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Abstract

Constructions of woven graph codes based on constituent convolutional codes are studied and examples of
woven convolutional graph codes are presented. The existence of codes, satisfying the Costello lower bound on
the free distance, within the random ensemble of woven graph codes based on s-partite, s-uniform hypergraphs,
where s depends only on the code rate, is shown. Simulation results for Viterbi decoding of woven graph codes are
presented and discussed.

Index Terms

Convolutional codes, girth, graphs, graph codes, hypergraphs, LDPC codes, tailbiting codes, woven codes.

I. INTRODUCTION

Woven graph codes are concatenated graph-based codes with constituent block or convolutional codes [1], [2]. The
distinguishing feature of these codes is that the length of the constituent code is a multiple of the underlying graph
degree c, that is, their length is equal to lc, where l is an integer. In particular, when l tends to infinity we obtain
woven graph codes with constituent convolutional codes. While for example serial concatenated convolutional codes
are obtained by combining generator matrices, woven graph codes are obtained by combining the corresponding
parity-check matrices.

In [2], the existence of codes, satisfying the Varshamov-Gilbert (VG) bound, within the random ensemble of
woven codes based on s-partite, s-uniform hypergraphs, where s depends only on the code rate, and constituent
block codes, was proven. Due to the simple structure of woven graph codes, such codes can be analyzed with low
computational complexity while their minimum distances are rather close to the minimum distances of the best
known linear codes of same lengths and dimensions. Moreover, there exist linear-time encoding algorithms for this
class of codes.

In this paper, we will generalize the VG bound [2] to the corresponding bound for woven graph codes with
constituent convolutional codes, namely the Costello bound. Therefore, we consider woven graph codes with
constituent convolutional codes, based on s-partite, s-uniform hypergraphs, in the following referred to as woven
convolutional graph codes. Let the overall constraint length of woven convolutional graph codes tend towards
infinity. Then, within the random ensemble of such convolutional codes with s ≥ 2, codes satisfying the Costello
lower bound on the free distance exist for any rate. Examples of woven convolutional graph codes with surprisingly
large free distances are presented. Additionally, their bit error probabilities for Viterbi decoding are compared with
the best known convolutional codes of the same overall constraint length.

In Section II, properties of s-partite, s-uniform, c-regular hypergraphs are introduced. A compact representation of
hypergraphs as well as their relationship to Tanner graphs are discussed. Hypergraph-based block codes are defined



2

12

11

9

8

1

7

32

6 10

5

4

Fig. 1. A 3-partite, 3-uniform, 4-regular hypergraph with its shortest cycle being highlighted.

in Section III. Section IV is devoted to generalizations of such codes to woven graph codes with constituent
block and convolutional codes. The Costello lower bound on the free distance of the random ensemble of woven
convolutional graph codes is derived in Section V, and examples of promising woven convolutional graph codes
are presented in Section VI. The paper is concluded by a discussion of simulation results of Viterbi decoding of
woven convolutional graph codes in Section VII.

II. GRAPHS AND HYPERGRAPHS

A hypergraph is a generalization of a graph and is determined by a set of vertices V = {vi} and a set of
hyperedges E = {ei}, where each hyperedge is a subset of vertices and may connect (contain) any number of
vertices. If each hyperedge connects not more than two vertices it is called an edge and we obtain an ordinary
graph.

A hypergraph is called s-uniform if every hyperedge has cardinality s, that is, it connects s vertices. For s = 2,
a hypergraph is a simple graph. The degree of a vertex in a hypergraph is the number of hyperedges that are
connected to (contain) it. If all vertices have the same degree c, then the hypergraph is c-regular, that is, c is the
degree of the hypergraph.

Let the set of vertices V of an s-uniform hypergraph be partitioned into t disjoint subsets Vk, k = 1, 2, . . . , t. If
no hyperedge connects (contains) two vertices from the same set Vk, k = 1, 2, . . . , t, the hypergraph is said to be
t-partite.

Hereinafter, we will consider only s-partite, s-uniform, c-regular hypergraphs. Such hypergraphs consist of a
union of s disjoint subsets of vertices Vk, k = 1, 2, . . . , s, where each vertex is connected to s− 1 vertices, one in
each of the other subsets and has no connection within its own subset.

In Fig. 1, a 3-partite, 3-uniform, 4-regular hypergraph is illustrated with its three disjoint vertex subsets being
represented by vertices with different shades of gray. Every hyperedge connects three vertices, one from each of
the three different vertex subsets.

A path of length L in a hypergraph is an alternating sequence of L+ 1 vertices vi, i = 1, 2, . . . , L+ 1, and L
hyperedges ei, i = 1, 2, . . . , L, with ei 6= ei+1. If the first and the final vertex coincide, that is, v1 = vL+1, we
obtain a cycle. A cycle is called simple if all its vertices and edges are distinct, except the first and final vertex
which coincide. Such a simple cycle is also known as a Berge cycle [3]. Finally, the girth of a hypergraph is the
length of its shortest simple cycle. The shortest cycle of the previously mentioned 3-partite, 3-uniform, 4-regular
hypergraph is highlighted in bold in Fig. 1. It consists of the vertices 6, 11, and 6 and thereby has girth equal to 2.
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Consider the hypergraph as illustrated in Fig. 1. The corresponding incidence matrix follows as

Hhg =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
6 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
7 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
8 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
9 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

10 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
11 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
12 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0





(1)

and can be interpreted as 12 × 16 parity-check matrix Hhg of a hypergraph code Chg. Each column corresponds
to a hyperedge and each row represents a vertex of the hypergraph, with the three disjoint sets of vertices being
separated by dashed horizontal lines. The first column represents the hyperedge connecting the vertices 1, 5 and 9,
the second column the hyperedge connecting the vertices 1, 8 and 10, and so on.

By reordering the rows of (1), an equivalent parity-check matrix H ′hg (2) is obtained. Using the concept of
duality, the equivalent parity-check matrix H ′hg of this hypergraph code is equal to the generator matrix G⊥hg of the
corresponding dual hypergraph code C⊥hg,

H ′hg = G⊥hg =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
9 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0

10 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
3 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
7 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

11 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
8 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

12 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0





. (2)

Clearly, the generator matrix G⊥hg of the rate R = (sn)/(cn) dual hypergraph code C⊥hg can be interpreted
as a tail-bitten convolutional code, obtained by tailbiting a parent convolutional code C⊥phg to length n, with its
corresponding generator matrix G⊥phg (Z) being specified by

G⊥phg (Z) =

 1 1 1 1
1 0 0 0
1 0 0 0

+

 0 0 0 0
0 1 0 0
0 0 1 0

Z +

 0 0 0 0
0 0 1 0
0 0 0 1

Z2 +

 0 0 0 0
0 0 0 1
0 1 0 0

Z3

=

 1 1 1 1
1 Z Z2 Z3

1 Z3 Z Z2

 (3)

with free distance dfree = 4. Interpreting (3) as a convolutional parity-check matrix, we obtain the corresponding
convolutional code Cphg with free distance dfree = 8. We use Z as the delay operator for the parent convolutional
codes in order to distinguish it from the delay operator D of the constituent convolutional codes introduced later.
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Fig. 2. A Tanner graph representation of the 3-partite, 3-uniform, 4-regular hypergraph illustrated in Fig. 1.

By tailbiting the generator matrix (3) of a rate R = s/c, memory m, parent convolutional code C⊥phg to length n,
where n is any integer such that n > m, a set of generator matrices of dual hypergraph codes C⊥hg with different
rates R = (sn)/(cn) can be obtained.

Interpreting these generator matrices as incidence matrices and parity-check matrices of hypergraphs, we can
construct a set of woven graph codes with different rates, having some common properties [4] and being related to
the same underlying graph. Moreover, this set of woven graph codes can be compactly represented by the generator
matrix G⊥phg (Z) of the parent convolutional code.

Note that in general not every hypergraph can be represented in such a compact form by the generator matrix
of its parent convolutional code. Although such a representation is not necessary for the following proofs and
theorems, all examples of hypergraphs within this paper will be given using the generator matrix of their parent
convolutional code.

Tanner graphs

By replacing every hyperedge of an s-partite, s-uniform, c-regular hypergraph with a vertex and s outgoing
edges, we obtain an alternative representation of a hypergraph, a so-called Tanner graph [5]. The Tanner graph for
the hypergraph shown in Fig. 1 is illustrated in Fig. 2. The three disjoint sets of vertices are represented by white,
gray, and black, vertices, respectively.

The newly introduced set of cn = 4 × 4 = 16 vertices are denoted variable or symbol nodes, while the
sn = 3× 4 = 12 vertices on the left- and right-hand side are denoted constraint nodes. Interpreting the incidence
matrix of a hypergraph as the parity-check matrix of a corresponding hypergraph-based code, every symbol node
corresponds to one of cn codeword symbols, while every constraint node corresponds to one of sn parity-checks.
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III. HYPERGRAPH-BASED BLOCK CODES

A hypergraph-based block code, based on an s-partite, s-uniform, c-regular hypergraph and a rate Rc = b/c
constituent block code, is determined by its parity-check matrix

Hhgb =


H1

H2
...
Hs

 (4)

where each of the s parity-check submatrices Hi of size n(c− b)× nc, i = 1, 2, . . . , s, corresponds to one of the
s disjoint sets of vertices. By reordering rows and columns, it is possible, without loss of generality, to represent
the first party-check submatrix H1 by

H1 =


Hc 0 · · · 0
0 Hc · · · 0
...

...
. . .

...
0 0 · · · Hc


where Hc is the (c− b)× c parity-check matrix of the constituent block code and the remaining s− 1 parity-check
matrices Hi of size n(c− b)× nc, i = 2, 3, . . . , s, are column permutations of H1, determined by the underlying
hypergraph.

By choosing b < c and assigning constituent block codes of different rates Rc = b/c to the same hypergraph, we
obtain hypergraph-based block codes of different rates. Since the total number of parity-checks of such a block code,
based on an s-partite, s-uniform, c-regular hypergraph is at most sn(c−b), the code rate Rwg of a hypergraph-based
block code follows as

Rhgb ≥
nc− sn(c− b)

nc
= s(Rc − 1) + 1 (5)

with equality if and only if all parity-checks are linearly independent.
Consider the previous parity-check matrix (1). The corresponding hypergraph can be interpreted as a hypergraph-

based block code whose constituent block codes are single-parity-check codes with parity-check matrix

Hc =
(
1 1 1 1

)
.

However, as the rows in (1) are linear dependent, two parity-checks can be removed and we obtain a (16, 6)
linear block code. Clearly, the rate of this hypergraph-based block code Rhgb = 6/16 satisfies the inequality (5) as
Rhgb ≥ 3(3/4− 1) + 1 = 1/4.

By interpreting a hypergraph as a hypergraph-based block code we impose some restrictions on the hypergraph
structure. In particular, each vertex corresponds to a constituent code and each codeword has to satisfy the parity
checks determined by Hc. Thus, only those cycles of the hypergraph where all participating vertices are incident
with the number of hyperedges equal to the Hamming weight of a codeword of the constituent code correspond to
codewords of a hypergraph-based block code.

Definition 1: A (≥ d)-cycle in the hypergraph is a cycle whose vertices are incident with at least d hyperedges.
Definition 2: The length (number of hyperedges) of the shortest (≥ d)-cycle of an s-partite hypergraph is its

(s, d)-girth gs,d.
Consider the previously illustrated (16, 6) linear block code, determined by the hypergraph-based block code

based on the hypergraph (1) and a single parity-check matrix as a constituent block code. With the minimum
distance of the constituent block code being dcmin = 2, the minimum distance of the (16, 6) linear block code
follows as dmin = g3,2, where g3,2 is the (3, 2)-girth.

The shortest (≥ 2)-cycle of the corresponding 3-partite, 3-uniform, 4-regular hypergraph, that is, the (3, 2)-girth
g3,2, has length 4 and is illustrated in Fig. 3. It consists of the hyperedges (2, 5, 11), (2, 6, 10), (4, 5, 10), and
(4, 6, 11).

The corresponding columns participating in this (≥ 2)-cycle are marked in bold in (1) and (2) and form one of
the smallest sets of four linearly dependent columns. Thus, it is easy to verify that the minimum distance of the
previously mentioned (16, 6) linear block code is dmin = g3,2 = 4.

Notice that the parent convolutional code determined by parity-check matrix (3) has free distance 8 and thus the
corresponding “free” (3, 2)-girth is equal to 8 (see the first entry of Table I).
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Fig. 3. A shortest (≥ 2)-cycle of the 3-partite, 3-uniform, 4-regular hypergraph illustrated in Fig. 1.

IV. WOVEN GRAPH CODES

Woven graph codes are generalizations of hypergraph-based codes with either constituent block or convolutional
codes. Consider a binary (lc, lb) linear block code, determined by the parity-check matrix

Hc =


Hc

11 Hc
12 . . . Hc

1c

Hc
21 Hc

22 . . . Hc
2c

...
...

. . .
...

Hc
(c−b)1 Hc

(c−b)2 . . . Hc
(c−b)c


where Hc

ij ∈ Bl×l, i = 1, 2, . . . , (c− b), j = 1, 2, . . . , c, are size l× l submatrices and Bl×l is the set of all possible
binary matrices of size l × l. Then, the corresponding hypergraph-based code of length nlc with a constituent
block code, determined by its l(c− b)× lc parity-check matrix Hc, is called a woven graph code with constituent
block codes. While in the case of hypergraph-based codes a codeword of length c is assigned to each vertex, we
generalize those codes to woven graph codes by assigning a length c subblock, which is a time-cut of a length lc
codeword, to each vertex. Such codes were analyzed and discussed in [2].

Woven graph codes with constituent convolutional codes, hereinafter referred to as woven convolutional graph
codes, can be considered as a straightforward generalization of woven graph codes with constituent block codes.

Let Hc(D) denote the minimal-basic (b− c)× c parity-check matrix [6] of a rate R = b/c convolutional code

Hc(D) =


hc11(D) hc12(D) . . . hc1c(D)
hc21(D) hc22(D) . . . hc2c(D)
...

...
. . .

...
hc(c−b)1(D) hc(c−b)2(D) . . . hc(c−b)c(D)

 (6)

where hcij(D) = h
c(0)
ij + h

c(1)
ij D + h

c(2)
ij D2 + · · · , i = 1, 2, . . . , (c − b), j = 1, 2, . . . , c, are binary polynomials.

Denote by F2((D)) the field of binary Laurent series and regard a rate Rc = b/c convolutional code as a rate
Rc = b/c block code over the field of binary Laurent series. Then, the corresponding codewords are elements of
Fc2((D)), which is a c-dimensional vector space over the field of binary Laurent series [6].

Representing a convolutional code as a block code over the field of binary Laurent series F2((D)), we obtain
woven convolutional graph codes as a generalization of woven graph codes with constituent block codes.

For example, the parity-check matrix Hwg(D) of a woven convolutional graph code, based on the hypergraph
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with parity-check matrix (1), is given by

Hwg(D) =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 hc1 hc2 hc3 hc4 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 hc1 hc2 hc3 hc4 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 hc1 hc2 hc3 hc4 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 hc1 hc2 hc3 hc4
5 tc1 0 0 0 0 tc2 0 0 0 0 tc3 0 0 0 0 tc4
6 0 0 0 tc4 tc1 0 0 0 0 tc2 0 0 0 0 tc3 0
7 0 0 tc3 0 0 0 0 tc4 tc1 0 0 0 0 tc2 0 0
8 0 tc2 0 0 0 0 tc3 0 0 0 0 tc4 tc1 0 0 0
9 lc1 0 0 0 0 0 lc3 0 0 0 0 lc4 0 lc2 0 0
10 0 lc2 0 0 lc1 0 0 0 0 0 lc3 0 0 0 0 lc4
11 0 0 0 lc4 0 lc2 0 0 lc1 0 0 0 0 0 lc3 0
12 0 0 lc3 0 0 0 0 lc4 0 lc2 0 0 lc1 0 0 0




hc1 = hc1(D) hc2 = hc2(D) hc3 = hc3(D) hc4 = hc4(D)

tc1 = tc1(D) tc2 = tc2(D) tc3 = tc3(D) tc4 = tc4(D)

lc1 = lc1(D) lc2 = lc2(D) lc3 = lc3(D) lc4 = lc4(D)

where Hc(D) =
(
hc1(D) hc2(D) hc3(D) hc4(D)

)
is the parity-check matrix of the rate Rc = 3/4 constituent

convolutional code, and
(
tc1(D), tc2(D), tc3(D), tc4(D)

)
and

(
lc1(D), lc2(D), lc3(D), lc4(D)

)
are two out of 24 possible

permutations of
(
hc1(D), hc2(D), hc3(D), hc4(D)

)
.

Exploiting the above definitions in connection with the Tanner graph representation in Fig. 2, we can regard
the n left constituent convolutional codes as a warp with nc threads. Each of the n right constituent convolutional
codes are tacked on c of the threads in the warp such that each thread of the warp is tacked on exactly once. Thus,
our construction is a special case of a woven code [7].

V. ASYMPTOTIC BOUND ON THE FREE DISTANCE OF WOVEN GRAPH CODES

Consider a woven graph code with a constituent block code, obtained by tailbiting (TB) a rate Rc = b/c
convolutional code with memory mc and let the length of a codeword of the TB block code in nc-tuples be equal
to l. Denote the minimum distance of the woven graph code by dwg

min, while its rate is given by Rwg = s(Rc−1)+1
according to (5). Considering TB codes (instead of zero-tail or other termination techniques) simplifies the analysis
since for TB codes the code rate coincides with the rate of the parent convolutional code. Moreover, if l tends
towards infinity, the minimum distance of a TB code coincides with the free distance of its parent convolutional
code. Additionally, the minimum distance of the woven graph code is then replaced by the corresponding free
distance, which is denoted by dwg

free.
Finally, following directly from (4) and (6), the memory mwg (as well as the overall constraint length) of such a

woven graph code is at most ns times larger than that of its constituent code, that is, mwg ≤ nsmc. Now we can
prove the following:

Theorem 1: (Costello lower bound) For any ε > 0, some m0 > 0, and for all mwg > m0 within the random
ensemble of rate Rwg = s(Rc − 1) + 1 woven graph codes over s-partite, s-uniform, c-regular hypergraphs with
constituent rate Rc = b/c convolutional codes with memory mc, there exists a code such that its relative free
distance δwg

free = dwg
free/cmwg satisfies the Costello lower bound [6],

δwg
free ≥ −

Rwg

log2 (2
1−Rwg − 1)

− ε (7)

if

s ≥
{
2, if Rwg ≤ 0.402

3, if Rwg > 0.402.
(8)
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Proof: Analogously to the derivations within the proof of Theorem 1 in [2], let w be the Hamming weight
of the codeword v of the random binary woven graph code determined by the time-varying random parity-check
matrix

Hwg =


H̃1

H̃2
...
H̃s

 =


π1(H1)
π2(H2)

...
πs(Hs)


where πi(Hi) denotes a random permutation of the columns of Hi. Each of the s submatrices H̃i = πi(Hi),
i = 1, 2, . . . , s, is an n × n block matrix (or in other words a binary matrix of size n(c − b)l × ncl), where n
denotes the number of constituent block codes within each subset of nodes, and

Hi =


H

c(1)
i 0 · · · 0

0 H
c(2)
i · · · 0

...
...

. . .
...

0 0 · · · H
c(n)
i

 .

Within Hi, each of the n blocks denotes a random parity-check matrix H
c(t)
i , t = 1, 2, . . . , n, i = 1, 2, . . . , s,

given by

H
c(t)
i =



Hc
00 Hc

01 · · · Hc
0mc

Hc
10 Hc

11 · · · Hc
1mc

. . . . . . . . . . . .
Hc

(l−mc−1)0 Hc
(l−mc−1)1 · · · Hc

(l−mc−1)mc

Hc
(l−mc)mc Hc

(l−mc)0 Hc
(l−mc)1 · · ·

. . . . . . . . . . . .
· · · Hc

(l−2)mc Hc
(l−2)0 Hc

(l−2)1
Hc

(l−1)1 · · · Hc
(l−1)mc Hc

(l−1)0


(9)

which can be interpreted as a parity-check matrix of a rate R = lb×lc block code, whose dual generator matrix is
tailbitten to length l. All matrices Hc

ij , i = 0, 1, . . . , l−1, j = 0, 1, . . . ,mc, in (9) are of size (c− b)× c and can be
obtained separately for each block matrix Hc(t)

i by randomly choosing 0s and 1s equiprobably and independently.
In the following, we are going to find the parameter d, such that the probability P

(
vHT

wg = 0
∣∣ w) tends to zero

for all w < d, where w denotes the Hamming weight of the codeword v, when l tends to infinity. In this case the
constituent block code becomes a constituent convolutional code. Clearly, we can rewrite P

(
vHT

wg = 0
∣∣ w) as

P
(
vHT

wg = 0
∣∣ w) =∑

h

P
(
vHT

wg = 0
∣∣ w, h)P (h | w) ≤ max

h

{
P
(
vHT

wg = 0
∣∣ h,w)} (10)

where h ≤ l denotes the number of nonzero subblocks of length nc in a codeword v of length ncl. The conditional
probability in the last inequality can be expressed as

P
(
vHT

wg = 0
∣∣ h,w) =∑

j

P
(
vHT

wg = 0
∣∣ h,w, j)P (j | h,w) (11)

where j = (j1, j2, . . . , js), with ji denoting the number of nonzero constituent codewords within the ith subset of
check nodes corresponding to the codeword of weight w, i = 1, 2, . . . , s.

The events that a random codeword v and a random matrix Hi satisfy the ith subset of parity checks, i.e.,
vHT

i = 0, for different i are stochastically dependent in the product space of random equiprobable sequences v
and random parity-check matrices, because the same fragments of v participate in different sets of parity checks.
However, for all v satisfying the conditions w, h, and j, the probabilities of vHT

i = 0 depend only on Hi, and
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thus the events are conditionally independent for given v, w, h, and j. Taking into account that there exist not
more than

(
nch
w

)
sequences of v satisfying the mentioned conditions, we obtain the upper bounds

P
(
vHT

wg = 0
∣∣ h < l, w, j

)
≤ l2ls/mc

(
nch

w

)( s∏
i=1

2jib(h−m
c)2−jich

)
(12)

and

P
(
vHT

wg = 0
∣∣ h = l, w, j

)
≤
(
ncl

w

)( s∏
i=1

2jibl2−jicl

)
. (13)

Note that in the derivation of (12), codewords containing h nontrivial c-subblocks are generated by not more
than (h − mc) nontrivial binary information b-tuples. Additionally, the number of possible locations of these h
nontrivial subblocks among l subblocks can be upper-bounded by l2l/m

c

. This bound follows directly by taking
into account that every codeword contains one or more (cyclic) bursts of at least mc nontrivial subblocks. Thus,
the number of bursts cannot be larger than l/mc. Additionally, as there are at most l possible starting positions for
each burst and less than l possible ending positions within each of the s subsets, the maximum total number of
possible configurations for h nontrivial subblocks follows as

(
(l2)(l/m

c)
)s

.
On the other hand, if all l blocks of a codeword are nontrivial, in other words, if h = l, these considerations do

not have to be taken into account and the corresponding probability can be upper-bounded by the tighter expression
(13).

In order to estimate the probability P (j | h,w) for a woven graph code with constituent block codes, consider
the following lemma which was proved in [2].

Lemma 1: For the random ensemble of binary woven graph codes with constituent block codes the probability
P (j | h,w) that a codeword of length ch and weight w contains j = (j1, j2, . . . , js) nonzero constituent codewords
in the s parity-check subsets can be upper-bounded by

P (j | h,w) ≤
s∏
i=1

(
n
ji

)(
ch
w/ji

)ji(w−1
ji−1

)(
nch
w

) .

By combining (11), (12), and Lemma 1 we obtain

P
(
vHT

wg = 0
∣∣ h < l, w

)
≤ l2l/mc

∑
j

(
nch

w

)1−s s∏
i=1

2jib(h−m
c)−jich

(
n

ji

)(
ch

w/ji

)ji(w − 1

ji − 1

)

≤ l2l/mc

(
nch

w

)1−s
(n+ 1)s max

(j1,...,js)

s∏
i=1

2jib(h−m
c)−jich

(
n

ji

)(
ch

w/ji

)ji(w − 1

ji − 1

)

≤ l2l/mc

(n+ 1)s
(
nch

w

)1−s
max
j≤n

{(
2jb(h−m

c)−jch
(
n

j

)(
ch

w/j

)j(w − 1

j − 1

))s}
.(14)

As mentioned previously, in case all l blocks of a codeword are nontrivial, we have to replace (12) by (13), and it
thereby follows from (11), (13), and Lemma 1 in a similar fashion that

P
(
vHT

wg = 0
∣∣ h = l, w

)
≤ (n+ 1)s

(
ncl

w

)1−s
max
j≤n

{(
2jl(b−c)

(
n

j

)(
cl

w/j

)j(w − 1

j − 1

))s}
. (15)

Finally, we define the corresponding exponents of (14) and (15) and lower-bound their values by

Fl<h(δ) = lim
mc→∞

− log2 P
(
vHT

wg = 0
∣∣ h < l, w

)
ncmcs

≥ min
γ∈(0,1], µ≥1

{(
1− 1

s

)
µh

(
δs

µ

)
+ γ

(
1 +

µ− 1

s
(1−Rwg)

)
− γµh

(
δs

γµ

)}
(16)

Fl=h(δ) = lim
mc→∞

− log2 P
(
vHT

wg = 0
∣∣ h = l, w

)
ncmcs

≥ max
θ>1

min
γ∈(0,1]

{(
1− 1

s

)
θh

(
δs

θ

)
+ γθ

1−Rwg

s
− γθh

(
δs

γθ

)}
(17)
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using the fact that

log2

(
b

a

)
' bh

(a
b

)
where h(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy function together with the following abbreviations

δ =
w

ncmcs
, µ =

h

mc
, θ =

l

mc
, and γ =

j

n
.

Similarly, the exponent of (10) can be lower-bounded with (16) and (17) by

F (δ) = lim
mc→∞

− log2 P
(
vHT

wg = 0
∣∣ w)

ncmcs
= min {Fl<h(δ), Fl=h(δ)} .

Consider the truncation length l tending towards infinity, that is, θ → ∞. Then it is straightforward to verify that
Fl=h →∞ and only Fl<h determines the probability exponent F (δ). To find the minimum of Fl<h(δ) in (16) over
µ and γ, we use the fact that the function

f(x) = βx− xh(α/x)
is convex if x > α > 0 and achieves its minimum

f(x0) = α log2(2
β − 1)

at the point

x0 =
α

1− 2−β
.

Minimizing (16) in the same way over 0 < γ ≤ 1, leads to

γopt = min

{
1,

δs

µ(1− 2−β)

}
(18)

with

β =
s+ (µ− 1)(1−Rwg)

sµ
. (19)

Obviously, if s is chosen large enough, γopt follows from (18) as γopt = 1 and (16) can be expressed by

Fl<h(δ) ≥ min
µ≥1

{
−µ
s
h

(
δs

µ

)
+
µ

s
(1−Rwg)

}
+ 1− 1−Rwg

s
. (20)

By finally minimizing (20) over µ, we obtain

µopt =
δs

1− 2Rwg−1 (21)

which leads to

Fl<h(δ) ≥ δ log2
(
21−Rwg − 1

)
+ 1− 1−Rwg

s
. (22)

Clearly, for the Costello bound (7) to hold, F (δ) needs to be strictly positive, so that the probability of codewords
of relative weight below the Costello bound tends to zero if s is large enough. To complete the proof we find the
minimal value of s for which this holds. The lower limit on s within our derivation was imposed by the assumption
that γopt = 1, which holds as long as

δs

µ(1− 2−β)
≥ 1 (23)

where β was defined by (19). By combining (7), (18), and (21), it can be shown that (23) is fulfilled if s is selected
according to (8), which completes the proof.
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Graph
TB Constituent

Permutation ν dfree Spectrum
code code

Rate Rwg = 1/4

Hyper, g = 2, g3,2 = 8
1 1 1 1

1 Z Z2 Z3

1 Z3 Z Z2


(16, 4) hc

1(D) = 1 +D +D2 +D4

hc
2(D) = 1 +D +D2 +D3 +D4

hc
3(D) = 1 +D +D3 +D5

hc
4(D) = 1 +D2 +D5

dcfree = 5

(1, 4, 2, 3)

(3, 4, 1, 2)

51 64 1,. . .

(20, 5) 67 120 1,. . .

Rate Rwg = 1/3

Utility, g = 4, g2,2 = 4(
1 1 1

1 Z Z2

)
(9, 3) hc

1(D) = 1 +D +D4

hc
2(D) = 1 +D +D3 +D4 +D5

hc
3(D) = 1 +D2 +D3 +D4 +D5

dcfree = 6

(3, 1, 2) 26 30 4,0,0,0,0,0,3,0,6,0,. . .

Heawood, g = 6, g2,2 = 6(
1 1 1

1 Z Z3

)
(21, 7) (1,3,2) 64 32 7,0,0,0,0,0,7,0,7,0,. . .

Rate Rwg = 1/2

Bipartite, g = 4, g2,2 = 4(
1 1 1 1

1 Z Z2 Z3

)
(16, 8)

hc
1(D) = 1 +D +D2 +D4

hc
2(D) = 1 +D +D2 +D3 +D4

hc
3(D) = 1 +D +D3 +D5

hc
4(D) = 1 +D2 +D5

dcfree = 5

(3, 4, 2, 1) 39 31 12,. . .

TABLE I
EXAMPLES OF PROMISING WOVEN CONVOLUTIONAL GRAPH CODES

VI. EXAMPLES

Parameters for some promising examples of woven convolutional graph codes are presented in Table I for rates
Rwg = 1/4, Rwg = 1/3, and Rwg = 1/2 with free distances up to dfree = 120.

For each entry in Table I, the parameters of the underlying graph or hypergraph are given in compact form by
the generator matrix G⊥phg (Z) of its parent convolutional code in the first column, as well as the corresponding
girth and (s, d)-girth. By tailbiting we obtain the generator matrix G⊥hg of the dual hypergraph-based block code
C⊥hg, which is equal to the parity-check matrix Hhg of the hypergraph-based block code Chg which we will utilize
hereinafter.

Consider the parity-check polynomials of the rate R = b/c constituent convolutional code in column three, and
their permutations as specified in the fourth column. By interpreting these codes as rate R = b/c block codes over
the field of binary Laurent series, we obtain our final woven convolutional graph codes.

In column four the overall constraint length ν of the corresponding minimal-basic [6] generator matrix Gwg(D)
is specified. By applying the BEAST [8], the free distance dfree as well as the first Viterbi spectral components
have been calculated and are given in the last two columns of Table I.

Even though the girth of the underlying graph as well as the free distance dcfree of the constituent convolutional
code is in general rather small, it is possible to construct woven convolutional graph codes with free distances up
to at least 120 [9].
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OFD Convolutional Code (ν = 15, dfree = 30)

Woven Convolutional Graph Code (ν = 26, dfree = 30)

ODP Convolutional Code (ν = 26, dfree = 40)

Fig. 4. Comparison of bit-error rate performances for Viterbi decoding for a rate Rwg = 3/9 woven convolutional graph code with ν = 26
and dfree = 30 in comparison to a rate R = 1/3 ODP convolutional code with ν = 26 and dfree = 40 as well as a rate R = 1/3 OFD
convolutional code with ν = 15 and dfree = 30.

Consider for example the first entry in Table I, where the generator matrix of the parent convolutional code is
given by

G⊥phg (Z) =

 1 1 1 1
1 Z Z2 Z3

1 Z3 Z Z2

 . (24)

As specified by the second column, we want to obtain the parity-check matrix for a (16, 4) hypergraph-based block
code. By tailbiting (24) to length 4 we obtain the generator matrix G⊥hg of the rate R = 12/16 dual hypergraph-based
code C⊥hg, which is equal to the parity-check matrix Hhg of the rate R = 4/16 hypergraph-based code Chg.

Clearly, the obtained 3-partite, 3-uniform, 4-regular hypergraph has three disjoint sets of vertices Vt, t =
1, 2, 3. While we assign the parity-check polynomials from column three to the vertices within V1 in their nat-
ural order, that is, (h1(D), h2(D), h3(D), h4(D)), the parity-check polynomials for the second and third sets V2
and V3 are permuted according to (1, 3, 4, 2) and (3, 4, 1, 2), that is, (h1(D), h3(D), h4(D), h2(D)) for V2 and
(h3(D), h4(D), h1(D), h2(D)) for V3.

We thereby have constructed a rate Rwg = 1/4 woven convolutional graph code with free distance 64, whose
minimal-basic generator matrix has an overall constraint length of 51.

VII. SIMULATION RESULTS

To demonstrate the error-correcting capabilities of woven convolutional graph codes, the bit-error rate (BER)
performance for Viterbi decoding is simulated for a rate Rwg = 3/9 woven convolutional graph code with overall
constraint length ν = 26 and free distance dfree = 30. The obtained BER performance for Viterbi decoding is
illustrated in Fig. 4. For comparison, the BER performance for Viterbi decoding for the optimum distance profile
(ODP) rate R = 1/3 convolutional code with the same overall constraint length ν = 26 but with the larger free
distance dfree = 40 as well as the optimal free distance (OFD) rate R = 1/3 convolutional code with the same free
distance dfree = 30 but with a smaller overall constraint length ν = 15 are included in Fig. 4.

At low signal-to-noise ratios (SNRs) (0.0–0.5 dB) the BER for the woven convolutional graph code is very
close to the BER of the ODP convolutional code, despite the large difference in their free distances. However, for
higher SNRs, around BER= 10−5, the woven convolutional graph codes loses about 0.2 dB compared to the ODP
convolutional code. The OFD convolutional code, on the other hand, has a significantly worse BER performance
over the whole range of SNRs.
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VIII. CONCLUSIONS

The asymptotic behavior of woven graph codes with constituent convolutional codes has been studied. It has
been shown that within the random ensemble of such codes based on s-partite, s-uniform, c-regular hypergraphs
we can find a value s ≥ 2 such that for any code rate there exist codes satisfying the Costello lower bound on the
free distance. Examples of rate Rwg = 1/2, Rwg = 1/3, and Rwg = 1/4 woven convolutional graph codes with
free distances up to 120 have been presented. By simulations it has been shown that, at low signal-to-noise ratios
the bit error rate performance for Viterbi decoding of a woven convolutional graph code is rather close to that of
the optimum distance profile convolutional code with same overall constraint length.
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