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Abstract  

Therapeutic hypothermia has been found to improve hemodynamic and metabolic parameters 

in cardiogenic shock. Tissue plasminogen activator (t-PA) is a pro-thrombolytic enzyme, 

which also possesses pro-inflammatory properties. Interleukin 6 (IL-6) and tumour necrosis 

factor alpha (TNF-) are pro-inflammatory cytokines; interleukin 10 (IL-10) and 

transforming growth factor beta 1 (TGF-1) are anti-inflammatory cytokines. The aim of this 

experiment was to investigate the mechanism behind the protective effect of therapeutic 

hypothermia in cardiogenic shock. This was done by studying the effect of hypothermia on 

basal t-PA levels, peripheral t-PA release, and on the inflammatory response. Cardiogenic 

shock was induced by inflation of an angioplasty balloon in the proximal left anterior 

descending artery for 40 min in 16 pigs, followed by 110 minutes of reperfusion. The animals 

were randomized to hypothermia (33C, n=8), or normothermia (n=8) at reperfusion. 

Hemodynamic parameters were continuously monitored. Plasma was sampled every 30 min 

for analysis of blood-gases and t-PA, and for analysis of inflammatory markers at baseline 

and at the end of the experiment. t-PA, IL-6 and TGF-1 increased during cardiogenic shock. 

Apart from favourably affecting hemodynamic and metabolic variables, hypothermia was 

found to reduce basal arterial and venous t-PA levels, and to inhibit the release of t-PA from 

the peripheral vascular bed. Hypothermia did not alter the inflammatory response. In 

conclusion, mild hypothermia improves hemodynamic and metabolic parameters in 

cardiogenic shock. This is associated with a reduction in basal t-PA levels and t-PA release 

from the peripheral vascular bed, but not with an altered inflammatory response.  
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Introduction 

Cardiogenic shock is a major complication to acute myocardial infarction. The condition 

occurs in 7-10% of patients hospitalized due to myocardial infarction and is the main cause of 

death among these patients [1]. Despite early revascularization and circulatory support, the 

mortality rate remains around 50 % [2]. Cardiogenic shock is a state of inadequate tissue 

perfusion due to cardiac dysfunction, despite adequate left ventricular filling pressure. It is 

caused by extensive myocardial damage and appears to be aggravated by a systemic 

inflammatory response [3-6]. The result is hypotension with metabolic acidosis and often a 

fatal outcome. 

 

Tissue plasminogen activator (t-PA) is a protease that initiates endogenous fibrinolysis in the 

vascular compartment via conversion of plasminogen to plasmin, and is important in 

controlling the coagulation process due to its thrombolytic properties. It is synthesized and 

stored in endothelial cells and vascular neurons [7,8], and is released in response to ischemia 

and other injurious stimuli [9-13]. Interestingly, t-PA has also been found to have pro-

inflammatory properties that could contribute to tissue injury in ischemia-reperfusion injury 

[14,15].  

 

Therapeutic hypothermia has been shown to offer tissue protection in myocardial ischemia-

reperfusion injury [16,17]. In a porcine cardiogenic shock model, mild hypothermia has been 

demonstrated to reduce acute mortality and metabolic acidosis, and improve hemodynamic 

status [18]. In an experimental setting, mild hypothermia has a positive effect on contractility, 

but deep hypothermia has been associated with deterioration in cardiac function [19,20]. The 

tissue-protective mechanism of action is multi-factorial and partly unknown [20-27]. We 

recently found that hypothermia reduces ischemia related coronary t-PA release, suggesting a 
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possible role for t-PA as a mechanism for reperfusion injury that may be affected by 

hypothermia [28]. 

 

The primary objective of this study was to investigate the effect of therapeutic hypothermia in 

cardiogenic shock, on the basal levels of t-PA and on the release of t-PA from the peripheral 

vascular bed. The secondary objective was to investigate a possible effect on inflammation, as 

measured by the pro-inflammatory cytokines interleukin 6 (IL-6) and tumour necrosis factor 

alpha (TNF-); and the anti-inflammatory cytokines interleukin 10 (IL-10) and transforming 

growth factor beta 1 (TGF-1).   

 

Methods 

 

Experimental preparation 

Healthy domestic male and female juvenile pigs weighing 40-50 kg were fasted overnight 

with free access to water. The animals were premedicated with Ketaminol (Ketamine, 

Intervet, Danderyd, Sweden), 100 mg/ml, 0.15 ml/kg, and Rompun (Xylazin, Bayer AG, 

Leverkusen, Germany), 20 mg/ml, 0.1 ml/kg intramuscularly 30 min before the procedure. 

After induction of anesthesia with thiopental 12.5 mg/kg (Pentothal, Abbott, Stockholm, 

Sweden) the animals were orally intubated with cuffed endotracheal tubes. A slow infusion of 

1 ml/ml fentanyl (Fentanyl, Pharmalink AB, Stockholm, Sweden) in buffered glucose (25 

mg/ml) was started at a rate of 2 ml/min and adjusted if needed. During balanced anaesthesia 

thiopental (Pentothal, Abbott, Stockholm, Sweden) was titrated towards animal requirements 

with small bolus doses. Mechanical ventilation was established with a Siemens-Elema 900B 

ventilator in a volume-controlled mode, adjusted in order to obtain normocapnia (PCO2: 5.0-

6.0 kPa). The animals were ventilated with a mixture of nitrous oxide (70%) and oxygen 
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(30%). The pigs were continuously monitored by electrocardiography (ECG). Heparin (200 

IU/kg) was given intravenously at the start of the catheterization. A 12 F introducer sheath 

(Boston Scientific Scimed, Maple Grove, MN, USA) was inserted into the surgically exposed 

left femoral vein. A 0.021-inch guide wire (Safe-T-J Curved™, Cook Medical Inc, 

Bloomington, IN, USA) was inserted into the proximal inferior vena cava through the 

introducer. Using the guide wire, a 10.7 F Celsius Control™ catheter (Innercool Therapies 

Inc, San Diego, CA, USA) was placed into the inferior vena cava with the tip of the catheter 

at the level of the diaphragm. Body temperature was measured with a temperature probe 

(TYCO Healthcare Norden AB, Solna, Sweden) placed in the distal part of the esophagus. 

The catheter and the temperature probe were connected to the Celsius Control and the system 

was set to maintain a normal pig body temperature of 38.0 °C. A 6 F introducer sheath 

(Boston Scientific Scimed, Maple Grove, MN, USA) was inserted into the surgically exposed 

left carotid artery upon which a 6 F FL4 Wiseguide™ (Boston Scientific Scimed, Maple 

Grove, MN, USA) was inserted into the left main coronary artery. The catheter was used to 

place a 0.014-inch PT Choice™ guide wire (Boston Scientific Scimed, Maple Grove, MN, 

USA) into the distal portion of the LAD. A 3.0-3.5 x 15 mm Maverick monorail™ 

angioplasty balloon (Boston Scientific Scimed, Maple Grove, MN, USA) was then positioned 

in the mid portion of the LAD, immediately distal to the first diagonal branch. A 9 F 

introducer sheath (Boston Scientific Scimed, Maple Grove, MN, USA) was inserted into the 

surgically exposed right jugular vein. A 7.5 F CCOmbo™ continuous cardiac output 

pulmonary artery catheter (Edwards Lifesciences, Irvine, CA, USA) was inserted into a 

pulmonary artery. Cardiac output was continuously recorded using a Vigilance™ monitor 

(Edwards Lifesciences, Irvine, CA, USA). Arterial blood pressure, pulmonary artery pressure, 

capillary wedge pressure and central venous pressure were continuously measured using 

separate transducers (ADInstruments Inc, Colorado Springs, CO, USA). Hemodynamic 
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parameters were digitally recorded using Chart v4.2 (ADInstruments Inc, Colorado Springs, 

CO, USA). All radiological procedures were performed using an Opescope Pleno™ imaging 

system (Shimadzu Corp., Kyoto, Japan).  

 

Experimental protocol 

After a stable core body temperature of 38.0° C was established, ischemia was induced by 

inflation of the angioplasty balloon in the proximal LAD for 40 min, followed by 110 minutes 

of reperfusion (Fig. 1a). An angiogram was performed after inflation of the balloon and 

before deflation of the balloon in order to verify total occlusion of the LAD and correct 

balloon positioning. After deflation of the balloon a subsequent angiogram was performed to 

verify restoration of blood flow in the previously occluded artery. Immediately before 

reperfusion the pigs were randomized to hypothermia (n=8) or to normothermia (n=8), (Fig. 

1a). Hypothermia was induced and maintained by using the Celsius Control™ endovascular 

cooling system. After reaching the target temperature of 33°C, hypothermia was maintained 

throughout the experiment. In the normothermic group, the endovascular catheter was used to 

maintain a normal pig body temperature of 38°C. Pigs that died during ischemia or did not 

meet the criterion for cardiogenic shock (systolic blood pressure < 90 mm Hg during at least 

15 minutes) before randomization were excluded from the study.  

 

Plasma samples were collected from the carotid artery and the inferior vena cava for analysis 

of t-PA at baseline and every 30 minutes until the experiment ended. Venous plasma samples 

were collected for analysis of IL-6, IL-10, TNF- and TGF-1 at baseline and at the end of 

the experiment. Blood gases were analyzed every 30 minutes throughout the experiment in an 

automated bench top analyzer (Radiometer Medical ApS, Brønshsøj, Denmark). The blood 
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gas values were corrected for core body temperature at the time the samples were taken from 

the animals. 

 

Biochemical analysis of t-PA and inflammatory markers 

Plasma concentrations of t-PA were determined by commercial ELISA kits (TriniLIZE t-PA 

Antigen, Trinity Biotech, Bray, Ireland). All samples from one experiment were assayed in 

duplicate on the same microtest plate. The intra-assay variation coefficient was 2.7%. Levels 

of secreted TGF-β1, TNF-α, IL-6 and IL-10 were measured by quantitative sandwich 

enzyme-linked antibody immunoassay technique (R&D System Europe Ltd, Abingdon, UK).  

Optical density was determined on a microplate reader; Spectramax Plus 384 (Molecular 

Devices Corporation, Sunnyvale, CA, USA). 

 

Calculation and statistics  

The net release of t-PA from the peripheral vascular bed was calculated as the difference 

between arterial and venous samples. Total t-PA release was calculated by factoring net t-PA 

release against changes in cardiac output compared to baseline (and was measured in relative 

units consisting of (ng/ml – ng/ml) x (l/min / l/min)). The effects on inflammatory markers 

were calculated in proportion to baseline values. In order to test significance for 

hemodynamic, t-PA and blood gas variables, the mean value of the tested variable was 

calculated from the time of randomization (at reperfusion) until the end of experiment. The 

sample size was chosen in order to achieve a statistical power level of 0.8 for an intermediate 

effect size (>1.5, hence clinically relevant) on the measured parameters. Mann-Whitney’s test 

was performed to test for differences in mean values. Linear regression was used to test for 

correlations. Regression analysis was performed post hoc, in an exploratory manner. 

Calculations and statistics were performed using the GraphPad Prism 4.0 software (GraphPad 
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Software Inc., La Jolla, CA, USA). Statistical significance was accepted when p < 0.05. Data 

are presented as mean ± SEM. 

 

Ethics 

The study conforms to the Guide for the Care and Use of Laboratory Animals, US National   

Institute of Health (NIH Publication No. 85-23, revised 1996) and was approved by the local 

animal research ethics committee.  

 

Results 

A total of 25 pigs were studied. Five pigs died prior to randomization due to intractable 

ventricular fibrillation or pulseless electrical activity and were excluded from the study. Four 

pigs were excluded due to lack of hypotension. Sixteen pigs were randomized into the two 

study-groups with eight animals in each group. One animal in the control group died in 

pulseless electrical activity 100 minutes from baseline. 

 

Measurements of core body temperature are shown in figure 1b. At the time of initiation of 

ischemia and at reperfusion there was no difference in temperature between the groups. 

Hypothermia was induced at the time of reperfusion by the endovascular catheter. 45 minutes 

after initiation of hypothermia treatment, the mean temperature in the hypothermia group was 

33.6 ± 0.7° C. The mean cooling rate was 5.9 ° C/h. 

 

Detailed hemodynamic and blood-gas data are shown in figure 2 and table 1. Briefly, 

hypothermia resulted in an increased mean arterial pressure. Heart rate was decreased but 

stroke volume increased leading to a slightly increased cardiac output in the hypothermic 
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group. Mixed venous saturation, arterial pH and base excess were higher in the hypothermic 

group. All these differences were statistically significant. 

 

Detailed information on t-PA is given in table 1 and figure 3. In brief, cardiogenic shock 

resulted in increased basal levels of venous and arterial t-PA, as well as in net- and total t-PA 

release (factorial correction for blood flow, see above). Hypothermia inhibited any increase in 

t-PA, both in basal levels and in net- and total release. All these differences were statistically 

significant.  

 

There was a statistically significant inverse correlation between arterial baseline and end-

experimental levels of t-PA; and mean arterial pressure, systemic vascular resistance, stroke 

volume, pH and mixed venous oxygen saturation. There was a strong trend towards statistical 

significance for an inverse correlation between arterial t-PA and cardiac output. A statistically 

significant positive correlation was observed for heart rate (Fig. 4). The results for arterial 

values were valid also for venous values, apart from cardiac output, heart rate (both clearly 

non-significant) and stroke volume (trend towards significance): mean arterial pressure (r 

sq=0.34, P<0.01), systemic vascular resistance (r sq=0.28, P<0.01), stroke volume (r sq=0.08, 

P=0.13), pH (r sq=0.36, P<0.01), mixed venous saturation (r sq=0.23, P<0.01), cardiac output 

(r sq=0.04, P=0.27) and heart rate (r sq=0.08, P=0.12). Subgroup analysis revealed that the 

correlations were dependent on observations in the normothermic group (table 2 and 3). 

 

Cardiogenic shock triggered a statistically significant increase in TGF-1 and IL-6 but not in 

TNF- or IL-10 at 150 minutes (Fig. 5). However, there were no statistically significant 

differences between the hypothermic and normothermic groups in any of the measured 

cytokines; IL-6 (1758±534 vs 3184±1953 %baseline, hypothermia vs normothermia, NS), IL-
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10 (98±41 vs 132±58 %baseline, hypothermia vs normothermia, NS), TNF- (78±30 vs 

77±24 %baseline, hypothermia vs normothermia, NS) and TGF-1 (1063±418 vs 472±251 

%baseline, hypothermia vs normothermia, NS) (Fig. 5). 

 

Discussion 

The main findings of this experiment were that cardiogenic shock resulted in increased basal 

levels of venous and arterial t-PA, as well as in net- and total t-PA release. Hypothermia 

inhibited any increase in t-PA. t-PA levels were found to correlate with both metabolic and 

hemodynamic parameters. Cardiogenic shock also induced an inflammatory response with 

increased levels of TGF-1 and IL-6, but hypothermia did not affect this response. As 

reported earlier, hypothermia was found to favourably affect hemodynamic and metabolic 

variables [18]. 

 

The ability of hypothermia to reduce infarct size during ischemia has been demonstrated in 

several experimental studies [16,29-32]. However, induction of hypothermia after the onset of 

reperfusion does not reduce infarct size [32,16].  In order to avoid possible bias from a 

reduction in infarct size, hypothermia was induced after the onset of reperfusion. 

 

Previous experimental studies have demonstrated that mild hypothermia increases myocardial 

contractility in excised heart preparations as well as in the in situ heart [33,34,20]. The 

increase in contractility is considered to be mediated by an increased myofilament sensitivity 

to existing Ca2+ [20], without a corresponding increase in myocardial oxygen consumption 

[34,33]. A decrease in heart rate, combined with a larger stroke volume and an increased 

cardiac output has also been reported previously [20]. This is in line with the observations in 

the current experiment. Hypothermia has also been demonstrated to reduce the metabolic 
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demand of the cells [22,35,36,23]. In the current experiment, hypothermia treatment resulted 

in a significantly higher mixed venous saturation, pH and base excess. An explanation to the 

observed results could be that hypothermia lowered the peripheral oxygen demand, resulting 

in less tissue hypoxia and no development of metabolic acidosis. The hemodynamic and 

metabolic effects of hypothermia in cardiogenic shock are further discussed separately [18]. 

 

Reduced oxygen demand does not fully explain the positive effects of hypothermia and 

several additive tissue protective effects have been suggested [24]. It has been shown that 

mild hypothermia can prevent ischemic cells from entering apoptosis through prevention of 

mitochondrial dysfunction and inhibition of caspase release [25-27]. Moreover, hypothermia 

has been shown to improve ion homeostasis, decrease free radical formation, stabilize cellular 

membranes and prevent intracellular acidosis [21]. It has also been shown to reduce ischemia 

related coronary t-PA release [28]. In the current experiment hypothermia was found to 

inhibit a shock-related increase in basal arterial and venous levels of t-PA and also the release 

of t-PA from the peripheral vascular bed.  

 

The release of t-PA is triggered by various injurious stimuli including ischemia, and is 

mediated by a variety of substances including thrombin, ADP, serotonin, bradykinin, and 

epinephrine [9,12,13,10,11,37-41]. It is possible that the release of t-PA was triggered by the 

shock related metabolic compromise. This hypothesis is supported by the observed inverse 

correlations between pH, base excess, mixed venous saturation and t-PA. However, even 

though the hypothermic animals were less metabolically compromised, they were still in 

shock and not metabolically unaffected. As hypothermia completely abolished t-PA release 

above basal levels, a more selective effect on the endothelial t-PA release is indicated. This 
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hypothesis is further supported by the fact that significant correlations between t-PA and 

metabolic parameters were confined to the normothermic group.  

 

Although t-PA is important in keeping vessel walls free from thrombi under physiologic 

circumstances, it has been found to have proinflammatory properties that could contribute to 

reperfusion injury [15,14,42,43]. In this experiment, cardiogenic shock was found to increase 

the anti-inflammatory TGF-1 and pro-inflammatory IL-6, to a similar degree in both groups. 

The effect of shock on the pro-inflammatory TNF- and anti-inflammatory IL-10 was neutral 

in both groups. Thus, a possible positive effect of t-PA on hemodynamic parameters does not 

involve these cytokines. However, t-PA has been reported to activate inducible nitric oxide 

synthase (iNOS) [44], which acts to increase the levels of nitric oxide (NO). In turn, NO has 

been associated with a reduction in myocardial contractility by uncoupling of calcium 

metabolism [45,46], through effects on glucose metabolism [46], and through a reduction in 

-adrenergic responsiveness [47]. Furthermore, NO induce vasodilatation, thereby decreasing 

coronary perfusion pressure and systemic perfusion [3]. Mild hypothermia has been 

demonstrated to reduce iNOS [48,49]. In the current experiment, there was an inverse 

correlation between t-PA and systemic vascular resistance, mean arterial pressure and stroke 

volume. Possibly, the reduction in t-PA is a contributing link between hypothermia and 

improved hemodynamic status, via reduced iNOS levels. As judged by the analysis of 

correlations between t-PA and hemodynamic parameters, the effect attributable to such a 

mechanism appear to be mild to moderate in magnitude. Further research is warranted to test 

this hypothesis. 
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Limitations 

In an experimental model with hemodynamic compromise and temperature related influence 

on the circulation, changes in hepatic blood flow may arise. By sampling venous blood in the 

inferior vena cava, there may be influence of changes in hepatic clearance on venous t-PA 

levels.  

 

Conclusion 

Mild hypothermia improves hemodynamic and metabolic parameters in cardiogenic shock. 

This is associated with a reduction in basal t-PA levels and t-PA release from the peripheral 

vascular bed, but not with an altered inflammatory response as measured by IL-6, IL-10, 

TNF- and TGF-1. 
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