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High order splitting schemes with complex timesteps
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Abstract

High order splitting schemes with complex timesteps are applied to Kolmogorov
backward equations stemming from stochastic differential equations in Strato-
novich form. In the setting of weighted spaces, the necessary analyticity of the
split semigroups can be easily proved. A numerical example from interest rate
theory, the CIR2 model, is considered. The numerical results are robust for
drift-dominated problems, and confirm our theoretical results.

Keywords: splitting methods, complex coefficients, mathematical finance,
convection-dominated problems, interest rate theory

1. Introduction

In mathematical finance, the pricing of derivative contracts can be reduced
to the calculation of expected values under the risk-neutral measure, see, e.g.,
[3, 38]. This can be performed in different manners. The most general approach
is to use Monte Carlo methods, see [27, 18], where the recently introduced
multilevel Monte Carlo approach from [17] led to fast methods for problems
with very low smoothness.

In contrast, we want to obtain approximations of the solution of the Kol-
mogorov backward PDE by splitting schemes. Such methods were also applied
successfully in Quasi Monte Carlo simulations in [32], but all such approaches
are in the end limited by the accuracy of the integration scheme. Furthermore, it
is not straightforward to evaluate the stochastic processes at complex timesteps,
which is necessary if splittings of order higher than 2 are to be used.

We therefore solve the PDE by finite element methods in space and a high
order splitting method in time. Such high order splitting methods, overcoming
the order barrier of 2 commonly encountered for splittings with nonnegative
times, see [4], were introduced in [6, 23] and make use of the analyticity of the
split semigroups. To show this analyticity, we make use of function spaces en-
dowed with weighted supremum norms, originally introduced in [35] for proving
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the existence of solutions to martingale problems for stochastic partial differ-
ential equations, and used for the analysis of numerical methods for stochastic
partial differential equations in [12, 11, 10, 13, 14]. It turns out that using this
framework, it is very simple to prove analyticity for semigroups stemming from
stochastic differential equations in Stratonovich form, hence optimal rates of
convergence follow. In particular, these results apply to problems on unbounded
domains with unbounded coefficients vanishing at the (finite) boundaries of the
domain. Such problems are usually difficult to deal with in Sobolev spaces and
require the use of weighted Sobolev norms vanishing at the finite boundaries,
see [8, 9] for some recent results on the Heston stochastic volatility model and
a thorough discussion of references on this subject.

A particularly interesting feature of the considered numerical method is that
the drift part is completely separated from the diffusion part. This means that
we can choose suitable numerical schemes for each of these parts separately. In
particular, if the first order hyperbolic drift part is solved by a method such
as streamline diffusion finite elements or a discontinuous Galerkin method, we
can expect that the method is robust for vanishing diffusivity. The need for
such methods, notably for applications in mathematical finance, was recently
observed in [30]. Other methods yielding such robustness are streamline diffu-
sion methods, see [31, 16], and discontinuous Galerkin methods, see, e.g., [7, 24].
We stress that an advantage of our method is that different, optimised solvers
for the drift part and the diffusion part can be used, providing a more flexible
scheme.

The paper is organised as follows. Section 2 recalls the definitions of weighted
spaces, specialising the results from [35] and [12, 13] to the finite-dimensional
case. Furthermore, we show analyticity for a wide class of Markov semigroups in
the setting of weighted spaces. Next, Section 3 formulates the splitting scheme
and contains a convergence result. Finally, we show numerical findings for the
CIR2 model in Section 4. In particular, we observe robustness of the suggested
method for drift-dominated problems.

2. The functional analytic framework

Let us start off by recalling some basic facts from stochastic analysis, see,
e.g., [26, 33, 34] for more details. Fix a stochastic basis (Ω,F ,P, (Ft)t≥0) and

a d-dimensional standard Brownian motion (W j
t )j=1,...,d,t≥0 on it. Let N ∈ N.

Consider a stochastic differential equation in Stratonovich form on the closure
D ⊂ RN of a (not necessarily bounded) Lipschitz domain,

dX(t, x) =

d∑
j=0

Vj(X(t, x)) ◦ dW j
t , X(0, x) = x, (1)

where W 0
t = t and ◦dW 0

t = dt, Vj : D → RN are Lipschitz continuous vector
fields with appropriate smoothness assumptions discussed below in more detail,
and x ∈ D. We suppose that the solution (X(t, x))t≥0 is well-defined in D, in
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particular that up to some common null set N ∈ F , P(N) = 0, X(t, x) ∈ D for
all x ∈ D and t ≥ 0. This is justified by well-known results on stochastic flows,
see, e.g., [34, Section V.7]. For f ∈ C2(D) with suitable growth at infinity, Itô’s
lemma shows that u(t, x) := E[f(X(T−t, x))] satisfies the backward Kolmogorov
equation

d

dt
u(t, x) + Lu(t, x) = 0, t > 0, x ∈ D, (2a)

u(T, x) = f(x), x ∈ D. (2b)

Here, L denotes the “sum of squares” partial differential operator, defined for
g ∈ C2(D) by

Lg(x) := V0g(x) +
1

2

d∑
j=1

V 2
j g(x), (3)

with V g(x) := V (x) · ∇g(x) the directional derivative for V : D → RN and
g ∈ C1(D). We split this operator into

L0g(x) := V0g(x) and L1g(x) :=
1

2

d∑
j=1

V 2
j g(x). (4)

The respective split stochastic differential equations read

d

dt
X0(t, x) = V0(X0(t, x)), X0(0, x)= x, and (5)

dX1(t, x) =

d∑
j=1

Vj(X
1(t, x)) ◦ dW j

t , X1(0, x)= x, (6)

cf. also [32].
We recall the following definitions from [35] and [12, 13, 14].

Definition 1. A function ψ : D → (0,∞) is called D-admissible weight function
if lim‖x‖→∞

x∈D
ψ(x) = ∞ and ψ is bounded on compact sets, where ‖·‖ denotes

the Euclidean norm.

Note that the definition from [14] simplifies in this case, as D is locally com-
pact. While the results in [35] and [12, 14] are stated for real-valued functions
only, they also hold true for the complex-valued versions of the spaces considered
here.

Definition 2. Fix k ∈ N0. For j = 0, . . . , k, let ψj : D → (0,∞) be D-admissible

weight functions. The space B(ψj)j=0,...,k

k (D) is defined as the closure of Ckb (D),
the space of functions f : D → C such that f is bounded and k times differen-
tiable with all derivatives up to order k continuous and bounded, with respect
to the norm ‖·‖(ψj)j=0,...,k,k, where

‖f‖(ψj)j=0,...,k,k := ‖f‖ψ0 +

k∑
j=1

|f |ψj ,j (7)
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with

‖f‖ψ0
:= sup

x∈D
ψ0(x)−1|f(x)| and |f |ψj ,j := sup

x∈D
ψj(x)−1‖Djf(x)‖. (8)

Here, Djf(x) is seen as a j-linear form (CN )j → C, endowed with the norm

‖Djf(x)‖ := sup
z1,...,zj∈CN
‖z1‖,··· ,‖zj‖≤1

|Djf(x)(z1, · · · , zj)|. (9)

We also write Bψ(D) := Bψ0 (D).

It is shown in [10, 14] that B(ψj)j=0,...,k

k (D) ⊂ Ck(D), and that it is a Banach
space. Furthermore, the results of [35, 12, 10] yield the following generalised
Feller property.

Proposition 3. Let ψ be a D-admissible weight function. Suppose that (Pt)t≥0

is a family of bounded linear operators on Bψ(D) such that

• P0 = I, the identity on Bψ(D),

• Pt+s = PtPs for all t, s ≥ 0, and

• limt→0 Ptf(x) = f(x) for all x ∈ D and f ∈ Bψ(D).

Then, (Pt)t≥0 is strongly continuous on Bψ(D).

For simplicity, we formulate the following result for polynomially growing
functions and vector fields with bounded derivatives. Therefore, we fix s ∈ N
large enough and set ψ`(x) := (1 + ‖x‖2)(s−`)/2, ` ∈ N0 and ψ(x) := ψ0(x).
Similar results can be obtained for different choices, see, e.g., [13] for the case of
exponentially growing functions and bounded vector fields. It is straightforward
to see that Ptf(x) := E[f(X(t, x))], P 0

t f(x) := E[f(X0(t, x))] and P 1
t f(x) :=

E[f(X1(t, x))] define strongly continuous semigroups on Bψ(D), and that their
generators are suitable extensions of L, L0 and L1, respectively. Here, we apply
the usual time inversion to turn the final value problem (2) into an initial value
problem.

Proposition 4. Let k ∈ N. Assume that for j = 0, . . . , d, Vj ∈ Ck+1(D;RN )
with all derivatives of order 1 to k + 1 bounded. Then, PtC

k
b (D) ⊂ Ckb (D) for

all t ≥ 0, and

‖Ptf‖(ψj)j=0,...,k
≤ C(t)‖f‖(ψj)j=0,...,k

for all f ∈ B(ψj)j=0,...,k

k (D), (10)

where C : [0,∞)→ (0,∞) is monotonously increasing. In particular,

Pt : B
(ψj)j=0,...,k

k (D)→ B(ψj)j=0,...,k

k (D) (11)

is a bounded operator with norm ≤ C(t), t ≥ 0.
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Proof. The first part and the norm bound is a consequence of [28, Theorem 3.3,

p. 223], and the invariance of B(ψj)j=0,...,k

k (D) follows by a density argument.
See also [13, Lemma 13] for a related result.

Proposition 5. Let V : D → RN be a continuously differentiable vector field
with bounded derivative. Suppose that V (x) ·n(x) ≤ 0 for almost every x ∈ ∂D,
where n : ∂D → RN is the (almost everywhere defined) outer unit normal vector
to D. For t ≥ 0, consider the semiflow FlVt : D → D of V , i.e.,

d

dt
FlVt (x) = V (FlVt (x)), FlV0 (x) = x. (12)

Then,
PVt f(x) := f(FlVt (x)), t ≥ 0, (13)

defines a strongly continuous semigroup on Bψ(D), and its generator is the

closure of the operator V : B(ψ,ψ1)
1 (D) → Bψ(D). If V (x) · n(x) = 0 on ∂D,

(PVt )t≥0 can be extended to a strongly continuous group.

Proof. The Lipschitz continuity of V together with V (x) · n(x) ≤ 0 for almost
every x ∈ ∂D yield that FlVt is continuous and well-defined for t ≥ 0, and that
for some ε > 0 there exists C > 0 such that

ψ(FlVt (x)) ≤ Cψ(x) and (14)

ψ1(FlVt (x)) ≤ Cψ1(x) for all t ∈ [0, ε) and x ∈ D. (15)

Hence, for arbitrary f ∈ Bψ(D),

sup
x∈D

ψ(x)−1|f(FlVt (x))| ≤ sup
x∈D

ψ(x)−1ψ(FlVt (x))‖f‖ψ,0 ≤ C‖f‖ψ,0, (16)

whence PVt : Bψ(D)→ Bψ(D) is bounded for t ≥ 0. As the semigroup property
of (PVt )t∈R is obvious, we can apply Proposition 3 to obtain that (PVt )t≥0 indeed
is a strongly continuous semigroup on Bψ(D).

Let us now determine its generator GV . We shall prove that B(ψ,ψ1)
1 (D) ⊂

domGV , and that GV f(x) = V f(x) on this space. Clearly, for f ∈ C1
b(D),

d
dt |t=0f(FlVt (x)) = V f(x), and V f ∈ Bψ(D). Hence,

PVt f − f =

∫ t

0

PVs (V f)ds, (17)

and this implies that f ∈ domGV and GV f = V f . The Lipschitz continuity of
V implies ‖V (x)‖ ≤ C(1 + ‖x‖2)1/2 with some constant C > 0, and we observe

|V f(x)| ≤ C(1 + ‖x‖2)1/2ψ1(x)|f |ψ1,1 ≤ Cψ(x)|f |ψ1,1. (18)

It follows that V : B(ψ,ψ1)
1 (D) → Bψ(D) is bounded, and together with the

closedness of GV and Propostion 12 this implies B(ψ,ψ1)
1 (D) ⊂ domGV and

GV f = V f for all f ∈ B(ψ,ψ1)
1 (D). (19)
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If f ∈ B(ψ,ψ1)
1 (D), we see that x 7→ PVt f(x) is continuously differentiable,

and that for z ∈ CN ,

|DPVt f(x)z| = |Df(FlVt (x))DFlVt (x)z| ≤ |f |ψ1,1ψ1(FlVt (x))|DFlVt (x)z|. (20)

Denote the Lipschitz constant of V by L, then by Gronwall’s inequality,

|DFlVt (x)z| ≤ exp(L|t|)‖z‖. (21)

Hence, for t ∈ [0, ε), ‖PVt f‖(ψ,ψ1),1 ≤ C‖f‖(ψ,ψ1),1. As additionally PVt (C1
b(D)) ⊂

C1
b(D), we obtain that B(ψ,ψ1)

1 (D) is a core for GV by [15, Proposition II.1.7].
If we assume that V (x) ·n(x) = 0 for x ∈ ∂D, we can apply the above results

to both V and −V , from which it follows that (PVt )t∈R is a strongly continuous
group. The proof is thus complete.

Corollary 6. Let V ∈ C3(D;RN ) with bounded derivatives of order 1 to 3 such
that V (x) · n(x) = 0 for almost every x ∈ ∂D. Then,

P
1
2V

2

t f(x) :=

∫
R
f(FlV√

ty
(x))

1√
2π

exp(−y
2

2
)dy (22)

defines an analytic semigroup of angle π/2 on Bψ(D). Its generator is the

closure of the operator 1
2V

2 : B(ψ,ψ1,ψ2)
2 (D)→ Bψ(D).

Proof. This is a consequence of Proposition 5 and [15, Corollary II.4.9]. That

B(ψ,ψ1,ψ2)
2 (D) is a core is a consequence of Proposition 4.

Corollary 7. Suppose that the vector field V0 is continuously differentiable
with bounded derivative and that the vector fields Vj, j = 1, . . . , d are three
times continuously differentiable with bounded derivatives of order 1 to 3 on the
Lipschitz domain D ⊂ RN , and satisfy

V0(x) · n(x) ≤ 0 and Vj(x) · n(x) = 0 for j = 1, . . . , d and x ∈ ∂D, (23)

where n(x) denotes the (almost everywhere defined) outer unit normal vector

on D in x ∈ ∂D. Define L0g(x) := V0g(x) and L1g(x) := 1
2

∑d
j=1 V

2
j g(x) for

g ∈ B(ψj)j=0,1,2

2 (D). Then, the closure of L0 generates the strongly continuous
semigroup (P 0

t )t≥0, and the closure of L1 generates the analytical semigroup of
angle π/2 (P 1

t )t≥0 on Bψ(D).

Proof. This follows from a combination of Proposition 5, Corollary 6, and
Proposition 13.

Remark 8. We only obtained properties of the split semigroups (P 0
t )t≥0 and

(P 1
t )t≥0 in Corollary 7. While perturbation theory arguments should allow

us to derive properties of the semigroup (Pt)t≥0 from these results by applying
perturbation theory, see, e.g., [15, Theorem III.2.10], this question is not central
for the topic of this paper and is therefore left to further research.

6



3. High order splitting schemes

Recently, it was observed in [23, 6] that complex timesteps can be used to
obtain splitting schemes with order higher than 2 for parabolic problems. In
the given setting, we have the following result.

Theorem 9. Let (αk)k=1,...,s ⊂ [0,∞), (βk)k=1,...,s ⊂ {z ∈ C : Re z > 0} ∪ {0}
be the coefficients of a splitting scheme of formal order p. Assume the setting
of Corollary 7, and that additionally, Vj for j = 0, . . . , d are 2p + 3 times
continuously differentiable with all derivatives of order 1 to 2p+ 3 bounded. For
f ∈ Bψ(D), set

Q(∆t)f := P 0
α1∆tP

1
β1∆t . . . P

0
αs∆tP

1
βs∆tf. (24)

Then, for f ∈ B(ψj)j=0,...,2(p+1)

2(p+1) (D) and T ≥ 0, there exists a constant CT,f > 0

independent of n ∈ N such that

‖Qn(T/n)f − PT f‖ψ ≤ CT,fn
−p. (25)

Proof. By Proposition 4, B(ψ,ψ1,...,ψ2(p+1))

2(p+1) (D) is invariant with respect to the

semigroup (Pt)t≥0. Using the results from Section 2, this is hence a straight-
forward consequence of [22, Theorem 2.3], see also [23, Theorem 3.1] and [6,
Theorem 3.1].

Remark 10. A fourth order splitting as required by the above theorem was
constructed in [6, equation (5.1)]. They have s = 5 and

α1 = 0, α2 = α3 = α4 = α5 =
1

4
, (26)

β1 = β5 =
1

10
− 1

30
i, β2 = β4 =

4

15
+

2

15
i, and β3 =

4

15
− 1

5
i. (27)

This scheme requires the evaluation of the semigroups P 0
αk∆t and P 1

βk∆t to fourth
order. The strategy of composition methods as applied in [6] will fail if L0 does
not generate a group, which is a consequence of [4]. As V0 usually does not
satisfy V0(x) · n(x) = 0 for x ∈ ∂D in problems from mathematical finance
with mean reversion because V0 points towards the mean and hence L0 does
not generate a group, we do not analyse this question further here.

4. Numerical example: The CIR2 model

The CIR2 (Longstaff–Schwartz) model, see [29, 5], is a popular model for
interest rates. It supposes that the short rate rt is given by

rt = xt + yt (28)

with xt and yt being square-root diffusions (CIR processes) under the risk-
neutral measure Q, i.e., they satisfy the Itô diffusion equations

dxt = θx(µx − xt)dt+ σx
√
xtdW

x
t , (29a)

dyt = θy(µy − yt)dt+ σy
√
ytdW

y
t (29b)

7



where the stochastic basis is given by (Ω,F ,Q, (Ft)t≥0), θx, µx, σx, θy, µy and
σy are positive constants, and W x

t and W y
t are independent Brownian motions.

From (rt)t≥0, prices of default-free zero coupon bonds can be derived via

B(S, T ) := E[exp(−
∫ T

S

rtdt)|FS ], (30)

where E[·|FS ] denotes conditional expectation with respect to FS under Q, and
0 ≤ S ≤ T .

For simplicity, we consider the approximation of the bond price itself, for
which analytic formulas are available. This allows us to determine the precise
error of our numerical results. As the bond price has smooth dependence on
the initial values x0 and y0, we do not need to use non-uniform timesteps in the
approximation.

Remark 11. In the approximation of non-smooth payoffs, it is necessary to use
non-uniform time grids. For a construction of such non-uniform (or graded)
time grids where shorter timesteps are made at the initial condition, see, e.g.,
[20, 36, 37].

After the usual time inversion, the PDE formulation of the problem reads

∂

∂t
u(t, x, y) = Lu(t, x, y), u(0, x, y) = 1, (31)

with u(T, x, y) = B(0, T ) if we fix x0 = x and y0 = y, where

Lu(t, x, y) = θx(µx − x)
∂

∂x
u(t, x, y) +

1

2
σ2
xx

∂2

∂x2
u(t, x, y)

+ θy(µy − y)
∂

∂y
u(t, x, y) +

1

2
σ2
yy

∂2

∂y2
u(t, x, y)

− (x+ y)u(t, x, y). (32)

Here, we assume homogeneous Neumann boundary conditions on x = 0 and
y = 0. We split this equation according to

L0u0(t, x, y) =

[
θx(µx − x)− 1

4
σ2
x

]
∂

∂x
u0(t, x, y)

+

[
θy(µy − y)− 1

4
σ2
y

]
∂

∂y
u0(t, x, y) and (33)

L1u1(t, x, y) =
1

2
σ2
xx

∂2

∂x2
u1(t, x, y) +

1

4
σ2
x

∂

∂x
u1(t, x, y)

+
1

2
σ2
yy

∂2

∂y2
u1(t, x, y) +

1

4
σ2
y

∂

∂y
u1(t, x, y)

− (x+ y)u1(t, x, y), (34)

which corresponds to a split into drift L0 and diffusion L1 after transformation
into Stratonovich form. Again, we assume homogeneous Neumann boundary
conditions on x = 0 and y = 0 for both operators L0 and L1.
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In order to ensure that x = 0 and y = 0 are outflow boundaries for the hyper-
bolic problem ∂

∂tu(t, x, y) = L0u(t, x, y), we assume 4θxµx ≥ σ2
x and 4θyµy ≥ σ2

y,
which is weaker than the Feller condition, see, e.g., [2]. While the given opera-
tor does not satisfy the assumptions of Section 2 to prove that L1 generates an
analytic semigroup, this can be proved directly. Proposition 14 (see Appendix
B) shows this result for the 1D case, and the proof generalises to the considered
equation. The necessary smoothness of the exact solution u(t, x, y) of equation
(31) can also not be obtained directly from Proposition 4, but follows from [1,
Proposition 43].
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Figure 1: Errors in approximation of bond prices of the CIR2 model

In the computations, we fix the parameters

θx = 15.5, µx = .025, σx = .2ε, θy = 20.5, µy = .025, σy = .3ε, (35)

where we consider ε = 1. and ε = .125. In both cases, the problem is drift-
dominated. As we want to focus on the time discretisation error, we minimise the
impact of the domain truncation by cutting off far beyond any reasonable values
for the state variables, at x = 16 and y = 16, and of the spatial discretisation by
using higher order continuous finite elements in space, with 17 grid points per
direction and a polynomial degree of 4. At these artificial boundaries, we again
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Figure 2: Effects of domain truncation

use homogeneous Neumann boundary conditions, which is consistent with the
hyperbolic operator L0.

This leads to a total of 4225 spatial degrees of freedom. The operator split-
ting uses the scheme from [6, equation (5.1)], see Remark 10 for the coefficients.
For the split equations, we employ a streamline diffusion FEM [25] using a
polynomial degree of 4 for the first order hyperbolic equation involving L0, and
a resolvent Krylov subspace method using a 30-dimensional Krylov subspace
for the approximation of the matrix exponential [21, 19] of the second order
parabolic equation involving L1.

Figure 1 shows the results of a numerical computation. The plotted error
is the difference between B(0, T ) and the numerical approximation Bapp(0, T ),
measured in the Bψ-norm with ψ(x, y) = (1 + x2 + y2)3. We clearly observe
4th order convergence. If we restrict x+ y ≤ 1, which should include all values
of practical interest, we see that ψ(x, y) ≤ 64. Hence, in this region, the form
of the error norm ensures that the pointwise approximation error is less than
10−3 using only 8 timesteps. Furthermore, the error is virtually independent
of the value of ε, which means that our approximation is robust for the case of
vanishing diffusion.

In order to understand the effect of the space truncation, we plot in Figure 2
the errors for different choices of the cutoff point, where the spatial mesh width
is kept constant and 8 timesteps are used. We observe that if the domain size
is increased, the error stays bounded.

Appendix A. Functional-analytic results

In this section, we collect a result on closed operators and one on analytic
semigroups that are easy to prove, but that we were not able to find in standard
literature.

Proposition 12. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces such that Y is
continuously embedded in X, i.e., Y ⊂ X and ‖y‖X ≤ C‖y‖Y for all y ∈ Y
with some constant C > 0, and Z be dense in Y (with respect to the norm
of Y ). Given a closed operator A : domA ⊂ X → X with Z ⊂ domA such
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that ‖Az‖X ≤ K‖z‖Y for all z ∈ Z with K ≥ 0, we have Y ⊂ domA and
‖Ay‖X ≤ K‖y‖Y for all y ∈ Y .

Proof. By continuity, A|Z can be extended to a continuous linear operator
B : Y → X with ‖By‖X ≤ K‖y‖Y and Bz = Az for all z ∈ Z. Given y ∈ Y ,
let (zn)n∈N be such that limn→∞‖y − zn‖Y = 0. Then, by continuity of B,
limn→∞‖By − Bzn‖X = 0. As Bzn = Azn for all n ∈ N, we observe zn → y
and Azn → By in the norm of X. Hence, the closedness of A implies y ∈ domA
and Ay = By, which yields the claim.

Proposition 13. Fix a complex Banach space X. Given δ ∈ (0, π/2], set
Σδ := {z ∈ C : |arg z| < δ}. Let (A,domA), (B, domB) be the generators of
analytic semigroups (SAz )z∈Σδ∪0 and (SBz )z∈Σδ∪0 on X satisfying

‖SAz ‖ ≤ exp(K|z|) and ‖SBz ‖ ≤ exp(K|z|) for z ∈ Σδ ∪ 0 (A.1)

for some K > 0, and assume that the closure (C, domC) of (A + B, domA ∩
domB) generates a strongly continuous semigroup (SCt )t≥0.

Then, (SCt )t≥0 extends to an analytic semigroup on Σδ ∪ 0.

Proof. We assume without loss of generality that the semigroups generated by
A and B are bounded on Σδ; otherwise, translate the operators appropriately
first. By [15, Theorem II.4.6], we have to prove that for some θ ∈ (0, π/2), e±iθC
generate strongly continuous semigroups. The Hille–Yosida theorem implies
existence of ω0 ∈ R such that λ − C is surjective for Reλ ≥ ω0. As Re e±iθ =
cos(θ) > 0, we can find µ > 0 such that Reµe±iθ ≥ ω0, whence µ − e±iθC =
e±iθ(e∓iθµ−C) is invertible. Fixing θ ∈ (0, δ), we can apply the Trotter product
formula [15, Corollary III.5.8] to e±iθA and e±iθB to prove that e±iθC generate
strongly continuous semigroups. Repeating this argument with A, B and C
replaced by eiαA, eiαB and eiαC, where α ∈ (−δ, δ), we obtain the result.

Appendix B. Analyticity of the CIR semigroup in the Bψ setting

The following result proves the analyticity of the CIR semigroup on a Bψ-
space directly, as Corollary 6 does not apply due to the lacking Lipschitz conti-
nuity of the square root.

Proposition 14. Set ψ(x) := (1 + x2)s/2 with s ∈ N. For f ∈ Bψ([0,∞)),
define

Ptf(x) :=

∫
R
f((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy, x ∈ [0,∞), (B.1)

Then, Ptf defines an analytic semigroup on Bψ([0,∞)) and solves the PDE

∂

∂t
u(t, x) = 2σ2x

∂2

∂x2
u(t, x) + σ2 ∂

∂x
u(t, x), t > 0 and x ≥ 0, (B.2a)

u(0, x) = f(x), x ≥ 0. (B.2b)
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Proof. It is easy to see that (Pt)t≥0 defines a generalised Feller semigroup on
Bψ([0,∞)), hence it is strongly continuous by Proposition 3. Integration by
parts proves

∂

∂t
Ptf(x) =

∫
R
f ′((
√
x+ σ

√
ty)2)

√
x+ σ

√
ty√

t
σy

1√
2π

exp(−y
2

2
)dy

=
1

2t

∫
R
y
∂

∂y
f((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy

=
1

2t

∫
R

(y2 − 1)f((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy,

and as the right hand side defines a bounded operator on Bψ([0,∞)) with norm
of the order O(t−1), (Pt)t≥0 is an analytic semigroup.

To show that Ptf satisfies the given PDE, we calculate

∂

∂x
Ptf(x) =

∫
R
f ′((
√
x+ σ

√
ty)2)

√
x+ σ

√
ty√

x

1√
2π

exp(−y
2

2
)dy

=
1

2σ
√
tx

∫
R

∂

∂y
f((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy

=
1

2σ
√
tx

∫
R
yf((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy

and, similarly,

∂2

∂x2
Ptf(x) =

∂

∂x

(
1

2σ
√
tx

∫
R
yf((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy

)
= − 1

4σ
√
tx3

∫
R
yf((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy

+
1

4σ2tx

∫
R
y
∂

∂y
f((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy

= − 1

4σ
√
tx3

∫
R
yf((
√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy

+
1

4σ2tx

∫
R
(y2 − 1)f((

√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy.

Hence,(
2σ2x

∂2

∂x2
+ σ2 ∂

∂x

)
Ptf(x) =

1

2t

∫
R
(y2 − 1)f((

√
x+ σ

√
ty)2)

1√
2π

exp(−y
2

2
)dy

=
∂

∂t
Ptf(x),

which proves the claim.
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Math. Models Methods Appl. Sci., 22(1):1150005, 37, 2012.

[31] J. M. Melenk and C. Schwab. The hp streamline diffusion finite element
method for convection dominated problems in one space dimension. East-
West J. Numer. Math., 7(1):31–60, 1999.

[32] Syoiti Ninomiya and Nicolas Victoir. Weak approximation of stochastic
differential equations and application to derivative pricing. Appl. Math.
Finance, 15(1-2):107–121, 2008.

[33] Bernt Øksendal. Stochastic differential equations. Universitext. Springer-
Verlag, Berlin, sixth edition, 2003. An introduction with applications.

[34] Philip E. Protter. Stochastic integration and differential equations, vol-
ume 21 of Applications of Mathematics (New York). Springer-Verlag,
Berlin, second edition, 2004. Stochastic Modelling and Applied Probability.
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[37] Dominik Schötzau and Christoph Schwab. Time discretization of parabolic
problems by the hp-version of the discontinuous Galerkin finite element
method. SIAM J. Numer. Anal., 38(3):837–875, 2000.

15



[38] Steven E. Shreve. Stochastic calculus for finance. II: Continuous-time mod-
els. New York, NY: Springer, 2004.

16


