
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Distributed Management of CPU Resources for Time-Sensitive Applications

Chasparis, Georgios; Maggio, Martina; Årzén, Karl-Erik; Bini, Enrico

2012

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Chasparis, G., Maggio, M., Årzén, K.-E., & Bini, E. (2012). Distributed Management of CPU Resources for Time-
Sensitive Applications. (Technical Reports TFRT-7625). Department of Automatic Control, Lund Institute of
Technology, Lund University.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e80e2cee-1abf-4e30-bc50-164a1828265f

ISSN 0280-5316
ISRN LUTFD2/TFRT--7625--SE

Distributed Management of CPU Resources for
Time-Sensitive Applications

Enrico Bini
Georgios Chasparis

Martina Maggio
Karl-Erik Årzén

Lund University
Department of Automatic Control

September 2012

Lund University
Depar tment of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
TECHNICAL REPORT
Date of issue

Document Number
ISRN LUTFD2/TFRT--7625--SE

Author (s)
Enrico Bini
Georgios Chasparis
Martina Maggio
Karl-Erik Årzén

Supervisor

Sponsor ing organization

Ti tle and subti t le
Distributed Management of CPU Resources for Time-Sensitive Applications

Abstract
The number of applications sharing the same embedded device is increasing dramatically. Very
efficient mechanisms (resource managers) for assigning the CPU time to all demanding applications
are needed. Unfortunately existing optimization-based resource managers consume too much
resource themselves. In this paper, we address the problem of distributed convergence to efficient
CPU allocation for time-sensitive applications. We propose a novel resource management framework
where both applications and the resource manager act independently trying to maximize their own
performance measure and according to a utility-based adjustment process. Contrary to prior work on
centralized optimization schemes, the proposed framework exhibits adaptivity and robustness to
changes both in the number and nature of applications, while it assumes minimum information
available to both applications and the resource manager. It is shown analytically that efficient
resource allocation can be achieved in a distributed fashion through the proposed adjustment process.
Experiments using the TrueTime Matlab toolbox show the validity of our proposed approach.

Keywords

Classi fication system and/ or index terms (i f any)

Supplementary bibl iographical information

ISSN and key ti t le
0280-5316

ISBN

Language
English

Number of pages
1-24

Recipient’s notes

Secur i ty classi fication

ht tp://www.control.l th.se/publ icat ions/

Distributed Management of CPU Resources for

Time-Sensitive Applications∗

Georgios Chasparis, Martina Maggio, Karl-Erik Årzén, Enrico Bini
Lund University, Sweden

September 27, 2012

Abstract

The number of applications sharing the same embedded device is in-
creasing dramatically. Very efficient mechanisms (resource managers) for
assigning the CPU time to all demanding applications are needed. Un-
fortunately existing optimization-based resource managers consume too
much resource themselves.

In this paper, we address the problem of distributed convergence to
efficient CPU allocation for time-sensitive applications. We propose a
novel resource management framework where both applications and the
resource manager act independently trying to maximize their own per-
formance measure and according to a utility-based adjustment process.
Contrary to prior work on centralized optimization schemes, the proposed
framework exhibits adaptivity and robustness to changes both in the num-
ber and nature of applications, while it assumes minimum information
available to both applications and the resource manager. It is shown ana-
lytically that efficient resource allocation can be achieved in a distributed
fashion through the proposed adjustment process. Experiments using the
TrueTime Matlab toolbox show the validity of our proposed approach.

1 Introduction

A current trend in embedded computing is that the number of applications that
should share the same execution platform increases. The reason for this is the
capacity increase of new hardware platforms, e.g., through the use of multi-
core techniques, as well as the increase of user demands. An example includes
the move from federated to integrated system architectures in the automotive
industry.

∗The research leading to these results was supported by the Linneaus Center LCCC, the
Swedish VR project n.2011-3635 “Feedback-based resource management for embedded mul-
ticore platform”, and the Marie Curie Intra European Fellowship within the 7th European
Community Framework Programme.

As the number of applications increases, the need for better mechanisms
for controlling the execution behavior of the applications becomes apparent.
Increasingly often, virtualization or resource reservation techniques [14, 1] are
used. According to these techniques, each reservation is viewed as a virtual
processor executing at a fraction of the speed of the physical processor, i.e., the
bandwidth of the reservation, while the tasks in the different reservations are
temporally isolated from each other. Another trend in embedded computing
is the increase in temporal uncertainty, both due to the increased hardware
complexity, e.g., shared cache hierarchies, and the increased chip density. Hence,
using dynamic adaptation is crucial. In the resource reservation case this means
that the bandwidth assignment is decided on-line based on feedback from the
applications.

An orthogonal dimension along which the application performance can be
tuned is the selection of the service level of the application. It is assumed
that an application is able to execute at different service levels, where a higher
service level implies a higher quality-of-service at the price of higher resource
consumption. Examples are adjustable video resolutions, the amount of data
sent through a socket channel to render a web page, and the possibility to
execute a controller at different sampling rates.

The typical solution to this problem is the implementation of a resource
manager (RM), which is in charge of:

− assigning the resources to each application;

− monitoring the resource usage and possibly adjusting the assignment based
on the actual measurements;

− assigning the service levels to each application, so that an overall delivered
quality is maximized.

This is often done through the use of optimization and feedback from the appli-
cation.

Resource managers that are based on the concept of feedback monitor the
progress of the application and adjust the resource management based on some
measurements [17, 7]. In these early approaches, however, quality adjustment
was not considered. Cucinotta et al. [6] proposed an inner loop to control the
resource allocation nested within an outer loop that controls the overall delivered
quality.

Optimization-based resource managers also received a considerable atten-
tion [16, 13]. These approaches, however, rely on the solution of a centralized
optimization problem that determines the amount of assigned resource and sets
the service levels of all applications. If, instead, the service levels are assigned
by the applications, the RM can certainly be more lightweight. In the context of
networking, Johansson et al. [9] modeled the service provided by a set of servers
to workloads belonging to different classes as a utility maximization problem.
However, there is no notion of adjustment of the service level of the application.

An example of combined use of optimization and feedback was developed in
the ACTORS project [3, 2]. In this project, applications provide a table to the

RM describing the required amount of CPU resources and the expected QoS
achieved at each supported service level [3, 2]. In the multi-core case, applica-
tions are partitioned over the cores and the amount of resources is given for each
individual partition. Then, the RM decides the service level of all applications
and how the partitions should be mapped to physical cores using a combina-
tion of ILP and first-fit bin-packing. However, such approaches have several
drawbacks. On-line centralized optimization can be inefficient and a proper
assignment of service level requires application knowledge, i.e., it is something
that is better made by the application itself rather than the RM.

To this end, distributed optimization schemes have also attracted a consider-
able attention. Subrata et al. [18] considered a cooperative game formulation for
job allocation to several service providers in grid computing. Job arrivals follow
a Poisson process and a centralized optimization problem is formulated for com-
puting Nash bargaining solutions. Wei et al. [19] proposed a non-cooperative
game-theoretic formulation to allocate computational resources to a given num-
ber of tasks in cloud computing. Tasks have full knowledge of the available
resources and try to maximize their own utility function. Similarly, Grosu and
Chronopoulos [8] formulated the load balancing problem among different users
as a non-cooperative game and then studied the properties and the computation
of Nash equilibria.

In this paper, the problem differs significantly from the grid computing setup
of [18] or the load balancing problem of [8, 19] in cloud-computing services. In
particular, we are concerned with the problem of allocating the CPU resource
among several applications, while applications are able to adjust their own ser-
vice levels. Under the proposed scheme, both applications and the RM act
independently trying to maximize their own performance measure (utility) ac-
cording to a utility-based adjustment process. Naturally, this framework can
be interpreted as a strategic-interaction (or game) among applications and the
RM. It is shown analytically that efficient resource allocation can be achieved
in a distributed fashion through the proposed adjustment process. Experiments
using the TrueTime Matlab toolbox show the validity of our proposed approach.

Below we start by introducing the overall framework.

2 Framework

2.1 Resource manager & applications

The overall framework is illustrated in Figure 1. A set I of n applications are
competing among each other for CPU resources. Since we allow applications to
dynamically join or leave, the number n is not constant over time. The resource
is managed by a resource manager (RM) making sure that the overall allocated
resource does not exceed the available one (i.e. the number of cores).

The RM allocates resource through a Constant Bandwidth Server (CBS) [1]
with period Pi and budget Qi. Hence, appi is assigned a virtual platform with
bandwidth vi = Qi/Pi corresponding to a fraction of the computing power of

setting
service

aware
service

setting
service

aware
service

virtual
platform

virtual
platform

resource
manager

virtual
platform

0
1

unaware
service

0
1

0
1

s1

app1 app2
sn

appn

RM
λ1

λ2

λn

v1 v2 vn

f1 f2 fn

Figure 1: Resource management framework.

a single CPU. The quantity vi can also be interpreted as speed (relative to the
CPU full speed) at which the appi is running. Obviously not all speeds vi are
feasible, since the sum of them cannot exceed the number m of available CPUs.
Formally, we define the set of feasible speed assignments (v1, . . . , vn), as

V =
{

v = (v1, ..., vn) ∈ [0, 1]n :

n∑
i=1

vi ≤ m
}
. (1)

Each application i ∈ I may change its service level si ∈ Si , [si,∞), where
si > 0 is the minimum possible service level of appi. Examples of service levels
are: the accuracy of an iterative optimization routine, the details of an MPEG
player, the sampling frequency of a controller, etc. The service level si is an
internal state of appi. Hence it is written/read by appi only. We denote by
s = (s1, ..., sn) the profile of service level of all applications evolving within
S , S1 × ... × Sn. The framework also allows applications that do not adjust
their service level (e.g., app2 in Figure 1).

2.2 The matching function

The goal of the proposed resource allocation framework if to find, for each
application i ∈ I, a matching between the service level si set by appi and the
speed vi assigned by the RM to appi.

Definition 2.1 (Matching function) The quality of the matching between a
service level si and a speed vi of appi is defined by the matching function fi :
Si × [0, 1]→ R with the following properties:

− if |fi(si, vi)| ≤ δ, then the matching is perfect;

− if fi(si, vi) < −δ, then the matching is scarce;

− if fi(si, vi) > δ, then the matching is abundant.

with δ being a system parameter.

A perfect matching between si and vi describes a situation in which appi has
the right amount of resource vi when it runs at service level si. A scarce (resp.,
abundant) matching describes the situation when either increasing vi or de-
creasing si (decreasing vi or increasing si) is needed to move toward the perfect
matching.

Notice that the service levels are internal states of the applications, while
the virtual platforms (v1, . . . , vn) belong to the RM space. Hence, neither the
RM nor the applications have a complete knowledge of the matching function
fi. In fact, the matching function is only measured during run-time. The only
properties that we require from any implementation of fi are that

(P1) si 6= 0⇒ fi(si, 0) < −δ, that is, the matching must certainly be scarce if
no resource is assigned;

(P2) si ≥ s′i ⇒ fi(si, vi) ≤ fi(s
′
i, vi), if an application lowers its service level,

then the matching function should increase,

(P3) vi ≥ v′i ⇒ fi(si, vi) ≥ fi(si, v
′
i), if the bandwidth given to an application

is decreased, then the matching function should decrease.

For a real-time application, a time-sensitive matching function may be con-
sidered, defined as follows:

fi =
Di

Ri
− 1,

where Di denotes a soft-deadline of the application, and Ri denotes the job
response time, that is the time elapsing from the start time to the finishing time
of a job. For a large class of applications the above matching function can be
rewritten with respect to si and vi as follows:

fi = βi
vi
si
− 1. (2)

For example, for multimedia applications, the soft deadline Di can be considered
constant, while the response time can be defined as Ri = Ci/vi, where Ci = αisi
is the execution time per job (at a service level si) and vi is the speed of exe-
cution. Similarly, in control applications, Ri = Ci/vi where Ci denotes nominal
time of execution, while the soft deadline Di is considered inverse proportional
to the sampling frequency (or service level) si, i.e., Di = αi/si. Both cases lead
to a matching function with the form of (2).

2.3 Adjustment weight

When |fi| > δ some adjustment is needed to the service level si or to the virtual
platform vi in order to establish a better matching. The weight λi ∈ [0, 1]
determines the amount of correction made by each application:

− if λi = 0, then the correction is entirely made by appi through an adjust-
ment of the service level si;

− if λi = 1, then the correction is entirely made by the RM through a change
in speed of the virtual platform vi;

− intermediate values of λi correspond to a combined correction made by
both the appi and the RM.

3 Adjustment Dynamics

Below, we introduce a learning procedure under which the applications and the
RM adapt to possible changes in their “environment” (other applications) trying
to improve their own performance.

3.1 RM adjustment

To simplify the implementation, the RM updates the bandwidth ṽi = vi/m, nor-
malized w.r.t. the number of cores. The unused bandwidth and its normalized
version, are defined respectively by

vr = m−
n∑
i=1

vi, ṽr =
vr
m

= 1−
n∑
i=1

ṽi. (3)

At time t = 1, 2, ..., the RM assigns resources according to the following
rule:1

1. It measures performance fi = fi(t) for each i ∈ I.

2. It updates the normalized resource allocation vector ṽ , (ṽ1, ..., ṽn) as
follows:

ṽi(t+ 1) = ΠṼi

[
ṽi(t) + ε(t)grm,i(t)

]
(4)

for each i = 1, ..., n, where

grm,i(t) , −λifi(t) +

n∑
j=1

λjfj(t)ṽi(t),

and ΠṼi denotes the projection onto the feasible set Ṽi , [0, 1/m]. The
unused bandwidth is updated according to (3).

3. It computes the original values of bandwidths by setting vi(t + 1) =
mṽi(t+ 1).

1Although the performance fi of application i is a function of both the service level si and
the virtual platform vi, the RM simply receives an instance of this function. Thus, we abuse
notation by writing fi = fi(t).

4. It updates the time t← t+ 1 and repeats.

The above algorithm ensures that the virtual platforms vi are always feasible
according to (1). We will also consider the step-size sequence ε(t) , 1/t+1.
According to the recursion (4), we should expect that vi increases when appi
performs poorly compared with the group of applications, i.e., when λifi is small
compared to

∑n
j=1 λjfj .

In some cases, we will use vector notation for (4)

ṽ(t+ 1) = Π̃{Ṽi} [ṽ(t) + ε(t)grm(t)] (5)

where grm(t) , −Λf(t) +
(
1TΛf(t)

)
ṽ(t), with Λ , diag {λi}i, f , [fi]i and

Π̃{Ṽi}[·] denotes the combination of projections on Vi’s, i.e.,

Π̃{Ṽi}[ṽ] ,
(

ΠṼ1 [ṽ1], ...,ΠṼn [ṽn]
)
.

We will use the notation Ṽ , Ṽ1 × ...× Ṽn to denote the space of ṽ.

3.2 Application adjustment

The RM provides information to all applications to guide their selection of a
proper service level. This information will be closely related to the performance
of each application i as measured by the matching function fi.

Let us assume that at time t the RM measures the matching function fi(t)
and it discovers that the matching is not perfect. In response to this deviation
the RM sets the virtual platforms. How should instead appi react to bring
the next matching function fi(t+ 1) in the interval between −δ and δ?

We will consider an adjustment process for the service levels of each appli-
cation which has the generic form:

si(t+ 1) = ΠSi [si(t) + ε(t)gapp,i(t)] , (6)

where the term gapp,i(t) captures an “observation” sent by the RM to the ap-
plication and depends on the matching function fi. In particular, we would
like this observation to be zero when the matching function is zero, the most
desirable case.

In several cases, we will use the more compact form:

s(t+ 1) = Π̃{Si} [s(t) + ε(t)gapp(t)] . (7)

where s , [si]i and gapp , [gapp,i]i.
Below, we identify two candidates for the observation term gapp,i.

3.2.1 Scheme (a)

The first scheme is rather generic and independent of the specific form of the
matching function fi. It simply defines gapp,i(t) , fi(t). Naturally, in this case,
the specifications we set above are satisfied.

3.2.2 Scheme (b)

The second scheme takes into account the specific form of the matching function
(2). Assuming that the appi could read vi(t), a natural way for the application
to adjust its service level is to simply set si(t + 1) = βivi(t), since, by (2),
if si matches βivi, the matching function will become zero. However, setting
the next service level si(t+ 1) according to this rule is an open-loop technique
that relies on a careful estimation of βi, which may be unavailable. From the
(possibly non-zero) measurement fi(t) at time t we can actually estimate βi as

βi = (1 + fi(t))
si(t)

vi(t− 1)

so that the service level update rule becomes

si(t+ 1) = (1 + fi(t))
vi(t)

vi(t− 1)
si(t). (8)

The above recursion may exhibit large incremental differences, si(t+ 1)− si(t),
which may lead to instability. Hence, we introduce a smoother update rule for
the service level si that exhibits the same stationary points of (8), by setting:

gapp,i(t) , (1 + fi(t))
vi(t)

vi(t− 1)
si − si. (9)

In words, we should expect that si decreases when fi < 0 and vi(t)/vi(t−1) <
1, i.e., when the application is doing poorly and the assigned resources have been
decreased. The term vi(t)/vi(t − 1) provides a look-ahead information to the
application about the expectation over future available resources.

3.3 Resource allocation game

Briefly, we would like to note that the above framework naturally introduces
a strategic-form game (cf., [15]) between the applications and the RM. Note
that a strategic-form game is defined as a collection of: (i) a set of players P,
which here is defined as the set of applications and the RM, i.e., P , I ∪ RM;
(ii) a set of available actions, Ap, for each player p ∈ P, i.e., service level for
each application and allocation of virtual platforms for the RM; and (iii) a set of
utilities or performance measures, up : Ap → R, for each player p. The selection
of these utility functions is in fact open-ended. A candidate selection, motivated
by the dynamics presented above could be:

− for each appi, uapp,i : Si × [0, 1]→ R, such that

∇siuapp,i(si, vi) = fi(si, vi);

− for the RM, urm : S × V → R, such that for each i:

∇viurm(s, v) = −λifi(si, vi) +

n∑
j=1

λjfj(sj , vj)ṽi

Under such strategic-form formulation, each application would prefer to select
si that makes the matching function fi equal to zero, while the RM would prefer
to select a virtual platform allocation that would be “fair” to all applications.
Furthermore, under this framework the adjustment dynamics presented before
introduce a natural way for searching for a Nash equilibrium allocation (cf. [15]).

4 Convergence Analysis

In this section, we analyze the asymptotic behavior of the RM (5) and the
applications (7). For the remainder of the paper, we will consider scheme (b)
for the applications adjustment.

For the sake of analysis, we will abuse notation by taking the observation
signals grm,i and gapp,i as functions of the service levels and virtual platforms.
In particular, for the RM update, the observation signal grm,i(t) is replaced by
grm,i : S × Vn such that:

grm,i(s, ṽ) , −λifi(si, vi) +

n∑
j=1

λjfj(sj , vj)ṽi,

where vi = mṽi. Likewise, the observation signal gapp,i(t) in the application i’s
adjustment is replaced by the function gapp,i : Si × V such that:

gapp,i(si, ṽi, yi) = (1 + fi(si, vi))
ṽi(t)

yi(t)
si(t)− si(t),

where
yi(t+ 1) = yi(t) + ε(t) (ṽi(t)− yi(t)) . (10)

The reason for introducing the new state variable y , (y1, ..., yn) is to deal with
the different time indices in (9).

The asymptotic behavior of the overall adjustment process described by (5),
(7) and (10), can be characterized as follows:

Proposition 4.1 The overall recursion (5), (7) and (10) is such that the se-
quence {(s(t), ṽ(t),y(t))} converges2 to some limit set of the ODE:

(ṡ, ˙̃v, ẏ) = g(s, ṽ,y) + z(t), (11)

where g , (gapp,grm, ṽ−y) and z , (zapp, zrm, 0) is the minimum force required

to drive ṽi(t) to Ṽi and si(t) back to Si. Finally, if E ⊂ S×Ṽ×[0, 1]n is a locally
asymptotically stable set in the sense of Lyapunov3 for (11) and (s(t), ṽ(t),y(t))
is in some compact set in the domain of attraction of E, then (s(t), ṽ(t),y(t))→
E.

2By x(t)→ A for a set A, we mean limt→∞ dist(x(t), A) = 0.
3See [10, Definition 3.1].

Proof. The proof is based on Theorem 2.1 in [12]. �

The above proposition relates the asymptotic behavior of the overall discrete-
time recursion with the limit sets of the ODE (11). Since the stationary points4

of the vector field g are invariant sets of the ODE (11), then they are also
candidate attractors for the recursion. In the following sections, we analyze the
convergence properties of the recursion with respect to the stationary points of
the ODE (11).

4.1 Stationary points

Lemma 4.1 (Stationary Points) Any stationary point of the ODE (11) sat-
isfies all the following conditions:

(C1)
∑
i λifi(s

∗
i , v
∗
i)ṽ∗j = λjfj(s

∗
j , v
∗
j), or

{ṽ∗j = 1/m ∧ fj(s∗j , v∗j) ≤ 0};

(C2) fj(s
∗
j , v
∗
j) = 0, or {s∗j = sj ∧ fj(s∗j , v∗j) ≤ 0},

(C3) y∗j = ṽ∗j ,

for all j ∈ I. Furthermore, the set of stationary points is non-empty.

Proof. Condition (C1) is an immediate consequence of setting grm,j(s
∗, ṽ∗)+

zrm,j = 0, j ∈ I. Likewise, conditions (C2) and (C3) follow directly from setting
gapp,j(s

∗, ṽ∗, yi) + zrm,j = 0 and yj = ṽj , j ∈ I.
Regarding existence of stationary points, and without loss of generality, we

restrict attention to the allocations (s, ṽ) for which fi(si, vi) ≤ 0 for all i ∈
I (since, if there exists appi for which fi(si, vi) > 0, then appi may always
increase si to match vi without affecting the matching functions of the other
applications). Under this restriction, we consider two cases: (a) there exists

s∗ ∈ S and ṽ∗ ∈ Ṽ such that fj(s
∗
j , v
∗
j) = 0 for all j ∈ I; and (b) there exists at

least one j ⊂ I such that fj(sj , vj) < 0 for all sj ∈ Sj and ṽj ∈ Ṽj . In case (a),
(s∗, ṽ∗, ṽ∗) is a stationary point of the ODE (11). In case (b),

∑
i λifi(si, vi) < 0

for the allocations under consideration. Then, condition (C1) gives:

ṽ∗ = h(s∗, ṽ∗) ,
Λf(s∗,v∗)

1TΛf(s∗,v∗)
, (12)

where v∗ = m ṽ∗. Since the function h(s∗, ·) is continuous on a convex and

compact set Ṽ, by Brower’s fixed point theorem (cf., [4, Corollary 6.6]) h(s∗, ·)
has a fixed point. If the fixed point suggests ṽ∗j > 1/m for some j ∈ J ⊆ I, then
set ṽ∗ ≡ 1/m for all j ∈ J and resolve (12) to compute a stationary point for the
rest of applications I\J . This process will define a stationary point. �

4The stationary points of an ODE ẋ = g(x) are defined as the points in the domain D for
which g(x) = 0.

In words, the above lemma states that at a stationary point, appi is either
performing sufficiently good (i.e., fj(s

∗
j , v
∗
j) = 0), or it performs poorly but i)

its service level si cannot be decreased any further (i.e., fj(s
∗
j , v
∗
j) ≤ 0, s∗j =

sj), and/or ii) its virtual platform vi cannot be increased any further (i.e.,
fj(s

∗
j , v
∗
j) ≤ 0, ṽ∗j = 1/m).

Note that any pair (s,v) for which fi(si, vi) = 0 is a stationary point of the
ODE (11). This multiplicity of stationary points complicates the convergence
analysis, however, in several cases, uniqueness of the stationary point can be
shown. Next, we identify a few such special cases.

4.1.1 Fixed Service Levels

The following result characterizes the set of stationary points when the service
levels are fixed, i.e., when each application has only one service level. First,
define the following constants:

Θs , inf
ṽ∈Ṽ

∣∣∣∑
i

λif(si, vi)
∣∣∣ ≥ 0

and
K , sup

i,si∈Si,ṽi∈Ṽi
|f(si, vi)| <∞.

Let also γ > 0 be such that βim
si
≤ γ, for all i and si ∈ Si.

Proposition 4.2 (Uniqueness of Stationary Points) For some given s ∈
S, let fi be defined by (2). If Θs > 0 and ρs , Kγ(

∑
i λi)

2

/Θ2
s < 1, then, the

ODE (11) exhibits a unique stationary point.

Proof. We will first consider the unconstrained case where Ṽi = [0, 1] for each
i ∈ I, i.e., there is only one core (m = 1). (We will revisit this assumption
later.) Under this assumption, a stationary point ṽ∗ satisfies ṽ∗ = h(s, ṽ∗) for
some constant vector s. We will find a sufficient condition for uniqueness of the
stationary point by computing a sufficient condition under which the mapping
h : Ṽ → Ṽ defines a contraction (cf., [11, Definition 5.1-1]). More specifically,
we have,

hj(s, ṽ
′)− hj(s, ṽ)

=
λjf(sj , v

′
j)∑

i λif(si, v′i)
− λjf(sj , vj)∑

i λif(si, vi)

Note that, |
∑
i λif(si, v

′
i)
∑
i λif(si, vi)| ≥ Θ2

s > 0. Thus,

|hj(s, ṽ′)− hj(s, ṽ)| ≤ λj
Θ2
s

·
∑
i

λi
∣∣f(sj , v

′
j)f(si, vi)−

f(sj , vj)f(si, v
′
i)| .

Also, we have:∣∣f(sj , v
′
j)f(si, vi)− f(sj , vj)f(si, v

′
i)
∣∣

≤ K
(
|f(sj , v

′
j)− f(sj , vj)|+ |f(si, vi)− f(si, v

′
i)|
)

≤ K

(
βjm

sj
|ṽ′j − ṽj |+

βim

si
|vi − v′i|

)
≤ Kγ‖ṽ′ − ṽ‖1

where ‖ · ‖1 denotes the `1 norm. Thus, we conclude that

|hj(s,v′)− hj(s,v)| ≤ λj
Θ2
s

·
∑
i

λiKγ‖ṽ′ − ṽ‖1,

which also implies that

‖h(s,v′)− h(s,v)‖1 ≤
Kγ (

∑
i λi)

2

Θ2
s

· ‖ṽ′ − ṽ‖1.

We conclude that h is a contraction if ρs , Kγ(
∑
i λi)

2

/Θ2
s < 1, and therefore

by Banach Fixed Point Theorem (cf., [11, Theorem 5.1-2]) h has a unique fixed
point.

If, instead, Ṽi = [0, 1/m], for all i ∈ I, we proceed as follows: We set ṽ∗j = 1/m
for all j ∈ J ⊆ I such that the unconstrained solution suggests ṽ∗j > 1/m. Then,
we proceed as in the unconstrained case for all i ∈ I\J . �

The condition of Proposition 4.2 is not restrictive. In fact, there are some
cases when uniqueness of the stationary point can be shown. The following
corollary discusses two special cases.

Corollary 4.1 (Two special cases) Consider the matching function defined
by (2). For some given s ∈ S, let us also consider either one of the following
hypotheses:5

(H1) βi/si is sufficiently small for all i;

(H2) λi
βi
si
≈ λβs for all i and for some constants λ ∈ (0, 1), β > 0 and s > 0.

Then, the ODE (5) has a unique stationary point ṽ∗. Furthermore, there exists
some index set J ⊆ I, such that,

− under (H1), {
ṽ∗j = 1/m, j ∈ J
ṽ∗j ≈ λj/

∑
i λi, j /∈ J

; (13)

5Here we abuse notation by interpreting the symbol “≈” as “sufficiently close in the Eu-
clidean norm.”

− under (H2), {
ṽ∗j = 1/m, j ∈ J
ṽ∗j ≈ λj/(

∑
i λi+λ

β
smṽ

∗
r), j /∈ J

. (14)

Proof. (H1) If βi/si is sufficiently small for all i, then ρs ≈ γ < 1. Therefore,
from Proposition 4.2, there exists a unique stationary point. Furthermore, the
stationary point can be computed approximately from condition (C1) and it
can be verified in a straightforward manner that satisfies (13).

(H2) Note that for any j ∈ I, we have:

−λjfj(sj , vj) +
∑
i∈I

λifi(si, vi)ṽj

≈ −λβ
s
mṽj + λj + λ

β

s
ṽjm

∑
i∈I

ṽi − ṽj
∑
i∈I

λi

= λj − ṽj
∑
i∈I

λi − λ
β

s
mṽrṽj .

By setting the above quantity equal to zero, we derive the stationarity condition
(14). �

The above proposition also provides an answer to how the stationary point
changes with respect to the weight parameters {λi}. In particular, from (13),
we conclude that if either one of the hypotheses (H1) or (H2) is valid, then the
percentage of resources ṽ∗j of application j will increase at the stationary point if
λj is also increased, unless some bandwidth reached the maximum at ṽ∗j = 1/m.

4.1.2 Non-fixed Service Levels

Note that the conclusions of Proposition 4.2 and the special cases of Corol-
lary 4.1 continue to hold when the service levels are also adjusted based on (7)
as long as the corresponding hypotheses are satisfied for all s ∈ S. The following
corollary identifies one such case.

Corollary 4.2 Consider the matching function defined by (2). If hypothesis
(H1) holds for all s ∈ S, then the overall dynamics (11) exhibits a unique
stationary point (s∗, ṽ∗) such that s∗i = si and ṽ∗ satisfies property (13).

Proof. If hypothesis (H1) holds for all s ∈ S and ṽ ∈ Ṽ, then the conclusions of
Corollary 4.1 apply. Furthermore, s∗i = si for all i = 1, . . . , n, since fi(si, vi) < 0

for all si ∈ [si,∞) and all ṽ ∈ Ṽ. �

As we have already pointed out, in the more general case where hypothesis
(H1) does not hold, there is a multiplicity of stationary points including (if exist)
any pair (s∗, ṽ∗) for which fi(s

∗
i , v
∗
i) = 0.

4.2 Local Asymptotic Stability & Convergence

The following proposition characterizes locally the stability properties of the
stationary points under the hypotheses of Corollaries 4.1–4.2.

Proposition 4.3 (LAS) Under the hypotheses of either Corollary 4.1 or 4.2,
the unique stationary point of the dynamics (11) is a locally asymptotically stable
point in the sense of Lyapunov.

Proof. Let us define the non-negative function

W (ṽ) =
1

2
(ṽ − ṽ∗)T(ṽ − ṽ∗) ≥ 0

and let us consider the unconstrained case at which Ṽi = [0, 1] for all i ∈ I. (We
will revisit this assumption later on.) In this case,

Ẇ (ṽ) = (ṽ − ṽ∗)Tgrm(s, ṽ)

= (ṽ − ṽ∗)T
[
−Λf(s,v) + 1TΛf(s,v)ṽ

]
.

Let us consider the following perturbed allocation ṽ = (1− ε)ṽ∗ + εw for some

w ∈ Ṽ and ε > 0. Then, we have:

Ẇ (ṽ) = ε(w − ṽ∗)T [−Λf(s, (1− ε)ṽ∗ + εw)+
1TΛf(s, (1− ε)ṽ∗ + εw)((1− ε)ṽ∗ + εw)

]
.

Given that f(s, ṽ) is linear with respect to ṽ, we also have

f(s, (1− ε)ṽ∗ + εw) = (1− ε)f(s, ṽ∗) + εf(s,w).

Thus,

Ẇ (v) ≈ ε2‖w − ṽ∗‖221TΛf(s, ṽ∗)+
ε2(w − ṽ∗)T

[
−Λf(s,w) + 1TΛf(s,w)ṽ∗

]
plus higher order terms of ε.

(H1) If βi/si is sufficiently small for all i, then the first term of the RHS
dominates the second term. This is due to the fact that as βi/si approaches
zero for all i, the second term approaches zero while the first term is bounded
away from zero and it is strictly negative. Therefore, from [10, Theorem 3.1],
the stationary point ṽ∗ is locally asymptotically stable.

(H2) In this case, note that for any j, we have:

−λjfj(sj , wj) +
∑
i∈I

λifi(si, wi)ṽ
∗
j ≈ −λ

β

s
m(wj − ṽ∗j)

where the last approximation is due to the fact that ṽ∗j is a stationary point and
satisfies λj − ṽ∗j

∑
i∈I λi = 0. Thus,

−Λf(s,w) + 1TΛf(s,w)ṽ∗ ≈ −λβ
s
m(w − ṽ∗)

and 1TΛf(s, ṽ∗) ≈ λβsm−
∑
i∈I λi. We conclude that:

Ẇ (ṽ) ≈ ε2‖w − ṽ∗‖22

(
λ
β

s
m−

∑
i∈I

λi

)
−

ε2λ
β

s
m‖w − ṽ∗‖22

= −ε2‖w − ṽ∗‖22
∑
i∈I

λi

plus higher order terms of ε. Thus, the stationary point ṽ∗ is a locally asymp-
totically stable stationary point of grm.

Finally, in case Ṽi = [0, 1/m], the unique stationary point may assign ṽ∗i = 1/m
for some applications i. In this case, it is straightforward to check that the
vector field grm points outwards, which implies that the conclusions of the un-
constrained case continue to hold. �

From Proposition 4.1, we conclude that the stationary points of the ODE (11),
which satisfy the hypotheses of Proposition 4.3, are local attractors of the overall
recursion.

5 Experimental evaluation

To investigate the assignment of the bandwidth and the values of the applica-
tion service levels, the resource management scheme was implemented both in
Matlab and in TrueTime [5].

5.1 Experiment with synthetic applications

In the first Matlab experiment, the applications are not executed, they are
simply abstracted by their characteristic parameters. We have three applications
running over two cores. Applications are all the same, except for the values of
the weights: λ1 = 0.9, λ2 = 0.5 and λ3 = 0.1. As explained in Section 2.3, λi
determines the amount of effort that is taken by the RM to achieve a perfect
matching for appi (i.e., fi close to zero). For example, λ1 = 0.9 implies that the
adjustment is mainly done by the RM through adjusting the bandwidth v1, while
λ3 = 0.1 implies that the adjustment is mainly done by app3 through adjusting
its service level s3. In accordance with the time-sensitive application model of
Section 2.2, each application has Di = 2500 and αi = 2000. In Figure 2, we
show the bandwidth vi, the matching function fi, and the service levels si of the
three applications under the adjustment dynamics of (5), (7) and (10). Some
noise is added to the matching functions fi, to account for the inaccuracy of
the real measures and to show the robustness of the method. Also, the service
level adaptation is performed once every twenty steps of the RM execution,
to resemble some real behavior, where applications are adjusting at a slower
rate with respect to the resource allocation. At time 100, the weights of the

0 25 50 75 100 125 150 175 200
0.5

0.6

0.7

v i

0 25 50 75 100 125 150 175 200

-0.3

-0.2

-0.1

0

f i app1
app2
app3

0 25 50 75 100 125 150 175 200
0.7

0.8

0.9

1.0

s i

Figure 2: Simulation results of three applications over two cores.

applications are changed to λ1 = 0.1, λ2 = 0.5 and λ3 = 0.9 and the RM is
reinitialized.

At time 0, in response to an equally scarce matching between the band-
width and the service levels, app1 is assigned more resource, while app3 has to
significantly lower its service level s3. This observation complies with the pre-
diction of Corollary 4.2 and Proposition 4.3 under assumption (H1), however
we should not expect to observe the exact allocation (13), since condition (H1)
partially holds at the beginning of the simulation (when fi are quite negative).
As the weights are changed by the RM, app3 receives more resource, but not as
predicted by (13) since the matching function is already quite close to zero.

5.2 Experiments with real applications

TrueTime [5] is a Matlab/Simulink-based tool that allows simulation of tasks
executing within real-time kernels and communication over networks, embedded
within Simulink. Among other things, it supports simulation of CBS-based [1]
task execution. The policy allows to adjust the CPU time allocated to the
running applications, in the same exact way as in a real-time computing system.
Moreover, TrueTime offers the ability to simulate memory management and
protection, therefore being a perfect match to simulate our resource management
framework. A TrueTime kernel simulates a single CPU that hosts the execution
of RM and of the CBS servers that contain the applications. A shared memory
segment is initialized and both the RM and the applications have access to
the memory area reporting their execution data. The RM reads the matching

0 200 400 600 800 1000
0.1

0.2

0.3

v i

0 200 400 600 800 1000

-0.6

-0.4

-0.2

0

f i

app1
app2
app3
app4

0 200 400 600 800 1000
0.4

0.6

0.8

1

s i

Figure 3: TrueTime simulation results of a single core machine with four appli-
cations.

function, fi, of each application i and computes the new reservations vi. Then,
it updates the parameters of the CBS server and writes in the shared memory
values to be read by the applications. The execution time of the RM is a
parameter of the simulation. Both the applications and the RM are coded in
a way that is very close to a real implementation and the resulting simulation
data are generally very close to the data that would have been obtained on a
real execution platform.

The first experiment with TrueTime considers four applications and the RM,
which employ the adjustment process of (5), (7) and (10). Figure 3 shows the
allocated bandwidths vi, the matching functions fi and the service levels si.
For these applications, we take Di/αi = 2 as explained in the derivation of (2)
for multimedia applications. The weights are λ1 = 0.8, λ2 = 0.6, λ3 = 0.4 and
λ4 = 0.2. Some randomness is also introduced in the execution times to show
the effect of disturbances generated by lock acquisition, resource contention,
memory management, etc. At the beginning of the simulation and when the
matchings are quite scarce (i.e., (H1) is satisfied), the RM distributes the CPU
as predicted by Corollary 4.2 and Proposition 4.3. However, as the service levels
also adjust and the matching functions approach zero, we observe a deviation
from the exact resource allocation predicted by (13), which is anticipated since
condition (H1) no longer applies.

In the second experiment, we show how four heterogeneous applications are
handled by the RM. Three of them are alive from the very beginning while the
fourth one enters the system at time 500. Among the three applications that are

0 250 500 750 1000

0.1

0.2

0.3

0.4

v i

0 250 500 750 1000

0

2

4

6

f i

app1
app2
app3
appctl

0 250 500 750 1000
0
1
2
3
4
5

s i

Figure 4: TrueTime simulation results of a single core hardware with two ap-
plications and a control task. Another application is arriving at time 500.

alive from the beginning, one is a LQG controller controlling an inverted pendu-
lum which is simulated in Simulink. The controller, modeled as a time-sensitive
application (2), has a deadline set to 0.85Ts where Ts is its sampling period. Its
service level si is simply set equal to 1/Ts, because of the natural observation
that faster sampling can provide better performance. The applications’ weights
are set as λ1 = 0.64, λ2 = 0.73, λ3 = 0.41 and λctl = 0.41. Every five controller
jobs, the service level of the controller, i.e., the sampling frequency, is adjusted.
A new sampling period is chosen and the controller is redesigned taking into
account the measured sampling period and the measured input/output latency.
The latency, i.e., the average amount of time between the sensor measurement
and the actuation, depends on the amount of bandwidth assigned to the con-
troller by the resource manager. In a real system the on-line redesign would be
replaced by look-up in a table consisting of pre-calculated controller parameters
for different sampling periods and latencies.

Figure 4 shows the quantities involved in the simulation, the CPU bandwidth
allocated to the applications and to the controller, the performance function and
the service level. Notice that when a new application is introduced the resource
manager is reinitialized, and the CPU is redistributed.

6 Conclusion and future work

We proposed a distributed management framework for the CPU resource. Be-
ing distributed, our scheme has only a linear time complexity in the number
of demanding applications. We exploited a game-oriented logic, where all ap-
plications competes for the assignment of the CPU time. The validity of the
framework (such as the existence of stationary points and stability of the re-
source assignment) is theoretically proved and experimentally validated.

Currently, we are working on an implementation of the framework within
the Linux kernel. Also we will extend the resource management scheme to be
robust against potential malicious behaviors of the applications, which may lead
to an incorrect resource assignment.

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in
hard real-time systems. In Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 4–13, Madrid, Spain, December 1998.

[2] Karl-Erik Årzén, Vanessa Romero Segovia, Stefan Schorr, and Gerhard
Fohler. Adaptive resource management made real. In Proc. 3rd Work-
shop on Adaptive and Reconfigurable Embedded Systems, Chicago, IL, USA,
April 2011.

[3] Enrico Bini, Giorgio C. Buttazzo, Johan Eker, Stefan Schorr, Raphael
Guerra, Gerhard Fohler, Karl-Erik Årzén, Romero Vanessa, and Claudio
Scordino. Resource management on multicore systems: The ACTORS ap-
proach. IEEE Micro, 31(3):72–81, 2011.

[4] K.C. Border. Fixed Point Theorems with Applications to Economics and
Game Theory. Cambridge University Press, 1985.

[5] Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-Erik
Årzén. How does control timing affect performance? Analysis and sim-
ulation of timing using Jitterbug and TrueTime. IEEE Control Systems
Magazine, 23(3):1630, June 2003.

[6] Tommaso Cucinotta, Luigi Palopoli, Luca Abeni, Dario Faggioli, and
Giuseppe Lipari. On the integration of application level and resource level
qos control for real-time applications. IEEE Transactions on Industrial
Informatics, 6(4):479–491, November 2010.

[7] Johan Eker, Per Hagander, and Karl-Erik Årzén. A feedback scheduler for
real-time controller tasks. Control Engineering Practice, 8(12):1369–1378,
January 2000.

[8] Daniel Grosu and Anthony T. Chronopoulos. Noncooperative load balanc-
ing in distributed systems. Journal of Parallel and Distributed Computing,
65(9):1022–1034, 2005.

[9] Björn Johansson, Constantin Adam, Mikael Johansson, and Rolf Stadler.
Distributed resource allocation strategies for achieving quality of service in
server clusters. In Proceedings of the 45th IEEE Conference on Decision
and Control, pages 1990–1995, December 2006.

[10] H.K. Khalil. Nonlinear Systems. Prentice-Hall, 1992.

[11] E. Kreyszig. Introductory Functional Analysis with Applications. John
Wiley & Sons, 1978.

[12] Harold J. Kushner and G. George Yin. Stochastic Approximation and Re-
cursive Algorithms and Applications. Springer-Verlag New York, Inc., 2nd
edition, 2003.

[13] Chen Lee, John P. Lehoczky, Dan Sieworek, Ragunathan Rajkumar, and
Jeffrey Hansen. A scalable solution to the multi-resource QoS problem. In
Proceedings of the 20th IEEE Real-Time Systems Symposium, pages 315–
326, Phoenix, AZ, December 1999.

[14] Clifford W. Mercer, Stefan Savage, and Hydeyuki Tokuda. Processor ca-
pacity reserves: Operating system support for multimedia applications. In
Proceedings of IEEE International Conference on Multimedia Computing
and Systems, pages 90–99, Boston, MA, U.S.A., May 1994.

[15] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press,
Cambridge, MA, 1994.

[16] Rauganathan Rajkumar, Chen Lee, John Lehoczky, and Dan Siewiorek.
A resource allocation model for QoS management. In Proceedings of the
IEEE Real Time System Symposium, 1997.

[17] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton
Pu, and Jonathan Walpole. A feedback-driven proportion allocator for real-
rate scheduling. In Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, February 1999.

[18] Riky Subrata, Albert Y. Zomaya, and Björn Landfeldt. A cooperative
game framework for QoS guided job allocation schemes in grids. IEEE
Transactions on Computers, 57(10):1413–1422, October 2008.

[19] Guiyi Wei, Athanasios V. Vasilakos, Yao Zheng, and Naixue Xiong. A
game-theoretic method of fair resource allocation for cloud computing ser-
vices. The Journal of Supercomputing, 54(2):252–269, November 2010.

	7625_Docdata.pdf
	Lund University
	Department of Automatic Control
	Box 118

