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Abstract—We introduce successive cancellation (SC) decoding

of product codes (PCs) with single parity-check (SPC) component

codes. Recursive formulas are derived, which resemble the

SC decoding algorithm of polar codes. We analyze the error

probability of SPC-PCs over the binary erasure channel under

SC decoding. A bridge with the analysis of PCs introduced by

Elias in 1954 is also established. Furthermore, bounds on the

block error probability under SC decoding are provided, and

compared to the bounds under the original decoding algorithm

proposed by Elias. It is shown that SC decoding of SPC-PCs

achieves a lower block error probability than Elias’ decoding.

I. INTRODUCTION

In 1954, P. Elias showed that the bit error probability over
the binary symmetric channel (BSC) can be made arbitrarily
small with a strictly positive coding rate by iterating an infinite
number of simple linear block codes, introducing the class of
product codes (PCs) [1]. More recently, PCs, re-interpreted
as turbo-like codes [2], and their generalizations (see, e.g.,
[3]–[6]) have attracted a large interest from both a research
[7]–[10] and an application [11] viewpoint.

In [7], PCs with single parity-check (SPC) component codes
were decoded using iterative decoding algorithms based on
Bahl, Cocke, Jelinek, and Raviv [12] a-posteriori probability
decoding of the component codes. In [8], the asymptotic per-
formance of SPC-PCs, whose component code length doubles
with each dimension, was analyzed over the BSC, providing
an improved bound on the bit error probability by using 2-
dimensional SPC-PCs as the component codes of the overall
PC. In [13], a bridge between generalized concatenated codes
and polar codes is established.

In this paper, we establish a bridge between the original
decoding algorithm of PCs, which we refer to as Elias’
decoder1 [1], and the successive cancellation (SC) decoding
algorithm of polar codes [14], [15]. The link is established
for SPC-PCs and for the binary erasure channel (BEC). We
show that the block error probability of SPC-PCs can be
upper bounded under both decoding algorithms using the
evolution of the erasure probabilities over the decoding graph.
As a byproduct of the analysis, it is shown that SPC-PCs
do not achieve the capacity of the BEC under SC decoding.
A comparison between Elias’ decoding and SC decoding of

1By Elias’ decoder, we refer to a decoding algorithm that treats the PC as
a serially concatenated block code, where the decoding is performed starting
from the component codes of the first dimension, up to those of the last
dimension, in a one-sweep fashion.

SPC-PCs is provided in terms of block error probability. We
prove that SC decoding yields a lower error probability than
Elias’ decoding. Finally, simulation results over the binary
input additive white Gaussian noise (B-AWGN) channel under
SC decoding are given for different SPC-PCs.

II. PRELIMINARIES

In the following, xb

a

denotes the vector (x

a

, x

a+1

, . . . , x

b

)

where b � a. We use capital letters for random variables (RVs)
and lower case letters for their realizations. In addition, we
denote a binary-input discrete memoryless channel (B-DMC)
by W : X ! Y , with input alphabet X = {0, 1}, output
alphabet Y , and transition probabilities W(y|x), x 2 X ,
y 2 Y . We write BEC(✏) to denote the BEC with erasure
probability ✏. The output alphabet of the BEC is Y = {0, 1,e},
where e denotes an erasure.

The generator matrix of an (n, k) PC C is obtained by
iterating binary linear block codes C

1

, C
2

, . . . , C
m

in m di-
mensions (levels) [1]. Let G

`

be the generator matrix of the
`-th component code C

`

. Then, the generator matrix of the m-
dimensional PC is G = G

1

⌦G
2

⌦ . . .⌦G
m

, where ⌦ is the
Kronecker product. Upon proper permutation, the generator
matrix will permit to encode the message according to the
labeling introduced in the next section.

Let C
`

be the `-th component code with parameters
(n

`

, k

`

, d

`

), where n

`

, k
`

, and d

`

are the block length, dimen-
sion, and minimum distance, respectively. Then, the overall
PC parameters are

n =

mY

`=1

n

`

, k =

mY

`=1

k

`

, and d =

mY

`=1

d

`

.

Although the characterization of the complete distance spec-
trum of a PC is still an open problem even for the case
where the distance spectrum of its component codes is known,
the minimum distance multiplicity is known and equal to
A

d

=

Q
m

`=1

A

(`)

d`
, where A

(`)

d`
is that of the `-th component

code. More on the distance spectrum of PCs can be found
in [9], [10]. Thanks to the relationship between d and the
minimum distances d

`

of the component codes, PCs tend
to have a large minimum distance. However, their minimum
distance multiplicities are also typically very high [16]. Note
finally that SPC-PCs are a special class of (left-regular) low-
density parity-check codes [17], defined by a bipartite graph
with girth 8.
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Fig. 1. Transmission by using the (9, 4) SPC-PC.

III. SUCCESSIVE CANCELLATION DECODING OF
SINGLE PARITY-CHECK PRODUCT CODES

Consider transmission over a B-DMC W using an (n, k)

SPC-PC with m dimensions (levels). Let the binary vectors uk

1

and x

n

1

be the message to be encoded and the corresponding
codeword, respectively, and let y

n

1

2 Yn be the channel
observation. The transmission by using the (9, 4) SPC-PC,
obtained by iterating (3, 2) SPC codes, is illustrated in Fig.
1. We label the levels by numbers starting from right to left
as it is seen for the 2-dimensional case in the figure. We denote
by ⌘

`

the number of local SPC codes at level `, 1  `  m,
which is computed as

⌘

`

=

`�1Y

i=1

(n

i

� 1)

mY

i=`+1

n

i

.

SC decoding follows the schedule introduced in [15] for
polar codes. Explicitly, the decision on the i-th information
bit is made according to the soft-information obtained by
performing a message-passing algorithm which propagates
messages from the right of the decoding graph, along the edges
of the tree rooted in u

i

, where the operations at the local codes
take into account the past decisions ûi�1

1

. The decoding graph
for the (9, 4) SPC-PC is provided in Fig. 2, by introducing
check nodes (CNs) and variable nodes (VNs) to the encoder
graph given in Fig. 1. We denote the soft-messages coming
from the right, associated with the i-th codeword bit of the j-
th local code at level `, as ⇢

(`)

j,i

, 1  i  n

`

, 1  j  ⌘

`

. The
inputs to the decoder are defined as the channel log-likelihood
ratios (LLRs), i.e.,

⇢

(1)

j,i

, ln


W(y

(j�1)n1+i

|0)
W(y

(j�1)n1+i

|1)

�

1  j  ⌘

1

and 1  i  n

1

.

=

=

=

=

=

=

=

=

=

=

+

+

+

+

+

⇢

(1)

1,1

, ln

h
W(y1|x1=0)

W(y1|x1=1)

i

⇢

(1)

1,3

, ln

h
W(y3|x3=0)

W(y3|x3=1)

i

⇢

(1)

1,2

, ln

h
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⇢
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Fig. 2. Decoding graph for the (9, 4) SPC-PC. = denotes a VN and +

denotes a CN.
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Consider the j-th local code at level `, whose decoding
graph is provided in Fig. 3. The soft output message for the
i-th local information bit is computed as

m

(`)

j,i

= ⇢

(`)

j,i

+2atanh

"
nỲ

i

0
=i+1

tanh

✓
⇢

(`)

j,i

0

2

◆#⇣
� 1

⌘Pi�1
z=1 �

(`)
j,z

(1)
where �(`)

j,z

is the hard input (i.e., bit) message for the z-th local
information bit, coming from the left, with z = 1, . . . , i � 1,
depending on the past decisions. The computed output mes-
sage m

(`)

j,i

is propagated leftwards over the tree edge, providing
the next level with an input message. In particular, we set

⇢

(`+1)

j

0
,i

0  m

(`)

j,i

(2)

where the assignment is made according to the graph connec-
tions, i.e., the PC structure. The decision is made as

û

(j�1)(nm�1)+i

=

(
0 if m

(m)

j,i

� 0

1 if m

(m)

j,i

< 0

(3)

by breaking the ties in favor of zero. Over the BEC, ties are
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not broken towards any decision by revising (3) as

û

(j�1)(nm�1)+i

=

8
><

>:

0 if m

(m)

j,i

= +1
e if m

(m)

j,i

= 0

1 if m

(m)

j,i

= �1.

(4)

Accordingly, over the BEC, (1) is valid if �

(`)

j,z

6= e for all
z = 1, . . . , i�1. However, if there exists any z = 1, . . . , i�1,
such that �(`)

j,z

= e, then (1) has to be replaced by

m

(`)

j,i

= ⇢

(`)

j,i

. (5)

A block error event occurs if ûk

1

6= u

k

1

.

Example 1. Consider the 2-dimensional (9, 4) SPC-PC ob-

tained by iterating (3, 2) SPC codes. Its decoding graph is

provided in Fig. 2. The number of local codes at levels 1

and 2 are computed respectively as ⌘

1

= 3 and ⌘

2

= 2. We

illustrate an intermediate SC decoding step in Fig. 4, where

the decisions for the first two information bits are already

made and the decoder computes the soft message for the third

bit. At level 1, the j-th local code has the hard input message

�

(1)

j,1

and the soft input messages

⇣
⇢

(1)

j,1

, ⇢

(1)

j,2

, ⇢

(1)

j,3

⌘
. Using (1)

or (5) depending on the previous decisions, it computes the

soft output message m

(1)

j,2

, providing the next level with a soft

input message. According to the connections in the graph, we

have the following assignments:

⇢

(2)

2,1

 m

(1)

1,2

, ⇢

(2)

2,2

 m

(1)

2,2

, and ⇢

(2)

2,3

 m

(1)

3,2

.

Then, the soft output message m

(2)

2,1

is computed with the soft

input messages coming from the right. The final decision is

made for û

3

as in (3) or (4) depending on the channel.

We revise (1) under Elias’ decoder as

m

(`)

j,i

= ⇢

(`)

j,i

+ 2atanh

"
nỲ

i

0 6=i,i

0
=1

tanh

✓
⇢

(j)

j,i

0

2

◆#
. (6)

A. Analysis over the Binary Erasure Channel

We first analyze the behavior of a local (n
`

, n

`

� 1) SPC
(component) code under SC decoding over the BEC(✏) W. We
denote by ✏

(i) the erasure probability of the i-th information
bit after SC decoding conditioned on the correct decoding of
the i�1 preceding bits, with i = 1, . . . , n

`

�1. The relationship
between the input-output erasure probabilities is given by

✏

(i)

= ✏

⇣
1� (1� ✏)

n`�i

⌘
for i = 1, . . . , n

`

� 1. (7)

Denote the bits at the input of such a local SPC code
encoder as v

1

, . . . , v

n`�1

and the received values at the input
of the corresponding local SPC decoder as b

1

, . . . , b

n` . Let
I

(i) denote the mutual information between the RVs V

i

and
(B

n`
1

, V

i�1

1

), i.e., I(i) , I(V

i

;B

n`
1

, V

i�1

1

). Then, the recursion
(7) can be rewritten in terms of mutual information as

I

(i)

= 1�(1� I)

�
1� I

n`�i

�
for i = 1, . . . , n

`

�1 (8)

with I , 1� ✏ and I

(i) , 1� ✏

(i).

Proposition 1. The mutual information at the input of an SPC

local decoder in the `-th dimension is not preserved at its

output, i.e.,

n`�1X

j=1

I

(j)

< n

`

I.

Proof. We have that
n`�1X

j=1

I

(j)

=

n`�1X

j=1

⇥
1� (1� I)

�
1� I

n`�j

�⇤

= (n

`

� 1)� (1� I)

n`�1X

j=1

�
1� I

n`�j

�

= (n

`

� 1)I + (1� I) I

1� I

n`�1

1� I

= n

`

I� I

n`
< n

`

I. ⌅
Proposition 1 provides also the loss of mutual information

due to a local SPC code in the `-th dimension, which is In` . By
recursively applying the transformation (7), one can derive the
erasure probability associated with the information bits of an
SPC-PC. Denote such erasure probabilities as q

i

, i = 1, . . . , k.
The evolution of the corresponding mutual information values
at each transformation level is illustrated in Fig. 5, where I =

0.3, i.e., ✏ = 0.7, for the original channel.
The largest bit erasure probability is equal to that of the first

decoded information bit, i.e., q
max

, max

i=1,...,k

q

i

= q

1

. The
block error probability under SC decoding, denoted by P

SC

,
is bounded as [15]

q

max

 P

SC


kX

i=1

q

i

. (9)

A looser upper bound can be obtained by tracking only the
largest erasure probability as

P

SC

 kq

max

. (10)
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Note that the derivation of q

max

is obtained by iterating the
transformation for the first decoded information bit only, i.e.,

✏

(1)

`

= ✏

(1)

`�1

✓
1�

⇣
1� ✏

(1)

`�1

⌘
n`�1

◆
for ` � 1 (11)

where ` is the transformation level, and ✏

(1)

0

= ✏. For an
m-dimensional SPC-PC, the erasure probability of the first
decoded information bit is

q

max

= ✏

(1)

m

. (12)

Remarkably, (11) describes also the evolution of the bit erasure
probability under bounded distance decoding at each level,
according to the Elias’ decoder analysis [1].

Lemma 1. For an SPC-PC, the erasure probability of the first

decoded information bit under SC decoding

�
given by (12)

�
is

equal to the erasure probability of each information bit under

Elias’ decoding.

We skip the proof as it is intuitive. SC decoding makes use
of the observation y

n

1

only to decode the first information bit
as it is the case for Elias’ decoding to decode each information
bit

�
see (6)

�
. However, SC decoding exploits also the decisions

on the preceding bits to decode the other information bits
�
see

(5)
�
. As a result of Lemma 1, the bound (10) holds also for

Elias’ decoding.

Theorem 1. The block error probability P

E

of an SPC-PC

over the BEC(✏) under Elias’ decoding [1] is bounded as

q

max

 P

E

 kq

max

. (13)

Proof. The block error event is defined as

E
E

, {(uk

1

, y

n

1

) 2 X k ⇥ Yn

: û

k

1

(y

n

1

) 6= u

k

1

}
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Fig. 6. Block error rate vs. erasure probability for the (9, 4) SPC-PC under
ML ( ), Elias’ and SC decoding algorithms. The loose upper
bound (10) ( ), the upper bound given by the right hand side of (9) ( )
and the lower bound given by the left hand side of (9) ( ) are provided,
together with the truncated union bound (16) ( ).

where û

k

1

(y

n

1

) is the output of Elias’ decoder, obtained by
using (2), (4) and (6). The bit error event is defined as

B
i

, {(uk

1

, y

n

1

) 2 X k⇥Yn

: û

i

(y

n

1

) 6= u

i

} for i = 1, . . . , k.

The block error event satisfies E
E

= [k
i=1

B
i

, which leads to

max

i=1,...,k

P (B
i

)  P

E


kX

i=1

P (B
i

). (14)

We conclude the proof by combining (14) and Lemma 1. ⌅

Theorem 2. For an SPC-PC over the BEC(✏),

P

SC

 P

E

. (15)

Proof. Over the BEC, both decoders can either make a correct
decision or get an erasure for an information bit according
to (4). Therefore, SC decoding cannot make use of any
wrong bit decision. Recall (5) for SC decoding and (6) for
Elias’ decoding. Under the former, the preceding decisions are
exploited. However, each bit decision under the latter is made
in the same manner as if one of the past decisions coming
from left is an erasure for a local decoder under SC decoding.
More precisely, assume that we apply both SC decoding and
Elias’ decoding to an observation y

n

1

. Furthermore, assume
at an intermediate step, the SC decoder computes the output
message m

(`)

j,i

corresponding to the i-th information bit of the
j-th local code at the `-th dimension such that 1  `  m,
1  j  ⌘

`

, 1  i  n

`

. Assume also that there exists at least
one z, 1  z  i � 1, such that �(`)

j,z

= e. Note that having
�

(`)

j,z

= e implies also that ⇢(`)
j,z

= 0. Then, (5) computes the
message as m

(`)

j,i

= ⇢

(`)

j,i

. For the same scenario under Elias’
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decoding, (6) computes the same message because ⇢

(`)

j,z

= 0

and tanh(0) = 0. Therefore, the probability that they can
decode the first bit correctly is the same. Once both decoded
the first bit, then the SC decoding is at least as good as Elias’
decoding.

⌅
Example 2. Consider transmission using the (9, 4) product

code with the received vector y

9

1

= {e, 0, 1, 0,e,e,e,e, 1}.

Under SC decoding, the message is decoded correctly while

Elias’ decoding would fail to decode the 4th information bit.

The bounds and block error probabilities under SC, Elias’
and ML decoding for the (9, 4) SPC-PC are depicted in Fig. 6.
For completeness, we also provide the truncated union bound
on the block error probability under ML decoding given by

P

B

⇡ A

min

✏

d

. (16)

The given error probabilities are not simulation results, but are
computed exactly under the three decoding algorithms thanks
to the short length of the code. We observe that the bounds
are tight especially in the low error rate regime.

B. Performance over the binary input AWGN Channel

In Fig. 7, we provide the block error rate performance of the
3-dimensional (125, 64) and (216, 125) SPC-PCs, obtained by
iterating (5, 4) and (6, 5) SPC codes, respectively, under both
SC and Elias’ decoding algorithms for the B-AWGN channel.
In the figure, we also show the truncated union bound

P

B

⇡ 1

2

A

min

erfc

q
dR

Eb
N0

(17)

which, for high E

b

/N

0

, approximates tightly the ML decoding
performance. Here, E

b

denotes the energy per information bit
and N

0

is the single-sided noise power spectral density. For

both codes, the difference of SC decoding to the truncated
union bound is around 1 dB at block error rate of 10

�4. In
addition, SC decoding outperforms Elias’ decoding.

IV. CONCLUSIONS

We introduced successive cancellation decoding of the class
of product codes obtained by iterating single parity-check
codes. Thanks to the structure of SPC-PCs, we showed how to
compute the decision metrics recursively under SC decoding,
which resembles SC decoding of polar codes. In addition, we
introduced an analysis on the binary erasure channel, yielding
lower and upper bounds on the block error probability. The
performance of SC decoding is then compared with that of
the original decoder of PCs introduced by Elias, showing
that SC decoding yields lower block error probability than
Elias’ decoding. Finally, it is concluded for the analyzed codes
that the low-complexity SC decoding can outperform Elias’
decoding by ⇠ 0.35 dB.
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