
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

GRID-INDEPENDENT CONSTRUCTION OF MULTISTEP METHODS

Arévalo, Carmen; Söderlind, Gustaf

Published in:
Journal of Computational Mathematics

DOI:
10.4208/jcm.1611-m2015-0404

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Arévalo, C., & Söderlind, G. (2017). GRID-INDEPENDENT CONSTRUCTION OF MULTISTEP METHODS.
Journal of Computational Mathematics, 35, 672-692. https://doi.org/10.4208/jcm.1611-m2015-0404

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.4208/jcm.1611-m2015-0404
https://portal.research.lu.se/en/publications/8f52415d-7359-4ca5-9d68-c78648590f08
https://doi.org/10.4208/jcm.1611-m2015-0404

Journal of Computational Mathematics

Vol.35, No.5, 2017, 672–692.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1611-m2015-0404

GRID-INDEPENDENT CONSTRUCTION OF MULTISTEP
METHODS*

Carmen Arévalo and Gustaf Söderlind

Numerical Analysis, Centre for Mathematical Sciences, Box 118, SE-221 00 Lund, Sweden.

Email: Carmen.Arevalo@na.lu.se, Gustaf.Soderlind@na.lu.se

Abstract

A new polynomial formulation of variable step size linear multistep methods is pre-

sented, where each k-step method is characterized by a fixed set of k− 1 or k parameters.

This construction includes all methods of maximal order (p = k for stiff, and p = k+1 for

nonstiff problems). Supporting time step adaptivity by construction, the new formulation

is not based on extending classical fixed step size methods; instead classical methods are

obtained as fixed step size restrictions within a unified framework. The methods are imple-

mented in Matlab, with local error estimation and a wide range of step size controllers.

This provides a platform for investigating and comparing different multistep method in

realistic operational conditions. Computational experiments show that the new multi-

step method construction and implementation compares favorably to existing software,

although variable order has not yet been included.

Mathematics subject classification: 65L06, 65L05, 65L80

Key words: Linear multistep methods, Variable step size, Adaptive step size, Step size

control, Explicit methods, Implicit methods, Nonstiff methods, Stiff methods, Initial value

problems, Ordinary differential equations, Differential-algebraic equations, Implementa-

tion.

1. Introduction

Linear multistep methods for solving ordinary differential equations

ẏ = f(t, y), y(t0) = 0, t ∈ [t0, tf], (1.1)

consist of a discretization formula and a pointwise representation of the differential equation,

k
∑

i=0

αk−ixn−i = h

k
∑

i=0

βk−ix
′

n−i (1.2)

x′n−i = f(tn−i, xn−i). (1.3)

Here xn−i approximates y(tn−i), k is the step number, and the step size is assumed to be

constant, h = tn − tn−1. There is a well established theory for such methods, covering all

essential aspects such as order of convergence and stability, [9, 10]. Other classes of problems,

such as differential-algebraic equations of the form F (t, y, ẏ) = 0, can, at least in principle, be

treated in a similar manner, by replacing (1.3) by F (tn−i, xn−i, x
′

n−i) = 0. Here, a dot denotes

the time derivative of a function as in (1.1), while a prime denotes a sample of the vector

* Received September 24, 2015 / Revised version received July 27, 2016 / Accepted November 21, 2016 /

Published online July 1, 2017 /

Grid-Independent Construction of Multistep Methods 673

field that defines the ODE. This distinction is motivated by the fact that in the computational

process, the vector field samples are not located on a single trajectory, whence a dot notation

would be misleading in (1.2 – 1.3).

In practice, a multistep method must be adaptive and use variable step size. There are sev-

eral well-known and efficient implementations. Most of these are based on predictor-corrector

schemes (Adams-Bashforth, Adams–Moulton) for nonstiff problems, or on backward differenti-

ation formulas (BDF) for stiff problems, e.g. the codes VODE [5] and LSODE [12]. All of these

use variable step size as well as variable order.

An established methodology for the construction of variable step size multistep methods,

other than extending classical constant step-size formulas case by case, is still missing, [14].

One of the more general approaches is the one by Nordsieck [11], who developed a theory

showing the equivalence of k-step methods of higher order to polynomials defined by a vector

of dimension k. Although this approach also identifies a set of parameters with each multistep

method, these parameters vary with the step sizes. Among other notable extensions we find

fixed leading coefficient implementations and divided difference implementations. Some have

better stability and computational properties than others, but the theoretical understanding of

variable step size multistep methods remains incomplete.

This is a well recognized problem, and different approaches are taken depending on particular

preferences. In recent years, there has been an increasing interest in solving this problem in

various, demanding special contexts. For example, in [21] the special needs of PDE’s are taken

into account, when explicit and implicit methods are mixed in a splitting scheme. The approach

is to identify an additive decomposition, distinguishing a nonstiff and a stiff part, to be treated

with dedicated methods, while incorporating time step adaptivity. The multistep methods are

extended to variable step size on a case-by-case basis, deriving step size ratio dependent method

coefficients, although the order remains fairly low.

In [8], the special requirements of strong stability preserving schemes are considered. In

nonlinear conservation laws in PDE’s it is essential that the scheme does not add numerical

energy errors; for this reason it is important to maintain interpolation conditions when the step

size varies, and methods are again extended to variable step size on a case-by-case basis. This

is a tedious approach, and the order is severely restricted. Finally in [6], a general attempt is

made to extend multistep methods to variable step size using exponential methods, a technique

that, just like splitting methods, has received new attention in recent years.

These examples are by no means exhaustive, but they point to the diversity of difficulties that

one encounters when multistep methods are the preferred integration methods and adaptivity

is crucial.

The objective of this paper is to develop a new, general methodology for variable step

size multistep methods. Our approach addresses several well known problems and opens a

new avenue of research in adaptive multistep methods. The main idea is to construct multistep

methods that approximate the solution to the ODE by a polynomial, and where specific methods

are characterized in terms of a fixed set of interpolation and collocation conditions. This will

cover all k-step methods of orders p = k and p = k+1; these methods are of maximal order for

stiff and nonstiff problems, respectively.

Our approach is not based on extending classical methods; on the contrary, classical meth-

ods are obtained as fixed step size restrictions within a general interpolation representation,

which, for each method, can be characterized in terms of a set of fixed parameters, even in

the presence of varying step size. Further, the approach provides a continuous extension of

674 C. ARÉVALO AND G. SÖDERLIND

the solution, making the methods better suited to practical needs, as intermediate output is

directly generated within the polynomial representation of each method.

With this approach, we establish both a methodological and a software platform for inves-

tigating every high order multistep method in a general purpose context, both with respect to

method properties and computational performance. The approach does not include exponen-

tial methods and splitting. However, it does include some of the special splitting methods used

in differential-algebraic equations, and utilizes advanced step size control, [16, 19] to enhance

computational stability, [18].

Disregarding weakly stable methods, higher order k-step methods fall in three different

categories:

• Type Ek Explicit methods of order p = k e.g. Adams–Bashforth

• Type Ik Implicit methods of order p = k e.g. BDF methods

• Type I+k Implicit methods of order p = k + 1 e.g. Adams–Moulton

An implicit k-step formula has 2k+1 coefficients, and an explicit formula (βk = 0 in (1.2)) has

2k coefficients. Methods of order p will have a polynomial of degree p. As there are p+1 order

conditions to be satisfied, there will be k−1 degrees of freedom for methods of Types Ek and I+k ,

while methods of Type Ik have k degrees of freedom. These will be determined by parameter sets

that uniquely specify the method. The new representation has been implemented in Matlab

codes, one for each category stated above. Several ODE problems are then solved as a proof

of concept, and to demonstrate the feasibility of the approach. Results are also compared to

those obtained from standard solvers.

Apart from the classical methods mentioned above, there is a wide range of alternatives.

In [3,4] we developed the β-blocking approach to solving differential-algebraic equations (DAEs)

using various combinations of multistep methods. New, dedicated families of non-stiff implicit

and explicit methods were derived in this context, in particular the implicit and explicit dif-

ference correction methods (IDC and EDC, respectively), [4]. All are of maximal order and

include, as special cases, the Adams and BDF methods as well as the difference corrected BDFs

(dcBDF, [15]). While the classical methods have been implemented for variable step size, to this

date no general technique for implementing the IDC and EDC families has been developed; the

methods were originally constructed using the classical approach with fixed step size difference

operator series expansions, [4].

2. Basic Definitions and Polynomial Representation

For simplicity of notation, we only describe the formalism for a scalar equation (1.1). The ex-

tension to vector systems is technically straightforward, but as the required additional notation

tends to obscure the formalism without adding crucial insight, we prefer a simpler exposition.

The code, however, implements the formalism for systems of first order ODE’s.

Let Πp denote the space of polynomials of degree p. In the sequel, we define a multistep

formula as a linear combination of state values, xn together with their corresponding vector field

samples, x′n = f(tn, xn). We assume that the sequence {tn}∞n=0 is strictly increasing, with step

sizes hn−1 = tn − tn−1 > 0. Further, we assume that {xn}∞n=0 represents some approximation

to a sequence {y(tn)}∞n=0, sampled from the solution to the initial value problem ẏ = f(t, y)

with y(t0) = x0.

We construct k-step methods as polynomial methods. These approximate the solution y(t) on

each subinterval [tn−1, tn] by a polynomial Pn, generating both the discrete solution xn = Pn(tn)

Grid-Independent Construction of Multistep Methods 675

at tn, as well as a continuous extension; Pn(t) can be evaluated at any point in [tn−1, tn], and

Pn−1(t) can be evaluated at tn in order to produce an error estimate.

This allows us to implement any explicit or implicit higher order multistep formula with

variable step-size. Ideally, Pn would interpolate {xn−j}kj=0 while Ṗn interpolates {x′n−j}kj=0.

As this is known to lead to unstable methods we restrict the order, and assume that Pn ∈ Πp,

with k ≤ p ≤ k + 1. Hence we cannot interpolate at all points, leaving a “slack” at a few of

them.

Definition 2.1. Let the sequences {xn−j}kj=0 and {x′n−j}kj=0 be given for a fixed n. Further,

let Pn ∈ Πp with k ≤ p ≤ k + 1. The state slack sn−j and derivative slack s′n−j at tn−j are

defined by

sn−j = Pn(tn−j)− xn−j , s′n−j = Ṗn(tn−j)− x′n−j ; j = 0 : k. (2.1)

We are now ready to define parametric multistep polynomial methods. Noting that there are

three structurally different types of high order methods, the methods will be characterized

by a structural condition that uniquely identifies the method type, and additional parametric

conditions. These are all expressed in terms of the state and derivative slacks.

Because there are one-step methods of all three different types, the structural condition

must necessarily be composed of the state slack sn−1 and the two derivative slacks s′n−1 and

s′n,usually in terms of interpolation and collocation conditions. The parametric condition,

on the other hand, is concerned with how a prototypical one-step method extends to various

families of methods.

For example, among one-step methods, there is a unique Type Ek method – the explicit Euler

method. Within the polynomial context, it is characterized by a first degree polynomial Pn,

satisfying the interpolation condition sn−1 = 0, and the explicit collocation condition s′n−1 = 0.

Similarly, there is a unique one-step Type I+k method – the trapezoidal rule. It is charac-

terized by a second degree polynomial Pn, satisfying sn−1 = 0 and s′n−1 = 0, together with

the implicit collocation condition s′n = 0, also written Ṗn(tn) = f(tn, Pn(tn)). These three

conditions uniquely determine the polynomial’s three coefficients.

Implicit one-step methods of order 1 (Type Ik) are not unique, however; there is a one-

parameter family of such methods known as theta methods. Here, a first degree polynomial is

characterized by the implicit collocation condition Ṗn(tn) = f(tn, Pn(tn)), together with a slack

balance condition, expressed as the linear combination

sn−1 cos θ0 + hs′n−1 sin θ0 = 0 for θ0 ∈ (−π, π].

This is obviously not the usual parametrization of the theta methods, but it conforms to the

parametrization we use for k-step methods below. The implicit Euler method, which is the

prototypical Type Ik method, is obtained when the slack balance condition degenerates to the

interpolation condition sn−1 = 0, i.e., for θ0 = 0.

Interestingly, k-step methods of all three types are obtained by augmenting the one-step

conditions above by the same set of k − 1 slack balance conditions, of the form

sn−j−1 cos θj + hn−j−1s
′

n−j−1 sin θj = 0; θj ∈ (−π/2, π/2], for j = 1 : k − 1. (2.2)

Thus the parameter set Θ = {θj}k−1
j=0 characterizes k-step methods, where the parameter θ0 is

only used in Type Ik methods and is otherwise void. We summarize in a definition.

676 C. ARÉVALO AND G. SÖDERLIND

Definition 2.2. A k-step parametric multistep method of order p (with k ≤ p ≤ k + 1) is

defined by a polynomial Pn, satisfying k − 1 slack balance conditions (2.2) together with the

following structural conditions:

Type Ek (Explicit methods of order p = k) Pn ∈ Πk satisfies an interpolation condition and

an explicit collocation condition,

sn−1 = 0, (2.3)

s′n−1 = 0. (2.4)

Type I+k (Implicit methods of order p = k + 1) Pn ∈ Πk+1 satisfies an interpolation condition,

and explicit as well as implicit collocation conditions,

sn−1 = 0, (2.5)

s′n−1 = 0, (2.6)

Ṗn(tn) = f(tn, Pn(tn)). (2.7)

Type Ik (Implicit methods of order p = k) Pn ∈ Πk satisfies a slack balance condition, as well

as the implicit collocation condition,

sn−1 cos θ0 + hn−1s
′

n−1 sin θ0 = 0; θ0 ∈ (−π/2, π/2], (2.8)

Ṗn(tn) = f(tn, Pn(tn)). (2.9)

A method is implicit if and only if the implicit collocation condition (2.7) or (2.9) is included.

The approximation at the next time point, tn, is in all cases defined by xn = Pn(tn). In the

explicit case, xn can be evaluated directly once the polynomial Pn has been constructed from

“past data”. Otherwise, the construction of Pn involves solving a nonlinear equation dependent

on the vector field f , as indicated by (2.7) and (2.9).

In [2] it was shown that all implicit multistep methods of maximal convergence order are

characterized by a multistep polynomial Pn ∈ Πk+1, whose k+2 coefficients are determined by

collocation and interpolation conditions. This approach led to a less advantageous parameter

representation and did not allow for the inclusion of other types of maximal order methods.

Here we will show that all linear multistep methods of practical interest can be represented by

a multistep polynomial method in the manner devised above. In other words, the construction

of parametric multistep methods is completely defined in terms of slack balance conditions

specified by a parameter set {θj}kj=1 that spans the entire space of linear multistep methods.

3. Parametric Formulation

We will show that all three types of methods mentioned above satisfy the required consis-

tency order conditions. We will then discuss basic properties of some particular I+k methods

in the light of this formulation. Because of the slack balance conditions that each polynomial

must satisfy, its coefficients depend on the last step size ratios, defined as

ωn−1 =
hn
hn−1

.

Grid-Independent Construction of Multistep Methods 677

Theorem 3.1. Every k-step method with Pn ∈ Πk+1 defined by the conditions

I+k :







s′n = 0,

sn−1 = 0, s′n−1 = 0,

sn−j cos θj−1 + hn−js
′

n−j sin θj−1 = 0; j = 2 : k

is implicit and has order of consistency p = k + 1.

Proof. Implicitness follows from the implicit collocation condition. Let

Pn(t) = ck+1(t− tn−1)
k+1 + · · ·+ c1(t− tn−1) + c0.

The explicit structural conditions imply that c1 = x′n−1, c0 = xn−1, and the coefficients

ck+1, ck, . . . , c2 are the solution of the system Mc = g where M is a k × k matrix {mij}ki,j=0

defined as follows, in terms of the last k − 1 step-size ratios:

m1j = (k − j + 2)hk−j+2
n−1 (j = 1 : k)

mij = (−1)k−j hk−j+2
n−1

(

i−2
∑

l=0

1

Πn−2
d=n−l−2ωd

)k−j+1

·
(

cos θi−1

(

i−2
∑

l=0

1

Πn−2
d=n−l−2ωd

)

− sin θi−1

k − j + 2

Πn−2
d=n−iωd

)

(3.1)

(i 6= 1, j = 1 : k)

and g is the k × 1 vector with components

g1 = −hn−1x
′

n−1

gi = cos θi−1

(

−xn−1 + xn−i −
(

i−2
∑

l=0

1

Πn−2
d=n−l−2ωd

)

hn−1x
′

n−1

)

+sin θi−1

(

1

Πn−2
d=n−iωd

hn−1(−x′n−1 + x′n−i)

)

(i = 2 : k).

Suppose the solution of the differential equation is a polynomial, Q ∈ Πk+1, such that

xn−i = Q(tn−i), (i = 1 : k) and x′n−i = Q̇(tn−1), (i = 0 : k). This corresponds to the standard

approach of inserting “exact data.” We need to show that the formulation yields Pn(tn) =

Q(tn). Define

Λ(t) = Pn(t)−Q(t).

Then Λ ∈ Πk+1 satisfies the following conditions:

Λ̇(tn) = 0 (3.2)

Λ(tn−1) = 0 (3.3)

Λ̇(tn−1) = 0 (3.4)

cos θj−1Λ(tn−j) + sin θj−1hn−jΛ̇(tn−j) = 0; j = 2 : k. (3.5)

The system matrix is identical to M , the matrix for the system that defined the multistep

polynomial Pn. Then the system (3.2)–(3.5) also has a unique solution, viz., Λ ≡ 0. Hence

Pn(tn) = Q(tn). �

We state the following theorems without proof as all proofs follow a pattern similar to that

of Theorem 3.1. In the following two cases, the polynomial Q(t) is of degree k.

678 C. ARÉVALO AND G. SÖDERLIND

Theorem 3.2. Every k-step method with polynomials Pn ∈ Πk defined by

Ik:

{

s′n = 0

sn−j cos θj−1 + hn−js
′

n−j sin θj−1 = 0; j = 1 : k.

is implicit and has order of consistency p = k.

Theorem 3.3. Every k-step method with polynomials Pn ∈ Πk defined by

Ek:

{

sn−1 = 0, s′n−1 = 0,

sn−j cos θj−1 + hn−js
′

n−j sin θj−1 = 0; j = 2 : k

is explicit and has order of consistency p = k.

The parametric multistep formulation thus allows the construction of methods of a given

order of consistency, regardless of stability. Only those methods satisfying appropriate stability

(hence convergence) conditions are of significance. To illustrate the new parametric formulation

of multistep methods, we will take implicit I+k methods of step numbers k = 2 and k = 3, with

corresponding orders of consistency p = 3 and p = 4. We will focus on the analysis of basic

method properties, such as zero-stability, order of convergence, error constant and stability

region.

3.1. Properties of two-step methods of order 3

Disregarding weakly stable methods, such as the two-step Milne method, the maximum

convergence order attained by two-step implicit methods is p = 3. The multistep polynomial

must be of degree 3 and have four coefficients. Such a method employs two step sizes, hn−1

and hn−2, which potentially pose a stability restriction on the step size ratio, ωn−2.

An I+2 method has multistep polynomials Pn ∈ Π3 defined by

s′n = 0, (3.6a)

sn−1 = 0, s′n−1 = 0, (3.6b)

sn−2 cos θ + hn−2 s
′

n−2 sin θ = 0. (3.6c)

Let fj represent f(tj , xj). From (3.6b), we can write

Pn(t) = a(t− tn−1)
3 + b(t− tn−1)

2 + fn−1(t− tn−1) + xn−1 (3.7)

and from the remaining conditions we get two nonlinear equations,

3h3n−1a+ 2h2n−1b = hn−1(fn − fn−1), (3.8a)

(−c+ 3s)h3n−2a+ (c− 2s)h2n−2b

= c(−xn−1 + xn−2) + hn−2[(c− s)fn−1 + sfn−2], (3.8b)

where c = cos θ, s = sin θ and xn = ah3n−1 + bh2n−1 + fn−1hn−1 + xn−1. The Jacobian of this

system is regular for

ωn−2 6= − 2(3 sin θ − cos θ)

(3− hn−1fx)(cos θ − 2 sin θ)
, (3.9)

Grid-Independent Construction of Multistep Methods 679

where fx = ∂f/∂x is evaluated at (tn, xn). Recall that our derivations above are carried

out for scalar systems. The operator (3 − hn−1fx)
−1 corresponds to the Newton iteration

matrix that would be used in tandem with the implicit method. For small enough values

of hn−1, that operator is positive. The θ-dependent factor, however, is non-positive when

θ ∈ [−π
2
, arctan 1

3
) ∪ (arctan 1

2
, π
2
], and as the step size ratios ωn are positive, the Jacobian

remains regular in this interval. Therefore, with the exception of the 4th order Milne method

with θ = arctan(1/3), all 2-step methods defined by (3.6) with

θ ∈ (−π
2
, arctan

1

3
) ∪ [arctan

1

2
,
π

2
]

are implicit and of consistency order p = 3, while those with

θ ∈ (arctan
1

3
, arctan

5

12
) ∪ (arctan

5

12
, arctan

1

2
)

have consistency order p = 3 as long as the step size ratio satisfies

ωn−2 6= − 2(3 sin θ − cos θ)

(3− hn−1fx)(cos θ − 2 sin θ)
. (3.10)

The two two-step IDC methods, Adams-Moulton and dcBDF, are obtained for θ = π/2

and θ = arctan 2/3, respectively. Our variable step size Adams-Moulton formulation coincides

with the extension given in [9]. For θ = arctan1/3 we obtain Milne’s method, a weakly stable

4th order method. However, as that method has order p = k + 2, and we only employ a

polynomial Pn ∈ Π3, the 4th order has a “superconvergence” character only achieved locally,

in the immediate vicinity of the new point xn, while the 3rd degree polynomial does not offer

a continuous extension of order p = 4. Finally, with θ = 0 we obtain a non-stiff method with a

stability region about 2/3 the size of that of the corresponding Adams-Moulton method.

For constant step size (ωn = 1), it is straightforward to determine zero stability. The bridge

from consistency order to convergence order is a complicated issue, however, when variable step

sizes are used. Applying the variable step size k-step method to the problem ẏ = 0, stability

is defined in [9, p. 403], in terms of the resulting time-stepping matrix An. This leads to a

recursion

Xn+1 = AnXn, (3.11)

with Xn = (xn+k−1, . . . , xn)
T . Some operator norm of An+lAn+l−1 · · ·An must be uniformly

bounded for all l ≥ 0 and all n. As this matrix contains the step size dependent coefficients

αk−i,n of the form
k
∑

i=0

αk−i,nxn−i = 0, (3.12)

and these coefficients depend continuously on the step size ratios ωn−2, . . . , ωn−k, a method

will also be stable for variable steps in some step size ratio neighborhood

ων ∈ (1 − ψ, 1 + Ψ)

with 0 < ψ < 1 and Ψ > 0, provided the method is zero-stable for ωn−2 = · · · = ωn−k = 1.

For zero-stable methods, errors in the starting values do not grow without bound. In

constant step size theory, this requires that the zeros of ρ(ζ) satisfy the root condition. Several

680 C. ARÉVALO AND G. SÖDERLIND

attempts have been made to determine similar conditions for fixed step size ratios hn−1/hn−2 =

ω > 1. This corresponds to ramping up the step size at a constant exponential rate. While

such a situation does not occur in practical computations, except at a finite number of steps, it

does justify the attempts of finding the maximum stable value of ω. This procedure can also be

used for two-step implicit order 3 methods, where the stability condition requires the existence

of a number 0 < q < 1 such that
∣

∣

∣

∣

−ω3 cos θ

(3 cos θ − 6 sin θ)ω + 2 cos θ − 6 sin θ

∣

∣

∣

∣

≤ q. (3.13)

As the parameter for the two-step third order Adams-Moulton method is θ = π/2, this condition

holds for any ω. Hence there is no need to restrict the step size ratios for this method. For all

other methods, condition (3.13) reduces to

ω3

|(3− 6 tan θ)ω + 2− 6 tan θ| ≤ q. (3.14)

The two-step third order dcBDF method is defined by tan θ = 2/3. Therefore, the condition

becomes
ω3

ω + 2
≤ q < 1.

This method will be stable for ω ∈ (0, 1.5). On the other hand, Milne’s method, with tan θ =

1/3, must satisfy the stability condition ω3 − qω ≤ 0, but there is no q < 1 that satisfies the

condition when ω = 1. Finally, for the I+2 method with parameter θ = π/10, the stability

condition is ω3 − 1.0505qω + 0.0505q ≤ 0. This implies that the method is guaranteed to be

stable if θ is kept in (0, 1.048]. In Figure 3.1 we generalize this result, by plotting the maximum

ω for which two-step 3rd order methods are stable, for every feasible value of the parameter θ.

pi/4 pi/2 3pi/4 pi
0

1

2

3

4

5

6

7

8

Maximum step−size ratio for which the order 3 method θ is 0−stable

θ

r m
a
x

Fig. 3.1. Zero stability. Only Adams-Moulton (θ = π/2) is 0-stable for any step-size ratio. Methods

with θ ∈ [arctan 1/3, arctan 1/2] are unstable as they are not 0-stable for ω = 1.

Thus step size ratios must be restricted, and the step size should vary smoothly, see also [1].

This can be accomplished by well designed step size controllers (see below). These do not keep

the step size piecewise constant, only allowing the occasional substantial change (usually by a

factor of 2). Instead, the step size changes continually, even when ωn deviates from 1 by very

small amounts. This increases the the stability of the method, without harming its efficiency;

in fact, we often use fewer steps than standard codes of the same order.

Grid-Independent Construction of Multistep Methods 681

If the step size ratio is restricted to the interval [0.8, 1.2], we can cover parametric methods

with θ ∈ (−π
2
, arctan(0.2934)]∪ [arctan(0.5553), π

2
]. This is a perfectly useful range for practical

computations.

The principal error term also varies with the step size ratio. Figure 3.2 shows the dependency

of error coefficients on ω for three different methods. As shown in Figures 3.2 and 3.3, the

stability region of the same methods are larger for larger error coefficients.

0 0.5 1 1.5

Step-size ratio

0.02

0.04

0.06

0.08

0.1

0.12

|E
rr

or
 c

on
st

an
t|

Magnitude of the error coefficients for some 2-step methods of order 3

dcBDF2
AM2
θ=0

Fig. 3.2. Error coefficients. Error coefficients are shown for dcBDF2 (θ = arctan 2/3), Adams-Moulton2

(θ = π/2), and the method with θ = 0. dcBDF2 is 0-stable for ω ≤ 1.52.

−20 −10 0
−10

−5

0

5

10

−20 −10 0
−10

−5

0

5

10

Stability regions for three different 2−step methods of order 3

−20 −10 0
−10

−5

0

5

10

r
n
 = 0.6 r

n
 = 1 r

n
 = 1.5

Fig. 3.3. Stability regions. Stability regions for dcBDF (solid), Adams-Moulton (dashed) and the

method with θ = 0 (dotted). Larger stability regions correspond to larger error coefficients. The

dcBDF2 method is zero-stable for ω ≤ 1.52.

3.2. Three-step methods of order 4

As the complexity of the multistep method increases, so does the number of parameters

needed to define its collocation polynomial. The structure of the interpolation conditions will

remain the same: k-step implicit methods of order p = k+1 will require k− 1 slack conditions.

For instance, the fourth degree collocation polynomial for I+3 is defined by the following

conditions:

s′n = 0,

sn−1 = 0, s′n−1 = 0,

sn−2 cos θ1 + hn−2 s
′

n−2 sin θ1 = 0,

sn−3 cos θ2 + hn−3 s
′

n−3 sin θ2 = 0.

682 C. ARÉVALO AND G. SÖDERLIND

The coefficients of the methods will depend on the last two step-size ratios, ωn−3 = hn−2/hn−3

and ωn−2 = hn−1/hn−2.

The domain of the parameters will be a subset of (−π/2, π/2]× (−π/2, π/2]. For example,

θ1 = arctan(7/6) and θ2 = π/2 gives IDC23, a method that can be used in conjunction with

β-blocking for solving index 2 DAEs. From the method’s representation one can work out a

step size ratio condition for constant ramp-up. The stability condition for this method depends

on the boundedness of products of matrices of the form

A∗

n =









− ω3
n−2(ωn−2ωn−3 + 2ωn−3 + 2)

2ωn−2ωn−3 − 8ωn−2 + ωn−3 − 10
0

1 0









.

A sufficient condition for strong stability is that the step ratios are restricted by

ω3
n−2(ωn−2ωn−3 + 2ωn−3 + 2)

|2ωn−2ωn−3 − 8ωn−2 + ωn−3 − 10| < 1.

If, e.g., during the initial phase of the integration, the step size needs to be ramped up quickly,

one can find the maximum permissible step size increase by investigating for what value of

Table 3.1: Parameters of selected high order methods.

Method Order Ik method parameters tan(θj), j = 0 : k − 1

BDFk k ≤ 6 {0}0:k−1

Kregel [7] 3 154/543 -11/78 0

Rockswold [13] 3 1/3 2/3 1

Method Order I+k method parameters tan(θj), j = 1 : k − 1

AMk k + 1 {∞}1:k−1

dcBDFk k + 1 {(j + 1)/(k + 1)}1:k−1

Milne2 4 1/3

Milne4 5 4/15 ∞ ∞
IDC23 4 7/6 ∞
IDC24 5 26/15 ∞ ∞
IDC34 5 4/5 33/20 ∞
IDC45 6 28/45 11/10 32/15 ∞
IDC56 7 43/84 6/7 29/21 55/21 ∞
Method Order Ek method parameters tan(θj), j = 1 : k − 1

ABk k {∞}1:k−1

EDFk k {j + 1}1:k−1

Nyström3 3 -2/3 ∞
Nyström4 4 -5/3 ∞ ∞
Nyström5 5 -133/45 ∞ ∞ ∞
EDC22 3 14/3 ∞
EDC23 4 49/6 ∞ ∞
EDC33 4 7/2 39/4 ∞
EDC24 5 1121/90 ∞ ∞ ∞
EDC34 5 53/10 219/10 ∞ ∞
EDC45 6 193/45 121/10 692/15 ∞ ∞

Grid-Independent Construction of Multistep Methods 683

ω = ωn−2ωn−3 this condition would hold. In the implementation of the methods, such stability

conditions may be monitored to warn against potential stability problems when the step size

varies.

Parameters of the most commonly used multistep methods are shown in Table 3.1, together

with the parameters of some special purpose methods that may be used in regular and singular

β-blocking, [4]. Parameters of methods originally defined by fixed step size formulas were

obtained using Maple. The coefficients of the polynomial method were obtained symbolically

and then equaled to the particular method coefficients; as there is a one-to-one correspondence,

the values of the parameters θj can be constructed. In Table 3.1, they are given implicitly

in terms of tan θj ; actual θj values are trivially computed from the given rational coefficients,

where we use arctan∞ = π/2. In the table, Milne2 refers to the classical weakly stable two-step

Milne method of order p = 4, while Milne4 refers to the four-step Milne–Simpson method of

order p = 5.

4. Implementation Issues

Three similar Matlab codes were implemented, for methods of type Ek, Ik, and I+k . A few

important features of these programs will be discussed below.

4.1. Basic algorithmic details

For the solution of the initial value problem (1.1), the user must provide the right hand-

side function, f ; the integration interval; the initial value; and the parameter vector θ that

defines the method. All algorithms have default values for several parameters, but they can be

overridden by the user, who has the option of defining the following:

• Size of the initial step size;

• Choice of error controller;

• Maximum and minimum values allowed for step size ratios;

• Choice of either absolute error control, or combined absolute/relative error control, im-

plemented internally using the usual Rtol and Atol approach;

• Choice of controlling error per step or error per unit step, to support both stiff solvers

and tolerance proportionality.

These aspects will be discussed in detail below.

The implementation of implicit I+k methods for non-stiff problems is done in a P(EC)2E

scheme, where the prediction (P) is made by evaluating the previous multistep polynomial at

the new point,

x′n,est = f(tn, Pn−1(tn)).

Following the evaluation (E) of the vector field, a correction (C) polynomial P c
n is calculated

by solving the linear system resulting from Theorem 3.1 (see Section 3.1). This entails a

straightforward generalization of the equation system (3.8a – 3.8b) to the k-step case. The final

vector field evaluation (E) of the corrected derivative

x′n,c = f(tn, P
c
n(tn))

684 C. ARÉVALO AND G. SÖDERLIND

is then used to construct the multistep polynomial Pn, which advances the solution by

xn = Pn(tn), x′n = f(tn, xn).

Implicit Ik methods for stiff problems are implemented using the equations of Theorem 3.2.

These are non-linear equations that are solved by a simplified Newton iteration, in which the

Jacobian is updated at each step but kept constant throughout the Newton iteration.

In the case of explicit Ek methods, the equations in Theorem 3.3 give a system of k linear

equations which must be solved at every step. The multistep polynomial is obtained and

evaluated at tn to advance the solution.

In all cases, the error estimate is constructed by comparing Pn(tn) to Pn−1(tn). This mea-

sures how much the method’s polynomial changes over a single step and essentially corresponds

to how different the solution would have been, had a polynomial of higher degree been used.

This is akin to using an “embedded” pair of methods.

4.2. Initial step size

The choice of an appropriate initial step size is of great importance to fully exploit the

potential of a high order method. It is particularly important that the initial step size does not

generate a too large error, as it may be impossible to recover lost accuracy. It is therefore better

to employ a somewhat conservative initial step size, as the step size controller will quickly ramp

up the step size to meet the accuracy requirement.

Many existing codes are “self-starting” in the sense that they start with a short step size

and a one-step method, after which they successively increase the order of the method. An

alternative to this approach is to start directly with a high order method; this requires the

generation of a sufficient number of starting values for the method. In both cases we need a

procedure for determining a suitable initial step-size, whether it is used as a starting step size

for a one-step method, or to construct the starting values of a multistep formula.

We generate the initial step size by the following algorithm.

1. Given the initial value x0 = x(t0) we compute the derivative f(t0, x0). We then use a

small perturbation ∆x of the initial value (usually selected randomly in the first orthant)

to compute a perturbed derivative f(t0, x0 +∆x) and obtain a crude estimate L0 of the

Lipschitz constant of f , as

L0 =
‖f(t0, x0 +∆x) − f(t0, x0)‖

‖∆x‖ .

2. We next determine a preliminary initial step size ∆t by the condition ∆t L0 = 0.1. The

somewhat conservative choice of the number 0.1 reflects that L0 underestimates the Lip-

schitz constant, and that we need to find a preliminary step size of such a scale that an

explicit method is stable for the choice ∆t.

3. We then use ∆t to take a single forward Euler step, x1 = x0 + ∆t f(t0, x0). Next, we

evaluate the vector field at this new point, to get f(t0 +∆t, x1). This derivative is used

to take a single forward Euler step back to t0,

x̃0 = x1 −∆t f(t0 +∆t, x1).

Grid-Independent Construction of Multistep Methods 685

4. The new perturbed initial value x̃0 is used to compute an improved estimate L of the

Lipschitz constant, as well as an estimate M of the logarithmic norm, [17]

L =
‖f(t0, x̃0)− f(t0, x0)‖

‖x̃0 − x0‖
; M =

(x̃0 − x0)
T(f(t0, x̃0)− f(t0, x0))

‖x̃0 − x0‖2
.

We also compute a local error estimate for the explicit Euler step, e1 = ‖x̃0 − x0‖, where
it is easily shown that e1 ≈ ∆t2‖ẍ0‖.

5. Given the local error tolerance Tol and the local order q = p+1 of the method we intend

to start with, we compute the scaling factors

κa =
1√
e1
, κs =

1

∆t(L +M/2)
,

and then their average κ = (κa + κs)/2. This is used to compute the proposed initial

step size, h0 = κ · Tol
1/q ·∆t. Finally, to protect against a too large initial step, h0 =

min(h0, 10
−3(tf − t0)).

In the algorithm above, κa handles accuracy. Thus the 2nd order error estimate for the

explicit Euler step, forward and back, is rescaled to order p by computing
√
e1 and using the

factor Tol
1/q. Likewise, the factor κs handles stability requirements. Disregarding M for a

moment, the construction requires that (h0L)
q ≈ 1; this ensures that homogeneous solutions

are stable and accurately represented at a step size of h0. Finally, M assists in the handling

of stability — in case M < 0 the factor κs becomes larger than if M > 0, thus allowing a

somewhat larger initial step size for problems exhibiting dissipativity than for those that are

unstable at the initial point. The averaging of κa and κs aims to make sure that both stability

and accuracy requirements are accounted for.

The initial step size algorithm above uses a total of four function calls and can be replaced

if necessary. In the software, we also add extra provisions to enable the algorithm to integrate

problems both in forward and reverse time.

4.3. Starting values

After the initial step-size is chosen according to the algorithm above, an explicit Runge-

Kutta method is used to generate the next k − 1 starting values that are needed for a k-step

method. Here we use Matlab’s solver, ode45, based on the Dormand–Prince (4,5) pair with

constant step size h0.

4.4. Error control and step size selection

The classical approach to controlling errors by varying the step size is multiplicative (linear)

control,

hn = ωn−1hn−1, (4.1)

where the step size change factor ωn−1 (the step ratio) is constructed from error estimates

produced by the time stepping method. In the simplest approach, one takes

ωn−1 =

(

Tol

en−1

)1/q

,

686 C. ARÉVALO AND G. SÖDERLIND

where Tol is a given error tolerance, en−1 is the (norm of the) local error on the current step,

and q is related to the order of the method; the choice q = p+1 is used for local error per step

control, while q = p for error per unit step control. The latter choice is preferred when it is

essential that the adaptive method produces a tolerance proportional global error.

The classical error control is referred to as integrating control ; taking logarithms, one finds

that

log hn = log hn−1 +
1

q
(logTol− log en−1).

Hence the deviation between the estimated error and the tolerance (known as the control error)

is summed up (“integrated”) in the process of generating the step size sequence.

The classical error control has several shortcomings, and practical implementations typically

include major restrictions on the step size selection, including exception handling. Many of

these are potentially harmful to a multistep method, which requires step size changes to be

small and smooth. Improved schemes, generating smooth, stable step size sequences, can be

constructed using discrete control theory and digital filters, see [16] and the survey [19]. Still

within the multiplicative format (4.1), a general and highly versatile control structure is given

by hn = ωn−1hn−1 together with the dynamic step size ratio recursion

ωn−1 = cβ1

n−1 · cβ2

n−2 · ω−α
n−2, (4.2)

where the scaled control error, accounting for method order, is given by

cn−1 =

(

Tol

en−1

)1/q

. (4.3)

Controllers can be designed for special needs. The parameter triple (β1, β2, α) offers a wide

range of control structures and digital filters, and Table 4.1 shows the types we have chosen for

the variable step parametric multistep methods.

Table 4.1: Basic step size controllers.

Controller Type β1 β2 α

Classic I (deadbeat integral control) 1 0 0

PI3040 PI (proportional-integral) 7/10 −4/10 0

PI3333 PI (proportional-integral) 2/3 −1/3 0

PI4020 PI (proportional-integral) 3/5 −1/5 0

H211PI PI digital filter 1/6 1/6 0

H211b Noise shaping digital filter 1/b 1/b 1/b

The three PI (proportional-integral) controllers are primarily intended for solvers with

bounded stability regions (methods of type Ek and I+k for nonstiff problems), while the two

digital filters, H211PI and H211b, are primarily intended for stiff solvers of type Ik. The pa-

rameter b in H211b can be varied in the range b ∈ [3, 6] to tune the noise-shaping filter; a higher

value of b leads to smoother step size sequences, but at the cost of a more sluggish response.

The value b = 4 is recommended as a default, [16]. With the exception of the parameter b,

controller parameters should never be varied arbitrarily, as this typically destroys the control

design. For example, a first order low-pass filter, as in H211PI and H211b, must necessarily

satisfy the order condition β1 = β2.

Grid-Independent Construction of Multistep Methods 687

The controllers are used with as little interference as possible. With the exception of the

classical deadbeat I controller, they are designed to produce smooth step size sequences, using

minute changes without lower bound. Step size changes mostly remain within a 5% bracket.

Bounds on maximum increase and decrease can be selected, as large step size changes may cause

stability problems. Rejection is based on whether a drastic step size reduction is proposed,

cutting the step size by more than 20% in a single step due to a large estimated error. This is

typically a rare event, which allows errors to be up to ∼ 2 ·Tol. While this may seem overly

lenient, one notes that estimated as well as actual errors continually deviate from Tol, being

both too large and too small. However, as the controllers are expectation value correct, small

deviations over time tend to cancel out in the global error accumulation process.

Because the controller (4.2) is a two-step controller, it needs to be initialized. On the

first step (or after a restart) when c0 has been computed and c−1 and ω−1 are missing, the

controller is initialized by simply setting c−1 = 1 and ω−1 = 1. After a rejected step, anti-

windup is employed; this means that cn−2 is rescaled to match the recomputed step size that

replaces the failed step size. The algorithmic features associated with rejection require some

careful attention to work reliably.

4.5. Error control modes and accuracy criteria

In a method that constructs a polynomial Pn(t) at the nth point, it is simple to estimate

the error. The new point is predicted by Pn−1(tn) and the computed result is Pn(tn). It follows

that the local error can be estimated by the difference, ℓn = Pn(tn)− Pn−1(tn). The accuracy

criterion, however, is typically a mix of relative and absolute errors. Hence there is both an

absolute and a relative tolerance. Let the error’s ith component be ln,i and define a vector r

component-wise by

ri =
ℓn,i

wi|xn,i|+ σi
,

where w = {wi} is a vector of weights for relative error control and σ = {σi} is a vector of

scales for absolute error control. Having constructed r, we compute e = ‖r‖, where the default

norm is the Euclidean norm. If error per unit step is controlled, we must also divide by the

current step size, i.e., e = ‖r‖/h.
Because the control system is single-input/single-output, we only use a single scalar tolerance

Tol to adapt the step size so that e = Tol. This construction still conforms to the common

Rtol – Atol approach used in current software. Thus, by defining

Rtoli = wi ·Tol ; Atoli = σi ·Tol,

our scalar Tol, together with weights w and scales σ, implements the standard approach.

Absolute error control is achieved by taking wi = 0 and σi = 1, and pure relative control

(not recommended as it breaks down if xn,i has a zero passage) is obtained for wi = 1 and

σi = 0. Usually, wi is chosen to be one or zero, controlling whether xn,i is included or excluded

from relative error control. When included (i.e., wi = 1), the corresponding scale σi becomes

the breakpoint between absolute error and relative error control. Thus, relative error is used

whenever |xn,i| ≫ σi and absolute whenever |xn,1| ≪ σi. Our codes are run with a default

setting of scalar tolerances, Rtol = Tol = 10−6 and Atol = 10−3Tol. This corresponds to

the default settings in Matlab, and makes our numerical test results directly comparable to

those obtained with Matlab’s solvers in default mode.

688 C. ARÉVALO AND G. SÖDERLIND

5. Numerical Tests and Validation

We have used several classical nonlinear test problems, as well as an artificial, nonstiff,

nonlinear problem with a known solution, to test the methods, implementation details and

supplementary control algorithms. The nonstiff artificial problem and a stiff van der Pol equa-

tion, are used below for the purpose of validating the new variable step size multistep methods.

Throughout, the step size is controlled automatically as specified above. Method order is not

varied, but remains constant in all tests; although order control is also of interest in adaptive

methods, it is beyond the scope of this particular study to simultaneously vary step size and

order. The results of the tests are shown in Figures 5.1 - 5.4.

10-8 10-7 10-6 10-5

tolerance

10-11

10-10

10-9

10-8

10-7

10-6

10-5

av
er

ag
e

L2
 e

rr
or

Tolerance proportionality

Fig. 5.1. Tolerance proportionality. Nonstiff, nonlinear problem P1 was solved with a three-step method

of order p = 3, as well as by a six-step method of order p = 6 (both explicit Ek methods). Absolute

local error per unit step was controlled, governed by PI3333. Global L2 error for p = 3 (solid, top)

and p = 6 (solid, bottom) shows excellent tolerance proportionality when compared to the unit slope

reference line (dashed). As is normally the case, the problem- and method-dependent errors deviate

from requested accuracy. The graphs further demonstrate exceptional computational stability – when

150 intermediate tolerances were used, there is no discernible irregularity at all in the achieved global

L2 error, which “depends continuously” on Tol. Thus, reducing Tol by any given factor will result

in a corresponding, predictable error reduction

• Problem 1 [P1] The nonstiff, nonlinear system

ẏ1 = y1 + y22 ,

ẏ2 = −y1,

with initial value y(0) = (1 3)T is used to test the new methods with respect to order

and accuracy. It has the exact solution y1(t) = et − 3e−2t; y2(t) = 3e−t.

• Problem 2 [P2] The nonlinear van der Pol problem

ẏ1 = y2,

ẏ2 = µ(1 − y21)y2 − y1,

Grid-Independent Construction of Multistep Methods 689

10-10 10-9 10-8 10-7 10-6

error

50

100

150

200

250

300

350

400

nu
m

be
r

of
 s

te
ps

Work/precision

E
5

ode45

Fig. 5.2. Work/precision diagram. A five-step, 5th order explicit Ek method with parameters

[7π/12 7π/16 17π/32 31π/64] was used to solve problem P1 and is compared to the solution obtained

with Matlab’s 5th order Dormand–Prince ode45 solver. Top curve (dashed) shows total number of

steps for ode45 vs achieved accuracy. Bottom curve (solid) shows the corresponding data for the Ek

method, which uses approximately half the number of steps at any given accuracy. Absolute local error

per unit step was control was controlled, using the PI3333 controller in the multistep method. A total

of eleven different tolerance settings were used in each method to generate the graphs

with initial value y(0) = (2 0)T is used to test stiff solvers, as the parameter µ controls

stiffness. No analytic solution is known, but the problem is frequently used as a test

problem with its challenging dynamic behavior. The problem is solved on the interval

[0, T] = [0, µ] to cover a little more than half a period of the limit cycle. (As the other half

leads to a similar behavior, it is sufficient to cover one stiff branch, as well as the sharp

transition to the other stiff branch.) This problem is also used to specifically assess stiff

performance, by using a shorter interval that excludes the nonstiff transition. Stiffness

scales in proportion to µ2, [20], and we use µ = 500 and µ = 1200 in the tests. This

is large enough to exclude the use of explicit methods, which would require in excess of

105 – 106 steps to solve the problem. By contrast, our stiff solvers manage with a few

hundred.

6. Conclusions

This paper has developed a new, comprehensive methodology for constructing high order

variable step-size multistep methods. Contrary to the classical approach of extending fixed

step-size formulas case by case, the new technique constructs multistep methods in terms of

interpolation and collocation conditions defining a polynomial, which generates the next solution

point, as well as a “continuous extension” of the multistep method. For equidistant time steps

the classical methods are obtained. A main advantage of this approach is that whether the step

size varies or not, each method is defined in terms of a single, fixed set of parameters. Thus

time step adaptivity is supported without additional difficulties.

Hairer et al. [9] give variable step-size formulas for the 2-step Adams-Moulton and BDF

methods. Our technique renders exactly the same variable step-size formulation in these two

690 C. ARÉVALO AND G. SÖDERLIND

10-10 10-9 10-8 10-7

error

200

250

300

350

400

450

500

550

nu
m

be
r

of
 s

te
ps

Work/precision

I
5
BDF5
ode15s

Fig. 5.3. Work/precision diagram. The stiff van der Pol problem P2 with µ = 500 was solved by a five-

step 5th order implicit Ik method with parameters [π/24 π/512 − π/512 π/128] as well as by BDF5

in its new Ik implementation. Absolute local error per step was controlled, governed by the digital

filter H211PI. A total of one hundred different values of Atol = Tol were used. For comparison, the

problem was also solved using Matlab’s ode15s, running the BDF option, with the same absolute error

criteria and tolerance settings, but using its own step size controller. Work in terms of steps is plotted

vs achieved global accuracy, measured in the L2 norm. The Ik BDF5 (bottom) uses approximately half

as many steps as ode15s (top) for a given global accuracy, and for a given number of steps achieved

accuracy is approximately one order of magnitude better. More importantly, due to strongly improved

computational stability, both the Ik BDF5 (bottom) as well as the new 5th order Ik method (center,

dashed) have smooth work-precision graphs, while the ode15s implementation (top) shows an erratic

response to changes in Tol. Still, in terms of wall-clock time, ode15s is somewhat faster

cases. Furthermore, we have constructed a continuum of multistep methods that depend on

its defining parameters in (−π/2 π/2]. As the parameters change, method properties such as

zero-stability, error coefficient and stability region typically change continuously.

Using this methodology, we have developed unified implementations of explicit methods of

order p = k, and implicit methods of orders p = k and p = k+ 1. The three method categories

Ek, Ik and I+k cover all higher order methods, as well as all practical needs for stiff and nonstiff

problems. Should a “new” high order multistep method be proposed in the literature, it can

be implemented in an instant, following the identification of its θj parameters; the latter task

requires the use of a symbolic package, such as Maple.

The methodology and implementation offers

• a new understanding of variable step size multistep methods

• a platform for computational experiments with any high order multistep method

• a platform for analyzing particular properties of multistep methods

Among the software’s specific features, we have included

• a new robust starting step size algorithm

Grid-Independent Construction of Multistep Methods 691

0 200 400 600 800 1000 1200
-3

-2

-1

0

1

2
Van der Pol: solution

0 200 400 600 800 1000 1200

10-2

100

102 Van der Pol: stepsize sequence

Fig. 5.4. Step size sequences. The stiff van der Pol problem P2 with µ = 1200 was solved on the

interval [0 1200] using the BDF5 method in its new Ik implementation, and compared to Matlab’s

ode15s running the BDF option. Top panel shows the solution, while bottom panel shows step size

sequences. Both codes control error per step at Rtol = 10−8 and Atol = 10−11. Total number of

steps were 1100 for Ik and 1634 for ode15s. Unlike ode15s, which gives preference to piecewise constant

step size (solid-dots), in the Ik method the step size sequence is controlled by the digital filter H211PI,

generating a smooth step size sequence (discrete dots). As a result, step size ratios in the Ik code

are smaller, maintaining better stability. Thus “mistakes” of the type observed in the red sequence at

t = 385 are eliminated

• a full range of step size controllers based on PI control and digital filters

• smooth step size sequences conforming to variable step size zero stability conditions

• full functionality with respect to error control criteria

• functionality for multiple order method families by increasing the dimension of the method’s

defining parameter vector

The software, which can be obtained from the authors, is intended for research purposes,

such as method and algorithmic development. Tests carried out on well-known benchmark

problems indicate that the method construction is robust and performs in full agreement with

theory. The implementation is competitive insofar as step sizes and direct measures of efficiency

are concerned – thus, work/precision diagrams are improved compared to standard multistep

software; accuracy is enhanced; step size sequences are smoother; and fewer steps are typically

required. Computational stability is much enhanced, and at large, achieved accuracy “depends

continuously” on Tol, see [18].

Still, the methodology needs further development. Wall-clock time is typically longer than

for standard software, especially when using I+k methods, due to the current parametrization

requiring the solution of a larger system on each step than what is necessary in standard soft-

ware. In addition, we have not included automatic order control, which needs to be coordinated

with the advanced step size control. Finally, no provisions have been included for “standard”

add-ons typically featured in production codes, such as sparse or matrix-free solvers, event

handling, discontinuities, and implicit output or stopping criteria.

692 C. ARÉVALO AND G. SÖDERLIND

References

[1] C. Arévalo, J. Dı́az López and G. Söderlind, Constant coefficients linear multistep methods with

step density control, J. Comp. and Appl. Math., 205 (2007), 891–900.

[2] C. Arévalo, Claus Führer and Mónica Selva, A collocation formulation of multistep methods for

variable step-size extensions, Appl. Numer. Math., 42 (2002), 5–16.

[3] C. Arévalo, C. Führer and G. Söderlind, β-blocked multistep methods for Euler-Lagrange DAEs:

Linear analysis, ZAMM, 77 (1997), 1–9.

[4] C. Arévalo, Claus Führer and Gustaf Söderlind, Regular and singular β-blocking of difference

corrested multistep methods for nonstiff index-2 DAEs, Appl. Numer. Math., 35 (2000), 293–305.

[5] P.N. Brown, G.D. Byrne and A.C. Hindmarsh, VODE, A variable-coefficient ODE solver, SIAM

J. Sci. Stat. Comput., 10 (1989), 1038–1051.

[6] M.T. Chu, An automatic multistep method for solving stiff initial value problems, J. Comp. Applp.

Math., 9 (1983), 229–238.

[7] T.P. Coffee, J.M. Heimerl and M.D. Kregel, A numerical method to integrate stiff systems of or-

dinary differential equations, Technical report ARBRL-TR-02206, Ballistic Research Laboratory,

Aberdeen Proving Ground, Maryland, 1980.

[8] Y. Hadjimichael, D. Ketcheson, L. Lóczi and A. Németh, Strong stability preserving explicit linear

multistep methods with variable step size, arXiv:1504.04107v1 [math.NA], (2015)

[9] E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Prob-

lems, Springer Ser. Comput. Math., Vol. 8, Springer, New York, 1993.

[10] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-

Algebaic Problems, Springer Ser. Comput. Math., Vol. 14, Springer, New York, 1996.

[11] A. Nordsieck, On numerical integration of ordinary differential equations, Math. Comp., 16 (1962),

22-49.

[12] K. Radhakrishnan and A.C. Hindmarsh, Description and use of LSODE, the Livermore solver for

ordinary differential equations, LLNL report UCRL-ID-113855, December 1993.

[13] G.K. Rockswold, Implementation of α-type multistep methods for stiff differential equations, J.

Comput. and Appl. Math., 22 (1988), 63–69.

[14] R.D. Skeel, Construction of variable-stepsize multistep formulas, Math. Comp., 47(176) (1986),

503–510, S45-S52.,

[15] G. Söderlin, A multi-purpose system for the numerical integration of ODEs, Appl. Math. Comput.,

31 (1989), 346–360.

[16] G. Söderlind, Digital filters in adaptive time-stepping, ACM Trans. on Math. Software, 20 (2003),

1–26.

[17] G. Söderlind, Logarithmic norms. History and modern theory, BIT Numerical Mathematics, 46

(2006), 631–652.

[18] G. Söderlind and L.Wang, Adaptive time-stepping and computational stability, J. Comput. and

Appl. Math., 56 (2006), 225–243.

[19] G. Söderlind, Time-step selection algorithms: Adaptivity, control, and signal processing, Appl.

Num. Math., 185 (2006), 488–502.

[20] G. Söderlind, L. Jay and M. Calvo, Stiffness 1952–2012. Sixty years in search of a definition, BIT

Num. Math., 55 (2015), 531–558.

[21] D. Wang and S.J. Ruuth, Variable step-size implicit-explicit linear multistep methods for time-

dependent partial differential equations, J. Comput. Math., 6 (2008), 838–855.

