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Abstract

Background: Myocardial perfusion scintigraphy (MPS) is a clinically useful
noninvasive imaging modality for diagnosing patients with suspected coronary
artery disease. By utilizing gated MPS, the end diastolic volume (EDV) and end
systolic volume (ESV) can be measured and the ejection fraction (EF) calculated,
which gives incremental prognostic value compared with assessment of perfusion
only. The aim of this study was to evaluate the inter-departmental variability of EF,
ESV, and EDV during gated MPS in Sweden.

Methods: Seventeen departments were included in the study. The SIMIND Monte
Carlo (MC) program together with the XCAT phantom was used to simulate three
patient cases with different EDV, ESV, and EF. Individual simulations were performed
for each department, corresponding to their specific method of performing MPS.
Images were then sent to each department and were evaluated according to clinical
routine. EDV, ESV, and EF were reported back.

Results: There was a large underestimation of EDV and ESV for all three cases. Mean
underestimation for EDV varied between 26% and 52% and for ESV between 15%
and 60%. EF was more accurately measured, but mean bias still varied between an
underestimation of 24% to an overestimation of 14%. In general, the intra-departmental
variability for EDV, ESV, and EF was small, whereas inter-departmental variability
was larger.

Conclusions: Left ventricular volumes were generally underestimated, whereas
EF was more accurately estimated. There was, however, large inter-departmental
variability.

Keywords: External quality assessment; Monte Carlo simulations; SPECT;
Myocardial perfusion imaging

Background
Myocardial perfusion scintigraphy (MPS) is widely regarded as a clinically useful non-

invasive imaging modality for diagnosing patients with suspected coronary artery dis-

ease. The diagnostic accuracy is high, and risk stratification has been well validated

[1-3]. By utilizing gated MPS, the end diastolic volume (EDV) and end systolic volume

© 2015 Trägårdh et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
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(ESV) can be measured and the ejection fraction (EF) can thus be calculated. Assess-

ment of left ventricular volumes and function are important parameters in patients

with coronary artery disease. The information from gated MPS has been shown to have

incremental prognostic value compared with assessment of perfusion only [4,5].

Decreased EF and increased left ventricular volumes without any perfusion defects

are seen in, for example, some cases of cardiomyopathy. A stress perfusion defect

with decreased function compared with the resting images is indicative of postis-

chemic myocardial stunning. Lower EF and larger volumes after stress compared

with rest are signs of severe ischemia.

It is vital that different departments measure the same EF and left ventricular vol-

umes. The aim of this study was to evaluate the inter-departmental variability of EF,

ESV, and EDV obtained from gated MPS in Sweden. The study was performed as a part

of a national QA program in nuclear medicine, initiated and managed by Equalis AB

[6], a non-profit company providing external quality assessment of laboratory investiga-

tions within the Swedish healthcare.

Evaluation of inter-departmental variability of EF, ESV, and EDV has been performed

by Verberne et al. [7]. They used a physical phantom [8], which had a dynamic heart

and modifiable ESV and EDV. This method of evaluation requires that each participat-

ing department owns its own phantom or that one or more phantoms are sent around.

Each department also has to perform several measurements including phantom prepar-

ation that requires both time and effort. To overcome the inconvenience of construct-

ing and sending a physical phantom around, we have instead created Monte Carlo

simulated gated MPS studies for distribution. By using the Monte Carlo method, we

are able to use a more realistic digital phantom with more degrees of freedom regard-

ing the shape of the phantom, physiological movements due to breathing, and the mo-

tion of the heart.

Methods
Twenty-six departments were enrolled to participate in the evaluation. Four were not

able to participate because they either use the new CZT cameras or use special heart

collimators which at the moment are not supported by the Monte Carlo program. Five

departments did not respond/had troubles reading the data files. Seventeen depart-

ments ended up participating in the evaluation.

Each participating department reported the method they use to perform MPS, e.g.

the camera system, camera settings (energy window, matrix size, number of projection

angles, etc.), and the administered radioactivity. All reported parameters are listed in

Table 1. The SIMIND Monte Carlo program [9] together with the XCAT anthropo-

morphic computer phantom [10] was then used to simulate projection data. Simula-

tions were performed for each department using their characteristic camera settings.

Three different patient cases were simulated as described in Table 2. The cases were

chosen to cover as much of the patient spectrum that is normally encountered in the

clinic with the three cases. For each patient case, 32 instances of the XCAT phantom

were created with the heart in different positions in the cardiac cycle and different

spatial positions in the thoracic cavity due to breathing. For each department, all the 32

phantoms were simulated and the results were summed corresponding to each
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department’s method of gating, i.e. if 8 or 16 gates were used. The biokinetics was

taken from [11], and the fraction of the administered activity in the heart after 1 h was

set to 1.2%. Here, we did not take into account eventual differences between tetrofos-

min and sestamibi. In order to mimic real measurements, the simulations were per-

formed with sufficient histories to generate noiseless data. Poisson noise was then

added after the simulations, corresponding to a count level representative for the ad-

ministered activity and acquisition time for each department and the aforementioned

biokinetics. The final projections were converted to DICOM format and sent to the de-

partments, which evaluated the simulations as according to their methods of tomo-

graphic reconstruction and ESV, EDV, and EF quantifications. The departments used

different software packages for the evaluation, according to clinical routine (reported

use of software packages for different departments: Quantitative Gated SPECT (Cedars

Sinai Los Angeles, CA, USA; QPS), AutoQuant (Philips, Andover, MA, USA), EXINI

Heart (EXINI Diagnostics, Lund, Sweden), Emory Cardiac Toolbox (Emory University

Medical Center, Atlanta, GA, USA)). The evaluation was restricted to non-attenuation

corrected images and reconstruction without collimator detector response compensa-

tions because of difficulties of generating DICOM images with the required header in-

formation for each gamma camera vendor. The methods used by the departments are

listed in Table 3; however, some departments did not report their methods. Five depart-

ments contributed with one response each and 12 departments contributed with mul-

tiple responses since more than one technologist performed the evaluation.

Statistical analysis

Values of reported EDV, ESV, and EF are given as mean and 95% confidence interval

(CI). Mean bias as well as mean absolute bias was calculated. One sample t-test was

used to determine differences between reported values and the true simulated value for

EDV, ESV, and EF. When more than one value was reported from one department, the

Table 2 Patient characteristics for the three cases

Case 1 Case 2 Case 3

Sex Female Male Female

Length (cm) 160 182 171

Weight (kg) 55 102 68

EF (%) 53 37 62

EDV (mL) 50 230 91

ESV (mL) 24 143 35

Table 1 Parameters that were provided from the different departments for the
simulations

Camera system Starting angle

Collimator Total rotation

Crystal thickness Number of projections

Energy window Time per projection

Matrix size Number of time frames

Pixel size Administered activity
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mean value from that department was used in the t-test. Statistical significance was set

at 0.05. Statistical analysis was carried out using MedCalc for Windows, version

12.7.7.0 (MedCalc Software, Ostend, Belgium).

Results
The results are displayed in Figure 1 and Table 4. There was a large underestimation of

both EDV and ESV for all three cases. The largest underestimation was seen for case 1

(female with a small heart) and the smallest underestimation for case 2 (male with a

large heart). Mean underestimation for EDV varied between 26% and 52% and for ESV

between 15% and 60%. EF was more accurately estimated, but mean bias still varied be-

tween an underestimation of 24% to an overestimation of 14%. The mean absolute bias

was 17%, 24%, and 9% for cases 1 to 3, respectively. In general, the intra-departmental

variability for EDV, ESV, and EF was small, whereas inter-departmental variability was

larger (Figure 1). The outlier in department no. 1 could be due to a typo.

Discussion
Our study shows that there is a large inter-departmental variability of EF, EDV, and

ESV estimations in nuclear medicine departments in Sweden, but the intra-

departmental variability was found to be small. We found a large underestimation of

EDV and ESV, but since the underestimation of EDV and ESV was of similar order, the

EF estimates were more accurate, although not satisfactory. The mean bias varied from

14% for the small heart, where 14 out of 17 departments overestimated the EF, to −24%

Table 3 Reconstruction algorithm and evaluation software that were reported from the
departments

Department number Reconstruction
algorithm

Iteration
updates

Filter Cut-off frequency/widtha Evaluation
software

1 N/A

2 FBP Butterworth 0.52 ECToolbox

3 OSEM 80 Butterworth 0.45 QGS

4 OSEM N/A Hanning QGS

5 OSEM 48 Butterworth 0.4 AutoQuant

6 N/A

7 FBP Butterworth 0.35 QGS

8 N/A

9 FBP Butterworth 0.35 Exini heart

10 FBP Butterworth 0.65 QGS

11 N/A

12 FBP Butterworth 0.4 QGS

13 FBP Butterworth 0.9 QGS

14 FBP Butterworth 0.52 QGS

15 OSEM 120 Butterworth 0.4 QGS

16 FBP Butterworth 0.4 ECtoolbox

17 OSEM 32 3D Gaussian 0.8 QGS
aCut-off frequency for Butterworth filter is in unit of Nyquist frequency and SD for 3D Gaussian filter is in pixels.
FBP filtered back projection, OSEM ordered subset expectation maximization.
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for the large heart, where all but one underestimated the EF. For the normal heart, the

mean bias was around 1% but the mean absolute bias was however 9%, indicating that

the accuracy of the EF estimates also for the normal sized heart was low. Since the

evaluation of EF to a large extent is automated, there should be a small intra-

departmental variability and we are recommending that departments that have a larger

intra-departmental variability should perform an internal quality control of their

method. The large inter-departmental variability is however of concern, both for car-

diac volumes and for EF. The volume estimates of the LV depend on the spatial reso-

lution of the final images and the algorithm used to outline the LV. The spatial

resolution depends on several parameters such as choice of collimator, pixel size, noise

level, which determines eventual pre- or post-reconstruction filters, and the reconstruc-

tion algorithm. The noise level in turn is dependent on administered activity, measure-

ment time per frame, number of frames per heart cycle, number of projections, and

pixel size. Different software packages use different algorithms to outline the LV, and

these are more or less prone to give different results depending on the resolution in the

input image. It was beyond the scope of this study to evaluate to what extent each par-

ameter affects the final result because the statistical basis was too small. However, some

Figure 1 Dotted lines represent true values. Plus signs represent answers from individual technologists
(provided by 12 departments) and diamond signs represent the department mean.

Table 4 Mean values, 95% CI, mean bias, and p values for all departments

Case 1 Case 2 Case 3

EF EDV ESV EF EDV ESV EF EDV ESV

Mean all departments
(mL)

61 24 10 29 171 122 62 53 21

95% CI (mL) 42 to 79 17 to 31 4 to 16 22 to 36 153 to 190 107 to 136 49 to 74 43 to 63 12 to 29

Mean bias (%) 14 −52 −60 −24 −26 −15 −1 −42 −41

p value 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 0.77 <0.001 <0.001
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tendencies can be extracted from the data. It can be seen that ECToolbox generally

gave lower EF than other softwares. Also, departments using OSEM or FBP with higher

cut-off frequency gave more accurate volume estimates of the small heart due to better

resolution. Regarding the cases with normal and large heart, the results were more ar-

bitrary, indicating that it is a combination of measurement protocol, reconstruction pa-

rameters, and evaluation software that determine the outcome of the volume estimates.

In the study by Verberne et al. [7], they used a physical phantom that included a dy-

namic heart model able to define different ESV, EDV, and heart wall thickness but the

phantom could not mimic physical properties such as heart motion due to breathing.

This phantom was distributed to 35 nuclear medicine departments for individual mea-

surements using three different settings; with an ESV of 50, 90, and 120 mL respect-

ively and an EDV of 120, 160, and 190 mL respectively, which give an EF of 58%, 44%,

and 37%, respectively. Results showed that the EDV and ESV were on average underes-

timated by 1 to 65 mL respectively and the EF was overestimated by 1% to 15%, while

our results showed both under- and overestimation of the EF. This difference was prob-

ably due the fact that we had a more differentiated phantom population. Also, in their

study, only the QGS software package was used to quantify the measurements; whereas

in our study, the contributing departments used their clinical routine software

packages.

Several previous studies have compared LV volumes as quantified by different algo-

rithms to cardiac magnetic resonance imaging, regarded as the reference standard. In

the majority of the studies, EDV and ESV by MPS were underestimated [12-18]. EDV

by MPS has also been shown to range from overestimation to underestimation com-

pared to magnetic resonance imaging depending on the software package used [19-21].

One study has shown an overestimation in both EDV and ESV by MPS [22]. An ex-

planation for the differences found in these studies, apart from differences in the algo-

rithms for calculating MPS volumes, could be different magnetic resonance sequences.

It has been shown that older turbo gradient echo imaging shows significantly smaller

EDV and ESV compared to current standard steady-state free precession imaging [23].

The results obtained from the studies using newer magnetic resonance imaging tech-

nique are in accordance with our results.

Based on the results of our and others studies, it should be debated whether ESV and

EDV should be provided in a clinical final report of the MPS. The American Society of

Nuclear Cardiology conclude in their consensus statement [24] on reporting of myocar-

dial perfusion imaging studies that a quantitative value of left ventricular EF should be

included within the report. For EF greater than 60%, the actual calculated number

should be included in the report and mention made of overestimation in patients with

small hearts. Ventricular volumes may be reported (optional). The European Associ-

ation of Nuclear Medicine and European Society of Cardiology state in their procedural

guidelines for myocardial perfusion imaging [25] that EF and volumes should be re-

ported together and that caution should be exercised in reporting apparently spurious

values of these parameters. It is also stated that reporting of volumes may preferably be

indexed according to body surface area, since the reference values have a narrower

range. We believe that if physicians want to state estimated EF and volumes in their re-

ports, they should be careful to use normal limits that have been established for the

same MPS technique and software tool as used at their department.
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This study has some limitations. One is that we only enrolled departments that use

standard gamma cameras with parallel hole collimators. Newer technologies, such as

the new semiconductor cameras (CZT cameras) and special collimators, such as the

IQ-SPECT system (Siemens, Erlangen, Germany) could not be simulated in the present

version of the SIMIND code. Also, only non-attenuation corrected images were used,

since departmental specific attenuation maps generated from CT were difficult to cre-

ate. Thus, the results from the study do not exactly represent the clinical situation in

Sweden but indicate tendencies of the large variability. The SIMIND Monte Carlo pro-

gram is a useful tool to test an imaging method when the aim is to test the robustness

of the method in a patient-like situation. However, a simulation is not entirely equal to

a real measurement since the effects of e.g. non-perfect intrinsic spatial uniformity and

linearity is not modeled. Also, eventual patient movement in addition to breathing and

beating heart is not modeled. The heart in the phantoms used in the study is derived

from one real patient and scaled to different sizes. Although attenuation conditions

such as amount of fat, size of the heart, and breasts differ, the shape of the heart is the

same in all cases.

Conclusion
In our study, we have used the MC method for a multi-center quality control study of

MPI, both in terms of differences between departments and the general accuracy of the

method. We have confirmed the results from previous studies that left ventricular vol-

umes are underestimated in MPS, whereas EF is more accurately estimated. There was,

however, large inter-departmental variability, which needs to be further addressed.
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