank and the
output is a voltage, y, proportional to h.
A physical model of the process can be derived using mass balance

and Bernoulli’s law:

A
dy(t)
dt

= −a
√

2�y(t) + ku(t), u(t) > 0

Where � is the acceleration of gravity and k is some proportionality
constant. If the model is linearized around a certain water level y0 and
input voltage u0, it becomes

d∆y(t)
dt

= − 1
T

∆y(t) + k
A

∆u(t),

with ∆y(t) = y− y0, ∆u(t) = u − u0 and

T = A
a

√

2h
� .

The water tank process is therefore essentially a first order process and
easily controlled with a PI controller. To make the system complexity
a bit higher, a time delay of L = 10 seconds was added.
The process was modeled using a step response test, first setting

the voltage to the pump to give a water level just below 10 cm. The
control signal was then increased by 0.1 V, sending the water level just
above the reference. Such a test ought to give quite a good linearized
model of this first order process. Fitting an FOTD model to the step
response data gave

P(s) = 4.1
80s+ 1 e

–10s,

which has a normalized time delay of

τ = L

L + T = 0.11.
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Measurement data was then collected while running the process with
a constant control signal. Figure 5.21 shows the raw data from the
tank level measurements. Choosing ω o in the high-pass filter (5.2)
to 0.16 rad/s (well above possible closed loop cut-off frequencies) re-
sulted in the detrended signal shown in Figure 5.22. This frequency
was chosen more on feel than using a systematic method. Trying a few
different choices of ω o, however, gave very similar results in variance,
so it should not give any drastical errors if ω o is not set optimally. It is,
however, wise to let the user be able to specify ω o. Figure 5.23 shows
the low frequency part of the original signal that was removed.
The water tank was sampled every 0.1 seconds. In contradiction to

the other examples in this chapter, the controller was not derived using
the discrete time version of the design software. A continuous time
controller was derived for the sole reason that the discrete version had
not yet been written at the time the tests were carried out. Instead,
a zero order hold sampled version of the continuous controller was
implemented in a Simulink environment. Since the sampling rate is
quite fast for these experiments, this barely affected the robustness
constraints. There could, however, be cases when the sampling time is
chosen differently and it is more critical to use a discrete time designed
controller. This will become obvious in the next chapter.
Two different PID controllers

PID1(s) = 0.92
(

1+ 1
26.52s

+ 4.56s
)

⋅
1

0.52s2/2+ 0.5s+ 1,

PID2(s) = 0.78
(

1+ 1
29.65s

+ 5.42s
)

⋅
1

2.442s2/2+ 2.44s+ 1,

were designed using the PID software. The first PID controller has T f
fixed to 0.5 while the second one has T f = 2.44. Both controllers were
run in closed loop for several hundred seconds and Figure 5.24 shows
the detrended control signals in both cases. The first PID controller
gave a control signal variance of 9.17⋅10–5 (Vk = 37.1) while the second
one gave the variance 3.46 ⋅ 10–6 (Vk = 0.79). Simulink simulations,
using the detrended measurement noise, gave Vk = 35.5 and Vk = 0.76
respectively. Thus, for PID1 there was a difference of 4.5% between
the real variance and the predicted one. For PID2 this difference was
4%. Figure 5.25 shows a short sequence of the real and simulated
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Figure 5.21 Raw measurement data from the water tank process while the
control signal was held constant. The low frequency content of this data is to be
removed, such that only the part of the signal that is assumed affecting actuator
wear is left.
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Figure 5.22 Noise data left when the signal in Figure 5.23 is removed from
the one in Figure 5.21. This signal can be used for estimation of the control
signal variance.
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Figure 5.23 Low frequency data removed from the water tank measurement
in Figure 5.21.

control signals (for PID1) verifying that the two signals are indeed
very similar. Figure 5.26, shows the frequency content, using Bode
diagrams, of the real and simulated control signals (still with PID1).
The curves show once again the similarities between the signals and
that the biggest difference is for low frequencies. The low frequency
content, however, matters quite little as it only indicates towards the
real control signal still having some low frequency trends left.
In all, this example shows that the control signal variance can be

quite well predicted on a real process, in the manner that the proposed
design method demands.
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Figure 5.24 Real, detrended, control signals for PID1 and PID2 on the water
tank process.
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Figure 5.25 Real, detrended, control signal and predicted one when PID1 was
used on the water tank process.
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Figure 5.26 Bode diagram showing the frequency content of the real and
predicted control signals when PID1 was used.
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6

Industrial Example

While the proposed PID design method has proved to work properly in
both simulations and on lab processes, it should also go through ex-
haustive tests on industrial processes to show its worth. Through Akzo
Nobel Functional Chemicals AB, Stenungsund, it has been possible to
do such initial experiments on an industrial distillation column. The
task was to control a recirculation flow in this column.

6.1 Background

Previous modeling of the recirculation flow process (done by people
in the industry) has given the following first order system with time
delay

P0(s) =
3.8

5.5s+ 1 e
−1.4s.

The PI-controller used to control this process was determined through
lambda tuning with Tcl = 1.5T . In other words, the design goal was to
make the closed loop system about 1.5 times slower than the process.
This PI controller, PIλ , had the parameters K = 0.15 and Ti = 5.5. It
is important to know that the measurement data used for deriving the
model P0(s) was filtered through a first order low-pass filter

G f0(s) =
1
s+ 1,

which is later assumed to be part of the controller in the same fashion
as the controllers designed using the proposed method. Setting the
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Figure 6.1 The upper plot shows the filtered process value (solid) and set
point (dashed) from the recirculation flow system, while the lower displays the
control signal. The process has been run in both open and closed loop.

filter time constant, however, was never part of the PI design. It was
set in advance. The sampling time of the process was also preset to
h = 1 second.

6.2 Initial tests

Data from the process is presented in Figure 6.1. The upper plot shows
the process value and set point while the lower one shows the control
signal, all during experiments on the process. The system was first run
in closed loop at a constant set point and then with step changes to the
same. Looking at these changes it is evident that there is stiction in the
actuation. The integral part of the controller grows until the control
signal is high enough to overcome the friction. This is obviously giving
some unwanted behaviour. Stiction effects of this sort is a problem of

88



6.3 Modeling the process

its own which will not be treated in this thesis. The part of the data
that is heavily affected by stiction will therefore be ignored. After the
closed loop tests, the process was run in open loop, making several
step changes in the control signal. The filter on the measurements is
activated at first, but then switched off after a while. In the end, the
process is put back in closed loop, giving quite bad control with a limit
cycle as a result, most likely due to the stiction.

6.3 Modeling the process

Two new models of the process were derived using the Matlab based
modeling tool presented in [Wallén, 2000] - one with the measurement
filter active and one without. Several different models were first de-
rived based on step response data. The final two models were given
using the mean values on Kp, T and L of the set of models. The first
model, derived without the measurement filter active, is

P1(s) =
2.60

0.50s+ 1 e
−0.84s,

while the second model, with filter, is

P2(s) =
2.60

1.30s+ 1 e
−0.84s.

The time constants and the time delay varied quite a bit between the
different model derivations, the reason being that they are so close to
the sampling time. P2(s) is quite different from the original one, P0(s).
The reason for this could, for instance, be that the process has changed
over time. Whether or not this is the case, it is still quite apparent that
the sampling time has been chosen too long for this particular system.
The rise time of the process, for instance, is just one or two samples.
The slow sampling rate will actually make the system harder to design
for, introducing even more time delay. This is something that has to be
taken into account when designing the controllers later.
The discrete time version of P1(s) was used to derive PI and PID

controllers with the proposed method.
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6.4 Noise data collection

A high-pass filter with a cut-off frequency three times as high as for
the original closed loop (ω o = 0.23 rad/s) was used to filter out the
noise from the measurements. The remaining signal had a variance of
σ 2n = 0.0255, giving Vk = 0.006 for the lambda controller which cor-
responds to very little noise throughput. Estimations of this relative
variance, using the detrended noise data as input in system simula-
tions gave 40 percent higher variance, but this could very well be due
to, for instance, differences in the discretization of the controller. The
simulated controller used a forward Euler approximation of the I-part
and backward Euler on the low-pass filter. It will be assumed that the
noise data is at least good enough to use for control signal variance
estimations.

6.5 Controller designs

First a brief look at the existing controller for the system. Given that
it is discretized as described, it gives Ms = 1.16 and Mp = 1. The IAEu
value becomes 36.7 and a load disturbance response is quite sluggish.
The reason being that the controller is tuned for quite a different pro-
cess P0(s). If one instead makes a new lambda tuning on the process,
with Tcl = 1.5T once again, the controller becomes

Gλ
r (s) = 0.18

(

1+ 1
1.3s

)

⋅
1

(s+ 1) ,

i.e. with K = 0.18, Ti = 1.3 and Tf = 1. The controller was tuned with
P2(s) as process model, in the same fashion as the original lambda con-
troller. If all systems within the closed loop were continuous, Ms would
be 1.49 (Mp is small enough to be neglected). If the new controller and
plant now instead are discretized, like they would be in reality, the
slow sampling rate will distort the robustness such that Ms becomes
1.60. The relative variance, Vk, with Gλ

r is 0.035 with an IAEu of 10.33.
The change in robustness after discretizing the system shows that it
is a good idea to use the discrete time version of the Matlab software.
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Figure 6.2 For thirty different values on the low-pass filter time constant,
T f , PI and PID controllers (with Ms = Mp = 1.4) were designed for the flow
control, using the real noise as input to determine Vk. The plot shows the relation
between IAEu and Vk. That is, how much performance costs in terms of noise
in the control signal.

Thirty PID controllers and thirty PI controllers were designed using
a logarithmic span of T f values from 10−5 to 15. The controllers were
designed on the zero order hold discretization of process P1(s). Ms and
Mp were both set to 1.4 in all runs. Figure 6.2 shows how much perfor-
mance, i.e. IAEu, costs in terms of control signal variance, Vk. Having
access to this plot should be of great help to a PID designer when
choosing a suitable controller for the process at hand. Analysing the
plot further shows that it could, as before, be that the PI controllers are
actually better suited than the PID counterparts. Once again, T f /Td
can be used as a measure of when the performance of PI controllers
should be checked too. If this relation is above or close to 1, design PI
controllers as well. When T f → 0, Vk will approach some fix value. The
reason being that the Nyquist frequency will cut off the influence of
the low-pass filter, such that there is a lower limit on IAEu, thus also
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limiting how high Vk can become. For the PID controllers, this IAEu
limit is lower than for the PI controllers. As will be seen later, however,
it can be adjusted by varying the robustness measures.
Figure 6.3 shows the Bode diagrams of all PID controllers and Fig-

ure 6.4 pictures how the proportional gain varies with Vk. The other
two controller parameters vary along the same pattern. There are a
few conclusions one can draw from these plots. Looking at the Bode di-
agrams shows that the PID controller, due to the long sampling time,
will not be able to gain full use of the D-part as it is cut off at the
Nyquist frequency. As Tf increases and Vk decreases, the controller
will assume both PI control structure and, in the end, even the form of
an I controller. For this reason it may look a bit odd that all the con-
troller parameters increase as Vk decreases. The explanation to this
is that the zeros of the controller is used to cancel out the low-pass
filter. So when Tf grows, so will K , Ti and Td. This is not a welcome
behaviour since it would be better to just use an I controller right away.
The question is of course if one would really want an I control structure
anyways. The Vk values for these controllers are quite low.
Now select the best PI or PID controller that gives a Vk similar

to what Gλ
r resulted in (and with roughly the same robustness). That

controller is, in this particular case, the PI controller giving Vk = 0.039
with an IAEu of 8.77 (and Ms = Mp = 1.6). The controller have K =
0.27, Ti = 2.34 and T f = 1.29. The power of the new method is in
other words not necessarily that it gives massively better performance
compared to the lambda tuning, but rather that the designer is able
to see the cost of performance in terms of Vk and then choose the
controller knowing this trade-off relation. If one would instead prefer
the best PI controller, it would give a Vk = 0.043 and an IAEu of 7.73.
The best PID on the other hand, would result in Vk = 0.073 and an
IAEu that is 6.48.
The design software was also run with several other robustness

measures, namely Ms = Mp = 1.2, 1.3 and 1.6. Figure 6.5 shows all
eight (PI and PID) trade-off curves for the different robustness mea-
sures. First of all, it is apparent from these curves that the method does
not give optimal PI/PID controllers. The PI controllers are in general
giving lower IAEu-values than the PID counterparts at the same Vk.
A true PID optimization would not give worse result than a PI opti-
mization. It should ideally be able to assume the same form as the PI
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Figure 6.3 Bode plots for all thirty PID controllers, using Ms = Mp = 1.4.
As T f increases, the controllers will range from PID to PI and even I control
structure.

if that is the best structure for the process. That will, however, not be
possible due to the structure of the low-pass filter. The difference in
performance, however, is not massive and it should be enough to al-
ways check the Tf /Td relation to see if it is worth using the D-part or
not. It is also clear from the plot that the robustness measure can be
used to drive the limit of Vk up or down. It should, however, not be com-
promised too much such that the closed loop is given poor robustness.

6.6 Comparison with Youla controllers

An interesting question is: How do the designed PI and PID controllers
stand up against the best linear controllers? To answer this, Youla
parametrized controllers were derived both with and without any Vk.
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Figure 6.4 Proportional gain, K , as a function of Vk for the PI and PID
controllers when Ms = Mp = 1.4. Ti and Td varies along the same pattern.

The controllers were designed with Ms and Mp equal to 1.4, using a
Q-filter of order 100. Without any constraint on the variance, the ro-
bustness measures and sampling time still limited Vk to 0.24, resulting
in an IAEu of 5.34. This can be compared to the PID controller giving
the lowest IAEu of 6.48 with Vk = 0.0734. Figure 6.6 shows the Bode
diagram of this Youla controller. It is obvious that the increase in gain
and phase close to the Nyquist frequency is what differs most from a
regular PI/PID controller. Such a peak could, however, give rise to poor
robustness to time delay changes. If the Youla controller instead is con-
strained to a Vk close to the best performing PI and PID controllers,
one can see that the relative differences in IAEu between these con-
trollers are 4% (PI relative to Youla) and 5.5% (PID relative to Youla).
These differences in performance are very small. If the best performing
PID is instead compared to the best performing Youla controller, the
difference is 25%, which is not too considerable an amount either. Fig-
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Figure 6.5 PI and PID controllers for Ms = Mp = 1.2, 1.3 and 1.6

ure 6.7 shows the IAEu plotted against Vk for all Youla parametrized
controllers (when Ms = Mp = 1.4) together with the PI/PID curves
that were already given in Figure 6.2 and 6.5. The conclusion here is
that the process does not benefit much from having a more advanced
controller.
It has been concluded that the high sampling time gives a rather

conservative limit on how well the controllers can perform, given rea-
sonable robustness measures.

6.7 Results and conclusions

After the first industrial data had been analyzed, a request was sent
to Akzo Nobel to try out the three controllers listed in Table 6.1. PID1
is the best performing PID controller for Ms = Mp = 1.4 and PI2 is the
equivalent of PI controllers. The reason for selecting the best possible
controllers was because the noise is quite insignificant for this process.
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Table 6.1 PI and PID controllers to be evaluated on the real process.

Controller K Ti Td Tf IAEu Est. σ 2u/σ 2n
PID1 0.20 1.13 0.26 0.00 6.48 0.073

PI1 0.27 2.34 0.00 1.29 8.77 0.039

PI2 0.17 1.30 0.00 0.00 7.73 0.043

It should thus be alright to push the performance while still keeping
the system robust. PI1 was chosen because of (as described earlier) its
close relations to a lambda control strategy.
About four and a half months after initial data had been collected,

result data arrived. Since the new experiment was conducted so long
after the initial ones, the old model had to be validated with the new
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Figure 6.6 Youla parametrized controller when Ms = Mp = 1.4 and there
is no constraint on the relative variance Vk. Note the phase and magnitude
increase close to the Nyquist frequency.
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Figure 6.7 Trade-off curves for PI, PID and Youla parametrized controllers
when Ms = Mp = 1.4.

data to see how significant the process alteration had been. The same
had to be conducted for the noise selection. The filtered process values
(solid) and set point (dashed) from the evaluation experiments can
be found in the upper part of Figure 6.8, while the control signal is
shown below. The red signals show the time line when the process is
controlled by the old lambda tuned controller PIλ , however, with the
big difference that T f = 2 instead of 1 (which used to be the case).
The reason for this change is not known. The blue curves show step
response data, used to verify if the process and measurement noise
characteristics had changed or not. The black data shows discarded
information clearly affected by actuator stiction. As stated before, this
problem is not related to the choice of controller and can thus be ig-
nored. The purple data shows the closed loop signals when controlled
by PID1. The sharp twist in the middle of the data will, however, not
be part of the analysis. The first sequence of green data corresponds
to control using PI1 and the second to PI2 control. When analysing
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Figure 6.8 The upper plot shows the filtered process value (solid) and set
point (dashed) from the industrial verification data, while the lower displays
the control signal. The three controllers from Table 6.1 was used to evaluate the
estimated variances.

the process values, it is important to realize that these are the sig-
nals coming in after the low-pass filter. Since PIλ and PI1 both have
active filters, these signals may look much nicer to the eye than the
sequences of the other two controllers. For that reason it would have
been preferable to have access to raw measurement data instead.
First of all, the step response data was used to derive a new model.

Since the old model seemed to be valid for the new data as well, it
was assumed that the process had not changed significantly enough to
alter the model. The process noise had changed a little over time, so
that σ 2n = 0.022 instead of 0.026, but that is not a significant change
either.
Earlier, quantization effects have not been considered. Since the

control signal is sometimes quite close to the quantization level in
magnitude (most significantly for PIλ and PI1), however, the effect
was introduced in the evaluation analysis. The quantization level for
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the control signal is 0.01%.
Starting out the analysis with PID1, it is obvious that the control

signal variance is highest for this particular case, just as expected. The
difference from the other two cases would, however, be rather insignifi-
cant if the plot had been zoomed out a bit more. One has to realize that
the levels of the noise are in magnitude 0.1 − 0.3% of the maximum
possible control signal, which are quite small values. Taking the noisy
signal after the sharp switch as data, σ 2u = 0.074 which is 1% off the
expected variance (all estimates were recalculated for the new noise).
This is, in other words, a very good match.
The two PI controllers have control signal variances σ 2u = 0.0137

for PI1 and 0.0348 for PI2. In the case of PI2, the estimate (0.0432) is
24% higher than the real value which seems reasonably close. For PI1,
on the other hand, the variance is quite far from the expected value of
0.0303 (121% difference). Taking a closer look at the control signal for
PIλ shows that its variance is also quite a lot lower than the expected
value (about half of it). One possible reason for these differences is that
the low-pass filter might have the wrong model, which would explain
why the other two cases, where the filter is inactive, are much closer
to the truth. An interesting observation is that setting the filter model
to second order (double pole) actually gives an estimate exactly at the
correct variance for PIλ . For PI2 the difference is still 85% after chang-
ing the filter order, but this do at least give one option of a possible
error source. It also shows how important it is to have the correct setup
for the actual control system. Even a slight alteration could mean that
the values end up quite far from the real. For this reason it is highly
desirable that control loops are well documented. This includes the way
in which the controller has been implemented. Just assuming that the
low-pass filter is approximated by forward Euler instead of backward
would give quite a big variance increase. One way to get around this
issue would be to:

1. Determine the controller that is likely to give the correct variance.

2. If the variance is not the expected, choose either a more or less
aggressive controller on the trade-off curve.

3. Iterate until the control looks satisfactory.

Since the experiments were so short, it is hard to compare the perfor-
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mances of the different controllers. In order to make such a comparison,
one would need to have the plant running a long time with the differ-
ent controllers active and then compare how the process value varies
over time.
The experiments on the real plant have shown promising results. It

was not an ideal plant to try the new method on considering sampling
rate and stiction effects, but it has given a good indicator that the
proposed design method is reasonable. Not all three cases gave variance
close to the estimated, but then again, all signals were held within
reasonable bounds and none of them blew up in magnitude.
The possibly most interesting conclusion one can draw in conjunc-

tion to these industrial experiments is that one can now tune a real
PID controller without the fear of having the control signal vary too
much. One would, however, still need a lot more tests on industrial
plants before the method can be fully trusted and utilized.
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7

When are PI and PID

Controllers Valid Choices?

Previous chapters have shown that PI and PID controllers designed,
using the proposed method, may very well be close in performance to
the best possible linear controllers. This was shown by optimization of
Youla parametrized controllers. In this chapter, it will be attempted
to give a bit more general guidelines on when PI and PID controllers
are valid choices compared to more advanced control structures. The
work presented here has, however, not yet been in development for very
long and there is thus more to do before any general conclusions can
be drawn. The main goal of this chapter is therefore to inspire future
work rather than presenting the definite answer to when PI and PID
controllers should be used.
Three sub-batches from the AMIGO test batch (3.1) have been ex-

amined. PI and PID controllers have been compared with Youla con-
trollers for several batch processes. In all cases, it has been assumed
that Ms = Mp = 1.4 and that the measurement noise is white, with
unit variance, sampled every h = 0.01 seconds. This sampling time
will be treated as the reference sampling time when the up- or down-
sampling ratio, J, is derived. That way, one can compare all processes
no matter the respective sampling times.
It has already been pointed out that the PI and PID controllers de-

rived, using the proposed design method, are not optimal with respect
to the variance constraint. To get the full picture of when PI and PID
controllers are valid choices, the optimal controllers should ideally be
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used. One way to determine these would be through gridding. This will
not be done here though and one should thus see this chapter mainly
as a way of justifying the proposed design method. It should, however,
still be possible to see some trends that are likely to occur even when
the optimal PI and PID controllers are employed.
For the three sub-batches, a limited proportion of the total amount

of processes were analysed. Each process had seven PI controller de-
signs and seven PID controller designs - spanning over Tf . The PI
controllers have, however, not been used much in the analysis here.
The Vk-values resulting from the runs were used to design Youla con-
trollers giving the same variance to render a comparison possible.

7.1 Sub-batch 1 – First order systems with time delay

The first sub-batch to be investigated is the one with time delayed first
order systems, that is,

P1(s) =
e−s

1+ sT ,

T = 0.1, 0.5, 1, 2, 5, 10, 50, 500,

such that 8 of 21 processes were analysed.
Figure 7.1 shows a plot of the relation between IAEPIDu /IAEYoulau

and Vk. In other words, this shows how well the different PID con-
trollers perform compared to the Youla controller fulfilling the same
variance constraint. Most of the curves in Figure 7.1 have the same
appearance with a fast growing relative IAEu for low Vk-values, reach-
ing stationarity for high Vk-values (see for instance the T = 0.1 case).
This seems rather reasonable since the robustness measures will likely
destroy the chances of the Youla controller taking full advantage of its
superior freedom when Vk is high. For values on T from 5 and above,
the curves are shaped such that the relative IAEu decreases for high
Vk. It does, however, seem logical that the shape of the curve is more
accurate for low values on T . The reason being that it is reasonable
if the PI or PID structure has the highest benefits for low Vk-values,
leaving the Youla controller with little freedom. This is also confirmed
by looking at the relative IAEu for PI controllers. These have a lot lower
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Figure 7.1 Sub-batch 1: The plots show how well PID controllers perform on
FOTD processes in terms of IAEu compared with Youla controllers, for a number
of different Vk-values. The curves correspond to different time constants of the
FOTD processes.

values than the PID controllers for small Vk. This should mean that
the curves for which the relative IAEu-values decrease give a hint of
when the PID design method performs at its worst. These are, how-
ever, also cases for which one would presume the PI controller to be
the preferred structure. So, simply switching to PI controllers seems
like the way to go for lag dominant FOTD processes.
Note that the curves in Figure 7.1 have different max values on

Vk. This has to do with the variation in sampling time being used for
the 8 processes. The sampling rate will have a slight effect on how
these curves look and how high Vk can become (due to the Nyquist
frequency). This effect is, however, neglected here.
The curves in Figure 7.1 seems to cross each other several times for

different Vk-values. Overall, it seems to be a difficult problem to anal-
yse these behaviours, especially since the PID controllers are not op-
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Figure 7.2 Sub-batch 1: Relative IAEu-values for maximal Vk from the curves
in Figure 7.1. These shows a trend that more complex controllers have a bigger
advantage for delay dominant FOTD processes.

timal, in contradiction to the Youla controllers. Small variations could
therefore be due to this imperfection rather than real differences be-
tween the processes. The stationary values (high Vk) in all cases, ex-
cept T = 500, were compared. These values, that are plotted in Figure
7.2, gives a measure of when a PID controller is close in performance
to a Youla controller. The benefits from using the advanced controller
structure are very small for low values on the normalized time delay,
τ . This is quite reasonable since these systems are basically first or-
der systems with negligible time delay. When the time delay is the
dominant part of the system, however, the Youla controller shines the
most. These controllers will typically include a lot of peaks though,
thus ruining robustness towards time delay changes. Also note that
there is a dip in the curve, shown in Figure 7.2, for τ ( 0.5 and a
peak when τ ( 0.3. It would have been logical to assume that this
curve is monotonically increasing with τ , with the motivation that the
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7.2 Sub-batch 2 – Second order systems with time delay

time delay makes the system harder to control. The time delay robust-
ness will, however, sabotage this relation and one would really need
to derive a good time delay compensating controller with sufficient ro-
bustness to really get a good picture of whether the advanced structure
is important for τ ( 1 or not. A guess is that the curve, taking delay
robustness into consideration would have rather low values for both
τ & 0 and τ . 1. Such that there would be some maximum in between
when the advanced controller is preferred the most compared to a PI
or PID controller. Whether or not this is actually the case, it still seems
like the FOTD systems are gaining relatively little from using the ad-
vanced structure of the Youla controller. The PI and PID controllers
seem to be valid choices to use for these systems. PI for low Vk and τ
close to 0 and possibly also close to 1. PID for higher values on Vk and
when the system is somewhere in between lag- and delay dominant.
As a complement to the analysis above, consider the case when

the variance of the control signal can not be higher than that of the
measurement noise, that is when Vk = 1. Figure 7.3 and 7.4 shows the
Youla and PID controllers respectively for 5 of the 8 different sub-batch
processes. Looking at the Youla controllers show how they gradually
become less and less complex as T increases. The same is true for the
PID controllers that start out with a distinct D-part, but ends with
a roughly filtered controller when T = 500. Figure 7.5 confirms this
observation, showing how the relation T f /Td increases with decreasing
τ for the PID controllers, thus basically giving PI controllers in the end.

7.2 Sub-batch 2 – Second order systems with time delay

Next in line of analysis is the second sub-batch, containing second order
systems with time delay

P2(s) =
e−s

(1+ sT)2 ,

T = 0.1, 0.5, 1.5, 6, 20, 200,

such that 6 of 21 processes were analysed. These processes span from
being delay dominant when T = 0.1 to become lag dominant, essen-
tially of order two with negligible dead time, when T is high.
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Figure 7.3 Sub-batch 1: Youla parametrized controllers for 5 different FOTD
processes, given that Vk = 1. Advanced controllers are preferred when the sys-
tem is delay dominant, while lower order controllers are preferred for lag dom-
inant processes.
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Figure 7.4 Sub-batch 1: PID controllers for 5 different FOTD processes, given
that Vk = 1.
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Figure 7.5 Sub-batch 1: The relation between T f /Td and τ , when Vk = 1
shows that the D-part of the PID controller is the most useful for processes that
are not lag dominant.

Figure 7.6 shows once again how IAEPIDu /IAEYoulau changes depend-
ing on process dynamics and the limit of control signal variance, i.e.
Vk. The patterns are quite similar to those plotted in Figure 7.1, sug-
gesting that the proposed design method is furthest from optimality
for lag dominant systems with small Vk-values.
Plotting the values for which Vk is the highest, gives the curve in

Figure 7.7. This plot is also very similar to the sub-batch 1 equivalent
in Figure 7.2, but sub-batch 2 seems a little bit harder to control for
equivalent numbers on τ . The possibly most interesting bit is that the
curve dips at τ ( 0.5 just like before. Whether or not this is an effect
caused by the proposed method alone remains an open question for
future work.
Fixating Vk to 1 gives the Youla controllers shown in Figure 7.8. The

controllers for the delay dominant systems remind a lot of those from
sub-batch 1. As τ decreases, the controllers do not seem to become sim-

107



Chapter 7. When are PI and PID Controllers Valid Choices?

0 2 4 6 8 10 12
1

1.1

1.2

1.3

1.4

1.5

1.6

V
k

IA
E

uP
ID

/IA
E

uY
ou

la

 

 

T=0.1
T=0.5
T=1.5
T=6
T=20
T=200

Figure 7.6 Sub-Batch 2: These plots show how well PID controllers perform
on second order processes with time delay in terms of IAEu compared with
Youla controllers, for a number of different Vk-values. The curves correspond to
different time constants of the processes.

ilar to PI controllers which was the case for the FOTD systems. That
is also quite logical since a second order process without time delay
is known to be controlled sufficiently well with a PID controller. A PI
controller will, however, lack freedom to set the closed loop dynamics.
Unless of course one puts really high demands on the control signal
variance, thus gimping the potential of the more advanced controllers.
Plotting T f/Td versus τ , when Vk = 1, confirms that the D-part

is more important for the second order processes with dead-time com-
pared to the FOTD systems. The T f /Td values are much smaller than
before. An interesting detail is that the relation has a maximum around
τ = 0.2 and decreases for lower values on τ . If this is an indicator of
bad controllers or a real feature of these systems remains to be shown.
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Figure 7.7 Sub-batch 2: Plot that shows the relative IAEu-values for maximal
Vk from the curves in Figure 7.6. Just as in the case of sub-batch 1, the trend
is that more complex controllers have a bigger advantage for delay dominant
FOTD processes.

7.3 Sub-batch 9 – Systems with complex poles

The third and last sub-batch to be analysed is

P1(s) =
1

(s+ 1)((sT)2 + 1.4sT + 1) ,

T = 0.1, 0.4, 1,

which consists of processes with one real pole and two complex conju-
gated poles. When T = 1, these poles are at the same distance from ori-
gin, while the two complex poles are quite insignificant when T = 0.1.
The system will thus span from basically being a first order system
to become a third order process. Looking at the relative IAE differ-
ences between the PID and Youla controllers show (see Figure 7.10)
that there are more significant differences in performance compared
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Figure 7.8 Sub-batch 2: Bode magnitude plots of the Youla controllers when
Vk = 1.

to the previous sub-batches. The τ -values will span a much smaller
region than for earlier batches, with: τ = 0.12 when T = 0.1, τ = 0.26
for T = 0.4 and τ = 0.31 with T = 1. It is obvious that the Youla
controller is superior when there are three significant poles and Vk is
set high. The process with T = 0.1 can, however, be controlled quite
well with the PID controller although the shape of the curve suggests
that the given controllers are not quite optimal.
Taking the case when Vk = 1 shows once again that the more

delay dominant system (here T = 1) have more use for an advanced
controller than the lag dominant systems. This is shown in Figure
7.11. Also note that these controllers will give good robustness to time
delay variations (no high peaks), so the Youla controllers will, without
doubt, be a lot better than PID controllers in this case. It should also
be fine to reduce these controllers to receive ones that are really close
to optimal.
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Figure 7.9 Sub-batch 2: The relation between T f /Td and the normalized time
delay when Vk = 1. The D-part is more significant than for the processes in sub-
batch 1.

The Tf /Td versus τ relation, for the PID controllers when Vk = 1,
is strictly decreasing in this case. For T = 1 one gets T f/Td = 0.17,
while T = 0.4 lead to Tf /Td = 0.19 and T = 0.1 to T f/Td = 0.37. This
is, however, just as expected. The process that is the closest to a first
order system being the process that needs the D-part the least.

7.4 Summary

Looking through the different plots presented in this chapter, it is obvi-
ous that whether or not a PI or PID controller is sufficient will depend
on both the process dynamics and the allowed control signal activity. If
the control signal variance due to measurement noise is allowed to be
large, then the freedom of an advanced controller will come to its right
to a higher degree. If the system is simple, however, it will generally
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Figure 7.10 Sub-Batch 9: The plots show how well PID controllers perform
on third order processes, with complex poles, in terms of IAEu compared with
Youla controllers, for a number of different Vk-values.

not be any point in using the advanced controller and a PID or even
PI is close to optimum. If the process is delay dominant, the advanced
controllers may seem to give really good results too, but one will then
have to take into account that the given optimization problem does not
handle robustness towards time delay changes. Such robustness mea-
sures could potentially mean that the most delay dominant processes
should really be controlled by simple controllers too.
As stated in the beginning of this chapter, these results were de-

rived in the end of the making of this thesis. The results should be seen
as a source of inspiration for future work rather than a presentation
of the absolute truth. In order to get the full picture, one would really
need to derive the PI and PID controllers that are optimal with respect
to the variance constraint. The results derived here should, however,
at least be representative for the proposed design method.
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Figure 7.11 Sub-Batch 9: Bode magnitude plots for the Youla and PID con-
trollers when Vk is fixated to 1. The PID controller is the most similar to the
Youla controller when T = 0.1, i.e. when the process is essentially a first order
system.
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8

Conclusions and Future

Work

The following chapter will give a brief summary of the most important
contributions of the thesis and present some suggestions for future
work within the research area.

8.1 Conclusions

Many industrial processes have relatively simple dynamics, that are
generally easy to control with PI or PID controllers. Even so, the sheer
number of control loops makes it a very time-consuming duty to tune
all of them. Lack of time and knowledge among operators will thus
often leave controllers with default settings, far from optimal. For this
reason it is important to have a controller design tool that is both
fast and easy to use. While there are many design methods already
satisfying this, few guarantee to fulfill all of the following three closed
loop criterias:

• Fast load disturbance suppression

• Closed loop robustness to model errors and process variations

• Low actuator wear and tear

While the third criteria is seldom an issue with PI control, it is ex-
tremely important when designing PID controllers. Control signal sen-
sitivity to measurement noise is one of the most important reasons why
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the D-part is seldomly used in industry today. It is simply too costly
to exchange actuators in relation to the performance gain one gets
through using the D-part. Add to this that tuning three, or even four,
controller parameters is far more complicated than just two and it is
not difficult to understand the decision.
The PID design method proposed within this thesis takes all three

of the above stated criterias into consideration. The controllers are op-
timized through a fast and robust Matlab software tool such that the
IAE-value during a load disturbance is minimized, with respect to ro-
bustness constraints on the sensitivity- and complementary sensitivity
function. The tool can then be run several times for different settings
on the low-pass filter, through which the measurements have to pass.
Estimating the control signal variance due to measurement noise will
provide the user with a trade-off curve between performance and con-
trol signal activity. This way, the wear on actuators can be taken into
consideration when designing the controllers. Furthermore, the design
tool can be used to choose a PI or PID controller depending on which
is the best suited for the given process. This will be a decision that is
taken both with respect to the process and the allowed control signal
activity.
It is a good idea to check the quality of the controllers since the

proposed software design tool give optimal controllers with respect to
robustness, but not to the control activity constraint. In order to do
so, optimized Youla parametrized controllers were used. These give a
good estimate of how close the designed PI and PID controllers are to
the limit of performance. A small difference in performance is a very
good sign that the simple controllers are well-tuned. Several examples
provided within this thesis have also shown that this is very often true.
In the cases that PID controllers are less suitable, it is often advisable
to switch to PI control. This is also supported by the observation that
the Youla controllers are basically PI controllers in these cases. There
are of course other types of processes, like oscillatory systems, when
PID control is known to give rather poor results. In such cases, it seems
advisable to use more advanced controllers. One way of doing so could
be to start out from the Youla controllers and proceed through some
controller reduction method. It is, however, important that extra time
spent on deriving more advanced controllers is really worth it, or else
a simpler controller may very well be better to use.
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Several experiments on real processes have shown that the proposed
design method has good potential to work well in industry. It is possible
to estimate the control signal variance due to measurement noise and
keep it as low as specified, which opens up for use of PID controllers
in industry.

8.2 Future work

During the work of this thesis, several questions have come up that
will need further attention in the future. Here follows a few of them:

• How can one extend the controller design to include fully autom-
atized estimation of the control signal variance and plotting of
the trade-off curve?

• Is it possible to use Youla controllers to systematically tune even
better controllers whose level of complexity depends on the pro-
cess dynamics and allowed control signal activity?

• The proposed controller design tool should ideally be able to
choose optimal controller structure depending on the process. Is
this possible to achieve?

In addition to these questions, it should be reminded that the is-
sues presented in Chapter 7 are not yet fully investigated. More work
is needed before it is possible to give any general guidelines on when
PI and PID controllers are valid choices compared to more advanced
options. Furthermore, the PI and PID controllers used in the compar-
isons should ideally be optimal with respect to the variance constraint.
This could for instance be achieved through gridding.
Experiments on an industrial process has already been conducted,

but several more tests are needed before the proposed design method
can be utilized with full confidence.
There are also several nearby areas like event-based PID control

and control of two-inputs-two-outputs systems that could possibly be
treated similarly to the methods described in this thesis. Whether or
not these ideas have potential will also be left for future work to show.
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