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Abstract

Migration to Next Generation Internet architectures poses new challenges for network
operators in planning core networks and calls for efficient network planning and opti-
mization tools. Optimization models underlying such tools are developed in this thesis.
We study a number of single and two-layer core network design problems defined as
mathematical programmes, focusing on fair bandwidth allocation among demands, re-
covery mechanisms, and load balancing on network links.

Assuming elastic traffic, fair allocation of network bandwidth among the users is not
trivial since different users may have different preferences and requirements for minimum
bandwidth. We study single and two layer network dimensioning tasks where elastic
and non-elastic demands are combined, and investigate different fairness principles, with
special attention devoted to proportional fairness. The models are developed for designing
the networks for the normal state of network operation, as well as for failure states.

For the two-layer problems it is not at all clear in which layer the recovery should
be performed, and what recovery mechanisms to use. Therefore, recovery aspects in
different layers are studied and models are provided for different recovery mechanisms.
Furthermore, a generic resolution framework and heuristic algorithms for the selected
dimensioning and allocation problems in two-layer networks are developed.

Balancing of load on network links decreases probability of rejection of future re-
quests due to shortage of resources in some parts of the network. In the thesis different
load balancing options are discussed, and an integrated routing, recovery, and load balanc-
ing strategy is developed. It combines failure dependent backup path protection, shortest
path routing, and load balancing according to proportional fairness principle.

The thesis presents both theoretical findings, models, and resolution algorithms for
the studied problems. Efficiency of the algorithms is illustrated by numerical examples.
The thesis also gives a systematic view and classification of different aspects related to
network architecture, recovery, fairness, and flow/congestion control.
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CHAPTER 1

Introduction

1.1 Background

The Internet experiences a constant tremendous growth in the amount of network
users, new services and applications that use the network, the resulting traffic, and
the installed bandwidth. In effect, the Internet Protocol (IP) packet traffic con-
stitutes the majority of traffic carried by backbone transport networks and by far
exceeds the traditional voice traffic. Rapidly growing peer-to-peer (P2P) overlay
networks and services create enormous loads on the internet service providers’ net-
works without generating satisfactory revenue, still forcing the network providers
to constantly expand the network capacity to keep customers’ requirements and
expectations satisfied. Besides, many services are migrating to IP. It has became
vital for network providers to offer the so called triple-play services, i.e., data,
voice and video. The data traffic streams generated by the packet-based IP data,
Ethernet frames, cell-based Asynchronous Transfer Mode (ATM) data and Frame
Relay (FR) data, circuit-based voice and fax data, as well as delay sensitive stream-
ing video and voice over IP data are multiplexed and carried over the same multi-
service backbone networks. The need of carrying multiple services in one network
has lead to a complex multi-layer architectures of network resources (and proto-
cols). In a multi-layer network each resource layer basically corresponds to a dif-
ferent data transfer technology. Such architectures are not only inefficient in terms
of resource utilization (because of packet overheads required by each layer), but
also imply high maintenance and operation complexity (and costs) for network
operators. Constantly growing demand for bandwidth and necessity to account
for traffic peaks have been usually addressed by over-dimensioning of network
resources what is economically questionable in today’s market.

In order to stay competitive, operators are forced to increase efficiency and
flexibility of their networks. This can be done in several ways. First of all, the
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trend is to simplify the existing network architecture, converging towards a two
layer, IP/MPLS over DWDM, architecture, where IP takes role of the service
integration traffic layer, multi-protocol label switching (MPLS) provides traffic
engineering possibilities and dense wavelength division multiplexing (DWDM)
is a transport layer of high capacity. The two layer architecture is foreseen to
form the basis of next generation Internet (NGI). What is important, such type
of new architectures also open new possibilities for deploying resource-efficient
recovery mechanisms. Finally, we observe that constantly growing amount of
traffic generated by bandwidth-greedy services (such as those based on P2P) makes
it necessary to assign available network resources among the users of best-effort
network services in a fair way in order to increase users’ satisfaction with network
services.

New network architectures, growing and changing traffic, new service para-
digms, requirements for fair resource sharing, and resilience pose a challenge for
network planning and managing process. This raises a need for efficient network
design tools based on optimization algorithms that allow to take all these aspects
into account both for the greenfield network design and for the routine period-
ical network redesign actions in operating networks. Development of network
design/optimization models underlying such network design tools are at the core
of this thesis. In the thesis we state many relevant single and multi-layer net-
work design problems as optimization models and develop efficient algorithms
(both exact and heuristic) for their resolution. Different recovery options, fair-
ness principles, and load balancing approaches are considered in this thesis. The
developed models and algorithms can be used in network planing and decision
support systems.

1.2 Thesis outline

The thesis is organized as follows. We start the presentation in Chapter 2 by giving
a brief introduction to backbone telecommunication networks from technological
perspective. We discuss network architectures and explain why and how differ-
ent technologies are combined in backbone networks leading to the architectures
composed of several layers of resources. This brings us to presentation of rea-
sons and market drivers for the evolution of the multi-layer network architectures
towards next generation Internet. We present different standardization activities
and proposed models for NGI. Network recovery is undeniably important part
of network functionality, and recovery mechanisms are closely related to network
architectures. Therefore we first discuss common causes for network failures, and
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then review and classify various recovery mechanisms and their interoperability
strategies for multi-layer networks.

In Chapter 3 we introduce a modeling framework. Network design problems
studied in the thesis are presented in a form of multi-commodity flow optimiza-
tion models. In many cases the models are multi-criteria optimization problems.
Therefore we start this chapter by introducing a general optimization model and
discuss different entities of it, paying special attention to multi-criteria goal func-
tions. With the help of the general model we roughly classify optimization prob-
lems and give an overview of main resolutions methods/algorithms. We then
turn our attention to modeling of network entities and functions and introduce
the reader to both single and two layer network modeling using the introduced
mathematical framework.

In Chapter 4 we give an introduction to the theory of fair resource sharing in
data networks. Fairness is in one of the major aspects prevailing in most of the
optimization models considered in the thesis. Thus the chapter covers different
aspects of fairness. We start by describing elastic traffic—the type of traffic which
constitutes majority of the traffic in the Internet. We further reason why do avail-
able network resources have to be shared among the competing users in a fair way
by discussing growth and changing nature of traffic, as well as capacity expansion
in networks and market forces. A question of fair resource sharing brings us to
the topic of utility and welfare functions which we briefly describe thus creat-
ing a framework for classifying different fairness principles. We then cover two
major types of fairness, namely max-min and proportional fairness, encountered
in the optimization models presented in the thesis. The discussion leads us to
definition of lexicographical maximization, as a means of achieving max-min fair-
ness. We then compare bandwidth efficiency of the fairness principles. Finally we
give a detailed overview of flow/congestion control mechanisms from the fairness
perspective and provide classification of mechanisms for fair resource sharing in
telecommunication networks.

In Chapter 5 we study fair bandwidth sharing in single layer networks. The
network design problems studied in this chapter are combined allocation and
dimensioning problems with an emphasis on proportionally fair flow allocation
among demands. We first present a model assuming only normal network state
and provide a detailed derivation of the path generation algorithm for the problem
resolution. The discussion is intended also to help understanding path generation
algorithms for other problems discussed in the thesis. Then we extend the model
to take possible failures into account. The latter optimization model is of multi-
criteria optimization type and combines two types of fairness—among demands
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and among failure states. We assume proportional fair bandwidth sharing among
demands and investigate various options for sharing revenue among failure states.
We also discuss different extensions to the problems. We then present two algo-
rithms for resolving the problem with max-min fair sharing among failure states,
as well as develop a path generation algorithm. The numerical examples illustrate
the efficiency of algorithms.

In Chapter 6 we extend the optimization models presented in Chapter 5 to
two-layer networks. Four network optimization models are presented in this
chapter: one for the normal network state and three for resilient network de-
sign. The three problems differ by where the recovery is performed: in the lower
layer only, in the upper layer only, and in both layers in a coordinated way. All
the problems concern capacity dimensioning and flow allocation in both network
layers, while fair allocation of bandwidth among demands and failure states is the
main objective. We assume proportionally fair allocation of bandwidth among
demands and max-min fair allocation of revenue among failure states. In the
chapter we mainly study the bandwidth efficiency of performing recovery in dif-
ferent layers. We develop algorithms for resolving the considered problems by
extending the algorithms presented in Chapter 5.

In Chapter 7 we develop path generation algorithms for all the problems
developed in Chapter 6 and provide some numerical examples illustrating the
efficiency of the algorithms.

In Chapter 8 we develop a framework and the heuristic algorithm for iterative
resolution of two-layer problems. The framework allows for efficient resolution
of diverse two-layer (can be extended to more layers) network design problems,
employing different recovery mechanisms and objectives. We illustrate this as fol-
lows. First we present models for several most often used recovery mechanisms in
traffic and transport layers. We then give three examples of two-layer problems,
employing different recovery mechanisms and objectives, and develop the heuris-
tic algorithm for resolving the problems. This way also the general resolution
framework is explained by example.

In chapter 9 we present an integrated recovery, routing, and load balancing
strategy for an upper (IP/MPLS) layer of a two-layer network. It applies for the
case when demands have associated priority levels, and we want to optimize net-
work resource allocation in order to serve more incoming requests and to maintain
as much as possible LSPs when a failure occurs. The proposed recovery strategy is
failure-dependent backup path protection with shortest path routing of protection
paths. The load balancing part is based on the proportionally fair allocation of
residual bandwidths. All the three aspects are combined into a multi-criteria ob-
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jective. The efficiency of the proposed strategy is compared against single backup
path routing and various on-line recovery schemes.

In Chapter 10 we summarize contributions of the thesis, provide general con-
clusions of the work and identify directions for future work.
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CHAPTER 2

Network architectures and resilience

2.1 Local and wide area telecommunication networks

Packet switched networks can be roughly divided into two broad categories: local
area networks (LANs) and wide area networks (WANs). Local area networks span
short distances and are intended for interconnection of nodes in a single room,
office or campus. Wide area networks, on the other hand, span large distances
and employ technology allowing for information exchange at high transfer rates.
Metropolitan area networks, nation-wide networks or even international networks
are examples of WANs , which are also sometimes called long haul networks due
to the large covered distances. The most popular technology for LANs is Eth-
ernet, while WAN network architecture is quite complicated and is discussed in
details below. WANs interconnect smaller networks (and thus are called backbone
networks) and connect with other WANs to assure global reachability.

2.2 Backbone telecommunication networks

The scope of this thesis is backbone networks. Formally, each such large network
is defined as an autonomous system. Interconnection of all autonomous systems
forms the Internet backbone. We will discuss autonomous systems and the Inter-
net backbone in more detail.

2.2.1 An autonomous system

An autonomous system (AS) is a set of IP networks and routers (see Figure 2.1)
under the administrative control of one or more parties that present to the Inter-
net a common routing policy [1; 2]. A unique AS number (ASN) is allocated to
each AS and is used in a Border Gateway Protocol (BGP) routing. Each AS is free
to choose any internal routing architecture and protocols. For routing between



8 2. N   

physical 
network

physical 
network

physical 
network

physical 
network

to another AS

to another AS

router

AS

Figure 2.1: An autonomous system composed of several networks and routers.

ASs the BGP protocol is used. Depending on the connections and operation,
there are three types of ASs defined: multi-homed, stub and transit. A multi-
homed AS is an AS that connects to at least two ASs. The multiple connection
gives an advantage that the AS remains connected to the Internet even if one of
the connections fail. However, multi-homed ASs typically do not allow transit
traffic (which is on the way from one AS to another AS) to pass through it. Stub
AS is such that connects to only one other AS. Autonomous systems that allow
connections through itself (transit) to other ASs are called transit ASs. Internet
service providers (ISPs) are always transit ASs [2].

A network of an ISP usually consists of two functional parts: a core (back-
bone) network and an access network, as illustrated in Figure 2.2. Access networks
are used to connect clients to provider’s network and, compared to a core network,
offer rather low transfer rate connections. However, transfer rates are constantly
increasing in access networks as well, as new high-speed technologies, such as fiber
to the home (FTTH), are introduced. Traffic collected from access networks is
transfered by a high speed core network, which also connects provider’s network
to other ASs.
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Figure 2.2: A typical network of an ISP consisting of core and access networks.

2.2.2 The Internet backbone

The Internet backbone consists of many interconnected ASs, that is, commercial,
academic, governmental and other high throughput large-scale networks. Typ-
ically, networks of the largest ISPs, carrier network providers (that have smaller
ISPs and corporate networks as their clients), as well as corporate and governmen-
tal networks interconnect either at Internet exchanges (IXP or IX), or by private
peering links. At IXPs the networks are usually interconnected using open systems
interconnection (OSI) layer 2 access technology. Nowadays, 1/10 Gbps Ethernet
switches are used for the interconnection purposes, where each network gets con-
nected via a single port. The largest of the IXP’s both in terms connected peers
and throughput is the Amsterdam Internet Exchange [2]. An alternative way for
given two providers to interconnect their networks is by private peering links,
where the dedicated capacity is not shared by other parties. Historically such an
interconnection was done using synchronous optical network/synchronous digital
hierarchy (SONET/SDH) circuits between the facilities of the providers. Today
the interconnection usually occurs at the so called carrier hotels or carrier-neutral
colocation facilities. Physically the interconnection is of point-to-point type using
the suitable technology, or even a dark fiber. Most traffic exchange in the Internet
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occurs via private peering. Routing information between ASs is exchanged using
BGP.

Interconnection of two networks is accompanied by an interconnection agree-
ment, which specifies on which terms and conditions do the networks exchange
traffic. From perspective of traffic exchange the relationship between two inter-
connected networks can be denoted as transit, peer or customer. Transit (or pay)
relationship implies that one network provider (let us call it NET1) pays settle-
ment to other provider (NET2) for Internet access. Peer (also called swap) rela-
tionship implies that the two networks (NET1 and NET2) exchange traffic freely.
Customer (or sell) relationship means that a network provider (NET2) is getting
payed to provide Internet access to another network (NET1). Thus, in order for
one network to be able to reach another network on the Internet, it must either
peer with the network directly, or sell Internet connection to that network, or
pay some other network for transit to the desired network, where the transited
network must also be in peer, sell or pay relationship with the next network on
the way [2].

2.3 Architectures of backbone telecommunication net-
works

The resources of today’s backbone telecommunication networks are structured in
a multi-layered fashion which is referred to as the multi-layer network architecture.
As opposed to the protocol architecture (e.g., specified by the OSI model), the
architecture of resources relates to different technologies (or instances of the same
technology) that are deployed in the network. The networks are usually com-
posed of several resource layers, corresponding to different technologies that are
stacked one upon another in order to achieve the desired overall network func-
tionality. An example of a commonly used architecture is IP over ATM over SDH
over DWDM, as shown in Figure 2.3(a). The reason for using multi-layer archi-
tectures is that no single technology is able to provide the functionality required
by diverse services, reliability, high throughput, etc. Due to the popularity of
the Internet and widespread of the Ethernet transport, as the main standard for
LANs, IP has become the main platform for introducing and providing different
services. Nowadays, IP traffic constitutes the majority of traffic carried in the net-
works. Unfortunately, native IP does not have any traffic engineering capabilities,
QoS, nor reliability-assuring mechanisms. This is where ATM comes into picture.
ATM is able to provide quality of service (QoS), reliability, flow control, has mon-
itoring and traffic engineering capabilities. But on the other hand, ATM is not
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widely used by end-users and have a big overhead due to small cell sizes. Therefore
running IP over ATM complements IP with the features it lacks. SONET/SDH
is used as a transport layer to carry traffic over fiber, because of its low delay, low
error rate, inbuilt protection switching, and functionalities for management and
monitoring. Finally, DWDM is used to effectively increase and share capacity
of fibers [3]. To conclude: only a combination of multiple layers constitute a
network architecture suitable for multi-service reliable communication backbone
networks.

Unfortunately, the resource utilization in a multi-layer network is inefficient.
The inefficiency is caused by an overhead added when multiplexing traffic of an
upper layer into flows of a lower layer, as well as by some framing issues. Thus, for
two adjacent resource layers, multiplexing upper layer traffic flows into the lower
layer flows results in about 80% utilization of the lower layer link capacities [3].
And for a network with several resource layers these utilization factors multiply to
yield the total utilization factor for the whole network, which can even be as low
as 50%. Additionally, due to protection switching techniques in SONET/SDH,
often only 50% of capacity installed in SONET/SDH layer is used to carry the
payload. Therefore the utilization factor is even smaller [3]. Poor utilization
of resources is not the only problem of the multi-layer networks. Since every
layer acts as a stand-alone entity and has its own management and control plane,
the overall management and maintenance of the network becomes very complex
and results in high network cost. Besides, introduction of new services is not
easy since, in some cases, a service has to be provisioned in all the layers, using,
possibly, different management systems for each layer.

Large traffic volumes make this inefficiency (both, in terms of capacity and
management) not acceptable, and call for new and more efficient architectures.
Evolution of the network architectures is shown in Figure 2.3(b)–2.3(c). The
old architecture (Figure 2.3(a)) still prevails in many backbone networks today,
while newly established networks often use packet over SONET (PoS) archi-
tecture, shown in Figure 2.3(b). Future networks are seen as IP/MPLS over
DWDM. Functions of ATM are being replaced by generalized MPLS (GMPLS).
Also, many functions of SONET are being delegated to DWDM. Still, a thin
layer between IP/MPLS and DWDM will remain. It will be used to convert the
upper layer traffic into bit strings for the physical transmission, perform flow con-
trol, framing, error monitoring, etc. Several technologies, such as Thin SONET,
Generalized Framing Procedure (GFP), 10 Gigabit Ethernet (10 GbE) or digi-
tal wrappers, could be used in this layer. Transport network topology will also
change. SONET rings will be replaced by mesh-interconnected Optical Cross
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Figure 2.3: Evolution of the backbone network architecture (adapted from [3]).

Connects (OXCs), allowing for implementation of more effective recovery mech-
anisms.

In the sequel, when discussing different two-layer network models, the upper
layer will be referred to as the traffic layer, and the lower layer—as transport layer.

2.3.1 The IP-over-optics network architecture

IP, due to its current popularity and a number of services using it, has secured its
place as a service integration layer in the next generation architecture of the net-
work. The choice of DWDM as the transmission technique for the transport layer
network is also natural due to its ability of providing high throughput. However,
DWDM does lack many features (such as framing, protection/restoration mech-
anisms, OAM&P1 possibilities) provided by SONET/SDH in today’s networks,
to be able to act as a stand-alone transport layer. ITU-T addressed this issue
by defining the Optical Transport Network (OTN) architecture [4], combining
the advantages of SONET/SDH and DWDM. Basically, OTN uses DWDM
as a physical transmission technology, complementing it by framing (wrapping)
standards, as well as OAM&P and survivability functions. OTN also introduces
forward error correction (FEC), which was absent in SONET/SDH, this way de-
creasing a number of necessary regenerators in the network and, thus, reducing
the cost. Nodes in the OTN network are connected by fibers, and optical chan-
nels (lightpaths) are established between any pair of the nodes in the network.
OTN performs multiplexing, routing, management and assures survivability of

1OAM&P stands for operation, administration, maintenance, & provisioning
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the lightpaths. A distinct feature of OTN is its ability to provide a transport func-
tionality for any digital signal. One feature that is missing in the OTN model is
the ability to provision lightpaths automatically (i.e., without intrusion of man-
agement system) on demand from the client layer. This and other extensions to
OTN, as well as abstract description of the OTN control plane functions and
interfaces (within the OTN layer, as well as to the client layer) were defined by
ITU-T as an Automatic Switched Optical Network (ASON) [5] model. The
ASON model has been generalized for different transport technologies (not only
for OTN) and defined as Automatic Switched Transport Network (ASTN) [6].
ASON/ASTN framework targets the so called overlay model of the control plane
architecture, but defines no actual protocols to implement the defined function-
ality. In parallel to ITU-T, IEEE has developed a model of the multi-layer net-
work and its control plane protocols within the Generalized Multi-protocol Label
Switching framework [7]. GMPLS targets the so called peer model of the control
plane architecture. However, protocols of GMPLS suite are also seen as the main
candidates for implementing the functionality of ASON/ASTN framework. A
detailed comparison of ASON and GMPLS can be found in [8]. The basic fea-
tures and functions of different control plane models are presented below.

2.3.2 Network planes

Functionally, communication network can be seen as composed of three planes
[9]:

1. Data or user plane. The transfer of payload (user data) takes place in this
plane. In a multilayer network, every network layer has its own data plane.

2. Control plane manages signaling in the network required to assure func-
tionality of the network data plane. Control plane performs connection
setup, supervision and tear down, assures routing consistency, etc. In other
words, control plane elements and protocols regulate how routers/switches
process packets/connections. Certain routing protocol functions are also
considered as a part of control plane. These are the functions responsible
for building and maintaining the routing information in network nodes.
Besides, control plane can define a preferential treatment for some pack-
ets/connections for which some quality of service is required. In a multi-
layer network every network layer has its own control plane, which typically
functions in a distributed way in the network. An example of control plane
is a Signaling System 7 (SS7) used for telephone networks.
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3. Management plane is usually operating in a centralized way and typically
performs monitoring of network devices and facilitates network adminis-
tration. Typical usage examples of management plane functions are mon-
itoring of network device up-times, measuring network interface through-
put, collecting interface information, etc. [2]. In a multi-layer network
the management plane is usually constituted by two parts: a layer manage-
ment for each network layer and a plane management to assure operation
between the layers. Typical examples of management plane systems are
Telecommunication Management Network (TMN) [10] and Simple Net-
work Management Protocol (SNMP) [11].

2.3.3 Control plane models for multi-layer networks

We have discussed in Section 2.3 that legacy telecommunication networks are
usually composed of several layers of resources. Often each of the layers has its
own control plane, making impossible to perform integrated management of net-
work resources across the resource layers. This not only decreases the efficiency
of resource utilization, increases management and operation costs, but also pre-
vents from flexibly adapting to changing traffic patterns and capacity needs. Due
to a range of new network services, both traffic patterns for given connections
and locations between which traffic has to be carried changes over time. Thus
there is a need for bandwidth-on-demand services which the legacy telecommu-
nication networks can not provide. An example of an application which requires
bandwidth-on-demand is a storage area network (SAN). The need for bandwidth
management flexibility calls for intelligence in transport networks, leading to the
concept of intelligent optical network (ION) [9] or, in general, intelligent trans-
port network (ITN). Intelligent network control allows not only for efficient re-
source usage and reallocation on demand, but also makes possible to implement
bandwidth-efficient recovery mechanisms. In the intelligent network it will be
possible to set up (cross-layer) recovery connections after a failure has occurred,
utilizing the surviving resources on all layers in the best way. Intelligence in the
networks is implied by a control plane. There are three different control plane
models envisaged for multi-layer networks: overlay, peer and augmented.

2.3.3.1 The overlay model and the ASON-based network architecture

In the overlay (also called client-server) model a network is seen as composed of
two independent layers of resources: IP and ASON/ASTN (Figure 2.4). Both
layers have their own independent transport, control and management planes.
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Figure 2.4: Network architecture with overlay model.

The transport plane performs switching (forwarding). The control plane per-
forms signaling, routing, manages connections and implements a resilience mech-
anism. The management plane supervises the network, coordinates interworking
between the layers and provides interface to an OAM&P system.

ASON/ASTN just defines a generic model of the intelligent transport net-
work and functions of different entities, as well as interfaces between the enti-
ties. The ASON/ASTN based architecture implies the overlay network model.
Since no protocols are developed by ITU-T to implement the intelligence of
ASON/ASTN, ITU-T is closely collaborating with IEEE in order to adapt some
GMPLS protocols for this purpose. Thus the control planes for both layers of the
network can be instantiated from the same type of control plane, i.e., GMPLS.

Nodes of the upper (IP/MPLS) resource layer are Label Switch Routers (LSR).
LSRs are interconnected by IP links. Besides the ordinary IP routing capabilities,
LSRs are also Packet Switch Capable (PSC) or Layer Two Switch Capable (L2SC).
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The PSC feature implies that routers are able to forward packets along Label
Switched Paths (LSPs), based on packet formats and labels. L2SC routers are able
to recognize and forward cells and frames (of ATM and FR) along LSPs. Signaling
protocols extended with traffic engineering (TE) capabilities are to be used for
configuration and control of LSPs. The two signaling protocols are the Resource
Reservation Protocol (RSVP-TE) [12] and the Constrained Label Distribution
Protocol (CR-LDP) [13]. Two routing protocols, extended with TE capabilities
that are to be used on IP/MPLS layer are Open Shortest Path First (OSPF-TE)
[14] and Intersystem to Intersystem (ISIS-TE) [15]. The IP/MPLS layer can be
subdivided into routing domains. Interior Gateway Protocol (IGP) is used to
distribute routing (link state) information within each domain, whereas Exterior
Gateway Protocol (EGP) is used to exchange address reachability information
between the domains.

The lower (ASON/ASTN) layer nodes are DWDM-enabled optical cross
connects that are connected with fiber cables. Links between the nodes are formed
by a number of wavelength channels. Paths in the DWDM layer are called optical
connections (lightpaths) and are formed of a sequence of links. Lightpaths realize
the capacities of the client layer links. OXCs are capable of performing wavelength
conversion and switching of lightpaths depending on the incoming interface and
wavelength. Lightpaths can be of one of the three types: i) permanent – set up by
the management system; ii) soft-permanent – set up by the management system
using control plane signaling protocols; iii) switched – set up directly by control
plane signaling protocols on request from the client layer. The lower layer can
also be subdivided into the carrier domains. Within each carrier domain of the
lower layer link state information is distributed using Internal Network-Network
Interface (I-NNI). Between the carrier domains address reachability is exchanged
using External Network-Network Interface (E-NNI).

The layers interact according to the ASON/ASTN model. The IP layer acts
like a client layer to the optical (i.e., DWDM) layer, which is a server layer. Each
link of the IP layer is implemented by a lightpath in the DWDM layer. Commu-
nication between the layers uses a User-Network Interface (UNI). UNI is regarded
as unsafe and therefore hides all the details (such as addressing, topology, routing)
of the lower resource layer from the upper resource layer.

2.3.3.2 The peer model and GMPLS-based network architecture

All resource layers in a network with the peer model (Figure 2.5) are integrated
into a single (unified) transport plane. Therefore the network also has single in-
stances of control and management planes, which are common for the whole
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Figure 2.5: Network architecture with peer model.

network. This means that naming, addressing, topology and routing information
is common for all types of resources in the network. For integrating all the re-
source layers it is necessary that there is a common protocol for conveying control
information (such as address resolution and initiation of connection setup/release)
between different resource layers. That is, the control protocol should allow IP
and DWDM networks interact like peers. The peer model is targeted by the GM-
PLS concept. The GMPLS signaling, routing and link management protocols can
be used to implement a common control plane in such a network.

The transport plane of the network is formed by nodes interconnected by
fibers. The nodes in the network are GMPLS LSRs. They are able to perform
ordinary IP routing, packet-oriented switching (have PSC, L2SC interfaces) and
also lambda-oriented switching (have a Lambda Switch Capable (LSC or λSC)
interface). The switching decision depends on the information associated with
the generalized label (GL), which can consist in labels added to packets, cells,
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frames, as well as wavelength (and interface) of incoming signal or even an op-
tical fiber. GL defines LSP encoding type (packet/digital wrapper/wavelength),
switching type (switching of LSP as a TDM circuit or as a whole wavelength),
and a generalized payload identifier (for example, packet over SONET) [9]. A
number of wavelengths between adjacent nodes form links. And lightpaths are
formed as sequences of links (a specific wavelength is used on each of the links
for the specific lightpath). The network can be subdivided into domains. Link,
packet LSP, and lambda LSP information is distributed within each domain using
the IGP protocol, while address reachability is exchanged between the domains
using the EGP protocols.

The control plane manages and supervises the transport plane. Information
about network topology and status of resources is disseminated using routing pro-
tocols, i.e., OSPF-TE, IS-IS-TE, CSP and updated BGP. Connection setup and
maintenance are performed by signaling protocols, such as RSVP-TE and CR-
LDP. To control data link parameters the Link Management Protocol (LMP) is
used. GMPLS extensions to RSVP-TE and CR-LDP signaling protocols are de-
fined in [16; 17] and [18] respectively. These changes are implied by the intro-
duction of the generalized label, and allow nodes to distribute GLs and perform
configuration of nodes with different switching capabilities along an LSP.

2.3.3.3 Augmented control plane architecture

The augmented architecture constitutes a trade-of between the overlay and peer
control plane models. Basically, the augmented model is similar to overlay model,
and assumes that each resource layer has its own transport and control plane.
However, some control information, such as reachability, is exchanged between
the control plane instances of different layers. The augmented model allows to
share the client-layer reachability information by distributing it over the transport
network, but at the same time to not disclose the transport layer reachability
information to the client layer.

2.3.3.4 Peer vs overlay vs augmented model

All three models have their pros and cons. A common control and management
plane in a peer model allows avoiding duplication of the functions performed in
these planes in each resource layer (as is the case in the overlay model). Also, due
to integration of all resources into a single transport plane, there is no need for
standardization of the UNI interface between IP/MPLS routers and OXCs. On
the other hand, integration of different (technology) client networks into a single
transport plane is difficult. A single control plane in peer model makes all the
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information (including such confidential information as the transport network
topology) freely accessible in the client domain. Besides, the peer model assumes a
single carrier owning the transport network, because no NNI interface is defined.
In the overlay model, only subsets of (non-sensitive) information are available
to client and other carrier’s networks due to defined UNI and NNI interfaces. A
trade-off between the advantages and disadvantages of the overlay and peer models
is provided by the augmented architecture. However, there does not exist yet a
clear definition or understanding of the augmented model.

2.4 Network resilience

In our information society more and more services require the survivability of
underlying telecommunication transport networks. These are emergency services
(such as 112 in Europe or 911 in USA), tele-medicine, e-banking, and stock
markets, just to mention a few. Therefore requirements for transport network
survivability2 are very high. The network architectures that were/are used often
imply using resilience mechanisms requiring 100% extra capacity in the network
for protection purposes. As new services are introduced and demand for capacity
grows, there is a need for new network architectures and resilience mechanisms
with more efficient capacity utilization, allowing to decrease network cost, at the
same time still providing an adequate level of network resilience. Resilience of
networks is assured with help of protection and restoration mechanisms, which
are discussed later in this section. Before this we will discuss shortly common
causes of network failures.

2.4.1 Network failures: causes and statistics

Network failures (also called outages) can be divided into planned and unplanned.
Planned network failures occur due to network maintenance actions that are per-
formed by a network operator. Such failures can be caused, for example, by soft-
ware or hardware upgrades. This kind of failures is easy to deal with since the
operator knows exactly when and where will the failure occur and thus it can
prepare accordingly: warn the customers, choose the low activity time (e.g., at
night) and, if possible, reroute the traffic away from the affected network ele-
ments. Much more trouble is caused by the unplanned outages. These can be due
to equipment failures, natural disasters or actions of third parties (such as sabo-
tage, digging accident, etc). Failure rate figures from Telcordia (former Belcore)
[19] show that most often link failures are caused by cable cuts (4.39/year/1000

2In the sequel, terms ’survivability’, ’resilience’ and ’recovery’ will be used as synonyms.
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Equipment type Range of MTBF Typical MTTR
(hours) (hours)

IP interface card 104 − 105 2

IP router 105 − 106 2

ATM switch 105 − 106 2

SONET/SDH DXC or ADM 105 − 106 4

WDM OXC or OADM 105 − 106 6

Table 2.1: Typical values of MTBF and MTTR for network equipment failures. Adapted
from [9].

sheat miles). Another study, which was initiated by regulatory bodies in USA
[20], shows that about 60% of cable cuts were due to dig-ups. The study is
based on 160 cases. It is also reported that in average the physical repair took 14
hours and the average service outage was 5.2 hours. In order to describe failures
of network elements statistically, two parameters are introduced: the mean time
between failures (MTBF) and the mean time to repair (MTBR). MTBF specifies
average time interval between two subsequent failures of the same network com-
ponent. After the component has failed, MTTR specifies the average time needed
to repair it. Typical MTBF values for a 1000km of cable are in the range of 50
to 200 days. The MTTR for a failure depends on the severity of the failure and
location of the failing component and can range from hours to weeks [9]. The
failure rate of equipment is often magnitudes less than for cables. Some typical
values of equipment failures are given in Table 2.1.

As transmission rates grow, amounts of data carried by telecommunication
networks become huge. Therefore a breakage of even a single optical cable would
have a big impact, if no recovery is employed. Thus the role of mechanisms assur-
ing network resilience is vital. It is clear, however, that although technical means
would allow, it is not economically feasible to protect network from any possible
failure scenario. Therefore networks are designed to survive only a subset of all
possible failure scenarios (called accounted failures in [9]), which have the highest
probability of occurring. Taking into account that MTTR is much shorter than
MTBF, it is a very low probability that several components will fail simultane-
ously, and thus, except only for the most critical parts, it is enough to consider
only single-link or single node failures. Furthermore, as it was discussed above,
cable failures are much more probable to occur than equipment failures. Thus
the emphasis in network survivability should be put on resilience mechanisms,
allowing to recover from cable cuts.

The following section gives a survey of different resilience options in single
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Figure 2.6: Classification of recovery mechanisms.

and multiple resource layers of the multi-layer network and gives their compar-
isons.

2.4.2 Protection and restoration

According to the way resilience is assured in the network, two broad types of re-
covery mechanisms are defined. These are 1) protection and 2) restoration [21].
Classification of different recovery mechanisms is summarized in Figure 2.6 and
different mechanisms are discussed in more detail in the text below.

2.4.2.1 Protection

Protection (also called protection switching) means that for a primary entity (e.g.,
primary path) there is a pre-established backup path and that flows are switched
to the latter when the former fails. Depending on the span of the backup path,
few protection techniques can be defined:

1) local protection - when the backup path protects a single link (in this case,
the technique is also called link protection; see Figure 2.7) or node (the technique
is called node protection; see Figure 2.8) [22]. Also, preconfigured protection cycles
(p-cycles) belong to the group of local protection mechanisms. The p-cycle pro-
tection mechanism consists in forming preconfigured cyclic closed paths (Figure
2.9(a)) from spare capacity in a given mesh network, which is used to protect
against an on-cycle link (Figure 2.9(b)), straddling link (not on the cycle, but the
end nodes of the link are on the cycle; see Figure 2.9(c)) or even node failures. The
main advantages of p-cycles are fast (ring-comparable) protection switching and
little redundancy (overhead of resources, needed for the protection mechanism)
[3];

2) path protection - when the path spans from source (ingress) node to the
destination (egress) node (Figure 2.10);
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Figure 2.7: Link Protection.

Figure 2.8: Node protection.

(a) A protection cycle.

Failure
(b) Protection against an on-
cycle failure.

Failure
(c) Protection against a strad-
dling link failure.

Figure 2.9: p-cycle protection.

Figure 2.10: Path protection.

3) subpath protection - when the path is divided into segments and each seg-
ment is protected separately (Figure 2.11). Another way to perform subpath
protection is to divide a network into several protection domains, where the path
segment in each domain is protected only by the resources of the same domain
(Figure 2.12). A protection domain diameter can be introduced, which is defined
as a hop count of a shortest path between a node (belonging to the primary path),
where flow is split into primary and backup path, and a node, where the two paths
are merged again. Then protection domain could be seen as a generalization for
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all protection techniques: setting the diameter to 1 results in link protection, set-
ting diameter equal to a primary path length results in path protection, whereas
some intermediate value between the two results in a subpath protection mech-
anism. Domains must overlap in order to survive link and node failures on the
domain boundaries [23; 24; 25].

Figure 2.11: Subpath protection.

Figure 2.12: Domain protection.

A technique combining features of local and path protection is local loop-back
(Figure 2.13). In this case, a protection path consists of two parts: a reverse part
(from an upstream end node, detecting the failure, to the source) and a diverse
part, which is a backup path from source to destination. Protection switching in
this mechanism is performed by the detecting node, not the source [22].

Figure 2.13: Local loop-back protection.

In path protection, primary and backup paths must be link-disjoint (not shar-
ing any of the links), so that no single link failure could affect both paths. Node
failures can be taken into account by requiring that primary and backup paths are
node-disjoint (not traversing the same nodes).
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A disadvantage of local protection mechanisms is that a backup path is needed
per each link/node of the primary path. When network resources on a backup
path are dedicated for protecting only one primary path, local protection mecha-
nisms imply inefficient usage of the resources. On the other hand, the switching
time associated with protection (from primary to backup path) for the local pro-
tection mechanisms is shorter than for path protection mechanisms, because it is
performed locally at the detecting node. For path protection, switching is per-
formed by the source node. Therefore more signaling is needed implying longer
recovery time, which also means larger amounts of lost traffic, as compared to local
protection mechanisms. Advantages of path protection are more efficient utiliza-
tion of backup resources, as well as usually lower end-to-end propagation delay on
the backup path. Subpath protection falls in-between the two techniques (local
and path protection), by providing fast recovery switching and requiring modest
resource utilization [22; 25].

Protection mechanisms can also be classified according to how the spare net-
work resources are allocated for protection purposes. Based on this criteria ded-
icated protection and shared protection mechanisms are identified. In dedicated
protection mechanism a protection entity is dedicated to each working entity.
Commonly known dedicated protection mechanism are 1+1 and 1:1 [9]. In 1+1
protection the traffic, which is sent on the primary entity (e.g., primary path),
is also duplicated on the protection entity (e.g., protection path). A receiving
node then chooses between the primary and protection entities, based on some
predefined criteria, such as signal quality. In 1:1 protection mechanism only the
primary entity is used to carry traffic between the intended source and destina-
tion nodes during normal operation. The protection entity can be used to carry
additional traffic that can be preempted. When the primary entity fails, traffic
is switched over to the protection entity, thus preempting the low-priority traffic
there [21].

In shared protection mechanism, there are M dedicated protection entities,
which are shared between N primary entities, where M < N . Shared protection
mechanism are denoted by M:N. In a case of failure, only one primary entity can
be protected by one protection entity at a time. One of the shared protection
mechanisms is 1:N, where N working entities share one dedicated protection
entity [21]. To resolve a situation of which primary entity has a right to use the
shared protection entity, when multiple primary entities protected by the same
protection entity fail, priorities could be assigned to the primary entities.

An advantage of 1+1 protection technique is that it is very fast, but it is
also expensive, since all the resources are duplicated. 1:1 protection technique
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is slower than 1+1, since a communication between end nodes is required to
perform switching to the backup path. An advantage of 1:1 protection technique
is that in normal operation the backup path could be used to carry lower priority
traffic, which could be preempted in a case of failure on a primary path. Using
M:N protection mechanisms can increase system availability with a small increase
in total cost. An advantage of using M:N mechanisms is, as in a case of 1:1, that
lower priority traffic can be carried on backup paths. A disadvantage is that it is
impossible to protect all N primary entities if they fail simultaneously.

Yet another protection approach is protection by path diversity. The idea is to
split the whole demand volume into a number n of disjoint paths. Assuming a
single link failure, only 1/n of demand’s flow is lost and the rest survives.

In general, shared protection mechanisms better utilize network resources,
but recovery time is longer than for dedicated mechanisms. This is due to the fact
that nodes (e.g., OXCs) on the protection path cannot be configured in advance
(before a failure occurs).

One more important criterion for classifying protection mechanisms concerns
the reuse of non-failing resources on the failing primary path, once flows have
been switched to the protection path. In this regard we can differ among the
protection mechanisms with stub release and without it. Stub release implies that
when a primary path fails, all the non-failing resources on it are released and can be
reused for other paths. When stub release is not used the non-failing resources of
the failing primary path remain reserved even when the demand flow is switched
to the protection path.

2.4.2.2 Restoration

Restoration (also called recovery by rerouting) attempts to find and establish new
paths or path segments on-demand after a failure has occurred, in order to restore
(reroute) the affected (by the failure) flows. These new paths use the available
(unassigned) surviving resources. If there are not enough resources to recover
higher priority traffic, lower priority traffic can be preempted [21],[22]. When
all the traffic in the network is of the same priority (or no priorities defined)
and there is not enough of resources to restore the affected traffic on another
paths, the affected flows are blocked. If the restoration mechanism is used in
DWDM networks, then it also implies finding a new lightpath together with a
wavelength. Three main types restoration techniques exist: 1) link restoration, 2)
subpath restoration and 3) path restoration [26]. In path restoration, after detecting
a failure on a working path, a source node tries to find and establish an alternative
path to the destination using spare (surviving) network resources. In subpath
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restoration, when a failure occurs, it is the upstream end node (the source node of
the failing link, with respect to the direction of the flow), not the source, which
tries to find an alternative path to the destination, avoiding the failed segment of
the original path. In link restoration, when a failure occurs, the upstream end
node tries to find and establish an alternative path to the downstream end node,
circumventing only the failed link [26].

It is shown in [27], that in optical networks path restoration is more effec-
tive in terms of restoration success ratio (restored/failed connections), while link
restoration is more effective in terms of restoration time. Simulation results of an
IP over WDM network architecture with GMPLS control plane [26], confirm the
above result, also showing that path restoration has the highest restoration success
rate, followed by subpath restoration and link restoration. On the other hand,
both link and subpath restoration have shorter restoration times (link restoration
is the best, followed by subpath restoration) than path restoration.

2.4.2.3 Protection vs. restoration

Usually restoration mechanisms utilize network capacity more effectively, since no
spare capacity is allocated in advance. Also, restoration mechanisms are able to
provide resilience against more complex (e.g., multiple link) failures, whereas pro-
tection mechanisms are designed to cope with a predefined number of simultane-
ous failures (typically, single link failures). Protection mechanisms, on the other
hand, have faster recovery times and provide recovery (availability) guarantees.
Restoration mechanisms cannot, in general, provide any restoration guarantees
[26].

2.4.3 Single-layer and multi-layer survivability in a multi-layer net-
work

Having a network with multiple layers of resources a natural question arises: in
which layer(s) should resilience mechanisms be implemented? And if they are
implemented in several layers, how should the coordination between them be
performed? It is desired to choose a recovery mechanism which provides a good
compromise between availability of network resources, restoration time, resource
utilization and implementation/coordination complexity. The following two sub-
sections discuss the options.
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Figure 2.14: Survivability only in the lower layer. Failing lower layer node can leave an
upper layer node in isolation.

2.4.3.1 Employing survivability in a single layer

Considering an IP/MPLS over DWDM network, only one of the layers could be
chosen to implement a resilience mechanism. The following options are possible:

1)Survivability only in the lower layer. In this case, all the recovery actions are
performed on the lower (DWDM) layer, independently on where a failure has
occurred. Advantages of this method are that recovery actions are performed at
the coarsest granularity and failures do not propagate to the upper layers. Disad-
vantages are that failures in upper layers may not be resolved and in case of lower
layer node failure, the upper layer node(s) might be left in isolation. The isolated
node problem is illustrated in Figure 2.14. In the depicted situation client layer
node e becomes isolated due to the failure of transport layer node E. The lower
layer alone is not able to recover the client layer flow a− e− d.

2)Survivability only in the upper layer. In this case all the recovery actions are
performed in the upper layer. Advantages of this method are that it can handle
lower layer node or upper layer failures more easily. Also, finer granularity of traf-
fic in the upper layer allows for differentiation of flows for recovery speeds/priority
classes, as well as may lead to better capacity utilization. A disadvantage is that
several recovery actions may be needed because of the finer flow granularity, as
shown in Figure 2.15.

3)Single layer survivability combinations. Even if it is only a single layer which
has a responsibility for recovering from failure, the choice of which layer will
perform the job can be made dynamically. The following two options can be
identified: i) Survivability in the lowest detecting layer and ii) survivability in the
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Figure 2.15: Survivability only in the upper layer. Single failure on the lower layer results
in many failures on the upper layer.

highest possible layer. An advantage of using the first technique is that upper layer
failures are easily handled, although the isolated upper-layer node problem is still
persistent. An advantage of using the second technique is that it addresses prop-
erly the situation when traffic flows are injected in different layers by recovering
flows at the proper granularity (a recovery strategy could also be to deal with a
failure in the layer where the affected flows are injected). However, using the sec-
ond technique many recovery actions may be needed in a case of lowest layer link
failure [24].

2.4.3.2 Employing survivability simultaneously in multiple layers

By allowing recovery mechanisms of several layers to cooperate in recovering from
failures and sharing the spare capacity among the mechanisms a better network
resource utilization can be achieved. The following resilience options can be iden-
tified:

1) Uncoordinated approach. Recovery mechanisms are installed in several lay-
ers. All of them try to recover from failure, but there is no coordination between
them. A possible scenario is shown in Figure 2.16. A flow between client layer
nodes a− d is disrupted due to a failure of a transport layer link A−E, carrying
the client layer traffic. Since the transport layer detects the failure first, it initiates
a recovery mechanism and reroutes all the flows of link A − E to the protection
path A−B−E. If the recovery process on the transport layer lasts longer than it
takes for the client layer to detect the failure, the client layer initiates its recovery
mechanism and reroutes the flow from the primary path a−e−d to the recovery
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Figure 2.16: Uncoordinated approach.

path a − b − d. Thus the affected flow is recovered twice. A main disadvantage
of such an approach is wasting of resources, since spare resources needed for a
recovery mechanism have to be allocated in each layer. Besides, spare resources
allocated in the lower layer (e.g., on link A−B in the above example) have to be
sufficient for protecting also the spare capacity of upper layers. Though this spare
capacity can be used to carry lower priority traffic during normal operation, a lot
of preemptable traffic may be disrupted during the recovery process due to several
parallel recovery actions on different layers. An advantage of this approach is that
it is simple to install and operate.

2) Sequential approach. This recovery approach follows the following princi-
ple: if the recovery process of the current layer is not able to recover all the affected
traffic (within a predefined time), it hands over the recovery mandate to the re-
covery process of the next layer above, which then tries to recover the remaining
flows and so on. Although the sequential approach can be used with any sequence
of layers, two obvious strategies are: i) bottom-up - the lowest detecting layer starts
the recovery, and recovery actions on the upper layers follow. An advantage of this
approach is that recovery is performed at the appropriate granularity; ii) top-down
- the upper layer starts the recovery. Only if it is not able to restore all flows,
the lower layer recovery mechanism is initiated. An advantage of this approach is
that higher layers can differentiate traffic and restore high-priority traffic first. An
illustration of the bottom-up approach is given in Figures 2.17-2.18. Two client
layer flows (a − e − d and a − c) are disrupted by a failure of node E in the
transport layer. The transport layer is able to recover only flow 2 by switching it
from path A − E − C to path A − B − C (Figure 2.17). Then the client layer
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takes over and recovers flow 1 on a path a − b − d, which in the transport layer
takes path A−B − C −D (Figure 2.18).

An obvious disadvantage of sequential recovery approach is that recovery ac-
tions in the next layers are delayed, independently of the failure. When imple-
menting sequential recovery mechanism, hold-off timers have to be introduced to
prevent several layers from counter-acting. The higher the layer is, the longer the
timeout value for the hold-off timer should be. Introducing a token signal, which
a recovery mechanism in one layer could use to trigger a recovery action on (hand
over the recovery responsibility to) another layer, could make the recovery process
faster. This is useful in situations when a recovery mechanism on a current layer
identifies that it cannot do anything more to improve the situation, earlier than
the hold-off timer expires.

3) Integrated approach. This approach assumes a common integrated recovery
mechanism across all layers. This is the most flexible, but also most complicated
recovery approach. It implies that recovery mechanisms in all layers are coordi-
nated by the common control plane having information about failed connections,
spare resources in each layer and capabilities of the recovery mechanisms. In this
way surviving resources in all layers can be used in a most efficient way when
recovering from failure [24].

Different layers can implement any of the recovery mechanisms presented in
Section 2.4.2.

2.4.3.3 Choosing a recovery mechanism

Each of the discussed recovery mechanisms has its pros and cons. In general,
all the recovery mechanisms present a trade-off between recovery time (which
also implies the amount of lost traffic) and extra needed capacity. For example,
restoration mechanisms are very capacity-efficient, but take longer time to recover
failed flows compared to protection mechanisms. On the other hand, a 1+1 pro-
tection mechanism requires double the working capacity to be installed in the
network, but provides instant recovery. In this thesis we are concerned only with
the capacity aspect of the recovery mechanisms.

Trade-offs of different resilience schemes in IP/MPLS over DWDM networks
have been studied in [28; 29]. The studies show that better network performance
may be achieved if restoration mechanism are employed on the IP layer and pro-
tection mechanism are used on the DWDM layer.
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Figure 2.17: Bottom up approach, phase1.

Figure 2.18: Bottom up approach, phase 2.
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CHAPTER 3

Modeling framework

3.1 Optimization models and algorithms

3.1.1 Optimization models

In this thesis network design problems (NDPs) are presented as optimization
models (OMs). An OM is given in a form of an objective function and a set
of constraints, defining a region S of feasible values that problem variables can as-
sume. The aim is to find values of problem variables (decision variable) within the
feasibility region such that the objective function is minimized (alternatively—
maximized). A general form of an OM is as follows:

Objective: min f(x) (3.1)

Subject to: gi(x) ≥ 0 i = 1, 2, . . . , I (3.2)

hj(x) = 0 j = 1, 2, . . . , J (3.3)

x ∈ X . (3.4)

In the formulation above, x = (x1, x2, . . . , xn) ∈ S, S ⊆ Rn, is a vector
of optimization (also called decision) variables. Values that decision variables can
assume are limited by problem constraints. It is convenient to divide problem
constraints into inequality constraints (3.2) and equality constraints (3.3). Other
constraints, such as those implying non-negativity or integrality of variables, are
grouped and represented by set X , as in (3.4).

An objective (also called goal) function (3.1) is in general a vector function
composed of m optimization criteria, that is, f(x) = (f1(x), f2(x), . . . , fm(x)),
where each fk(x) is a real-valued function (f : S → R1).

For m = 1 we deal with a scalar objective function and then objective (3.1)
is well defined. Clearly, minimization and maximization problems are equivalent,
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since minf(x) is the same as −max(−f(x)). The problems with more than
one criterion to be optimized are called multi-criteria (also called multi-objective)
optimization problems [30]. Multi-criteria (MC) optimization implies optimiz-
ing several conflicting criteria subject to given constraints. For a multi-criteria
optimization problem there usually does not exist a solution that simultaneously
minimizes all the criteria to the lowest possible value within S. Thus, a solution
to a multi-objective optimization problem is a tradeoff between competing cri-
teria. Typically, if an MC optimization problem reduced to any single objective
criterion fk(x) has a unique solution, the solution to the full MC problem is in
general a (possibly infinite) set of Pareto solutions. Recall that a Pareto solution is
a point in S for which any single criterion in the multi-criteria objective can be
improved only at the expense of making some other criterion worse. The main
difficulty arising when solving MC optimization problems is how to judge which
objective criteria vector is the best (optimal).

There is a number of ways for solving MC problems. First of all, a single
aggregate objective function can be formed, by summing all the criteria functions
possibly multiplied by weighting coefficients. Obviously, the solution will depend
on the chosen weights, thus choosing them is in general difficult. Second simple
approach is to use lexicographical optimization. In lexicographical minimization
we are in first place interested in minimizing the first criterion f1(x). Then,
among all the points that attain the minimum of f1(x) we minimize f2(x), and
so on. In effect, we solve a sequence of single-criterion optimization problems one
by one, and the vector of goal functions is optimized component by component.
Yet another technique for solving an MC optimization problem is to look for a
min-max solution vector. This approach is similar to lexicographical optimiza-
tion, except that what we need to find is the lexicographically minimal criteria
vector f(x) sorted in non-decreasing order. The lexicographical and min-max (in
fact max-min) optimization techniques will be described in more details in the
following chapters. The techniques are extensively covered in [31].

In this thesis most of the optimization models employ MC optimization, and
all the three approaches for resolving the problems are used.

Optimization problems can be divided into several classes. For the clarity
of the discussion let us assume for now that in an OM we have single-criterion
objective function f(x). If f is convex, gi is concave and hj are linear functions
of x ∈ Rn, the problem is called a convex programming problem (CXP). One
important property of convex problems is that local optimality coincides with
global optimality. The sufficient conditions of optimality for a convex problem
are defined by the Karusch-Kuhn-Tucker conditions [32].
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When all f, gi, hj are linear and X = R, the OM is called the linear
programming problem (LP). For problems in this class the solution space S is a
convex polytope defined by the linear constraints [33]. A simplex algorithm created
by G.B. Dantzig in 1947 is widely used for resolving LPs.

Integer programming problems (IPs) are those were X = Z and, as before, all
f, gi, hj are linear. Problems, where some variables are continuous and some are
integers, are called mixed integer programming problems (MIPs). Problems with
discrete variables forming a finite set are called combinatorial optimization prob-
lems. Both LP and MIP problems are used in this thesis to model network design
tasks. For an in-depth coverage of network modeling the reader is referred to [31].

3.1.2 Overview of resolution methods for MIP and IP problems

A general framework for exact solving of MIPs is branch-and-bound (B&B) [32],
[34], [35], and its cutting plane-based enhancement called branch-and-cut (B&C)
[36], [37], [38]. Efficiency of B&B greatly depends on the quality of the lower
bounds provided by the linear relaxation of the MIP subproblems solved in the
nodes of the B&B tree. In general, the quality of the lower bounds depends on
a particular MIP formulation; for example the use of so called "big M" is disad-
vantageous in this aspect. However, sometimes a problem formulation cannot be
stated without the "big M". The reader will encounter several such formulations
in the thesis.

The quality of lower bounds can often be improved by the use of Lagrangian
relaxation (LR) instead of linear relaxation (the use of LR for solving multi-layer
problems was studied in e.g., [39]). Still, in many case the lower bounds can
be most effectively improved by introducing additional linear inequalities (called
cuts or valid inequalities), preferably defining facets of the MIP solution polyhe-
dron. Such cuts can be derived either from the general cutting plane method [32],
[40]), or using problem-specific valid inequalities [41] (note that using problem-
dependent inequalities gives a better opportunity to find the facets). The possible
types of general cuts are for example Gomory fractional cuts, mixed integer round-
ing, disjunctive inequalities, super-additive inequalities (see [40]), and those used
in the lift-and-project method for binary MIPs [37]. In the case of the network
design problems studied in this thesis, the problem-dependent cuts are basically
knapsack-based inequalities, considered in the literature both for modular dimen-
sioning ([42], [43], [44]) and unsplittable flows ([45], [46]). An example of such
type of cuts are cover inequalities and cover-lifted inequalities, see [47]. Addition-
ally, for unsplittable flows, super-additive inequalities have recently been applied
[48].
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General purpose MIP solvers, such as CPLEX [49] or XPRESS-MP [50], use
the B&C approach with in-built general purpose cuts. Problem-specific valid in-
equalities can be used either in own-developed B&B algorithms, or can be added
to the general purpose solvers. It should be emphasized that although problem-
specific algorithms based on B&C are potentially capable of attaining good results
in exact (or near-exact) resolving of the OMs considered in this thesis, in prac-
tice it is very hard to beat general purpose MIP solvers (for example CPLEX)
both in terms of execution times and the quality of the final solution. Still, even
such solvers may not be effective enough already for solving problem instances of
medium size, because of intrinsic difficulty of the studied network design prob-
lems.

For practical purposes it is usually sufficient to solve a problem in hand by
means of some approximate (or heuristic) algorithm if the gap between the qual-
ity of the approximate solution (called the upper bound) and the exact solution
(usually estimated with its lower bound) is small enough, for example not greater
than 5%. Such approximate algorithms can be time efficient in contrast to their
exact counterparts. Also, the exact and approximate solution methods can be
combined, as it will be illustrated in Chapter 7 of the thesis.

Since capacity in telecommunication networks is often over-provisioned (to
account for the future traffic growth), exact solutions to network design problems
are not always used directly, but merely as a support tool in taking a decision
during network planning process. Therefore, in some cases finding a lower bound
on the solution (for example, by solving the relaxed problem) may already provide
the necessary information and radically reduce the solution time.

Due to the above-mentioned reasons in the thesis we mostly study problem
relaxations, decomposition methods, and an approximate problem resolution.

3.2 Network modeling

3.2.1 Single layer network model

For modeling purposes a telecommunication network is typically represented as
a graph (see Figure 3.1). Vertices of the graph, representing network nodes, are
interconnected by edges, representing links. Links can be undirected and directed.
An undirected link allows flow transfers in both directions, while a directed link
allows the transfers in only one predefined direction. Links have a limited capac-
ity, which can be given (fixed), or variable, leading to capacitated or uncapacitated
problems, respectively. Directed links can be of two types: links with shared ca-
pacity among flows in both directions, and those with dedicated capacity in each
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Figure 3.1: Network model.

of the directions.
A demand between a pair of nodes is a requirement for a certain amount of

bandwidth called demand volume between two nodes of the network. For non-
elastic demand a demand volume is a given constant. In the case of elastic traffic, a
demand represents a requirement for available bandwidth (possibly bounded from
below and above) between the two nodes. It is assumed that a list of demands is
given. For each demand, a list of candidate paths (routing list) is specified. A
path (route) is a an ordered list of links making possible to transfer a flow between
the end nodes of a demand. If the required demand volume of a demand is
realized by flows on several paths (from the candidate path list), then the flows
are called bifurcated. Contrary, when for each demand its demand volume is
allocated to one single path, the resulting flow pattern is called non-bifurcated,
and the corresponding network design problem is called unsplittable.

In all the models presented in this thesis the so called link-path (L-P) problem
formulation is used. The L-P formulation is convenient, since it allows to model
both directed and undirected links and flows, as well as to have effective control
on the type of allowable paths. Thus, only networks with undirected links are
considered in this thesis.

3.2.2 Two-layer network model

A multi-layer network is modeled by means of a set of interconnected single-layer
models and a specific feature of multi-layer network modeling is that relationship
between the layers is be taken into account.

For the two-layer case the network model is represented by two overlaid
graphs corresponding to each of the layers (see Figure 3.2). Like in the single
layer network case, a network for each of the layers is modeled as an undirected
graph. Links of the upper layer (also called client/traffic/data layer) are labeled
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with e, where e = 1, 2, . . . , E (alternatively we will denote this as e ∈ E). Each
link e is characterized by its capacity. If the capacity is a given constant we de-
note it by ce, and if it is a variable of an optimization problem we denote it by
ye. A demand d (d = 1, 2, . . . , D, alternatively d ∈ D) between source and
destination (S-D) nodes is a requirement for a certain amount of bandwidth. In
the elastic traffic case, lower bound hd and upper bound Hd for the demand vol-
ume are defined, and the demand can be assigned any bandwidth between the
bounds. D is the number of demands in the upper layer. Each demand d is re-
alized by flows xdp, where index p = 1, 2, . . . ,m(d) (also denoted as p ∈ Pd)
labels paths for flows realizing demand d. The total flow Xd, realizing demand
d, is the sum of flows assigned to all paths of the demand and is calculated as

Xd =
∑m(d)

p=1 xdp , d = 1, 2, . . . , D. Having defined the upper layer, it is recog-
nized that the link capacities of this layer are the demand volumes for the lower
layer (usually the transport layer) that have to be realized by the path flows in the
lower layer.

Entities of the lower (for example optical transport) layer are defined as fol-
lows. The lower layer network is interconnected by (for example optical) links
labeled with g, g = 1, 2, . . . , G (or simply g ∈ G), of capacity ug. If the capacity
is a given constant then we denote it by cg. There is a unit cost ξg associated with
each link, which is the cost of installing one capacity unit on the link. Demands
for the lower layer are the link capacities of the upper layer. Therefore demands of
the lower layer are indexed with e and flows of the lower layer realizing demands e

are denoted by zek. Index k = 1, 2, . . . , n(e) (also denoted as k ∈ Ke) labels the
paths for flows realizing demand volume (i.e., capacity) associated with link e. In
this model all nodes of the upper layer must exist in the lower layer as well, but the
reverse implication is not necessarily true. This is because the transport network
can in general have some transit nodes that are not terminating end-to-end traffic
of the upper layer. The nodes can be either the routers that have double function-
ality (e.g., they act as IP routers as well as DWDM OXCs), or the terminating
nodes in optical network (e.g., pure OXC nodes or WDM terminal nodes).

An example of routing in such a two-layer network is given in Figure 3.3. Say
that we have a demand in the upper layer between nodes a and d. In the upper
layer it is realized by the flow routed on a path a− b− d. However, the capacities
of the IP links are realized by the flows in the lower layer. More precisely, capacity
of the upper layer link a−b is realized by lower layer flow A−B, and the capacity
of link b− d is realized by the flow B − E −D. Thus, the actual path that flow
between nodes a and d takes is a−A−B− b−B−E−D− d. The two-layer
network model, presented above can be easily extended to more layers.
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TransportlayerClientlayer
A E DCBa b c de F

Figure 3.2: A network with two resource layers.

TransportlayerClientlayer
A E DCBa b c de ActualFlowF
Figure 3.3: Routing in a two-layer network.
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Figure 3.4: Relation between capacity modules.

3.2.3 Modeling of modular link capacities

In reality both network demands and link capacities are typically installed in mod-
ules of a fixed size. To model this we denote by L the size of the upper layer
demand module. Also, the upper layer link capacities are installed in modules of
size M , and the lower layer link capacities are installed in modules of size N .

Let us consider an IP/MPLS over DWDM network. In general, module sizes
M and N have the following interpretation (See Figure 3.4 for illustration). If
demands in the IP/MPLS layer are imposed in units of size L, then M represents
the number of the L-size units realized by one module of capacity of the upper
layer links. Consequently, the upper layer link capacity ye expresses the amount
of the modules installed on a link e; observe that in total the link can carry up
to L · M demand modules. A module size N represents a number of M -size
modules. The lower layer link capacity ug gives an amount of modules N installed
on link g. For example, if demands in the IP/MPLS layer are imposed in STM-1
sizes, i.e., L = 155, 52 Mbps, and M = 64, then installing ye = 1 module M on
link e results in capacity of the link of 9, 952 Gbps (which corresponds to STM-
64), and in DWDM layer it requires one OC-192 channel, i.e., 1 wavelength.
Then, if N = 128, and ug = 1 module of size N is installed on link g, it
corresponds to installing a fiber with 128 wavelengths, carrying approximately 10
Gbps each.

Hence the size of module M can be chosen to be equal to capacity carried
by one lightpath in DWDM network. Then, N represents the number of wave-
lengths per fiber and ug gives the number of fibers to be installed on a link.

3.2.4 Modeling of failures

In this thesis network resource failures are modeled by link availability coefficients
αgs ∈ [0, 1] assigned to the lower layer links, where s (s = 0, 1, . . . , S, or simply
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s ∈ S) labels the failure states (also called failure situations) and S is the number
of the considered states. State s = 0 is called the normal state and corresponds
to the case when all links in the lower layer are fully functional and available. A
value αgs = 0 means that link g is totally failed (unavailable) in state s, whereas
αgs = 1 implies that link g is fully available in state s. A fractional value of
αgs represents a partial link failure. Since availability coefficients are defined for
links, to model a node failure, coefficients αgs of the links incident to the failed
node have to be set to a value which represents the level of the node failure. For
example, setting αgs = 0 for all links incident to a certain node v would mean
that node v has completely failed. Note that if node v appears in the upper layer as
well, then in this case all the demands originating (terminating) in node v cannot
be realized and must be discarded.

The notions presented in the previous section can be extended and made
state-dependent. Flows of the upper and lower layers can now be made state-
dependent and defined as xdps (flow realizing demand d on path p in state s)
and zeks (flow realizing demand e on path k in state s), respectively. The total

flow, realizing demand d in state s is then defined as Xds =
∑m(d)

p=1 xdps , d =
1, 2, . . . , D , s = 1, 2, . . . , S. Similarly, the capacities of the upper and lower
layer links can be defined as yes and ues = αgsug, respectively.
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CHAPTER 4

Fairness in data networks

4.1 Elastic traffic

Traffic in packet networks can be roughly divided into two broad categories: i)
non-elastic traffic and ii) elastic traffic [51]. Non-elastic traffic is generated by ser-
vices and applications that require strict quality of service guarantees for minimum
available bandwidth, maximum allowed packet loss, delay, jitter, etc. This type of
traffic is, for example, generated by streaming (real-time) services and applications
such as traditional telephony and IP telephony (VoIP), video conferencing, video
broadcasting over IP (IPTV), video on demand (VOD), etc.

The other type of traffic is elastic traffic which, in fact, constitutes the major-
ity of the traffic in the Internet. The elastic traffic is generated by “greedy” services
and applications, i.e., those that can and do adapt their instantaneous packet rate
to the available bandwidth in the network. Elastic traffic is, for example, generated
by applications using Transmission Control Protocol (TCP) over the Internet, or
by Available Bit Rate service in ATM networks. Examples of applications and ser-
vices generating this type of traffic are web browsing, newsgroups, file downloads,
and peer-to-peer applications.

The on-going evolution of telecommunications networks into multi-service
networks imply that traffic of both types (elastic and non-elastic) is carried by the
same network. This fact is taken into account when defining network models in
this thesis.

4.2 Demand and supply of bandwidth

4.2.1 Traffic growth

The share of elastic traffic in today’s networks constantly grows, mainly due to the
P2P traffic. Recent studies [52; 53] show that the P2P traffic constitutes as much
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as 60% of all the traffic in the backbone networks of broadband service providers
and in the Internet. According to another study [54] analyzing the Internet traffic
in Germany, depending on the time of day, the P2P traffic constitutes between
30% (during daytime) and 70% (at night) of the total traffic. Also, more and
more software companies, open software projects, and content providers choose
to distribute their software products or multimedia content using the P2P tech-
nology, or use the existing P2P networks directly. For example, many Linux distri-
butions such as Debian, Gentoo, Knoppix, Fedora/RedHat, Ubuntu, Mandrake,
Slackware etc., can be downloaded via P2P. TV/video distribution is also moving
towards using the P2P technology. Examples are the recently launched TV/video
content distribution network Joost [55], and BBC development efforts of a VOD
system using P2P technology [56; 57]. Thus the requirement for bandwidth is
moved from the servers of the software/content providers, to the broadband net-
work providers of the end users, and so are the costs of the capacity. All these
new network usage paradigms imply that elastic traffic in the backbone networks
constantly grows, and thus network operators have to address it.

4.2.2 Capacity expansion and traffic management

The network operators used to address the growing need for bandwidth by con-
stantly extending the capacity of their networks. According to [58] the installed
bandwidth in the networks increases at a rate of 300% per year. The leading
service providers report that bandwidth in their networks doubles about every
6 to 9 months [59]. The larger network capacity allows the operators to sell
faster broadband connections, which stimulate yet wider development and usage
of P2P and other bandwidth-demanding services and applications, that in turn
create a demand for even more bandwidth. However, in this closed loop between
network providers, service providers, and end users, network providers typically
gain only from selling the connections, but not from the services that are using
their networks for transporting the traffic. Thus the network capacity expansion
induces the capital expenditure (CAPEX) costs for the operators, but does not
create additional revenue from the broadband services (just for the connection
itself ) which their networks are used for, and therefore give no adequate return on
investment. In order to both satisfy constantly growing demand for bandwidth
and limit CAPEX many network providers oversubscribe their networks. The
oversubscription is based on the statistical models and observed network usage
patterns, which allow for an assumption that all the users will never be connected
to the network at the same time to consume all its resources [53]. Thus the users
can expect that sometimes they will not be getting the maximum throughput that
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was promised, because they have to share the network capacity with other users. In
the case when users connect to the Internet via a cable television (CATV) [60] or
residential/community/campus LAN network, the bottleneck is in the premises
of the provider’s network. If, on the other hand, they connect via any type of
digital subscriber line (DSL), they have to share the resources in the core of the
network. And if some of the users engage in heavy bandwidth usage, the other
users that share the same bottleneck resource can experience degradation of a ser-
vice due the bandwidth shortage. The situation tends to be of the type which is
described by the Pareto principle (a.k.a. the 80 − 20 rule) [2], i.e., where 80% of
resources are consumed by less than the 20% of users, applications and services
[53]. The problem is especially profound on the upstream links, where capacity
is particularly limited [61]. This is due to the symmetrical behavior of the P2P
applications which on average consume about 80% of the upstream capacity in
access networks [52]. The symmetrical capacity consumption implied by P2P
creates especially many problems in legacy access networks that were designed to
address a usage scenario, where a user mainly downloads and does not upload
much. The current situation is not only unprofitable for the operators, but is also
unfair towards some users of the network. Thus there is a need for mechanisms
enabling fair access to the available resources for all users and services.

Therefore the operators have taken various efforts in order to limit the users’
and the “free-riding” service providers’ traffic. Some of the operators are charging
their users for additional traffic, once some total (upload and download) monthly
quote is exceeded. This business model is based on the idea that there is no in-
centive for users not to be greedy, unless the over consumption costs them extra.
However, the competition for the customers on the market leads to the situation
where more and more operators offer the connection at a flat monthly rate. Other
operators try to throttle or limit the P2P traffic [62; 63; 64; 65]. Still, such ef-
forts can lead to loosing the customers, since most of the customers buy the fast
broadband connection in order to use P2P services/applications in the first place.
Attempts to filter the traffic of the free-riding service providers often raise the
discussions of the antimonopoly flavor. Besides, filtering of the traffic using tradi-
tional firewalls does not come easy either, since many of the P2P-related services
are able to tunnel the traffic over the ports of services (like HTTP1) that may not
be filtered. The recent achievements in deep packet inspection (DPI) technology
[2], allow to extract information from each packet on all protocol layers (Layer 2
through Layer 7 of the OSI model) at a wire speed. As an outcome, each packet
may be redirected, tagged for some priority handling, rate-limited, blocked, etc.,

1Hyper text transfer protocol; the data transfer protocol used for web.
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depending on the operator’s policies. With this tool at hand operators are able to
manage the traffic of different types, and even for each user separately. However,
the possibilities that DPI opens raise a lot of discussions concerning user privacy.
Also, operators’ intention to use the DPI technology for limiting or blocking traf-
fic of some types (e.g., P2P, or traffic from some content providers) resulted in
protests from some content providers and public interest groups that are requir-
ing legislation assuring “net neutrality” [66; 67]. Net neutrality would mean that
network providers are not allowed to discriminate traffic of any type in their net-
works, unless it is malicious. This includes filtering or limiting the traffic of P2P,
as well as traffic for services of third parties. Despite all the ongoing debates the
DPI based solutions [68; 69] are available from many equipment vendors and are
finding their way into the operators’ networks.

Regardless of which mechanism network providers will choose for managing
the traffic in their networks, it is clear that they have to assure fair flow allocation,
both among users and applications. First of all, the fair bandwidth allocation is
necessary to be able to give equal opportunity to all users to benefit from their
broadband connection, thus assuring their satisfaction with the network. Sec-
ondly, the fair distribution of the available bandwidth between services and ap-
plications is needed for assuring their operation with certain QoS at all network
states. Furthermore, all these guarantees have to be provided while conserving
network resources.

The rest of this chapter is devoted to presentation of models and algorithms
for designing networks with fair flow allocation. They can be used as a support
tool for network operators in the network planning process. We will start by first
introducing several fairness criteria that are often encountered in the context of
networking.

4.3 Concept of fairness in data networks

Though the concept of fairness has been widely studied in the field of economics
(as early as in 1912 [70]), its application to telecommunication networks is rather
new and traces its origins back to late 80’s [71]. It should be clear from the
discussion above, that the idea of fair bandwidth sharing is currently gaining more
and more interest in the context of both access and backbone networks. A need
for fairness is prominent for example in situations when congestion arises due
to excessive offered traffic so that some of the traffic can be entirely rejected. It
is important then that all users/services/applications still get their fair share of
bandwidth and none is discriminated by total rejection of its traffic. Fairness is
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important since it increases users’ satisfaction with the network and its services.
Still, fairness can decrease the total network throughput.

As opposed to total network throughput maximization (TM), profitable from
the network operator’s point of view (although likely greatly unfair for some cus-
tomers), many alternatives exist that make the allocation more fair for the users
than TM, still maintaining cost efficiency of the TM mechanism. For example,
probably the simplest fair flow allocation principle would be to assign the same
amount of bandwidth to all users, at the same time trying to make the assigned
amount as large as possible. However, this principle can degrade the total network
throughput. The reason for this is that there may be some spare capacity left after
such an assignment, which could be used to assign more bandwidth (than this
minimum) to some of the flows. The issues of economical and at the same time
fair allocation of bandwidth in networks carrying elastic traffic have been studied
in [31; 71; 72; 73; 74; 75; 76] and many other publications.

Fair allocation can be defined in many ways. Since fairness is a very subjective
measure, it is not at all clear which fairness criterion reflects user expectations in a
best way, and yet more—how to define it. Often, utility and welfare functions are
introduced to facilitate definition and comparison of different fairness criteria.

4.3.1 Utility and welfare functions

As in most of other systems, resources in telecommunication networks are limited
and thus there is a number of users competing for these resources. When we in-
tend to distribute the resources fairly among the competing users, a question arises
of how to define fair allocation. A common sense definition of fair allocation,
which stems from the extensive studies of fairness in economics, is that such an
allocation is envy-free [77]. This means that nobody prefers someone else’s alloca-
tion over ones own. It is clear that distribution of resources among users according
to this definition of fairness depends on every user’s understanding/preferences of
what is fair. Thus, it implies that every user has to communicate his preferences
to some entity responsible for resource distribution in the network, if such fair-
ness model is adopted. Yet more, users would have to signal their preferences to
the network as soon as any change in resource distribution has occurred. Clearly,
this is not a practical mechanism for large telecommunication networks due to
scalability reasons. Therefore a concept of utility function has been introduced.
Utility function Ud(·) is defined for every network user (demand2) d and maps a

2Note that different utility functions may be associated with user’s different connections or
particular applications. In order to have a generic definition, we assume that the utility function is
defined per demand. Further, terms ’user’ and ’demand’ will be used interchangeably.
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X

U(X)

Figure 4.1: Examples of utility functions: for elastic traffic (dotted line) and real-time
traffic (solid line).

service delivered by the network into some satisfaction measure (utility value) of
the user. The utility value is used only for ordering of user’s preferences, and in
general has no meaning in absolute terms. For each user, received service (resource
allocation) giving higher utility value is preferred. For example, if a user prefers
an allocation amount x over x̂ , then the utility value U(x) > U(x̂). An example
of a utility function is U(Xd) = log(Xd). We will return to this utility function
when discussing proportional fairness principle.

A network service can be characterized by any relevant subset of measures,
such as transmission rate, delay, jitter, loss, etc. Further in this thesis we will be
concerned mainly with assignment of transmission rate (bandwidth) to demands,
thus we assume that a service is described by this characteristic alone. Therefore
we can write a utility function for demand d as Ud(Xd), where Xd is the trans-
mission rate. Assuming that users are willing to pay in order to get better service,
the utility can also be seen as a measure of how much a user is willing to pay for
the particular service level [51].

Figure 4.1 illustrates utility functions for two types of demands: elastic (best-
effort) traffic generated by e.g., file transfer application (depicted by the dotted
line), and real-time traffic generated by streaming audio or video application (de-
picted by the solid line). In general, the utility function for elastic traffic is in-
creasing, concave, and possibly differentiable function of X , while the function
for a real-time traffic is a step function, with the step occurring at the minimal
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transfer rate required for the real-time service to be of acceptable quality.
Given a set of utility functions for the users, it is not at all straightforward

how to find the allocation of resources to users, because in general there exist
many feasible solutions. Therefore it is useful to introduce a welfare function
W (U1, U2, . . . , UD), where D is the number of network demands, that aggre-
gates the individual utility functions Ud of the demands. A welfare function has
to be increasing in all of its arguments, and it reflects a network-wide resource
distribution strategy [78]. An example of welfare function is W (U) =

∑
d Ud,

which, when maximized, implies maximization of a total utility in a network.
In the domain of telecommunication networks, fairness and fair resource al-

location usually refers to allocation according to some collection of utility and
welfare functions. Two of the most often encountered fairness principles in the
field of telecommunications are max-min fairness and proportional fairness.

4.3.2 Max-min fairness

Max-min fairness (MMF) corresponds to the welfare function W (U1, U2, . . . , UD)
= min(U1, U2, . . . , UD), where the users’ utility functions are U(Xd) = Xd for
all d. Maximizing the welfare function W results in a max-min allocation
max(min(X1, X2, . . . , XD)). However, this is just a first step of the max-min
allocation, which guarantees that each user gets the same minimal utility, and this
minimum is as large as possible. However, the welfare can be possibly improved
by applying the operation of maximization iteratively. The iterative procedure
consists in performing the following in each of the iterations: first fixing the as-
signment of resources for these users for which it can not be improved any more,
and then trying to maximize it for the rest. Value of welfare achieved by iterative
application of the max-min procedure is in general greater than the value result-
ing from the first-step only. When referring to MMF allocation in this thesis we
assume the allocation achieved by the iterative procedure.

The max-min fairness criterion was proposed in 1971 by John Rawls in his
book “A theory of Justice” [79], a fundamental work in the area of social justice. In
the context of data networks the MMF notion can informally be stated as follows:
a vector of bandwidth allocations X∗ = (X∗

d : d ∈ D) is max-min fair if it is
feasible (that is: X∗ ≥ 0 and the link loads generated by X∗ do not exceed link
capacities), and for each d ∈ D, X∗

d cannot be increased (while maintaining the
feasibility) without decreasing X∗

d′ for some d′, for which X∗
d′ ≤ X∗

d .
Formally this can be expressed as follows (see Figure 4.2 for illustration) [71]:

Definition 4.1. X∗ = (X∗
d : d ∈ D) is max-min fair if it is feasible (that is:

X∗ ≥ 0 and the link loads generated by X∗ do not exceed link capacities), and
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for each feasible (as above) X̄ , and for each d ∈ D, if X∗
d ≤ X̄d, then for some

d′, X∗
d ≥ X∗

d′ and X∗
d′ > X̄d′ .

Ba
nd
wi
dt
h

Demand

X
∗

X̄

d
′

d

Figure 4.2: Defining MMF allocation vector X∗.

Thus, bandwidth allocation is MMF, if it is not possible to increase allocated
bandwidth for any user, without decreasing it for another user with equal or
smaller allocated bandwidth. Since the MMF principle maximizes the minimum
allocation, which is assured for everyone, it is argued to be the most fair principle.

In some cases it can be of interest to consider a weighted max-min fair allo-
cation. The weighted MMF allows to take into account different need for band-
width among the demands. Given a vector of weights ω = (ωd : d ∈ D), where
for each demand d the corresponding weight ωd gives the demand’s relative need
for bandwidth, the weighted MMF allocation is defined as follows:

Definition 4.2. An allocation of resources X∗ with weights ω is weighted max-
min fair if it is feasible (that is: X∗ ≥ 0 and the link loads generated by ωX∗

do not exceed link capacities), and for each feasible (as above) X̄ , and for each

d ∈ D, if
X∗

d
ωd

≤ X̄d
ωd

, then for some d′,
X∗

d
ωd

≥ X∗
d′

ωd′
and

X∗
d′

ωd′
>

X̄d′
ωd′

.

From the definition of MMF, it is clear that MMF is a Pareto optimal alloca-
tion.

Definition 4.3. A flow allocation is called Pareto efficient or Pareto optimal, if no
further Pareto improvements to it can be made, i.e., when allocation to any indi-
vidual cannot be made better without making it worse to some other individual
[2].

In mathematical algorithms one of the ways to achieve MMF allocation is by
means of lexicographical maximization.



C      51

4.3.2.1 Lexicographical maximization

Maximization of lexicographically ordered vectors can be used as a means to
achieve a MMF allocation. As it is shown in [31; 80], MMF allocation of certain
entities is equivalent to finding lexicographically maximal vector of these entities
(sorted in non-decreasing order) within the space of all feasible solutions of the
considered problem. Commonly known examples of lexicographical order are
ordering of words in a dictionary and ordering of names in a telephone directory.

Definition 4.4. Vector a = (a1, a2, . . . , aS), sorted in the non-decreasing
order, is lexicographically greater than the sorted vector b = (b1, b2, . . . , bS),
a � b, if and only if there exists s′, 0 ≤ s′ < S, such that as = bs for s =
1, 2, ..., s′, and as′+1 > bs′+1 (it is possible that ai < bi for some i > s′ + 1).
If a � b or a = b then we denote this by a � b.

Suppose X is a solution vector of a problem, and X̄ is the set of all (feasible)
n-vectors X . Consider a vector of real-valued objective functions/criteria:
f(X) = (f1(X), f2(X), . . . , fJ(X)), where fj : X̄ → Rn, j = 1, 2, . . . , J.

Definition 4.5. The lexicographical maximization problem for given X̄ and f is
defined as:

lex max {f(X) : X ∈ X̄},
and consists in finding a vector X∗ ∈ X̄ for which f(X∗) is lexicographically
maximal over all X ∈ X̄ , i.e., for all X ∈ X̄ , f(X∗) � f(X).

Finding a MMF allocation is equivalent to finding a lexicographically maxi-
mal vector among all feasible solution vectors sorted in non-decreasing order. Say
that X̂ denotes an allocation vector X sorted in non-decreasing order, and Ȳ

denotes a set of all such feasible vectors X̂ . Then the MMF allocation results
from solving the following problem:

lex max {X̂ : X̂ ∈ Ȳ }.

4.3.3 Proportional fairness

Another important fairness concept is proportional fairness (PF) [81]. PF corre-
sponds to a welfare function W (U1, U2, . . . , UD) =

∑
d Ud, where the individ-

ual utility functions are U(Xd) = log(Xd) for all d. Maximizing the welfare
function W gives proportionally fair allocation. PF constitutes a trade-off be-
tween the two extremes: MMF (maximum fairness) and total TM (maximum
throughput). Proportional fairness is defined as follows.
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Definition 4.6. Given a set D of demands, to which bandwidth has to be allo-
cated, a vector of bandwidth allocations X∗ = (X∗

d : d ∈ D) is proportionally
fair if it is feasible (that is: X∗ > 0 and the link loads generated by X∗ do not
exceed link capacities), and maximizes

∑
d log X∗

d .

If each demand d ∈ D has an associated weight wd which reflects relative band-
width need, then the weighted proportional fairness criterion is defined as follows:

Definition 4.7. Given a set D of demands, to which bandwidth has to be al-
located and a vector of weights w = (wd : d ∈ D), a vector of bandwidth
allocations (rates) X∗ = (X∗

d : d ∈ D) is weighted proportionally fair for a
weight vector w if it is feasible (that is: X∗ > 0 and the link loads generated by
X∗ do not exceed link capacities), and maximizes

∑
d wd log X∗

d .

Further in the thesis we will mainly use the weighted PF criterion. For brevity,
we will, however, refer to both the non-weighted and weighted versions of the
criterion by PF.

The PF principle does not allow zero bandwidth to be allocated to any de-
mand, as well as makes it non-profitable to allocate too much bandwidth to any
single demand. Both these observations stem from the properties of the logarith-
mic function. The idea underlying PF was introduced as early as 1854 in the book
of Hermann Heinrich Gossen “The Development of the Laws of Exchange among
Men and of the Consequent Rules of Human Action”. Gossen’s First Law states that
the satisfaction from consumed each additional amount of the same commodity
diminishes until satiety is reached [82]. The logarithmic function captures this
idea very well.

4.3.4 Linear approximation of log function

If the same utility function is assumed for all demands, i.e., U(Xd) = log(Xd)
for all d, then the PF allocation is implied by using the following objective func-
tion in network design problems:

max R(X) =
∑

d

wd log(Xd). (4.1)

The presence of the logarithm in the objective function implying PF allocation
makes the objective function (and thus the associated problem) non-linear. Non-
linear problems are much more difficult to solve, than their LP counterparts. The
objective function (4.1) can be linearized using the following piece-wise linear
approximation Γ(Xd) of the logarithmic function log(Xd) (see Figure 4.3):
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Γ(Xd) = min{Fi(Xd) = aiXd + bi : i = 1, 2, . . . , I} , (4.2)

for some I to be specified. The LP approximation makes the problems solvable
with standard LP solvers and consists in introducing auxiliary variables fd, corre-
sponding to Xd, and a set of I constraints,

fd ≤ aiXd + bi , d = 1, 2, . . . , D , i = 1, 2, . . . , I (4.3)

fd unconstrained in sign. (4.4)

corresponding to the linear pieces of approximation (4.2), which replace the log-
arithm of the flow (log(Xd)). Then the objective function (4.1) can be replaced
with:

max R(X) =
∑

d

wdfd. (4.5)

In the numerical experiments, reported in this thesis, the approximation Γ(Xd)
with five (I = 5) linear pieces has been used. The consecutive pairs of coeffi-
cients (ai, bi) that were used are shown in Figure 4.3.

The presented approximation of the objective function introduces some error
to the solution. However, the error can be made as small as desired by using
sufficiently many linear pieces for the approximation and assuring that they are
sufficiently well spread out in the desired region. Besides, using logarithm or its
piece-wise approximation is generally not important in practice.

4.3.5 Bandwidth efficiency of MMF and PF

It has been mentioned that increasing fairness in bandwidth distribution comes
at a cost of decreased total network throughput. Let us illustrate the bandwidth
efficiency of MMF and PF by means of an example. It will also show how do the
MMF and PF bandwidth allocations compare to TM.

Example 4.1. Consider a simple linear network depicted in Figure 4.4, contain-
ing three nodes and two links. Capacity of each of the links is 1.5 units. Say that
there are three demands in this network, d = 1, 2, 3, as shown in the figure. Let
xd be the flow allocated to demand d. Traffic for each of the demands is routed
on the single-possible (loop-free) path. Assume that this network carries elastic
traffic, and our task is to distribute the available bandwidth (limited only by the
link capacities) among the three demands, given that users behind each of the
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Figure 4.3: Piece-wise linear approximation of the logarithmic function.
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Figure 4.4: A simple network.

demands want to get as much bandwidth as possible and are willing to pay for it.
Certainly, there are many possible ways to distribute the bandwidth among the
demands. Say, that we want to maximize the total network throughput. This is
usually of interest to the network operator, since such a bandwidth assignment
maximizes the operator’s profit. It can be easily seen that maximum throughput
is attained by assigning x1 = x2 = 1.5 and x3 = 0. Total network throughput
in this case is equal to x1 + x2 + x3 = 3. However, such an assignment is very
unfair towards demand d = 3, which is assigned zero bandwidth.

If fairness is the main concern, one can choose to allocate bandwidth ac-
cording to MMF principle. Recall that the idea of MMF is to allocate at least
the same minimum bandwidth to all of the demands, at the same time making
this minimum as large as possible. The resulting MMF allocation in this case is
x1 = x2 = x3 = 0.75 and the total network throughput is x1+x2+x3 = 2.25.
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Thus MMF implies maximum fair solution, since all of the demands are allocated
the same minimum amount of bandwidth. However, the total network through-
put in this case is degraded, as compared to the throughput maximal solution.

A good tradeoff between the two solutions presented above is provided by dis-
tributing bandwidth according to the PF principle. The PF concept implies max-
imization of the sum of the logarithms of the flows, i.e., log x1 +log x2 +log x3.
The PF maximal solution in the case of this example is implied by assigning
flows x1 = x2 = 1 and x3 = 0.5. The resulting network throughput is
x1 + x2 + x3 = 2.5. Thus we can see that PF implies a less fair solution than
MMF, but with greater total network throughput. One can also observe, that PF
favors shorter flows.

From the above example one can see that bandwidth distribution can be made
fair at a price of decreased total network throughput. A trade-off between fairness
and throughput can be attained by means of choosing a proper fairness criterion,
for example, the PF principle. Table 4.1 summarizes and qualitatively compares
typical features of MMF, PF and TM.

Bandwidth sharing objective Throughput Fairness

TM very good poor
PF good good

MMF satisfactory very good

Table 4.1: Comparison of TM, MMF and PF.

4.3.6 Other welfare functions

As illustrated by Example 4.1, increasing fairness of bandwidth distribution among
the demands comes at a cost of decreased efficiency, i.e., total network through-
put. Thus the bandwidth efficiency of different fairness criteria is often com-
pared to the maximal throughput result, achieved by the throughput maximization
(TM). TM corresponds to the welfare function W (U1, U2, . . . , UD) =

∑
d Ud,

where the individual utility functions are U(Xd) = Xd for all d. Throughput-
maximal allocation is achieved by maximizing the welfare function, which can be
simply written as the following objective function:

max
∑

d

Xd. (4.6)
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Yet another bandwidth sharing principle is called potential delay minimization
(PDM) [83] and is similar to PF. PDM corresponds to a welfare function
W (U1, U2, . . . , UD) =

∑
d Ud, where the individual utility functions are U(Xd)

= −1/Xd for all d. The idea behind this principle is that assigning higher trans-
fer rate to a demand makes the potential delay, expressed as 1/Xd, lower. This is
achieved by maximizing the welfare function.

Expressions for MMF, PF, PDM and many other fairness relations can be
obtained from a generalized definition of fairness, so called (p, α)-proportional
fairness, which was introduced in [84].

4.4 Fairness and flow/congestion control

In data networks the notion of fairness is closely related to congestion control.
Congestion is a situation when due to excessive load on some bottleneck resource
its performance deteriorates. The bottleneck resource can be a node or a link
(i.e., specific interface on a node to which link is connected). Typical effects that
network experiences under congestion are packet loss, delay, and blocking of new
connections. Congestion can affect either a part or the whole network. A situa-
tion in a network when, due to congestion, little or none of useful information
exchange is taking place is called congestion collapse. Different mechanisms ex-
ist for avoiding congestion, and recover from it once the congestion has occurred.
Their taxonomy is presented in [85; 86]. From the perspective of flow/congestion
control3 (CC) mechanisms fairness is important in two ways. First of all, it is very
important that both under normal operation, and, especially, under congestion all
the flows have a fair share of the bottleneck resource. Secondly, it is very desirable
that all sources are cooperative and not-selfish, in a sense that they adjust their
rate of sending in order to avoid congestion. In other words, the sources should
be TCP-friendly [87]. TCP-firendliness of a non-TCP flow control protocol means
that it implies using the same or similar rate of transmission under certain con-
gestion conditions, as TCP would use under the same conditions. For details on
TCP-friendliness refer to [88].

A rough classification of mechanisms that are/can be used for implying fair
resource sharing in a network is depicted in Figure 4.5.
Mechanisms that are most widely studied from the fairness perspective, or imple-
menting some fairness principle often are end-to-end congestion control mecha-
nisms and cell or packet scheduling and queue management mechanisms. Con-
gestion control in the Internet is mainly performed end-to-end by the Trans-

3Flow control can be seen as a special case of congestion control [86].
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Figure 4.5: Classification of mechanisms for imposing fair resource sharing.

mission Control Protocol. TCP is based on the Additive Increase Multiplicative
Decrease (AIMD) algorithm [89]. It has been shown in [75] that congestion
control using AIMD mechanism and first-in-first-out (FIFO) queueing with tail
dropping in the network nodes under certain circumstances tends to lead to PF
bandwidth allocation. This result holds for the Vegas version of TCP, but does
not apply for the (today used) Reno version of TCP [90; 91], which instead aims
at minimizing the potential delay [2]. Despite this, TCP implies some sort of fair
sharing of resources, since all TCP sources that share some bottleneck adjust the
rate of sending according to level of congestion at the bottleneck. In this way, ev-
ery TCP source using the bottleneck gets approximately fair share of the resources.
It has been shown in [89] that in the network composed of a single bottleneck
link and a number of users sharing it the AIMD algorithm converges to an effi-
cient and fair equilibrium point which corresponds to MMF allocation. However,
the approximate fairness implied by using TCP holds globally only if all sources
in the network are TCP-friendly, which is not a reality in todays networks. Due
to existence of unfriendly (i.e., not TCP-friendly) flows, such as those initiated
by applications using User Datagram Protocol (UDP), the fairness in a network
is destroyed. Misappropriation of resources by high bandwidth, unfriendly flows
increases congestion at a bottleneck resource in a network and pushes congestion-
reactive (TCP) flows to the state of bandwidth starvation. In order to address this
greatly unfair situation, the end-to-end CC mechanisms are not sufficient, and
mechanisms in network routers are needed in order to identify and penalize the
unfriendly flows by dropping or limiting the rate of their packets. A number of
such mechanisms have been proposed in the form of either active queue manage-
ment (AQM) algorithms or fair queueing scheduling (FQS) algorithms, implying
approximately fair sharing of router’s resources by all flows that are active at a
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router at a given time. AQM mechanisms consist in first estimating the current
rate of each flow, to which packets belong, and then dropping packets with prob-
ability derived form the rate estimates. A big advantage of AQM mechanisms is
that packets that are not dropped are transmitted using a simple first in first out
(FIFO) queueing discipline [92]. Examples of AQM mechanisms include flow
random early drop (FRED) [93] and core-stateless fair queueing (CSFQ) [94].

A line of research for fair queueing scheduling algorithms has started with
a pioneering work of John Nagle, namely, fair queueing (FQ) mechanism [95].
The FQS mechanisms consist in first classifying the packets into multiple queues,
where packets of each flow are placed into a separate queue, and then removing
packets from each queue according to a schedule which assures a fair share of re-
sources to each of the flows. Weigthed fair queueing (WFQ) associates a weight
with each of the queues and allows to give priority to certain (classes of ) flows. Ex-
amples of fair queueing scheduling algorithms are start-time fair queueing (SFQ)
[96] and deficit round robin (DRR) [97], which implements the WFQ discipline.
A significant side benefit of the fair queueing mechanisms is that they are able to
assure queueing and processing time guarantees for time-critical flows. Experi-
ment results presented in [94] illustrate effectiveness of DRR, FRED and CSFQ
to ensure fair flow allocation in different congestion situations with both TCP
and UDP flows present. Especially good results were achieved by DRR.

In general, the AQM and FQS mechanisms require that each router keeps
the state information for each active flow, thus implying changes in the network
equipment. The number of in-progress flows on a backbone link can be counted
in hundreds of thousands. Due to hardware requirements and cost the scalability
of solutions based on these mechanisms was widely regarded as questionable. It
should be mentioned, however, that some mechanisms, like the CSFQ, release
the core nodes from the requirement of keeping the status information for each
flow, but instead it needs some packet labeling actions to be performed at net-
work boundary nodes, as well as it requires changes in IP header. A recent study
[92], taking into account known characteristics of IP traffic on flow level and us-
ing data from real backbone link, showed that the FQS and AQM mechanisms
are scalable, since the complexity does not increase with the link capacity. This
is because the number of active flows that actually have to be scheduled is small,
measured at most in hundreds. With the increase of the processing power and
memory in the network equipment, the FQS mechanisms have found their way
into the routers. For example, WFQ is now implemented in most of the Cisco
routers. It is enabled by default on all serial interfaces of Cisco routers work-
ing at or below E1 speeds (2.048 Mbps) [98]. Solutions for higher speed links
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are also available. Queue management and scheduling mechanisms are used as
an enabling technology for differentiated services (DiffServ) for enforcing resource
reservation.

When comparing the end-to-end CC mechanisms with the queue manage-
ment and scheduling mechanisms in the network routers from the perspective of
fairness, the following can be observed. The end-to-end mechanisms result in
approximate fairness, while the queue management and scheduling mechanisms
allow for more exact fair rate allocation and are able to adapt faster to new network
congestion situations [78].

A problem of fair medium access (MAC) arises both in wireless ad-hoc net-
works and in all-optical WDM networks. In wireless ad-hoc networks a situation
can occur when some stations occupy the shared channel while other stations
experience bandwidth insufficiency. Fair MAC schemes are developed (for ex-
ample, see [99]) to address these issues. In multichannel slotted WDM ring
networks each node has a tunable-wavelength transmitter and fixed wavelength
receiver. Thus there is one wavelength associated with each node. A problem
of fair medium access arises when a node grabs too many slots on a wavelength
leading to a given destination. Then the nodes which are further downstream
have less opportunities to get access to the wavelength. In order to provide fair
access to the medium for all nodes, MAC scheme is proposed [100] combining
mechanisms assuring fairness, scheduling and resource reservation.

Fair admission control (AC) is often associated with connection-oriented net-
works, such as ATM. Calls (connection requests) in ATM have different QoS
requirements. An AC mechanism determines if a new connection can be admit-
ted to the network by finding out if the QoS requirements of the new connection
can be fulfilled at the same time preserving the QoS requirements for the exist-
ing connections. The aim is to have an AC mechanism that treats all types of
calls fairly, i.e., assures equal probability of admittance for all types of calls. The
tradeoff that AC mechanism resolves is between link utilization and fairness of ad-
mission for all types of calls. If the fairness requirement is skipped, the tendency
is that calls with large bandwidth get hardly admitted. Different mechanisms for
AC have been proposed, assuring different levels of fairness and improving uti-
lization. See [101; 102] and literature therein for examples. It is also interesting
to note that allocation resulting from the rate control algorithms for the Available
Bit Rate service class in ATM is usually argued to be MMF [103; 104].

Other areas where fairness is discussed in the context of admission control are
mobile/wireless networks and optical networks. In wireless multimedia networks
resources have to be shared among different types of services, such as voice, video
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and data traffic. Call admission control schemes aim at satisfying QoS require-
ments for every type of traffic and assuring good network utilization. This often
leads to a situation where broadband calls are blocked by narrowband calls. The
problem can be alleviated by fair admission control schemes like the one discussed
in [105].

In optical WDM networks with traffic grooming capabilities a question of
fairness in admission control concerns dynamic wavelength assignment (DWA)
algorithms. In such networks connection requests with different capacity require-
ments arrive at network nodes, where nodes try to assign each request to some
wavelength. Some requests get blocked. If no special mechanism is employed for
assuring fairness in the admission control, then the connection requests asking
for a capacity which is near to the wavelength capacity experience higher block-
ing. Fairness of existing DWA algorithms is studied in [106], while one of the
mechanisms for the fair admission control is presented in [107].

The discussed mechanisms for assuring fair resource allocation in telecommu-
nication networks operate mostly only on the local knowledge, and thus assure
only locally fair allocation of resources. Globally fair (network-wide) resource al-
location can be achieved by administratively assigning resources to users. This
approach requires a planning stage using data from the whole network, which is
often carried off-line. The planning tools are based on optimization algorithms.
The algorithms presented in this thesis belong to this category. Pre-planned al-
locations can then be realized in a network with the help of e.g., MPLS LSPs.
This approach of resource allocation is suitable only for long-lasting connections,
and thus is executed as a part of long-term network planning and optimization
activities.

A general discussion of fairness issues and challenges in data networks can be
found in [78], while [108] gives a detailed discussion about the MMF fairness
principle and its application to telecommunication systems. A good insight in
congestion control and fairness issues is given in [87]. It should be noted that
research literature discussing fairness in the scope of data networks concentrates
on fair distribution of bandwidth among flows, while issues of fair delay manage-
ment, fair loss rate distribution and fair jitter control have hardly been considered
[78].
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CHAPTER 5

Fair bandwidth sharing in resilient single-layer networks

5.1 Fairness in a single-layer network at the normal state

Having introduced different fairness principles we will now develop mathematical
models and algorithms for designing networks with fair bandwidth sharing among
demands. As illustrated in Example 4.1, the PF principle presents a good trade-
off between fair allocation and resulting network throughput. Recall, that PF
does not allow zero bandwidth to be assigned to any demand, as well as makes it
unprofitable to assign too much bandwidth to any single demand. Therefore we
will assume that PF is used for bandwidth allocation among demands.

First we will consider only the network at the normal state. Therefore, for
the beginning, we will disregard all the failure states, thus assuming S = 1, and
will focus only on the case when all the the resources in the network are available.
After presenting a mathematical model for this case, we will extend it by also
taking failure states into account.

We will start by presenting the basic network design problem, which is rel-
evant for a situation when an IP network provider realizes the streams of elastic
traffic (i.e., demands) between its customers over IP links. The capacity of the
IP links is realized by means of the transmission capacity leased from a transmis-
sion carrier (transmission network provider). We may assume that the IP network
provider has a fixed (e.g., monthly) budget, B, for leasing the capacity from the
carrier, knowing the per month cost, ξe, of leasing one unit of capacity on the IP
link e. Bandwidth available on the IP network paths is to be shared between the
demands according to the PF principle. The objective (which will be called rev-
enue) of the IP network operator is to distribute all the available bandwidth among
the demands according to the PF principle. The implied IP network design prob-
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lem involves both allocation of bandwidth to demands, and dimensioning of IP
links.

We will assume that for each demand a list of possible candidate paths is
given, and it is allowed to split arbitrarily the bandwidth allocated to a demand
on any number of its paths. Consequently, the paths to be used for each demand
and a portion of demand’s flow to be routed on each of them are outcomes of this
design problem. The problem is formulated as an IP program and is presented in
the next section.

5.1.1 Mathematical model

Let us first consider the case with only one state — the normal state. The Pro-
portional Fairness Nominal Design Task (NDT) with the budget constraint is
formulated as follows:

NDT:

max R =
∑

d

wd log(Xd) (5.1)

s.t.:
∑

e

ξeye ≤ B , (5.2)∑
p

xdp = Xd , ∀d ∈ D (5.3)∑
d

∑
p

δedpxdp ≤ ye , ∀e ∈ E (5.4)

xdp, ye ∈ Z+ , ∀d ∈ D, ∀p ∈ Pd, ∀e ∈ E . (5.5)

This is an uncapacitated network design problem, because we are interested
in finding both the flow allocation and link capacities. Constraint (5.2) limits a
total cost of capacities installed on all links to a given budget B. Total flow for
each demand d is given by constraint (5.3). Variable Xd and constraint (5.3) are
auxiliary, and are included in the formulation just for the clarity of presentation.
In order to make the formulation more efficient the left-hand side of (5.3) can be
directly used in the objective function. The capacity constraint (5.4) forces the
consistency between the flow assignments and allocated link capacities. It states
that all flows xdp traversing link e must not exceed its capacity. Since capacity
in links is installed in modules, constraint (5.4) should be modified as follows to
take link modularity into account:



F   -      63

∑
d

∑
d

δedpxdp ≤ yeM , ∀e ∈ E , (5.6)

where:
ye ∈ Z+ , ∀e ∈ E number of capacity modules installed on link e;
M size of the link capacity module.

The entity R =
∑

d wd log(Xd) in (5.1) is referred to as the (logarithmic)
revenue, and should be familiar to the reader by now from Section 4.3.3 as an
objective implying PF allocation. As it was discussed in Section 4.3.3 the use
of such an objective has two advantages regarding assignment of total flows to
demands: (i) it prohibits the assignments of zero flow, and (ii) it does not allow
for over-consumption of bandwidth by individual demands.

A relaxation of the above task (assuming variables xdp ∈ R+ and ye ∈ R+)
has been considered in [31; 109; 110; 111] where it is shown how the explicit
solution to NDT can be found by exploiting dual properties of convex program-
ming. In particular it is shown there that

X∗
d =

wdB

ζd
∑

d wd
(5.7)

where ζd = min{
∑

e ξeδedp : p = 1, 2, . . . ,m(d)} is the cost (length) of the
shortest path realizing demand d. Note, that the lists of candidate paths are not
necessary for solving the problem—it is enough to find the shortest path for each
demand by some shortest path algorithm and allocate flow to it according to
formula (5.7).

The problem can be extended by introducing lower and upper bounds on the
total demand flows. This is achieved by adding the following constraint to the
problem:

hd ≤ Xd ≤ Hd , d ∈ D , (5.8)

where hd and Hd are the given bounds on total flows. With the help of the bounds
we can also express the required fixed bandwidth assignment explicitly. This can
be done by setting hd = Hd in (5.8). By setting the appropriate values for
demands’ lower and upper bounds one can also combine demands with fixed and
with fairly distributed bandwidth assignment within the same model. It should
be noted, that the explicit formula (5.7) does not hold when bounds are added
to the problem. There is, however, an explicit way of solving the problem with
bounds, which is described in [31].
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5.2 Path generation for the single-layer network at the
normal state

Problem NDT formulated in Section 5.1.1 assumes a set of candidate paths (de-
noted by P) for each demand to be given beforehand. If all possible paths (de-
noted by P̄) are allowed in the problem, then NDT can be formulated in the
node-link formulation (which implicitly considers all possible paths). A more re-
alistic scenario is, however, when a set of allowable paths (denoted by P̂) is limited
by some requirement, for example by a limit on the number of hops (links) in a
path. When using the node-link formulation it is in most cases not possible to
effectively take such additional requirements into account1. An example of such
a situation is the hop-limit criterion. For such cases link-path formulations with
the candidate path (i.e., routing) lists matching the path criteria are better suited,
still, formally, the routing lists for all demands must be specified in advance in
the problem formulation. This is not always a practical approach, especially for
large networks, since a number of paths, and hence variables, in the problem in-
stance can grow exponentially with the network size (for example the number of
all (simple) paths in a network graph grows exponentially with the network size).
In such a case a problem formulation in the link-path notation can become non-
compact which means that the number of variables (columns) of the problem is
exponential with the network size. On the other hand, there can be cases when
the number of allowable candidate paths does not increase exponentially but poly-
nomially with the network size. Such a nice behavior is for example exhibited by
the hop-limit requirement when the maximal number of hops is fixed and does
not increase with the increase of the network size.

Certainly, large instances of non-compact formulations, although linear, are
virtually impossible to resolve, unless an effective algorithm for generating the
paths required in the final optimal solution can be applied while solving the main
problem. The technique used for path generation (PG) can be based on the gen-
eral method of column generation [112] (also called generalized LP in [32]) in
the revised simplex method. The PG approach allows to start solving a network
optimization problem with a minimal set of candidate paths (initially it can con-
tain even a single path) for each demand. New, possibly much better, paths are
generated and included in routing lists dynamically, as needed. There are several
strategies of adding new paths to the problem using PG, namely: 1) add-all, when
for every demand a path shorter than all paths on a routing list for the demand, is

1In general for node-link formulations it holds that P = cP = P̄ , whereas for link-path
formulations P ⊆ cP ⊆ P̄ .
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added; 2) add-best, when a shortest path is added only for one demand, for which
the difference in length between the considered path and paths on a demand’s
routing list is biggest; 3) add-first, when only one, first encountered path shorter
than all candidate paths for all demands is added. The work in this thesis focuses
only on add-all strategy. Comparison of the strategies can be found in [31].

The goal of using PG to resolve a network optimization problem is not only
to make the resolution process more efficient, but also to find an ultimate optimal
solution defined as follows:

Definition 5.1. A solution of a restricted (with a limited number of predefined
candidate paths in P) optimization problem is called optimal in a wider sense if
it is also the optimal solution for the problem with all allowable paths from P̂

included [31].

Below we will show how PG can be applied for resolving problem NDT. Although
there is no need to carry the path generation procedure for problem NDT, since
the explicit solution to the problem exists (see Section 5.1.1), we will anyway
develop the PG algorithm for two reasons. First of all, it will serve as an illustrative
example which will allow reader to better understand the PG algorithms and their
properties for other, more complex, problems presented in this thesis. The second
reason is that we will also develop an expression allowing to evaluate what gain
one can get by shifting (a part of ) a flow to a path which is shorter than the
currently used one.

The path generation technique is directly applicable only to linear prob-
lems. Therefore we will consider a relaxation of NDT, assuming xdp ∈ R+ and
ye ∈ R+. Let us restate problem NDT taking all the modifications described in
Section 5.1.1, into account, and include the lower and upper bounds on demand
volumes. The relaxed problem is denoted by RNDT and is presented below.

RNDT:

max R =
∑

d

wd log
(∑

p

xdp

)
(5.9)

s.t.:
∑

e

∑
d

∑
p

δedpxdpξe ≤ B (5.10)

hd ≤
∑

p

xdp , ∀d ∈ D (5.11)∑
p

xdp ≤ Hd , ∀d ∈ D (5.12)
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xdp ∈ R+ ∀d ∈ D, ∀p ∈ Pd. (5.13)

Note that constraints (5.2) and (5.4) were merged by substituting the left-hand
side of (5.4) for variable ye in (5.2), resulting in constraint (5.10). Also, in the
objective function and constraints (5.11) and (5.12), Xd was substituted by the
explicit expression given by the left-hand side of (5.3).

In Section 4.3.4 we have discussed how objective function (5.9) can be lin-
earized with the help of a piece-wise linear approximation of the logarithm func-
tion in order to convert problem RNDT to a linear problem, and hence to enable
PG. The approximation of objective function (5.9) consists in adding the follow-
ing constraints to problem RNDT

fd ≤ ai

(∑
p

xdp

)
+ bi , ∀d ∈ D, ∀i ∈ I (5.14)

fd ∈ R , ∀d ∈ D, (5.15)

and substituting the objective function with

max R =
∑

d

wdfd. (5.16)

Thus, we finally arrive at the following linear programming formulation:

LRNDT:

max R =
∑

d

wdfd (5.17)

s.t.: (5.18)

[π ≥ 0]
∑

e

∑
d

∑
p

δedpxdpξe ≤ B (5.19)

[σd ≥ 0] hd ≤
∑

p

xdp , ∀d ∈ D (5.20)

[τd ≥ 0]
∑

p

xdp ≤ Hd , ∀d ∈ D (5.21)

[βdi ≥ 0] fd ≤ ai

∑
p

xdp + bi , ∀d ∈ D,∀i ∈ I (5.22)

fd ∈ R , ∀d ∈ D (5.23)

xdp ∈ R+ , ∀d ∈ D,∀p ∈ Pd. (5.24)
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PG works with dual variables of the original (primal) LP problem LRNDT. There-
fore, we will first write the Lagrangian function for LRNDT and examine its dual
variables. The dual variables associated with each of the constraints (5.19)-(5.22)
are indicated in the brackets in front of each constraint. For convenience we
transform the objective function (5.17) into minimization:

min F = −R = −
∑

d

wdfd. (5.25)

The Lagrangian function for LRNDT with the objective transformed to (5.25)
takes the form:

L(f ,x ; π,β,σ, τ ) =
∑

d

(∑
i

βdi − wd

)
fd+

+
∑

d

∑
p

(
τd − σd −

∑
i

aiβdi + π
∑

e

δedpξe

)
xdp

+
∑

d

(
hdσd −Hdτd −

∑
i

biβdi

)
−Bπ.

(5.26)

By definition, the dual objective function reads:

W (π,β,σ, τ ) = min
x≥0 , fR0

L(f ,x ; π,β,σ, τ )

=
∑

d

(
hdσd −Hdτd −

∑
i

biβdi

)
−Bπ.

(5.27)

Constraining values of the dual variables only to those resulting in a bounded
value of the dual function W , the dual problem becomes:

DLRNDT:

max W (π,β,σ, τ ) =
∑

d

(
hdσd −Hdτd −

∑
i

biβdi

)
−Bπ (5.28)

s.t.:
∑

i

βdi = wd , ∀d ∈ D (5.29)∑
i

aiβdi + σd − τd ≤ π
∑

e

δedpξe , ∀d ∈ D, ∀p ∈ Pd (5.30)

π, βdi, σd, τd ∈ R+ , ∀d ∈ D, ∀i ∈ I. (5.31)

It is well known [113] that any optimal primal solution (x∗,f∗) and any optimal
dual solution (π∗,β∗,σ∗, τ ∗) form a saddle point of the Lagrangian function.
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Such a saddle point (i.e, an optimal solution and the corresponding optimal mul-
tipliers) can be obtained from an LP simplex-based solver. The complementary
slackness property states that the following condition is satisfied for any pair of
optimal primal and dual solutions:

(∑
i

aiβ
∗
di + σ∗d − τ∗d − π∗

∑
e

δedpξe

)
x∗dp = 0, ∀d ∈ D,∀p ∈ Pd.

(5.32)

Thus, if for some path p candidate for demand d and for at least one optimal
set of multipliers, the value in the parentheses in (5.32) is strictly negative, then
the corresponding flow variable x∗dp must be equal to zero for all optimal primal
solutions. This implies that path (d, p) cannot carry a positive flow in any optimal
primal solution of problem LRNDT with the given candidate paths.

Let Pd be the given list of candidate paths for demand d and let Ld be the
length/cost of the shortest path on this list:

Ld = min
p∈Pd

(∑
e

δedpξe

)
, ∀d ∈ D. (5.33)

where Pd is the set of indices of paths in set Pd. Certainly, the expression en-
closed in parentheses on the right-hand side of (5.33) gives a cost of path p for
demand d according to metrics ξ, i.e., to the real (primal) link costs.

From (5.29) and complementary slackness it follows that for any saddle point
(x∗,f∗;π∗,β∗,σ∗, τ ∗) of Lagrangian (5.26) the following conditions hold:

∑
i

β∗di = wd , ∀d ∈ D (5.34)

x∗dp > 0 ⇒
∑

e

δedpξe = Ld , ∀d ∈ D,∀p ∈ Pd

(5.35)∑
p

x∗dp > 0 ⇒
∑

i

aiβ
∗
di + σ∗d − τ∗d = π∗Ld , ∀d ∈ D. (5.36)

There are several interesting properties associated with optimal multipliers.
First of all, for every demand d one of variables σ∗d and τ∗d will always be zero, i.e.,

σ∗dτ
∗
d = 0 , ∀d ∈ D (5.37)
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if only hd 6= Hd. This again follows from the complementary slackness property
which implies that σ∗d or τ∗d can be non-zero only if the total flow X∗

d =
∑

p x∗dp

for demand d is equal to the lower bound hd, or to the upper bound Hd, respec-
tively. Unless both bounds are equal, one of the variables must always be zero.
Furthermore, if hd < X∗

d < Hd holds for at least one optimal primal solution,
i.e., the total flow is between the bounds, then σ∗d = τ∗d = 0.

The second observation, which also follows from complementary slackness,
is that for each demand d at most two variables β∗di can be non-zero (typically
only one variable β∗di is non-zero). This is due to the fact that at most only two
(adjacent) linear pieces of the logarithm approximation are used, i.e., at most
only two constraints (5.22) for some i and i + 1 can be active (and in most cases
only one linear piece will be active). For example, if there is only one active
piece (of number i) then β∗di = wd, because of (5.34). This case is illustrated
in Figure 5.1(a) where for demand d only approximation piece i = 2 is active,
and therefore β∗d2 = wd. If, on the other hand, a bandwidth of some demand
corresponds to the point where two approximation pieces intersect, then it holds
that β∗di + β∗d,i+1 = wd. An example of such a situation is given in Figure 5.1(b),
where both pieces i = 2 and i = 3 are active, implying that β∗d2 + β∗d3 = wd.

Thus, if for some demand d̂, the inequality hd̂ < X∗
d̂

< Hd̂ holds for some

optimal X∗
d̂

, and only one piece i(d̂) of the approximation is active, conditions
(5.34) – (5.36) can be combined into the following simple expression:

wd̂ai(d̂) = π∗Ld̂. (5.38)

Hence, if we consider a special case with all hd = 0 and all Hd = +∞ and
that there exists an optimal primal solution such that for each demand d ∈ D
there is exactly one active approximation linear piece (piece number i(d), say),
and X∗

d > 0, then for any set of optimal multipliers it holds that:

wdai(d)

Ld
= π∗ , ∀d ∈ D (5.39)

and consequently the optimal value W ∗ of the dual function (7.15) can be ex-
pressed as:

W ∗ = −
∑

d

wd

(
ai(d)

B

DLd
+ bi(d)

)
. (5.40)

This expression corresponds to a situation when the total flow X∗
d = B

DLd

is assigned to one of the shortest paths of demand d and the linear function
ai(d)Xd + bi(d) is used for computing its revenue.
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(a) One approximation piece is active.

(b) Two approximation pieces are active.

Figure 5.1: Cases of flow approximation.
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We will now state and prove a proposition underlying the path generation
algorithm. Suppose that for a given instance of problem LRNDT all allowable
paths for every demand d form a set P̂d. For each demand d, let ℘d ∈ P̂d be
one of the shortest paths among all allowable paths, and let `d be its cost with
respect to the link cost metrics ξ, i.e.,

`d = ‖℘d‖ξ =
∑
e∈℘d

ξe = min
p∈ bPd

(∑
e

δedpξe

)
∀d ∈ D, (5.41)

where P̂d is the set of indices of paths in set P̂d. We consider two versions of
problem LRNDT:

• full problem LRNDT-FULL with the set of candidate paths for each de-
mand d equal to P̂d

• limited problem LRNDT-LIMITED with the set of candidate paths for
each demand d equal to Pd where Pd ⊆ P̂d for all d and Pd ( P̂d for
at least one demand d.

Proposition 5.1. Let (f∗,x∗ ; π∗,β∗,σ∗, τ ∗) be a saddle point of the Lagrangian
(5.26) for an instance of the limited problem LRNDT-LIMITED with the given set
of candidate paths Pd for each demand d. Let ℘d ∈ P̂d be a shortest path for
demand d and let `d denote its length (5.41). Let Ld denote the length of the shortest
path on the list of candidate paths Pd for demand d of the limited problem LRNDT-
LIMITED. Then:

• If Ld = `d for all d ∈ D, then any optimal solution to LRNDT-LIMITED
is also optimal for LRNDT-FULL. Notice that this is the case when problem
LRNDT-FULL has no paths shorter than LRNDT-LIMITED.

• Otherwise, if Ld > `d for some demand d, then adding path ℘d into Pd

can possibly improve the current optimal solution, and the maximal rate of
improvement is equal π∗(Ld − `d).

Proof:
The first part of the proposition follows from the fact that the dual problems to
LRNDT-FULL and LRNDT-LIMITED have exactly the same domains given by
constraints (5.29) – (5.31). In particular, constraint (5.30) defines the same set
of dual variables since Ld = `d for all d ∈ D. Hence the two dual problems are
identical and thus have the same optimal objective implying that the LRNDT-
FULL and LRNDT-LIMITED have the same optimal primal objective function
value.
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Now let us proceed to the second part of the proposition. Suppose that for
some demand d̂ there exists a path ℘d̂ ∈ P̂d̂ \ Pd̂ with the length equal to `d̂

(where `d̂ is calculated as in (5.41), i.e., `d̂ =
∑

e∈℘d̂
ξe, and denotes the cost of

routing one unit flow on path ℘d̂) which is strictly less than Ld̂ (recall that Ld̂

is the length of the shortest path on the candidate list Pd̂ of problem LRNDT-
LIMITED). Consider a new, perturbed, problem LRNDT-ε obtained for some
fixed ε > 0 from the limited problem LRNDT-LIMITED by the following mod-
ifications:

hε
d̂

= hd̂ − ε (5.42)

Hε
d̂

= Hd̂ − ε (5.43)

Bε = B − ε`d̂. (5.44)

The modifications (5.42)-(5.44) express the situation when for demand d̂ a flow
of fixed size ε is routed on path ℘d̂, and otherwise the demands are realized ac-
cording to the solution of LRNDT-LIMITED. Consequently, the lower and the
upper bounds on the total flow for Xd̂ are decreased by ε. Besides, the budget is
decreased by the cost `d̂ required to route flow ε on path ℘d̂.

When evaluating the primal objective function for the perturbed problem,
flow ε has to be taken into account. Essentially, if the original objective (5.9)
with the logarithm function is considered, then for the perturbed problem the
objective function at optimum becomes:

R∗ =
∑

d

wd log
(∑

p

x∗dp + ηdε

)
, (5.45)

where ηd = 1 only for d = d̂, and 0 otherwise. In LRNDT-ε we assume piece-
wise linear approximation of the logarithmic function and therefore we adjust
constraint (5.22) for demand d̂ to account for flow ε as follows:

fd̂ ≤ ai

(∑
p

xd̂p + ε

)
+ bi , ∀i ∈ I. (5.46)

The dual function of the perturbed problem LRNDT-ε is obtained analogously
to the dual function (5.27) for problem LRNDT-LIMITED taking modifications
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(5.42)-(5.44) and (5.46) into account:

W ε(π,β,σ, τ ) =
∑
d6=d̂

(
hdσd −Hdτd −

∑
i

biβdi

)
+ (hd̂ − ε)σd̂

− (Hd̂ − ε)τd̂ −
∑

i

biβd̂i −
∑

i

aiεβd̂i − (B − ε`d̂)π

=
∑

d

(
hdσd −Hdτd −

∑
i

biβdi

)
−Bπ + ε

(
τd̂ − σd̂ −

∑
i

aiβd̂i + π`d̂

)
= W (π,β,σ, τ ) + ε

(
τd̂ − σd̂ −

∑
i

aiβd̂i + π`d̂

)
,

(5.47)

where W (π,β,σ, τ ) is the dual function of LRNDT-LIMITED. We also note
that the dual problems to both LRNDT-ε and LRNDT-LIMITED have the same
domain.

Let (π∗,β∗,σ∗, τ ∗) be an optimal dual solution of LRNDT-LIMITED.
Then, the optimal revenue for LRNDT-LIMITED, R∗, calculated according to
(5.17)

R∗ = −F ∗ = −W ∗ = −W (π∗,β∗,σ∗, τ ∗), (5.48)

where F ∗ is the value of the optimal primal function (5.25) of LRNDT-LIMITED
(and equality F ∗ = W ∗ follows from the strong duality theorem, see [32]). Fur-
ther, let (W ε)∗ denote the optimal objective for the problem dual to LRNDT-ε.
Then, because multipliers (π∗,β∗,σ∗, τ ∗) are in general not optimal for the dual
of LRNDT-ε, we have that

(Rε)∗ = −(W ε)∗ ≤ −W ε(π∗,β∗,σ∗, τ ∗)

= −W ε(π∗,β∗,σ∗, τ ∗)− ε

(
τ∗
d̂
− σ∗

d̂
−

∑
i

aiβ
∗
d̂i

+ π∗`d̂

)
= R∗ + ε

(∑
i

aiβ
∗
d̂i

+ σ∗
d̂
− τ∗

d̂
− π∗`d̂

)
,

(5.49)

where (Rε)∗ is the optimal revenue for LRNDT-ε calculated according to (5.17).
Thus, assuming that (5.36) holds for LRNDT-LIMITED, we finally obtain the
following inequalities:

(Rε)∗ ≤ R∗ + επ∗(Ld̂ − `d̂). (5.50)

This completes the proof. 2
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Inequality (5.50) shows what is the possible maximal revenue gain. This
maximum is attained when the optimal dual variables (π∗, β∗, σ∗, τ ∗) for the
dual to LRNDT-LIMITED remain optimal for the dual to LRNDT-ε, i.e., when
the simplex basis does not change from problem LRNDT-LIMITED to problem
LRNDT-ε: in such a case including the new path ℘d̂ to the list of the candidate

paths for demand d̂ and assigning flow ε to it will improve the primal objective
function by επ∗(Ld̂ − `d̂).

In fact, this is the case for example when only one piece of the approximation
is active for the total flow of demand d̂ (the case illustrated in Figure 5.1(a)), and
the demand volume is between the bounds. For this case the expression for π∗ is
given by (5.38), and in this case the gain in revenue can be expressed as:

(Rε)∗ −R∗ = εwd̂ai(d̂)

Ld̂ − `d̂

Ld̂

. (5.51)

Path generation procedure for LRNDT-LIMITED is very simple and consists
in putting, for each demand, one the shortest path computed according to real
link costs ξ on the candidate path list.

5.3 Fairness in a resilient single-layer network

The fair network design model presented in the previous sections, as well as mod-
els considered in literature [109; 110], referred to as the normal case fair designs,
do not take resilience into account. The network design problem that we will
present now extends the NDT problem, and explicitly considers the predefined
set of failures at the network design stage. Combining fair bandwidth allocation
and robustness is an original contribution of this work.

The problem, as in the case of NDT, consists in finding the optimal PF allo-
cation of bandwidth to demands, however, in this case–also in each of the con-
sidered network operation states. Resulting link capacities must be fixed to the
same values in all the states (they are not state-dependent), except that they ef-
fectively are diminished by failures. Thus the resulting link capacities should be
such that they imply maximum possible revenue in each of the operation states.
This requirement makes the problem of the multi-criteria optimization type, be-
cause revenue functions should be maximized simultaneously for all the states.
Besides, in order to be able to compare the resulting revenue vectors and selecting
the best one in some preferred sense, a global objective function must be decided.
It is by far not obvious how to formulate an adequate corresponding optimiza-
tion problem — this can most likely be done in several reasonable ways. We start
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by presenting one such formulation using the rule of Max-Min Fairness applied
to the revenue values for all the considered operation states. Later we introduce
other combinations of criteria and compare them by numerical study.

5.3.1 Combining MMF and PF

The problem employs a kind of two-dimensional fairness: bandwidth between
demands within each state is allocated according to PF principle, whereas revenues
among all states are allocated according to the MMF principle. Advantages of
combining the two fairness principles are several. First of all, none of the flows
may be assigned zero bandwidth (due to the log function implying PF allocation)
in any of the failure states, no matter how severe the failure is (assuming that the
design problem is still feasible). However, the volume of bandwidth assigned to
each demand in each of the states may vary (within eventual bounds, if they are
specified). Secondly, as a result of imposing MMF allocation, the revenues in each
situation attain at least the same minimum value, which is maximized. And since
the revenues reflect total network bandwidth in a given situation, the higher the
revenue, the higher is the bandwidth that is available for demands to share. This
means that in each situation there will be at least the same minimum bandwidth
available, and bandwidth allocations will not be discriminated in any state just
to have higher bandwidth allocations in some other state. This is, of course,
assuming that all demand weights (wds) are the same, and the not weighted MMF
is used. Changing the weights allow to give priorities when allocating bandwidth
to some demands in some situations.

5.3.2 Recovery mechanism

The problem assumes full reconfiguration of flows as a mean of recovery from
failures. Thus, in a case of a failure, even the unaffected flows may be torn down
and then all the flows are rerouted in order to recover the affected by failure flow
within the surviving network resources. Although this is not really feasible mean
of recovery in practice, it can be seen as a relaxation of different practical recovery
mechanisms, and can be used as such for obtaining the upper bound for the
solution. Besides, our intention here is to develop models and algorithms for fair
flow allocation in resilient networks, and not the recovery mechanisms themselves.
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5.3.3 Mathematical model

Suppose X̄ is the set of all (feasible) vectors X = {Xds : d = 1, 2, . . . , D, s =
1, 2, . . . , S} defined by the following constraints:∑

e

ξeye ≤ B , (5.52)∑
p

xdps = Xds , ∀d ∈ D , s ∈ S (5.53)∑
d

∑
p

δedpxdps ≤ αesye , ∀e ∈ E , s ∈ S (5.54)

xdps, ye ∈ Z+ , ∀d ∈ D, p ∈ Pd, s ∈ S, e ∈ E . (5.55)

We will call a problem with a set of feasible vectors X̄ defined as above by Robust
Design Task (RDT). The constraints for the RDT are similar to those of problem
NDT, presented in Section 5.1.1. The only thing which is different is that flow
variables (xdps) and associated constraints are now also indexed on situations. The
right hand side of constraint (5.54) gives the capacity available on link e in failure
situation s, which is defined as αesye. Thus the constraint imposes that the total
bandwidth for flows traversing link e in situation s does not exceed the available
capacity of the link in this situation.

For each X ∈ X̄ let R(X) = (R1(X), R2(X), . . . , RS(X) denote the vector
of revenues,

Rs(X) =
∑

d

wds log(Xds) , ∀s ∈ S , (5.56)

sorted in non-decreasing order. Then the Proportional Fairness RDT is formu-
lated as follows [114]:

RDT-MMF-PF: lex max {R(X) : X ∈ X̄}. (5.57)

It is denoted RDT-MMF-PF in order to reflect which criteria are used in the
objective function.

5.3.4 Extensions of the basic problem

Problem RDT-MMF-PF posed in Section 5.3.3 can be extended in several ways.
Such variations of the problem can be achieved by introducing additional con-
straints characterizing the solution set X̄ . First, we may assume that the capacities
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of links, ye, are limited (e.g., because of the shortage of transmission capacity),
adding constraints

ye ≤ Ce , e = 1, 2, ..., E , (5.58)

where Ce are fixed upper bounds on link capacities. Secondly, we can introduce
lower and upper bounds on the total demand flows realized in failure situations;

hds ≤ Xds ≤ Hds , d = 1, 2, ..., D , s = 1, 2, .., S , (5.59)

where hds and Hds are the given bounds on total flows. With the help of the
bounds we can also to specify the required fixed bandwidth assignment explicitly.
This can be done by setting hds = Hds in (5.59). By setting the appropriate
values for demands’ lower and upper bounds one can also combine demands with
fixed and fairly distributed bandwidth assignment within the same model. Finally,
we can impose constraints on the flow reconfiguration in the case of failure. So
far we have assumed that individual flows, xdps, are only situation-dependent
and can be freely reconfigured using surviving resources. This allows us to not
explicitly distinguish the nominal situation in the formulation of RDT-MMF-PF.
If we wish to consider a more realistic case when the nominal flows which are not
affected by a failure (i.e., the nominal flows that survive a given failure situation s)
are not disconnected (and hence still work in situation s) we proceed as follows.
We label the "true" failure situations with s = 1, 2, ..., S, and use the index s = 0
for the normal state. Then we assume that if a link fails then it fails totally (i.e.,
αes ∈ {0, 1}), and introduce the binary path availability coefficients:

θdps =
∏

{e:δedp=1}

αes , ∀d ∈ D, ∀p ∈ Pd, s = 1, 2, ..., S. (5.60)

Now, the considered requirement for flow reallocation can be taken into account
by introducing new constraints:

xdps ≥ θdpsxdp0 , ∀d ∈ D, ∀p ∈ Pd, s = 1, 2, ..., S. (5.61)

Since in the backbone optical networks link capacities are installed in mod-
ules, problem formulations can be adjusted to account for the modularity by mod-
ifying constraint (5.54) as follows:

∑
d

∑
d

δedpxdps ≤ αgsyeM , ∀e ∈ E ,∀s ∈ S , (5.62)
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where:
ye ∈ Z+number of capacity modules installed on link y;
M size of the link capacity module.

Other ways of taking similar restrictions in flow reallocation (e.g., the use of
single-backup paths) and the corresponding constraints are described in Section
9.3 of [31].

It should be noted that all the above described modifications of RDT-MMF-
PF allow for the application of the algorithms presented in Section 5.3.5 without
any adjustments. In fact, the algorithms can be used to solve the problems with
other criteria for bandwidth distribution among demands, instead of PF. Thus,
they, in fact, are frameworks for resolving the MMF problems.

5.3.5 The algorithms

The robust design task formulated above is not trivial to solve since it involves
lexicographical order maximization (see Section 4.3.2.1 and [115; 116]). Below
we describe an iterative algorithm for resolving a relaxed problem RDT-MMF-PF
(i.e., when xdps, ye ∈ R+) using the idea of [117] and then show how, using dual
theory, we can improve its efficiency. This further investigation will result in an
improved algorithm, which is presented later.

5.3.5.1 Basic algorithm

The structure of the basic algorithm is illustrated by the block diagram shown in
Figure 5.2. As it will become clear, the basic and the improved algorithms will
mainly differ only by the non-blocking test performed in Step 2.

Basic Algorithm for resolving RDT-MMF-PF

Step 0 (Initialization):
Put n := 0, Z0 := ∅, Z1 := {1, 2, . . . , S}.
Step 1:
Solve the following convex programme:

BS1:

maximize t (5.63)

subject to (5.52)− (5.54) and

Rs =
∑

d

wds log(Xds) ≥ t , s = 1, 2, . . . , S . (5.64)

Let (t∗ , x∗ , X∗ , R∗ , y∗) be the optimal solution to the problem above. Put
ts := t∗ for each s ∈ Z1.
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Step 2:
Put n := n + 1 and

Y :=
{

s ∈ Z1 : Rs = ts
}

and

Z1 :=
{

s ∈ Z1 : Rs > ts
}

. (5.65)

For each2 s′ ∈ Y solve the following convex programme:
BS2:

maximize Rs′ =
∑

d

wds′ log(Xds′) (5.66)

subject to (5.52)− (5.54) and

Rs =
∑

d

wds log(Xds) ≥ ts , s = 1, 2, . . . , S . (5.67)

Let Rs′ be the solution to the task for s′. Redefine the sets:

Z0 := Z0 ∪
{

s′ : Rs′ = ts′
}

,

Z1 := Z1 ∪
{

s′ : Rs′ > ts′
}

. (5.68)

Step 3:
If Z1 = ∅ then stop; otherwise solve the following convex programme:

BS3:

maximize t (5.69)

subject to (5.52)− (5.54) and

Rs =
∑

d

wds log(Xds) ≥ ts , s ∈ Z0 , (5.70)

Rs =
∑

d

wds log(Xds) ≥ t , s ∈ Z1 . (5.71)

Let (t∗ , x∗ , X∗ , R∗ , y∗) be the optimal solution to the problem above. Put
ts := t∗ for each s ∈ Z1. Go to Step 2.

5.3.5.2 Comments to the Basic Algorithm

In the algorithm above t ∈ R and ts ∈ R, s ∈ {1, 2, . . . , S} are auxiliary
variables. Sets Y, Z0, Z1 ⊆ {1, 2, . . . , S} are used to keep situation indices.

2Of course, if maximization of Rs′ , s′ ∈ Y , indicates that Rs′′ > ts′′ , s′ 6= s′′ ∈ Y , there is
no need to carry out this task for s′′.
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Step 2: (NON-BLOCKING TEST)
for each blocking situation resolve problem BS2

START

Any revenues to 
increase?

Step 1: Resolve problem BS1

Step 0: (INITIALIZATION)

Step 3: Increase the revenues by resolving problem BS3 
and fix the rest to their current (maximal) value

END
NO

YES

Figure 5.2: The block diagram for the basic algorithm.

The test performed in Step 2 of the algorithm, which is aimed at identifying the
situations for which the revenue can be improved, will be called the non-blocking
test. The set Y is a temporary set which, during execution of Step 2, is used to
store situations for which it is not known whether or not the current bound ts is
the upper bound for Rs. The sets Z1 and Z0 have the following interpretation
after completion of Step 2 in iteration n (n = 1, 2, . . . , N , where N is the
number of iterations performed until the termination of the algorithm):

Z0 : The set of situations for which it is known that Rs is equal to ts and can
not be made any larger.

Z1 : The current set of situations for which it is known that Rs can be made
larger than the current bound ts.
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Figure 5.3: Evolution of revenues. The revenue vector is not sorted.

The algorithm presented above finds an assignment of link capacities and situation-
dependent flows that are max-min fair from the Rs values viewpoint. So it is in
fact solving an MMF problem for the PF networks. This means that any solution
of the algorithm has the property that the resulting vector R(X) is the (unique)
lexicographically maximal vector in the space

{
R(X) : X ∈ X̄

}
. The follow-

ing example illustrates how the allocation of revenues evolve through the iterations
of the algorithm, to arrive at the MMF solution.

Example 5.1. Assume we design a network for which there are five states of
operation (denoted s = 0, 1, 2, . . . , 4) identified. We want to allocate revenues
Rs among these states according to the MMF principle. For this we are going to
use the basic algorithm presented in Section 5.3.5.1. Say, in the first iteration n =
1 an allocation is found with revenue values as shown in Figure 5.3(a). Assume
that the non-blocking test in Step 2 of the algorithm indicates that situations 1
and 3 are blocking. Thus the revenues for these situations are fixed at value t1
and are increased for the other situations, at least till the value of t2, which is
blocking for some of the remaining situations. This is illustrated in Figure 5.3(b).
Say, that after second visit to Step 2 (iteration n = 2) it appears that situations 2
and 4 are blocking. Thus in Step 3 their revenue values are fixed at level t2, and
the revenue for the remaining situation 0 is increased yet further, till value t3, as
shown in Figure 5.3(c). After iteration n = 3 it appears that value t3 is blocking
for situation s = 0, thus the revenue is fixed at the value t3 and the algorithm
terminates.

5.3.5.3 Improving the algorithm efficiency

From the time efficiency viewpoint the main drawback of the algorithm presented
in Subsection 5.3.5.1 is the multiple solving of the optimization tasks in Step 2
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during each iteration in order to detect whether or not the revenue in a particular
situation from set Y can be further increased. This, however, can be checked
in a much simpler way provided that the optimal values of the dual variables
(Lagrange multipliers) corresponding to constraints (5.64) in Step 1 and to con-
straints (5.71) in Step 3 are known. We shall illustrate this approach, described in
detail in [31], for the optimization task of Step 1.

Let U be the set of all feasible vectors u = (x,X,y) defined by con-
straints (5.52)-(5.55). Then it can be shown, that the dual function (cf. [113],
Section 8.3) of the task of Step 1 is equal to

W (λ) = max
u∈U

{ ∑
s λsRs(u)

}
, λ ≥ 0 , (5.72)

where Rs(u) =
∑

d wds log(Xds) and λ = (λ1, λ2, . . . , λS) is a vector of the
dual variables corresponding to constraints (5.64) rewritten as

t−
∑

d

wds log(Xds) ≤ 0 , s = 1, 2, . . . , S . (5.73)

Let λ∗ denote a vector of optimal multipliers, i.e. the multipliers with the prop-
erty

W (λ∗) = min
λ≥0

W (λ) . (5.74)

Let t∗ denote the optimal value of the primal function (5.63) and let U∗ denote
the set of all optimal solutions of the considered task. Finally, let S denote the set
of the blocking situations with respect to t∗.

Definition 5.2. A situation is called blocking with respect to t∗ if the following
holds:

s ∈ S if and only if Rs(u) = t∗ for all u ∈ U∗ . (5.75)

The following fact forms the basis for improving the basic algorithm (through
improving the non-blocking test (5.66)-(5.67)) from Section 5.3.5.1.

Proposition 5.2. For each situation s (s = 1, 2, . . . , S) , if λ∗s > 0 then s ∈ S .

Proof: Although the implication in Proposition 5.2 is a direct consequence of
the complementary slackness property of convex programming, we will prove it
here from scratch, as this can be instructive for a reader not familiar with the dual
optimization theory.
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Let us dualize constraints (5.73), and form the Lagrangian,

L(u;λ) = t−
∑

s

λs

(
t−Rs(u)

)
= t−

∑
s

λs

(
t−

∑
d wds log(Xds)

)
= t

(
1−

∑
s λs

)
+

∑
s

λs

∑
d

wds log(Xds) , (5.76)

and the dual function,

W (λ) = max
u∈U

L(u;λ) , λs ≥ 0 , s = 1, . . . , S , (5.77)

cf. [113], Chapter 8. Since we are considering a convex optimization problem,
any vector of optimal dual variables (multipliers) λ∗, satisfies the following equal-
ity

W (λ∗) = min
λ≥0

W (λ) = t∗ . (5.78)

It follows that the set Λ in which the dual function assumes its minimum can be
limited to

Λ =
{

λ :
∑

s λs = 1 , λs ≥ 0 , s = 1, . . . , S
}

, (5.79)

because if
∑

s λs 6= 1 then W (λ) may be made infinitely large by assuming
t = +∞ or t = −∞. Hence, as we are interested in the minimization of the
dual function, we may restrict the domain of (5.77) to

W (λ) = max
u∈U

∑
s

λsRs(u) , λ ∈ Λ . (5.80)

Now let λ∗ be a vector of optimal multipliers and suppose that for some u∗ ∈ U∗,
(u∗,λ∗) is a saddle point of the Lagrangian function (5.76). Then

t∗ = W (λ∗) = L(u∗;λ∗) = max
u∈U

L(u;λ∗) = max
u∈U∗

L(u;λ∗) , (5.81)

so that ∑
s

λ∗sRs(u∗) = t∗ . (5.82)

Since
∑

λs = 1, equality (5.82) implies that Rs(u∗) = t∗ for all s such that
λ∗s > 0. Otherwise the sharp inequality

∑
s λ∗sRs(u∗) > t∗ would hold, since

equalities Rs(u∗) ≥ t∗ hold for any optimal solution. This in fact implies that
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λ∗s cannot be positive if s is a non-blocking situation. Indeed, let û ∈ U∗ be an
optimal solution with the following property

Rs(û) = t∗ for all s ∈ S and

Rs(û) > t∗ for all s /∈ S. (5.83)

Then it is clear that if λ∗ ∈ Λ and there exists a situation s /∈ S, such that λ∗s > 0
then ∑

s

λ∗sRs(û) > t∗, (5.84)

which is a contradiction. Therefore,

if s /∈ S then λ∗s = 0, (5.85)

and this completes the proof. 2

It is important to observe that the inverse implication is not always true, i.e., in
general λ∗s = 0 does not imply that s /∈ S (see Example 8.3 in [31]). However,
the implication in Proposition 5.2 makes it possible to construct an improved ver-
sion of the basic algorithm. The improved algorithm for solving RDT-MMF-PF
is based on a dual non-blocking test and is as presented in the following section.

5.3.5.4 The improved algorithm

The block diagram for the improved algorithm is shown in Figure 5.4. Com-
pared to the basic algorithm for resolving problem RDT, the modified algorithm
increases effectiveness of the problem resolution in two ways. The most important
advancement is the efficient non-blocking test. In the modified algorithm the test
consists in simple checking for the values of dual variables, whereas in the basic
algorithm it required the time-consuming solution of the optimization problem
for each of the situations. Furthermore, the algorithm efficiency is increased by
having the optimization problem resolved only in Step 1, as opposed to Steps 1
and 3 in the basic algorithm. However, this change in the algorithm structure has
only a small impact on the total algorithm efficiency, as compare to the gains due
to the more efficient non-blocking test. The basic algorithm could also be formed
in a similar way.
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Improved Algorithm for resolving RDT-MMF-PF

Step 0 (Initialization):
Put n := 0, Z0 := ∅, Z1 := {1, 2, . . . , S}, ts := 0 for all s.

Step 1:
Solve the following convex programme (denote it by MS1):

maximize t

subject to (5.52)-(5.54) and (5.73) and

Rs =
∑

d

wds log(Xds) = ts , s ∈ Z0 (5.86)

Rs =
∑

d

wds log(Xds) ≥ t , s ∈ Z1. (5.87)

Let t∗ be the optimal solution of the above problem and λ∗s, s ∈ Z1 be the
optimal dual variables corresponding to constraints (5.87).

Step 2:
Put n := n+1 and ts := t∗ for each s ∈ Z1. Put Z0 := Z0∪{s ∈ Z1 : λ∗s > 0}
and Z1 := {s ∈ Z1 : λ∗s = 0}.

If Z1 = ∅ then STOP (the vector R = (R1, R2, . . . , RS) = (t1, t2, . . . , tS),
sorted in non-decreasing order, is the solution of the problem); else go to Step 1.

5.3.5.5 Comments to the improved algorithm

The entities in the improved algorithm have the same meaning as those in the
basic algorithm, except of the set Z1. In the improved algorithm set Z1 denotes
the current set of situations, for which it is not known if ts is the maximal value
for Rs.

If optimal t∗ in Step 1 happens to be strictly greater than the optimal solution
obtained in the previous iteration, then all situations s in set Z1 are non-blocking.
If not, then one or more situations in set Z1 are blocking (they are “false" non-
blocking situations) and t∗ cannot be increased. Still, among the newly obtained
optimal dual variables λ∗s for s ∈ Z1, at least one with λ∗s > 0 will appear, and
hence, at least one new blocking situation will be detected. This follows from the
fact that in the optimal dual solution of the problem solved in Step 1, the dual
variables, λ∗s , corresponding to (5.87), expressed as in (5.73), have the property
analogous to the property defined in (5.79), i.e.,∑

s∈Z1

λ∗s = 1 and λ∗s ≥ 0 for s ∈ Z1. (5.88)
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Step 2: (NON-BLOCKING TEST)
check which revenues can be further increased based 
on duals; fix the rest to their current (maximal) value

START

Any revenues to 
increase?

Step 1: Solve problem MS1

Step 0: (INITIALIZATION)

END
NO

YES

Figure 5.4: The block diagram for the improved algorithm.

Let us notice that although it would be rather difficult to find optimal multi-
pliers for the above considered optimization tasks, the linear approximation pre-
sented in Section 4.3.4 makes this feasible, since most of the linear programming
solvers provide the optimal dual variables along with primal optimal solution.

Now we will investigate what is really required for the implication λ∗s = 0 ⇒
s /∈ S to hold. Suppose that the network has the following (natural) property:

Property 5.3. If any proper subset S0 of S is removed from the formulation of the
considered optimization problem, then in the resulting reduced optimization problem
at least one of the situations s ∈ S\S0 will become non-blocking with respect to t∗.

Proposition 5.4. Property 5.3 holds if, and only if, for each situation s it is true that
λ∗s = 0 ⇒ s /∈ S.

Proof: We will first show that Property 5.3 implies that λ∗s = 0 ⇒ s /∈ S
holds for each situation s. To do this we note that property (5.85) implies that
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from the dual problem (i.e. minimization of the dual function) viewpoint, the
non-blocking situations (i.e. situations not in S) are not important: the primal
problem (5.52)-(5.55), (5.63), (5.73), reduced to the situations from set S, and
the original problem taking into account all situations s ∈ {s1, s2, . . . , sS}, are
identical from the dual problem viewpoint. The common dual function is given
by:

W (λ) = max
u∈U

∑
s∈S

λsRs(u) , λ ∈ Λ′, (5.89)

where

Λ′ =
{

λ ∈ Λ : λ∗s = 0 for s /∈ S
}

. (5.90)

Now suppose that λ∗s′ = 0 for some s′ ∈ S. This leads to the following further
restriction of the dual function:

W (λ) = max
u∈U

∑
s∈S\{s′}

λsRs(u) , λ ∈ Λ′ , λs′ = 0 . (5.91)

The form of (5.91) implies that it is the dual function of the considered opti-
mization task further reduced by deleting situation s′ from the list of blocking
situations. Then, by Property 5.3, one of the situations in the set S\{s′}, say sit-
uation s′′, becomes non-blocking with respect to t∗. This means that in the task
reduced to set S\{s′}, the set of blocking situations is a subset of S\{s′, s′′}.
This in turn implies that in the new task λ∗s′′ = 0 for any optimal λ∗, and we can
further modify the dual function arriving at

W (λ) = max
u∈U

∑
s∈S\{s′,s′′}

λsRs(u) , λ ∈ Λ′ , λs′ = λs′′ = 0 . (5.92)

Continuing the above procedure of reducing the set S we will eventually reach
the empty set of blocking situations, contradicting that t∗ is the optimal solution
of the original task. Hence, λ∗s′ > 0 and this completes the first part of the proof.

The proof that: if for each situation s, λ∗s = 0 ⇒ s /∈ S, then Property 5.3
holds, is omitted here and can be found in Section 13.1.3 of [31]. 2

To summarize: if Property 5.3 holds then all situations with λ∗s = 0 are non-
blocking and the optimal solution of Step 1 in the improved algorithm will always
result in increasing the value of t∗.
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5.3.6 Other combinations of criteria for RDT

Certainly, combining MMF and PF fairness (as it was presented in the previous
sections) is just one of the ways for designing resilient networks with fair band-
width distribution. Recall that using two criteria (in this case–MMF and PF) for
network design allows us not only to fairly distribute the bandwidth among de-
mands, but also to do so in each of the (considered) network states through the
revenues. In the previous sections we have mainly focused on the MMF-PF allo-
cation scheme, here we will present how the discussed network design models can
be extended for considering other combinations of criteria. Assuming that it is
still desired to have PF bandwidth distribution between demands, the alternatives
to govern the revenues consist in, but are not limited to, PF allocation and total
revenue maximization (RM). RM is the same kind of objective as TM (4.6) , just
applied to the revenue values, instead of the flows. We will give mathematical
models for both of these options here and provide some comparative results for
networks N12 and N41 in the numerical results section below.

Let us now define a resilient network design problem with PF bandwidth al-
location, both among the demands and among the revenues. We will refer to this
allocation scheme as PF-PF.

RDT-PF-PF:

max R =
∑

s

log Rs =
∑

s

log(
∑

d

wds log(Xds)) (5.93)

s.t.: (5.52)− (5.55).

The problem RDT-PF-PF is identical to problem RDT-MMF-PF (see Section
5.3.3), except of the objective function (5.93), which is the PF objective applied
to situation-dependent revenues (5.56).

Similarly, a network design problem with PF bandwidth allocation among
demands and RM applied to revenues we will refer to this scheme as RM-PF) is
defined as:

RDT-RM-PF:

max R =
∑

s

Rs =
∑

d

∑
s

wds log(Xds) (5.94)

s.t.: (5.52)− (5.55).

Applying the linear approximation of the logarithmic function discussed in
Section 4.3.4 and relaxing variables, so that xdps, ye ∈ R+, makes both problems
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linear. As such, they can be resolved using generic LP solvers, such as CPLEX
[49], and do not require special algorithms. Such linearized and relaxed problems
are considered in the numerical section below.

5.3.7 Numerical experiments

A number of experiments have been carried out to test the algorithms for different
network examples. The following subsections contain selected input data and the
results of the algorithms for four different size networks (see Figures 5.5-5.8). The
network models used are presented in Table 5.1.

The networks of particular interest are the ”Polish backbone network”, N12,
and the artificial network, N41, shown in Figures 5.7 and 5.8, respectively. Be-
cause of the limited space it is not feasible to give complete numerical results for
these networks. For illustrative purposes, a complete description of the obtained
numerical results and algorithm parameters for N3 is given in Section 5.3.7.1. A
summary of selected numerical values obtained by the algorithms applied to N12

is given in Subsection 5.3.7.2. Extensive results for networks N12 and N41 are
given when comparing different combined criteria. For N5 only execution times
are reported. In network cases N3, N5 and N12 the budget B is equal to 1000,
while for N41 it is 5000.

ref. # paths
code # nodes # links # demands per # failure

demand situations
N3 3 3 3 2 4
N5 5 7 10 2-3 8
N12 12 18 66 6-13 19
N41 41 72 100 3 35

Table 5.1: The networks used for experiments.

5.3.7.1 Simple network, N3

We start by presenting results achieved by the algorithms applied to the simple
3-node network N3 depicted in Figure 5.5. In this experiment the revenue coeffi-
cients wds, and cost coefficients ξe are all put equal to 1. Tables 5.2 and 5.3 give
the input data.

Results from these trials are found in Table 5.4 (empty fields indicate that an
entity remains unchanged with respect to the preceding step). Values of flows,
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Figure 5.5: The N3 network.
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Figure 5.6: The N5 network.

10
3

2

8

12

7

4
5

9

6

11

1

1

2

3

4 5

6

7

8

9
10

11
12

1314

15

16

17

18

Figure 5.7: The N12 network.

Figure 5.8: The N41 network.
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Demand d = 1 d = 2 d = 3
Nodes 1-2 1-3 2-3

Links (e) p = 1 1 2 3
p = 2 2,3 1,3 1,2

Table 5.2: Demands and paths for network N3.

αes

Links s = 1 s = 2 s = 3 s = 4 ξe

e = 1 1 0 1 1 1
e = 2 1 1 0 1 1
e = 3 1 1 1 0 1
wds 1 1 1 1

Table 5.3: αes, wds and ξe for network N3.

xdps, are given only if not equal to zero. Final results (after the algorithm com-
pletion) are shown in the rightmost position. Note that Rs′ (in contrast to Rs)
is relevant only for the basic algorithm, and that λs on the other hand is relevant
only for the modified algorithm.

5.3.7.2 Backbone network, N12

Already network N12 (medium-size Polish backbone network, Figure 5.7) is quite
challenging for the algorithms in terms of computation times. Since for instance
the number of the non-zero flows, xdps, is quite big in this trial, only selected
numerical results are given. As in the N3 case, the revenue coefficients, wds,
are all put equal to 1. Link costs are given in Table 5.5. Situations are defined
in accordance to the N3 case, i.e. each situation corresponds to one exclusively,
completely failed link, except for the nominal situation, when no links are broken.
In effect, αes are simply obtained by expanding Table 5.3. The evolution of Rs

over (selected) iterations n, along with the evolution of the auxiliary variable t

and the resulting link capacities ye, is illustrated in Table 5.6. The table reveals at
which iteration (n) each individual situation was blocked. By studying the second
column (t∗) and the 8th column (Rs, n = 15) it is concluded that situations
4,5,14 and 17 are blocked at n = 0, t∗ = 91.62. Situation 7 is blocked for
n = 1, t∗ = 92.15 and 16 for n = 2, t∗ = 92.32, respectively, and so on.
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n 0 1 2
Instant After Step 1 After Step 2 After Steps 3 After Step 2

t∗ 20.35 26.8
ts ts = 20.35 , t0 = 26.8 ,

s = 0, 1, 2, 3 ts = 20.35, s = 1, 2, 3

Rs Rs = 20.35 , R0′ = 26.80 , R0 = 26.8 , R0′ = 26.8

s = 0, 1, 2, 3 Rs′ = 20.35 , Rs = 20.35, s = 1, 2, 3

s′ = 1, 2, 3

y y1 = y2 = y3 = 333.33 y1 = y2 = y3 = 333.33

xdps x110 = 24.81 x110 = 333.33

x210 = 24.81 x210 = 333.33

x310 = 283.72 x310 = 333.33

x320 = 308.53

x121 = 24.81 x121 = 24.81

x211 = 308.53 x211 = 308.53

x311 = 308.53 x311 = 308.53

x112 = 308.53 x112 = 308.53

x222 = 24.81 x222 = 24.81

x312 = 308.53 x312 = 308.53

x113 = 308.53 x113 = 308.53

x213 = 308.53 x213 = 308.53

x323 = 24.81 x323 = 24.81

Z1 s = 0, 1, 2, 3 s = 0 ∅
Z0 ∅ s = 1, 2, 3 s = 0, 1, 2, 3

λs For constraint (5.73): For constraint (5.71):
λ0 = 0, λ0 = 1

λ1 = λ2 = λ3 = 0.33

Table 5.4: Numerical results for the basic and the modified algorithms applied to N3.

e 1 2 3 4 5 6 7 8 9
ξe 1.85 3.4 1 1.45 2.3 2.9 1 1.6 2.2

e 10 11 12 13 14 15 16 17 18
ξe 1.5 2.3 1.4 1.65 1.25 2.3 1.55 1.35 1.7

Table 5.5: Link marginal costs for network N12.

5.3.7.3 Network N41

Due to its size the network N41 was the most resource demanding in compu-
tations. As in the case with other networks, for N41 the revenue coefficients,
wds, are all put equal to 1. Link costs varied, dependent on link length, between
5.7 and 16.4, with the mean being 9.9, the 25th percentile of 7.8 and the 75th

percentile of 11.7. The costs are shown in Table 5.7. Situations are defined in
accordance to the N3 case, i.e. each situation corresponds to one exclusively, com-



F    -  93

Rs

n t∗ s n e ye

0 1 2 14 15
0 91.62 0 91.62 92.15 92.32 97.83 101.64 1 25.89
1 92.15 1 91.62 92.15 92.32 96.22 96.22 2 33.32
2 92.32 2 91.62 92.18 92.32 92.33 92.33 3 42.54
3 92.33 3 91.62 92.15 92.32 93.96 93.96 4 49.76
4 93.11 4 91.62 91.62 91.62 91.62 91.62 5 40.46
5 93.56 5 91.62 91.62 91.62 91.62 91.62 6 13.70
6 93.96 6 91.62 92.15 92.32 97.37 97.37 7 54.97
7 94.06 7 91.62 92.15 92.15 92.15 92.15 8 27.97
8 94.27 8 91.62 92.15 92.32 95.93 95.93 9 22.43
9 95.93 9 91.62 92.15 92.32 94.27 94.27 10 31.64
10 96.22 10 91.62 92.15 92.32 93.56 93.56 11 16.55
11 96.26 11 91.62 92.15 92.32 97.83 97.83 12 38.13
12 96.68 12 91.62 92.15 92.32 93.11 93.11 13 22.43
13 97.37 13 91.62 92.15 92.32 96.68 96.68 14 55.60
14 97.83 14 91.62 91.62 91.62 91.62 91.62 15 22.24
15 101.64 15 91.62 92.15 92.32 96.26 96.26 16 25.24

16 91.62 92.15 92.32 92.32 92.32 17 40.45
17 91.62 91.62 91.62 91.62 91.62 18 29.56
18 91.62 92.15 92.32 94.06 94.06

Table 5.6: Selected results and parameters for network N12.

pletely failed link, except for the nominal situation, when no links are broken. As
in the case with network N12, αes are simply obtained by expanding Table 5.3.
The number of demands was limited to 100 and the number of situations to 35
in order to still get reasonable computation times. The situations were selected
randomly from the set of 73 single link failure situations possible.

5.3.7.4 Comparing the combinations of fairness criteria

In order to illustrate the effects of the different fairness schemes used in resilient
network design problem, below we provide some results for networks N12 and
N41. There are two sets of results for network N12 presented: Table 5.8 and
Figures 5.9 and 5.10 present some results for the case when all the link costs
are assumed equal to one, i.e., ξe ≡ 1. This allows for a comparison of the
different fairness schemes without going into the discussion of how do different
cost factors bias the results. The second set of results for N12, comprised of
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e 1 2 3 4 5 6 7 8 9

ξe 7.8 9.4 13.7 10.6 9.7 9.3 10.1 8.9 12.9

e 10 11 12 13 14 15 16 17 18

ξe 14.2 10.2 11.1 11.8 11.9 10.7 9.9 12.2 10.9

e 19 20 21 22 23 24 25 26 27

ξe 12.0 16.4 15.6 14.6 15.2 7.8 6.6 7.3 13.5

e 28 29 30 31 32 33 34 35 36

ξe 15.5 8.1 6.9 12.6 12.0 7.3 8.3 7.1 8.7

e 37 38 39 40 41 42 43 44 45

ξe 8.5 8.3 10.3 6.9 12.1 9.2 9.7 7.8 7.8

e 46 47 48 49 50 51 52 53 54

ξe 10.7 11.1 8.3 9.3 6.8 8.2 7.6 7.7 8.9

e 55 56 57 58 59 60 61 62 63

ξe 5.7 5.7 11.7 9.7 8.2 12.5 9.9 12.5 11.4

e 64 65 66 67 68 69 70 71 72

ξe 8.8 10.9 8.1 11.2 9.3 6.4 6.2 7.0 8.3

Table 5.7: Link marginal costs for network N41.

Table 5.9 and Figures 5.11 and 5.12, are for the case when “real”3 link costs
(shown in Table 5.5) are used. Results for network N41 are produced with the
real costs and are shown in Table 5.10 and Figure 5.13. The two cases with
the real network costs illustrate the outcomes of the considered schemes when
the allocation is affected also by the link cost factor. The tables present main
statistical measures calculated for revenues Rs and link capacities ye for each of
the considered schemes. The preferred values are bolded in the tables. Figures 5.9,
5.11 and 5.13 show revenue vectors sorted in the non-decreasing order (in order
to compare them to the MMF-PF approach). The sorting implies that the order
of the revenues in the resulting sorted vector may in general be different for the
different schemes. Thus it is not relevant to give situation indices in the figures.
Therefore there are no values on the abscise in these figures. Different schemes
are named in the figures just after the criterion which governs the allocation of
revenues among the situations, since it was assumed that in all the cases bandwidth
is allocated among the demands according to the PF principle. There are also
two values of revenues indicated in the figures. These as RPF

min, the minimum

3In this context, real does not mean that the costs come from some real-life scenario, but that
they somehow reflect the lengths of the links.
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revenue for the PF-PF option, and RMMF
min , the minimum revenue for the MMF-

PF option. These are the two values we are mostly interested in for illustrating
the effects of the MMF versus the PF allocation schemes.

Figures 5.10 and 5.12 show the resulting link capacities. For convenience, the
real link costs are indicated as well on the second abscise in Figure 5.12. There
is no corresponding figure presented for the N41 network due to the large set of
values. Instead, the reader is referred to Table 5.10 presenting statistical measures
for these results.

Comparing the thee schemes in terms of statistical measures, the preferred
solution in the context of fair flow allocation is the one which has the highest
minimum revenue value (Min), highest maximum revenue value (Max), lowest
gap between the two (Range), lowest variation (Var), and highest values of mean
(Mean), median (Median), 25th and 75th percentiles (P25 and P75, respectively),
as well as highest total sum of the revenues.

Examining the first set of results (for network N12 with ξe ≡ 1), we notice
that for the RM-PF and the PF-PF cases the values are very close. The same was
observed also for the cases (both for N12 and N41) with the real costs. Therefore
RM-PF is omitted in the subsequent two sets of results. Besides, as it can be seen
from Table 5.8, the PF-PF scheme performs even better in some aspects. Specifi-
cally, both median and P25 are higher for the PF-PF case, and are the best scores
among the three schemes for this network case. We can also see that both the RM-
PF and the PF-PF schemes achieve higher mean and maximal revenues, as well as
result in the larger sum of revenues, compared to MMF-PF case. However, this
comes at a cost of smaller minimum revenue value and greater range/variation,
which are best for the MMF-PF case. The gap between the revenues for the three
schemes and all the situations can be seen in Figure 5.9. The minimum revenues
achieved by the PF-PF and MMF-PF cases are denoted in the figure by RPF

min

and RMMF
min , respectively. As expected, it is common to all the network scenarios

studied that RMMF
min > RPF

min. Together with the lowest variation, this is the
biggest advantage of the MMF-based scheme. The same results are observed also
for the other two network cases, namely N12 and N41 with real costs. The sorted
revenue vectors, with the gap between RPF

min and RMMF
min indicated, for these two

cases are shown in Figures 5.11 and 5.13.

In practice a network operator may want to have at least the same minimum
revenue preserved in all the failure situations, and this revenue to be as large as
possible. As it was discussed, the revenue reflects (straightforward, if wds ≡ 1)
total network bandwidth in a given network operation state. Thus, the minimum
revenue value that is attained in any of the situations translates into the minimum
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Rs ye

RM-PF PF-PF MMF-PF RM-PF PF-PF MMF-PF

Min 126.074 126.066 127.840 35.748 35.030 32.446

Max 137.957 137.957 134.381 91.127 91.180 82.304

Range 11.883 11.890 6.541 55.379 56.150 49.858

Var 7.076 7.052 4.496 205.460 202.007 225.093

Mean 131.105 131.105 130.145 55.556 55.556 55.556

P25 129.497 129.559 127.840 45.288 45.419 45.513

Median 131.600 131.646 130.516 53.452 53.811 52.799

P75 132.527 132.527 131.404 64.883 63.692 69.015

Sum 2490.989 2490.989 2472.751 1000 1000 1000

Table 5.8: Revenue and capacity statistics for N12 with ξe ≡ 1.

guaranteed bandwidth in the network in any of the (considered) network states.
Knowing this value not only facilitates the decisions of the operator about what
bandwidth guarantees it can provide to the customers, but also, if this value is
maximized, it can imply increased customers’ satisfaction with the network, and
in turn add marketing value to the operator’s network services. Another argu-
ment, supporting the MMF-PF allocation scheme is the lowest (among the three
considered alternatives) variation of revenues across the network states, as can be
seen from Tables 5.8, 5.9 and 5.10 This shows certain stability in revenue alloca-
tion.

If, on the other hand, the operator is interested in maximizing its overall
profit, directly linked to the total revenue (see Sum row in the tables), then either
the RM-PF or the PF-PF option is the way to go. However, since for the consid-
ered test cases a better median value for revenues was observed when the PF-PF
scheme was used, PF-PF should be the preferred alternative.

No general conclusions can be drawn regarding the resulting link capacities,
and it is up to an operator to decide which allocation pattern is preferable depend-
ing on the network expansion strategy, forecasted demands, etc. For the network
instances with real costs it has been observed (see Tables 5.9 and 5.10) that min-
imum range between the assigned capacities is achieved by PF-PF option, while
minimum variance is achieved by MMF-PF. The maximum 75th percentile, as
well as maximum capacity value were observed for the PF-PF option.

5.3.7.5 Platforms

The introduced algorithms have been implemented in three variants, all on the
same hardware, namely a Dell Precision 220 PC, with an Intel Pentium III-
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Figure 5.9: Sorted revenues for RM-PF, PF-PF and MMF-PF models for N12, ξe ≡ 1.

Figure 5.10: Link capacities for RM-PF, PF-PF and MMF-PF models for N12, ξe ≡ 1.
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Figure 5.11: Sorted revenues for PF-PF and MMF-PF models for N12 with real ξe.

Figure 5.12: Link capacities for PF-PF and MMF-PF models for N12 with real ξe.
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Rs ye

PF-PF MMF-PF PF-PF MMF-PF

Min 88.738 91.617 11.301 13.700

Max 103.833 101.641 52.462 55.601

Range 15.095 10.024 41.160 41.901

Var 14.422 7.480 178.157 155.029

Mean 96.312 94.429 33.797 32.966

P25 93.729 92.152 25.205 22.433

Median 96.259 93.957 33.311 30.603

P75 99.217 96.258 47.491 40.460

Sum 1829.921 1794.160 608.355 593.386

Table 5.9: Revenue and capacity statistics for N12 with real ξe.

Rs ye

PF-PF MMF-PF PF-PF MMF-PF

Min 24.808 30.859 0 0

Max 50.717 47.209 28.055 31.606

Range 25.909 16.350 28.055 31.606

Var 49.347 34.367 37.885 37.166

Mean 42.556 39.306 7.446 7.459

P25 37.460 33.100 2.164 2.164

Median 45.605 39.815 5.797 6.083

P75 48.411 44.071 12.232 11.333

Sum 1489.473 1375.708 536.144 537.031

Table 5.10: Revenue and capacity statistics for N41 with real ξe.

Reference code Programming environment Solver
C++ Microsoft Visual C++ 6.0; CPLEX 7.5.0

Callable CPLEX libraries
AMPL AMPL ver. 20010215 CPLEX 7.5.0

MATLAB
Matlaba MATLAB 6.1 Optimization

toolbox

afor the basic algorithm

Table 5.11: Software implementations of the algorithms.

1GHz CPU, RAM of 256 MB, a Quantum Atlas10K2-TY092L SCSI HDD
and the Windows 2000 Pro SP2 OS. The different software implementations are
given in Table 5.11.
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Figure 5.13: Sorted revenues for PF-PF and MMF-PF models for N41 with real ξe.

5.3.7.6 Computational efficiency

It is of interest to illustrate the computational efficiency of the algorithms and
their implementations in terms of execution time. The corresponding data is
found in Table 5.12. Tests for N41 have been performed using only AMPL im-
plementations. Therefore, some entries for N41 in Table 5.12 are left blank.
The choice to use the AMPL implementations for these tests is based on the ob-
servation that these implementations exhibited the smallest difference between
execution times of the basic and modified algorithms for the other networks con-
sidered. Therefore, since the computation times for large networks such as N41

are quite long for all the considered implementations, we have chosen to use the
AMPL implementations to illustrate the differences in time performance of the
two proposed algorithms.

5.3.7.7 Remarks

As seen from Table 5.12, for the network examples considered the modified algo-
rithm performs, as expected, much better than the basic one. One can also notice
that performance advantage of the modified algorithm increases with the size of
the network design problem used.

The revenues, Rs, for different situations after the final iteration (algorithm
completion) may differ only by a small number, although making actual flow
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Execution times (seconds)
Reference Implementations of Implementations of

code basic algorithm modified algorithm
C++ AMPL Matlab C++ AMPL

N3 < 1 2 4 < 1 < 1

N5 < 1 3 12 < 1 2
N12 3859 390 6.4e4 179 325
N41 24945 6960

Table 5.12: Execution times.

differences significant, since such a revenue difference is logarithmically related to
the aggregated flow difference.

5.3.8 Overcoming numerical difficulties

Since representation of the real numbers in computers is finite, the results of
computations are rounded-off, and the strict equality tests, performed during ex-
ecution of the algorithm (e.g. for selection of situations to different sets), may fail.
Note that this concerns only the basic algorithm described in Subsection 5.3.5.1,
since it implies checking of strict equality between two variables (Rs and ts) in
establishing set possession (Y , Z1 or Z0) for each situation (definition of situation
sets in (5.65) and (5.68)). Values of these variables can be internally rounded-off

during arithmetical operations, causing the strict equality checks to fail. For this
reason it is convenient to introduce a perturbation tolerance, ε, representing the
maximum value by which Rs and ts can differ to still be interpreted as equal.
The value of ε has to be selected not too large so its influence on the solution
results is minimized, yet large enough to cover the possible fluctuations in the
last positions of the number representation. Accordingly, the following numerical
modifications of the basic algorithm are introduced.

• The definition of sets (5.65) is replaced by
Y :=

{
s ∈ Z1 : −ε ≤ Rs − ts ≤ ε

}
and

Z1 :=
{

s ∈ Z1 : Rs − ts > ε
}

.

• The redefinition of sets (5.68) is replaced by
Z0 := Z0 ∪

{
s′ : −ε ≤ Rs′ − ts′ ≤ ε

}
and

Z1 := Z1 ∪
{

s′ : Rs′ − ts′ > ε
}

.
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5.4 Path generation for the single-layer resilient network

In Section 5.2 we have discussed how path generation can be applied for resolving
problem NDT. Although there is an explicit solution to problem NDT, we car-
ried the detailed derivation of the PG algorithm, mainly for illustrative purposes.
We will now take advantage of this and will use the same approach for developing
PG algorithm for resolving linearized and relaxed problem RDT. Recall, that path
generation technique is useful only when the set of all allowable paths is some-
how restricted, i.e., by maximum hop count, thus making impossible to state the
problem in node-link formulation. Assuming this is the case, and recalling that
problem RDT has to be solved with the help of a special algorithm (e.g., the one
presented in Section 5.3.5.4), we will develop a PG algorithm for generating new
paths, which will replace the task solved in Step 1 of the algorithm in Section
5.3.5.4. Furthermore, we will extend the original problem RDT by including
lower and upper bounds on total demand volumes. Since the path generation
technique can be applied only to linear problems, we will consider a relaxation
of the problem assuming xdps, ye ∈ R+ and t, fds ∈ R. Let us first restate the
optimization task of Step 1. We will denote it by LRRDT.

LRRDT:

max t (5.95)

s.t.:

[π ≥ 0]
∑

e

ξeye ≤ B, (5.96)

[σds ≥ 0] hds ≤
∑

p

xdp, ∀d ∈ D, s ∈ S (5.97)

[τds ≥ 0]
∑

p

xdp ≤ Hds, ∀d ∈ D, s ∈ S (5.98)

[γes ≥ 0]
∑

d

∑
p

δedpxdps ≤ αesye, ∀e ∈ E , s ∈ S (5.99)

[βdsi ≥ 0] fds ≤ ai

∑
p

xdps + bi, ∀d ∈ D, s ∈ S, i ∈ I (5.100)

[λs ≥ 0] ts −
∑

d

wdsfds ≤ 0, ∀s ∈ Z0 (5.101)

[λs ≥ 0] t−
∑

d

wdsfds ≤ 0, ∀s ∈ Z1 (5.102)
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t, fds ∈ R;xdps ∈ R+, ∀d ∈ D, p ∈ Pd,

∀s ∈ S (5.103)

ye ∈ R+, ∀e ∈ E . (5.104)

Dual variables associated with constraints (5.96)-(5.102) are indicated in brack-
ets in front of each constraint. Note that dual variables λs are associated both with
constraint (5.101) and (5.102). This is a natural choice since constraints are es-
sentially the same, and indexing of situations among them does not overlap, i.e.,
Z0 ∩ Z1 = ∅. For convenience we convert the objective into minimization. The
Lagrangian function for the problem is:

L(t, f ,x,y ; π,β,λ,σ, τ ,γ) =
∑

d

∑
s

(∑
i

βdsi − wdsλs

)
fds

+
∑

d

∑
p

∑
s

(
τds − σds −

∑
i

aiβdsi +
∑

e

δedpγes

)
xdps

+
∑

e

(
πξe −

∑
s

αesγes

)
ye +

( ∑
s∈Z1

λs − 1
)

t

+
∑

d

∑
s

(
hdsσds −Hdsτds −

∑
i

biβdsi

)
+

∑
s∈Z0

tsλs − πB

(5.105)

and the dual function of LRRDT becomes:

W (π,β,λ,σ, τ ,γ) = min
x,y≥0 , tR0,fR0

L(t, f ,x,y ; π,β,λ,σ, τ ,γ)

=
∑

d

∑
s

(hdsσds −Hdsτds −
∑

i

biβdsi) +
∑
s∈Z0

tsλs − πB.

(5.106)

Constraining the values of dual variables only to those leading to the bounded
dual function W , the dual problem is stated as follows:
DLRRDT:

max W (π,β,λ,σ, τ ,γ) (5.107)

s.t.:
∑
s∈Z1

λs = 1, (5.108)

∑
i

βdsi = wdsλs, ∀d ∈ D, s ∈ S (5.109)

(5.110)
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σds − τds +
∑

i

aiβdsi ≤
∑

e

δedpγes, ∀d ∈ D, p ∈ Pd,

∀s ∈ S (5.111)∑
s

αesγes ≤ ξeπ, ∀e ∈ E (5.112)

π, λs, γes ∈ R+ ∀e ∈ E , s ∈ S (5.113)

βdsi, σds, τds ∈ R+, ∀d ∈ D, s ∈ S,

∀i ∈ I (5.114)

Let t∗, f∗,x∗,y∗ be any primal optimal solution of LRRDT. Similarly, let
π∗,β∗, λ∗,σ∗,τ ∗, γ∗ be any dual optimal solution. The primal and dual optimal
solutions form a saddle point of the Lagrangian. (The dual optimal multipliers
π∗,β∗,λ∗,σ∗,τ ∗,γ∗ can be obtained from an LP solver.) It is observed, that for
any saddle point of the Lagrangian (5.26), the following optimality conditions
hold, implied by the complementary slackness property, for the paths that carry
flow in the optimal solution:

∑
s∈Z1

λ∗s = 1, (5.115)

∑
i

β∗dsi = wdsλ
∗
s, ∀d ∈ D, s ∈ S (5.116)

σ∗ds − τ∗ds +
∑

i

aiβ
∗
dsi = Lds, ∀d ∈ D, s ∈ S (5.117)∑

s

αesγ
∗
es = ξeπ

∗, ∀e ∈ E (5.118)

In an optimal solution, each variable γ∗es represent a cost of link e in situation s.
Let Pd be the given list of candidate paths for demand d and let Lds in equation
(5.117) be a length of the shortest path for demand d and situation s in this list
with respect to metrics γ∗ = (γes : e ∈ E , s ∈ S):

Lds = min
p∈Pd

(∑
e

δedpγ
∗
es

)
, ∀d ∈ D, s ∈ S (5.119)

where Pd contains indices of paths in set Pd. Define a set Se containing all
situations in which link e is fully available, i.e.,

Se = {s ∈ S : αes = 1} ∀e ∈ E . (5.120)
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Then we can rewrite equation (5.118) as follows:∑
s∈Se

γ∗es = ξeπ
∗, ∀e ∈ E . (5.121)

One can observe from (5.121) that in general, all the situations in which some
link is available share a part of a real link cost ξe, scaled by π∗.

Another important observation following from (5.115)-(5.118) is that we can
have a meaningful interpretation of γ∗es and Lds lengths only for the blocking
situations. Otherwise, if we consider some non blocking situation, for which
λ∗s = 0, we can get that Lds = 0, and thus we cannot find any shorter path. We
will use this fact in the PG algorithm, presented below.

Note that two properties we have identified when discussing PG for problem
LRNDT hold for this problem as well. However, we now consider a flow for
some demand in a particular situation. Thus, if the flow is between the bounds
that must be obeyed for the demand in the given situation, then it holds that
σ∗ds = τ∗ds = 0. In general, only one of the variables can be non zero, which is
the case when flow is equal to one of the bounds. Thus, the following equality
always holds:

σ∗dsτ
∗
ds = 0, ∀d ∈ D, ∀s ∈ S. (5.122)

The second observation concerns dual variables β∗dsi. For some demand d and
situation s, usually one, and at most two β∗dsi variables are non zero. As it was
discussed in Section 5.2, if for some demand d̂ and situation ŝ only one approx-
imation slope i(d̂) is active for some optimal X∗

d̂ŝ
, then from equation (5.116)

we get:

β∗
d̂ŝi(d̂)

= wd̂ŝλ
∗
ŝ. (5.123)

Furthermore, assuming that the flow is between bounds, i.e., hd̂ŝ < X∗
d̂ŝ

< Hd̂ŝ,
we can rewrite equation (5.117) as follows:

ai(d̂)wd̂ŝλ
∗
ŝ = Ld̂ŝ. (5.124)

When two approximation pieces are active, in general the following holds

β∗
d̂ŝi(d̂)

+ β∗
d̂ŝi(d̂)+1

= wd̂ŝλ
∗
ŝ. (5.125)
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We will now state a proposition underlying PG algorithm for the problem. Sup-
pose that all allowable paths for a given network instance of problem LRRDT
realizing demand d belong to a set P̂d. Let P̂ds ⊆ P̂d be a subset of paths
for demand d that are fully available in (survive) the failure situation s. For each
demand and situation, let ℘ds ∈ P̂ds be one of the shortest paths among all
allowable paths surviving failure situation s, and let `ds be its cost with respect to
the link cost metrics γ∗, i.e.,

`ds = ‖℘ds‖γ∗ = min
p∈ bPds

(∑
e

δedpγ
∗
es

)
∀d ∈ D,∀s ∈ S (5.126)

where set P̂ds contains indices of paths in set P̂ds. We consider two versions of
problem LRRDT:

• full problem LRRDT-FULL with the set of candidate paths for each de-
mand d equal to P̂d

• limited problem LRRDT-LIMITED with the set of candidate paths for
each demand d equal to Pd, where Pd ⊆ P̂d for all d, and Pd ( P̂d

for at least one demand d

Proposition 5.5. Let (t∗,f∗,x∗,y∗ ; π∗,β∗,σ∗,τ ∗,γ∗) be a saddle point of the
Lagrangian (5.105) for an instance of the limited problem LRRDT-LIMITED with
a given set of candidate paths Pd for each demand d. Let ℘ds ∈ P̂ds \ Pd be a
shortest path for demand d in situation s and let `ds denote its length (5.126). Then:

• If Lds = `ds for all d ∈ D, s ∈ S then any optimal solution to LRRDT-
LIMITED is also optimal for LRRDT-FULL (the solution is optimal in a
wider sense). Notice that this is the case when problem LRRDT-FULL has no
paths shorter than LRRDT-LIMITED.

• Otherwise, if Lds > `ds for at least one demand d and situation s, then
adding path ℘ds into Pd can possibly improve the current optimal solution.

The proof for this proposition is analogous to proof of Proposition 5.1, just as-
suming that we perturb the problem LRRDT-LIMITED for some demand in
only one situation, i.e., we route flow ε for some demand d̂ on a shortest path
(not in a list of candidate paths for the demand) only in some situation ŝ. Further
reasoning and derivations are analogous to those in the proof of Proposition 5.1.
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We will now present an algorithm for resolving problem LRRNDT. It is based
on the improved algorithm for resolving problem RDT (see Section 5.3.5.4), but
extends the algorithm by the path generation performed for all demands in block-
ing situations. Thus the employed PG strategy is add-all for blocking situations.

5.4.1 Algorithm for resolving LRRDT using PG

This iterative PG algorithm is based on the algorithm presented in Section 5.3.5.4.
The main difference is that Step 2 includes a special (extended) test, based on the
values of dual variables, checking the optimality of solution according to Propo-
sition 5.5.

Resolution algorithm for LRRDT using PG.

Step 0 (Initialization):
Put n := 0, Z0 := ∅, ZPG := ∅, Z1 := {1, 2, . . . , S}, ts := 0 for all s. Form
the initial instance of the LRRDT problem, using small sets of candidate paths.

Step 1:
Solve LRRDT problem (If Step 1 is entered from Step 3, then use the optimal
solution from the previous iteration as a staring point for solving the new instance
of the problem).

Let (t∗, f∗, x∗, y∗ ; π∗,β∗, λ∗, σ∗, τ ∗, γ∗) be a saddle point of the La-
grangian for the problem. Get values of dual variables from an LP solver.

Step 2:
Run the following test :

• Put Z := {s ∈ Z1 : λ∗s > 0} and ts := t∗ for each s ∈ Z. Put
Z1 := Z1 \ Z.

• For each s′ ∈ Z and each demand d run a shortest path algorithm, using
γ∗ as links’ costs, to find a shortest path ℘ds

′ and its cost `ds
′ . If there

exists such a path ℘ds
′ that `ds

′ < Lds
′ and the same path as ℘ds

′ has
not been included yet to Pd for another situation s′ ∈ Z, then include it
to Pd. If the path was already included while considering other s′, skip
it, but in Step 3 consider the current situation s

′
, as if the new path was

included for it.

Step 3:
Put n := n + 1, ZPG := {s ∈ Z : new paths ℘ds for s have been added},
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Z1 := Z1 ∪ ZPG, Z0 := Z0 ∪ (Z \ ZPG) and form a new instance of the
problem with the extended lists of available paths. Go to Step 1.

The entities used in the algorithm are analogous to those presented in section
5.3.5, except for the sets Z and ZPG. Set Z is used to store blocking situations
in each iteration, for which it is not known yet if shorter paths for some demands
exist. Set ZPG, in each iteration, is used to store situations for which a new path
was added to a routing lists of at least one demand.

The algorithm is essentially the same as the improved algorithm for RDT
presented before. However, in the algorithm with PG blocking situations are
handled differently. We have mentioned in the previous section while studying
properties of the dual problem that we can use effectively dual link costs only
for the blocking situations. Therefore, in each blocking situation we look for a
shortest path for each demand with respect to dual costs γ∗, and if a path with
length `ds < Lds is found we include it into the candidate path list. Then, each
such blocking situation, for which a new path was added to a routing list of at least
one demand, is moved back to a set of non-blocking situations and the problem
is resolved.

The path generation procedure is polynomial both for the single and multiple
link failure cases, and decomposes into finding a shortest path for each demand
in each situation.



6

CHAPTER 6

Fair bandwidth sharing in resilient two-layer networks

6.1 Introduction

So far we have discussed models for fair allocation in resilient single layer net-
works and presented two algorithms for resolving the associated network design
problems. We will now extend the models still further and consider the networks
with multiple layers of resources. As discussed in the introduction, as for now
the architecture of backbone networks evolves towards two-layer IP over DWDM
model. Therefore mathematical models and resolution algorithms for the design
problems to be presented in this section are for two-layer networks. However,
both the models and the algorithms are quite general and can be easily extended
to account for more resource layers.

Thus, let us consider a resilient two-layer (IP over DWDM) core network
model. It is assumed that demand volumes between source-destination (S-D)
pairs are imposed on the packet layer by mixed elastic and non-elastic IP traffic
streams. The elastic traffic streams can consume any assigned bandwidth within
certain bounds. Flows (bandwidth allocated to different demands’ paths) in both
upper (packet) layer and lower (optical) layer are potentially reconfigurable in a
coordinated way in case of failures. As in the previously presented single layer
models for problem RDT, we will assume that bandwidth allocation (among the
flows realizing demands) follows the PF rule in each considered (predefined) fail-
ure situation. Similarly, we will assume that revenues for the individual situations
are forced to obey the MMF principle, thus, again, arriving at the multi-criteria
optimization case. Flows assigned to demands’ paths will be subject to maxi-
mization under a given budget constraint with respect to lower/upper bounds for
each of demand volumes. Since an uncapacitated network design problems are
considered, optimal link capacities are found as well.

Nodes and links of the lower layer are subject to failures. Since we are dealing
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with a multi-layer network, there are several possibilities for performing the flow
recovery after a failure. We will present three models, differing by the layer where
the recovery takes place: for flow reconfiguration only in the lower layer, only in
the upper layer, and in both layers simultaneously. We will start by introducing
the network model for the normal state only and will then proceed to discussion
of the models assuring resiliency.

6.2 Two-layer network design for the normal state

Consider the problem of designing the two-layer network (e.g., IP/MPLS over
DWDM), given a budget B for installing lower layer links and capacity unit
costs on these links. A mix of non-elastic and elastic (with specified bounds on
bandwidth) demands is imposed on the upper layer. It is assumed that bandwidth
between the elastic demands is shared according to the PF principle. For demands
in both layers lists with candidate paths are predefined. Our purpose is to find
capacities of links and flow allocation in both layers, while the revenue function
(6.1) must be maximized. In this model we are neglecting all the possible failures
and are interested only in designing the network for the normal state. The design
problem can be stated mathematically as follows.

MNOM:

max R =
∑

d

wd log(Xd) (6.1)

s.t.:
∑

g

ξgug ≤ B , (6.2)∑
d

∑
p

δedpxdp ≤ ye , ∀e ∈ E (6.3)∑
p

xdp = Xd , ∀d ∈ D (6.4)

hd ≤ Xd ≤ Hd , ∀d ∈ D (6.5)∑
k

zek ≥ ye , ∀e ∈ E (6.6)∑
e

∑
k

ϕgekzek ≤ ug , ∀g ∈ G (6.7)

xdp, zek ∈ Z+ ∀d ∈ D, p ∈ Pd, e ∈ E , k ∈ Ke (6.8)

ye, ug ∈ Z+ ∀e ∈ E , g ∈ G. (6.9)

We will denote this problem by MNOM. Constraints (6.3), (6.4) and (6.5) are
the same as constraints (5.4), (5.3) and (5.8) for single layer problem NDT (see
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Section 5.1.1). They govern the flow allocation in the upper layer. Constraint
(6.4) and variables Xd are auxiliary and are included in the formulation just for
the clarity of presentation. The formulation becomes more compact if the left-
hand side of (6.4) is directly used in the objective function and constraint (6.5).
Similarly, constraints (6.3) and (6.6) can be merged, eliminating variables ye and
decreasing the number of constraints in the problem formulation.

The objective function (6.1) is also the same as for problem NDT, and im-
plies PF allocation among flows in the upper layer. An allocation of flows in the
upper layer implies upper layer link capacities ye, which are then taken as capacity
requirements for the lower layer. Constraint (6.6) assures that sums of the flows
zek in the lower layer is sufficient for realizing the capacity requirements ye. Con-
straints (6.7), similarly to (6.3), force the sums of all the flows of the lower layer
(zek), that are routed on the paths traversing link g, not to exceed the available
capacity (ug) of link g. Budget constraint (6.2) assures that the cost of lower layer
links does not exceed the budget B.

As for the single layer problems discussed in the previous chapters, the link
capacities ye and ug should be assumed modular. This implies modifying con-
straints (6.3) and (6.7) in the following way:

∑
d

∑
d

δedpxdp ≤ yeM , ∀e ∈ E , (6.10)∑
e

∑
k

ϕgekzek ≤ ugN , ∀g ∈ G , (6.11)

where:
ye ∈ Z+ , ∀e ∈ E number of capacity modules installed on link e;
ug ∈ Z+ , ∀g ∈ G number of capacity modules installed on link g;
M size of the link capacity module in the upper layer;
N size (in M -size units) of the link capacity module in

the lower layer.

Note, that assuming modular link capacities changes the meaning not only of
variables ye, ug, but also of flows zek, which are now calculated in M -size units,
as variables ye.

Resolving the problem MNOM will give the flow allocations (implying the
selection of paths for flows) and link capacities in both layers. For example, con-
sider the multi-layer routing scenario for normal network case depicted in Figure
6.1 (a somewhat similar scenario was also discussed in Section 3.2.2). Assume that
the path chosen in the upper layer for flow realizing demand a− d is a− e− d,



112 6. F     - 

Transport

layer

Client

layer

A E

D

C
B

a

b c

de

Flow on

primary path

Client layer

primary path

Figure 6.1: Routing in a two-layer network.

and all the demand volume is carried by this flow. The routing of all demands
in the upper layer implies (total) capacity requirements on the upper layer links.
These capacity requirements have to be realized by the flows in the lower layer.
Say that the capacity of the upper layer link a − e is realized by the flow A − E

in the lower layer, and similarly the capacity of e− d—by the flow E −D. Thus
the actual flow for demand a−d in this network is a−A−E− e−E−D−d.
Similarly, all the flows in the lower layer imply the lower layer link loads that must
not exceed the lower layer capacities.

The model presented above does not take failures into account. We will now
extend the presented two-layer network model to account for failures occurring
in the lower layer, as illustrated in Figure 6.2. Since links in the upper layer are
virtual (their capacities are realized by the flows in the lower layer), failures of the
upper layer links are not considered explicitly. Below we present three network
design models implying flow recovery in case of failures. The models differ by
which layer do the recovery actions take place in.

6.3 Problem RLL: flow Reconfiguration in Lower Layer

6.3.1 Recovery mechanism

The following model assumes that in a case of failure, recovery actions are taken
only in the lower layer. The recovery from failures in the network consist in
rerouting flows in the lower layer realizing the capacity of the upper layer links.
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Figure 6.2: Failure in the lower layer.
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Figure 6.3: Recovery in the lower layer only.

Thus, recovery from the failure illustrated in Figure 6.2 will, for example, result in
rerouting flow A−E of the lower layer on a new path A−B−E. The actual flow
for demand a−d will in this state follow the path a−A−B−E−e−E−D−d.
This recovery scenario is illustrated in Figure 6.3. Flows in the upper layer are in
all the operation states routed on the same paths, while paths for flows in the
lower layer are situation-dependent. We assume the unrestricted reconfiguration
mechanism for recovery in the lower layer, which, essentially, implies, that when a
failure occurs, all lower layer flows are disconnected and reconnected according to
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a pre-planned scheme for this particular failure case, using network resources that
survive the failure. The reconfiguration actions (i.e., selection of paths and flows
on them) for each of the network operation states are pre-planed at the network
design stage and result from the optimization model presented below.

6.3.2 Mathematical formulation

The two-layer network design problem with recovery in lower layer only is defined
as follows. We will refer to this problem as RLL.

RLL:

max R =
∑

d

wd log(Xd) (6.12)

s.t.:
∑

g

ξgug ≤ B , (6.13)∑
d

∑
p

δedpxdp ≤ ye , ∀e ∈ E (6.14)∑
p

xdp = Xd , ∀d ∈ D (6.15)

hd ≤ Xd ≤ Hd , ∀d ∈ D (6.16)∑
k

zeks ≥ ye , ∀e ∈ E , ∀s ∈ S (6.17)∑
e

∑
k

ϕgekzeks ≤ αgsug , ∀g ∈ G, ∀s ∈ S (6.18)

xdp ∈ Z+ , ∀d ∈ D, p ∈ Pd (6.19)

zeks ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke, ∀s ∈ S (6.20)

ye, ug ∈ Z+ , ∀e ∈ E , ∀g ∈ G. (6.21)

Constraints (6.17) assure that sums of the flows of the lower layer (zeks) are suf-
ficient to implement the capacity requirements ye in all the predefined failure
situations. Thus, for any upper layer link e, the capacity ye is available in any of
the predefined failure situations. This is assured by performing flow reconfigu-
ration in the lower layer. Constraints (6.18), similarly to (6.14), force the sums
of all the flows of the lower layer (zeks), that are routed on the paths traversing
link g, not to exceed the available (remaining) capacity (αgsug) of link g in situ-
ation s. Constraints (6.13)-(6.16) and the objective function (6.12) are the same
as for problem MNOM, and have already been discussed before. Like for prob-
lem MNOM, constraint (6.15) and variables Xd are auxiliary and are included
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in the formulation just for the clarity of presentation. The formulation can be
made more compact by substituting the left-hand side of (6.15) into the objective
function and constraint (6.16), as well as merging constraints (6.14) and (6.17).

Capacities of links in both layers can be assumed modular. The modular-
ity requirement is implied replacing constraint (6.14) by (6.10), and constraint
(6.18) by the following:

∑
e

∑
k

ϕgekzeks ≤ αgsugN , ∀g ∈ G ,∀s ∈ S. (6.22)

Recall that introduction of modular link capacities changes the meaning of vari-
ables ye, ug and zeks. Flows zeks are then calculated in M -size units, like capaci-
ties ye.

6.4 Problem RUL: flow Reconfiguration in Upper Layer

6.4.1 Recovery mechanism

As opposed to problem RLL, in this case all the recovery actions take place only in
the upper layer. When a failure affects lower layer link it is the upper layer which
takes all the responsibility of recovering from the failure, while the lower layer
takes no action. Thus, flows in the upper layer are rerouted on alternative paths,
not affected by the failure. For example, for the failure situation illustrated in
Figure 6.2, the possible recovery scenario is shown in Figure 6.4. In this example
the upper layer flow for demand a − d is rerouted on a path a − b − d. Since
the capacity of link a − b is realized by flow A − B in the lower layer, and the
capacity of link b − d is realized by the flow B − E −D, the actual flow in the
network becomes a − A − B − b − B − E −D − d. The changed routing in
the upper layer implies also different load on the lower layer links and the actual
flow in the network. However, the lower layer flows realizing the capacities of the
upper layer links remain the same in all the states of operation. These flows are
dimensioned to account for the highest bandwidth requirement for realizing the
(varying) upper layer capacities in any of the operation states. The unrestricted
reconfiguration mechanism for recovery in the upper layer is assumed, implying,
that when a failure in the lower layer occurs, all upper layer flows are disconnected
and reconnected according to a pre-planned scheme for this particular failure case,
using network resources that survive the failure. The selection of the recovery
paths and flows on them are decided at the network design stage by resolving the
problem presented below.
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Figure 6.4: Recovery in the upper layer only.

6.4.2 Mathematical formulation

This formulation assumes flow reconfiguration only in the upper layer (we will
refer to the problem presented here as RUL). RUL uses lexicographical maxi-
mization. Therefore we will define problem RUL similarly to problem RDT (see
Section 5.3.3). Suppose X̄ is the set of all (feasible) vectors X = {Xds : d =
1, 2, . . . , D, s = 1, 2, . . . , S} defined by the following constraints:∑

g

ξgug ≤ B , (6.23)∑
d

∑
p

δedpxdps ≤ yes , ∀e ∈ E ,∀s ∈ S (6.24)∑
p

xdps = Xds , ∀d ∈ D ,∀s ∈ S (6.25)

hds ≤ Xds ≤ Hds , ∀d ∈ D ,∀s ∈ S (6.26)∑
k

θekszek ≥ yes , ∀e ∈ E ,∀s ∈ S (6.27)∑
e

∑
k

ϕgekzek ≤ ug , ∀g ∈ G (6.28)

xdps ∈ Z+ , ∀d ∈ D, p ∈ Pd, ∀s ∈ S (6.29)

zek ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke (6.30)

yes, ug ∈ Z+ , ∀e ∈ E , ∀s ∈ S, ∀g ∈ G. (6.31)

For each X ∈ X̄ let R(X) = (R1(X), R2(X), . . . , RS(X) denote the vector
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of revenues,
Rs(X) =

∑
d

wds log(Xds) , ∀s ∈ S, (6.32)

sorted in non-decreasing order. The reader can recognize that function (6.32)
implying PF allocation among aggregated demand flows in each state is the same
as the corresponding function (5.56) for problem RDT-MMF-PF (see Section
5.3.3). Then the problem RUL is formulated as follows:

RUL: lex max {R(X) : X ∈ X̄}. (6.33)

The lexicographical maximization objective function for the problem, which is
the same as for problem RDT, assures that the problem RUL results in lexico-
graphically maximal (unique) solution vector of revenues; this implies the MMF
allocation of revenues among situations. In each failure situation the total flows
are allocated in a proportionally fair way among the demands due to (6.32). These
aggregated flows for each demand in each situation are given in (6.25) and are
forced to attain values within the assumed bounds by constraints (6.26). Note
that constraint (6.25) and variables Xds are auxiliary and can be excluded from
the problem by directly using the left-hand side of constraint (6.25) in (6.32) and
(6.26). Constraints (6.24) force the sums of all the upper layer flows (xdps) that
are routed on paths traversing link e, to be equal to the allocated capacity for link
e in the situation s. Constraints (6.27) assure that the total available flows of the
lower layer (θekszek) on the remaining working paths are sufficient to implement
yes in each of the failure situations. Recall, that θeks is an availability coeffi-
cient of lower layer path k realizing capacity of upper layer link e in situation s.
Constraints (6.24) and (6.27) can be combined in order to make the formulation
more compact. Constraints (6.28), similarly to (6.24), force the sums of all the
flows of the lower layer (zek), that are routed on paths traversing link g, not to
exceed the capacity allocated for link g.

The problem formulation can be modified to take modular link capacities
into account by replacing constraint (6.28) with (6.11), and replacing constraint
(6.24) with the following:

∑
d

∑
d

δedpxdps ≤ yesM , ∀e ∈ E ,∀s ∈ S. (6.34)

As it was discussed before, the introduction of modular link capacities imply that
the meaning of variables yes, ug and zek changes. In this case, flows zek are
calculated in M -size units, like capacities yes.
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6.5 Problem RBL: flow Reconfiguration in Both Layers

6.5.1 Recovery mechanism

The last recovery option considered here is the coordinated recovery in both lay-
ers. When a failure occurs in the lower layer, flows are rerouted (in a coordinated
way) in both the lower and the upper layer in order to circumvent the failure.
The possible recovery scenario for the failure situation illustrated in Figure 6.2
may be as shown in Figure 6.5. In this case the actual recovered flow for demand
a− d becomes a−B − b−B −C −D− d. Another, probably more obvious,
example of the coordinated recover in both layers, could be for the case when
two simultaneous failures affect the nominal path. A possible outcome of the co-
ordinated recovery actions could then be that flow is recovered from one of the
failures by rerouting in one layer and from the second failure–by rerouting in the
other layer. In general, flows may be rerouted on alternative paths in both layers
in order to circumvent the failure. We assume the unrestricted reconfiguration
mechanism for recovery in both layers. Thus in the worst case when a failure oc-
curs all lower and upper layer flows are disconnected and reconnected according
to a pre-planned scheme for this particular failure case, using network resources
that survive the failure. The selection of the recovery paths and flows on them are
decided at the network design stage by resolving the problem presented below.

Transport

layer

Client

layer

A E
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B
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b c

de

Failure

Flow on

recovered path

Client layer
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Figure 6.5: Coordinated recovery in both layers.
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6.5.2 Mathematical formulation

The following final formulation assumes flow reconfiguration in the upper and
lower layers simultaneously (we will refer to this network design problem as RBL).
It is the most flexible flow reconfiguration option, but also the most complicated
one. Like RUL, it uses lexicographical maximization, therefore we will define it
similarly to RUL. The two problems differ only by the few constraints defining
the feasibility region X̄ . For the problem RBL, X̄ is defined by the following
constraints:

∑
g

ξgug ≤ B , (6.35)∑
d

∑
p

δedpxdps ≤ yes , ∀e ∈ E ,∀s ∈ S (6.36)∑
p

xdps = Xds , ∀d ∈ D ,∀s ∈ S (6.37)

hds ≤ Xds ≤ Hds , ∀d ∈ D ,∀s ∈ S (6.38)∑
k

zeks ≥ yes , ∀e ∈ E ,∀s ∈ S (6.39)∑
e

∑
k

ϕgekzeks ≤ αgsug , ∀g ∈ G ,∀s ∈ S (6.40)

xdps ∈ Z+ , ∀d ∈ D, p ∈ Pd, ∀s ∈ S (6.41)

zeks ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke, ∀s ∈ S (6.42)

yes, ug ∈ Z+ , ∀e ∈ E , ∀s ∈ S, ∀g ∈ G. (6.43)

For each X ∈ X̄ let R(X) = (R1(X), R2(X), . . . , RS(X) denote the vector
of revenues (6.32) sorted in non-decreasing order. Then the problem RBL is
formulated as follows:

RBL: lex max {R(X) : X ∈ X̄}. (6.44)

Most of the constraints are analogous to those of problem RUL, except (6.39)-
(6.40). Constraints (6.39) assure that sums of the lower layer flows (zeks) are
sufficient to implement capacities yes in each failure situation. Constraints (6.40)
force the sums of the lower layer flows (zeks), that are routed on paths traversing
link g, not to exceed the available capacity of link g in situation s (αgsug). As
was noted for the other two-layer problems, the formulation can be made more
compact by excluding the auxiliary variables Xds as well as constraints (6.37), and
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using the left-hand side of (6.37) directly in (6.32) and (6.38). Also, constraints
(6.36) and (6.39) can be merged.

Modular link capacities can be introduced by replacing constraint (6.36) by
(6.34) and (6.40) by (6.22). As it was discussed before, the introduction of mod-
ular link capacities imply that the meaning of variables yes, ug and zeks changes.
In this case, flows zeks are calculated in M -size units, like capacities yes.

6.6 Algorithms for resolving the two-layer problems

All the three two-layer problems presented above are non-linear due to the log-
arithmic function in (6.32). They can be linearized by applying the piece-wise
linear approximation of the logarithmic function discussed in section 4.3.4. After
the approximation of the logarithmic function, problem RLL can be treated as a
LP problem, and as such can be directly solved by a LP solver, such as CPLEX
[49].

Similarly to RDT, problems RUL and RBL are not mathematical program-
ming problem (since they use lexicographical order maximization) and must be
resolved in a special way, e.g., by the algorithms analogous to those presented in
Section 5.3.5. Below we present an algorithm for resolving the linearized and re-
laxed problems RUL and RBL, i.e., with variables xdps, zek, zeks, yes, ug ∈ R+.
The algorithm is identical with the improved algorithm for resolving problem
RDT (presented in Section 5.3.5.4), with only difference being that the set of
feasible solutions for the optimization problem solved in Step 1 is in this case
defined by the constraints of problems RUL and RBL, respectively. For clarity
below we restate the full algorithm, with adjusted constraint set in the problem of
Step 1.

6.6.1 Algorithm for resolving RUL and RBL

Algorithm for resolving RUL and RBL

Step 0 (Initialization):
Put n := 0, Z0 := ∅, Z1 := {1, 2, . . . , S}, ts := 0 for all s.

Step 1:
Solve the following convex programme:

maximize t

subject to (6.23), (6.24)-(6.26);
(6.27)-(6.28) for RUL or (6.39)-(6.40) for RBL; and
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Rs =
∑

d

wds log(Xds) = ts , s ∈ Z0 (6.45)

Rs =
∑

d

wds log(Xds) ≥ t , s ∈ Z1. (6.46)

Let t∗ be the optimal solution of the above problem and λ∗s, s ∈ Z1 be the
optimal dual variables corresponding to constraints (6.46).

Step 2:
Put n := n+1 and ts := t0 for each s ∈ Z1. Put Z0 := Z0∪{s ∈ Z1 : λ0

s > 0}
and Z1 := {s ∈ Z1 : λ0

s = 0}.
If Z1 = ∅ then STOP (the vector R = (R1, R2, . . . , RS) = (t1, t2, . . . , tS),

sorted in non-decreasing order, is the solution of the problem); else go to Step 1.

6.7 Numerical experiments for the two-layer models

A number of experiments have been performed with two sets of network models.
The first set of experiments considers networks with symmetrical demands, i.e.,
when lower bounds hd and upper bounds Hd on demand volume are the same
for all demands. The second set of experiments considers network instances with
unsymmetrical demands. For the second set of experiments two-layer network
instances have been produced from real network instances available from SNDlib
library [118].

6.7.1 Example networks with symmetrical demands

Two numerical examples for two different size networks – mid-size (N12) and
large (N41) – are presented in this section. The models are summarized in Ta-
ble 6.1 and the network topologies of both layers are shown in Figures 6.6-6.7.
Topologies of the lower layer networks (indicated as L1 in Table 6.1) for both N12

and N41 are the same as for the corresponding networks used in the numerical ex-
periments for problem RDT (see Section 5.3.7). Thus the costs for the lower layer
links for N12 and N41 are also the same as those considered for problem RDT
and are given in Tables 5.5 and 5.7, respectively. Note that in the tables links are
indexed by e, since the networks were considered in the single layer scenario. In
the case of the two-layer networks presented here the link index in Tables 5.5 and
5.7 should be substituted by g and the link cost by ξg. Topologies of the upper
layers were produced by extending the topologies of the lower layers.

Failure situations have been generated according to the following rule: in sit-
uation s = 1 (called the nominal situation) all links are fully available. In each of
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# paths

ref. layer # nodes # links per # demands # failure

code demand situations

N12 L2 12 22 6-14 66 -

L1 12 18 2-3 22 19

N41 L2 21 37 6 209 -

L1 41 72 3 37 22

Table 6.1: Networks with symmetrical demands used for experiments.
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Figure 6.6: Topology of layers for network N12.

the remaining situations two randomly selected links are assumed to fail entirely,
so that their link availability coefficients αgs become equal to 0 (coefficients for
the remaining links are equal to 1). It has been assured that the situations are
unique, and that they do not result in disjoint graphs. The pairs of links that
fail in each situation are given in Tables 6.3 and 6.4. The experiments have been
performed with S = 19 situations for the network N12 and S = 22 situations
for the network N41. For all experiments all revenue coefficients wds have been
set to 1 and budget B to 106.

6.7.2 Example networks with unsymmetrical demands

Two-layer networks used for this series of experiments were produced from real
single-layer network instances available from SNDlib library [118]. Four net-
works have been used: france, newyork, di-yuan and cost266. The network models
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(a) Lower layer (b) Upper layer

Figure 6.7: Topology of layers for network N41.

g 1 2 3 4 5 6 7 8 9

ξg 1.85 3.4 1 1.45 2.3 2.9 1 1.6 2.2

g 10 11 12 13 14 15 16 17 18

ξg 1.5 2.3 1.4 1.65 1.25 2.3 1.55 1.35 1.7

Table 6.2: Link marginal costs for network N12.

s 1 2 3 4 5 6 7 8 9 10

g - 5,16 8,12 6,15 3,8 11,15 6,11 3,5 2,17 4,14

s 11 12 13 14 15 16 17 18 19

g 11,13 2,16 7.10 2,7 17,18 1,17 7,18 6,13 1,9

Table 6.3: Links that fail in each situation for network N12.

s 1 2 3 4 5 6 7 8 9 10 11

g - 8,15 9,11 17,55 19,5 33,3 23,4 61,31 12,63 38,2 17,8

s 12 13 14 15 16 17 18 19 20 21 22

g 13,16 19,6 48,53 40,5 31,51 49,11 60,16 30,39 14,2 8,70 10,1

Table 6.4: Links that fail in each situation for network N41.

are summarized in Table 6.5 and the network topologies of both layers are shown
in Figures 6.8-6.11. Statistical measures of the link costs ξg and demand volumes
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hd for all the networks are summarized in Table 6.6. The upper bound on de-
mand volumes was in all cases assumed to be infinity and the budget B was set
to 106. The upper layer networks for the two-layer instances are directly taken
from the SNDLib library. Relation between upper and lower layer networks of
any instance is that all upper layer nodes have to exist in the lower layer as well.
Lower layer network can have more nodes, but often has less links than the cor-
responding upper layer network. The networks for lower layer L1 were in all
cases produced from the corresponding upper layer networks by the following
modifications: a randomly generated number of links between 30 and 45% of
links in L2 topology were considered for removal. The particular links to remove
were also chosen randomly, however, assuring that graph does not become dis-
connected, and nodes to which the links were connected still maintain degree of
at least three after the removal. For some networks the actual number of removed
links was less than the considered one due to the constraints described above.
In the second step of the network transformation a number of new nodes were
added, breaking one randomly chosen link each. The number of nodes to add
was randomly chosen, but was upper bounded by 30% of the existing upper layer
nodes. The degree for the new nodes was randomly chosen to be between 3 and
5. Each new node was first connected to end nodes of the link which was broken
by placing the node, and then, between 1 and 3 (depending on the node degree)
randomly chosen nodes in the network. In the final step of network transforma-
tion the capacity and cost of the links in the resulting network were scaled by a
randomly chosen (for each link) factor which lies between 0.5 and 1.5. In this
way a lower layer network was produced from the upper layer network.

In order to carry on the experiments with models developed in this section,
demands were assumed to be undirected. Candidate path lists for the demands in
networks of both layers were generated, containing a chosen number of shortest
paths for each demand. In the experiments with the four networks single link
failures were assumed. Thus, all the links are available in the nominal situation
(s = 0), and in the subsequent situations a single link corresponding to a situation
number is failed.

6.7.3 Numerical results

Resulting revenues of the three reconfiguration options have been compared in
the unbounded (when Xd or Xds could take any value between 0 and +∞)
and bounded (when Xd or Xds could be assigned any values from the intervals
hd ≤ Xd ≤ Hd or hds ≤ Xds ≤ Hds, respectively) cases. Two sets of net-
work examples were considered- with symmetrical and unsymmetrical demand
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Figure 6.8: Topology of layers for network france.
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Figure 6.9: Topology of layers for network newyork.
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Figure 6.10: Topology of layers for network di-yuan.
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Figure 6.11: Topology of layers for network cost266.
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# paths

ref. layer # nodes # links per # demands # failure

code demand situations

france L2 25 45 2-10 300 -

L1 27 40 2-10 45 41

newyork L2 16 49 10 120 -

L1 18 39 10 49 40

di-yuan L2 11 42 10 22 -

L1 13 30 10 42 31

cost266 L2 37 57 10 666 -

L1 40 61 10 57 62

Table 6.5: Networks with unsymmetrical demands used for experiments.

Networks
france newyork di-yuan cost266

ξg hd ξg hd ξg hd ξg hd

Min 0.205 48 2.12 2 6.4 1 0.13 19

Max 5.7 1808 36.446 42 61.016 5 1.22 5626

Range 5.495 1760 34.325 40 54.616 4 1.09 5607

Var 1.502 9.676e4 51.483 44.588 199.138 1.682 0.058 2.836e5

Mean 1.178 332.767 12.207 7.5 27.745 2.409 0.439 510.209

P25 0.372 116 7.824 4 19.964 1 0.294 157

Median 0.869 213 10.83 5 24.065 2 0.373 358

P75 1.38 437 14.546 10 36.545 3 0.517 677

Sum 47.131 9.983e4 476.088 900 832.358 53 26.782 3.397e5

Table 6.6: Link costs and demand volumes for the unsymmetrical networks.

volumes (lower bounds). Imposing upper bound Hds limits the highest value for
the flows Xds at a certain value, although, if allowed by the budget, it would
be possible to increase it even more. In this way the resulting vector of revenues
is lexicographically smaller than in the unbounded case. Imposing lower bound
(LB) is of more interest, because it in general may imply a different flow alloca-
tion scheme. Therefore only the results for the unbounded case and the case with
lower bounds (LB = 1000 for N12 and LB = 10 for N41) are presented for
the networks with symmetrical demands. For the networks with unsymmetrical
demand volumes the LBs are implied. The upper bound in all experiments was
set to +∞.

First we will discuss the results for the networks with the symmetrical de-
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mand volumes. Statistical characterization of the resulting revenues and lower
layer capacities for the three reconfiguration options in the unbounded case is
given in Tables 6.7 and 6.8. Each of the tables presents main statistical measures
for revenues (Rs) and resulting link capacities (ug) for the three reconfiguration
options. The preferred values are bolded in the tables. Revenue in problem RLL
is not situation-dependent, so for all situations it is the same and equal to 6007.04
(in the unbounded case) for network N12, and 2072.19 for network N41. Thus,
all the entries in revenue column of the tables for option RLL are set to the same
value, except of the entries for range and variance that are naturally equal to zero.
To allow for comparison with RUL and RBL options, the sum of revenues for
RLL option is calculated multiplying the RLL revenue by the number of sit-
uations. The same assumptions regarding presentation of results for problem
RLL hold also for the other tables given below. Revenues of RUL and RBL are
situation-dependent. Figures 6.12(a) and 6.12(b) illustrate lexicographically or-
dered revenue vectors for the three reconfiguration options in the unbounded case
for the networks N12 and N41 respectively. Because of the lexicographical order-
ing the numberings of situations may not coincide for different reconfiguration
options. Therefore the situations are not numbered in the figures. As it can be
seen from the figures and tables, revenue vectors for RUL and RBL are almost the
same for network N12, while for N41 RBL is clearly better. It should be noted,
that for network N12 the results for RUL and RBL look exactly the same (see
Table 6.7) when rounded up to the three places after the decimal point, as is the
case for results presented in the tables. The (negligible) differences between rev-
enue vectors for RUL and RBL can be observed only when examining the twelfth
position after the decimal point. Then it can be seen that the vector for RBL is
marginally lexicographically bigger than for RUL:
RRBL = {12132.378872937408, 12132.378872937410,

12132.378872937414, . . . , 15132.093149454997} >

RRUL = {12132.378872937406, 12132.378872937408,

12132.378872937410, . . . , 15132.093149455350}.
It can be seen, that only because the smallest revenue values (in the lexicograph-
ical order) attained for RBL are higher than the ones for RUL, it makes RBL
marginally better. But the maximal revenue achieved in the RUL case is higher,
even for N41 network (see Table 6.8). This similarity of RUL and RBL for N12

can be explained by the very similar network topologies of the upper and lower
layers. Network N41 with different layer topologies shows obvious superiority of
RBL. Examining results in the Table 6.8 one can see that for network N41 all the
best values (except of the maximal revenue value) were attained by RBL option.
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Results for the bounded case are presented in Tables 6.9 and 6.10 and Figures
6.13(a) and 6.13(b). As it can be seen from the tables and figures for the bounded
case (LB = 1000 for N12 and LB = 10 for N41) the overall picture is the
same as in the unbounded case. The lexicographically ordered revenue vector for
problem RBL is again greater than the one for RUL. In this case, the difference
is non-negligible for both N41 and N12 as it can be seen from the revenue values
(for N12) below:
RRBL = {9078.90, 9078.90, 9078.90, . . . , 11592.75} >

RRUL = {9069.50, 9069.50, 9069.50, . . . , 11581.00}.
In this case revenue values for RBL are significantly higher than for RUL, because
the former has more reconfiguration capabilities (in both layers simultaneously)
which are especially useful under the tight LB constraints. It can also be seen from
the figures, that revenue values for the bounded case are, as expected, smaller than
in the unbounded case.

Much higher values of revenues are achieved with RUL and RBL in compari-
son with RLL, because the first two algorithms involve lexicographical maximiza-
tion of the revenues, while RLL has to maintain the same revenue in all situations.
Higher revenue values also mean higher values of aggregated flows (Xds), which
are beneficial for elastic traffic networks. Besides, even a small difference in total
logarithmic flows (log(Xds)) makes much bigger difference between the “plain”
total flows Xds. Figures showing total (non-logarithmic) values Xd for each fail-
ure situation have a similar character to that for revenues. It can be seen from the
results that, in the considered cases, both RUL and RBL are almost equally good,
as compared to RLL, although RBL performs better, especially for the networks
with different topology of the layers (e.g. N41) or with tight lower bounds. In
almost all the cases for the networks with symmetrical demand volumes highest
mean and lowest variance of revenue values were achieved by option RBL. Thus,
for the networks considered, RBL not only results in lexicographically largest rev-
enue vector, it also assures on average highest revenues in all situations and lowest
variation of the revenues between situations.

Results for the networks with unsymmetrical demand volumes are presented
in Tables 6.11-6.14. Similarly as for the networks with symmetrical demand vol-
umes, each of the tables presents main statistical measures for revenues (Rs) and
resulting link capacities (ug) for the three reconfiguration options. The preferred
values are bolded in the tables. The results are not presented by figures, but only
in terms of statistical measures, because of the large number of considered failure
situations, which makes it difficult to present the results graphically. Examining
data in the tables we can see that results are similar to those discussed above for
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Rs ug

RLL RUL RBL RLL RUL RBL

Min 0.6e4 1.213e4 1.213e4 145.666 68.063 68.063

Max 0.6e4 1.513e4 1.513e4 1.609e5 1.662e5 1.662e5

Range 0 2999.714 2999.714 1.608e5 1.662e5 1.662e5

Var 0 2.347e6 2.347e6 4.706e9 5.841e9 5.841e9

Mean 0.6e4 1.355e4 1.355e4 3.607e4 4.622e4 4.622e4

P25 0.6e4 1.213e4 1.213e4 318.47 142.486 142.486

Median 0.6e4 1.214e4 1.214e4 517.78 194.612 194.612

P75 0.6e4 1.512e4 1.512e4 723.45 1.657e5 1.657e5

Sum 1.141e5 2.574e5 2.574e5 6.493e5 8.32e5 8.32e5

Table 6.7: Revenue and capacity statistics for N12 network in the unbounded case.

Rs ug

RLL RUL RBL RLL RUL RBL

Min 2072.186 2141.233 2144.83 0 0 0

Max 2072.186 2174.476 2155.831 8.756e4 8.602e4 8.648e4

Range 0 33.242 11.001 8.756e4 8.602e4 8.648e4

Var 0 55.617 13.927 1.061e8 1.023e8 1.035e8

Mean 2072.186 2144.062 2147.483 1382.685 1385.349 1385.141

P25 2072.186 2141.233 2144.83 99.501 25.366 35.462

Median 2072.186 2141.233 2144.832 179.777 159.35 161.245

P75 2072.186 2141.665 2151.462 229.789 261.063 237.007

Sum 4.559e4 4.717e4 4.724e4 9.955e4 9.975e4 9.973e4

Table 6.8: Revenue and capacity statistics for N41 network in the unbounded case.

Rs ug

RLL RUL RBL RLL RUL RBL

Min 4409.304 9069.499 9078.899 6500 7000 6000

Max 0.441e4 1.158e4 1.159e4 0.906e5 1.229e5 1.227e5

Range 0 2511.5 2513.85 0.841e5 1.159e5 1.167e5

Var 0 8.954e5 8.874e5 0.877e9 1.911e9 1.91e9

Mean 4409.304 9971.788 9977.88 3.341e4 3.931e4 3.935e4

P25 4409.304 9069.499 9078.899 1.3e4 1.1e4 1.1e4

Median 4409.304 9855.499 9834.899 2.3e4 1.433e4 1.45e4

P75 0.441e4 1.094e4 1.093e4 3.2e4 8.319e4 8.266e4

Sum 0.838e5 1.895e5 1.896e5 6.014e5 7.076e5 7.083e5

Table 6.9: Revenue and capacity statistics for N12 networks with LB = 1000.
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Rs ug

RLL RUL RBL RLL RUL RBL

Min 2044.99 2123.746 2131.857 0 0 0

Max 2044.99 2160.291 2164.76 8.431e4 8.308e4 8.381e4

Range 0 36.545 32.904 8.431e4 8.308e4 8.381e4

Var 0 77.769 55.042 9.825e7 9.538e7 9.709e7

Mean 2044.99 2128.044 2135.928 1384.537 1387.393 1387.292

P25 2044.99 2123.746 2131.857 129.638 30 53.309

Median 2044.99 2123.746 2131.857 225.1 214.844 197.309

P75 2044.99 2128.918 2139.192 280.246 304.036 292.464

Sum 4.499e4 4.682e4 4.699e4 9.969e4 9.989e4 9.989e4

Table 6.10: Revenue and capacity statistics for N41 networks with LB = 10.

the network with symmetrical demand volumes. Among the three reconfigura-
tion options the lexicographically largest vector of revenues was attained by RBL
for all the networks. The difference between minimum revenue values, and the
difference between maximum revenue values among RUL and RBL options were
very small for newyork and di-yuan networks, while for the other two networks the
differences were quite large. Even the highest revenue value for network newyork
has been achieved by RUL option. The differences in revenue values between
RUL and RBL for different networks depend greatly on the ratio between the
available network capacities (implied by budget and link costs) and the total net-
work load, implied by demand volumes to be realized. Among the considered
four networks, much higher total demand volume had to be realized for networks
france and cost266 (see last row in Table 6.6) than for networks newyork and di-
yuan for the same budget. Thus, the design problem instances for the first two
networks were more tight than for the last two networks. Since the optimization
model for RML is more constrained than for RBL, revenues achieved for RML
were much smaller than for RBL in the case of france and cost266 networks than
for the other two networks.

As in the case of N12 and N41 networks, the revenue value achieved by RLL
option for all the four networks was much lower than minimum revenue values
for RUL and RBL. For three out of four networks, i.e., france, di-yuan and cost266,
lowest revenue range and variance values were attained by RUL option. This dif-
fers from the results for the symmetrical networks, where the lowest variance was
achieved for option RBL. We assume that small values for range and variance are
preferred since this implies that revenues in different situations become similar,
increasing fairness among situations. For all the network examples, mean, P25,
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Rs ug

RLL RUL RBL RLL RUL RBL

Min 3774.25 9300.597 13188.435 2708 1232 1713.721

Max 3774.25 11492.469 16524.305 0.529e5 1.209e5 1.852e5

Range 0 2191.872 3335.87 0.502e5 1.197e5 1.835e5

Var 0 0.705e6 1.381e6 0.298e9 0.881e9 2.078e9

Mean 3774.25 10694.534 15547.865 20615.08 26304.521 30486.808

P25 3774.25 9786.189 14656.607 7976 6598.667 4891.76

Median 3774.25 11200.221 16294.319 11843.5 10381 9635.86

P75 3774.25 11327.784 16349.858 36840.5 46217.933 45081

Sum 1.547e5 4.385e5 6.374e5 0.825e6 1.052e6 1.219e6

Table 6.11: Revenue and capacity statistics for france network.

median and P75 of revenues were highest for RBL option, implying that in gen-
eral higher revenues were achieved for this option, as compared to RLL and RUL.
Sum of revenues over all situations was highest for RBL for all the four networks.

Analyzing the resulting link capacities for all the considered network examples
(both, with symmetrical and unsymmetrical demand volumes) it is interesting to
note that capacity assignments with lowest range and variance resulted from RLL
option. The 25th percentile and the median value for capacities were also highest
for RLL. For all networks with unsymmetrical demand volumes, except network
france, even the 75th percentile for capacities was highest when using RLL. This
means that when using RLL variation between the assigned link capacities was
smaller, and at least half of the links were assigned higher capacities, compared to
assignments resulting from RML and RBL cases. However, mean capacities for
RML and RBL were in all cases higher than for RLL. Higher mean and variation
between the link capacities for both, RML and RBL, as compared to RLL, is
mainly because some small subset of links were assigned much higher capacities
than other links in the same network. It is hard to say, which of the capacity
allocations is preferred, since this greatly depends on network operation strategy
of an operator, forecasted demands, etc.

6.8 Summary of the results

A numerical case study with a number of network examples (with symmetrical
and unsymmetrical demand volumes) show that in all cases RBL achieves lex-
icographically largest vector of revenues. Both RBL and RUL achieved much
higher revenues than RLL, since RBL and RUL employ lexicographical maxi-
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Rs ug

RLL RUL RBL RLL RUL RBL

Min 2035.863 3362.34 3365.949 0 0 0

Max 2035.863 4378.349 4377.478 2.325e4 5.638e4 5.642e4

Range 0 1016.009 1011.529 2.325e4 5.638e4 5.642e4

Var 0 9.352e4 9.349e4 0.711e8 2.98e8 2.985e8

Mean 2035.863 4267.887 4271.436 3730.015 5864.915 5868.585

P25 2035.863 4358.998 4365.894 116.591 41.644 24.808

Median 2035.863 4367.726 4372.752 206.957 114.611 104.473

P75 2035.863 4376.421 4377.478 303.75 191.702 180.729

Sum 0.814e5 1.707e5 1.709e5 1.455e5 2.287e5 2.289e5

Table 6.12: Revenue and capacity statistics for newyork network.

Rs ug

RLL RUL RBL RLL RUL RBL

Min 525.76 1089.983 1090.332 0 0 0

Max 525.76 1603.929 1604.968 4510.483 2.85e4 2.853e4

Range 0 513.946 514.636 4510.483 2.85e4 2.853e4

Var 0 2.362e4 2.375e4 0.28e7 7.5e7 7.519e7

Mean 525.76 1551.735 1553.489 1663.353 2869.605 2871.545

P25 525.76 1597.456 1600.384 0 0 0

Median 525.76 1601.719 1603.256 1871.099 25.308 25.815

P75 525.76 1603.929 1604.968 2317.26 77.632 76.437

Sum 1.63e4 4.81e4 4.816e4 4.99e4 8.609e4 8.615e4

Table 6.13: Revenue and capacity statistics for di-yuan network.

Rs ug

RLL RUL RBL RLL RUL RBL

Min 1.241e4 2.237e4 3.228e4 4602.333 0 0

Max 1.241e4 2.752e4 3.905e4 0.851e5 2.542e5 3.601e5

Range 0 5145.693 6764.038 0.805e5 2.542e5 3.601e5

Var 0 1.708e6 4.184e6 0.545e9 1.733e9 5.097e9

Mean 1.241e4 2.587e4 3.698e4 4.229e4 4.573e4 5.246e4

P25 1.241e4 2.513e4 3.6e4 2.265e4 2.162e4 2.265e4

Median 1.241e4 2.603e4 3.768e4 4.245e4 4.169e4 3.096e4

P75 1.241e4 2.706e4 3.852e4 6.33e4 4.793e4 5.123e4

Sum 0.77e6 1.604e6 2.293e6 2.58e6 2.79e6 3.2e6

Table 6.14: Revenue and capacity statistics for cost266 network.
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Figure 6.12: Revenue values for RLL, RUL and RBL in the unbounded case.
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Figure 6.13: Revenue values for RLL, RUL and RBL in the bounded case.
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mization. The difference between revenues achieved by RBL and RUL depends
greatly on the ratio between the available network capacities (implied by budget
and link costs) and the total network load, implied by demand volumes to be
realized. The advantage of RBL becomes obvious for network instances for which
design problems get more tight, i.e., when a surplus of budget after realizing min-
imum required demand volumes is not big. In all the cases RBL achieves (at least
marginally) better solution than RUL, as any feasible solution of RUL is also a
feasible solution of RBL.

For networks with symmetrical demand volumes RBL is clearly superior when
topologies of the two layers are not similar, while RBL and RUL are almost equally
good for the networks with similar topologies of layers (e.g., N12). Similarly,
RBL performs better than RUL when significant lower bounds are imposed. For
all networks RBL performs much better when network load implied by the total
demand volume is relatively high compared to the available network capacities,
which depend on budget and link costs. It is interesting to note that lowest vari-
ance among the revenues was attained by RBL for networks with symmetrical
demands and by RUL for networks with unsymmetrical demands. Lowest vari-
ance among link capacities was observed in the results for RLL option, while
capacity mean values were highest for RBL and RUL (depending on the network
instance).

These observations favor the RUL option for the networks with similar topolo-
gies of the layers, or when the network load (implied by total demand volume to
be realized) is small compared to the available capacities (implied by budget and
link costs). RUL option is preferred as it is based on a considerably simpler re-
configuration mechanism than RBL. For the networks with different topologies
of the layers, or high load, RBL is significantly better than RUL.

In all the three models, full reconfiguration has been assumed in the case
of failures, which is hard to implement, especially in the lower layer. However,
the study shows what results could be achieved in that case and weather it is
worth to use some kind of (coordinated) two-layer reconfiguration. The results
can be used as an upper bound for evaluating more realistic (and thus restrictive)
reconfiguration strategies, as, e.g., path protection and link protection.
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CHAPTER 7

Path generation for two-layer network design problems

In this chapter we will discuss how path generation can be applied to the four two-
layer network design problems introduced above. We develop the path generation
algorithms for the linearized and relaxed problems. Thus we assume that the
logarithmic functions in the objective function are replaced by their piece-wise
linear approximation, and all variables are continuous and non-negative. The
methods and algorithms presented for the four problems can be extended for
other multi-layer network design problems.

7.1 Path generation for MNOM

In this section we will develop a path generation algorithm for a linearized and
relaxed version of the MNOM problem given by (6.1)-(6.9), i.e., when the log-
arithms in objective function (6.1) are approximated by a piece-wise linear func-
tion, and variables xdp, zek, ye, ug are continuous and non-negative. As for the
single-layer problems discussed before, we note that this two-layer problem can
also be formulated in the node-link formulation if all the possible paths are al-
lowed in a problem. The need for using PG arises when a set of allowable paths
is limited by some restrictions. It is this realistic assumption that gives us motiva-
tion for developing the PG algorithm for problem MNOM, as well as for other
two-layer problems.

We will follow closely the steps of the PG algorithm development for problem
NDT (see Section 5.2). Thus, we will first form the Lagrangian function for
the MNOM, examine the dual variables and state the dual problem. Then the
optimality conditions for PG can be specified using the dual variables.

Before proceeding to the dual problem we rewrite MNOM in a more compact
way, as we did for problem NDT. Our aim is to eliminate unnecessary variables
and to transform the constraints into a form more convenient for calculations.
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First of all we rewrite constraint (6.5) as two separate constraints and substitute
the expression for Xd from (6.4), arriving at the following two constraints:

hd ≤
∑

p

xdp , ∀d ∈ D (7.1)∑
p

xdp ≤ Hd , ∀d ∈ D. (7.2)

Secondly, we merge constraints (6.3) and (6.6) eliminating (auxiliary) variables ye

and arriving at the following constraint:

∑
d

∑
p

δedpxdp ≤
∑

k

zek , ∀e ∈ E . (7.3)

Constraints (6.2) and (6.7) are also merged by substituting variable ug in con-
straint (6.2) by the left-hand side of constraint (6.7):

∑
g

∑
e

∑
k

ϕgekzekξg ≤ B. (7.4)

Furthermore, we linearize objective function (6.1) as described in Section 4.3.4
and will develop our resolution algorithm with embedded path generation for the
linearized version of the MNOM problem.
The linearized relaxed MNOM (LRMNOM) problem is stated as follows:
LRMNOM:

max R =
∑

d

wdfd (7.5)

s.t.:

[π ≥ 0]
∑

g

∑
e

∑
k

ϕgekzekξg ≤ B, (7.6)

[σd ≥ 0] hd ≤
∑

p

xdp, ∀d ∈ D (7.7)

[τd ≥ 0]
∑

p

xdp ≤ Hd, ∀d ∈ D (7.8)

[γe ≥ 0]
∑

d

∑
p

δedpxdp ≤
∑

k

zek, ∀e ∈ E (7.9)

[βdi ≥ 0] fd ≤ ai

∑
p

xdp + bi, ∀d ∈ D, ∀i ∈ I (7.10)
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fd ∈ R, ∀d ∈ D (7.11)

xdp ∈ R+, ∀d ∈ D, ∀p ∈ Pd (7.12)

zek ∈ R+, ∀e ∈ E , ∀k ∈ Ke (7.13)

Dual variables associated with constraints (7.6)-(7.10) are indicated in brackets
in front of each constraint. As in the case of NDT, for convenience we trans-
form objective (5.17) into minimization. The Lagrangian function for problem
LRMNOM is:

L(f ,x ; π,β,σ, τ ) =
∑

d

(∑
i

βdi − wd

)
fd+

+
∑

d

∑
p

(
τd − σd −

∑
i

aiβdi +
∑

e

δedpγe

)
xdp

+
∑

e

∑
k

(
π

∑
g

ϕgekξg − γe

)
zek

+
∑

d

(
hdσd −Hdτd −

∑
i

biβdi

)
−Bπ,

(7.14)

and the dual function of LRMNOM becomes:

W (π,β,σ, τ ,γ) = min
x,z≥0 , fR0

L(f ,x,z ; π,β,σ, τ ,γ)

=
∑

d

(
hdσd −Hdτd −

∑
i

biβdi

)
−Bπ.

(7.15)

Constraining the values of dual variables only to those leading to the bounded
dual function W , the dual problem to LRMNOM is stated as follows:
DLRMNOM:

max W (π,β,σ, τ ,γ)

s.t.:
∑

i

βdi = wd , ∀d ∈ D (7.16)∑
i

aiβdi + σd − τd ≤
∑

e

δedpγe , ∀d ∈ D ,∀p ∈ Pd (7.17)

γe ≤ π
∑

g

ϕgekξg , ∀e ∈ E ,∀k ∈ Ke (7.18)

π, βdi, σd, τd, γe ∈ R+ , ∀d ∈ D, ∀i ∈ I,

∀e ∈ E . (7.19)
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Let x∗,z∗,f∗ be any primal optimal solution of LRMNOM. Similarly, let π∗,
β∗, σ∗, τ ∗, γ∗ be any dual optimal solution. The primal and dual optimal
solutions form a saddle point of the Lagrangian. (The dual optimal multipliers
π∗,β∗,σ∗, τ ∗,γ∗ can be obtained directly from LP solvers.) The complemen-
tary slackness property states that in particular the following conditions must be
satisfied for the primal and dual solutions to be optimal:

(
∑

e

δedpγ
∗
e −

∑
i

aiβ
∗
di − σ∗d + τ∗d )x∗dp = 0 , ∀d ∈ D,∀p ∈ Pd (7.20)

(π∗
∑

g

ϕgekξg − γ∗e )z∗ek = 0 , ∀e ∈ E ,∀k ∈ Ke. (7.21)

Thus, if the value in the parentheses is not equal to zero for at least one optimal
dual solution then the corresponding primal variable must be zero. For example,
if for some path p the value in parentheses of (7.20) is not zero, then the cor-
responding flow variable x∗dp must be zero, implying that in any optimal primal
solution the path is not carrying any flow. Therefore, for any saddle point of the
Lagrangian (7.14), the following optimality conditions hold for the paths that
carry non-negative flow in the optimal solution:

∑
i

β∗di = wd , ∀d ∈ D (7.22)

∑
i

aiβ
∗
di + σ∗d − τ∗d = min

p∈Pd

(∑
e

δedpγ
∗
e

)
, ∀d ∈ D (7.23)

γ∗e = π∗κe , ∀e ∈ E , (7.24)

where set Pd contains indices of paths in set Pd, and κe is the length/cost of
the shortest/cheapest path in the current candidate path list Ke for realizing the
capacity of link e, and is calculated as follows:

κe = min
k∈Ke

(∑
g

ϕgekξg

)
, ∀e ∈ E . (7.25)

The set Ke contains indices of paths in set Ke. Substituting the right-hand side
of (7.24) to (7.23), we arrive at:

∑
i

aiβ
∗
di + σ∗d − τ∗d = π∗Ld , ∀d ∈ D, (7.26)
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where Ld is the length/cost of the shortest/cheapest path in the current list of
candidate paths Pd for realizing the demand d, and is calculated as follows:

Ld = min
p∈Pd

(∑
e

δedpκe

)
, ∀d ∈ D. (7.27)

We can recognize that (7.26) has the same form as (5.36), the corresponding
expression for problem LRNDT. The only difference between the two is that for
problem LRMNOM the value of Ld in (7.26) is calculated according to metrics
κ, whereas for problem LRNDT it is calculated with respect to real link costs
ξ. We also note that the two properties we have identified for problem LRNDT
hold also for dual variables of problem LRMNOM. Thus, if for some demand d̂

the inequality hd̂ < Xd̂ < Hd̂ holds and only one piece i(d̂) of the piece-wise
linear approximation is active, constraints (7.22)- (7.26) can be combined into
the following expression, which is analogous to (5.38):

wd̂ai(d̂) = π∗Ld̂. (7.28)

We will now state the proposition underlying the path generation algorithm. Sup-
pose that for a given network instance of problem LRMNOM all allowable paths
in the upper layer form a set P̂d, and all allowable paths in the lower layer form
set K̂e. For each upper layer link e let ℘e ∈ K̂e be one of the shortest paths
among all allowable paths in the lower layer, and let ¯̀

e be its cost with respect to
ξ = (ξg : g ∈ G), i.e.,

¯̀
e = ‖℘e‖ξ = min

k∈bKe

(∑
g

ϕgekξg

)
, ∀e ∈ E , (7.29)

where set K̂e contains indices of the paths in set K̂e. Similarly, for each demand
d, let ℘d ∈ P̂d be one of the shortest paths among all allowable paths in the
upper layer, realizing bandwidth of demand d, and let `d be its cost with respect
to the cost metrics κ = (κe : e ∈ E), i.e.,

`d = ‖℘d‖κ = min
p∈ bPd

(∑
e

δedpκe

)
, ∀d ∈ D, (7.30)

where set P̂d contains indices of paths in set P̂d. We consider two versions of
problem LRMNOM:
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• full problem LRMNOM-FULL with the set of candidate paths for each
demand d equal to P̂d and the set of candidate paths for each link e equal
to K̂e

• limited problem LRMNOM-LIMITED with the set of candidate paths
for each demand d equal to Pd, where Pd ⊆ P̂d for all d, the set of
candidate paths for each link e equal to Ke, where Ke ⊆ K̂e for all e, and
Pd ( P̂d for at least one demand d, and/or Ke ( K̂e for at least one
link e.

Proposition 7.1. Let (f∗, x∗, z∗; π∗,β∗, σ∗, τ ∗, γ∗) be a saddle point of the
Lagrangian for an instance of the limited problem LRMNOM-LIMITED with given
sets of candidate paths Pd for all d ∈ D and Ke for all e ∈ E , in the upper and lower
layers, respectively. Let ℘e ∈ K̂e \Ke be a shortest path in the lower layer realizing
capacity of link e and let ¯̀

e denote its length (7.29). Similarly, let ℘d ∈ P̂d \Pd

be a shortest path in the upper layer realizing demand d and let `d denote its length
(7.30). Then:

• If κe = ¯̀
e for all e ∈ E and Ld = `d for all d ∈ D then any optimal

solution to LRMNOM-LIMITED is also optimal for LRMNOM-FULL, i.e.,
the solution is optimal in a wider sense. Notice that this is the case when
problem LRMNOM-FULL has no paths shorter than LRMNOM-LIMITED.

• Otherwise, the current optimal solution may be possibly improved in any of the
following three cases:

Case 1: Suppose that for all e ∈ E the length of the shortest path in the candidate
path list Ke is equal to ¯̀

e, i.e., κe = ¯̀
e. Suppose also that there exists a

demand d and a path ℘d ∈ P̂d \Pd with length `d < Ld. Then in-
cluding path ℘d into list Pd for at least one such demand d can improve
the current optimal solution.

Case 2: Suppose that there exists a link e and a path ℘e ∈ K̂e \Ke with length
¯̀
e < κe. Suppose also that there exists a demand d, for which, if ℘e

is included into Ke implying the new cost vector κ
′

, there exists a path
℘d ∈ P̂d \Pd with length `d < Ld, which is a shortest path for the
demand with respect to costs κ

′
. Then including path ℘e into list Ke

and including path ℘d into list Pd, for at least one such link e and
demand d, can improve the current optimal solution.

Case 3: Suppose there exists a link e and a path ℘e ∈ K̂e \ Ke with length
¯̀
e < κe. Suppose also that, when ℘e is included into Ke implying
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the new cost vector κ
′
, the candidate path list Pd for every demand d

contains at least one shortest (with respect to costs κ
′
) path with length

Ld = `d. Then including path ℘e into list Ke, for at least one such link
e, can improve the current optimal solution.

The proof of the above proposition is analogous to proof of Proposition 5.1
in Section 5.2, and therefore we will omit it, and just comment on similarities
and differences between the two problems.

The dual objective function (5.27) for problem LRNDT (see Section 5.2)
is identical with (7.15). Likewise, the dual optimality conditions (7.22) and
(7.26) for problem LRMNOM are identical with the conditions (5.34)-(5.36) for
LRNDT, except of the fact that for LRNDT the length of the path for demand
d, Ld, is calculated in (5.33) with respect to real costs ξ, while for LRMNOM it
is calculated in (7.27) with respect to costs κ. Essentially, the lower layer struc-
ture in problem LRMNOM is hidden behind link costs κ, thus making problems
LRNDT and LRMNOM equivalent from the viewpoint of a demand d. Thus,
the approach taken in proving the proposition for LRNDT applies also for prob-
lem LRMNOM.

However, the proof covers only Case 1 of Proposition 7.1, i.e., when the
lower layer costs κ do not change. Still, the reasoning in Proposition 5.1 can be
extended also to Cases 2 and 3, observing that if for some link ê belonging to a
path for demand d̂ there exists a shorter path in the lower layer, implying that the
cost κê is decreased, this is equivalent to having found a shorter path for demand
d̂.

Assuming that only one piece of the approximation is active for the total flow
of some demand d̂, and the demand volume is between the bounds the maximum
revenue gain which can be attained by moving a flow of size ε of some demand d̂

to a shorter path not belonging to the set of candidate paths, is given by (5.51),
i.e.,

(Rε)∗ −R∗ = εwd̂ai(d̂)

Ld̂ − `d̂

Ld̂

. (7.31)

where π∗ is calculated from equation (7.26), andLd̂ is calculated from (7.27). We
have noted in Section 5.2 that expression (7.31) gives only a maximum possible
(not always attainable) revenue gain, and that the gain for a particular demand
depends on the approximation of the demands flow, and weather the flow is equal
to any of the bounds hd or Hd. The same comments apply also for problem
LRMNOM.
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The path generation procedure for problem LRMNOM has only one itera-
tion, and consists in two steps:

• For each upper layer link e find a shortest path in the lower layer (with
respect to costs ξ) and add it to the list of candidate paths Ke.

• For each demand d find a shortest path in the upper layer (with respect to
costs κ) and add it to the list of candidate paths Pd.

After executing the two steps the algorithm terminates. Thus the stopping cri-
terion is implied. The procedure is applicable when a problem instance at hand
does not initially contain the shortest path for each demand in the candidate path
lists.

7.2 Path generation for RLL

Analogously to MNOM, we first merge constraints (6.14) and (6.17) eliminating
(auxiliary) variables ye and arriving at the following constraint:

∑
d

∑
p

δedpxdp ≤
∑

k

zeks , ∀e ∈ E ,∀s ∈ S. (7.32)

We also rewrite constraint (6.16) as two separate constraints (7.1) and (7.2), and
linearize objective function (6.12) in a way we did it for problem MNOM, arriv-
ing at the linearized relaxed formulation for problem RLL (LRRLL):

LRRLL:

max R =
∑

d

wdfd (7.33)

s.t.:

[π ≥ 0]
∑

g

ξgug ≤ B, (7.34)

[σd ≥ 0] hd ≤
∑

p

xdp, ∀d ∈ D (7.35)

[τd ≥ 0]
∑

p

xdp ≤ Hd, ∀d ∈ D (7.36)

[γes ≥ 0]
∑

d

∑
p

δedpxdp ≤
∑

k

zeks, ∀e ∈ E , ∀s ∈ S (7.37)

[µgs ≥ 0]
∑

e

∑
k

ϕgekzeks ≤ αgsug, ∀g ∈ G, ∀s ∈ S (7.38)
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[βdi ≥ 0] fd ≤ ai

∑
p

xdp + bi, ∀d ∈ D, ∀i ∈ I (7.39)

fd ∈ R, xdp ∈ R+, ∀d ∈ D, ∀p ∈ Pd (7.40)

ugs ∈ R+, ∀g ∈ G, ∀s ∈ S (7.41)

zeks ∈ R+, ∀e ∈ E , ∀k ∈ Ke,

∀s ∈ S. (7.42)

Dual variables associated with constraints (7.34)-(7.39) are indicated in brackets
in front of each constraint. As before, for convenience we transform objective
(7.33) into minimization and form the Lagrangian function:

L(f ,x,z,u ; π,β,σ, τ ,γ,µ) =
∑

d

(∑
i

βdi − wd

)
fd

+
∑

d

∑
p

(
τd − σd −

∑
i

aiβdi +
∑

e

δedp

∑
s

γes

)
xdp

+
∑

e

∑
k

∑
s

(∑
g

ϕgekµgs − γes

)
zeks

+
∑

g

(
ξgπ −

∑
s

αgsµgs

)
ug

+
∑

d

(
hdσd −Hdτd −

∑
i

biβdi

)
− πB,

(7.43)

and the dual function of LRRLL is the same as for problem LRMNOM:

W (π,β,σ, τ ,γ,µ) = min
x,z,u≥0 , fR0

L(f ,x,z,u ; π,β,σ, τ ,γ,µ)

=
∑

d

(hdσd −Hdτd −
∑

i

biβdi)− πB.
(7.44)

Constraining the values of dual variables only to those leading to the bounded
dual function W , the dual problem to LRRLL is as follows:
DLRRLL:

max W (π,β,σ, τ ,γ,µ) (7.45)

s.t.:
∑

i

βdi = wd, ∀d ∈ D (7.46)

σd − τd +
∑

i

aiβdi ≤
∑

e

δedp

∑
s

γes, ∀d ∈ D, p ∈ Pd (7.47)
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γes ≤
∑

g

ϕgekµgs, ∀e ∈ E , k ∈ Ke,

∀s ∈ S (7.48)∑
s

αgsµgs ≤ ξgπ, ∀g ∈ G (7.49)

π ≥ 0;β,σ, τ ,γ,µ ≥ 0. (7.50)

Let f∗, x∗, z∗, u∗ be any primal optimal solution of LRRLL. Similarly, let π∗,
β∗, σ∗, τ ∗, γ∗, µ∗ be any dual optimal solution. The primal and dual optimal
solutions form a saddle point of the Lagrangian (7.43). (The dual optimal mul-
tipliers together with optimal primal variables can be obtained from LP solvers.)
It can be observed that for any saddle point of the Lagrangian the following opti-
mality conditions hold implied by the complementary slackness property:

∑
i

β∗di = wd, ∀d ∈ D (7.51)∑
i

aiβ
∗
di + σ∗d − τ∗d = Ld, ∀d ∈ D (7.52)

γ∗es = κes, ∀e ∈ E , s ∈ S (7.53)∑
s

αgsµ
∗
gs = ξgπ

∗ , ∀g ∈ G. (7.54)

At optimum, each dual variable µ∗gs can be interpreted as a (dual) cost of link g in
situation s. Let Ke be the given list of candidate paths in the lower layer realizing
capacity of link e and let κes in equation (7.53) be a length of the shortest path for
link e in situation s in this list with respect to metric µ∗ = (µ∗gs : g ∈ G, s ∈ S):

κes = min
k∈Ke

(∑
g

ϕgekµ
∗
gs

)
, ∀e ∈ E ,∀s ∈ S. (7.55)

Set Ke contains indices of paths in set Ke. Similarly, let Pd be the given list
of candidate paths in the upper layer realizing demand d and let Ld in equation
(7.52) be a length of the shortest path for demand d in this list with respect to
costs κ = (κes : e ∈ E , s ∈ S):

Ld = min
p∈Pd

(∑
e

δedp

∑
s

γ∗es

)
= min

p∈Pd

(∑
e

δedp

∑
s

κes

)
,∀d ∈ D. (7.56)
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Set Pd contains indices of paths in set Pd. The last sum in (7.56) shows that cost
of some link e in every situation s contributes to the final cost of the link, which
is then used for finding the shortest path for a demand. Let us define this total
cost of a link by Le, i.e.,

Le =
∑

s

κes, ∀e ∈ E , (7.57)

and rewrite (7.56) as:

Ld = min
p∈Pd

(∑
e

δedpLe

)
, ∀d ∈ D. (7.58)

We also observe from (7.54), that real cost ξg (scaled by π∗) of each lower layer
link is, in general, shared among the situations in which the link survives. Thus
we define a set Sg containing all situations in which link g is fully available, i.e.,

Sg = {s ∈ S : αgs = 1} ∀g ∈ G (7.59)

and rewrite equation (7.54) as follows:∑
s∈Sg

µ∗gs = ξeπ
∗, ∀g ∈ G. (7.60)

We note that the two properties (see the discussion for problem MNOM in Sec-
tion 7.1) regarding dual variables β,σ and τ hold for this problem as well.

We will now state the proposition underlying the PG algorithm for problem
LRRLL. Suppose that for a given network instance of problem LRRLL all al-
lowable paths (in the lower layer) realizing each link e belong to set K̂e and all
allowable paths (in the upper layer) for each demand d belong to set P̂d. Let
K̂es ⊆ K̂e be a subset of lower layer paths for link e that are fully available (not
failing) in situation s. For each upper layer link e and situation s, let ℘es ∈ K̂es

be a one of the shortest paths in the lower layer among all allowable paths surviv-
ing failure situation s, and let ¯̀

es be its cost with respect to the cost metrics µ∗

be , i.e.,

¯̀
es = ‖℘es‖µ∗ = min

k∈bKes

(∑
g

ϕgekµ
∗
gs

)
, ∀e ∈ E ,∀s ∈ S, (7.61)
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where set K̂es contains indices of paths in set K̂es. For each demand d, let
℘d ∈ P̂d be a shortest path in the upper layer among all allowable paths realizing
bandwidth of demand d and let `d be its cost with respect to the cost metrics
L = (Le : e ∈ E) , i.e.,

`d = ‖℘d‖L = min
p∈ bPd

(∑
e

δedpLe

)
, ∀d ∈ D, (7.62)

where set P̂d contains indices of paths in set P̂d. We consider two versions of
problem LRRLL:

• full problem LRRLL-FULL with the set of candidate paths for each de-
mand d equal to P̂d and the set of candidate paths for each link e equal to
K̂e

• limited problem LRRLL-LIMITED with the set of candidate paths for each
demand d equal to Pd, where Pd ⊆ P̂d for all d, the set of candidate
paths for each link e equal to Ke, where Ke ⊆ K̂e for all e, and Pd ( P̂d

for at least one demand d, and/or Ke ( K̂e for at least one link e.

Proposition 7.2. Let (f∗, x∗, z∗, u∗ ; π∗,β∗, σ∗, τ ∗, γ∗, µ∗) be a saddle point
of the Lagrangian for an instance of the limited problem LRRLL-LIMITED with
given sets of candidate paths Pd for all d ∈ D and Ke for all e ∈ E , in the upper
and lower layers, respectively. Let ℘es ∈ K̂es \ Ke be a shortest path in the lower
layer realizing capacity of link e in situation s and let ¯̀

es denote its length (7.61).
Similarly, let ℘d ∈ P̂d \Pd be a shortest path in the upper layer realizing demand
d and let `d denote its length (7.62). Then:

• If κes = ¯̀
es for all e ∈ E , s ∈ S and Ld = `d for all d ∈ D then

any optimal solution to LRRLL-LIMITED is also optimal for LRRLL-FULL,
i.e., the solution is optimal in a wider sense. Notice that this is the case when
problem LRRLL-FULL has no paths shorter than LRRLL-LIMITED.

• Otherwise, the current optimal solution may be possibly improved in any of the
following three cases:

Case 1: Suppose that for all e ∈ E and s ∈ S the length of the shortest path in
the candidate path list Ke is equal to ¯̀

es, i.e., κes = ¯̀
es. Suppose also

that there exists a demand d and a path ℘d ∈ P̂d \ Pd with length
`d < Ld. Then including path ℘d into list Pd for at least one such
demand d can improve the current optimal solution.
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Case 2: Suppose that there exists a link e, situation s and a path ℘es ∈ K̂es\Ke

with length ¯̀
es < κes. Suppose also that there exists a demand d, for

which, if ℘es is included into Ke implying the new cost vector κ
′
, there

exists a path ℘d ∈ P̂d \Pd with length `d < Ld, which is a shortest
path for the demand with respect to costs κ

′
. Then including path ℘es

into list Ke for at least on such link e and situation s, and including
path ℘d into list Pd, for at least one such demand d, can improve the
current optimal solution.

Case 3: Suppose there exists a link e, situation s and a path ℘es ∈ K̂es \ Ke

with length ¯̀
es < κes. Suppose also that, when ℘es is included into

Ke implying the new cost vector κ
′
, the candidate path list Pd for every

demand d contains at least one shortest (with respect to costs κ
′
) path

with length Ld = `d. Then including path ℘es into list Ke, for at least
one such link e, can improve the current optimal solution.

The proof of the above proposition is analogous to proof of Proposition 5.1
in Section 5.2, and therefore it is omitted here.

7.2.1 Algorithm for resolving LRLL using PG

Problem LRRLL can be resolved with the following iterative algorithm, using PG.
The test for the shortest paths, according to Proposition 7.2, is performed in Step
2. Any suitable shortest path algorithm (e.g., Dijkstra’s algorithm) can be used for
finding the shortest paths.

Resolution algorithm for LRRLL using PG.

Step 0: Form the initial instance of the LRRLL problem, using small sets of can-
didate paths (e.g., single paths).

Step 1: Resolve problem LRRLL (if Step 1 is entered from Step 2, then use the
current optimal solution from the previous iteration as a staring point for solving
the new instance of the problem). Get the values of dual variables from the LP
solver. Let (f∗, x∗, z∗, u∗ ; π∗,β∗, σ∗, τ ∗, γ∗, µ∗) be a saddle point of the
Lagrangian for the problem.

Step 2: Do the following test:

• For each link e and situation s run a shortest path algorithm, using µ∗ as
L1 links’ costs, to find a shortest path ℘es and its cost ¯̀

es. If there exists
path ℘es such that ¯̀

es < κes then include it to the list Ke.
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• For each demand d run a shortest path algorithm, using Le (7.57) as L2
links’ costs, to find a shortest path ℘d and its cost `d. If there exists path
℘d such that `d < Ld, then include it to the list Pd.

If for all d, Ld = `d then STOP. The current solution to the problem is opti-
mal in a wider sense. Otherwise, form a new instance of the problem with the
extended lists of candidate paths. Go to Step 1.

7.3 Path generation for RUL

Recall that problem RUL uses lexicographical maximization and therefore re-
quires a special resolution algorithm. Such an algorithm was presented in Section
6.6.1 and will be the basis for our PG-based resolution algorithm presented here.

Similarly to problem RLL, we will first restate few constraints and then define
the linearized version of the convex problem solved in Step 1 of the resolution
algorithm (presented in Section 6.6.1) for problem RUL.

Constraint (6.26) is divided into two separate constraints and the expression
for Xds is substituted from (6.25), arriving at:

hds ≤
∑

p

xdps , ∀d ∈ D, ∀s ∈ S (7.63)∑
p

xdps ≤ Hds , ∀d ∈ D, ∀s ∈ S. (7.64)

Constraints (5.54) and (6.27) are merged into the following constraint:

∑
d

∑
p

δedpxdps ≤
∑

k

θekszek , ∀e ∈ E , ∀s ∈ S. (7.65)

Problem RUL is linearized by applying the piece-wise linear approximation of the
logarithmic function (6.32) as described in Section 4.3.4. Then constraints (6.45)
and (6.46) from the convex program in Step 1 of the RUL resolution algorithm
may be rewritten as:

ts −
∑

d

wdsfds ≤ 0 , ∀s ∈ Z0 (7.66)

t−
∑

d

wdsfds ≤ 0 , ∀s ∈ Z1 (7.67)

t ∈ R. (7.68)
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Taking all the above-mentioned modifications into account the convex program
to be solved in Step 1 of the RUL resolution algorithm (see Section 6.6.1) is stated
as follows:

LRRUL:

max t (7.69)

s.t.:

[π ≥ 0]
∑

g

∑
e

∑
k

ϕgekzekξg ≤ B, (7.70)

[σds ≥ 0] hds ≤
∑

p

xdps, ∀d ∈ D, s ∈ S (7.71)

[τds ≥ 0]
∑

p

xdps ≤ Hds, ∀d ∈ D, s ∈ S (7.72)

[γes ≥ 0]
∑

d

∑
p

δedpxdps ≤
∑

k

θekszek, ∀e ∈ E , s ∈ S (7.73)

[βdsi ≥ 0] fds ≤ ai

∑
p

xdps + bi, ∀d ∈ D, s ∈ S,

∀i ∈ I (7.74)

[λs ≥ 0] ts −
∑

d

wdsfds ≤ 0, ∀s ∈ Z0 (7.75)

[λs ≥ 0] t−
∑

d

wdsfds ≤ 0, ∀s ∈ Z1 (7.76)

t, fds ∈ R, xdps ∈ R+, ∀d ∈ D, p ∈ Pd,

∀s ∈ S (7.77)

zeks ∈ R+, ∀e ∈ E , k ∈ Ke,

∀s ∈ S. (7.78)

Dual variables associated with each of constraints (7.70)-(7.76) are indicated in
brackets in front of each constraint. Observe, that dual variables λ are defined for
both constraints (7.75) and (7.76), since Z0∩Z1 = ∅. As before, for convenience
we transform objective (7.33) into minimization. The Lagrangian function for
problem LRRUL is:
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L(t, f ,x,z ; π,β,λ,σ, τ ,γ) =
( ∑

s∈Z1

λs − 1
)

t

+
∑

d

∑
s

(∑
i

βdsi − wdsλs

)
fds

+
∑

d

∑
p

∑
s

(
τds − σds −

∑
i

aiβdsi +
∑

e

δedpγes

)
xdps

+
∑

e

∑
k

(
π

∑
g

ϕgekξg −
∑

s

θeksγes

)
zek

+
∑
s∈Z0

λsts +
∑

d

∑
s

(
hdsσds −Hdsτds −

∑
i

biβdsi

)
− πB.

(7.79)

Let t∗,f∗,x∗,z∗ be any primal optimal solution of LRRUL. Similarly, let π∗,β∗,
λ∗, σ∗, τ ∗, γ∗ be any dual optimal solution. The primal and dual optimal solu-
tions form a saddle point of the Lagrangian (7.79). (The optimal dual multipliers
and optimal primal variables can be obtained from LP solvers.) It can be observed
that for any saddle point of the Lagrangian the following optimality conditions
hold implied by the complementary slackness property:

∑
s∈Z1

λ∗s = 1 (7.80)

∑
i

β∗dsi = wdsλ
∗
s , ∀d ∈ D,∀s ∈ S (7.81)

σ∗ds − τ∗ds +
∑

i

aiβ
∗
dsi = Lds , ∀d ∈ D,∀s ∈ S (7.82)∑

s

θeksγ
∗
es ≤ π∗

∑
g

ϕgekξg , ∀e ∈ E ,∀k ∈ Ke (7.83)

At optimum, each dual variable γ∗es represent a cost of link e in situation s. It can
be observed from (7.83) that, in general, for each link e and path k, sum of costs
γ∗es over situations in which the path is available (not failing) share the real cost
of the path (calculated according to metrics ξ = (ξg : g ∈ G)) scaled by π∗. Let
Ke be the given list of candidate paths in the lower layer realizing capacity of link
e and let κe be a length of the shortest path for link e in this list with respect to
metric ξ:

κe = min
k∈Ke

(∑
k

ϕgekξg

)
, ∀e ∈ E . (7.84)
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The set Ke contains indices of paths in set Ke. Similarly, let Pd be the given list
of candidate paths in the upper layer realizing demand d and let Lds in equation
(7.82) be a length of the shortest path for demand d in situation s in this list with
respect to costs γ∗ = (γ∗es : e ∈ E , s ∈ S):

Lds = min
p∈Pd

(∑
e

δedpγ
∗
es

)
, ∀d ∈ D,∀s ∈ S. (7.85)

The set Pd contains indices of paths in set Pd. We note that the two properties
(see the discussion for problem MNOM in Section 7.1) regarding dual variables
β,σ and τ hold for this problem as well.

We will now state the proposition underlying the PG algorithm for problem
LRRUL. Suppose that for a given network instance of problem LRRUL all al-
lowable paths (in the lower layer) realizing each link e belong to a set K̂e and
all allowable paths (in the upper layer) for each demand belong to set P̂d. Let
P̂ds ⊆ P̂d be a subset of paths for demand d that are fully available in situation
s. For each upper layer link e let ℘e ∈ K̂e be one of the shortest paths in the
lower layer among all allowable paths surviving failure situation s, and let ¯̀

e be
its cost with respect to the cost metrics ξ, i.e.,

¯̀
e = ‖℘e‖ξ = min

k∈bKe

(∑
g

ϕgekξg

)
, ∀e ∈ E , (7.86)

where set K̂e contains indices of paths in set K̂e. For each demand d and situation
s, let ℘ds ∈ P̂ds be one of the shortest paths in the upper layer among all
allowable paths surviving failure situation s, and let `ds be its cost with respect to
the cost metrics γ∗, i.e.,

`ds = ‖℘ds‖γ∗ = min
p∈ bPds

(∑
e

δedpγ
∗
es

)
, ∀d ∈ D,∀s ∈ S, (7.87)

where set P̂ds contains indices of paths in set P̂ds. We consider two versions of
problem LRRUL:

• full problem LRRUL-FULL with the set of candidate paths for each de-
mand d equal to P̂d and the set of candidate paths for each link e equal to
K̂e
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• limited problem LRRUL-LIMITED with the set of candidate paths for
each demand d equal to Pd, where Pd ⊆ P̂d for all d, the set of candidate
paths for each link e equal to Ke, where Ke ⊆ K̂e for all e, and Pd ( P̂d

for at least one demand d, and/or Ke ( K̂e for at least one link e.

Proposition 7.3. Let (f∗, x∗, z∗ ; π∗,β∗, σ∗, τ ∗, γ∗) be a saddle point of the
Lagrangian for an instance of the limited problem LRRUL-LIMITED with given sets
of candidate paths Pd for all d ∈ D and Ke for all e ∈ E , in the upper and lower
layers, respectively. Let ℘e ∈ K̂e \Ke be a shortest path in the lower layer realizing
capacity of link e and let ¯̀

e denote its length (7.86). Similarly, let ℘ds ∈ P̂ds \Pd

be a shortest path in the upper layer realizing demand d in situation s and let `ds

denote its length (7.87). Then:

• If κe = ¯̀
e for all e ∈ E and Lds = `ds for all d ∈ D and s ∈ S then

any optimal solution to LRRUL-LIMITED is also optimal for LRRUL-FULL,
i.e., the solution is optimal in a wider sense. Notice that this is the case when
problem LRRUL-FULL has no paths shorter than LRRUL-LIMITED.

• Otherwise, the current optimal solution may be possibly improved in any of the
following three cases:

Case 1: Suppose that for all e ∈ E the length of the shortest path in the candidate
path list Ke is equal to ¯̀

e, i.e., κe = ¯̀
e. Suppose also that there exists

a demand d, situation s and a path ℘ds ∈ P̂ds \ Pd with length
`ds < Lds. Then including path ℘ds into list Pd for at least one such
demand d and situation s can improve the current optimal solution.

Case 2: Suppose that there exists a link e and a path ℘e ∈ K̂e \Ke with length
¯̀
e < κe. Suppose also that there exists a demand d and situation s,

for which, if ℘e is included into Ke implying the new cost vector γ∗′,
there exists a path ℘ds ∈ P̂ds \Pd with length `ds < Lds, which is a
shortest path for the demand and situation with respect to costs γ∗′. Then
including path ℘e into list Ke for at least on such link e, and including
path ℘ds into list Pd, for at least one such demand d and situation s,
can improve the current optimal solution.

Case 3: Suppose there exists a link e and a path ℘e ∈ K̂e \ Ke with length
¯̀
e < κe. Suppose also that, when ℘e is included into Ke implying the

new cost vector γ∗′, for every demand d and situation s the candidate
path list Pd contains at least one shortest (with respect to costs γ∗′) path
with length Lds = `ds. Then including path ℘e into list Ke, for at least
one such link e, can improve the current optimal solution.
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The proof of the above proposition is analogous to proof of Proposition 5.1
in Section 5.2, and therefore it is omitted here. Algorithm to resolve LRUL using
PG is based on this observation and is given in the next section.

7.3.1 Algorithm for resolving LRUL using PG

This iterative algorithm is based on the algorithm presented in Section 6.6.1. The
main difference is that Step 2 includes a special (extended) test, based on the val-
ues of dual variables, checking the optimality of solution according to Proposition
7.3.

Resolution algorithm for LRRUL using PG.

Step 0:
Put n := 0, Z0 := ∅, ZPG := ∅, Z1 := {1, 2, . . . , S}, ts := 0 for all s. Form
the initial instance of the LRRUL problem, using small sets of candidate paths
(e.g., single paths).

Step 1:
Solve LRRUL problem (If Step 1 is entered from Step 2, then use the optimal
solution from the previous iteration as a staring point for solving the new instance
of the problem).

Let t∗,f∗,x∗,z∗,u∗ be the optimal solution of the current instance of the
problem. Get values of dual variables from a LP solver. Let (t∗, f∗, x∗, z∗ ; π∗,β∗,
λ∗, σ∗, τ ∗, γ∗) be a saddle point of the Lagrangian for the problem.

Step 2:
Run the following test :

• For each link e run a shortest path algorithm, using ξ as L1 links’ costs, to
find a shortest path ℘e and its cost ¯̀

e. If there exists a path ℘e such that
¯̀
e < κe, then include it to Ke, form a new instance of LRRUL problem

and Go to Step 1. Otherwise, proceed with the following:

• Put Z := {s ∈ Z1 : λ∗s > 0} and ts := t∗ for each s ∈ Z. Put
Z1 := Z1 \ Z.

• For each s′ ∈ Z and each demand d run a shortest path algorithm, using
γ∗ as L2 links’ costs, to find a shortest path ℘ds′ and its cost `ds

′ . If there
exists a path ℘ds′ such that `ds

′ < Lds′ and the same path ℘ds′ has not
been included yet to Pd for another situation s′ ∈ Z, then include it to
Pd. If the path was already included while considering other s′, skip it,



156 7. P   - 

but in Step 3 consider the current situation, as if the new path was included
for it.

Step 3:
Put n := n + 1, ZPG := {s ∈ Z : new paths ℘ds for s have been added},
Z1 := Z1 ∪ ZPG, Z0 := Z0 ∪ (Z \ ZPG) and form a new instance of the
problem with the extended lists of available paths. Go to Step 1.

The entities used in the algorithm are analogous to those presented in Sections
5.3.5 and 5.4.1.

7.4 Path generation for RBL

Proceeding the same way like for problems LRRLL and LRRUL, constraint (6.38)
is rewritten as two constraints (7.63)-(7.64), logarithmic function is linearized and
constraints (6.36) and (6.39) are merged into the following single constraint:

∑
d

∑
p

δedpxdps ≤
∑

k

zeks , ∀e ∈ E , ∀s ∈ S. (7.88)

Also, constraints required by the algorithm for resolving problem RBL (see Sec-
tion 5.3.5.4) are added. The linearized, relaxed and extended problem LRRBL is
then defined as follows:

LRRBL:

max t (7.89)

s.t.:

[π ≥ 0]
∑

g

ξgug ≤ B, (7.90)

[σds ≥ 0] hds ≤
∑

p

xdps, ∀d ∈ D, s ∈ S (7.91)

[τds ≥ 0]
∑

p

xdps ≤ Hds, ∀d ∈ D, s ∈ S (7.92)

[γes ≥ 0]
∑

d

∑
p

δedpxdps ≤
∑

k

zeks, ∀e ∈ E , s ∈ S (7.93)

[µgs ≥ 0]
∑

e

∑
k

ϕgekzeks ≤ αgsug, ∀g ∈ G, ∀s ∈ S (7.94)



P   RBL 157

[βdsi ≥ 0] fds ≤ ai

∑
p

xdps + bi, ∀d ∈ D, s ∈ S,

∀i ∈ I (7.95)

[λs ≥ 0] ts −
∑

d

wdsfds ≤ 0, ∀s ∈ Z0 (7.96)

[λs ≥ 0] t−
∑

d

wdsfds ≤ 0, ∀s ∈ Z1 (7.97)

t, fds ∈ R, xdps ∈ R+, ∀d ∈ D, p ∈ Pd,

∀s ∈ S (7.98)

zeks ∈ R+, ∀e ∈ E , k ∈ Ke,

∀s ∈ S, (7.99)

ug ∈ R+, ∀g ∈ G. (7.100)

In the same way as for the other problems presented, dual variables associated
with each of constraints (7.90)-(7.97) are indicated in brackets in front of each
constraint. Observe, that dual variables λ are defined for both constraints (7.96)
and (7.97), since Z0∩Z1 = ∅. As before, for convenience we transform objective
(7.33) into minimization. The Lagrangian function for problem LRRBL is:

L(t, f ,x,z,u ; π,β,λ,σ, τ ,γ,µ) =
( ∑

s∈Z1

λs − 1
)

t

+
∑

d

∑
s

(∑
i

βdsi − wdsλs

)
fds

+
∑

d

∑
p

∑
s

(
τds − σds −

∑
i

aiβdsi +
∑

e

δedpγes

)
xdps

+
∑

e

∑
k

∑
s

(∑
g

ϕgekµgs − γes

)
zeks

+
∑

g

(
ξgπ −

∑
s

αgsµgs

)
ug

+
∑
s∈Z0

λsts +
∑

d

∑
s

(
hdsσds −Hdsτds −

∑
i

biβdsi

)
− πB.

(7.101)

Let t∗,f∗,x∗,z∗,u∗ be any primal optimal solution of LRRBL. Similarly, let
π∗, β∗, λ∗, σ∗, τ ∗, γ∗, µ∗ be any dual optimal solution. The primal and dual
optimal solutions form the saddle point of the Lagrangian (7.101). (The dual
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optimal multipliers together with optimal primal variables are available from an
LP solvers.) It can be observed that for any saddle point of the Lagrangian the
following optimality conditions hold implied by the complementary slackness
property:

∑
s∈Z1

λ∗s = 1 (7.102)

∑
i

β∗dsi = wdsλ
∗
s , ∀d ∈ D,∀s ∈ S (7.103)

σ∗ds − τ∗ds +
∑

i

aiβ
∗
dsi = Lds , ∀d ∈ D,∀s ∈ S (7.104)

γ∗es = κes , ∀e ∈ E ,∀s ∈ S (7.105)∑
s

αgsµ
∗
gs = ξgπ

∗ , ∀g ∈ G. (7.106)

At optimum, each dual variable µ∗gs can be interpreted as a (dual) cost of link g

in situation s.
Let Ke be the given list of candidate paths in the lower layer realizing capacity

of link e and let κes (in equation 7.105) be a length of the shortest path for link
e and situation s in this list with respect to metric µ∗ = (µ∗es : e ∈ E , s ∈ S):

κes = min
k∈Ke

(∑
g

ϕgekµ
∗
gs

)
, ∀e ∈ E ,∀s ∈ S. (7.107)

The set Ke contains indices of paths in set Ke. Similarly, let Pd be the given list
of candidate paths in the upper layer realizing demand d and let Lds in equation
(7.104) be a length of the shortest path for demand d in situation s in this list
with respect to costs κ = (κes : e ∈ E , s ∈ S):

Lds = min
p∈Pd

(∑
e

δedpγ
∗
es

)
= min

p∈Pd

(∑
e

δedpκes

)
, ∀d ∈ D. (7.108)

The set Pd contains indices of paths in set Pd. Similarly to problem LRRLL, it
can be observed from (7.106), that real cost ξg (scaled by π∗) of each lower layer
link is, in general, shared among the situations in which the link survives. Thus
we define a set Sg containing all situations in which link g is fully available, i.e.,

Sg = {s ∈ S : αgs = 1} ∀g ∈ G. (7.109)
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Then we can rewrite equation (7.106) as follows:∑
s∈Sg

µ∗gs = ξeπ
∗, ∀g ∈ G. (7.110)

We note that the two properties (see the discussion for problem MNOM in Sec-
tion 7.1) regarding dual variables β,σ and τ hold for this problem as well, like
for the other two-layer problems we have discussed before.

We will now state the proposition underlying the PG algorithm for problem
LRRBL. Suppose that for a given network instance of problem LRRBL all allow-
able paths (in the lower layer) realizing each link belong to set K̂e and all allowable
paths (in the upper layer) for each demand belong to set P̂d. Let K̂es ⊆ K̂e be
a set of lower layer paths for link e that are fully available in situation s. Sim-
ilarly, let P̂ds ⊆ P̂d be a set of upper layer paths for demand d that are fully
available in situation s. For each upper layer link e and situation s let ℘es ∈ K̂es

be a shortest path in the lower layer among all allowable paths surviving failure
situation s, and let ¯̀

es be its cost with respect to the cost metrics µ∗, i.e.,

¯̀
es = ‖℘es‖µ∗ = min

k∈bKes

(∑
g

ϕgekµ
∗
gs

)
, ∀e ∈ E ,∀s ∈ S, (7.111)

where set K̂es contains indices of paths in set K̂es. For each demand d and situ-
ation s, let ℘ds ∈ P̂ds be a shortest path in the upper layer among all allowable
paths for demand d, surviving failure situation s, and let `ds be its cost with
respect to the cost metrics κ, i.e.,

`ds = ‖℘ds‖κ = min
p∈ bPds

(∑
e

δedpκes

)
, ∀d ∈ D,∀s ∈ S, (7.112)

where set P̂ds contains indices of paths in set P̂ds. We consider two versions of
problem LRRBL:

• full problem LRRBL-FULL with the set of candidate paths for each de-
mand d equal to P̂d and the set of candidate paths for each link e equal to
K̂e

• limited problem LRRBL-LIMITED with the set of candidate paths for
each demand d equal to Pd, where Pd ⊆ P̂d for all d, the set of candidate
paths for each link e equal to Ke, where Ke ⊆ K̂e for all e, and Pd ( P̂d

for at least one demand d, and/or Ke ( K̂e for at least one link e.
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Proposition 7.4. Let (t∗, f∗, x∗, z∗, u∗ ; π∗,β∗, λ∗, σ∗, τ ∗, γ∗, µ∗) be a saddle
point of the Lagrangian for an instance of the limited problem LRRBL-LIMITED
with given sets of candidate paths Pd for all d ∈ D and Ke for all e ∈ E , in
the upper and lower layers, respectively. Let ℘es ∈ K̂es \ Ke be a shortest path in
the lower layer realizing capacity of link e in situation s and let ¯̀

es denote its length
(7.111). Similarly, let ℘ds ∈ P̂ds\Pd be a shortest path in the upper layer realizing
demand d in situation s and let `ds denote its length (7.112). Then:

• If κes = ¯̀
es for all e ∈ E , s ∈ S and Lds = `ds for all d ∈ D and s ∈ S

then any optimal solution to LRRBL-LIMITED is also optimal for LRRBL-
FULL, i.e., the solution is optimal in a wider sense. Notice that this is the case
when problem LRRBL-FULL has no paths shorter than LRRBL-LIMITED.

• Otherwise, the current optimal solution may be possibly improved in any of the
following three cases:

Case 1: Suppose that for all e ∈ E and s ∈ S the length of the shortest path in
the candidate path list Ke is equal to ¯̀

es, i.e., κes = ¯̀
es. Suppose also

that there exists a demand d, situation s and a path ℘ds ∈ P̂ds \Pd

with length `ds < Lds. Then including path ℘ds into list Pd for at
least one such demand d and situation s can improve the current optimal
solution.

Case 2: Suppose that there exists a link e, situation s and a path ℘es ∈ K̂es\Ke

with length ¯̀
es < κes. Suppose also that there exists a demand d and

situation s, for which, if ℘es is included into Ke implying the new cost
vector κ′, there exists a path ℘ds ∈ P̂ds \Pd with length `ds < Lds,
which is a shortest path for the demand and situation with respect to costs
κ′. Then including path ℘es into list Ke for at least on such link e and
situation s, and including path ℘ds into list Pd, for at least one such
demand d and situation s, can improve the current optimal solution.

Case 3: Suppose there exists a link e, situation s and a path ℘es ∈ K̂es \ Ke

with length ¯̀
es < κes. Suppose also that, when ℘es is included into

Ke implying the new cost vector κ′, for every demand d and situation s

the candidate path list Pd contains at least one shortest (with respect to
costs κ′) path with length Lds = `ds. Then including path ℘es into list
Ke, for at least one such link e and situation s, can improve the current
optimal solution.

The proof of the above proposition is analogous to proof of Proposition 5.1
in Section 5.2, and therefore it is omitted here.
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7.4.1 Algorithm for resolving LRRBL using PG

Problem LRRBL can be resolved with the same algorithm as LRUL (see section
7.3.1), modified as follows: i) in Step 1 problem LRRBL should be solved instead
of LRRUL; ii) Step 2 should be replaced with the following:

Put Z := {s ∈ Z1 : λ∗s > 0} and ts := t∗ for each s ∈ Z. Put Z1 := Z1 \ Z.
For each s′ ∈ Z run the following PG-test:

• For each link e run a shortest path algorithm, using µ∗ as links’ costs in
the lower layer, to find a shortest path ℘es′ and its cost ¯̀

es′ . If there exists
a path ℘es′ such that ¯̀

es′ < κes′ , and the same path ℘es has not been
included yet to Ke for another situation s′ ∈ Z, then include it to the
routing list Ke.

• For each demand d run a shortest path algorithm, using κ as L2 links’ costs,
to find a shortest path ℘ds′ and its cost `ds′ . If there exists a path ℘ds′ such
that `ds′ < Lds′ , and the same path ℘ds′ has not been included yet to
Pd for another situation s′ ∈ Z, then include it to Pd. If the path was
already included while considering other s′, skip it, but in Step 3 consider
the current situation, as if new path was included for it.

7.5 Numerical example

The numerical example presented below illustrates the performance of the PG-
based algorithms for the LRRLL, LRRUL and LRRBL problems, presented in
the previous sections. We have chosen to illustrate the three PG-based algorithms
on network N12, which is described in Section 6.7.1. It is one of the networks
used for numerical tests with the algorithms for the three problems without PG.
Topologies of the two network layers are illustrated in Figure 6.6. Link costs for
the lower layer network are given in Table 6.2 and the considered failure situations
are listed in Table 6.3. The network data used for the numerical tests presented in
this section is, however, not identical with that described in Section 6.7.1. What
is different is the number of initial candidate paths in the routing lists for the
demands in both layers. For the experiments presented here we have decreased
the initial candidate path lists to only two paths per demand for all demands in
both layers. The two paths were two shortest paths. This is due to our intention
to illustrate the efficiency of the algorithms with minimal initial routing lists.

Of course, providing large set of good initial candidate paths would decrease
the execution time of the PG-based algorithms, but on the other hand would
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require longer time for generating these paths and resolution of the problem re-
laxation with large candidate path lists would be more difficult. The investigation
of the strategies for forming the initial path lists is out of the scope of this discus-
sion. Thus the results provided in this section should be considered merely as an
illustration of the efficiency of algorithms. Budget B = 1000 has been assumed
for the experiments.

The algorithms have been implemented in AMPL ver 20010215 [119], using
CPLEX 7.5 [49] as an optimizer. Tests have been run on a PC with a Pentium III
866MHz CPU and 256 MB RAM memory.

7.5.1 Results

Table 7.1 gives a comparison between different reconfiguration options, using
PG. In the table, Rmin and Rmax are the initial and final (after path generation)
values of the revenue. Number of paths added is total for all demands (and situa-
tions) in both layers. Time gives a total execution time of the algorithm, including
solving LP and running the shortest path algorithm. Table 7.2 presents an anal-
ogous comparison between the three options when using the algorithms without
PG (presented in Section 6.6), but instead with 2 shortest paths predefined for
each demand on each of the layers (thus resulting in 176 total paths). In this
way one can compare what solution can be attained for the algorithms with the
same minimal initial lists of candidate paths that are used as starting point for
the PG-based algorithms. Figure 7.1 shows how the total number of paths (for
all demands on both layers) in P cand changes when the algorithms (using PG)
progress. Number of paths that have been added in each iteration is indicated in
Figure 7.2.

7.6 Discussion

Comparing entries in Tables 7.1 and 7.2 one can see that for a relatively small 12-
node network, the algorithms with PG take much longer time than those without
PG. This is mostly caused by running the shortest path algorithm many times.
Still, much better solutions (in terms of the objective function value) are reached
by the algorithms using PG (see row Rmax in the tables). Time-efficiency of
PG algorithms is a tradeoff between solving a more difficult problem (with large
lists of candidate paths) and solving multiple shortest path problems. Also, one
has to take into account, that when using algorithms without PG, pre-calculation
of paths is necessary, which can be time consuming for large network instances.
Notice that when using PG, most of the shortest paths are added to the routing
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Figure 7.1: Total number of paths for the three reconfiguration options.
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Figure 7.2: A number of paths added in each iteration for the three reconfiguration op-
tions.
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Formulation LRLL LRUL LRBL

Rmin -88,46 2,72 21,6

Rmax 19,4 77,94 91,00

# iterations 7 22 20

# paths added 251 745 317

Time, [min] 5 38 14

Table 7.1: Selected results for different reconfiguration options, using PG.

Formulation LRLL LRUL LRBL

Rmin -88,46 2,72 21,6

Rmax -88,46 36,22 49,95

# iterations - 10 15

# predefined paths 176 176 176

Time, [min] 0,05 3 4

Table 7.2: Selected results for different reconfiguration options with predefined routing
lists.

lists during first few iterations (see Figure 7.1). This fact can be used as a stopping
criterion allowing for early stop of the algorithms after the first few iterations.
As a result, execution times of the algorithms would considerably decrease at the
expense of marginally worse objective function value.

7.7 Summary of the results

In this section we have discussed how to apply path generation (PG) to the four
multi-layer network design problems through the use of dual variables as link/path
costs. This interpretation forms a basis for implementing the PG algorithms to
solve the problems. A numerical example gives a comparison of the efficiency
of the algorithms for different reconfiguration options, as well as how do they
compare to algorithms without PG. It is shown that algorithms with PG allow to
reach higher revenue values and do not require long predefined routing lists. An
approach used to design the algorithms could be easily adapted to solve networks
with more layers or also other similar multi-layer network design problems.
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CHAPTER 8

An iterative resolution framework for two-layer network
design problems with different recovery mechanisms

8.1 Introduction

In Chapter 5.4.1 we have presented three models for a two layer network with
unrestricted flow reconfiguration. What differs in the models is which layer per-
forms recovery of flows after failure. Certainly, the assumed full reconfiguration
mechanism is not realistic, since, in general, it assumes that potentially all net-
work flows are disconnected when a failure occurs and then reconnected using
the surviving network resources. However the results obtained for full reconfigu-
ration made it possible to compare recovery efficiency in different layers. In this
chapter we will present models for several realistic mechanisms for network re-
siliency, namely, restricted reconfiguration, path diversity, and hot-standby path
protection.

In the multi-layer network different recovery mechanisms can be employed in
the layers. Thus the number of network models with different combinations of
recovery mechanisms is large. Instead of presenting all possible two-layer network
models explicitly, we will instead present the models separately for each layer with
different recovery mechanisms. The desired two layer model can the be assembled
combining the appropriate models for the upper and lower layers.

After presenting models assuming different recovery mechanisms in different
network layers we will present explicitly several two layer network design prob-
lems, and using them as an example, we will show how the (difficult) realistic
network design problems can be resolved within the proposed iterative resolution
framework.
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8.1.1 Restricted reconfiguration

In contrast to the unrestricted reconfiguration mechanism which we assumed for
the models discussed in the previous chapters, restricted reconfiguration (RR)
mechanism assures that the flows reconfigured upon a failure are restricted only
to those affected by the failure, i.e., non-affected flows stay at place. The models
with the RR recovery mechanism that we will consider do not prevent bifurcation
of flows. Therefore, the RR policy is applied on a per-path basis, as opposed
to per-demand basis. This means that only flows on failing paths of a demand
are disconnected and rerouted within the surviving resources. A failing flow can
in general become bifurcated when restored on more than one path in a failure
situation. Thus the RR mechanism in itself does not impose any restrictions on
how many paths the failing flow is restored. Below we present two formulations
modeling RR in the upper and lower network layer.

8.1.1.1 RR in the upper layer

Let us assume that the normal state is identified as s = 0, and denote flow for
each demand d routed on path p in the normal state by xdp0. Then the following
problem formulation implies that if a path used to carry the flow in the normal
state is not failing in some state ŝ then the path is used to carry the flow also in
ŝ. In other words, only the flows on failing paths are rerouted upon the failure,
while other flows remain on their paths chosen for the normal state.

The following constraints define a set of feasible solutions for an upper layer
network design problem with RR mechanism. In equation (8.3) variables yes are
auxiliary and used for connecting models of the upper and lower layers. Their
values are implied by the lower and upper layer models together. Considering
only the upper layer separately, capacities yes can be assumed constant.

hds ≤
∑

p

xdps ≤ Hds , ∀d ∈ D, s ∈ S (8.1)

xdps ≥ θdpsxdp0 , ∀d ∈ D, p ∈ Pd, s = 1, . . . , S (8.2)∑
d

∑
p

δedpxdps ≤ Myes , ∀e ∈ E , s ∈ S, (8.3)

xdps ∈ R+ ∀d ∈ D, p ∈ Pd, ∀s ∈ S (8.4)

yes ∈ Z+ , ∀e ∈ E , ∀s ∈ S. (8.5)

Recall, that θdps is an availability coefficient for path p of demand d in situation
s, and is calculated as follows:
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θdps =
∏

{e:δedp=1}

αes , ∀d ∈ D, ∀p ∈ Pd, s = 1, 2, ..., S, (8.6)

where αes ∈ {0, 1} is an availability coefficient of link e in situation s. Assuming
that only lower layer links may fail, and if a link fails, it fails completely, αes is
calculated from the lower layer path availability coefficients θeks in the following
way:

αes =
∏

k∈Ke

θeks , ∀e ∈ E , ∀k ∈ Ke, s = 1, 2, ..., S. (8.7)

Coefficients θeks are analogous to θdps, but are calculated using availability coef-
ficients of lower layer links, αgs:

θeks =
∏

{g:ϕgek=1}

αgs , ∀e ∈ E , ∀k ∈ Ke, s = 1, 2, ..., S. (8.8)

Note that bounds hds and Hds define the minimal, respectively maximal, number
of demand modules that can be allocated to demand d. Thus, the bounds are not
defined in terms of (absolute) bandwidth, but in terms of number of demand
modules of size L.

8.1.1.2 RR in the lower layer

RR can also be assumed for recovery in the lower network layer. Similarly, as for
the upper layer model discussed above, we assume that zek0 denotes a flow real-
izing capacity of e on path k in the normal state. Then a set of feasible solutions
for the lower layer network design problem with RR mechanism is defined by the
following constraints:
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∑
k

zeks ≥ yes , ∀e ∈ E ,∀k ∈ Ke, ∀s ∈ S (8.9)

zeks ≥ θekszek0 , ∀e ∈ E ,∀k ∈ Ke, s ∈ S \ 0 (8.10)∑
e

∑
k

ϕgekzeks ≤ αgsNug , ∀g ∈ G, ∀s ∈ S (8.11)∑
g

ξgug ≤ B . (8.12)

zeks, yes ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke, ∀s ∈ S. (8.13)

ug ∈ Z+ ∀g ∈ G. (8.14)

(8.15)

In equation (8.9) variables yes are used for connecting lower and upper layer
network models. Coefficients θeks in (8.10) are calculated from (8.8).

8.1.2 Path diversity

A simple way to increase network resilience is by using Path diversity (PD) mech-
anism. Strictly speaking, PD is not a recovery mechanism—it merely implements
the idea of deliberately splitting the whole demand volume into a (at least) a pre-
defined number (nd) of paths. If the candidate paths are link (node) disjoint then
in a case of a single link (node) failure at most 100/nd% of the demand d volume
is lost and the rest of it survives. An advantage of the approach is that (assuming
that in each state a single link fails) only a part of the flow can be affect by failure
and lost, while the rest of it survives. Thus, a single failure will never affect the
whole demand volume. Besides, no recovery actions need to be taken when a link
fails, this way simplifying the network equipment.

8.1.2.1 PD in the upper layer

The following constraints define a set of feasible solutions for the upper layer
network design problem with PD. As before, variables ye are auxiliary and can be
assumed constant if this problem is considered separately (not in the model with
both layers).
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dhd/nde ≤ xdp ≤ dHd/nde , ∀d ∈ D ,∀p ∈ Pd (8.16)

hd ≤
∑

p

xdp ≤ Hd , ∀d ∈ D (8.17)∑
d

∑
p

δedpxdp ≤ Mye , ∀e ∈ E . (8.18)

xdp ∈ R+ ∀d ∈ D, p ∈ Pd (8.19)

ye ∈ Z+ ∀e ∈ E . (8.20)

(8.21)

Constraint (8.16) implies that a flow allocated to any path of a demand must be
at least as large as 1/nd of the lower bound hd, and at most as large as 1/nd of
the upper bound Hd. Other constraints have been previously discussed.

8.1.2.2 PD in the lower layer

PD in the lower is imposed by introducing a split factor ne and requiring that any
flow zek realizing capacity of an upper layer link e can carry at most 1/ne fraction
of the link capacity ye. This is imposed by constraint (8.23). The constraints
below define a set of feasible solutions for the lower layer network design problem
with PD.

∑
k

zek ≥ ye , ∀e ∈ E ,∀k ∈ Ke (8.22)

zek ≤ dye/nee , ∀e ∈ E , ∀k ∈ Ke (8.23)∑
e

∑
k

ϕgekzek ≤ Nug , ∀g ∈ G (8.24)∑
g

ξgug ≤ B (8.25)

zek, ye ∈ Z+ ∀e ∈ E , k ∈ Pe (8.26)

ug ∈ Z+ ∀g ∈ G. (8.27)

Note that a non-linear constraint (8.23) can, for practical purposes, be slightly
modified and replaced by the linear constraint

zek ≤ (ye/ne) + 1 , ∀e ∈ E , ∀k ∈ K. (8.28)

(8.29)
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8.1.3 Hot stand-by path protection

When a very high availability of resources is required, a hot stand-by (HS) path
protection is used. It implies, that for each demand d, a primary path Pdp is
set up, as well as a path Rdp protecting Pdp. Identical resources are reserved on
the hot-standby (protection) path, as those needed on primary path. So if the
primary path fails, the traffic is automatically switched to the protection path,
thus assuring 100% availability of the resources. The protection mechanism is
analogous to 1 : 1, or 1 + 1 protection (the model is the same for both).

If the two paths, primary and protection, are chosen in such a way, that any
failure which affects the primary path Pdp leaves the protection path Rdp intact,
the paths are called failure-disjoined.

8.1.3.1 HS in the upper layer

The following constraints define a set of feasible solutions for the upper layer
network design problem with HS path protection.

∑
p

vdp = 1 , ∀d ∈ D ,∀p ∈ Pd (8.30)

vdphd ≤ xdp ≤ vdpHd , ∀d ∈ D ,∀p ∈ Pd (8.31)∑
d

∑
p

(δedp + δ̂edp)xdp ≤ Mye , ∀e ∈ E (8.32)

vdp ∈ B , xdp ∈ R+ , ∀d ∈ D, p ∈ Pd (8.33)

zek, ug ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke, ∀g ∈ G. (8.34)

In the constraints above p = 1, 2, ..., Pd indexes candidate pairs of (primary,
protection) paths (Pdp,Rdp) for realizing demand d. Variable vdp is a binary
variable which is equal to one only if the path pair p is chosen for realizing demand
d, and zero otherwise. Coefficients δedp and δ̂edp in constraint (8.32) have the
following meaning:
δedp = 1 if link e belongs to the primary path Pdp realizing demand d;

0, otherwise
δ̂edp = 1 if link e belongs to the protection path Rdp, protecting path p

of demand d; 0, otherwise.

The sum ϑedp = δedp + δ̂edp can be defined as:
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ϑedp =


1, if e ∈ Pdp ∪Rdp \ (Pdp ∩Rdp)
2, if e ∈ Pdp ∩Rdp

0, otherwise

and directly used in constraints (8.32).
The formulation (8.30)-(8.34) can be modified by taking the following natu-

ral assumption into account:

Assumption: Since the capacity of the upper (IP/MPLS) layer links is virtual,
assume that if primary path and its hot-standby protection path use the same (not-
failed) link, then the capacity on that link is not reserved twice.

This is done by defining the link-path coincidence coefficient in yet another way,
as follows:

θedp =
{

1, if e ∈ Pdp ∪Rdp

0, otherwise.
(8.35)

Then the constraints (8.32) can be replaced by the following:

∑
d

∑
p

θedpxdp ≤ Mye , e = 1, 2, . . . , E. (8.36)

In constraint (8.31) we use the so called “big M”. This “big M” is equal to
Hd in (8.31). In fact, in the classical unsplittable flow formulations "big M"
is not necessary since the demand volume (Hd) is fixed for each demand, and
the path flows for demand d can be simply expressed as xdp = Hd · vdp, p =
1, 2, . . . , Pd. In our case, however, the actual demand volume is a variable (Xd)
and the corresponding path flows are equal to xdp = Xd · vdp, p = 1, 2, . . . , Pd

which introduces a non-linearity if used directly. Therefore, the use of the forcing
constraint (8.31) seems necessary. This is in fact not advantageous since using "big
M" decreases the lower bounds provided by the linear relaxation of formulation
(8.30)-(8.34), and hence can make the branch-and-bound approach less effective.

8.1.3.2 HS in the lower layer

HS path protection in the lower layer is modeled in the same way as the protection
in the upper layer. We assume that k = 1, 2, ...,Ke indexes candidate pairs of
(primary, protection) paths (Pek,Rek) in the lower layer for realizing capacity
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of link e. For each link e and path k a binary variable vek is introduced, which
is equal to one only if the path pair k is chosen for realizing capacity of link e,
and zero otherwise. A set of feasible solutions for the lower layer network design
problem assuming HS path protection is defined by the following constraints:

∑
k

vek = 1 , ∀e ∈ E (8.37)∑
k

zek ≤ Y vek , ∀e ∈ E ,∀k ∈ Ke (8.38)∑
k

zek ≥ ye , ∀e ∈ E (8.39)∑
e

∑
k

(ϕgek + ϕ̂edp)zek ≤ Nug , ∀g ∈ G (8.40)

vek ∈ B, zek, ye, ug ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke, ∀g ∈ G. (8.41)

Link-path coincidence coefficients ϕedp and ϕ̂edp in constraint (8.40) have the
following meaning:
ϕgek = 1 if link g belongs to the primary path Pek; 0, otherwise
ϕ̂gek = 1 if link g belongs to the protection path Rek protecting path k

of demand e; 0, otherwise
The constraint (8.40) can be written in a more compact form aggregating link-
path coincidence coefficients in the same way as we did for the upper layer design
problem.

Like for the upper layer design problem with HS path protection, in this
formulation we use the so called “big M”. This “big M” is equal to Y in (8.38).
Here we assume Y to be a number which is at least as large as the maximal value
of ye among all the links e.

8.2 Network design problems

We will now present a resilient network design problem for capacity dimension-
ing and flow allocation in the two-layer network with modular capacities in both
layers. Several problem modifications are discussed, differing by objective func-
tion and recovery mechanism used. The three most often encountered objec-
tive functions– total network throughput maximization, network installation cost
minimization (CM) and fair flow allocation– are considered, as well as two dif-
ferent mechanisms for recovery from failures occurring in the lower layer. These
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are protection via path diversity in the lower layer and hot-standby path protec-
tion in the upper layer. It is assumed that network topology, user demands and
costs of different entities are given. For some of the problems, also the budget for
installing the network is given.

By presenting this wide range of network design problems we wish to illustrate
that all of them can be effectively resolved by the presented generic resolution
framework.

We start by presenting two NDPs, each using a different recovery mechanism.
For this we assume that the objective function in these problems is proportionally
fair bandwidth sharing among the demands. Further we assume that hot-standby
path protection is to be used for recovery and present two more NDPs, with TM
and CM objectives.

8.3 PF bandwidth sharing and protection via path diver-
sity in DWDM layer

The network design problem presented below consists in finding PF flow alloca-
tions in the upper (IP/MPLS) layer and in the lower (DWDM) layer, as well as
link capacities in both layers, given the budget for installing capacity in the lower
layer links. The following requirements are taken into account in the considered
network design problem: 1) flow realizing each demand must be realized on a
single path in the upper layer; 2) capacities of the links are installed in modules of
a fixed size; 3) the available capacity is shared between demands according to the
PF principle; 4) protection of flows in case of failures is assured in the lower layer
using path diversity. The model for PD is the one presented in Section 8.1.2.2.
The MIP formulation is as follows:

Problem PF-PD: a two layer network design problem with PF flow allocation
and protection via path diversity in DWDM layer.

max R =
∑

d

wd log(Xd) (8.42)

s.t.:
∑

g

ξgug ≤ B , (8.43)∑
p

xdp = Xd , ∀d ∈ D (8.44)
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∑
p

vdp = 1 , ∀d ∈ D (8.45)

vdphd ≤ xdp ≤ vdpHd , ∀d ∈ D ,∀p ∈ Pd (8.46)∑
d

∑
p

δedpxdp ≤ Mye , ∀e ∈ E (8.47)∑
k

zek ≥ ye , ∀e ∈ E (8.48)

zek ≤ dye/nee , ∀e ∈ E , ∀k ∈ Ke (8.49)∑
e

∑
k

ϕgekzek ≤ Nug , ∀g ∈ G (8.50)

vdp ∈ B, xdp ∈ R+ , ∀d ∈ D, ∀p ∈ Pd (8.51)

zek, ye, ug ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke, ∀g ∈ G. (8.52)

In the above formulation we use the so called "big M" to force unsplittable flows
in the upper layer (this "big M" is equal to Hd in constraint (8.46)).

Constraints (8.44) give the total amount of flow, assigned for each demand
d, which is then used in the objective function. Constraints (9.6)-(8.46) assure
that only one path p (LSP) is used to realize flow for each demand d. At the same
time constraints (8.46) impose lower and upper bound for the the flow realizing
each demand d. We would like to emphasize the role of the upper and lower
bounds. The upper bounds Hd serve as a means for limiting excessive allocations
of network bandwidth to demands (in order to avoid cases when the reserved
bandwidth will never be used). Similarly, the lower bounds hd do not allow for
too small bandwidth allocations and provide specific guarantees for the demands.
Note that assigning the same value to lower and upper bound of any demand
implies fixed bandwidth allocation to the demand.

Constraints (8.47) assure that all the flows routed on each link e do not exceed
its capacity which is allocated in modules of size M . Modularity of the links is
introduced in order to have modular demand volumes for the lower layer. All
flows xdp of the MPLS layer traversing a given link e sum up to the load of the
link and imply its capacity Mye. Then the number of modules ye of a given link
e forms a demand volume for the DWDM layer, which has to be realized by the
DWDM layer flows zek. Constraints (8.49) force the demand volumes ye to be
split into at least ne paths in the DWDM layer. Constraints (8.50), similarly to
(8.47), assure that all the flows routed on each physical link g do not exceed its
capacity allocated in modules of size N . Finally, constraint (8.43) imposes budget
B for installing capacity in the lower layer links (fibers).

Note that non-linear constraints (8.49) can, for practical purposes, be slightly
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changed and replaced by linear constraints

zek ≤ (ye/ne) + 1 , ∀e ∈ E , ∀k ∈ Ke. (8.53)

The meaning of capacity modules is discussed in Section 3.2.3.

8.3.1 Protection mechanism

As it was already mentioned, protection is achieved by splitting flows of the lower
layer zek (realizing capacities ye) into a predefined number (ne) of diverse paths.
If candidate paths for DWDM layer flows are link (node) disjoint then in a case
of a single link (node) failure at most 100/ne% of the demand e volume is lost
and the rest of it survives.

Main advantages of having recovery mechanisms in the lower layer are low
number of recovery actions needed (since protection/restoration is performed on
the coarsest granularity), as well as the failure is not propagated to the upper layer.
A disadvantage of such a scheme, though, is that failures in the upper layer may
not be resolved [24].

8.4 PF bandwidth sharing and hot-standby path protec-
tion in IP/MPLS layer

The following network design problem models a network scenario where single
path routing and hot-standby path protection is used in the IP/MPLS layer, no
resilience is implemented in the DWDM layer, and capacities are installed in
modules in both layers. Bifurcation of flows in the DWDM layer is allowed. In
the formulation below we use the model for HS protection in the upper layer
presented in Section 8.1.3.1. Most of the entities used in this formulation are the
same as for problem PF-PD presented before. Note, however, that here p indexes
a pair of paths in the upper layer, i.e., a normal and protection path.

Problem PF-HS: a two layer network design problem with PF flow allocation
and hot-standby path protection in IP/MPLS layer.
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max R =
∑

d

wd log(Xd) (8.54)

s.t.:
∑

g

ξgug ≤ B , (8.55)∑
p

xdp = Xd , ∀d ∈ D (8.56)∑
p

vdp = 1 , ∀d ∈ D (8.57)

vdphd ≤ xdp ≤ vdpHd , ∀d ∈ D ,∀p ∈ Pd (8.58)∑
d

∑
p

θedpxdp ≤ Mye , ∀e ∈ E (8.59)∑
k

zek ≥ ye , ∀e ∈ E (8.60)∑
e

∑
k

ϕgekzek ≤ Nug , ∀g ∈ G. (8.61)

vdp ∈ B, xdp ∈ R+ , ∀d ∈ D, ∀p ∈ Pd (8.62)

zek, ye, ug ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke, ∀g ∈ G. (8.63)

Most of the constraints are the same as for the problem PF-PD. Just the con-
straints (8.59) are different. These constraints assure that all the flows routed on
each link e, including the bandwidth reserved for the hot-standby paths, do not
exceed the capacity of link e, which is allocated in modules of size M . Coefficient
θedp is defined in (8.35). Note, that in this formulation, constraints (8.57)-(8.58)
assure that only one path pair p is used to realize the total flow for each demand
d. Thus a single primary path Pdp is used to carry all the flow of demand d, and
only a single protection path Rdp is used to protect the primary path against all
(foreseen) failures.

The meaning of capacity modules is discussed in Section 3.2.3).

8.4.1 Protection mechanism and failure-disjoint paths

This problem formulation employs hot-standby path protection on IP/MPLS
layer. It implies, that for each demand d, a primary path Pdp is set up, as well as
a path Rdp protecting Pdp. Identical resources are reserved on the hot-standby
(protection) path, as those needed on primary path. So if the primary path fails,
the traffic is automatically switched to the protection path, thus assuring 100%
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availability of the resources. The protection mechanism is analogous to 1 : 1, or
1 + 1 protection (the model is the same for both).

If the two paths, primary and protection, are chosen in such a way, that any
failure which affects the primary path Pdp leaves the protection path Rdp intact,
the paths are called failure-disjoined.

Having recovery mechanism in the upper layer allows for protection against
the upper layer failures, as well as provides more efficient resource utilization than
recovery in the lower layer. A disadvantage, though, is that more recovery actions
are needed to recover from a failure in the lower layer [24].

8.5 Throughput maximization and hot-standby path pro-
tection in IP/MPLS layer

Problem TM-HS: a two layer maximum-throughput network design problem
with hot-standby path protection in IP/MPLS layer.

max T =
∑

d

Xd (8.64)

s.t.: (8.55)-(8.63).

Problem TM-HS differs from the problem PF-HS just by the objective function
and the solution space is defined by the same set of constraints. The objective
function (8.64) provides total network throughput (T ) maximization.

8.6 Cost minimization and hot-standby path protection
in IP/MPLS layer

Problem CM-HS: a two layer minimum-cost network design problem with hot-
standby path protection in IP/MPLS layer

min C =
∑

g

ξgug (8.65)

s.t.:
∑

p

vdp = 1 , ∀d ∈ D (8.66)∑
d

∑
p

θedphdvdp ≤ Mye , ∀e ∈ E (8.67)
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∑
k

zek ≥ ye , ∀e ∈ E (8.68)∑
e

∑
k

ϕgekzek ≤ Nug , ∀g ∈ G (8.69)

vdp ∈ B , ∀d ∈ D, ∀p ∈ Pd (8.70)

zek, ye, ug ∈ Z+ , ∀e ∈ E , ∀k ∈ Ke, ∀g ∈ G. (8.71)

Objective function C (8.65) is related to the total network cost. Most of the
constraints in CM-HS are the same as for problems PF-PD or PF-HS. What
differs CM-HS from the other two problems is only constraint (8.67), which
assures that all flows routed on link e, including the flows realizing hot-standby
paths, do not exceed the capacity of link e which is allocated in modules of size M .
One can see that constrain (8.67) is formed by combining constraints (8.46) and
(8.47). This is possible due to the fact that the minimal cost C is achieved when
flows xdp attain the minimum admissible value, i.e., hd. Since for each demand d,
volume hd is now a constant, the value of each flow xdp is either hd or 0, and this
makes it possible to formulate problem CM-HS without using constraint (8.46)
involving "big M", as it is the case in problems PF-PD and PF-HS.

8.7 Problem resolution methods

In this section we present a framework for solving two-layer network design prob-
lems. The framework is based on an efficient heuristic solution method, which is
referred to as the iterative method (called design through layer separation in [120]).
The method is based on the following two key components: 1) decomposition
of the problem into two subproblems related to the two separate layers and per-
forming optimization for the two layers individually and 2) allocation of flows to
the shortest paths, based on the calculated costs of the paths. The procedure of
exchanging the data between the layers and re-solving the problems of the two
layers is iterated until satisfactory (hopefully near-optimal) solution is reached.
The method is implemented as an iterative algorithm, as shown in Figure 8.1.
This approach was also studied in [121] and [122] for designing cost-efficient
multi-layer networks.

For the considered problems, an artificial cost of installing one module M

on each of the upper layer links e is introduced. Then, for the upper layer a
link capacity dimensioning problem with modular link capacities and single-path
routing is solved. (Note that this problem alone is hard, but still simpler than the
considered two-layer NDP. In fact, this single-layer NDP is used to test commer-
cial MIP solvers [123]). The obtained modular link capacities of the upper layer
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Find capacity unit costs

Find shortest paths

in both layers

Solve problem for the

upper layer

Solve problem for the

lower layer

Stoping criterion met? STOP

Update the costs

Yes

No

Figure 8.1: General algorithm for solving the two-layer NDPs.

are then used as demand volumes for solving the lower layer problem. When flow
allocation in the lower layer is found, cost of the lower layer path, realizing the
capacity of each link e, is re-calculated. Based on these re-evaluated costs, the up-
per layer link costs are adjusted and the problems re-solved, leading to an iterative
solution process (see Figure 8.1).

Certainly, the iterative method requires solving more problems, but the prob-
lems are less complex than those solved by the direct application of a MIP solver
to the original problem formulation (this will be called direct method ). In the di-
rect method less problems have to be solved, but they are more complex. Thus the
proposed iterative approach combines the exact and heuristic solution methods.

The following sections present description of the solution method and show
how the general solution algorithm is adapted to solve each of the subproblems.
They also serve as a means of explaining the method itself by example.

8.8 Iterative method for solving problem PF-PD

In this section we will discuss how to resolve PF-PD problem presented in Section
8.3 using the iterative method. In the sequel the IP/MPLS layer will also be
referred to as layer 2 (L2) and the DWDM layer—as layer 1 (L1).
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The method described below consists in iterative execution of two phases (see
Figure 8.1) until a satisfactory (hopefully near-optimal) solution is found.

In Phase 1, for each L2 link e, the lengths of the given number ne (recall, that
ne is a diversity factor in PD recovery) shortest paths realizing link e in L1 are
calculated. These lengths are used to find the unit capacity cost for each link e

of L2. Based on the L2 link costs, the length of the shortest path in L2 realizing
each demand d is calculated.

In Phase 2 two consecutive separate optimization problems, for L2 and L1,
are solved. First the problem for L2 is solved resulting in the L2 flows and link
capacities. Each demand d is allocated to a single shortest path (with respect to
the costs calculated in Phase 1) in L2. Capacities of the L2 links are then used as
demand volumes for L1, and the problem for L1 is solved. As a result, capacities
of L1 links, as well as L1 flows are found. For each L2 link e, its flows in L1 are
split to ne shortest paths, with respect to the lengths calculated in Phase 1.

After Phase 2, the updated costs of links and lengths of paths are recalculated
(in Phase 1), and so the algorithm proceeds, until a satisfactory solution is found.
The algorithm is described formally in the next section.

Note that in the algorithm below we assume that the logarithmic function
has been linearized using a piece-wise linear approximation, and thus the objective
function for problems PF-PD and PF-HS has been substituted by R =

∑
d wdfd.

8.8.1 Approximate iterative algorithm

Step 1: Calculate initial costs ζg, g ∈ G and ςe, e ∈ E as described in Section
8.8.3.
Step 2: For each demand d find one path, Pd, shortest with respect to the link
costs ςe. (Each such path is defined as Pd = {e : δed = 1}, so its length is
|Pd| =

∑
e δedςe.) The path index, p, is omitted in the variables and constants

of the following formulation, because only one path, Pd, is used for each demand
d. Solve the following design problem for L2.

max R =
∑

d

wdfd (8.72)

s.t.: hd ≤ xd ≤ Hd , ∀d ∈ D (8.73)∑
d

δedxd ≤ Mye , ∀e ∈ E (8.74)
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∑
e

κeye ≤ B , (8.75)

fd ≤ aixd + bi , ∀i ∈ I ,∀d ∈ D. (8.76)

After solving the above MIP problem (where ye are integers) the current loads of
the L2 links are given by:

ŷe =
∑

d

δedxd , e = 1, 2, . . . , E, (8.77)

where ŷe are non-negative continuous variables. The link loads ŷe will be used to
update the costs of links in Step 4. Also, let R∗ be the optimal value of (8.72).

Step 3: For each link e let Ke be the set of indices k of ne shortest paths in L1
with respect to the link costs ζg. Solve the following design problem for L1, real-
izing the given L2 link capacities (ye) by flows zek in L1.

min
∑

g

ξgug (8.78)

s.t.:
∑
k∈Ke

zek = ye , ∀e ∈ E (8.79)

zek ≤ dye/nee , ∀e ∈ E ,∀k ∈ Ke (8.80)∑
e

∑
k∈Ke

γgekzek ≤ Nug , ∀g ∈ G. (8.81)

After solving the above problem, the current loads of the L1 links are given by:

ûg =
∑

e

∑
k∈Ke

γgekzek , g = 1, 2, . . . , G, (8.82)

where ûg are non-negative continuous variables. The link loads ûg will be used
to update the costs of links in Step 4 of the algorithm.

Step 4: Store the current solution. Update the costs as described in Section 8.8.4.
If the resulting cost vector ζ = (ζ1, ζ2, . . . , ζG) is the same as the cost vector
used in one of the previous iterations (or if the iteration limit is exceeded) stop
the computations. Select a feasible solution with the highest value of R∗ (a highest
value of T ∗ for problem TM-HS, and a lowest value of C∗ for problem CM-HS).
Else goto Step 2.
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8.8.2 Remarks

When solving the MIP problem in Step 2 it is assumed that budget B is suf-
ficiently large, so that the problem is feasible, irrespectively of which set of the
shortest paths is chosen to realize the demands. Note, that if the problem is re-
laxed (i.e., constraint (8.74) for each link e is replaced by

∑
d δedxd ≤ ye and ye

is made continuous), constraints (8.73) and (8.76) are removed, and the original
objective function (8.42) is used, then there exists an explicit solution for the re-
sulting problem (see Chapter 8 in [120]):

x∗d =
Bwd∑
d wd|Pd|

. (8.83)

8.8.3 Defining initial costs

In Step 1 of the algorithm the initial costs of links and lengths of the shortest
paths in both layers are calculated as follows.

Let us define the cost of installing one capacity unit in a link of L1 as:

ζg = ξg/N , g = 1, 2, ..., G. (8.84)

For each link e find a set of ne shortest paths in L1 with respect to the link costs
ζg. Let Ke be a set of indices ks of these paths. Then the length of (a cost of
installing one capacity unit on) path k is defined as:

µek =
∑

g

γgekζg , e = 1, 2, ..., E , k ∈ Ke, (8.85)

and the average cost of installing one capacity unit on a shortest path in L1 for
realizing capacity of L2 link e is defined as:

κe = (
∑
k∈Ke

µeq)/ne , e = 1, 2, ..., E. (8.86)

Then the cost of installing one capacity unit on L2 link e is:

ςe = κe/M , e = 1, 2, ..., E. (8.87)

The presented algorithm is based on allocation of flows in the network on the
shortest paths, and therefore requires finding one shortest path (one shortest pair
of disjoint paths for problems PF-HS, TM-HS and CM-HS) in L2 for realizing
each demand d , as well as ne shortest paths (ne = 1 for problems PF-HS, TM-
HS and CM-HS) in L1 for flows realizing capacities of links e. There are two
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approaches of finding the shortest paths needed for the calculations. First, one
can search for the shortest paths only in the predefined lists of candidate paths.
Second, a global search for the paths (using a shortest-path algorithm) can be
performed in the graph of the corresponding layer. In both cases, the ζg and ςe
costs are used for the calculations.

8.8.4 Updating the costs

After each iteration of the algorithm, the costs have to be updated. The goal
is to have as little modules installed on the links and as high links utilization as
possible, since this leads to the smallest overall network cost. One way to achieve
this is to take into account the utilization of the installed capacity modules on the
links, when calculating capacity unit costs. If the installed modules on a link are
under-utilized the capacity unit cost on this link will be increased. This objective
can be realized by the adjusted cost calculations which are performed as follows.
The cost of installing one capacity unit on L1 link g is calculated as:

ζg = ξgug/ûg , g = 1, 2, ..., G, (8.88)

and the cost of installing one capacity unit on L2 link e is:

ςe = κeye/ŷe , e = 1, 2, ..., E, (8.89)

where κe is calculated as in (8.86). The remaining required entities are calcu-
lated as in Section 8.8.3, using costs ζg and ςe calculated from (8.88) and (8.89),
respectively.

8.9 Iterative method for solving problem PF-HS

In this section we will discuss how to resolve Problem PF-HS presented in Section
8.4 using the iterative method.

Analogously to problem PF-PD, the resolution method for problem PF-HS
consists in iterative executing of its two phases (see Figure 8.1) until a satisfactory
solution is found.

In Phase 1, for each L2 link e the length (cost) of its shortest path in L1 is
calculated. These costs are used to find capacity unit costs of the L2 links. Based
on these L2 link costs, a shortest pair of failure-disjoint paths in L2 realizing each
demand d is found and its length is calculated.
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In Phase 2 two consecutive separate optimization problems, for L2 and L1,
are solved. First, the problem for L2 is solved resulting in the L2 flows and link ca-
pacities. Each demand d is allocated to one of the shortest (primary, backup) path
pairs (with respect to the lengths calculated in Phase 1) in L2. Resulting capacities
of the L2 links are then used as demand volumes for L1, and the problem for L1
is solved. As a result, capacities of the L1 links, as well as the L1 flows are found.
There are no restrictions imposed on how flows in L1 shall be allocated. Thus,
flow bifurcation in L1 is allowed in solving the modular dimensioning problem
for L1.

After Phase 2 the updated costs of links and lengths of paths are recalculated
(in Phase 1), and so the algorithm proceeds, until a satisfactory solution is found.
Initial costs and updated costs for this problem are calculated in the same way
as for problem PF-PD (see Sections 8.8.3—8.8.4), except that now a number of
diverse paths in the lower layer ne is set to 1. The algorithm is described formally
in the following section.

8.9.1 Approximate iterative algorithm

The iterative algorithm for problem PF-HS is very similar to that of Problem PF-
PD, presented in Section 8.8.1. Below only the differences with respect to the
previous algorithm are presented. Steps 1 and 4 are exactly the same for both
algorithms.

Step 2: For each demand d find one of the shortest pairs of failure-disjoint paths,
(Pdp,Rdp), with respect to the link costs ςe. (Each such path pair is defined as
(Pdp,Rdp) = {e : θedp = 1}, so its length is |(Pdp,Rdp)| =

∑
e θedpςe.) The

path pair index p is omitted in the variables and constants in the formulation,
because only one (shortest) predefined pair of paths, (Pd,Rd), is used for each
demand d. Solve the following design problem for L2:

obj (8.72)

s.t.: (8.73), (8.75)-(8.76) and∑
d

θedxd ≤ Mye , ∀e ∈ E , (8.90)

where θed is defined only for the selected shortest pair of failure-disjoint paths
(Pd,Rd). Let R∗ be the optimal value of (8.72). Calculate L2 link loads from:
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ŷe =
∑

d

θedxd , e = 1, 2, . . . , E. (8.91)

Step 3: Solve the following design problem for L1, realizing the given L2 link
capacities (ye) by flows zek in L1.

obj (8.78)

s.t.: (8.79) and (8.81). (8.92)

Calculate the current loads of the L1 links from (8.82).

8.10 Iterative method for solving problem TM-HS

In this section we will discuss how to resolve Problem TM-HS presented in Sec-
tion 8.5 using the iterative method. The method and algorithm for solving the
problem TM-HS are almost identical to those for the problem PF-HS. The only
difference is that in the optimization problem solved in Step 2 of the algorithm
(see Section 8.9.1) the constraint (8.76) is dropped and the objective function
(8.72) is replaced by the following:

maximize T =
∑

d

xd (8.93)

Thus the problem to be solved is defined by (8.93), (8.73), (8.75) and (8.90).
Also, let T ∗ be the optimal value of (8.93).

8.11 Iterative method for solving problem CM-HS

In this section we will discuss how to resolve Problem CM-HS presented in Sec-
tion 8.6 using the iterative method. Like in the case of TM-HS, the method and
algorithm for solving the problem CM-HS are similar to those for the problem
PF-HS. Only the optimization problem solved in Step 2 of the algorithm (see
Section 8.9.1) has to be replaced by the following:
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min C =
∑

e

ςeye (8.94)

s.t.:
∑

d

θedhd ≤ Mye , ∀e ∈ E , (8.95)

where θed is defined only for the selected shortest pair of failure-disjoint paths
(Pd,Rd). Also, let C∗ be the optimal value of (8.94).

8.12 Numerical examples

The proposed iterative algorithms for the considered four problems were tested
on a set of randomly generated network topologies. Network sizes were ranging
from 12 to 60 nodes in the lower (DWDM) layer. The upper (IP/MPLS) layer
usually contained slightly less nodes. The selected test networks are summarized
in Table 8.1. The aim of the numerical experiments was to examine the time
efficiency and solution quality (depending on the problem in question: it was
maximum of revenue R∗ or throughput T ∗, or minimum value of cost C∗) of
the iterative algorithms, as compared to the direct algorithms (applications of the
CPLEX MIP solver to the problem formulations in their original form). The
original MIP problems were also solved directly with relaxed MIP optimality by
10% (entry RO in the tables), and also the (partial) linear relaxations of the MIP
problems were solved, where the variables zek, ye and ug were assumed to be
continuous (entry LR in the tables). The results in the LR rows are the upper
bounds for problems PF-PD, PF-HS and TM-HS, and lower bounds for problem
CM-HS. For the experiments the values M = 64, and N = 128 were used.

All the programs were implemented in the mathematical modeling language
AMPL ver. 20021031 [119], and CPLEX 9 was used as a solver. PF-PD and
PF-HS problems were solved on a PC with Pentium-IV 3 GHz CPU and 2 GB
of RAM, running the Windows XP Pro operating system. TM-HS and CM-HS
problems were solved on a PC with Pentium-III 866 MHz CPU and 256 MB
RAM, running the Fedora Core 3 operating system. Table 8.2 shows the com-
putational results for both (iterative and direct) resolution methods as applied
to problem PF-PD. Table 8.3 shows corresponding results for problem PF-HS.
Tables 8.4 and 8.5 shows the results for the problems TM-HS and CM-HS cor-
respondingly. The solution time indicated in the tables is a wall-clock time.

As it can be seen from Tables 8.2-8.5, the smaller is the network (simpler
NDP), the closer are the solution times of the iterative and direct algorithms.
And vice versa, the larger is the network (more complicated NDP), the bigger is
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the difference between the solution times of the iterative and direct algorithms.
For the considered network examples the iterative algorithms (for all the prob-
lems) had much better time efficiency, except for two cases: problems PF-PD and
CM-HS for network N12 were solved slightly faster using the direct approach.
Although the direct algorithms produced marginally better solutions, the gap be-
tween the heuristic and the exact solutions was very small. For problems PF-PD
and PF-HS in all the cases the gap between the optimal revenues R∗ obtained by
the direct and iterative algorithms was below 0, 01%. For problem TM-HS the
optimal throughput T ∗ for both approaches was the same in all the cases. More
variation in results and bigger gaps were noticed for problem CM-HS. There the
biggest gap of 8, 66% between the solutions was encountered for problem N41.

For network N60 and problems TM-HS and CM-HS, computations using
direct approach, relaxed optimality, or linear relaxation were aborted after 3 hours
if they did not reach the solution. Therefore almost no results are available for
these cases in the Tables 8.4 and 8.5. Still, this long computation time of 3 hours
serves for time efficiency comparisons of the two solution approaches.

Comparing the solution for the iterative algorithm and the RO case, one
can see that for problems PF-PD, PF-HS and TM-HS the iterative algorithm
produced the same or better result (in terms of revenue or throughput) and in all
but one cases (PF-PD for N12)—also in a shorter time. This also confirms that
the solution of the iterative algorithm in the considered examples is within 10%
from optimality. For problem CM-HS, the iterative algorithm produced the same
or better results (in terms of cost) than those for RO for networks N30 and N60,
while slightly worse results for networks N12 and N41. However, the solution
times of the iterative algorithm for all the cases, except one (for N12), were even
for this problem shorter than those for RO.

Comparing the results of the iterative algorithm and for the LR case, the
iterative algorithm in most of the cases produced the results faster than LR. The
results for LR represent a lower bound for the cost in the minimization problems,
and an upper bound for revenue/throughput in the maximization problems. In
all the cases, the results achieved by the iterative algorithm are within 10% of the
respective bound, as can be seen from the corresponding LR entries in the tables.

Finally, we note that in some cases (e.g., PF-PD for N60, PF-HS for N41 and
CM-HS for N30), the results (cost, revenue, or throughput) of the iterative algo-
rithm are marginally better than those for the direct algorithm due to numerical
inaccuracies.
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8.12.1 Convergence Issues

For an example, we now examine convergence issues of the iterative algorithm
for problem PF-PD. Figures 8.2 and 8.3 illustrate how the iterative algorithm for
problem PF-PD converges when solving for N41. Figure 8.2 shows evolution of
the L2 objective function (8.72) value (referred to as the L2 objective), as well
as an optimal value of R∗ obtained by the direct solution method (referred to as
the optimal value). Figure 8.3, in turn, depicts the evolution of the L1 objective
function (8.78) value, as well as the value of budget B.

In the first step of the algorithm (see Section 8.8.1), the initial costs of links
and lengths of the shortest paths are calculated. Then the L2 problem is solved in
Step 2 producing the solution value depicted in Figure 8.2 for iteration counter
equal to 1. The resulting modular link capacities of L2 are then used as demand
volumes for the L1 problem solved in Step 3. The resulting value of the L1
objective function (8.78) appears to be above the available budget B, as can be
seen in Figure 8.3 for iteration 1. Although both problems, for L2 and L1, are
formally feasible, the overall solution is infeasible, because the cost (8.78) exceeds
the assumed budget B. It is due to the fact that the costs κe are in general
inconsistent with the costs ξg implying that the cost of the L2 links,

∑
e κeye, is

not equal to cost (8.78). This is the reason why the cost (8.78) can exceed the
assumed budget B, making the overall solution infeasible. Hence, although the
objective function value of L2 is the highest among all the iterations, it is not the
final solution because it is achieved on expense of exceeding the budget constraint
for the L1 link capacities. In Step 4 of the algorithm the costs are updated to take

# paths

Network layer # nodes # links per # demands

demand

N12 L2 12 22 6-14 66

L1 12 18 2-3 –

N30 L2 25 56 4-5 300

L1 30 68 4-5 –

N41 L2 21 37 6 209

L1 41 72 3 –

N60 L2 50 125 3 1225

L1 60 142 3 –

Table 8.1: Networks used for experiments.
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Network N12 N30 N41 N60

Time Iterative 0.51 0.89 1.35 2.91

Direct 0.45 33.92 104.71 220.39

RO 0.44 30.75 22.53 220.61

LR 0.38 4.23 2.1 22.49

R∗ Iterative 1188194 5400880 3129648 22053589

Direct 1188194 5400880 3129883 22053576

RO 1188194 5356737 3121111 22053576

LR 1188194 5400880 3130178 22053591

Table 8.2: Computational results for problem PF-PD.

Network N12 N30 N41 N60

Time Iterative 0.84 7.94 2.02 42.93

Direct 4.48 20.13 30.80 2458.75

RO 4.46 20.06 30.79 2016.08

LR 1.79 5.28 4.10 26.21

R∗ Iterative 1188194 4989079 3780614 21815445

Direct 1188194 4989249 3780299 21816236

RO 1188194 4989249 3780299 21708169

LR 1188194 4989428 3780616 21817057

Table 8.3: Computational results for problem PF-HS.

Network N12 N30 N41 N60

Time Iterative 2.66 6.70 3.97 85, 09

Direct 14 1414.50 8042.60 > 10800

RO 14 1015.54 7379.85 > 10800

LR 7.37 18.67 149.13 > 10800

T ∗ Iterative 6.6e + 07 3e + 08 2.1e + 08 1.2e + 09

Direct 6.6e + 07 3e + 08 2.1e + 08 −
RO 6.6e + 07 2.99e + 08 2.09e + 08 −
LR 6.6e + 07 3e + 08 2.1e + 08 −

Table 8.4: Computational results for problem TM-HS.

into account the installed link capacities and the actual link loads, and iteration
2 of the algorithm starts. Problems for L2 and L1 are solved again in Step 2 and
Step 3, respectively, and the costs are updated again. In this way the algorithm
proceeds until in iteration 4 the resulting L2 link capacities can be implemented
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Network N12 N30 N41 N60

Time Iterative 2, 9 6, 5 6, 2 53

Direct 2, 3 91 9, 3 > 10800

RO 1.4 55.9 7.1 > 10800

LR 1.4 12.7 7.1 68.17

C∗ Iterative 58363 1040293 1743379 1865448

Direct 54784 1041923 1604460 −
RO 54784 1055191 1604460 −
LR 54767 1041860 1604268 1865379

Table 8.5: Computational results for problem CM-HS.

with a cost slightly lower than the assumed budget B (see values for iteration 4
in Figure 8.3). The costs are recalculated and it appears that the resulting cost
vector ζ is the same as in the previous iteration (the cost vector which resulted
in the solution of iteration 4). So the algorithm would normally terminate here.
Although, for illustrative purposes, one more iteration was performed. Thus the
problems for the two layers are solved once more in iteration 5, producing the
same solution as in the previous iteration, since the cost vector ζ is the same as
in iteration 4. Recalculating costs again results in the same cost vector ζ as in the
previous iteration so the algorithm terminates.

The algorithms for the other problems converge to the final solution in a
similar way.

The presented numerical results demonstrate that the proposed iterative algo-
rithms converge quickly to near-optimal solutions. So far this is just an experi-
mental observation and we cannot claim it is a general property. To the best of our
knowledge no convergence results are known for this type of iterative procedures
applied to similar problems (in [120], [121], [122] such results are not reported).
Hence, since there is no theoretical evidence on the convergence, the presented
approach should be regarded as a promising heuristic.

One observation that supports the idea of the proposed layer-separation ap-
proach (based on adjusting layer-specific link marginal cost coefficients) is that in
most cases it works fine for linear relaxations of two-layer design problems (and
also for more layers), i.e., for analogous problems as the four problems considered
in this chapter, but with continuous link capacities and bifurcated continuous
path flows. In Section 12.1.4 of [120] it is demonstrated how to find an optimal
solution for a simple linear two-layer design problem in just one iteration. This
is done in two steps. First, we use marginal costs ξg, g = 1, 2, . . . , G to define
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Figure 8.2: Evolution of L2 objective value for N41 in problem PF-PD.
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Figure 8.3: Evolution of L1 objective value for N41 in problem PF-PD.
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marginal cost coefficients ςe, e = 1, 2, . . . , E for links of the upper layer (as the
lengths of the shortest paths in the lower layer computed with respect to ξg),
and use them to compute the shortest paths in the upper layer. Second, we allo-
cate demands to the shortest paths in the upper layer, compute the resulting link
loads ye, and finally realize the loads ye on the shortest paths in the lower layer.
This procedure can be almost directly applied to the linear relaxation of problem
TM-HS, and, after some modifications, to linear relaxations of the remaining
problems.

The above procedure does not require iterations and is called shortest path
allocation. In fact, as discussed in Section 12.4.1 of [120], the shortest path allo-
cation rule does not apply in the general case of a linear design problem, and in
general the optimal dual variables corresponding to constraints (8.61) and (8.59)
should be used for ζg and ςe, respectively. The values of the optimal dual vari-
ables can be found through sub-gradient maximization of the decomposable dual
problem. In fact, even though we are able to find the optimal dual variables, they
may not reveal the exact primal optimal solution (when the shortest paths are not
unique). Still, the shortest path allocation rule applied to optimal dual variables
gives in many cases very good heuristic solutions. In our iterative approach we are
in fact following such an approach for non-linear (MIP) problems, hoping that
the costs ζg and ςe play a similar role as the optimal dual variables in the linear
case.

8.13 Conclusions

In this chapter we considered four design problems for (two-layer) IP/MPLS over
DWDM networks with meshed topology and developed a general framework
for their heuristic resolution. The presented design problems differ in objective
functions and assumed recovery mechanism. The problems for proportionally fair
bandwidth sharing, total network throughput maximization, and total network
cost minimization were studied. The considered recovery mechanisms were: 1)
protection only in the DWDM layer, where a simple protection mechanism—
path diversity is used; 2) protection only in the IP/MPLS layer by hot-standby
path protection.

All the design problems are difficult to resolve. Therefore we propose a generic
heuristic iterative design method and derive the resulting algorithms for solving
the particular problems. The method is based on the idea of decomposing the
multi-layer network problem into subproblems for each of the layers, and resolv-
ing in an iterative manner the relevant optimization subproblems for each layer
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separately. The efficiency and solution quality of the algorithms is illustrated with
numerical examples. The examples reveal that the heuristic algorithms provide
very good near-optimum solutions and exhibit execution times that are drasti-
cally shorter than execution times of direct exact algorithms, especially for large
networks.

Good performance (convergence to near-optimum solutions in short execu-
tion time) of the heuristic iterative algorithms for solving the four different multi-
layer network design problems suggests that the proposed generic iterative method
can be applied for efficient resolution of other two-layer network design problems,
as well as extended to the problems with more layers. Still, so far we are not able to
give general comments on the convergence of the proposed iterative approach—
this issue requires further research along the lines of the approximation theory.





9

CHAPTER 9

Integrated recovery, routing, and load balancing strategy

9.1 Introduction

A number of factors influence network performance and efficiency of its resource
utilization. Such main factors are recovery mechanism, routing and load balanc-
ing strategy. By using a capacity-efficient recovery mechanism some of the capac-
ity, previously dedicated for protection, can be saved and used for transporting the
revenue generating traffic. On the other hand, an efficient routing strategy can
ensure a good trade-off between a well balanced load and the consumed capacity.
Load balancing, among other things, decreases probability of rejection for future
requests due to lack of resources in some part of the network. A capacity-efficient
recovery mechanism integrated with a routing strategy and load balancing on net-
work links is developed in this chapter.

We focus on IP/MPLS network. Traffic demands are assumed to have prior-
ity levels. High priority traffic can preempt low priority traffic. We assume that
the high priority (HP) label switched paths are long-lived, e.g., they are used for
virtual private networks (VPNs) or as virtual leased lines and thus are not recon-
figured often, and also that they constitute a significant amount of network traffic.
Bandwidth reserved for backup LSPs of HP demands can be used by low priority
LSPs in the normal state. Since the high priority LSPs require 100% survivability,
it is important how the network resources are used for their protection because
this implies how many low priority LSPs are discarded from the network when
backup paths for HP demands are activated. The demands in the network are
divided into two categories–high priority demands (with priority= 0) and low
priority demands with priorities ranging from 1 to 4; thus, there are 5 priority
classes in total. An LSP of demand with a higher priority level (the lower priority
number) can preempt LSPs of demands with the lower priority levels. We assume
that only HP demands require 100% survivability and other demands can be
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recovered only if resources are available, in the order of priority. Based on this dif-
ferentiation of the demands we propose a network protection and routing strategy,
which is as follows. Failure-dependent backup path protection mechanism with
sharing of backup capacity is used for assuring availability of the HP demands.
The selection of primary and failure-dependent backup paths for HP connections
is performed by an off-line network design problem defined as a mixed integer
program. It is valid to assume that the set of HP demands is known at this de-
sign stage, since such a global optimization can be performed not only during
the greenfield network design stage (using estimated demand volumes), but also
periodically (however, with a long period, e.g., half a year) during the network
operation. For routing the HP demands we propose a strategy combining short-
est path routing and load balancing on the links. We propose a load balancing
function using proportional fairness rule applied to residual bandwidths. The
low priority connections are routed using on-line constrained shortest path first
(CSPF) algorithm.

The proposed protection and routing strategy has been tested both by nu-
merical experiments and simulations. The results show that for the considered
network examples less LSPs are disrupted on the average due to failures using the
proposed protection mechanism and routing strategy, as compared with the other
recovery strategies. Thus, with the given link capacities the network is able to
retain considerably more LSPs in the case of failures.

The rest of the chapter is organized as follows. First, the related work is
reviewed and an IP/MPLS network model is presented. Then the mathematical
problem formulation for finding nominal and backup paths for HP demands is
presented. Next, the proposed routing and load balancing criterion is discussed,
leading to objective function for the presented network design problem. Finally,
some numerical experiments are presented, followed by final conclusions.

9.2 Related work

There are a number of novel recovery mechanisms and routing strategies proposed
in the recent literature, conserving network resources used for assuring network
resilience. Most of such recovery mechanisms assume a kind of backup capacity
multiplexing. Several of the proposed protection mechanisms are reviewed below.

In [124] a demand-wise shared protection (DSP) is presented. It combines
advantages of dedicated and shared path protection. In DSP, a capacity is reserved
for each demand and is not shared with other demands, but only among the
paths of the same demand. The paths of a demand are not explicitly divided
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into nominal (working) and backup, and in general the whole demand volume is
assumed to be split among several working paths.

In [125] and [126] two schemes, called original quasi-path restoration (OQPR)
and improved quasi path restoration (IQPR), are presented. In QPR schemes, a
failing path is divided into three parts: a subpath from source node to a critical
node on the same side of the failing link, the failing link, and the subpath from
the critical node on the other side of the failing link to the destination node. Then
restoration implies rerouting only one of the subpaths, while the other subpath is
left intact. Traffic affected by the failure is rerouted on single/multiple paths using
spare capacity in the network.

In [127] a problem of lightpath routing and protection in wavelength division
multiplexing networks with dynamic traffic demands is considered. The authors
propose a new multiplexing technique called primary-backup multiplexing and
shows that it increases network resource utilization and improves the network
blocking performance. The technique allows to share one wavelength channel
among one primary and one or more backup lightpaths.

In [128] an L + 1 fault tolerance routing strategy is studied. The main idea
is to transform the original network with L links into a collection of L + 1 sub-
networks, where one of the links in the original (base) network is removed, this
way modeling each single-link failure scenario. A connection is accepted to the
network only if it can be routed in all of the subgraphs. When a failure occurs
the connectivity is restored by putting the network to the state of the particular
(failure-dependent) subgraph. The major drawback is that this strategy can po-
tentially require a full network reconfiguration upon a single link failure (a.k.a.,
unrestricted reconfiguration).

In [129] a dynamic failure-dependent path protection scheme is developed.
The study assumes a WDM network with heterogeneous grooming architectures.
A method is developed to assign primary and (failure-dependent) backup paths
to requests, in a way which makes it possible to survive a single shared risk link
group (SRLG) failure at any given time. The routing strategy used is Available
Shortest Path (ASP), where Dijkstra’s algorithm is used to find shortest paths, first
checking the resource availability on them. In the study a restricted reconfigura-
tion is assumed, i.e., only a failing primary connection is reassigned to its backup
path, while unaffected connections remain in place.

In [130] algorithms for dynamic routing of bandwidth-guaranteed connec-
tions are studied. Shared protection and possibility to protect each working path
by one or multiple protection paths are assumed. The proposed algorithms are
presented in the context of the protection rearrangement framework, allowing to
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adaptively reroute allocated protection paths before failure, when traffic condi-
tions change. This results in a more efficient network resource utilization.

9.2.1 This work

The proposed protection and routing strategy is related to the studies reviewed
above in several ways. First of all, the chosen failure-dependent backup path pro-
tection mechanism with restricted reconfiguration corresponds to that presented
in [129], except that in our case the proposed method is for off-line computation
and for IP/MPLS network, while the one in [129] is on-line and is dedicated to
WDM network. Also, the routing strategy we propose is different from ASP in
[129] and takes load balancing on links into account. The off-line network design
with failure-dependent routing also resembles the L+1 approach in [128], except
that in our case routing in all the failure states is designed simultaneously, and the
reconfiguration is restricted.

Secondly, the primary and backup paths used in our protection and routing
strategy are failure-disjoint. This means that the primary and backup paths for a
given demand do not share the failing element in the given failure scenario. The
non-failing resources on a primary path may be reused by the backup paths. Also,
the unused backup resources can be used by other demands. In this way, our
work relates to [124], except that in our case sharing of resources is also allowed
between demands. Also, there is a similarity to QPR schemes [125; 126; 131].
However, differently from QPR, the proposed strategy does not restrict how the
non-failing resources of the primary path are reused by its backup path. There are
also similarities with the primary-backup multiplexing method in [127].

Also, the method we propose differs from all the reviewed studies in that we
assume traffic requests with different priorities.

9.3 Protection of HP demands with single backup paths

The following section presents an NDP implying demand protection by single
backup paths (SBPs). For the problem the candidate path list contains a num-
ber of completely disjoint paths for each demand. Informally the problem can
be stated as follows: given a set of user demands, link capacities and a candidate
path lists, find nominal and single backup paths for each demand, so that some
objective function is optimized. The problem assumes single path routing, thus
flows are not bifurcated.
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Problem SB-LSP: an offline design problem for IP/MPLS network with single-
path routing and single backup path (LSP) protection. A set of feasible solutions
for the problem is defined by the following constraints:
constraints∑

p

vdpl = 1 , ∀d ∈ D, ∀l ∈ {0, 1} (9.1)∑
l

vdpl ≤ 1 , ∀d ∈ D ,∀p ∈ Pd (9.2)

xdpl = vdplhd , ∀d ∈ D ,∀p ∈ Pd ,∀l ∈ {0, 1} (9.3)∑
d

∑
p

δedpxdpk = yel , ∀e ∈ E ,∀l ∈ {0, 1} (9.4)∑
l

yel ≤ ce , ∀e ∈ E . (9.5)

In the formulation above l ∈ {0, 1}, where l = 0 indicates a nominal path and
l = 1 indicates a backup path. A binary variables vdpk is equal to 1 if path p

of demand d is used as a nominal path (for l = 0)/protection path (for l = 1),
and 0 otherwise. Variables xdpl are auxiliary and can be eliminated from the
formulation by substituting the right-hand side of (9.3) into (9.4). Each variable
xdpl denotes a bandwidth assigned to flow carried by path p of demand d. If
xdpl > 0 for l = 0 then the bandwidth assigned to path p is used to carry the
flow of demand d in the nominal state, where if xdpl > 0 for l = 1 then the
bandwidth is used in failure states, i.e., when the nominal path for d fails and the
protection path is activated. Variables yel denote load of each link e by nominal
paths (for l = 0) and protection paths (for l = 1).

Constraint (9.1) forces single path routing, i.e., assures that only a single path
for each demand d is used as the nominal path, and also that a single path is used
as the protection path. Constraint (9.2) prohibits using the same path p as the
nominal and as the protection path for demand d. Constraint (9.3) forces assign-
ing the whole demand volume hd to the chosen single nominal and protection
paths for each demand. The load on each link e is constituted by two parts–
flow on nominal and protection paths. For each of the two parts the load yel is
calculated as a sum of all flows traversing that link on the nominal, respectively–
protection, paths of all demands, as expressed by the left-hand side of (9.4). Then
the total load of each link e is the sum of the two parts, as given by the left-hand
side of constraint (9.5), which is forced not to exceed the link capacity ce.

There are alternative formulations for modeling the considered scenario (see,
e.g., [31]). The advantage of the formulation presented above, however, is that it
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allows to apply different routing criteria to nominal and backup paths. This will
be illustrated later in this chapter, when discussing the objective function for the
problem. Observe that solving problem SB-LSP without an objective function
results in paths assigned to demands that may not necessary be proper in some
desirable sense.

9.4 Protection of HP demands with failure-dependent
backup paths

The idea of failure-dependent backup paths is as follows. For a given list of pos-
sible failure scenarios affecting the nominal path, backup paths depending on
particular failures are pre-planned. When, during the network operation, a par-
ticular failure occurs, specific backup paths matching the failure are activated and
used to carry the flows until the nominal paths are repaired. The nominal and
backup paths are failure-disjoint. And non-failing resources of a given nominal
path can be reused by a backup path of a demand.

Example 9.1. Consider the network depicted in Figure 9.1. Assume that there is an
LSP established between nodes s and d, which uses the path P = {1, 4}. Then two
failure-dependent backup LSPs can be defined: R1 = {2, 3, 4} (to be used when link
e = 1 fails) and R4 = {1, 5, 6} (to be used when link e = 4 fails). This can be
compared to a case when a single backup path R1,4 = {2, 3, 5, 6} is used in both
failure situations. s d

1=e 4=e

2
=e 3=e

5=e 6
=e

Figure 9.1: Illustration of failure-dependent LSPs.

In general, failure-dependent backup paths (FDBPs) allow for a more effec-
tive way of using the network resources than using single (failure-independent)
backup paths (SBPs) in all failure situations. This is because a space of feasible
solutions for NDP with SBP protection is in general more constrained than the
solution space for NDP with FDBP protection, and an optimal solution to the
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SBP problem is also a feasible solution to the FDBP problem. The efficiency of
failure-dependent recovery mechanisms was illustrated in e.g., [128; 129].

The following mathematical problem is used to select primary and backup
paths for HP demands for all predefined failure situations. Paths for each demand
are chosen from predefined candidate path lists. A feasible solution to this prob-
lem guarantees 100% survivability for the HP demands.

9.4.1 Mathematical problem formulation

The following mathematical problem is used to select primary and backup paths
for HP demands for all predefined failure situations. The paths for each demand
are chosen from predefined candidate path lists. A feasible solution to this prob-
lem guarantees 100% survivability for the HP demands.
Problem FD-LSP: an offline design problem for IP/MPLS network with single-
path routing, failure-dependent backup paths (LSPs) and restricted reconfigura-
tion of flows (unaffected flows are not rerouted). A set of feasible solutions for the
problem is defined by the following constraints:
constraints∑

p

vdps = 1 , ∀d ∈ D ,∀s ∈ S (9.6)

xdps = vdpshd , ∀d ∈ D ,∀p ∈ Pd ,∀s ∈ S (9.7)

xdps ≥ θdpsxdp0 , ∀d ∈ D ,∀p ∈ Pd ,∀s ∈ S (9.8)∑
d

∑
p

δedpxdps ≤ yes , ∀e ∈ E ,∀s ∈ S (9.9)

yes ≤ αesce , ∀e ∈ E ,∀s ∈ S (9.10)

xdps ∈ R+, vdps ∈ B , ∀d ∈ D ,∀p ∈ Pd ,∀s ∈ S (9.11)

yes ∈ R+ , ∀e ∈ E ,∀s ∈ S. (9.12)

Recall that θdps ∈ {0, 1} is a binary availability coefficient equal to 1 if path
p of demand d is available in situation s, and 0 otherwise. It is calculated as
follows: θdps = min{αes : δedp = 1}, where αes ∈ {0, 1} are link availability
coefficients. Constraint (9.6) assures that only one single path p for each demand
d is used in each situation s, while constraint (9.7) assures that the whole demand
volume hd is assigned to the chosen path p. For each demand d constraint (9.8)
forces using the normal path p (used in normal situation s = 0) in all situations
in which this path is not affected by a failure. Due to this, flows unaffected
by failures are not rerouted. Path availability coefficients θdps are used in (9.8) to
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indicate if a given path p is affected by a failure of a link e, and are calculated from
link availability coefficients αes as shown above. Constraints (9.9) and (9.10)
are essentially one constraint; it is split into two constraints for the clarity of
presentation when referring to link loads given by the left hand side of constraint
(9.9). Thus, the load of each link e in situation s is given by a sum of all flows
traversing that link in the given situation. Then constraint (9.10) assures that the
link loads do not exceed available link capacities in each situation expressed as
αesce. Note that in the problem formulation above variables xdps are auxiliary
and are included in the model only for clarity of presentation.

FD-LSP is a NP-hard (mixed integer programming problem–MIP), since a
simpler problem of single path allocation for only normal state is already NP-
hard [31]. General purpose MIP solvers such as CPLEX or XPRESS-MP can be
used for resolving the problem. Observe that solving problem FD-LSP without
an objective function results in paths assigned to demands that may not necessary
be proper in some desirable sense.

9.5 The classical routing strategy for HP demands

By choosing an appropriate objective function for problems SB-LSP and FD-
LSP, different routing strategies can be implied. The “classical” routing strategy
is shortest path (minimum hop) routing of both nominal and backup path. This
strategy is imposed by using the following objective function with problem SB-
LSP:

min
∑

l

∑
e

∑
d

∑
p

ξeδedpvdpl. (9.13)

Similarly, the following objective function, when used with problem FD-LSP,
results in shortest nominal and failure-dependent backup paths for each demand:

min
∑

s

∑
e

∑
d

∑
p

ξeδedpvdps. (9.14)

Objective functions (9.13) and (9.14) imply minimization of the lengths of
the paths for all demands (for problem FD-LSP–also in all failure situations),
when link costs ξe ≡ 1 (and thus can be interpreted as a hop-count). If the
costs are different than 1, the objective functions imply using the cheapest paths
instead.

Furtheron problem SB-LSP with the objective (9.13) will be referred to as SB-
LSP-MINHOP, and problem FD-LSP with the objective (9.14) will be referred
to as FD-LSP-MINHOP.
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9.6 The novel routing strategy for HP demands

The strategy proposed in this section combines load balancing on the links with
shortest paths, as opposed to the widely used shortest path (minimum hop) rout-
ing alone. In this discussion by shortest path (SP) routing we mean that an arbi-
trary chosen shortest path (if there are few) is used for demand flows.

It is common for both the proposed strategy and the “classical” minimum
hop routing strategy that shortest path routing is used for backup LSPs of HP
demands. This decision stems from the natural reasoning that an HP demand
with the shorter backup path will preempt less low priority LSPs than the demand
with the longer backup path. Therefore minimizing the length of the backup
path(-s) possibly decreases the number of disrupted low priority LSPs.

For routing nominal paths a criterion implying load balancing on the links
is used in the proposed strategy, as opposed to the shortest path routing used in
the classical strategy. The idea behind the load balancing is to distribute traffic
in a network in order to reduce the number of rejected future requests (blocking
probability) because of the insufficient available capacity on some links. This is
related to the principle of “minimum interference routing” [132]. What is also
important in the resilience context is that the load balancing mechanism reduces
the risk of several flows that traverse the same network segment between two given
endpoints being disrupted by the same failure. That is due to spreading the flows
on different paths, as opposed to a solution where all of them use the same shortest
(sub-)path through that network segment.

The proposed routing strategy has not been considered before (to the best of
our knowledge). As it was mentioned above, this strategy combines balancing of
the load on the links implied by nominal paths and minimization of the length
of the protection paths. First, we will discuss the two aspects of the proposed
strategy, namely—load balancing and shortest path routing—and then we will
present ways of combining them.

9.6.1 Load balancing on the links

Various objective functions can be used for problem FD-LSP in order to improve
load balancing on the links. Before presenting the load balancing criteria, let
us first define residual bandwidth (RB) on each link in the nominal situation as:
re0 = ce − ye0.
In the expression above re0 and ye0 have slightly different (problem-specific)
meaning, depending on whether problem SB-LSP or FD-LSP is considered. For
problem SB-LSP, these two entities are equivalent with rek and yek, respectively,
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where k = 0, whereas for problem FD-LSP they are equivalent with res and yes,
respectively, where s = 0.

It is important what criterion is chosen for distribution of load on the links.
There exist several possibilities, e.g., maximizing the total residual bandwidth on
the links (expressed as

∑
e re0), max-min fair allocation of the residual band-

widths to the links, etc. Here we discuss three of the possible criterion and illus-
trate their load balancing effect with the help of the following example.s d1
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Figure 9.2: A network segment.

Example 9.2. Consider a segment of a network as depicted in Figure 9.2, where e

is a link index, ce denotes link capacity and ȳe—link load. Assume that network is
already partially loaded and suppose that as a part of a process of provisioning a new
LSP in the network, a decision has to be taken by the load balancing mechanism,
whether that new LSP has to pass the network segment between nodes s and d on
path P1 = {1, 2, 3} or P2 = {4, 5, 6, 7}. Here {·} denotes the set of indices of the
links belonging to the path. Bandwidth to be reserved on the chosen path is hd = 10.
Consider three cases which will help illustrating the trade-offs between the path length
and load balancing that each of the considered objective functions (criteria) imply: 1)
capacities of all links are the same and equal to 100, i.e., ce = 100; loads of all links
are the same and equal to 10, i.e.,ȳe = 10; 2) ce = 100, for all e; ȳe = 11 for all
e ∈ P1 and ȳe = 10 for all e ∈ P2; 3) ce = 100, for all e; ȳe = 50 for all e ∈ P1

and ȳe = 10 for all e ∈ P2. Case illustrates what happens when a shorter or longer
path is chosen for carrying additional flow if both paths are equally loaded. Case 2
illustrates what happens when a shorter but marginally more loaded path is chosen or
a longer but less loaded path. Case 3 is provided for illustrating what happens when
a shorter but considerably more loaded path is chosen versus a longer but much less
loaded path.
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9.6.1.1 Max-min fair allocation of RBs

One possibility for balancing the loads is to use the max-min fairness principle.
When applied to a vector of residual bandwidths r0 = (re0 : e = 1, 2, . . . , E),
an MMF principle maximizes the minimum residual bandwidth available on all
links. After the minimum value of RB is found for all links, the RB is increased
further on the links on which this is possible, and the process iterates. It was
discussed in Section 4.3.2.1 that finding a MMF allocation is equivalent to find-
ing a lexicographically maximal vector among all feasible vectors sorted in non-
decreasing order. Let us define a vector of residual bandwidths r0 sorted in the
non-decreasing order as r̂0, and a set of all such feasible vectors by R̄. Then MMF
allocation of residual bandwidths results from solving the following problem:

lex max {r̂0 : r̂0 ∈ R̄} (9.15)

When solved, the problem provides a solution implying balanced load on the
links just for the nominal state. This is the first step of a general algorithm, where
the problem is similarly solved for every other state. Algorithms for resolving the
problem were discussed in Section 5.3.5.

Let us now examine the possible outcomes of using MMF for load balancing.
This we will do by revisiting Example 9.2 and the cases defined there. In the
optimal solution of the problem, path P1 will be used in Case 1, while P2 will
be used in the rest of cases. For the purpose of illustration, consider for example
Case 1. The additional demand will be routed on path P1, since the resulting
optimal RB vector r̂∗0 = (80, 80, 80, 90, 90, 90, 90) in this case is lexicographi-
cally greater than the resulting vector r̂0 = (80, 80, 80, 80, 90, 90, 90) in the case
where path P2 is used. Thus one may see that MMF criterion implies the most
fair solution (i.e., the best balanced load), but at the expense of excessive band-
width consumption. This is well illustrated by the result for Case 2, where the
marginal difference of path loadings results in using the longer path P2 and con-
suming 10 capacity units more as compared to the case when P1 is used. In cases
1 and 3 load balancing using the MMF criterion results in the desired outcome.

9.6.1.2 Maximization of the total residual bandwidth

Another criterion for load balancing is maximization of the total residual band-
width in the network (which is equivalent to minimization of the total load of
network links):

max
∑

e

re0. (9.16)
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Let us examine the load balancing effect of (9.16) when it is used with prob-
lem FD-LSP for the cases considered in the Example 9.2. In each case (9.16)
will attain its maximum when the additional flow is routed on the shortest path
P1. Thus this function is clearly another extreme case; namely, it implies routing
of flows on shortest paths, so that as little as possible bandwidth is consumed.
Thus, the function (9.16) does not take into account the load on a given link, as
compared to the load on other links. Therefore it may not really be called a load
balancing function. However, minimizing usage of network bandwidth is also a
very important factor, and therefore this function has been included to the dis-
cussion. Objective function (9.16) behaves as desired only in Case 1 of Example
9.2.

9.6.1.3 Proportionally fair allocation of RBs

We suggest using the principle of proportional fairness for load balancing on the
links. PF allocation is achieved by using the following objective:

max
∑

e

log re0. (9.17)

Because of the particular properties of the logarithmic function, this objective will
tend to distribute the residual capacity to links equally, at the same time avoid-
ing allocation of very small residual bandwidth (this is the common case in the
maximization of the total residual bandwidth), and not forcing maximization of
the minimal allocation (the case of max-min fairness). These observations are
confirmed by examining the load balancing effect of (9.17) used with problem
FD-LSP for the cases defined in Example 9.2. The maximum of objective func-
tion (9.17) value is attained when the additional demand is routed on path P1

in Cases 1-2, and path P2 is used in Case 3. The fact that optimal solution im-
plies using path P1 in Case 1 shows that a shorter path is prioritized if paths are
equally loaded, thus saving the network bandwidth. As to Case 2, the fact that
using path P1 is implied by the optimal solution shows that even if a shorter
path is marginally more loaded than the longer path, it is still more profitable to
use the shorter path P1 from the consumed bandwidth point of view for rout-
ing the additional demand. However, if path P1 is much more loaded than P2,
as in Case 3, then the optimal solution implies using P2. Thus, objective func-
tion (9.17) behaves as desired in all the three cases. Therefore, PF is a reasonable
trade-off between maximization of the total residual capacity and its max-min fair
allocation.

Objective (9.17) is non-linear, which, combined with the non-convex solu-
tion space of FD-LSP, makes the problem very difficult to solve. In order to
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somewhat simplify the problem resolution, the logarithmic function in (9.17)
can be linearized by using the piece-wise linear approximation discussed in Sec-
tion 4.3.4. The approximation implies that the following constraints are added
to the problem

fe ≤ aire0 + bi , ∀i ∈ I, ∀e ∈ E . (9.18)

and objective function (9.17) is replaced with:

max
∑

e

fe. (9.19)

9.6.2 Shortest path routing of backup paths

Minimizing the length of backup paths is desirable in order to minimize a number
of disrupted low priority LSPs. The following objective function, when used with
problem FD-LSP, implies minimization of the length of backup paths:

min
∑
s 6=0

∑
e

∑
d

∑
p

ξeδedpvdps. (9.20)

The objective function (9.20) implies minimization of the lengths of the paths
for all demands in all failure situations (s 6= 0), when link costs ξe ≡ 1 (and thus
can be interpreted as a hop-count). If the costs are different than 1, the objective
function implies using the cheapest (in some desirable sense) paths instead.
Similarly, the objective function for problem SB-LSP is as follows:

min
∑

e

∑
d

∑
p

ξeδedpvdp1. (9.21)

9.6.3 Combining the two criteria

Sections 9.6.1 and 9.6.2 have dealt with two important aspects of the proposed
routing strategy, namely–load balancing in the nominal network state and using
shortest backup path(-s) in case of failures.

One way of combining the PF load balancing (9.19) for nominal state and
minimization of lengths of backup paths (9.21) or (9.20) is by solving a problem
in question (SB-LSP or FD-LSP) in two stages. For example, in case of FD-LSP,
first the problem (9.19), (9.6)-(9.10) and (9.18) is solved for the nominal situ-
ation. Then flow allocation pattern for nominal situation is fixed, and problem
(9.20),(9.6)-(9.10) is solved for all failure situations s 6= 0.

Another approach (it was used for the experiments reported in this chapter) is
to combine the two criteria in a single objective function. For problem FD-LSP
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the combined objective is as follows:

min −A
∑

e

fe + (1−A)
∑
s 6=0

∑
e

∑
d

∑
p

ξeδedpvdps. (9.22)

Similarly, for problem SB-LSP the objective function is:

min −A
∑

e

fe + (1−A)
∑

e

∑
d

∑
p

ξeδedpvdp1. (9.23)

Coefficient A is used for weighting the two criteria in the objective function. In
the numerical experiments reported in the next section A was set to 0.5. The
final problem with failure-dependant backup path protection is then defined as
follows:
Problem FD-LSP-COMB:

obj (9.22)

s.t.:
∑

p

vdps = 1 , ∀d ∈ D ,∀s ∈ S (9.24)

vdps ≥ θdpsvdp0 , ∀d ∈ D ,∀p ∈ Pd ,∀s ∈ S (9.25)∑
d

∑
p

δedpvdpshd ≤ yes , ∀e ∈ E ,∀s ∈ S (9.26)

yes ≤ αesce , ∀e ∈ E ,∀s ∈ S (9.27)

fe ≤ aire0 + bi , ∀e ∈ E ,∀i ∈ I (9.28)

vdps ∈ B , ∀d ∈ D ,∀p ∈ Pd ,∀s ∈ S (9.29)

yes ∈ R+ , ∀e ∈ E ,∀s ∈ S. (9.30)

In the problem formulation presented above we have eliminated auxiliary vari-
ables xdps by substituting the right-hand side of constraint (9.7) into constraints
(9.8) and (9.9), this way obtaining constraints (9.25) and (9.26).

9.7 Numerical experiments

Several numerical experiments have been conducted in order to test the effective-
ness of the proposed protection and load balancing strategy. The networks used
for experiments were: network N12 with 12 nodes, 22 links, 6 to 14 paths per
demand and 66 demands; network N25 with 25 nodes, 56 links, 10 paths per
demand and 300 demands. The experiments were composed of two stages. First,
the optimization problem FD-LSP-COMB, defined in AMPL, was solved (also
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in the two-phase form described in Section 9.6.3) by CPLEX 9.1 solver for the
considered networks. The solution time was below one minute for the N12 net-
work and below two minutes for the N25 network on a PC with Pentium 4 HT
3GHz CPU and 2GB of RAM. All the single-link failure states were assumed in
the experiments. The solution of the optimization problem has found, for every
high priority (HP) demand, a primary path and backup paths for all failure sit-
uation. All the HP demand volumes were set to the same value and were equal
to about 2% of a single link capacity. Link capacities were the same for all links.
The demand volumes have been chosen such that in all situations the network is
loaded by nominal flows of all the HP demands to about 25%.

In the second stage the routing information of the HP demands, produced
by the optimization program, was sent to the Advanced CSPF Simulator [133],
which, based on the input information, performed a setup of the HP LSPs. Then
additional demand requests were generated, with priorities raging from 1 to 4
(hence, not with the high priority 0) and demand volume uniformly distributed
between 1% and 5% of a link capacity. In the sequel we will refer to these as
low priority (LP) demands. The probability of existence of a demand between
a given source-destination pair was the same for all the pairs. There were 1500
such demands generated for network N12 and 2300 for the network N25. Just
nominal paths were found using CSPF and provisioned for these dynamically
arriving LP LSPs and no backup paths provisioned. The number of the LP LSPs
was chosen so that after placing them the network would be (nearly) saturated.
Simulation section describes in detail different strategies used for routing these
additional LSPs. When all the additional LSPs that could be placed were placed,
the network failure states were simulated one by one. All the single link failure
scenarios were considered. Our goal was to measure the number of surviving LSPs
in the network in the case of each failure scenario. No new arrivals occurred in
the failure states of the network. However, the failures required backup paths
of HP LSPs to be activated, preempting in turn some of the LP LSPs. Then
an attempt was made by the simulator to restore as many of the preempted LP
LPSs as possible, by dynamically finding new paths for them. Only when all the
preemption and possible restorations were over, the number of surviving LSPs in
the network was recorded. The different strategies for restoration of the LP LSPs
are presented in the section below.

In the experimental framework described above we have compared the pro-
posed FDBP protection mechanism with off-line pre-planned SBP protection
(model SB-LSP-MINHOP), as well as with the dynamic online SBP recovery
mechanism. For the online routing mechanism, we have considered two options



212 9. R,     

for link metrics.

9.7.1 Link metrics in simulations

Two different link metrics for the on-line routing of LP LSPs were considered in
the simulator. They were used by the CSPF protocol for finding a path for the
dynamically arriving LP LSP request, as well as when a restoration path for the
LP LSPs had to be found.

The first metrics is an interior gateway protocol (IGP) cost. It is simply some
administrative cost ξe, assigned to links. In the experiments we have assumed
ξe = 1 for all links, thus IGP merely representing a hop count.

The second metrics is an inverse of the priority-based residual bandwidth Rj
es,

which for an LSP request with priority j and link e in situation s is expressed as:

Rj
es = res + µ

H(j)
es + η

L(j)
es . Here, res is, as before, the free (unused) bandwidth

on link e in situation s, µ
H(j)
es is a bandwidth reserved on link e for all backup

paths of HP demands (in general, LSPs with priority levels higher than j). This
bandwidth can be used by LP LSPs if the protection paths of HP LSPs are not

activated in a given situation s. Similarly, η
L(j)
es is a bandwidth reserved on link e

in situation s for all primary LSPs of the demands with priority levels lower than j,
and thus can be preempted by j (mind that lower priority number implies higher
priority level). Finally, when finding a constrained shortest path, the quantity
1/Rj

es is used as the link metrics.

9.7.2 Test scenarios
Because of multiple dimensions of the input data and possible results, further in
this discussion we focus only on the case of the larger network N25. The test
scenarios are summarized in Table 9.1.

In Cases I and II, both nominal and backup paths are calculated off-line.
Problem FD-LSP-COMB is used to find nominal and protection paths in Case
I, whereas in Case II the problem FD-LSP-COMB is modified to imply single
backup paths. In cases III and IV only the nominal paths were calculated off-line
by using problem FD-LSP-COMB, and the (single) protection paths were found
on-line and provisioned together with the nominal path. Cases III and IV differ
by the link metrics (see Table 9.1), which was used for finding the protection
paths. In case III, protection paths were calculated using 1/Rj

e0 as link metrics,
whereas in case IV the metrics was the IGP cost. In cases V and VI both nominal
and single protection paths were calculated on-line, where the link metrics for
finding primary paths was 1/Rj

e0. The protection paths were calculated using
1/Rj

e0 as a link metrics in Case V and IGP cost in Case VI.
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Placement strategy

Case HP nominal paths HP backup paths

I off-line off-line, FDBP

II off-line off-line, SBP

III off-line on-line, 1/Rj
e0

IV off-line on-line, IGP

V on-line, 1/Rj
e0 on-line, 1/Rj

e0

VI on-line, 1/Rj
e0 on-line, IGP

Table 9.1: Test scenarios.

Case DNF +F,% CL HCL,%

I 39.43 − 2.84 57.34

II 43.95 11.46 2.93 61.73

III 43.70 10.83 2.93 58.79

IV 42.57 7.96 2.89 57.96

V 42.59 8.01 2.91 57.39

VI 43.05 9.18 2.95 57.38

Table 9.2: Comparison of the recovery
mechanisms.

Thus, in Cases I and II the calculation of primary and backup paths for HP
demands was performed completely off-line. Cases III and IV present a combined
approach, where primary paths were calculated off-line and the protection paths
were calculated on-line. And in Cases V and VI all the paths were calculated
on-line. Nominal paths for the LP traffic were always calculated on-line using
the quantities 1/Rj

e0 as link metrics, and no backup paths for the LP traffic were
provisioned.

9.7.3 Results and discussion
Table 9.2 presents results for the cases described in Section 9.7.2. The considered
recovery mechanisms are compared in terms of the average number of failing LSPs
per failure situation (column DNF in the Table 9.2). For each case it is calculated
as a difference between number of LSPs placed in the nominal situation and the
average number of LSPs surviving after the failures. Second column (+F) in
the table shows increase in failing LSPs for Cases II-VI as related to case I (it is
calculated from the values in the DNF column). The number of LSPs placed
in the nominal situation was very close in all the cases and was on average equal
to 1546.33. The table also shows the maximum cascading level (column CL)
and the percentage of heavily congested links (column HCL) for each case (both
numbers are averages over all the failure situations). Cascading level is related to
preemption mechanism and LSP priorities. Each LSP can preempt any of the
lower priority LSPs, which in turn can preempt yet lower priority LSPs and so
on. Thus CL gives how many priority levels down does the preemption process
propagate to. A link is regarded heavily congested if it is loaded not less than by
70% of its capacity.

As can be seen from Table 9.2, using the proposed protection mechanism
with failure-dependent backup paths resulted in almost 11% less disrupted LSPs
per failure situation (on average), as compared to the single backup path pro-
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tection, where the paths are calculated off-line (Case II). Thus, when using the
FDBP protection mechanism it is possible to retain more traffic in the network
in the case of failures as compared to SBP protection, using the same network
resources. This results in better network resource utilization. Actually, SBP with
off-line calculated backup paths appeared to be the worst among all the consid-
ered options. The closest result to the FDBP case is achieved by using an off-line
calculated nominal path and on-line calculated single disjoint backup path (see
entry IV in Table 9.2), using IGP as the link metrics. Since all the IGP costs are
equal to 1, this implies shortest path routing for the backup paths. This result also
confirmed that choosing to minimize the length of the failure-dependent backup
paths in the problem FD-LSP-COMB is beneficial. The results for complete on-
line routing cases V and VI were worse than for Case IV but better than for case
III. The CL and HCL values were also best (lowest) for the FDBP case. The worst
CL was for Case VI, and the worst HCL was again for Case II (SBP). The lowest
HCL value for the FDBP case is due to the load balancing. The lower CL value
can in general imply lower number of preempted LSPs.

9.8 Conclusion
In this chapter we considered a combined problem of routing, load balancing
and traffic recovery in an IP/MPLS network carrying traffic with different prior-
ity classes. An efficient recovery mechanism (protection with failure-dependent
backup paths) is studied and a routing strategy combining shortest path routing
and load balancing is proposed. A combined numerical and simulation-based
study has revealed that for the considered network examples using the proposed
protection mechanism and routing strategy, the average number of discarded LSPs
per failure situation is lower by at least 7% than for the other considered recovery
options. The off-line single backup path protection was worst among all the con-
sidered cases, outperformed even by the complete on-line routing and recovery
strategies. Also, the experiments confirmed that using the shortest (hop count)
paths for protection of nominal paths results in a better performance.
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CHAPTER 10

Contributions, conclusions and future work

10.1 Scientific achievements

In this thesis we have studied topics in fair flow allocation and network resilience
applied to design of single and two-layer networks carrying combined elastic and
non-elastic traffic. In particular, network dimensioning problems have been stud-
ied for both normal network state and taking failure states into account. Solu-
tions of such problems consist in optimal link capacities and demand flows that
can be achieved within a given budget for installing link capacities. The stud-
ied optimization models assume fair bandwidth allocation among the demands.
The developed models employ fairness in two aspects: fair bandwidth distribu-
tion between demands in a given network operation state, and fair distribution of
revenues between the states. Since the studied problems are of the multi-criteria
type, we have presented two algorithms based on lexicographical maximization.
The combinations of max-min fairness, proportional fairness, and revenue max-
imization have been investigated, and it has been shown that the best solution
to the tradeoff between total network throughput and fairness of flow allocation
is achieved when using PF for assigning bandwidth to demands, and MMF for
distributing the revenue between the network operation states.

Furthermore, assuming that such two-dimensional fairness is assumed in a
multi-layer network, we have studied efficiency of performing recovery in dif-
ferent network resource layers. For this we have proposed network models and
algorithms where the fairness model and different recovery options are combined.
We have studied the efficiency of performing recovery in different layers of a two-
layer network by relaxing the associated MIP problems and investigating an upper
bound on total network revenue attained by each recovery option. It appeared
that, although allowing coordinated reconfiguration in both layers allows for the
most efficient network bandwidth usage, a recovery only in the upper network
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layer is quite close in terms of cost performance if symmetrical demands are im-
posed. For networks with asymmetrical demands, coordinated recovery in both
layers outperforms recovery in the upper layer. It has also been shown that both re-
covery options significantly outperform recovery only in the lower layer. It should
be noted, however, that recovery time and complexity aspect is not taken into
account in the investigations. (In general, recovery mechanisms only in the lower
layer provide the fastest and simplest recovery.)

For the discussed single and two-layer network design problems we have de-
veloped path generation algorithms and showed what maximum gain could be
achieved by introducing a new path to a routing list.

Realistic network features and functionality can in fact be captured only by
MIP (mixed-integer programming) models which in general are difficult to re-
solve. The presence of multiple layers of resources make the resolution of op-
timization models even more difficult as they increase the number of variables
and constraints. For multi-layer problems we have developed a generic resolution
framework and an efficient heuristic algorithm. The algorithm consists in decom-
posing a multi-layer network into separate resource layers and solving a design
sub-problem for each of them separately, while exchanging certain cost/demand
information between the design problems and iterating the whole process. A
variety of design problems with different objective functions and recovery mech-
anisms can be effectively resolved within the introduced framework. Actually, the
framework combines a heuristic part with a part resolving a MIP sub-problem.
Certainly, the iterative method requires solving many sub-problems, but the sub-
problems are much less complex than the original problem that is to be solved by
a direct application of a MIP solver. Also, the MIP task solved as a part of the
iterative algorithm is relatively small and thus in most cases effectively handled
by a commercial solver. Besides, it is important that the introduced framework
allows to effectively take modular link capacities into account. Time and solution
quality of the proposed iterative method have been compared with exact optimal
solutions, with solutions for which optimality is relaxed by 10%, and with partial
linear relaxation of the optimization model. Numerical examples show that the
gap between the heuristic solution of the iterative algorithm and exact solutions
for the revenue and throughput maximization problems is close to zero, while
for the cost minimization problems it is less than 10%. The heuristic algorithm
exhibits computation time much shorter than the exact algorithm. The heuristic
solution is equally good or better than the one produced by a commercial solver
with the relaxed optimality requirement, and in all but one cases the solution
time was shorter for the heuristic approach. A numerical study demonstrates that
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algorithms derived from the iterative method converge quickly to near-optimal
solutions. This suggests rather good performance of the iterative method for a
variety of two-layer network design problems with various recovery options and
goal functions.

Finally, we have developed an integrated recovery, routing, and load balanc-
ing strategy for an IP/MPLS network. It is our belief that efficiency of network
resource utilization can be improved by combining all these three aspects, and tak-
ing them into account during the network planning phase. The presented model
assumes label switched paths (LSPs) with different priority levels, where demands
with higher priority can preempt those with lower priority. Protection is provided
only for the highest priority LSPs by a failure-dependent backup path protection
mechanism, using shortest (by hop-count) paths for protection of nominal paths.
We discuss different ways of balancing the load on links and suggest distributing
residual link bandwidths according to the proportional fairness principle. The
proposed integrated strategy is compared with single backup path protection and
a number of combined on-line/off-line recovery strategies. The numerical study
shows that the proposed strategy results in the lowest number of failing LSPs in
case of a failure, the lowest cascading level (when a preempted path can preempt
other paths with lower priority) and the lowest number of highly congested links
in the network.

To summarize, the path followed in the thesis starts by studying fair band-
width allocation in single and two-layer networks. For the two-layer network
problems the efficiency of performing recovery in different network layers is stud-
ied and selected models for various recovery mechanisms are stated. Path genera-
tion algorithms are developed for all the considered single and two-layer network
problems. A framework for resolving two-layer MIP network design problems is
then presented and problem-specific heuristic algorithms are derived for several
selected problems. Finally, an integrated routing, recovery, and load balancing
strategy for IP/MPLS networks is proposed. In effect, the models and algorithms
presented in the thesis cover a broad range of the NGI network design problems,
including fair resource allocation, recovery in different resource layers, path gen-
eration, load balancing, and a strategy to effectively combine different network
design aspects into the single design problem.

10.2 Future work

The work presented in the thesis can be extended in many different aspects, such
as extending network models, developing new resolution algorithms for the speci-
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fied problems or even performing a testbed study for a selected set of the problems.
Modeling-wise, the following extensions would be a natural follow-up of the

presented work. Optimization models presented in the thesis do not differentiate
among services to which demands correspond. Thus, no distinction is made on
whether the bandwidth requested for a demand is, for example, related to FTP
file transfers or an interactive video. It would be interesting to extend our multi-
layer model by introducing an additional (top) layer of service overlays aiming at
prescribing demands to particular service classes. Modifying problems of Chapters
5 and 6 in this way, one could define a minimum bandwidth requirement for
capacity on links of a particular overlay network (service), and require that the
excess bandwidth on links is distributed in a fair way among different overlay
networks. For a particular service class, bandwidth can also be distributed among
demands in, for example, proportionally fair way. Such an assumption could be
of interest for network operators who, in a presence of constantly increasing P2P
traffic, want to reserve a required amount of bandwidth in their networks for
other important services, such as e-mail. Each such service can be defined as an
overlay in the proposed model.

Another extension to the models could be to consider link capacity modules
of different size, in particular in the iterative resolution framework presented in
Chapter 8. Also, one could explicitly allow user demand requests in different
network layers, not only in the uppermost layer. Such an extension would allow
to account for requests of different granularity.

For the considered optimization models there are various possibilities to in-
vestigate different exact, heuristic, and approximate resolution methods. In par-
ticular, an approximate method proposed by Garg et al. in [134] can be applied
to relaxations of the problems considered in Chapters 5 and 6, as well as a part of
the considered path generation algorithms (Chapter 7) for resolving the pricing
problems. A closer look at the method of Garg et al. and the iterative method
presented in Chapter 8 of the thesis can probably even lead to efficient combined
method for multi-layer problems, which can further be combined with path gen-
eration algorithms. Also, B&C algorithms can be developed, and local branching
[135] method, Feasibility Pump [136; 137] method, or a method [138] combin-
ing Feasibility Pump with local branching, can be adapted for the considered MIP
problems, such as the one in the iterative resolution method (Chapter 8).

Results of the design methods could be tested, compared and validated using
a testbed.
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