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Abstract

We study a one-dimensional random walk whose expected drift depends both on time and
the position of a particle. We establish a non-trivial phase transition for the recurrence vs.
transience of the walk, and show some interesting applications to Friedman’s urn, as well as
showing the connection with Lamperti’s walk with asymptotically zero drift .
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1 Introduction

Consider the following stochastic processes Xt which may loosely be described as a random walk
on R+ (or in more generality on R) with the asymptotic drift given by

µt := E (Xt+1 − Xt |Xt = x) ∼ ρ
|x|α
tβ

,

where ρ, α and β are some fixed constants, and the exact meaning of “∼” will be made precise
later. In this paper we establish when this process is recurrent or transient, by finding the whole
line of phase transitions in terms of (α, β). We also analyze some critical cases, when the value
of ρ becomes important as well. Note that because of symmetry, it is sufficient to consider only
these processes on R+, and from now on we will assume that Xt ≥ 0 a.s. for all values of t.

The original motivation of this paper is based on an open problem related to Friedman urns,
posed in Freedman [4]. In certain regimes of these urns, to the best of our knowledge, it is still
unknown whether the number of balls of different colors can overtake each other infinitely many
times with a positive probability. We will not describe this problem in more details here, rather
we refer the reader directly to Section 6.

Incidentally, the class of stochastic processes we are considering covers simultaneously not only
the Friedman urn, but also the walk with an asymptotically zero drift, first probably studied by
Lamperti, see [7] and [8]. His one-dimensional walks with drift depending only on the position of
the particle naturally arise when proving recurrence of the simple random walk on Z

1 and Z
2 and

transience on Z
d, d ≥ 3. They can be used of course for answering the question of recurrence for a

much wider class of models, notably those involving polling systems, for example, see [1] and [9].
It will be not surprising if the model we are considering also covers some other probabilistic
models, of which we are unaware at the moment.
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Figure 1: Diagram for (α, β).

In our paper we study the random walk whose drift depends both on time and the position of
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a particle. Throughout the paper we assume that

(α, β) ∈ Υ = {(α, β) : β > α and β ≥ 0}

to avoid the situations when the drift becomes unbounded and the borderline cases (the only
exception will be α = β = 1). We will show that under some regularity conditions, the walk is
transient when (α, β) lie in the following area

Trans = {(α, β) : 0 ≤ β < 1, 2β − 1 < α < β} ⊂ Υ

and recurrent for (α, β) in

Rec = Υ \ Trans = {(α, β) : β ≥ 0, α < min(β, 2β − 1)}

where Trans denotes the closure of the set Trans. In the special critical case α = β = 1 we
show that the walk is transient for ρ > 1/2 and recurrent for ρ < 1/2. An example of such a
walk with α = β = 1 is the process on Z+ with the following jump distribution:

P(Xt+1 = n ± 1 |Xt = n) =
1

2
± ρn

2t

where t = 0, 1, 2, . . . . This walk is analyzed in Section 6.

Throughout the paper we will need the following hypothesis. Let Xt be a stochastic process on
R+ with jumps Dt = Xt−Xt−1 and let Ft = σ(X0, X1, . . . , Xt). Let a be some positive constant.

(H1) Uniform boundedness of jumps.
There is a constant B1 > 0 such that |Dt| ≤ B1 for all t ∈ Z+ a.s.

(H2) Uniform non-degeneracy on [a,∞).
There is a constant B2 > 0 such that whenever Xt−1 ≥ a, E (D2

t | Ft−1) ≥ B2 for all t ∈ Z+. a.s.

(H3) Uniform boundedness of time to leave [0,a].
The number of steps required for Xt to exit the interval [0, a] starting from any point inside this
interval is uniformly stochastically bounded above by some independent random variable W ≥ 0
with a finite mean µ = E W < ∞, i.e., for all s ∈ R+, when Xs ≤ a,

∀x ≥ 0 P(η(s) ≥ x | Fs) ≤ P(W ≥ x), where η(s) = inf{t ≥ s : Xt > a}.

The rest of the paper is organized as follows. In Section 2 we prove some technical lemmas. In
Section 3 we formulate the exact statement about the transience of the process Xt and prove
it while in Section 4 we do the same for recurrence. We also study some borderline cases
in Section 5, and present an open problem in Section 5.3. Finally, we apply our results to
generalized Pólya and Friedman urns in Section 6.

946



2 Technical facts

First, we will need the following important law of iterated logarithms for martingales.

Lemma 1 (Proposition (2.7) in Freedman (1975)). Suppose that Sn is a martingale adapted to
filtration Fn and ∆n = Sn − Sn−1 are its differences. Let Tn =

∑n
i=1 E (∆2

i | Fi−1), σb = inf{n :
Tn > b}, and

L(b) = ess sup
ω

sup
n≤σb(ω)

|∆n(ω)|.

Suppose L(b) = o(b/ log log b)1/2 as b → ∞. Then

lim sup
n→∞

Sn√
2Tn log log Tn

= 1 a.s. on {Tn → ∞}.

Lemma 2. Let Xt, t = 1, 2, . . . be a sequence of random variables adapted to filtration Ft with
differences Dt = Xt − Xt−1 satisfying (H1), (H2), and (H3) for some a > 0. Suppose that on
the event {Xt ≥ a}

E (Dt+1 | Ft) ≥ 0 a.s.

Then for any A > 0
P(∃t : Xt > A

√
t) = 1.

Note that both the assumptions and conclusion of Lemma 2 are weaker than those of Lemma 1,
but it is Lemma 2 what we use further in our paper.

Proof. First, we are going essentially to “freeze” the process Xt whenever it enters the interval
[0, a], where it is not a submartingale, until the moment when Xt exits from this interval. Define
the function s(t) : Z+ → Z+ such that s(0) = 0 and for t ≥ 0

s(t + 1) =

{

t + 1, if Xt > a or Xt+1 > a
s(t), otherwise.

Let X̃t = Xs(t). Then X̃n is a submartingale satisfying (H1), perhaps with a new constant B̃1 =

B1+a. Indeed, when Xt > a, X̃t = Xt and X̃t+1 = Xt+1, so E (X̃t+1−X̃t|Ft) = E (Dt+1|Ft) ≥ 0.
When Xt < a (and so is X̃t < a), either Xt+1 < a and then s(t + 1) = s(t) implying X̃t+1 = X̃t,
or Xt+1 ≥ a in which case X̃t+1 = Xt+1 ≥ a > X̃t.

Let

D̃n = X̃n − X̃n−1

Zn = E (D̃n | Fn−1) ≥ 0

Sn = Xn − Z1 − Z2 − · · · − Zn.

Then
E (Sn − Sn−1 | Fn−1) = E (Xn − Xn−1 − Zn | Fn−1) = 0

whence Sn is a martingale with differences ∆n := Sn − Sn−1 = D̃n − Zn. Note that

E (∆2
n | Fn−1) = E ((Sn − Sn−1 − Zn−1)

2 | Fn−1) = E (D̃2
n | Fn−1) − Z2

n. (1)
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Let η0 = 0 and for k = 1, 2, . . .

ζk = inf{t ≥ ηk−1 : Xt ≤ a},
ηk = inf{t ≥ ζk : Xt > a}

be the consecutive times of entry in and exit from [0, a]. Then W̃k := ηk − ζk are stochastically
bounded by i.i.d. random variables W1, W2, . . . with the distribution of W . Therefore

lim sup
m→∞

∑m
i=1 W̃i

m
≤ µ a.s.

and consequently the number

In = {t ∈ {0, 1, . . . , n − 1} : t 6∈ [ζk, ηk) for some k}
= {t ∈ {0, 1, . . . , n − 1} : Xt > a}

of those times which do not belong to some “frozen” interval [ζk, ηk) satisfies a.s.

|In| ≥
n

2µ
(2)

for n sufficiently large.

Next, since D̃n’s are bounded, we have |∆n| ≤ |D̃n| + |E (D̃n | Fn−1)| ≤ 2(B1 + a). Therefore,
L(b) ≤ 2(B1 + a) and the conditions of Lemma 1 are met. First, suppose that

Tn =

n
∑

i=1

E (∆2
i | Fi−1) → ∞,

then

lim sup
n→∞

Sn√
2Tn log log Tn

= 1 a.s.

Therefore, for infinitely many n’s we would have

Sn ≥
√

Tn log log Tn.

Using (1), this results in

Xn =
n

∑

i=1

Zi + Sn ≥
n

∑

i=1

Zi +

√

√

√

√

n
∑

i=1

(E (D̃2
i | Fi−1) − Z2

i ) log log Tn

≥
n

∑

i∈1+In

Zi +

√

∑

i∈1+In

(E (D2
i | Fi−1) − Z2

i ) log log Tn (3)

since i − 1 ∈ In implies Xi−1 > a and consequently D̃i = Di (note that each term in the
sums above is non-negative). Let 0 ≤ k ≤ |In| be the number of those Zi’s, i ∈ In such that
Zi <

√

B2/2. Then (3) together with E (D2
i | Fi−1) ≥ B2 yields

Xn ≥ (|In| − k)

√

B2

2
+

√

kB2 log log Tn

2
≥

√

nB2 log log Tn

2µ

948



for n large enough, taking into account the fact that Tn ≤ B2
1n and inequality (2). This implies

the statement of Lemma 2, since we assumed Tn → ∞.

On the other hand, on the complementary event
∑∞

i=1 E (∆2
i | Fi−1) < ∞, by e.g. Theorem in

Chapter 12 in Williams (1991) Sn converges a.s. to a finite quantity S∞, and we obviously must
also have E (D̃2

n | Fn−1) − Z2
n → 0 yielding

lim inf
i→∞, i: Xi−1>a

Zi ≥
√

B2.

Combining this with (2), we obtain

lim inf
n→∞

Xn

n
= lim inf

n→∞

Sn + Z1 + Z2 + · · · + Zn

n
≥

√
B2

2µ

which is even a stronger statement than we need to prove.

Lemma 3. Fix a > 0, c > 0, γ ∈ (0, 1), and consider a Markov process Xt, t = 0, 1, 2, . . . on
R+ with jumps Dt = Xt −Xt−1, for which the hypotheses (H1) and (H2) hold. Suppose that for
some large n > 0 the process starts at X0 ∈ (a, γn], and that on the event {a ≤ Xt ≤ n}

E (Dt | Ft−1) ≤
c

n
.

Let
τ = inf{t : Xt < a or Xt > n}.

be the time to exit [a, n]. Then

(i) τ < ∞ a.s.;

(ii) P(Xτ < a) ≥ ν = ν(γ, c, B2) > 0 uniformly in n.

Proof. First, let us show that the process Xt must exit [a, n] in a finite time. Since |Dt| ≤ B1,
by Markov inequality for non-negative random variables for any ε > 0 we have

P(B2
1 − D2

t ≥ (1 − ε2)B2
1 | Ft−1) ≤

E (B2
1 − D2

t | Ft−1)

(1 − ε2)B2
1

≤ (1 − ε2)−1

(

1 − B2

B2
1

)

(4)

Hence for a sufficiently small ε > 0 the RHS of (4) can be made smaller than 1, whence there is
a δ > 0 such that

P(D2
t ≥ (εB1)

2 | Ft−1) > 2δ.

In turn, this implies that at least one of the probabilities P(Dt ≥ εB1 | Ft−1) or P(Dt ≤
−εB1 | Ft−1) is larger than δ. Hence from any starting point the walk can exit [a, n] in at
most n/(εB1) steps with probability at least δn/(εB1), yielding that εB1τ/n is stochastically
bounded by a geometric random variable with parameter δn/(εB1), which is not only finite but
also has all finite moments.

To prove the second claim of the lemma, first we establish the following elementary inequality.
Fix a k ≥ 1 and consider the function g(x) = (1 − x)k − 1 + kx − k(k − 1)x2/4. Since g(0) = 0,
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g′(0) = 0, and g′′(x) = k(k− 1)((1−x)k−2 − 1/2) ≥ 0 for |x| ≤ 1/(2k), we have g(x) ≥ 0 on this
interval. Consequently,

(1 − x)k − 1 ≥ −kx +
k(k − 1)x2

4
for x ∈

[

− 1

2k
,

1

2k

]

. (5)

Now let Zt = 2n − Xt and Yt = Zk
t for some k ≥ 1 to be chosen later. Suppose that n > 2kB1.

Then, on the event {Xt ∈ [a, n]} we have Zt ∈ [n, 2n] yielding |Dt+1/Zt| ≤ B1/n ≤ 1/(2k) and
thus by (5) we have

E (Yt+1 − Yt | Ft) = YtE

(

(

1 − Dt+1

Zt

)k

− 1 | Ft

)

≥ kYt

[

−E (Dt+1 | Ft)

Zt
+

(k − 1)E (D2
t+1 | Ft)

4Z2
t

]

≥ kYt

[

− c

nZt
+

(k − 1)B2

4Z2
t

]

≥ kYt

[

− c

n2
+

(k − 1)B2

16n2

]

> 0,

once k > 1 + 16c/B2.

Hence Yt∧τ is a non-negative submartingale. By the optional stopping theorem,

E (Yτ ) ≥ Y0 ≥ [(2 − γ)n]k.

On the other hand,

E (Yτ ) = E (Yτ ; Xτ < a) + E (Yτ ; Xτ > n) ≤ (2n)k
P(Xτ < a) + nk(1 − P(Xτ < a)),

yielding

P(Xτ < a) ≥ (2 − γ)k − 1

2k − 1
=: ν > 0.

Lemma 4. Suppose that Xt, t = 0, 1, . . . is a submartingale satisfying (H1). Then for any
x > 0

P

(

inf
0≤t≤hx2

Xt < X0 − bx

)

≤ c(h, b, B1) =
4hB2

1

b2
.

Proof. Let Zn = E (Xn+1 − Xn | Fn) ≥ 0. Then

St = X0 − (Xt − Z1 − Z2 − · · · − Zt) = (X0 − Xt) + Z1 + · · · + Zt ≥ X0 − Xt

is a square-integrable martingale with S0 = 0, since |Sn| ≤ |X0| + 2nB1. Moreover, since

E
(

(St − St−1)
2 | Ft−1

)

= E
(

(Xt − Xt−1 − Zt)
2 | Ft−1

)

= E
(

(Xt − Xt−1)
2 | Ft−1

)

− Z2
t ≤ B2

1

we have

An :=
n

∑

t=1

E
(

(St − St−1)
2 | Ft−1

)

≤ nB2
1 .
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By Doob’s maximum 2 inequality (see Durrett, pp. 254–255),

E

(

sup
0≤m≤n

|Sm|2
)

≤ 4E S2
n = 4An ≤ 4nB2

1 .

Consequently, by Chebyshev’s inequality

P

(

inf
0≤t≤hx2

Xt < X0 − bx

)

= P

(

sup
0≤t≤hx2

X0 − Xt > bx

)

≤ P

(

sup
0≤t≤hx2

|St| > bx

)

<
4(hx2)B2

1

b2x2
=

4hB2
1

b2
.

3 Transience

Theorem 1. Consider a Markov process Xt, t = 0, 1, 2, . . . on R+ with increments Dt =
Xt − Xt−1 which satisfies (H1), (H2), and (H3) for some a > 0. Suppose that for t sufficiently
large on the event {Xt ≥ a} we have either

(i) for some ρ > 1/2

E (Dt+1 | Ft) ≥
ρXt

t
,

or

(ii) for some ρ > 0 and (α, β) ∈ Trans

E (Dt+1 | Ft) ≥
ρXα

t

tβ
.

Then Xt is transient in the sense that for any starting point X0 = x we have

P( lim
t→∞

Xt = ∞) = 1.

Proof. Consider Yt = t/X2
t . Then

Yt+1 − Yt =
t + 1

(Xt + Dt+1)2
− t

X2
t

=
t + 1

X2
t

[

1

(1 + Dt+1/Xt)2
− 1

1 + 1/t

]

≤ t + 1

X2
t

[

1

t
− 2

Dt+1

Xt
+ 3

D2
t+1

X2
t

+ O

(

Dt+1

Xt

)3
]

yielding

E (Yt+1 − Yt | Ft) ≤
1 + 1/t

X2
t

Qt (6)

where

Qt = 1 − 2ρ
t1−β

X1−α
t

+ 3B2
1

t

X2
t

+ O(X−3
t ).

Consider two cases:

951



(i) α = β = 1, then Qt = 1 − 2ρ + 3B2
1

t
X2

t
+ O(X−3

t );

(ii) (α, β) ∈ Trans.

In the first case, Qt and hence (6) are negative as long as Yt = t/X2
t ≤ r for some positive

constant r < (2ρ − 1)/3B2
1 . (Note that this would imply Xt ≥

√

t/r ≥ a for large enough t).
Fix an arbitrary small ε > 0 and suppose that for some time s we have Ys = s/X2

s ≤ εr. Let

τ = τ(s) = inf{t > s : Yt ≥ r}.

Then Yt∧τ is a non-negative supermartingale, hence it a.s. converges to some random limit
Y∞ = limt→∞ Yt. By Fatou’s lemma, E Y∞ ≤ Ys ≤ εr. On the other hand,

E Y∞ = E (Y∞; τ < ∞) + E (Y∞; τ = ∞) ≥ rP(τ < ∞)

hence P(τ < ∞) ≤ ε.

Finally, to show that for any ε > 0 with probability 1 there is an s such that s/X2
s ≤ εr we

apply Lemma 2. Consequently, P(τ(s) = ∞ for some s) = 1 yielding lim supt→∞ t/X2
t ≤ r a.s.,

and thus P(Xt → ∞) = 1.

Now consider case (ii) and observe that 0 ≤ β < 1 and 1 − α > 0. Suppose that

X2−2δ
t ≤ t ≤ X2

t for some δ ∈
(

0,
1 + α − 2β

2(1 − β)

)

.

Then

Qt = 1 − 2ρ
t1−β

X1−α
t

(

1 − 3B2
1

2ρ

tβ

X1+α
t

)

+ O(X−3
t ).

Since t ≤ X2
t , and 2β < α + 1,

tβ

X1+α
t

≤ X2β
t

X1+α
t

=
1

X1+α−2β
t

= o(1),

therefore

Q(t) ≤ 1 − 2ρ
X2(1−β)(1−δ)

X1−α
t

(1 − o(1)) + O(X−3
t ) = 1 − 2ρX2(1−β)(1−δ)−(1−α)(1 − o(1)) < 0

since 2(1− β)(1− δ)− (1−α) > 0 due to the choice of δ. Therefore, on the event {X2−2δ
t ≤ t ≤

X2
t }, Yt is a supermartingale by inequality (6).

Define the following areas:

M = {s, x ≥ 0 : x2−δ > s},
R = {s, x ≥ 0 : x2−2δ > s},
L = {s, x ≥ 0 : x2 < s}.
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By Lemma 2, there will be infinitely many times s for which s ≤ X2
s /2, so that (s, Xs) 6∈ L. Fix

such an s and let
τ = τ(s) = inf{t > s : (t, Xt) ∈ L ∪ M}.

Then Y (∗) := Yt∧τ(s) is a bounded supermartingale which a.s. converges to Y
(∗)
∞ ; we have E Y

(∗)
∞ ≤

1/2 and as before obtain that on the event {τ < ∞}, P(Yτ ∈ L) ≤ 1/2 independently of
s. Therefore, either τ(s) = ∞ for some s which implies transience immediately, or by Borel-
Cantelli lemma there will be infinitely many times s for which (s, Xs) ∈ M . From now assume
that the latter is the case.

Consider the sequence of stopping times when (t, Xt) crosses the curve t = X2−δ
t , then reaches

either area L or area R before crossing this curve again. Rigorously, suppose that for some
t = σ0 we have (t, Xt) ∈ M and it has just entered area M . Set

η0 = inf{t > σ0 : (t, Xt) ∈ L ∪ R}.

Then for k ≥ 0 let

σk+1 =

{

inf{t > ηk : (t, Yt) ∈ M}, if (ηk, Xηk
) ∈ L

inf{t > ηk : (t, Yt) /∈ M}, if (ηk, Xηk
) ∈ R.

ηk+1 = inf{t > σk+1 : (t, Yt) ∈ L ∪ R}.

Thus we have
σ0 < η0 < σ1 < η1 < σ2 < η2 . . .

Of course, it could happen that one of these stopping times is infinity and hence all the remaining
ones equal infinity as well; however this would imply that (t, Xt) /∈ L for all large t, which in
turn implies transience (recall that we have assumed that we visit the area M infinitely often).
Therefore, let us assume from now on that all ηk’s and σk’s are finite.

For t ≥ σk, k ≥ 0, consider a supermartingale Y (k) = Yt∧ηk
. Since the jumps of Xt are bounded,

Xσk
= σ

1/(2−δ)
k + O(1) and E Yηk

≤ Yσk
= X−δ

σk
(1 + o(1)) and as before, we obtain that

P ((ηk, Xηk
) ∈ L | Fσk

) ≤ X−δ
σk

(1 + o(1)) =
1 + o(1)

σ
δ/(2−δ)
k

. (7)

On the other hand, starting at (σk, Xσk
) it takes a lot of time for (t, Xt) to reach L, and also if

(ηk, Xηk
) ∈ R it takes a lot of time to exit M , since the walk has to go against the drift. More

precisely,

σk+1 − σk ≥ (ηk − σk)1(ηk,Xηk
)∈L + (σk+1 − ηk)1(ηk,Xηk

)∈R. (8)

Set x := Xσk
,

h =
1

2(2B1 + 1)2
<

1

8B2
1

,

and observe that since 2hx2 − x2−δ > hx2

{

inf
0≤i≤hx2

Xσk+i ≥ x
√

2h

}

⊆ {(σk + i, Xσk+i) 6∈ L for all 0 ≤ i ≤ hx2}. (9)
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By Lemma 4, the probability of the LHS of (9) is larger than

1 − 4hB2
1

(1 −
√

2h)2
=

1

2
.

Similarly, when (ηk, Xηk
) ∈ R set y := Xηk

> x
2−δ
2−2δ . Since

(y − x)2−δ − x2−δ > x
(2−δ)2

2−2δ (1 + o(1)) − x2−δ = x2+ δ2

2−2δ (1 + o(1)) ≫ x2

we have
{

inf
0≤i≤x2/(8B2

1)
Xηk+i ≥ y − x

}

⊆
{

(ηk + i, Xηk+i) ∈ M for all 0 ≤ i ≤ x2

8B2
1

}

. (10)

By Lemma 4 the probability of the LHS of (10) is also less than 1/2. Therefore, since a <
1/(8B2

1), from (8) we obtain

P
(

σk+1 − σk ≥ aX2
σk

)

>
1

2
.

On the other hand, provided σk is large enough,

aX2
σk

= aσ
2

2−δ

k (1 + o(1)) > 3σk

yielding that for large k for some C1 > 0

σk ≥ C14
k/2 = C12

k.

Consequently, the probability in (7) is bounded by

1 + o(1)

(C12k)
δ

2−δ

,

which is summable over k. By the Borel-Cantelli lemma only finitely many events {(ηk, Xηk
) ∈

L} occur, or, equivalently, for large times (t, Xt) /∈ L. This yields transience.

4 Recurrence

Theorem 2. Consider a Markov process Xt, t = 0, 1, 2, . . . on R+ with increments Dt =
Xt −Xt−1, satisfying (H1) and (H2) for some a > 0. Suppose that on the event {Xt ≥ a} either

(i) for some ρ < 1/2

E (Dt+1 | Ft) ≤
ρXt

t
,

or

954



(ii) for some ρ > 0 and (α, β) ∈ Rec

E (Dt+1 | Ft) ≤
ρXα

t

tβ
.

Then Xt is “recurrent” in the sense that for any starting point X0 = x we have

P(∃ t ≥ 0 such that Xt < a) = 1.

Hence also P(Xt < a infinitely often) = 1.

Proof. Consider Yt = X2
t /t ≥ 0 and assume Xt ≥ a. Then

Yt+1 − Yt =
(Xt + Dt+1)

2

t + 1
− X2

t

t
=

2tXtDt+1 − X2
t + tD2

t+1

t(t + 1)

whence

(t + 1)E (Yt+1 − Yt | Ft) = E (D2
t+1 | Ft) + [2XtE (Dt+1 | Ft) − X2

t /t]

≤ B2
1 + (2ρκt − 1)X2

t /t ≤ B2
1 − (1 − 2ρκt) Yt (11)

where

κt =
Xα−1

t

tβ−1
.

Consider the following three cases:

(i) α = β = 1, then κt = 1;

(ii-a) β > α ≥ 1, then since Xt ≤ B1t, κt ≤ Bα
1 /tβ−α → 0 as t → ∞;

(ii-b) α < 1, β > (α + 1)/2, then whenever Yt = X2
t /t ≥ r for some fixed positive constant r we

have

κt =
1

X1−α
t tβ−1

≤ r(α−1)/2

t(1−α)/2tβ−1
=

r(α−1)/2

tβ−(α+1)/2
→ 0 as t → ∞.

(Note that (ii-a) and (ii-b) together cover the set Rec.) Set r = B2
1/(1 − 2ρ) > 0 in the first

case, and set r = 2B2
1 otherwise. Then for t sufficiently large from (11) we have

E (Yt+1 − Yt | Ft) ≤ 0. (12)

Let s ≥ 0, and set τ(s) = inf{t ≥ s : Yt ≤ r}. Equation (12) yields that Yt∧τ(s) is a supermartin-
gale, therefore a.s. there is a limit Y∞ = limt→∞ Yt∧τ(s). This implies that either τ(s) < ∞ for
infinitely many s ∈ Z+, or that there is a (random) S such that τ(S) = ∞. In both cases we
conclude that there is a possibly random value Z such that X2

t ≤ Zt for infinitely many times
tk ∈ Z+, k = 1, 2, . . . .

First, suppose that α ≥ 0. Then for a fixed tk define a process X ′
t = Xt+tk . Set n = 2Xtk

and γ = 1/2, and observe that the process X ′
t satisfies the conditions of Lemma 3 with some

c = c(2β − α, ρ, Z) > 0. Indeed, when Xt ≤ n, the drift of Xt is at most of order nα/tβ ∼
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1/n2β−α ≤ 1/n since 2β − α ≥ 1 and α ≥ 0. Hence, there is a constant ν > 0, independent of
tk, such that

P(Xt, t ≥ tk, reaches [0, a] before [n,∞) | Ftk) ≥ ν.

Therefore, by the second Borel–Cantelli Lemma (Durrett, p. 240) {Xt ≤ a} for infinitely
many t’s.

Now suppose that α < 0. Consider Wt = X1−ν
t for some 0 < ν < 1. Then

E (Wt+1 − Wt | Ft) = X1−ν
t E

(

(1 + Dt+1/Xt)
1−ν − 1 | Ft

)

= (1 − ν)X1−ν
t E

(

Dt+1

Xt
− ν

2

D2
t+1

X2
t

+ O(X−3
t ) | Ft

)

≤ (1 − ν)X−1−ν
t

(

X1+α
t

tβ
− νB2

2
+ O(X−3

t )

)

(13)

Let n = nk =
√

Ztk, so that Xtk ≤ n. Since 2β > 1 + α, we can fix an ζ > 1 such that

2β > ζ(1 + α).

Consider the process Wt for t ∈ [tk, η] where

η = ηk := inf{t ≥ tk : Xt ≤ a or Xt ≥ nζ}.

Then η < ∞ a.s. from the same argument as in part (i) of Lemma 3.

Moreover, for t ∈ [tk, η]

X1+α
t

tβ
≤ (nζ)1+α

(n2/Z)β
=

Zβ

n2β−ζ(1+α)
→ 0 as k → ∞.

since tk → ∞ and hence nk → ∞. Therefore the RHS of (13) is negative and thus Wt∧η is a
supermartingale. Consequently, by the optional stopping theorem

n1−ν ≥ X1−ν
tk

= Wtk ≥ E (Wη | Ftk) ≥ (1 − p)(nζ)1−ν

where p = pk = P(Xη ≤ a | Ftk). This implies

pk ≥ 1 − 1

n
(ζ−1)(1−ν)
k

→ 1 as k → ∞.

finishing the proof of the theorem.

5 Special cases

5.1 Case α = β ≥ 0

Since we can always rescale the process Xt by a positive constant, in this section we assume that
B1 = 1. Then, in turn, it is also reasonable to restrict our attention only to the case ρ ≤ 1, since
if the jumps of Xt can be indeed close to 1 with a positive probability, we might have X ≈ t, and
the drift of order ρ(X/t)β with ρ > 1 would imply that the drift is in fact larger than 1 = B1

leading to a contradiction, so the model would not be properly defined.

956



Theorem 3 (α = β < 1). Consider a Markov process Xt, t = 0, 1, 2, . . . on R+ with increments
Dt = Xt − Xt−1, satisfying (H1), (H2), and (H3) for some a > 0. Suppose that for some β < 1
and ρ ∈ (0, 1] on the event {Xt ≥ a}

E (Dt+1 | Ft) ≥ ρ

(

Xt

t

)β

,

Then Xt is transient.

Proof. The proof is identical to the proof of Theorem 1, case (ii).

Theorem 4 (α = β > 1). Consider a Markov process Xt, t = 0, 1, 2, . . . on R+ with increments
Dt = Xt − Xt−1, satisfying (H1) and (H2) for some a > 0. Suppose that for some β > 1 and
ρ < 1 on the event {Xt ≥ a} the process Xt satisfies

E (Dt+1 | Ft) ≤ ρ

(

Xt

t

)β

.

Then Xt is recurrent.

Proof. Fix ζ ∈ (ρ, 1) and consider Yt = Xt/tζ . Then, calculating as before, we obtain

E (Yt+1 − Yt | Ft) ≤
Xt

t(t + 1)ζ

(

ρ(Xt/t)β−1 − ζ
)

.

Since lim supXt/t ≤ B1 = 1 and ρ < ζ, for large t this is negative and hence Yt is a non-negative
supermartingale converging almost sure. On the other hand, ζ < 1, thus implying

lim
t→∞

Xt

t
= lim

t→∞

Yt

t1−ζ
= 0 a.s.

and consequently since β > 1 for some sufficiently large t we have (Xt/t)β−1 < 1/4. Therefore,
for large t,

E (Dt+1 | Ft) ≤ ρ

(

Xt

t

)β−1

× Xt

t
≤ 1

4

Xt

t
,

and hence Xt is recurrent by Theorem 2.

The following statement immediately follows from Theorems 1 and 2.

Corollary 1 (α = β = 1). Suppose that Xt is a process satisfying (H1), (H2), and (H3) for
some a > 0.

(i) If for some ρ < 1/2

E (Dt+1 | Ft) ≤
ρXt

t
when Xt ≥ a

then Xt is recurrent.

(ii) If for some ρ > 1/2

E (Dt+1 | Ft) ≥
ρXt

t
when Xt ≥ a

then Xt is transient.
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5.2 Case α ≤ 0, β = 0

In this case, the drift is of order ρ/Xν
t where ν = −α ≥ 0. This is the situation resolved by

Lamperti [7] and [8].

Theorem 5 (α = −1, β = 0). Suppose that Xt is a process satisfying (H1) and (H2) for some
a > 0. Then, when Xt ≥ a,

(i) if for some ρ ≤ 1/2

E (Dt+1 | Ft) ≤ ρ
E (D2

t+1 | Ft)

Xt

then Xt is recurrent;

(ii) if for some ρ > 1/2

E (Dt+1 | Ft) ≥ ρ
E (D2

t+1 | Ft)

Xt

then Xt is transient.

Corollary 2 (α ∈ (−∞,−1)∪ (−1, 0), β = 0). Suppose that Xt is a process satisfying (H1) and
(H2) for some a > 0. Then, when Xt ≥ a,

(i) if for some ν > 1

E (Dt+1 | Ft) ≤
ρ

Xν
t

then Xt is recurrent;

(ii) if for some ν < 1

E (Dt+1 | Ft) ≥
ρ

Xν
t

then Xt is transient.

5.3 Case 2β − α = 1, −1 ≤ α ≤ 1: open problem

Two cases α = β = 1 and α = −1, β = 0 are already covered. It is also straightforward that
when α = 0, β = 1/2 by the law of iterated logarithm the process is recurrent for any ρ.

Cases −1 < α < 0, β = 1
2(α + 1) and 0 < α < 1, β = 1

2(α + 1): unfortunately, we cannot find a
general sensible criteria to separate recurrence and transience here, and leave this as an open
problem.
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6 Application to urn models

Fix a constant σ > 0. Consider a Friedman-type urn process (Wn, Bn), with the following
properties. We choose a white ball with probability Wn/(Wn + Bn) and a black ball with a
complementary probability; whenever we draw a white (black resp.) ball, we add a random
quantity A of white (black resp.) balls and σ − A black (white resp.) balls; For simplicity,
suppose 0 ≤ A ≤ σ a.s. A special case when A is not random is considered in Freedman (1964).
Following his notations, let α = E A, β = σ − α, and ρ = (α − β)/σ = (α − β)/(α + β). Also
assume that α > β > 0.

It turns out that this urn can be coupled with a random walk described above. Indeed, for
t = 0, 1, 2, . . . set Xt = |Wt − Bt|/(β − α) ∈ Z+ ⊂ R+. Without much loss of generality assume
that the process starts at time (W0 + B0)/σ ∈ Z, then t = (Wt + Bt)/σ ∈ Z.

Consequently, once Xt 6= 0,

E (Xt+1 − Xt | Ft) =
1

2

(

1 +
(β − α)Xt

σt

)

(+1) +
1

2

(

1 − (β − α)Xt

σt

)

(−1) =
ρXt

t
.

Corollary 3.3 in Friedman (1965), states that when ρ > 1/2, Wn −Bn = W0 −B0 (equivalently,
Xn = 0) occurs for finitely many n with a positive probability, and after the Corollary Friedman
says that he does not know whether this event has, in fact, probability 1. On the other hand,
our Theorem 2 answers this question positively – indeed, a.s. there will be finitely many times
when the difference between the number of white and black balls in the urn equals a particular
constant.

See Janson [6] and Pemantle [10] for more on urn models.
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alized Pólya urns. Stochastic Process. Appl. 110, no. 2, 177–245. MR2040966

959

http://www.ams.org/mathscinet-getitem?mr=1404537
http://www.ams.org/mathscinet-getitem?mr=0232455
http://www.ams.org/mathscinet-getitem?mr=1609153
http://www.ams.org/mathscinet-getitem?mr=0177432
http://www.ams.org/mathscinet-getitem?mr=0380971
http://www.ams.org/mathscinet-getitem?mr=2040966


[7] Lamperti, J. (1960). Criterian for the recurrence or transience of stochastic process. I.
J. Math. Anal. Appl. 1, 314–330. MR0126872

[8] Lamperti, J. (1963). Criteria for stochastic processes. II. Passage-time moments.
J. Math. Anal. Appl. 7, 127–145. MR0159361

[9] Menshikov, M., and Zuyev, S. (2001). Polling systems in the critical regime. Stochastic
Process. Appl. 92, 201–218. MR1817586

[10] Pemantle, R. (2007). A survey of random processes with reinforcement. Probab. Surveys, 4,
1–79. MR2282181

[11] Williams, D. (1991). Probability with Martingales. Cambridge University Press, Cambridge.
MR1155402

960

http://www.ams.org/mathscinet-getitem?mr=0126872
http://www.ams.org/mathscinet-getitem?mr=0159361
http://www.ams.org/mathscinet-getitem?mr=1817586
http://www.ams.org/mathscinet-getitem?mr=2282181
http://www.ams.org/mathscinet-getitem?mr=1155402

	Introduction
	Technical facts
	Transience
	Recurrence
	Special cases
	Case =0
	Case 0, =0
	Case 2-=1, -11: open problem

	Application to urn models
	References

