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POPULÄRVETENSKAPLIG 
SAMMANFATTNING 
Diabetes är en sjukdom som drabbar nästan 177 miljoner människor världen över och 

siffran förväntas stiga till 366 miljoner år 2030. Vid typ 1 diabetes (T1D) har kroppen 

helt eller nästan helt slutat producera insulin och alla som har T1D måste därför 

dagligen injicera insulin. Insulin behövs i kroppens celler för att kunna ta upp näring 

(socker) från blodet. T1D uppstår till följd av en obalans i kroppens immunsystem som 

kallas autoimmunitet. Kroppens immunceller uppfattar då insulin producerande 

betaceller i bukspottskörteln som ett hot och angriper dem vilket leder till att de 

förstörs. Anledningen till varför betacellerna förstörs är inte fullständigt känd men man 

tror att det finns defekter i mekanismerna som i normala fall hjälper till att hålla 

immunsystemet under kontroll i ett tillstånd som kallas tolerans. Tolerans skapas bland 

annat under utvecklingen och mognaden av en viss typ immunceller, så kallade T-celler. 

T-celler som eventuellt kan komma att utvecklas till att angripa kroppens egna organ 

dödas i en kroppsegen process som kallas programmerad celldöd. 

microRNA (miRNA) är en ny typ av små RNA molekyler (en kusin till DNA 

molekylen som kodar för vår arvsmassa) som först upptäcktes 1993 och som sedan dess 

har påvisats reglera genuttryck i både växter, djur och människor. Små RNA som inte 

kodar för några gener troddes förut vara skräp i vår arvsmassa eftersom de oftast låg 

mellan våra genetiska DNA sekvenser. Detta är något som på senare år har omprövats 

då dessa ”icke-kodande” RNA har uppskattats styra ~60% av våra gener. I den första 

studien har vi tittat på vilka miRNA som är involverade i reglering av programmerad 

celldöd (såkallad apoptos) av T-celler under utvecklingen i thymus. Vi jämförde 

thymocyt-apoptosen i en T1D musmodell, NOD musen, med viltypsmöss och 

upptäckte att NOD thymocyter har mycket svårare att begå programmerad celldöd än 
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vildtypsmusens thymocyter. Detta kan medföra att de utvecklade T-cellerna i NOD 

musen möjligtvis kan vara självreaktiva (eftersom de har svårare att elimineras av 

kroppen under utvecklingen i thymus) och detta kan bidra till det autoimmuna 

sjukdomsförloppet i NOD musen. Vi upptäckte också att miR-34 a, b, c familjen, miR-

125b samt miR-155 hade ett annorlunda uttryck i NOD thymocyter före och efter 

DNA skada och att proteinet p53 som kan regleras av dessa miRNAs och är involverad 

i att initiera programmerad celldöd, inte ökade i uttryck efter DNA skada i NOD 

thymocyter, i jämförelse med vildtypsmöss.  

I den andra studien har vi skapat en genmodifierad NOD musmodell som saknar 

funktionella miRNA i thymocyter och karaktäriserat alla T-cellerna från thymus och 

olika lymfnoder genom att titta på deras antal och uttrycket av deras olika markörer 

(som representerar olika T-cell populationer). Vi har studerat betydelsen av miRNA 

reglering i de olika T-cell populationerna för utvecklingen av T1D i dessa möss och 

fann överraskande att avsaknaden av miRNA-reglering bidrog till minskad utveckling 

av diabetes. Eftersom cytotoxiska T-celler anses vara de celler som initierar 

immunattacken på β-cellerna så trodde vi att miRNA reglering hade större betydelse 

för funktionen av dessa T-celler och gick därför vidare genom att undersöka miRNA 

innehållet i dessa celler och ska i framtiden även undersöka hur avsaknaden av miRNA 

påverkar funktionen av både de cytotoxiska T-cellerna och regulatoriska T celler.  

I den tredje studien så studerade vi effekten av miljöpåverkan på en hälsosam 

bakterieflora i tarmen under graviditeten i NOD möss, på ungarnas immunsystem och 

utvecklingen av T1D. Detta är ytterst intressant att studera då många gravida kvinnor 

idag behandlas med antibiotika för diverse infektioner och ingen har studerat vilken 

effekt detta har för utvecklingen av barnens immunsystem och om detta kan influera 

utvecklingen av T1D. De gravida mössen behandlades med antibiotika, som 

förändrade bakteriefloran i mammorna genom att döda vissa bakteriesorter. Ungarna 



  

15 

från dessa mammor som behandlats med antibiotika under sin graviditet hade 

förändringar i vissa T-cell populationer i lymfnoderna i tarm-regionerna och deras 

bakterieflora var annorlunda samt att den hade lägre diversitet jämfört med ungar till 

mammor som inte behandlats med antibiotika. Ungarna till mammor som behandlats 

med antibiotika under graviditeten hade också ett annorlunda 

diabetesutvecklingsmönster.  

I den fjärde studien användes en kemikalie, dextran sulfate sodium (DSS) för att 

inducera inflammation i tarmen på möss som en modell för ulcerös kolit som är en 

inflammatorisk sjukdom i tarmen på människor. Symptomen av ulcerös kolit är bland 

annat smärtor i magen, diarré, blod i avföringen och viktnedgång. Vi studerade hur 

immunsystemet samt bakteriefloran i tarmen medverkade till den inflammatoriska 

processen i tarmen vid sjukdomsförloppet. Inflammationen bidrog till förstörelse av 

tjocktarmens ytceller och förändrade vilka typer av bakterier som fanns närvarande i 

tarmen. Inflammationen i tarmen ledde till att vissa immunceller ökade i antal i 

lymfnoderna i tarmregionen, vilket ökade mängden inflammatoriska signalsubstanser 

(cytokiner) i mössen, medan andra typer av immunceller minskade i antal. Genom att 

studera samspelet mellan tarmens bakterieflora och immunsystemets bidrag till 

inflammationen har vi ökat förståelsen av sjukdomen. 
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INTRODUCTION 

The immune system 

Our immune system is crucial for fighting infections and to do that in an efficient way 

it is divided into an innate and an adaptive immune system. The innate immune system 

includes cell types like monocytes/macrophages (Mφ) which are the first to arrive to an 

inflammatory site and initiate an unspecific immune response. For instance, Mφ 

recognize pathogen-associated molecular patterns (PAMPs) via Toll-like receptors 

(TLRs) and initiates an inflammatory response with secretion of pro-inflammatory 

cytokines and chemokines (Takeda et al. 2003). The effect of inflammatory cytokines 

results in physiological changes, such as increased blood flow to facilitate the 

transportation of more inflammatory cells to the inflammatory site. The subsequent 

rise in body temperature as the result of cytokine production is one of the preventative 

measures to inhibit the replication of invading microorganisms. In addition, released 

chemokines attract more effector cells to the site of inflammation. The innate immune 

response is the first line of defense of the immune system. Owing to the innate immune 

response the body is given more time to raise a secondary and more specific line of 

defense called the adaptive immune response(Janeway et al. 2001). Here, the main 

effector cells are the T cells and the B cells which are the producers of specific antibodies 

against pathogenic antigens. These adaptive immune cells act together with the antigen-

presenting cells (APCs) the dendritic cells (DCs), which have migrated to the site of 

inflammation. The migration allows the DCs to encounter pathogens and process into 

peptides. Once achieved, the DCs further migrate to the secondary lymphoid organs 

from the site of inflammation to present the antigens to naïve T cells (Guermonprez et 

al. 2002). The naïve T cell recognition of the antigen and activation leads to 
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proliferation of the T cells and differentiation into different effector T cell populations 

with different functions that are able to eliminate the pathogens during the adaptive 

immune response.  

The immune system is very effective in eliminating pathogens but mechanisms to clear 

the immune responses in order to maintain immunological balance (tolerance) is 

however one the most important features of the immune system. Similarly, tolerance is 

an essential feature of the gut immune system. With the high presence of 1011 intestinal 

bacteria per gram intestinal content of the colon, bacterial antigens that would normally 

induce an immune response are tolerated and do not induce immune reaction. This is 

an evolutionary symbiosis between intestinal bacteria and the host. Moreover, the 

commensal intestinal bacteria are not only passive bystanders, but can actively interact 

with the immune system to protect the body from pathogenic bacteria (Belkaid and 

Tarbell 2009). However, in genetically susceptible individuals, the breakdown of 

tolerance in the gut leads to inflammatory bowel diseases like ulcerative colitis (UC). 

On the other hand, breakdown of immunological tolerance in the pancreatic islets leads 

to the autoimmune disease type 1 diabetes (T1D). 

T T T T cellscellscellscells        

The T cells are divided into the two different types, the αβ T cells and γδ T cells. The 

γδ T cells have a more restricted antigen recognition than αβ T cells and respond more 

rapidly than the αβ T cells. For this reason, the γδ T cells are often referred to as 

“innate-like” T cells. The γδ T cells, in contrast to the αβ T cells, are able to recognize 

antigens without the need of pre-processing and presentation of pathogenic antigens 

by the APCs (Schild et al. 1994). Both the γδ T and αβ T cells play a role T1D 

development in the main mouse model for human T1D called the non-obese diabetic 
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(NOD) mice the (Markle et al. 2013). This is closer described in the future section 

“Non-obese diabetic mouse (NOD)”. However, the role of γδ T cells in NOD mice is 

complicated because they have also been shown to also have a protective function 

against T1D when isolated from the intestinal intraepithelial lymphocyte (IEL) 

populations (Locke et al. 2006). The involvement of γδ T cell lineage in the gut 

immune system is closer described in the section “Gut immune system”. 

The αβ T cells are the most common cells in the immune system. These cells are 

divided into CD4+ and CD8+ T cells based on their co-receptors. CD4+ T cells interact 

with the major histocompatibility complex (MHC) class II and differentiate into T 

helper cells (Th1 or Th2) upon activation. The differentiation into Th1 or Th2 cells 

depends on the types of cytokine present in milieu during activation (Constant and 

Bottomly 1997). Th1 cells are induced by interferon (IFN)-γ and  interleukin (IL)-12 

and their differentiation is regulated by the key transcription factor Signal transducer 

and activators of transcription (STAT)-4, which in its turn is regulating T-bet (Murphy 

et al. 2000). Differentiated Th1 cells secrete IL-2 and the pro-inflammatory cytokine 

IFN-γ, which is involved in activation of monocytes during inflammatory response and 

is involved in the pathology of T1D in pancreatic islets (El-Sheikh et al. 1999). This is 

further described in the “Pathogenesis of T1D” section.  

Cytokine milieus with IL-4 differentiates naïve T cells into Th2 cells. This 

transformation process is mediated by the key transcription factors STAT-6 and 

GATA-3 which results in secretion of cytokines such as IL-4, IL-5, IL-13 and IL-10 

(Murphy et al. 2000). Th2 cytokines promotes B cell differentiation and antibody 

production against specific pathogenic antigens. However, both Th1 and Th2 cells can 

participate in antibody responses. For example IL-4 promotes class-switch to IgE in 

response to parasites and IFN-γ can mediate class-switch to IgG2a against viral 

infections (Vinuesa et al. 2005).  
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In a state of tolerance breakdown the Th1 cells have been shown to be involved in 

pathogenesis of autoimmune diseases like type 1 diabetes (T1D), Crohn’s disease, 

multiple sclerosis (MS), rheumatoid arthritis (RA) etc. (Peluso et al. 2006; Larsen et al. 

2012; Oreja-Guevara et al. 2012). In contrast, Th2 cells are involved in pathogenesis 

of for instance UC, allergic disease, systemic lupus erythematosus (SLE) (Funauchi et 

al. 1998; Georas et al. 2005; Heller et al. 2005). 

There is another class of T cells, the Th17 cells. Naïve T cells are differentiated into 

Th17 cells in the presence of IL-23 and IL-6. However, the participation of 

transforming growth factor (TGF)-β and IL-21 have also been demonstrated in the 

induction of Th17 cells (Korn et al. 2009). The process of differentiation in this case 

is mainly under transcriptional regulation by STAT-3 and matured Th17 cells are able 

to produce the cytokine IL-17. The dual role of Th17 cells in the intestine is described 

in the section “Gut immune system”. Notably, the involvement of Th17 cells in the 

pathogenesis of T1D has been confirmed in animal models and has also been found to 

be increased as circulating cells in patients (Shao et al. 2012). The mechanisms by 

which Th17 cells are believed to mediate T1D development involves the suppression 

of regulatory T cells (Tregs) expansion, mediates T cell shift to Th1 phenotype and 

stimulates CD8+ cytotoxic T lymphocyte (CTL) responses (Shao et al. 2012).  

Tregs are necessary to keep the immunological balance to “self” and they are the main 

tolerance inducers. Natural CD3+CD4+CD25+ Tregs (nTregs) are derived from thymic 

differentiation and express the master regulator transcription factor Forkhead box p3 

(Foxp3). However, Tregs can also be induced in the periphery and are then referred as 

iTregs. Moreover, as not all iTregs express Foxp3, cells lacking Foxp3 expression are 

further sub-divided into Tr1 and Th3 cells which are characterized by their ability to 

secrete IL-10 and/or TGF-β (Curotto de Lafaille and Lafaille 2009). The mechanisms 

through which Tregs can suppress and regulate T cell responses as well as innate 
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immune responses are described in more detail in the “Tolerance versus autoimmunity” 

section. 

One of the main functions of the CD8+ T cell is the recognition of virus infected cells 

and abnormal cells such as cancer cells (Klenerman and Hill 2005; Gattinoni et al. 

2012). The recognition is mediated through the interaction with MHC class I, which 

is expressed on nearly all cells in the body. Naïve CD8+ T cells mature into cytotoxic T 

cells that have the ability to induce cellular apoptosis by releasing lytic granules 

containing perforins. These enzymes create pores in the lipid bilayer of the target cell 

and subsequently release proteases referred as granzymes. Also, CD8+ T cells could 

employ perforin-independent mechanism of cytotoxicity that involves binding of 

membrane incorporated Fas ligand (FasL) to Fas on the target cell. Both the release of 

perforin/granzymes and the Fas-FasL interaction induce the intrinsic apoptotic 

pathway by cleaving and activating pro-caspases (Russell and Ley 2002).  

T T T T cell developmentcell developmentcell developmentcell development    

All immune cells develop from hematopoietic stem cells and a common 

lymphoid progenitor (CLP) has been suggested for T and B cells (Kondo et al. 

1997; Wada et al. 2008). The differentiation of T cells occurs while the 

thymocytes are migrating through the cortical and medullary regions of the 

thymus (Figure 1). During migration through the cortex the thymocytes are 

characterized into different developmental stages based on their expression of 

extracellular and intracellular markers. The early maturation stages are defined 

mainly by the expression of KIT (CD117) and CD24 and later CD44 and 

CD25: CD44+CD25- (DN1), CD44+CD25+ (DN2), CD44-CD25+ (DN3) and 

CD44-CD25- (DN4). At the DN3 stage, T cells differentiate into either αβ T 

cells or γδ T cells (Taghon et al. 2006).  
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During the DN3 stage the pre-T cell receptor (pre-TCR) β-chain is rearranged 

with V(D)J recombination by joining the invariant D and J chain segments with 

the variable V chain. The recombination maximizes the T cell receptor (TCR) 

repertoire and increases the probability of antigen recognition. This process is 

called “β-selection”, in which the rearranged β-chain is combined with the 

invariant α-chain in the pre-TCR. The early pre-TCR is then tested for the 

ability to interact with the MHC molecule presented by the cortical thymic 

epithelial cells (cTECs) (Hoffman et al. 1996; Dudley et al. 2005). DN3 cells 

express T cell specific genes like the Recombination activation genes 1 and 2 

(Rag1 and Rag2) which encode for endonucleases that are active during the 

V(D)J recombination of the TCRβ chain as well as genes for CD3ε and Lck 

molecules (David-Fung et al. 2006). Collectively, these molecules are part of the 

T cell receptor which plays a critical role in the process of positive thymocyte 

selection. If the V(D)J recombination of the α and β chains is unsuccessful and 

TCR signaling fails, the thymocyte is eliminated by apoptosis that might involve 

p53. The involvement of p53 in the apoptosis of thymocytes during 

development is described further in the next section. Successful recombination, 

on the other hand, results in proper TCR signaling that mediates transition of 

the DN cells into the next maturation step (Jiang et al. 1996; Haks et al. 1999). 

Before the thymocytes fully gain CD4+CD8+ double positive (DP) expression, 

they undergo an intermediate stage of differentiation called immature-single 

positive (ISP) and transiently express CD4-CD8lo (Paterson and Williams 1987; 

Rothenberg and Taghon 2005). The commitment to the CD4+ or CD8+ lineage 

has been shown to be influenced by the Lck activity strength in the interaction 

with the MHC complex. High Lck activity gives stronger interaction with 

MHC, thus stronger TCR signal which mediates the differentiation into CD4+ 
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T cells whereas lower Lck activity will give rise to CD8+ T cells (Hernandez-

Hoyos et al. 2000).  

After passing positive selection, DP thymocytes migrate towards the medullary 

parts of the thymus. The migration of the DP thymocytes is directed by 

chemokines as for instance CCR7, binding to receptors expressed on medullary 

thymic epithelial cells (mTECs) (Takahama 2006; Nitta et al. 2008). In the 

medulla, thymocytes that interact with high-affinity to self-derived peptides are 

usually deleted by apoptosis in a process defined as the negative selection (Sebzda 

et al. 1999). Self-antigens are presented by the mTECs and dendritic cells in the 

medulla where they can provide the right co-stimulation by expression of the co-

stimulatory molecules B7.1 (CD80) and B7.2 (CD86) which are necessary for 

optimal negative selection (Page et al. 1993; Nitta et al. 2008). Finally, the naïve 

CD4+ or CD8+ single-positive T cells migrate into the periphery. Ultimately, 

only ~1% of thymocytes survive the maturation and migrate into the periphery 

(Berzins et al. 1999). 
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Figure 1. Figure 1. Figure 1. Figure 1. T cell maturation    in the thymus. As the thymocytes migrate through the thymic 
cortex they go through early DN1-DN4 maturation stages characterized mainly by the 
sequential expression of CD25 and CD44. The re-arrangement of the β-chain of the pre-TCR 
initiates between the DN3 to DN4 stage. Upon successful re-arrangement of the β− and α-
chains, the TCR is tested for the ability to recognize the MHC-peptide complex presented by 
the cTECs in a process defined as positive selection. At this developmental stage the 
thymocyte is double positive and express both CD4+ and CD8+ co-receptor molecules. As the 
DP thymocytes pass positive selection and migrate towards the medullary regions of the 
thymus they commit to either CD4+ or CD8+ T cell lineage. In the medullary regions the 
thymocytes go through the process of negative selection where they are eliminated by 
apoptosis if the affinity to self-antigens presented by the mTECs/DCs is too high. Only ~1% 
of the thymocytes pass both positive and negative selection and can migrate into the periphery 
as mature naïve T cells. 
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Cell cycle checkpoint and aCell cycle checkpoint and aCell cycle checkpoint and aCell cycle checkpoint and apoptosispoptosispoptosispoptosis    during thymocyte selectionduring thymocyte selectionduring thymocyte selectionduring thymocyte selection    

The TCR chain re-arrangement involves V(D)J recombination and is tightly 

linked with the non-homologous end joining (NHEJ) machinery. The NHEJ 

machinery is ligating the double strand breaks (DSB) during the recombination 

to avoid abnormal joining and chromosomal translocations (Lieber 2010). 

Following the V(D)J recombination in the β-selection, the cell cycle is arrested 

at a checkpoint to minimize the chance of proliferation in case of abnormal 

V(D)J recombination (Lin and Desiderio 1995). A role for the tumor suppressor 

protein p53 is suggested in the regulation of this cell cycle progression and 

apoptosis (Figure 2) (Guidos et al. 1996; Jiang et al. 1996; Haks et al. 1999; 

Costello et al. 2000). In contrast, it has also been shown that V(D)J 

recombination in vivo does not induce p53 expression in wild-type mice and 

that p53-/- mice have normal T cell development (Donehower et al. 1992; 

Guidos et al. 1996). In addition, Haks et al. showed that cell cycle arrest can be 

overcome. In CD3γ-/- mice the thymocytes can proceed with maturation even in 

the absence of functional pre-TCR receptor signaling (Haks et al. 1999). On the 

other hand, the cell cycle checkpoint seem to involve p53 activation in the 

immunodeficient SCID mice (Guidos et al. 1996). SCID mice have previously 

been shown to lack functional TCR and B cell receptors (Bosma and Carroll 

1991). More recently, Haines et al. demonstrated that blocking of lymphocyte 

development at the cell cycle checkpoints where RAG activity is present could 

provoke lymphogenesis in a genetic background of mice with deficient DNA 

damage response (Haines et al. 2006).  

Additionally, p53 was shown to be involved in apoptosis induction during 

negative selection (Figure 2) (Quaglino and Ronchetti 2001). Also, Zhu et al. 

demonstrated the involvement of E2F1 regulation of ARF and p53 in the 
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negative selection of thymocytes (Zhu et al. 1999). However, thymocyte 

apoptosis during negative selection have also been shown to involve the 

mechanism of Fas-FasL interaction (Kishimoto et al. 1998). Also, Fas 

independent mechanism of apoptosis of semi-mature thymocytes has been 

shown involving Bim (Bouillet et al. 2002; Villunger et al. 2004).  

 

FigureFigureFigureFigure    2222.... Illustration of the proposed cell cycle progression and G1 checkpoint during 

β-selection respectively negative selection in thymocyte development involving p53. 

Depending on different signaling involving p53 this can lead to cell cycle arrest and 

apoptosis of the thymocyte. 
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Nevertheless, changes in p53 levels can be involved in determining the outcome 

of apoptotic signals during specific stages of thymic development which can 

influence the susceptibility of thymocytes to apoptosis. In Study I, we tried to 

elucidate the control mechanism of p53-dependent DNA damage response in 

the presence of DNA strand breaks after V(D)J recombination as well as during 

negative selection in non-obese diabetic (NOD) mice.  

T cell activationT cell activationT cell activationT cell activation    

The T cells scan for antigens that are presented by the DCs in the lymph nodes, 

matching to their TCR specificity. When a fitting antigen is presented to the T 

cell an immunological synapse (IS) or contact is formed between the T cell and 

the APC. This mechanism is responsible for activation of T cells. The IS is 

divided into the central supramolecular activation cluster (cSMAC) and 

peripheral supramolecular activation cluster (pSMAC). The cSMAC includes 

the TCR, co-receptor CD4/CD8, co-stimulatory molecule CD28 and cytotoxic 

T lymphocyte activated antigen 4 (CTLA-4) (Figure 3) (Chen and Flies 2013). 

In this cluster, the CTLA-4 molecule is a negative regulator of T cell activation 

and is up-regulated upon T cell activation and leads to reduced T cell 

proliferation by inhibition of IL-2 transcription and subsequent cell cycle arrest 

through inhibition of cyclin D3 and cyclin dependent kinases (Brunner et al. 

1999). Moreover, the pSMAC includes other co-stimulatory molecules such as 

CD2 that interacts with CD48/59 expressed on APCs and adhesion molecules 

like LFA-1 that interacts with ICAM-1 on the APC (Chen and Flies 2013). T 

cell activation engages the phosphorylation of immunoreceptor tyrosine-based 

activation motifs (ITAMs) of the TCR-associated CD3 chains by Fyn and 

CD4/CD8 co-receptor by Lck. As a consequence, the tyrosine kinase ZAP-70 is 
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activated and in turn is phosphorylating several adaptor proteins including linker 

for activation of cells (LAT). The adaptor proteins mediate activation of 

phospholipase C (PLC)-γ that generates diacylglycerol (DAG) and inositol-tri-

phospate (IP3) activate the downstream protein kinase C (PKC). Engaged PKC 

through various signaling pathways ultimately generates elevated cytosolic Ca2+ 

influx and activation of transcription of transcription factors including NF-κB, 

NF-AT and AP-1 (Kane et al. 2001; Srikanth and Gwack 2013; Gerondakis et 

al. 2014). These transcription factors in turn induce different effector molecules 

that cause T cell differentiation with effector functions as well as IL-2 production 

necessary for T cell proliferation and expansion. 
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FigureFigureFigureFigure    3333.... The TCR interaction with an appropriate MHC-peptide complex 
leads to T cell activation initiated by formation of the immunological synapse 
(IS) which is a contact area between the T cell and the APC. At the stage of T 
cell activation the TCR-associated CD3 chains is phosphorylated by the tyrosine 
kinase Lck. CD28 interaction with B7.1 or 2 provides a necessary co-stimulatory 
signal. ZAP-70 becomes activated by phosphorylation that leads to recruitment 
of the adaptor protein LAT. LAT then induces a downstream signaling cascade 
that ultimately activates the nuclear transcription factors NF-κB, NF-AT and 
AP-1. 

TTTTolerance versus autoimmunityolerance versus autoimmunityolerance versus autoimmunityolerance versus autoimmunity    

Central tolerance is established by eliminating potentially self-reactive T cells that TCR 

binds to with high affinity to self-antigens during thymocyte development. However, 

all potentially auto-reactive T cells are not deleted because all self-antigens are not 

present in the thymus. Therefore, mechanisms exists in the periphery to maintain 

peripheral tolerance. This include induction of T cell anergy, T cell deletion and T cell 

suppression. Tregs are responsible for the suppression of self-reactive T cells by several 

mechanisms. For example, anergy is characterized by the total lack of T cell response 

and can be induced by the absence of co-stimulation from B7 family molecules on the 
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APC cell at T cell activation and by CTLA-4 up-regulation (Rudd et al. 2009). Tregs 

have been shown to suppress T cell responses by inducing down-regulation of co-

stimulatory molecules and IL-2 production by APC’s through direct cell-cell mediated 

interaction (Cederbom et al. 2000; Vendetti et al. 2000). CTLA-4 which is 

constituently expressed on Tregs may be also involved in suppression of T cell function 

(Read et al. 2000; Takahashi et al. 2000). For instance, Tregs have been described to 

suppress tryptophan catabolism in DCs in CTLA-4 mediated fashion and direct cell-

cell interaction with B7 family molecules (Fallarino et al. 2003). The enzyme 

tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) that catabolizes 

tryptophan in DCs, has been shown to be involved in suppression of antigen-driven 

proliferation of T cells (Munn et al. 2004). Alternatively, CTLA-4 could also directly 

give a negative proliferation signal of T cell responses through interaction with the B7 

family molecules (Paust et al. 2004).  

Direct T cell deletion is achieved through Fas-FasL interaction which initiates intrinsic 

apoptosis program of the cell including downstream caspase cascade activation (Russell 

and Ley 2002). Similarly, Tregs could potentially be used to induce apoptosis of 

effector T cells by using FasL. For instance, Tregs primed with FasL administrated to 

mice with chronic colitis, were shown to severely reduce the pathogenic burden of the 

animals (Kaminitz et al. 2013). 

Tregs have also been shown to suppress both T cell responses and innate immune cells 

through secretion of IL-10 and TGF-β. The anti-inflammatory functions of IL-10 

include inhibition of Th1 activation and reduction of cytokine secretion from effector 

T cells and additionally inhibiting antigen-induced proliferation by down-regulation 

of co-stimulatory molecules on APCs (Letterio and Roberts 1998; Moore et al. 2001; 

Maloy et al. 2003). The IL-10 and TGF-β immunosuppressive mechanisms are 
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particularly crucial for maintaining intestinal tolerance and inhibiting development of 

intestinal inflammation (Asseman et al. 1999). Further description of this subject is 

outlined in the “Gut immune system” section. 

Defects in the mechanisms responsible for maintenance of central and peripheral 

tolerance, as described above, leads to breakdown of tolerance which results in 

autoimmune diseases like T1D and inflammatory bowel disease (IBD). 

Autoimmune diabetes (type 1 diabetes) 

Autoimmune diabetes, also known as T1D is characterized by insulin deficiency due 

to β-cell destruction caused by immune cells infiltrating the pancreatic islets. The loss 

of β-cell mass results in elimination of insulin production and consequently impaired 

uptake of glucose to the cells which give rise to systemic hyperglycemia and 

ketoacidosis. As the result of failure of insulin production, T1D leads to a lifelong 

insulin dependency. Until 1920’s T1D was untreatable and a therefore considered as a 

fatal disease. The scientists Frederick Banting, Charles Best and John Macleod changed 

the paradigm by successfully treating a diabetic dog with pancreatic extract from a 

healthy dog. They also managed to treat the first human, a boy dying from diabetes, by 

injecting a more refined extract of insulin (Banting et al. 1922; King and Rubin 2003). 

A better understanding of the disease causing mechanism of came with the discovery 

of autoantibodies in 1974 which suggested that T1D was an autoimmune disease 

(Bottazzo et al. 1974). To date, the major autoantibodies against β-cell antigens target 

insulin (IAA), glutamic carboxylase acid 65 (GADA), insulinoma-associated protein 2 

(IA-2A) and Zinc transporter 8 (ZnT8A) (Atkinson et al. 2014). 

The triggers that initiate the autoimmune attack on the β-cells by the T cells and other 

mononuclear cells to date remains elusive. However, it is believed that potentially 
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autoreactive T cells that escaped clonal deletion are activated by DCs presenting β-cell 

antigens which they encounter in pancreatic islets during very early insulitis. 

Alternatively, T cells may be activated by β-cell antigens that are released after a virus 

infection from damaged β-cells as a result of the inflammatory response. 

Epidemiologically, the highest prevalence of T1D is observed particularly in Finland, 

but also in the other Scandinavian countries and Sardinia, whereas the disease 

prevalence is less frequent in Asia, Southern Europe and Middle East (Tuomilehto 

2013). Although, there is a strong genetic basis of the disease, the incidence of T1D is 

increasing globally with approximately 2.8 % each year (Group 2006). Thus, triggering 

environmental factors in addition to genetic factors are important for the initiation of 

T1D. 

PathoPathoPathoPathogenesisgenesisgenesisgenesis    of T1Dof T1Dof T1Dof T1D    

Histological similarities but also differences of T1D have been observed between 

humans and mice. For example, diabetogenic CD8+ T cells, CD4+ T cells, monocytes 

and B cells have been observed in pancreatic islets of humans and mice during insulitis 

(Wong et al. 1999; Willcox et al. 2009). However, peri-islet insulitis and the massive 

infiltration of pancreatic islets in NOD mice have in contrast not been found in 

humans in which insulitis has only been observed in <10 % of islets (In't Veld 2014).  

Animal studies show that the inflammatory process in the pancreatic islets during early 

insulitis is driven by diabetogenic T cells and mononuclear cells. Diabetogenic T cells 

primarily induce β-cell death through the Fas-dependent mechanism, as described 

earlier. In addition, T effector cells secrete IFN-γ and tumor necrosis factor (TNF-α) 

(Varanasi et al. 2012) and monocytes secrete pro-inflammatory cytokines including IL-

1β and TNF-α (El-Sheikh et al. 1999; Calderon et al. 2008). These cytokines are 
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responsible for both maturation and activation of immune cells and attraction of more 

immune cells to the pancreatic islets (Bergholdt et al. 2004; Cantor and Haskins 2007; 

Schoenborn and Wilson 2007; Ben-Sasson et al. 2009). The released pro-inflammatory 

cytokines IL-1β, TNF-α and IFN-γ activate several intrinsic apoptosis pathways in the 

β-cells that induce cell death (Eizirik and Mandrup-Poulsen 2001; Gurzov et al. 2009). 

Further, in response to secreted IL-1β and TNF-α, activation of the NF-κΒ pathway 

results in the expression of genes of several chemokines and inducible nitric oxide 

synthase (iNOS) (Kurrer et al. 1997; Mandrup-Poulsen 2003; Ortis et al. 2008; 

Quintana-Lopez et al. 2013). Moreover, β-cell exposure to TNF-α and IFN-γ induce 

apoptosis through the activation of the transcription factor STAT-1 and pro-apoptotic 

protein Bim (Barthson et al. 2011).  

In short, the β-cell inflammatory response is actively involved in the pathogenesis of 

T1D and ultimately resulting in the loss of β-cell mass. The decrease in β-cell mass due 

to β-cell death in turn causes insulin deficiency and chronic hyperglycemia.  

Genetics of T1DGenetics of T1DGenetics of T1DGenetics of T1D    

The strongest genetic association with T1D susceptibility is found in the human 

leukocyte gene (HLA) class II and in NOD the mouse analogue I-Ag7, which encodes 

the MHC II molecule. In humans the HLA genes account for approximately 40-50 % 

of the T1D risk (Noble and Valdes 2011). The HLA class II gene is situated on 

chromosome 6p21 locus and has several susceptibility regions. The DR3-DQ2 and 

DR4-DQ8 regions confer the highest T1D risk and are present in 90 % of Caucasian 

T1D patients (Kockum et al. 1999; Devendra et al. 2004). 

Also, genetic variation in non-HLA genetic susceptibility genes is associated with 

human T1D. For instance, the variable number tandem repeats (VNTRs) upstream of 
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the insulin gene (INS) which are located on chromosome 11p15.5 is a known genetic 

susceptibility region (Undlien et al. 1995). The PTPN22 gene is a second non-HLA 

susceptibility gene for T1D (Smyth et al. 2004). PTPN22 gene is located on 

chromosome 1p13 and is encoding the lymphoid tyrosine phosphatase LYP that is 

involved in down-regulation of T cell activation. Also, the CTLA-4 gene (located on 

chromosome 2q33) has also been associated to T1D (Nistico et al. 1996). In addition, 

in the NOD mouse CTLA-4 is suggested to be one of the candidate susceptibility genes 

(located in Idd5 on chromosome 1). Moreover, CTLA-4-/- mouse lymphocytes are 

similarly to NOD lymphocytes resistant to γ-irradiation induced apoptosis (Bergman 

et al. 2001). Apoptosis resistance of NOD lymphocytes is further described in the 

section “Non-obese diabetic mouse (NOD)”. 

Environmental factors in T1D and inflammation 

Although the genetic factors are established to be the strongest contributor to increased 

T1D risk, it is not clear how the disease is initiated. Environmental factors that have 

been considered in triggering T1D include for instance virus infections by 

enteroviruses, cytomegaloviruses, rotaviruses and herpesviruses. Viruses with the 

strongest association to T1D risk are enteroviruses. The probability of finding 

enteroviruses is 10 times higher in T1D patients than in healthy individuals (Yeung et 

al. 2011). The presence of Coxackie virus B1 has been associated with two or more 

autoantibiodies found in the serum of children that were progressing towards T1D 

(Lonnrot et al. 2000; Laitinen et al. 2014). Recently, Ferreira et al. and Kallionpää et 

al. reported an increased innate IFN-γ expression pattern that are associated with virus 

infections in children with genetic predisposition prior to progression to T1D (Ferreira 

et al. 2014; Kallionpaa et al. 2014). Although, virus infections notably seem to trigger 
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β-cell autoimmunity in some T1D susceptible individuals, only a low percentage 

develop the disease considering the high frequency of virus infections.  

Other environmental factors which could influence the development of T1D are infant 

and maternal diet as well as intestinal microbiota (Vaarala 2004; Norris 2010; Vaarala 

2013). For instance, hydrolyzed casein in the diet increased plasma insulin 

concentration and insulin content in islets as well as reduce L-glutamine oxidation in 

both islets and mesenteric lymph nodes (MLNs) resulting in decreased diabetes 

incidence in diabetes prone BB rats (BBdp) (Malaisse et al. 2000; Scott et al. 2000). A 

certain type of wheat protein diet has on the other hand been shown to accelerate 

diabetes incidence in BBdp rats (Chakir et al. 2005). In children with genetic risk for 

T1D, a recent association study could not show any difference in risk to develop β-cell 

autoimmunity after use of hydrolyzed casein formula and autoantibodies (Knip et al. 

2014). Another dietary factor that is associated with increased risk of T1D in humans 

is low intake of vitamin D (Littorin et al. 2006). In NOD mice the administration of 

oral vitamin D has been shown to protect NOD mice from T1D. More specifically, 

the intake of 50 ng of vitamin D per day prevented the onset of T1D through 200 days 

of age (Zella et al. 2003). Supplementation of vitamin D in humans was observed to 

benefit T1D patients with vitamin D deficiency and intake of vitamin D combined 

with calcium resulted in improved glycemic control (Aljabri et al. 2010). In short, the 

dietary effects of vitamin D seem to benefit both NOD mouse and human with T1D.  

Dietary components have the ability to modulate the gut microbiota. The connection 

of the intestinal microbiota to development of autoimmune disease as well as 

inflammatory bowel disease is addressed in the next couple of sections. 
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Commensal gCommensal gCommensal gCommensal gut microbiotaut microbiotaut microbiotaut microbiota    

The gut microbiota is largely heterogeneous and consists of anaerobic, aerobic and 

facultative aerobic bacteria with increasing proportion of anaerobic bacteria in the distal 

areas of the intestine. The dominating phyla in the colon are the Firmicutes (including 

genera of Clostridium, Enterococcus, Lactobacillus and Lactococcus) and Bacteroidetes 

with mainly Bacteroides species (Hold et al. 2002; Eckburg et al. 2005). The minorities 

(approximately 10 %) of the colonic microbiota include Bifidobacterium, Enterobacter 

and Fusobacterium genera (Backhed et al. 2005; Eckburg et al. 2005). Although there 

are variations of bacterial strains in different individuals and also between family 

members, the overall phylotypes are conserved (Turnbaugh et al. 2009), which suggests 

similar metabolic function. The symbiosis between the gut microbiota and the host 

gives the benefit of maximizing extraction of dietary energy by fermentation of dietary 

carbohydrates, vitamin synthesis (K, B12, biotin, folic acid) and amino acid synthesis 

(Hooper et al. 2002). Another advantage of the gut microbiota is their ability to act as 

a protective barrier against pathogenic bacteria which is further described in the “Gut 

immune system” section. In addition, the gut microbiota is necessary for proper 

development of the immune system, demonstrated by the fact that mice kept in germ-

free (GF) conditions have underdeveloped gut-associated immune tissues, lower 

amount of CD8+ intraepithelial T cells with impaired function and fewer plasma cells 

(Round and Mazmanian 2009). This indicates that the maternal gut microbiota is 

important for development of the fetal immune system as well as early priming against 

commensal microbes. 

Previously it has been shown that already after 48h after birth the gastro-intestinal tract 

of a child is colonized with strains of Lactobacillus, Bifidobacterium, Bacteroides fragilis, 

Enterococcus and Enterobacteriaceae (Karlsson et al. 2011). The maternal, gut 

microbiota, vaginal flora and skin are important sources but also hospital environment 
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can be a bacterial source (Mackie et al. 1999; Favier et al. 2002; Fanaro et al. 2003). 

Recently, evidence points out that transplacental transmission of the microbiota of 

mothers starts already during pregnancy (Satokari et al. 2009) and also postnatally with 

the mothers’ milk in both humans (Martin et al. 2003) and mice (Zhou et al. 2000). 

There are even new evidence that the placenta itself harbors microbiota similar to the 

mother’s oral microbial pattern (Aagaard et al. 2014). Therefore in Study III, we 

investigated whether derangement of the maternal gut microbiota during pregnancy 

could impact on the development of the offspring’s gut microbial pattern, gut immune 

system and impact the incidence of autoimmune diabetes. 

Gut microbiota and T1DGut microbiota and T1DGut microbiota and T1DGut microbiota and T1D    

In the state of disease the gut microbial pattern is often altered compared to healthy 

individuals. For example, it has been observed that children progressing towards T1D 

had decreased proportion of Firmicutes which was accompanied by an increase in 

Bacteroidetes phyla (Giongo et al. 2011). Other observations show that Bacteroides, 

Clostridium and Veillonella genera were more abundant in children with β-cell 

autoimmunity with lower abundance of the Bifidobacterium, Lactobacillus and 

Prevotella genera’s compared to healthy children (de Goffau et al. 2013; Murri et al. 

2013). In the NOD mouse, it has been shown that the gut microbiota has the potential 

to modulate diabetes development (King and Sarvetnick 2011; Kriegel et al. 2011). In 

the same line, NOD mice bred in germ-free conditions displayed higher incidence of 

T1D or increased insulitis compared to specific pathogen-free (SPF) conditions 

(Pozzilli et al. 1993; Alam et al. 2011; Tlaskalova-Hogenova et al. 2011). In addition, 

modulation of the gut microbiota by the use of antibiotics has been shown to alter 

diabetes incidence in both NOD mice (Wen et al. 2008; King and Sarvetnick 2011; 
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Kriegel et al. 2011) and BB rat models of type 1 diabetes (Brugman et al. 2006; Roesch 

et al. 2009).  

TTTThe ghe ghe ghe gut immune systemut immune systemut immune systemut immune system    

The intestines are among the largest areas of contact of the body to external antigens 

(both dietary and potential pathogens) and not surprisingly the largest amount of 

immune cells can be found in the gut-associated lymphoid tissues (GALT), (Figure 4.) 

The GALT mainly consists of the Peyer’s patches, MLN (that drain the intestines more 

distally), isolated lymphoid follicles and the lymphocyte populations in the connective 

tissue of the intestine, the lamina propria (LP) (Izcue et al. 2009). The Peyer’s patches 

have the anatomical structure of a lymph node with B cell and T cell areas and the 

development of the Peyer’s patches in intestine is not dependent on the gut microbiota 

(Mowat 2003). In contrast, the number of isolated lymphoid follicles could be triggered 

by intestinal microbiota and the number of follicles increases during chronic 

inflammation (Lorenz et al. 2003). 

The gut microbiota is actively involved in the gut-immune responses to maintain the 

immunological balance in the GI tract. The commensal gut microbiota can actively 

defend the intestinal epithelial cells (IEC) against pathogenic bacteria by inducing the 

secretion of antimicrobial peptides like α-defensins and lysozyme from a type of 

epithelial cells, the Paneth cells (Ayabe et al. 2000). Another type of epithelial cells, the 

Goblet cells, secrete mucin with high quantities of glycosylated proteins that forms a 

gel-like mucus layer on the epithelial surface that limits the contact with the intestinal 

bacteria (Hansson and Johansson 2010).  



  

39 

Figure 4. The figure shows the intestinal architecture and the gut-associated lymphoid tissues 
(GALT), the Peyer’s patches and mesenteric lymph nodes (MLN). The monolayer of several 
intestinal epithelial cells connected with tight junctions form the architecture of the villi and 
crypts. The Goblet cells secrete mucus that covers the epithelial cell layer to limit the contact 
with the bacteria in the lumen. The Paneth cells secrete antimicrobial peptides which adds to 
another line of defense to the intestinal barrier together with the IgA antibodies secreted from 
differentiated B cells, the plasma cells. Peyer’s patches (located to the left in the illustration) have 
distinct B cell and T cell areas and specialized type of cells towards the lumen called microfold 
(M) cells. The M cells have the ability to catch and transmit soluble antigens and bacteria to the 
Peyer’s patch where they can either be processed by dendritic cells or ingested by macrophages 
(Mφ). DC, Mφ and intraepithelial T cells (IEL) populations are also present within the epithelial 
cell layer and in the lamina propria (LP), situated between the epithelium and the deeper 
submucosa. The DC have the ability to stretch between the tight junctions of the epithelial cells 
and collect soluble antigens directly from the lumen.  

 

Innate immune responses to limit intestinal barrier penetration by bacteria can be a 

MyD88-dependent TLR activation that leads to the production of antimicrobial 

peptides (Vaishnava et al. 2008). Moreover, TLR2 signaling has also shown to enhance 

tight junctions between the IEC and contribute to an even more restricted environment 
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against bacterial penetration (Gibson et al. 2008). Another mechanism by which 

commensal bacteria, particularly SFB, limit bacterial expansion is through the 

induction of IgA via the adaptive immune response. (Suzuki et al. 2004). Secreted IgA 

could be involved in trapping the bacteria in the mucus layer (Fagarasan and Honjo 

2003). SFB in LP and small intestine have also been demonstrated to induce the 

expansion of Th17 cells leading to protection against Citerobacter rodentium infection 

(Ivanov et al. 2009). In addition, the recruited Th17 cells from secondary lymphoid 

organs to Peyer’s patches have recently shown to also be involved in induction of IgA 

response (Hirota et al. 2013). However, Th17 cells are also involved in the chronic 

inflammation and development of IBD in the colon by mediating recruitment of 

neutrophils (Honda and Takeda 2009). Also, Th17 differentiation could further the 

disease progression by inhibiting Treg differentiation (Izcue et al. 2008). Thus, the 

Th17 cells in the gut environment is complex and demonstrated to have a dual role in 

disease protection and amplification. 

With respect to the symbiosis of commensal bacteria, there is a mechanism to mediate 

T cell tolerance towards commensal gut microbiota and in the intestine. This 

mechanism is controlled by Foxp3+ Tregs or IL-10/TGF-β producing iTreg cells. The 

production of IL-10 prevents the activation of Mφ that inhibits the recruitment of T 

effector cells to the intestine (Asseman et al. 1999; Powrie 2004). In addition, 

intraepithelial γδ T cells have been demonstrated to induce and maintain oral tolerance 

by secretion of IL-10 (Kapp et al. 2004; Yue et al. 2013). Breakdown of tolerance in 

the intestines causes intestinal inflammation because the immune system overreacts to 

commensal bacterial antigens in genetically susceptible individuals or fail to down-

regulate immune response. Inflammation reduces intestinal mucus layer which allows 

for more contact of the bacteria to the intestinal epithelial cells and increases interaction 
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with the immune system. Chronic intestinal inflammation ultimately manifests in 

ulcerative colitis (UC), an inflammatory bowel disease. 

Ulcerative Colitis (UC)Ulcerative Colitis (UC)Ulcerative Colitis (UC)Ulcerative Colitis (UC)    

Ulcerative colitis and Crohn’s disease are two major forms of IBD. The clinical 

symptoms include diarrhea, rectal bleeding, weight loss and abdominal pain (Podolsky 

2002). The development of UC is influenced by multiple factors including genetic 

susceptibility and environmental factors like intestinal microbiota and the relationship 

of the gut microbiota and the immune system. Genetic susceptibility regions associated 

with UC are IL-10 and ARPC2 regulatory pathways as well as the known T1D 

susceptibility regions HLA/MHC and PTPN2 and PTPN22 (Kaser et al. 2010). 

Although it is not known whether altered gut microbiota is a causative factor of UC, it 

has been shown that the intestinal microbiota in mucosa of UC patients contains a high 

proportion of Pseudomonas aeruginosa, Bacteroides fragilis and Clostridium difficile while 

strains of Lactobacillus decrease during active colitis (Fabia et al. 1993; Wang et al. 

2007). 

Colitis in animal models can be pathogen induced (Citrobacter rodentium), genetically 

induced through IL-10 deletion or alternatively chemically induced with dextran 

sodium sulfate (DSS) (Kaser et al. 2010). The DSS in vivo model has widely been used 

since the 1990’s because when administered orally it can both induce acute and chronic 

colitis in rodents and because that the histopathological characteristics are similar to 

human UC (Okayasu et al. 1990). The mechanism by which DSS induces colitis is to 

the present day elusive. However, recent studies show that DSS can form nanovesicles 

with medium-chain-length-fatty acids (MCFA) which can fuse with colonocyte 

membrane. Delivery of the DSS into the epithelial cells can negatively affect the 

function and activate inflammatory signaling pathways which ultimately leads to 
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increased intestinal permeability (Laroui et al. 2012). Interestingly, MFCAs are present 

at high concentrations in the colonic lumen (Schmidt et al. 2011) and salts of the 

MFCAs capric and lauric acids have been shown to increase rectal drug absorption, 

probably due the effects on the intestinal tight junction barrier function (Laroui et al. 

2012). Increased colonic mucosal permeability also allows increased translocation of 

bacteria and endotoxin from the lumen which can both induce inflammatory reaction 

and impinge on the function of the epithelial cells (Kitajima et al. 1999). Increased 

TLR recognition as the result of translocation of bacteria and endotoxins mediates 

increased cytokine production by monocytes that further amplifies the inflammatory 

process (Cario 2005). Thus, chemical initiation of inflammation by DSS could trigger 

and exaggerate the biological events of inflammation. 

The cells present in the ulcerative lesions in the intestinal mucosa during acute 

inflammation include lymphocytes, mast cells, Mφ and neutrophils (Fiocchi 1997). In 

children with UC, an increase of Th-17 cells is observed in the colonic mucosa together 

with increased concentrations of the cytokines IL-6, IL-22 and IL-17 (Holtta et al. 

2013). Interestingly, Hölttää et al. reported an increase in the number Foxp3+ Tregs 

and this finding is further discussed in Study IV. Previously, it was believed that the 

Th-2 cells were the main mediators of UC. However, at present it is well-known that 

Th-17 cells and the cytokines they secrete are also crucially involved in UC to initiate 

and enhance the inflammatory process (lvez 2014). The inflammatory Mφ are well-

known contributors to inflammation in IBDs. Another type of mediator in IBD are 

mast cells. In DSS-induced mouse model these cells release Mast cell protease 6, a 

tryptase that acts upstream of many factors implicated in IBD. The production of the 

enzyme after DSS treatment enhances pro-inflammatory cytokines and chemokines 

that specifically attract neutrophils and other extracellular matrix remodeling enzymes 

that partake in the DSS-mediated loss of epithelial cells. Thus, mast cells and their 
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production of tryptase are also important inflammatory instigator of IBD (Hamilton 

et al. 2011).  

microRNAs 

MicroRNAs (miRNAs) belong to a class of small endogenously expressed non-coding 

RNAs (ncRNAs) and were first identified in 1993 by Lee et al. and Wightman et al.. 

They identified previously unknown RNA element regulating the developmental 

timing of C. elegans, the lin-4 and lin-14 (Lee et al. 1993; Wightman et al. 1993). In 

1998, RNA interference (RNAi) was described by Fire et al. as the mechanism by which 

miRNAs regulate target mRNAs (Fire et al. 1998). After the discovery of the first 

miRNAs, in years 2000-2003, a set of papers was the big kick-off for the miRNA field 

showing that many miRNAs were not only expressed in C. elegans but in fact in all 

mammals and were very evolutionary conserved between species (Pasquinelli et al. 

2000; Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and Ambros 2001; Lagos-

Quintana et al. 2003). Today, there are around ~2000 identified miRNAs in the 

database miRbase (http://www.mirbase.org) and notably, it is estimated that miRNAs 

can regulate approximately 60 % of the human genome (Friedman et al. 2009). 

The size of miRNAs is around ~22 nucleotides and they regulate gene expression by 

direct binding of the miRNA to the 3’UTR of a target messenger RNA (mRNA). 

MiRNA binding to target mRNA typically leads to degradation of the mRNA or 

hindering the translation of the mRNA to protein (He and Hannon 2004). One 

miRNA can have several mRNA targets and miRNAs are often transcribed in clusters 

that work in networks in fine-tuning the regulation of for example cellular processes 

such as proliferation, developmental timing, cell differentiation, apoptosis and immune 

function (Bartel 2009). 
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miRNA biogenesis and functionmiRNA biogenesis and functionmiRNA biogenesis and functionmiRNA biogenesis and function    

During the canonical miRNA biogenesis pathway the miRNA gene is transcribed in 

the nucleus of the cell and the pri-miRNA is cleaved by the Drosha/DGCR8 

microprocessor complex into a ~70 nucleotide long pre-miRNA (Lee et al. 2003; 

Cullen 2004; Han et al. 2004). The hairpin-looped pre-miRNA is then transported to 

the cytoplasm by Exportin 5 (Lund et al. 2004) and further processed by RNAse III 

endonuclease Dicer to a single stranded mature miRNA (Tomari and Zamore 2005). 

At this stage, the mature miRNA is incorporated into the RISC protein complex which 

directs the binding of the “seed region” of the miRNA to the 3’UTR of the target 

mRNA (Figure 5). This process results in the destabilization and degradation of mRNA 

or directly hinder translation (Pasquinelli et al. 2005; Bartel 2009).  

Moreover, evidence suggests that miRNAs could exert their inhibitory function by 

binding to the 5’UTR of target mRNAs (Lytle et al. 2007; Orom et al. 2008). In 

contrast, miRNAs are also able to increase translation of target mRNA. Ørom et al. 

showed that miR-10a increased translation of mRNA encoding ribosomal proteins and 

by increasing ribosomal biogenesis, the level of global protein synthesis was also raised 

(Orom et al. 2008). Furthermore a “decoy function” has been suggested for miRNA-

328 which independently of the 3’ UTR seed sequence competitively interacts with a 

RNA binding protein, that normally inhibits translation and thereby indirectly lead to 

up-regulation of translation (Eiring et al. 2010). Also, epigenetic regulation by miRNAs 



  

45 

is indicated by direct binding to genomic DNA thus directing DNA methylation (Kim 

et al. 2008; Khraiwesh et al. 2010).  

FigureFigureFigureFigure    5555.... The miRNA gene is transcribed and the pri-miRNAs transcript is cleaved by the 
Drosha/DGCR8 microprocessor complex into a pre-miRNA that is exported to the cytoplasm 
by Exportin 5 and processed by Dicer into shorter mature miRNAs. The matured miRNA is 
then incorporated into the RISC protein complex that silence either translation of genes or 
induces the degradation of mRNAs. 

In addition to the canonical miRNA biogenesis pathway, Dicer-independent miRNA 

biogenesis has been shown for miRNA-451 (Cheloufi et al. 2010; Cifuentes et al. 

2010). The Argonaute2 (Ago 2) protein which is a member of the RISC complex 

contains a Piwi domain that acts as catalytic center for “slicer” activity that can cleave 

pre-miRNA transcripts (Cheloufi et al. 2010; Cifuentes et al. 2010). There are also 

Drosha-independent miRNAs transcribed from introns called the mirtrons. The 

mirtrons are Dicer dependent but bypasses Drosha processing by using RNA 
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sliceosome activity for pre-miRNA cleavage (Okamura et al. 2007; Flynt et al. 2010). 

Lately, many other types of small non-coding RNAs have been discovered including 

tRNAs, piRNAs, qiRNAs, vault RNAs, lincRNAs etc. and their biogenesis include 

both Dicer and/or Drosha dependent and independent biogenesis pathways (Carthew 

and Sontheimer 2009; Lee et al. 2009; Cesana et al. 2011; Yang and Lai 2011).  

miRNAs inmiRNAs inmiRNAs inmiRNAs in β β β β----cellscellscellscells    and T1Dand T1Dand T1Dand T1D        

The absence of mature miRNAs after deletion of Dicer 1 demonstrates that canonical 

miRNA expression overall is necessary for normal development of the endocrine 

pancreas (Lynn et al. 2007) and for maintenance of β-cell mass as well as glucose 

homeostasis including insulin expression and insulin secretion (Morita et al. 2009; 

Kalis et al. 2011; Mandelbaum et al. 2012).  

The miR-375 was among the first key miRNAs found to be highly abundant and 

important for the pancreatic β-cell function. It was shown that miR-375 regulates 

insulin secretion and maintenance of both β-and α-cell mass (Poy et al. 2004; El 

Ouaamari et al. 2008; Poy et al. 2009). The crucial role of miR-375 was also 

demonstrated during pancreatic islet development in which the absence of miR-375 

resulted in malformation of the pancreatic endocrine (Kloosterman et al. 2007). The 

miRNAs miR-24, miR-26, miR-182 and miR-148 are involved in insulin synthesis by 

inhibiting transcriptional repressors consequently resulting in increased insulin 

promoter activity (Melkman-Zehavi et al. 2011). The regulation of insulin secretion 

also involves miRNAs. Namely miRNAs miR-124, miR-96, miR-130a, miR-132, 

miR-212 and miR-335 have been linked to the regulation of insulin exocytosis (Lovis 

et al. 2008; Esguerra et al. 2011).  
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MiRNAs miR-21, miR-34, miR146a/b and miR-29 are pinpointed in the regulation 

of β-cells inflammatory response to pro-inflammatory cytokines in mice and humans, 

thus contributing to loss of β-cell mass during the progression of diabetes. For instance, 

miR-29 is involved in the down-regulation the anti-apoptotic protein 

Monocarboxylase transporter 1 (Mcl-1) that belongs to the Bcl-2 family (Roggli et al. 

2010; Roggli et al. 2012). Recently, it was shown that a single nucleotide 

polymorphism (SNP) in the pre-miR-34a gene in human and mouse insulinoma cell 

lines, led to increased amount of miR-34a in islets causing increased β-cells apoptosis 

(Locke et al. 2013). Additionally, miR-21 has been shown to be up-regulated by NF-

κB activation which by mediating suppression of programmed cell death 4 (PDCD-4) 

increases β-cell apoptosis through Bax (Ruan et al. 2011). 

miRNAs inmiRNAs inmiRNAs inmiRNAs in    T T T T cellscellscellscells    and the immune systemand the immune systemand the immune systemand the immune system    

The role of miRNA regulation in T cells has been investigated in various Dicer deletion 

models. Cobb et al. demonstrated by deleting Dicer during early thymocyte 

development (mediated by Lck or CD4 promoters) that canonical miRNAs are 

essential for the number of surviving αβ T cells but redundant for CD4+ and CD8+ 

lineage commitment (Cobb et al. 2005). While Dicer deletion from DP cortical 

thymocytes showed a moderate effect on CD4+ and CD8+ T cell numbers, the invariant 

NK T cell development was affected with largely diminished numbers (Fedeli et al. 

2009).  

Deletion of Dicer and DGCR8 in CD4+ T cells illustrated that miRNAs are also 

important for nTreg development and function (Cobb et al. 2006) as well as Foxp3 

expression stability (Jeker et al. 2013). Cobb et al. showed that the miRNA expression 

profile in activated CD4+ T cells differed from the miRNA expression in regulatory T 

cells (Cobb et al. 2006). More recent evidence suggests that miRNAs expressed in 



  

48 

activated T cells mediate regulation of pathways that would be involved in inactivation 

of T cell activity (Grigoryev et al. 2011).  

Moreover, Dicer has been shown to be crucial for CD8+ T cell proliferation, function 

and migration (Zhang and Bevan 2010). Zhang et al. found this to be a consequence 

of the inability of Dicer deficient cells to down-regulate CD69 after activation. CD69 

down-regulation was then demonstrated to be regulated by miR-130/miR-301 cluster 

(Zhang and Bevan 2010). In CD8+ T cells, miR-17-92 gene cluster was up-regulated 

after T cell activation, but instead down-regulated in CD8+ memory T cells (Wu et al. 

2012). Wu et al. demonstrated that on overexpression of miR-17-92 the CD8+ T cells 

are driven towards effector T cell function and the development of CD8+ memory T 

cells is impaired (Wu et al. 2012). In contrast, the miR-150, miR-155 and let-7 family 

need to be up-regulated in a differentiation window during development of CD8+ 

memory T cells (Almanza et al. 2010). 

The miR-155 is essential miRNA in the regulation of overall immune system and is 

necessary for the immune function of B-cells, T cells, DCs (Tlaskalova-Hogenova et 

al.) and Tregs (Rodriguez et al. 2007; Thai et al. 2007; Vigorito et al. 2007; Lu et al. 

2009) as well as macrophage inflammatory response (O'Connell et al. 2007; Tili et al. 

2007). Another key miRNA, miR-181a, is expressed in high levels during T cell 

development and is involved in altering TCR signaling threshold (Li et al. 2007). 

Inhibition of miR-181a expression impaired both positive and negative selection. By 

changing the sensitivity of the TCR signaling during thymocyte maturation, inhibition 

of miR-181 was shown to lead to maturation of autoreactive CD4+ T cells (Ebert et al. 

2009). Li et al. also demonstrated that miR-181a reduced expression of several 

phosphatases which negatively regulates TCR signaling e.g. DUSP5/6, SHP2 and 

PTPN22. In other words, miR-181a increases TCR signaling strength (Li et al. 2007). 

However, the deletion of miR-181a/b in early thymocyte development only reduced 
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the overall numbers but did not change the percentages of TCRαβ cell compartment 

(Henao-Mejia et al. 2013). This indicates the complexity of miRNA networks and the 

role of miRNAs as fine-tuning regulators of gene expression. 

Recently, miR-146a was shown to be up-regulated after T cell activation of both CD4+ 

and CD8+ cells in a NF-κB dependent manner and proposed to be involved in a 

negative feedback loop where miR-146 up-regulation, down-regulated NF-κB partially 

by TRAF6 and IRAK1 signaling (Yang et al. 2012). In addition Yang et al. found that 

T cells lacking miR-146 are hyperactive and caused systemic T cell mediated 

autoimmunity and chronic inflammation in vivo.  

MiR-10a has been shown to be preferentially expressed in Tregs, although miR-10 (as 

well as previously mentioned miR-155) alone seems to be dispensable for Foxp3 

induction in naïve T cells and overall Treg function (Jeker et al. 2012). This supports 

the notion of miRNA regulation by networks. In Study II, we investigated the role of 

the canonical miRNA network for early T cell development in NOD mice and the 

consequences for development of T1D. 

miRNAs in miRNAs in miRNAs in miRNAs in cell cycle cell cycle cell cycle cell cycle checkpoint control andcheckpoint control andcheckpoint control andcheckpoint control and    apoptosis apoptosis apoptosis apoptosis     

Several lines of evidence suggesting that miRNAs are involved in the regulation of 

targets in the cell cycle check point and in apoptosis. The first miRNA gene families 

shown to regulate the p53 apoptosis pathway (implicated in G1 cell cycle checkpoint 

during thymocyte development) includes the miR-29 (miR-29a/b/c) and miR-34 

(miR-34a/b/c) gene families (Tarasov et al. 2007). In addition, up- and down-

regulation of genes by these two miRNA gene families are significantly overlapping 

with genes regulated in DNA damage response. 
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MiRNA-29 family genes were demonstrated to increase p53 activation in human cell 

lines through the direct suppression of two negative regulators of p53, the p85a subunit 

of phosphatidylinositol-3-kinase (PI3K) and CDC42 (a Rho family GTPase), involved 

in controlling cellular survival and apoptosis (Park et al. 2009). In addition, up-

regulation of miR-29 was demonstrated in response to DNA damage by suppression of 

the protein phosphatase Ppm1 leading to stabilization of p53 (Ugalde et al. 2011).  

Upon DNA damage the miR-34 gene family (miR-34a/b/c) up-regulates p53 in both 

human and mice. MiR-34-dependent up-regulation of p53 induces cell-cycle arrest and 

apoptosis by suppression of amongst others cyclin-E2, cyclin-dependent kinase 4 

(CDK4), E2F3 and p53 downstream target b-cell lymphoma 2 (Bcl-2) genes (Bommer 

et al. 2007; He et al. 2007; Raver-Shapira et al. 2007; Tarasov et al. 2007).  

MiRNAs being negatively regulated after DNA damage have also been reported. For 

instance, miR-155 and miR-125 that have been demonstrated to be down-regulated 

after DNA damage in a p53-dependent manner in limbs of Drosophila melanogaster 

(Gueta et al. 2010). Additionally, Le et al. reported that miR-125b is a negative 

regulator of p53 by directly suppressing p53 protein translation in human cell lines and 

zebra fish (Le et al. 2009).  

In a human cancer cell line, the over-expression of miR-16 family genes resulted in 

G0/G1 cell cycle arrest by targeting CDK6 (Linsley et al. 2007). In addition, miR-15a 

and miR-16-1 have shown to directly regulate Bcl-2 mRNA in chronic lymphocytic 

leukemia (CLL) patients (Cimmino et al. 2005). 

Additionally, inhibition of miR-17-92 in a lung cancer cell line decreased the 

suppression of E2F1 leading to induction of apoptosis (O'Donnell et al. 2005; 
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Matsubara et al. 2007). E2F1 is an upstream target of p53 with a demonstrated role 

during negative selection in thymocyte development (Garcia et al. 2000).  

It is highly likely that the expression pattern of a miRNAs network is regulating several 

targets in the G1 cell cycle checkpoint /p53 apoptosis pathways initiating cell cycle 

progression or apoptosis in thymocytes. In Study I, we are investigating the 

contribution of miR-29 (a/b/c), miR-34 (a/b/c), miR-125b, miR-155 and miR-203 to 

the apoptosis resistant phenotype of the NOD lymphocytes in response to DNA 

damage induced by γ-irradiation as a model for thymocyte apoptosis induction during 

development. 
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AIMS OF THIS THESIS 
The general overall objective of this thesis was to investigate the regulatory role of 

miRNAs in autoimmunity, particularly in the development of T1D, as well as the 

influence of environmental factors like gut microbiota on intestinal inflammation and 

T1D. 

 

Specific aims: 

• To investigate whether miRNAs could be involved in the molecular 

mechanism of thymocyte apoptosis in NOD mice 

 

• To study the overall regulatory role of miRNAs in T cells and their effects on 

the development of T1D in NOD mice 

 

• To investigate the effect of antibiotics treated pregnant NOD mice on the 

immune system of the offspring, intestinal microbiota and development of 

T1D 

 

• To study the interplay between the gut microbiota and the immune system in 

the development of colitis, an experimental model of IBD 
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METHODOLOGY 

Animal models 

NonNonNonNon----obese diabetic mouseobese diabetic mouseobese diabetic mouseobese diabetic mouse    (NOD)(NOD)(NOD)(NOD)    

Since the discovery in the 1980’s by the Japanese group Makino et al. that the inbred 

NOD mouse strain spontaneously develops diabetes, it has been the most commonly 

used model of human T1D. Main reasons for this are the similarities of strong genetic 

MHC basis and pathogenesis including islet infiltration by mononuclear cells. The 

infiltration in the NOD mouse occurs at approximately 6-8 weeks of age leading to a 

progressive decrease of β-cell mass and development of diabetes and ketoacidosis from 

12-17 weeks of age (Makino et al. 1980). The involvement of T cells in the initiation 

of T1D in the NOD mouse is very well studied. For example, it is known that both 

CD4+ and CD8+ T cells have been shown to be involved in the pathogenesis of T1D 

in NOD mice (Tisch and McDevitt 1996). Recently, γδ T cells (expressing CD27-

CD44hi or CD27+CD44lo) have also been shown to infiltrate islets in pre-diabetic NOD 

mice and mediate diabetes development together with the αβ T cells. Interestingly, the 

combined effect of both cell types on disease development is more significant than the 

effect caused the αβ T cells alone. In addition, the γδ T cells were shown to be pre-

programmed to secrete IL-17 or IFN-γ upon activation, which may be involved in 

contributing to the pathogenesis of T1D by increasing inflammation in the pancreatic 

islets. Moreover, γδ T cells isolated from spleen and pancreatic lymph nodes are 

reactivity against the insulin peptide (Zhang et al. 2010). In contrast, the γδ T cells 

have also been demonstrated to be involved in the protection against T1D by up-

regulation of TGF-β production (Han et al. 2010).  
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Another advantage of the animal model is the high diabetes incidence of 60-80 % in 

NOD females (Makino et al. 1980). However, the sex-bias in the disease incidence in 

the NOD mouse differs compared to human T1D where the incidence is fairly similar 

in both sexes. The NOD mouse has similar genetic pre-disposition as humans with 

T1D susceptibility linked dominantly to the MHC class II, which is encoded by the I-

Ag7 gene in mouse and is equivalent to the HLA class II gene in human (Wicker et al. 

1995). In addition, recessive genes have been mapped in more than 20 susceptibility 

regions- the Idd regions. However, new data suggests that NOD mouse has more 

association to T2D genes than T1D which are related to insulin resistance, vascular 

pathology and endoplasmic reticulum stress (Chaparro et al. 2006).  

Some developmental defects affecting central tolerance of the NOD mouse have 

previously been highlighted. Yui et al. demonstrated that defective β-selection 

checkpoint control which allows further differentiation of NOD thymocytes in the 

absence of functional pre-TCR signaling (Yui and Rothenberg 2004). Further, 

Kishimoto et al. reported that defective thymic negative selection caused by decreased 

sensitivity of thymocytes to undergo apoptosis, involves both Fas-dependent and 

independent pathways (Kishimoto and Sprent 2001). Peripheral NOD lymphocytes 

have also been shown to be apoptosis resistant in response to treatment with apoptosis 

inducing agents (Colucci et al. 1996). These defects in apoptosis of NOD lymphocytes 

may allow escape of autoreactive T cells and contribute to the breakdown of central 

and peripheral tolerance in the NOD mouse and finally resulting in the pre-disposition 

to the development of autoimmune diabetes. 

C57BL/6C57BL/6C57BL/6C57BL/6    

The C57BL/6 (also referred to as B6) is one of the most commonly used inbred strains 

of wild-type mice. In Study I, where NOD lymphocyte apoptosis resistance in response 
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to γ-irradiation was investigated, the C57BL/6 mice were used as control mice. In Study 

IV, DSS treatment was performed on C57BL/6 mice to induce intestinal 

inflammation. This genetic background is susceptible for induction of inflammatory 

pathology of ulcerative colitis with DSS (Melgar et al. 2005). 

NOD.NOD.NOD.NOD.LckLckLckLck----Cre Cre Cre Cre Dicer 1Dicer 1Dicer 1Dicer 1    ∆∆∆∆////∆∆∆∆    micemicemicemice    

In Study II, we used Dicerflox/flox mice and backcrossed for 11 generations with NOD 

mice to generate a NOD.DicerFlox mouse. Then Cre-Lox system was used to mediate 

deletion of Lck (involved in signaling of the T cell receptor) by the Cre recombinase. 

This generated a mouse with T cell specific Dicer 1 deletion and thus also the absence 

of mature canonical miRNAs in T cells from the DN4 stage of T cell development. 

The NOD.Lck-Cre Dicer 1∆/∆ mouse was characterized in Study II. 

Flow Cytometry  

Fluorescence assisted cell sorting (FACS) is a method used in all our studies to ex vivo 

detect different cell T cell populations in thymus and peripheral lymph nodes based on 

the expression of cell surface markers, as well as intracellular markers like the 

transcription factor Foxp3, using fluorescently labeled antibodies. FACS was also used 

in Study I to assess the amount of apoptotic cells in thymus respectively pancreatic islets 

of different mouse strains, which is further described in the next section about apoptosis 

assays.  

FACS is based on a system of lasers that hit a stream of single cells which flow in a 

suspension through the nozzle. The light is deflected by the cells into mirrors that 

directs specific wavelengths of light to detectors by filters (Figure 6). The forward 

scatter (FSC) is giving information about the size of the cell whereas side scatter gives 
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information about the granularity of the cell (Ortis et al.). The color detectors collect 

emitted light from the excited flurochromes on the antibodies used to detect specific 

cell markers. Different fluorochromes have different emission spectra and each marker 

can therefore be detected in separate channels. The computer software converts the 

information relayed by the detectors to digital information that can be visualized and 

analyzed in histograms and plots. 

 

FigureFigureFigureFigure    6666.... FACS is a laser-based technique used to study cell populations defined by expression 
of specific cellular markers that are fluorescently labeled by antibodies. As the single-cell 
suspension is passing through the laser beam fluorochrome on the antibodies is excited and 
emits a specific wavelength of light which after being deflected by mirrors is passing through 
filters into detectors. Forward scatter detects the size of the cell and side scatter detects the 
granularity. The color detectors can catch emission spectra from different fluorochromes in the 
different channels (FL-1 to FL-3 in the figure) used to identify different cellular markers. The 
signals are visualized in computer software as histograms and plots. 
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Apoptosis assays 

Propidium Iodide staining Propidium Iodide staining Propidium Iodide staining Propidium Iodide staining     

PI staining is used in Study I to assess the cellular apoptosis of thymocytes by measuring 

the percentage of cells in the subdiploid peak. The fluorescent stain binds to the major 

groove of DNA and thus shows the DNA content of the cell and is also used to visualize 

the cell cycle progression of the cells in the sample. 

Figure Figure Figure Figure 7777.... Dotplot of propidium iodide staining showing the subdiploid peak and the percentage 
of gated cells in the G0/G1 phase, M phase and G2 phase.  

Terminal deoxynucleotidyl transferase dUTP nick labeling (Terminal deoxynucleotidyl transferase dUTP nick labeling (Terminal deoxynucleotidyl transferase dUTP nick labeling (Terminal deoxynucleotidyl transferase dUTP nick labeling (TUNEL)TUNEL)TUNEL)TUNEL)    

TUNEL staining is used in Study I to measure the amount of apoptotic thymocytes in 

NOD respectively wild-type mice after γ-irradiation. The cell sample was incubated 

with the deoxynucleotidyl transferase that incorporate nucleotides that cannot be 

further extended, the dUTPs, into single-strand breaks in the DNA of apoptotic cells 

therefore giving the reaction the name terminal nick labeling. The dUTPs are 
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fluorescently labeled and the fluorescence of the dUTPs incorporated in the DNA of 

the cells in the sample can be measured for example with flow cytometry. 

 

FigureFigureFigureFigure    8888.... Dotplot of TUNEL staining showing the percentage of gated apoptotic cells. The 
number apoptotic cells were assessed as the percent of FITC-positive cells. 

TaqMan quantitative PCR (qPCR) 

Analysis of miRNA expression in Study I and II was performed using the TaqMan 

technology from Applied Biosystems which can differentiate between precursor and 

mature miRNAs and also between different miRNAs in a gene family that only differes 

by one nucleotide. Target specific stem-loop primers are used in the reverse 

transcription reaction to amplify miRNA sequence from total RNA including short 

<200 nt fragments (prepared with Qiagen miRNAeasy). The product is then used in a 

quantitative real-time PCR with fluorescently labeled probes using the reporter dye 

FAM (6-carboxy-fluorescein) and ROX as the quencher dye.  
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FigureFigureFigureFigure    9999.... The principle of TaqMan technology. Stem-loop primers used in miRNA qPCR to 
analyse miRNA expression. Adapted from Applied Biosystems online tutorial of miRNA research 
tools.  

Terminal Restriction Fragment Length Polymorphism (T-
RFLP) 

TRFL-P is a PCR based method used to analyze intestinal microbiota and was used in 

Study III and IV. First, a PCR reaction is performed with fluorescently labeled, random 

hexamer primers that are used to amplify the bacterial genomic DNA and the PCR 

product is then cleaved by a restriction enzyme (Msp I was used in studies III-IV) and 

different bacterial strains will be restricted differently based on the genomic sequence 

of the bacteria. The fragments formed are sequenced and based on the length of the 

restricted fragments; the fluorescence from the sequences will be different which is 

represented as peaks in the analysis program. Since the peak area will be different for 

different bacterial strains different bacterial taxa will have lower or higher relative peak 

area (peak area of bacterial strain/total peak area). A principal component analysis 

(PCA), which is a statistical method, was used to visualize differences in samples with 
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same the properties. PCA clusters the bacterial taxa present in intestine based on the 

relative peak area in the sample. 

FigureFigureFigureFigure    10101010.... The principle of TRFL-P. Bacterial genomic DNA is extracted and PCR 
amplification with strain specific, fluorescently labeled primers is performed. The PCR product 
is digested with a restriction enzyme and restriction fragment sequenced after gel electrophoresis. 
The detected fluorescence is presented by a computer software as peaks in graph plotting 
fragment size against fluorescence intensity. Different bacterial strain DNA will be restricted 
differently and therefore one fluorescence peak detected will correspond to the relative amount 
of a specific bacterial taxa. 

Cytokine detection assay (Luminex) 

Cytokine analysis was performed on Serum from mice (study IV) using the bead-based 

Luminex platform. The beads which are bound to the primary catch antibody, were 

first incubated with the serum. After washing away excess substrate not bound to the 

beads, the secondary antibody coupled with phycoerythrin (PE), were added. After a 

final wash the plate was read similarly to an ELISA assay. The advantages the Luminex 

assay is its multiplexing capability which can analyze several protein analytes at the same 

time. This is made possible due to the different regions of the bead that emit 
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fluorescence when excited by a laser. The measured fluorescence is re-calculated by the 

software based on a standard curve using regression-analysis into concentrations of 

cytokines in the serum. 

 

FigureFigureFigureFigure    11111111. The principle of the Bio-Plex system. A magnetic bead bound to a catch antibody is 
incubated with the substrate (biomarker of interest). Excess unbound substrate is washed away 
and a secondary antibody coupled to a flourochrome (PE), is added. After incubation with the 
secondary antibody and a final washing step, a plate reader is used to detect the biomarker of 
interest. The emitted fluorescence is detected after being excitation by a laser. The computer 
software then employs a mathematical algorithm to calculate the concentration of the biomarker 
of interest in the sample. 
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RESULTS AND DISCUSSION 

Study I 

Clonal deletion during thymocyte maturation is essential to avoid defective and 

potentially self-reactive T cells. Defects in T cell maturation in the NOD mouse has 

previously been described, both at the cell-cycle checkpoint after β-selection and during 

negative selection. More specifically, Yui et al. have demonstrated defects in the β-

selection checkpoint control allowing continued thymocyte development even in 

absence of proper pre-TRC re-arrangement (Yui and Rothenberg 2004). Also, 

Kishimoto et al. have shown that NOD thymocytes have increased apoptosis resistance 

during negative selection (Kishimoto and Sprent 2001). This might ultimately 

contribute to breakdown of the central tolerance and predispose the NOD mouse for 

the development of spontaneous T1D. 

There are reports suggesting that p53 is involved in regulation of the cell-cycle 

checkpoint and apoptosis after β-selection (Guidos et al. 1996; Jiang et al. 1996; Haks 

et al. 1999; Costello et al. 2000). Additionally, during negative selection thymocytes 

with high affinity to self-antigens are deleted by apoptosis potentially via p53 regulation 

(Zhu et al. 1999; Quaglino and Ronchetti 2001).  

Also, peripheral NOD lymphocytes have been observed to have a defect apoptosis 

induction in response to apoptosis inducing agents (Leijon et al. 1994; Colucci et al. 

1996; Lamhamedi-Cherradi et al. 1998). 

In Study I, we confirmed previous observations by showing that NOD thymocytes and 

lymphocytes are apoptosis resistant in response to treatment with low dose (6 Gy) 
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whole body γ-irradiation. Apoptosis of thymocytes and peripheral lymphocytes from 

NOD and wild-type (C57BL/6) mice was analyzed with TUNEL and PI staining and 

visualized with flow cytometry. We show that there are lower percentage of cells in both 

thymus and lymph nodes of NOD mice that underwent apoptosis ten hours after γ-

irradiation compared with B6 wild-type mice. 

Several miRNA gene families have been shown to be involved in p53-mediated 

apoptosis pathways. Examples are the miR-29 (miR-29a/b/c) and miR-34 (a/b/c) gene 

families. MiR-29a has been demonstrated to stabilize p53 by suppressing a regulatory 

subunit (p85α) of PI3K and the Rho family GTPase CDC42 (Park et al. 2009). 

Additionally, Bommer et al. showed that miR-34a expression is directly up-regulated 

by p53 (Bommer et al. 2007). MiR-34a is proposed to be involved in a positive 

feedback loop with p53 by suppressing the Silent information regulator 1 (SIRT1) 

(Yamakuchi et al. 2008; Yamakuchi and Lowenstein 2009). Conversely, miR-125b and 

miR-155 were demonstrated to be negative regulators of p53 and are down-regulated 

after DNA damage (Le et al. 2009; Gueta et al. 2010). In this study, we investigated 

the expression of miRNAs 34 a/b/c, miR-29a, miR-125b, miR-155 and miR-203 with 

qPCR. We show that the miR-34 gene family (miR-34a/b/c) expression profile is 

different in NOD thymocytes compared to wild-type B6 thymocytes (Figure 12a). In 

addition, miR-34b and miR-34c were not properly up-regulated in NOD thymocytes 

after γ-irradiation compared to B6 thymocytes (Figure 12b). There is also differential 

expression of miR-125b in NOD thymocytes compared to B6 mice both before and 

after γ-irradiation (Figure 12c) resulting in a net down-regulation of miR-125b in 

NOD thymocytes compared to B6 mice (Figure 12d). Moreover, the expression of 

miR-155 were higher in NOD thymocytes compared to B6 after γ-irradiation (Figure 
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12e) resulting in a net up-regulation in miR-155 in NOD thymocytes after γ-

irradiation (Figure 12f). 

FigureFigureFigureFigure    11112222.... (a) miRNA profiling of NOD thymocytes with qPCR shows differential expression 
of the miR-34a/b/c family in the NOD thymocytes both before and after γ-irradiation. (b) The 
delta expression of miR-34 gene family, comparing before and after irradiation, shows that miR-
34b and miR-34c are not properly up-regulated in NOD thymocytes compared to B6 mice. (c) 
The miR-125b is differentially expressed in NOD thymocytes before and after γ-irradiation 
compared to B6 mice. (d) The delta expression of miR-125b shows a down-regulation in NOD 
thymocytes compared to B6 thymocytes after irradiation. (e) The miR-155 is differentially 
expressed in NOD thymocytes after γ-irradiation compared to B6 mice. (f) The delta expression 
of miR-155 shows that the miRNA is up-regulated in NOD thymocytes efter γ-irradiation. 
Student’s t-test (two-tailed), p< 0.05= *; p<0.01= **; p<0.001= ***. 

We believe that altered miRNA regulation network in NOD lymphocytes could 

contribute to defective apoptosis regulation in NOD lymphocytes. Particularly, the 

defect up-regulation of the miR-34b and c after γ-irradiation in NOD thymocytes 
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(Figure 11c, d). However, it has also been reported that miR-34 gene family is 

redundant in the regulation of p53 and down-streams targets p21, Bax, Mdm2 as well 

as PUMA in vivo in mouse thymus (Concepcion et al. 2012).  

We therefore investigated the protein expression of several targets in the cell-cycle (c-

abl, cyclin D1, p21, p27) and p53 in NOD lymphocytes by Western blot. We could 

show that p53 was the only target which was not properly up-regulated in NOD 

thymocytes and peripheral lymphocytes compared to wild-type mice after γ-irradiation 

(figure 13).  

FigureFigureFigureFigure    13131313.... Defective up-regulation of p53 in NOD thymocytes and peripheral lymphocytes 
after γ-irradiation compared to wild-type B6 mice. 

In conclusion, our data suggest that altered expression level of miR-34a/b/c and 

miR-125b in NOD thymocytes compared to B6 thymocytes could explain the 

defective up-regulation of p53 in NOD lymphocytes and thus contribute to the 

apoptosis resistance phenotype in NOD lymphocytes. This could ultimately 

contribute to impairing central and peripheral tolerance and predispose the NOD 

mouse to autoimmune diabetes. 
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Study II 

Canonical miRNAs have been shown to be important in the early development of T 

cells and the absence of miRNAs greatly affect αβ T cell numbers but does not impair 

the CD4/CD8 lineage commitment (Cobb et al. 2005). Deletion of canonical miRNAs 

from CD4+ T cells results in defective differentiation of nTregs in the thymus and 

induction/stability of Foxp3 in peripheral Tregs (Cobb et al. 2006; Jeker et al. 2013).  

Moreover, T cell response in vivo in CD8+ T cells that lack canonical miRNAs is 

reduced (Zhang and Bevan 2010). Zhang et al. also demonstrated that despite increased 

activation and proliferation in vitro the CD8+ T cells lacking canonical miRNAs failed 

to down-regulate CD69 which probably inhibited the cells migration ability in vivo 

(Zhang and Bevan 2010).  

In this study, we investigated how deletion of canonical miRNAs during early 

thymocyte development in NOD mice would affect the overall immunological balance 

between the effector T cells and Tregs and how this would affect the outcome of 

diabetes development. Initially, we validated the deletion of Dicer1 in sorted DP 

thymocytes and CD3+CD4+ splenocytes of the NOD.Lck-Cre Dicer1∆/ ∆ mouse. We 

then performed an immunophenotyping of the T cell populations of primary and 

secondary lymphoid organs. We found that the total cellularity of the thymus, spleen 

and MLN but not peri-pancreatic LN (pLN) of the NOD.Lck-Cre Dicer1∆/ ∆ mouse 

was decreased. The immunophenotyping by flow cytometry showed a significant 

decrease in the DP thymocytes but only a slight and not significant decrease in the 

amount of nTregs in the thymus of the NOD.Lck-Cre Dicer1∆/ ∆ mouse compared to 

NOD.Dicer1flox/flox control littermates. Similarly to published data by Cobb et al., we 

show that the cell populations that decreased mainly belonged to the αβ T cells with 

no significant increase in the γδ T cells. Furthermore, we observed a significant 
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reduction of CD8+ T cells in both spleen and MLN in addition to a significant decrease 

of CD4+ αβ T cells in the spleen of NOD.Lck-Cre Dicer1∆/ ∆ mice compared to 

NOD.Dicer1flox/flox mice. However, there was only a slight non-significant decrease of 

nTregs in the secondary lymphoid organs (spleen, MLN and pLN). Interestingly, the 

percentage of CD4+ and CD8+ effector memory T cells was increased in spleen and 

MLN of NOD.Lck-Cre Dicer1∆/ ∆ mice. However, when the results were normalized 

for the amount of cells there was a reduction in the total number of effector memory 

T cells. This indicates that the lack of canonical miRNA network is driving the CD4+ 

and CD8+ T cells into memory phenotype. Unfortunately, we have not yet elucidated 

the importance of specific miRNAs in the different immunophenotyped T cell 

populations. We will next perform a miRNA profiling to be able to study the regulatory 

role of particular miRNAs or groups of miRNAs for the function of different T cell 

populations. In the future we will also study the functionality of the NOD.Lck-Cre 

Dicer1∆/ ∆  effector cells respectively Treg cells in vivo by adoptive transfer experiments. 

Here, we show the overall effects of canonical miRNA deletion in different T cell 

populations for the development of autoimmune diabetes. Also, we showed a 

significantly decreased leukocyte infiltration in NOD.Lck-Cre Dicer1∆/ ∆ pancreatic 

islets compared to NOD.Dicer1flox/flox control littermates. Finally, we investigated the 

diabetes incidence of NOD.Lck-Cre Dicer1∆/ ∆ mice. We did not observe a difference 

in the diabetes incidence of NOD.Lck-Cre Dicer1∆/ ∆  females compared with control 

littermates but a significant increase in the diabetes incidence of male NOD.Lck-Cre 

Dicer1∆/ ∆ mice. 
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 FigureFigureFigureFigure    14141414.... Diabetes incidence of the female and male NOD.Lck-Cre Dicer1∆/ ∆ mice. There is 

no difference in diabetes incidence of the female NOD.Lck-Cre Dicer1∆/ ∆ mice compared to 

mice NOD.Dicer1flox/flox control littermates and NOD.Lck-Cre Dicer1∆/ wt heterozygote mice 

(left panel). Male NOD.Lck-Cre Dicer1∆/ ∆ mice displayed significantly higher diabetes 

incidence (Student’s t-test, two-tailed, p<0.01=**) compared to NOD.Dicer1flox/flox control 

littermates and NOD.Lck-Cre Dicer1∆/ wt heterozygote littermates. 

Due to the differential diabetes incidence between the genders we can speculate on the 

potential involvement of sex hormone-mediated regulation of miRNAs in our model. 

Sex-mediated differential miRNA expression patterns are present in both humans and 

mice (Ilnytskyy et al. 2008; Ciaudo et al. 2009; Langevin et al. 2010). More specifically, 

estrogen up-regulate transcription of a group of miRNAs and there are indications that 

Dicer might be regulated by estrogen (Bhat-Nakshatri et al. 2009; Shao et al. 2011). 

Further, certain miRNAs have also been shown to regulate the levels androgen 

expression in prostate cancer cells (Ostling et al. 2011; Hagman et al. 2013). 
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Additionally, androgen has been demonstrated to regulate Dicer and is proposed to be 

involved in a positive feedback-loop in which androgen is increasing miRNA expression 

which in turn increases androgen levels (Narayanan et al. 2010). Indeed, there seems 

to be a link between sex-hormone regulation and miRNAs that could potentially 

generate differential outcome in T cell proliferation and ultimately result in different 

disease incidence of T1D.  

Study III 

Commensal gut microbiota is important for proper development of the immune system 

and maintenance of tolerance in the intestinal tract in several ways. Certain gut 

microbiota is linked to T1D and children with T1D (or progressing towards T1D) 

display altered gut microbiota with decreased amount of bacteria of the Firmicute 

phylum and increased amount of bacteria belonging to the Bacteroidetes phylum 

(Giongo et al. 2011). The maternal gut microbiota is the first source of bacteria which 

the child comes in contact with and could influence the development of the immune 

system of the infant. Therefore, in order to understand how the gut microbiota could 

potentially affect the immune system and diabetes development in the offspring, we 

investigated the effect of induced disturbance of commensal maternal gut microbiota 

by antibiotic treatment. This is an important subject because it is common for pregnant 

women to receive antibiotics for different infections during pregnancy (Lim et al. 2003; 

Andrade et al. 2004; Le et al. 2004; Chan et al. 2013). In addition, antibiotics treatment 

of pregnant mothers has recently been associated with increased risk of allergic disease 

but little is known about the effects for the development of T1D (McKeever et al. 2002; 

Metsala et al. 2013). 
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We treated the pregnant NOD mice with a broad-spectrum antibiotics mix consisting 

of neomycin, polymyxin and metronidazol to alter the normal maternal gut microbiota. 

Next, we followed the development of spontaneous T1D development in the NOD 

offspring. By performing a TRFL-P analysis we found that the offspring to NOD mice 

treated with antibiotics displayed decreased diversity of intestinal microbiota and also 

differential clustering of the present microbiota, which was illustrated by clustering of 

the intestinal gut microbiota (TRFs) with a PCA analysis. This means that modulation 

of the maternal intestinal microbiota with antibiotics resulted in both decreased 

diversity and changed the composition of the intestinal microbiota in the offspring. 

FigureFigureFigureFigure    15151515.... The clustering of the intestinal gut microbiota with PCA. There is different 

clustering of the TRFs in offspring to mothers treated with antibiotics mix during pregnancy 

compared to offspring to control mothers.  

Next, we performed T cell analysis of different T cell populations from MLN and 

Peyer’s patches in offspring to mothers treated with antibiotics and control mothers. 

We show that there was a significant decrease of percentage gated CD3+CD8+ T cells 
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in the MLN of offspring to mothers treated with antibiotics. In the Peyer’s patches we 

show a significant reduction in the percentage gated CD3+CD4+CD25+ T cells in the 

offspring to mothers treated with antibiotics during pregnancy. Additionally, there was 

a significant decrease in the percentage gated naïve CD4+CD62L+ T cells and 

CD4+CD62L- memory T cells in the Peyer’s patches of offspring to treated mothers. 

Interestingly, the modulation of intestinal microbiota during pregnancy due to 

antibiotics treatment seems to have influenced alterations in T cell populations in MLN 

and Peyer’s patches.  

Additionally, we investigated if these changes in the intestinal gut microbiota and T 

cell alterations of the NOD offspring would contribute to altered development of T1D 

diabetes. We show a modulation of diabetes in the offspring to mothers treated with 

antibiotics at 20 weeks of age but at the end of the monitoring period at 30 weeks of 

age there is no significant difference in diabetes incidence between the offspring groups. 

 

FigureFigureFigureFigure    16161616.... In the offspring from mothers treated with antibiotics during pregnancy there seems 

to be a modulation of diabetes incidence (p<0.05= *) at 20 weeks of age but at the end of the 

monitoring period there is no significant difference in diabetes incidence between the two 

offspring groups. 
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In conclusion, we show that the modulation of the maternal gut microbiota during 

pregnancy with antibiotics treatment generated persistent changes in the intestinal gut 

microbiota diversity and composition of the offspring. These changes seem to have 

induced the demonstrated alterations of different T cell populations in the MLN and 

Peyer’s patches in offspring to mothers treated with antibiotics during pregnancy. 

Although we believe that these effects modulate the development of T1D in the 

offspring from the antibiotics treated mothers at 20 weeks of age, we could not observe 

persistent effects. Further studies in a human population would be needed to fully 

understand the potential risk factors of antibiotics treatment during pregnancy for the 

development of autoimmune diabetes. 

Study IV 

It is known that the interaction between the immune system and the intestinal 

microbiota can be important for the outcome of intestinal inflammation and UC. 

However, how the global composition of intestinal microbiota changes and ultimately 

contribute to the disease is not completely understood. To study this we used the DSS 

model because it is the most commonly used animal model for UC and because of the 

many clinical and histopathological similarities with human UC (Okayasu et al. 1990; 

Melgar et al. 2005).  

We induced UC in wild-type C57BL/6 mice through chemical induction by 

administration of 4 % DSS in the drinking water. The mice were then analyzed for the 

relationship between UC and gut microbiota as well as the immune response. The 

analysis of the colonic intestinal microbiota was performed with TRFL-P. Although we 
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did not find any decrease in overall diversity we show a differential clustering pattern 

after PCA of the intestinal gut microbiota in the DSS group comparing to control mice. 

Figure 17.Figure 17.Figure 17.Figure 17. PCA 3D plot showing the bacterial clustering pattern. There is differential clustering 

of the DSS treated animals (green circles) and control animals (red circles). 

Our qPCR analysis showed that the amount of Lactobacillus decreased whereas the 

number of bacteria belonging to the Akkersmansia and Desulfovibrio genera increased 

after DSS treatment. Additionally, Enterobacteriaceae (Escherichia coli) was present at a 

much higher incidence in the DSS group compared to control group. In concordance 

with our results an increase in Bacteroides, Clostridium and decrease in the Lactobacillus 

genera is reported to be associated with UC in humans and mice (Fabia et al. 1993; 

Garcia-Lafuente et al. 1997). Moreover, in support to our qPCR data, the increased 

presence of the Desulfovibrio and Enterobacteriaceae genera has been associated with UC 

in humans (Mylonaki et al. 2005; Rowan et al. 2010). Interestingly, Akkersmansia 
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muciniphila is a mucin degrading bacteria (Eckburg et al. 2005) and could thus be 

involved in the degradation of the colonic mucous layer during UC. 

Figure 1Figure 1Figure 1Figure 18888.... Mucosal bacterial populations identified with qPCR. Mann-Whitney rank sum test, 
p< 0.05= *; p<0.01= **. 

The intestinal neutrophil infiltration was assessed by myeloperoxidase (MPO) activity 

and was found to be increased in colon but not in small intestine. MPO is a neutrophil 

enzyme and has previously been associated with increased neutrophil infiltration during 

UC (Kristjansson et al. 2004). To assess the level of systemic inflammation, 

inflammatory cytokines in serum were investigated. We showed an increase in pro-

inflammatory cytokines IL-6, IL-17 and the chemokine KC (a neutrophil attractant). 

In concordance to our results, these pro-inflammatory cytokines have previously been 

shown during the pathogenesis of chronic IBD in humans and mice and more 

specifically, IL-17 is connected to induction of Th17 cells (Yen et al. 2006; Alex et al. 

2009; Holtta et al. 2013).  
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We additionally analyzed different lymphocyte populations, Mφ, and DCs in spleen, 

Peyer’s patches and MLN using flow cytometry. We found significantly increased 

percentage of Tregs (co-expressing CTLA-4) in spleen, MLN, Peyer’s patches. In spite 

of the presence of intestinal inflammation, we observed increased frequency of Tregs. 

In support, similar findings have been reported by Hölttä et al. in children with UC 

who demonstrated an increase in colonic Tregs (Holtta et al. 2013). It is possible that 

even in the presence of the increased frequency of Tregs these cells cannot reverse the 

disease progression (Yu et al. 2007). Alternatively, the functionality of the Tregs might 

be inhibited by TLR signaling.  

We also showed increased percentage of CD11b+CD11c+ expressing and CD11c+TLR-

4+ DCs cells in the MLN. Increased TLR signaling may indicate increased interaction 

between intestinal microbiota and the immune system. In other words, the enhanced 

interaction could be an effect of altered gut microbiota which results in greater immune 

responses leading to intestinal inflammation (Hart et al. 2005). 

By investigating the changes in gut microbiota during DSS-induced colitis and the 

immunophenotype we can contribute to a more clear understanding of the active role 

that the intestinal microbiota play in the interaction with the gut immune system 

during intestinal inflammation in UC. 



  

79 

SUMMARY AND CONCLUSIONS 
In the first two studies of this thesis the role of miRNA regulation was investigated in 

NOD mice. In Study I, we investigated the role of miRNA-34 gene family (miR-

34a/b/c), miR-29 gene family (miR-29a/b/c), miR-125b, miR-155 and miR-203 in 

the regulation of p53-dependent DNA damage response in thymocytes in response to 

γ-irradiation. We show that NOD lymphocytes are apoptosis resistant in response to 

γ-irradiation compared to wild-type B6 mice. There is differential expression of miR-

34a before γ-irradiation and miR-34b/c before and after γ-irradiation in NOD 

thymocytes compared to B6 thymocytes. Additionally, we show that miR-125b was 

differentially expressed before and after γ-irradiation as well as miR-155 after γ-

irradiation in NOD thymocytes compared to B6 mice. Finally, we also show that p53 

is not properly up-regulated in NOD thymocytes in response to γ-irradiation. We 

believe that this might be mediated by the miRNAs differentially expressed between 

the NOD and B6 thymocytes during the apoptosis response to γ-irradiation. In 

conclusion, altered miRNA network affecting the level of p53 expression in NOD 

thymocytes during cell-cycle checkpoint and apoptosis during development may 

influence the establishment of central tolerance and predispose the NOD mouse to 

T1D development.  

In Study II, the overall role of canonical miRNAs in the NOD mouse was investigated 

by deletion of the mature miRNAs using the Cre-Lox system at the DN3 stage of early 

thymocyte development. The effect of lacking mature canonical miRNAs resulted in 

reduced overall cellularity of secondary lymphoid organs spleen, MLN and pLN. The 

immunophenotyping of the NOD.Lck-Cre Dicer1∆/∆ mice show a significant decrease 

of αβ CD4+ and CD8+ T cell populations in the thymus, spleen and MLN. 

Additionally, we show a slight non-statistically decrease in nTregs in thymus, spleen, 
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MLN and pLN. There was also an increased ratio of memory T cells in the spleen and 

MLN of the NOD.Lck-Cre Dicer1∆/∆ mice. Although there was lower leukocyte 

infiltration in the pancreatic islets, we could not show any difference in the diabetes 

incidence between the female NOD.Lck-Cre Dicer1∆/∆ mice and control littermates. 

However, there was an increase in diabetes incidence of male. In short, canonical 

miRNAs are important for generation of αβ CD4+ and CD8+ T cells as well as nTregs 

in the primary and secondary organs of the NOD.Lck-Cre Dicer1∆/∆ mice. It is 

probable that canonical miRNAs are also important for the function of the different T 

cell populations, which will be investigated in future studies. 

In Study III, we studied the effect of derangement of maternal intestinal microbiota on 

the offspring, particularly for the development of T1D. The maternal intestinal 

microbiota was modulated by treating the pregnant NOD mice with antibiotics and 

we found decreased diversity and a persistent modulation of the intestinal microbial 

pattern in the offspring. We also demonstrated immunological alterations including 

CD8+ T cell frequencies in the MLN and CD3+CD4+CD25+ as well as CD4+CD62L- 

T cell frequencies and in Peyer’s patches. These changes may have influenced the 

increase in the diabetes incidence of offspring to treated mothers at 20 weeks of age 

although the effect was not persistent. In conclusion, our results indicate the 

importance of the maternal gut microbiota for the immunological tolerance in the 

offspring.  

In Study IV, we wanted to clarify the relationship between the global intestinal 

microbiota and the immune system in the DSS induced UC mouse model. We showed 

changes in the overall colonic intestinal microbiota pattern after DSS treatment. In 

addition, we a showed a significant decrease in Lactobacillus and significant increase in 

Akkersmansia and Desulfovibrio as well as higher incidence of Enterobacteriaceae. We 
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demonstrated immunological alterations of different populations of T cells, DCs and 

NK cells after UC induction. These include significant increase of T cells, particularly 

CD8+ T cells in the MLN of DSS treated mice. Additionally, we showed significant 

increase in Tregs co-expressing CTLA-4 in the spleen, Peyer’s patches and MLN in 

DSS group. Finally, we demonstrated significant increase in monocytes and DCs co-

expressing TLR-4 in the MLN. In conclusion, our results indicate that the intestinal 

microbiota actively interacts with the immune system in UC. 
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det var det coolaste jag sett. Vi utelämnar hur nördigt det är att tycka att en disputation 

är det coolaste man sett när man är 15…  

Mamma och pappa, ni har genom hela min uppväxt ständigt påpekat vikten av 

utbildning samt uppmanat mig att bli en kritiskt tänkande individ. Mamma, du lärt 

mig så mycket och alltid stöttat och uppmuntrat mig i allt! Pappa, du har en genuin 

nyfikenhet på världen och är hälften av tiden mer insatt i nya framsteg inom forskning 

och teknik än vad jag är. Tror att jag har fått det från dig att vilja veta exakt hur allting 

fungerar, önskar bara jag var lika bra som du på problemlösning!  

Bengt, du gör mig till en bättre människa och jag kan inte tänka mig mitt liv utan din 

outtömliga kärlek och ditt ständiga stöd, varje dag… 
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