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ABSTRACT

Today’s complex distribution networks need special models. They have many and non-
linear components, which means that it is necessary to work with aggregated models.
This paper presents a modularized approach to modeling of harmonics at steady state.
It exploits that loads are connected in parallel and that frequency and amplitude of the
voltage across a load are close to known nominal values. It means that linearization of the
nonlinear relations is tractable. The method of harmonic balancing is used to model the
harmonics. The model for a component is given by a linear relation between the Fourier
coefficients for spectra of deviations of the voltage and the current from nominal values.
This linear relationship between the voltage and the current is conveniently described
by an admittance matrix. It is then straightforward linear algebra to build models also
for nonlinear networks. Applications show that we get accurate results. The advantage
of this approach is that it results in fast calculations since the basic operation is solving
linear equation systems.

INTRODUCTION

Modern distribution networks are very complex. They are widespread and contain
numerous non-linear and switching devices. Distribution networks constitute the link
between high voltage transmission lines and the power consumers. As a definition, the
voltage level of Swedish distribution networks range between 230V and 40kV.

The increased use of switched power supplies and power electronics for motor control
creates disturbances in the wave form of the supplied electricity. These disturbances
result in increased losses and also in failure of sensitive equipment. Today, problems have
been encountered in, for instance, hospitals and industries, with sensitive equipment and
high power loads, but the situation is expected to become severe even in domestic areas.
The power companies want to be able to guarantee the power quality. It has also been
proposed that there will be a fee for polluting the power. Consequently, there is a desire
for methods to analyze these complex systems.

Models for static and dynamic simulation of electricity distribution networks need to
be non-linear and accurate up to frequencies of a few kHz. Typical network configurations
are a shopping center, an office building or a local district with fifty houses, two factories,
and two transformer stations. The complex and non-linear nature of the systems requires



methods for aggregation and modularization. The big question is then how to make the
aggregation. It would be very useful to have tools that can take a component-based model
of a part of a network and make a simplified aggregated model. One difficulty is that
a network includes non-linear components. For linear dynamic models there are well-
established model reduction techniques.

We are developing a method to describe non-linear elements in the frequency domain.
Using these models, aggregation of loads and solving the network is done by direct
calculation using linear algebra, i.e., no iterative solution is necessary. This means that
convergence problems, and large computational efforts are avoided. The models are valid
for steady-state analysis.

HARMONIC BALANCE

For many electrical components, the voltage and current are related through a
differential-algebraic equation system

dv . di
i =0 1
f(v, t’l’ t,t) 0 (1)

For static analysis, we assume the signals to be periodic, with a period of 20 ms (50 Hz),
and represent voltages and currents by truncated Fourier series
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With this, Equation(1) transforms to an algebraic equation system
F(V,I)=0. (2)

The equation system can be solved iteratively, e.g., by Newton’s method. This way of
solving non-linear systems is referred to as the harmonic balance method, [2, 3]. There are
however some problems with using this method on distribution systems. The complexity
of the networks make the size of the equation system very large, which result in time
consuming Jacobian calculations, and problems with convergence of the iterations. With
many non-linear elements the problems become severe. It would also be attractive to be
able to reuse parts of the result if the network is modified, e.g., a component is substituted.
This bring up the desire for some form of modularization.

THE PROPOSED METHOD

Harmonic balance applied to electrical distribution systems creates some interesting
possibilities to support modularity. The idea is that for distribution systems, the line
voltage is known in advance (e.g. 230V, 50 Hz) and the maximum level of distortion, e.g.,
energy contents in harmonics, is regulated by norms and standards not to exceed certain
values. The operating conditions for loads, which are connected in parallel, are hence
approximately known in advance. This makes linearization of the nonlinear algebraic
relations tractable.



Let V, and, I, be defined as in the previous section. If only small deviations from the
nominal conditions, Vy, I, are considered, the algebraic equation system can be linearized

I=Io+Y(V —Vp). (3)

The Jacobian matrix, Y, is a matrix that describes the linear relationship between the
voltage and the current.
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A non-linear device is then represented by a nominal current spectrum, I, and a Jacobian
matrix, Y. The Jacobian is sometimes referred to as the harmonic admittance matrix,
but could also be called the linearized describing function.

The method proposed is a version of Newton’s method of Harmonic Balancing. It
can be seen as one iteration of that method where the nonlinear elements have been
linearized around their nominal working conditions, a network with pure sinusoidal
voltages. The main point is that one iteration can be achieved using precomputed,
modularized information. This gives a very fast method that is interesting also for
analytical investigations since only linear algebra is used. The model, (3,4), can be
obtained either through measurements on real systems, time domain simulation of
simple circuits, or analytical calculations. Moreover, a global admittance matrix can
be computed by interconnecting local models. The main problem to investigate is how
accurate solutions we get, using only one iteration. Our first experiments show promising
results. The idea is presented using two examples.

EXAMPLES

Analytical calculation of a model for a dimmer

dimmertesl
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Figure 1 A dimmer in series with a resistive load.The current through the dimmer
is turned off for a time, d, every half period.

To illustrate the idea, we consider a simple dimmer, consisting of two thyristors in parallel.
When the current through the dimmer becomes zero, the dimmer is turned off. The
current through the dimmer remains zero for a time, d, after which the dimmer is turned
on again. The dimmer is connected in series with a linear resistor, see Figure 1. When
connected to a stiff voltage source, the current will be distorted. Since the current is
symmetric, there will only be odd harmonies, i.c., we have

Unom () = a® cos wt, Inom (2) = Z AY cos kot + B) sin kowt.
kodd



If, however, the voltage source is a bit distorted, we approximately have that the deviation
from the nominal current is linearly dependent on the distortion of the voltage

u(t) = af cos wt + Z @y, cos kot + by, sin ko,
kodd

i(t) = Z (A% + Ay) cos kot + (B} + By) sin ko,
kodd

where we have put A, = Ag + Kk etc. and
T ~ T
(A, ... By ...] =Y[a, ... b ...] .
To compute Y, we assume that u(¢) has the form above. If @, and by, are sufficiently small

there will still be two zero-crossings per period located close to the distortion free case.
Denote the new first positive zero-crossing with ¢; = #{ +¢;, where ¢ = 7/2® and ¢, is

small if @, and b, are small. Linearization gives

u(t) = a‘l) cos Wt + Z ay cos kot + Ek sin kot

kodd
= oY(—af) + (Bk(—1)’%~1 +O(a + bz)) — 0,
kodd

which shows that up to first order terms we have t; = %= + w%g Yk odd Bk(—l)k%. The

20
Fourier coefficients are given by RA; = a, — 7 t';1+du(t) cos kwtdt, and if we insert

the Taylor expansion of #; direct calculation shows that the coefficient before a; in the
expression for A; is given by

A t9+d
R% = Oy — % / coslwt cos kwt dt.
{ ﬁ

The coefficient before El in the expression for A, is given by

A t9-+d
Rz—%k =— % / 1 sinlwt cos kwt dt + (—1)@2"1 sin kod.
! 4

Similarly we obtain

D t9+d
R% = —;:—/ coslwtsin kot dt,
l £
o) 0+d
Ra—% = Op — i / 1 sin lwt sin kot dt — g(—l)%‘l sin wd cos kwd.
ob; T Jp T

In Figure 2, the resulting coefficients, calculated from this linearized model, are
compared with the true values obtained from a simulation of the network. The results
show that the linearized model is a good approximation if the deviations in voltage are
limited to 10 %. Note that the current is severely distorted due to the nonlinearity, as
shown in Figure 1. The accuracy should be enough for investigations of common electrical
networks.
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Figure 2 Plots showing how the linearized and simulated Fourier coefficients for
the current in the circuit in Figure 1 depend on bs, when u(t) = cost + by sin 3.

A Network with Two Dimmers

In radial networks, loads are connected in parallel. If the line losses are small, the load
voltage is close to its nominal value, which means that our method is suitable. The steady-
state solution for the system in Figure 3 is easily derived using our method. Applying
Kirchhoff’s laws, it is a matter of solving a linear equation system. Let the two dimmers,
with resistive loads of 20 Q, be represented by admittance matrices, Y; and Y,. The line
impedances, z;1=(0.75 + j©0.0024) Q and z;2 = (0.25 + j@0.0008) 2, are represented by
matrices, Z;;1 and Z;,. The system is described by the following equation:

1 -1 -1 0 0 rlbl [ O 7
o I 0 -Y 0 I I1 nom
0 o0 I 0 -Y; I | = | Isnom
Zin 0 0 1 0 U, 0

L0 0 Z, -I 1 /LU, L o |

__ Here Iy, I, and I, are vectors with the Fourier coefficients of the currents, and
U, and U; contain the Fourier coefficients of the deviations from the nominal voltage,
Unom(t) = (240\/§ - cos 250¢) V. The identity matrix of appropriate size is denoted I .
Instead of solving a non-linear algebraic equation system, we now have to solve a linear
equation system of the same size.

The currents become more distorted the longer the dimmers are turned off. It is
natural to assume that the method will be less accurate the larger d is. We therefore

dimmer_circuit

Figure 3 A circuit with two dimmers, Y1 and Yz, and line losses, Z;1 and Z;s
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Figure 4 Plots showing how the linearized and simulated Fourier coefficients for
the current in the circuit in Figure 3 depend on the turn on time, d, for the dimmers.
When df = 0.5 the dimmer is completely turned off.

tested the accuracy of the method for different turn on delays, d. Figure 4 shows the first
six cosine coefficients for the Fourier series of the current, when d is varied from zero to
almost a half period. The plots shows that the method works well for all d.

CONCLUSIONS

We have described a new method to model large electrical distribution networks that
contain nonlinear components. A modularized approach is supported. The method is based
on harmonic balancing in the frequency domain. Preliminary experiments show promising
results. We now intend to use the method on larger systems and to measure the accuracy
on real data. The obtained model is well suited for control design and resonance problems
on compensated lines can probably be predicted.
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