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Non-Uniform Window Decoding Schedules for
Spatially Coupled LDPC Codes

Najeeb Ul Hassan, Member, IEEE, Ali E. Pusane, Member, IEEE, Michael Lentmaier, Senior Member, IEEE,

Gerhard P. Fettweis, Fellow, IEEE, and Daniel J. Costello, Jr., Life Fellow, IEEE

Abstract—Spatially coupled low-density parity-check (SC-
LDPC) codes can be decoded using a graph-based message pass-
ing algorithm applied across the total length of the coupled graph.
However, considering practical constraints on decoding latency
and complexity, a sliding window decoding approach is normally
preferred. In order to reduce decoding complexity compared
to standard parallel decoding schedules, serial schedules can
be applied within a decoding window. However, uniform serial
schedules within a window do not provide the expected reduction
in complexity. Hence we propose non-uniform schedules (parallel
and serial) based on measured improvements in the estimated
bit error rate (BER). We show that these non-uniform schedules
result in a significant reduction in complexity without any loss
in performance. Further, based on observations made using
density evolution, we propose a non-uniform pragmatic decoding
schedule (parallel and serial) that does not require any additional
calculations (e.g., BER estimates) within the decoding process.

Index Terms—LDPC codes, LDPC convolutional codes, spa-
tially coupled codes, iterative decoding, window decoding, de-
coding schedules.

I. INTRODUCTION

Iterative decoding of low-density parity-check (LDPC)
codes is very attractive in practice because decoding complex-
ity grows only linearly with block length. However, due to the
sub-optimality of iterative decoding, there is a gap between the
(threshold) performance of iterative decoding and maximum
a posteriori (MAP) probability decoding. Spatially coupled
LDPC (SC-LDPC) codes, also known as LDPC convolutional
codes [1], provide a way to close this gap: SC-LDPC codes
with iterative decoding have been shown to achieve the MAP
threshold of an underlying LDPC block code [2], making these
codes attractive candidates for applications requiring near-
capacity performance. One practical problem in achieving the
MAP threshold with SC-LDPC codes is the requirement of
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a large coupling length L for the coupled graph. Applying
block decoding, i.e., a message passing algorithm over the
total length of the graph, results in large decoding latency and
complexity. Hence a sliding window decoder was proposed
in [3] that makes the latency and complexity independent
of L. Recently, in [4] and [5], both binary and non-binary
SC-LDPC codes have been compared with their LDPC block
code counterparts under a latency constraint using a sliding
window decoder, and it was shown that the coupled codes
perform better than the block codes on an equal latency basis.
In this paper, we propose new methods to reduce the decoding
complexity of sliding window decoding compared to standard
message passing window decoding schedules.

LDPC codes can be represented by a bipartite Tanner graph
consisting of check and variable nodes. In the additive white
Gaussian noise (AWGN) channel case, messages in the form of
log-likelihood ratio (LLR) values are exchanged between the
connected check and variable nodes in the graph during the
decoding process. Since the absolute value of an LLR repre-
sents the strength of our belief that its associated variable node
assumes a particular (binary) value, a decoder applying this
message passing algorithm is known as a belief propagation

(BP) decoder [6]. Since BP decoding is an iterative process, a
message passing schedule within the Tanner graph is required.
For applications requiring multi-Gb/s throughputs, the parallel
(flooding) schedule, where all variable nodes in the graph are
updated simultaneously followed by simultaneous check node
updates, is the most common [7].

Alternatively, updates can be performed using a uniform
serial schedule. In this case, before updating a check node, all
its neighboring variable nodes are asked to produce messages
along the edges connected to the check node1. Such a schedule
ensures that the newly computed messages from the neighbors
of a check node are used in the same decoding iteration and
reduces the required number of iterations by approximately
half compared to the uniform parallel schedule [8]. In both
schedules, all the nodes in the graph are updated at every
decoding iteration. Hence we refer to these schedules as the
uniform parallel and uniform serial schedules, respectively.
Some generalized serial schedules intended to further reduce
the decoding complexity of LDPC block codes have been
discussed in [8] and [9].

For SC-LDPC codes, applying a uniform serial schedule

1Such a schedule is also known as an on demand variable node update

schedule. Similarly, an on-demand check node update schedule can also be
defined where, before updating a variable node, all its neighboring check nodes
are asked to produce messages along the edges connected to the variable node.
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within a window results in a reduction in decoding complexity
compared to the uniform parallel schedule that is much less
than the factor of two reduction achieved for LDPC block
codes [8] (see Section II-C). Hence, in order to reduce decod-
ing complexity for window decoding of SC-LDPC codes, we
propose several non-uniform window decoding schedules (both
parallel and serial) in Section III. A non-uniform schedule
updates only a portion of the Tanner graph in one decoding
iteration based on an estimated bit error rate (BER) improve-

ment.
In [10], the authors proposed a residual belief propaga-

tion algorithm that dynamically changes the message passing
schedule. Before exchanging messages from check to variable
nodes, all messages (along the edges) are generated. For each
message, the difference in magnitude (residual value) between
the message generated in the current iteration and the message
exchanged in the previous iteration is calculated. A message
with the largest residual value is exchanged first followed by
an update2 of the variable node connected to the edge with
largest residual value. Then the message with the next largest
residual value is exchanged and the associated variable node
is updated, and so on. The resultant algorithm is uniform in
the sense that all nodes are updated in one iteration, but in
a dynamic order. Inspired by the work in [10], the authors
in [11] proposed a node-wise scheduling algorithm where,
instead of exchanging only the message from a check node
to a variable node with the largest residual value, all the
messages from that check node are exchanged, i.e., a full
check node update is performed. This results in certain nodes
being updated more often than others, and hence the resultant
schedule is non-uniform. Note that the node-wise scheduling
algorithm proposed in [11] makes update decisions based on
the notion of residual values. In contrast, the non-uniform
schedules proposed in this work make update decisions based
on an estimated BER improvement measure.

We demonstrate a reduction of up to 50% compared to
uniform schedules using density evolution calculations in
Section IV. Further, based on the density evolution obser-
vations, a simple non-uniform pragmatic decoding schedule
is presented in Section V that provides more than a 50%

reduction in complexity without any loss in BER performance.
In Section VI, finite-length computer simulations are presented
before concluding the work in Section VII.

II. SPATIALLY COUPLED LDPC CODES

A (J,K)-regular LDPC block code is characterized by a
sparse parity-check matrix H, containing exactly J ones in
each column and K ones in each row. In order to describe
spatial coupling, we consider transmitting a sequence of L
code blocks vt, t = 1, . . . , L, using a protograph-based LDPC
block code. A protograph is a small bipartite graph consisting
of nc check nodes and nv variable nodes and is represented
by its nc⇥ nv bi-adjacency matrix B, called the base matrix.
An LDPC block code is then obtained by applying a graph
lifting procedure [12] that replaces each 1 in B by an N ⇥N

2Note that ‘update’ refers to an operation where all outgoing messages from
a node are generated and exchanged.
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Fig. 1. Illustration of edge-spreading: the protograph of a (3, 6)-regular
LDPC block code with base matrix B is repeated L = 6 times and the edges
are spread over time according to the matrices B
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, resulting in
a terminated convolutional protograph.

permutation matrix and each 0 by the N⇥N all-zero matrix3.
An essential feature of SC-LDPC codes [1] [13] is that the
code blocks transmitted at different time instants are intercon-
nected, i.e., the code blocks vt are coupled by the encoder
to other time instants, thus introducing memory, so that the
resulting code is convolutional. The largest distance between
a pair of coupled code blocks defines the memory m

cc

of
the convolutional (coupled) code. The coupling of consecutive
code blocks can be achieved by distributing the edges from
the variable nodes at time t among the check nodes at times
t + i, i = 0, . . . ,m

cc

, called an edge-spreading procedure
[14], where the resulting edge connections to the check nodes
at time t + i are represented by the nc ⇥ nv bi-adjacency
matrices Bi, i = 0, . . . ,m

cc

. In order to maintain the degree
distribution and structure of the original protograph, a valid
edge-spreading must satisfy the condition

Pm
cc

i=0

Bi = B.
The edge-spreading procedure is illustrated in Fig. 1 for a
(3, 6)-regular protograph with nv = 2, nc = 1, base matrix
B = [3, 3], m

cc

= 2, and edge-spreading matrices B
0

=

B
1

= B
2

= [1, 1]. The corresponding sequence of coupled
code blocks forms a codeword v

[1,L]

= [v
1

, . . . ,vt, . . . ,vL]

of a terminated convolutional code.

A. Decoding of Spatially Coupled LDPC Codes

We assume transmission over the AWGN channel and
characterize the channel by the standard deviation � of the
Gaussian noise. Decoding is performed using the BP algo-
rithm, where the extrinsic LLRs passed from variable node vk
to check node cj and from check node cj to variable node
vk during a decoding iteration are denoted Lvk,cj and Lcj ,vk ,
respectively, and are calculated as follows,

Lvk,cj = L
ch

(vk) +
X

l2N (vk)\j

Lcl,vk , (1)

Lcj ,vk = 2 tanh

�1

0

@
Y

l2N (cj)\k

tanh

✓
Lvl,cj

2

◆1

A . (2)

3In the case of a base matrix with integer values greater than 1, the lifting
procedure replaces an integer b with the sum of b N⇥N permutation matrices.
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TABLE I
REQUIRED NUMBER OF ITERATIONS FOR A BLOCK DECODER AND THE
AVERAGE NUMBER OF NODE UPDATES U

avg

FOR A WINDOW DECODER
FOR VARIOUS VALUES OF L WHEN THE PARALLEL DECODING SCHEDULE

IS APPLIED TO THE SC-LDPC CODE OF FIG. 1 WITH I
max

= 1000,
� = 0.923.

L 20 30 40 50 100

Block Decoder 125 181 248 314 646
Window Decoder (W = 6) 95 100 104 105 109
Window Decoder (W = 8) 118 133 140 145 154

Here L
ch

(vk) denotes the channel LLR for variable node vk
at the input of the decoder and N (vk)\cj represents the set
of check nodes connected to vk, excluding cj . The exclusion
of cj precludes the information received by vk from cj from
being reused to calculate the message Lvk,cj . Similarly, in (2)
the variable node vk is excluded while calculating the output
message Lcj ,vk . The output LLRs L

out

(k) for every variable
node vk are then computed at the end of each iteration as

L
out

(k) = L
ch

(vk) +
X

l2N (vk)

Lcl,vk . (3)

The iterative message passing process continues until all
the symbols are reliably decoded or some preset maximum
number of iterations I

max

is reached.
Decoding for a SC-LDPC code can be performed by running

the BP algorithm over the L coupled code blocks v
[1,L]

. Since
the coupled code is treated in this case as a block code, we
refer to such a decoder as a block decoder. A major drawback
of the parallel or serial block decoders (and also the classical
pipeline decoder [1]) is that the number of required decoding
iterations increases with the termination length L for channel
parameters close to the threshold of the coupled ensemble,
as shown in the first row of Table I [15] for the parallel
schedule. Such a dramatic increase in decoding complexity can
be avoided by employing efficient message passing schedules
that make use of the convolutional structure of SC-LDPC
codes [16]. An attractive practical implementation of such
a schedule is the sliding window decoder first proposed in
[3], for which both latency and complexity are independent of
L. A two-sided version of such a window decoder was also
considered for density evolution analysis in [17].

B. Window Decoding

Consider two code blocks vt and vt0 , where t0 � t+m
cc

+1

and t, t0 2 [1 L]. Due to the memory m
cc

of the SC-LDPC
code, these code blocks do not have any check nodes in
common. This characteristic is exploited to define a latency
constrained sliding window decoder of size W � m

cc

+ 1

code blocks. Figure 2 shows an example of a sliding win-
dow decoder with W = 4 and the edge-spreading used in
Fig. 1. The window consists of W received code blocks,
yt+w�1

, w = 1, . . . ,W . At any decoding position t, only the
nodes in yt are decoded (represented in red), and hence they
are termed target nodes. After the nodes in yt are decoded
or some maximum number of iterations I

max

is performed,
the window slides to the next decoding position, as shown in
Fig. 2(b).

yt�2

yt�1

yt yt+1

yt+2

yt+3

yt+4

m
cc

= 2 W = 4

w = 1 w = 2 w = 3 w = 4

(a) window at decoding position t

yt�2

yt�1

yt yt+1

yt+2

yt+3

yt+4

m
cc

= 2 W = 4

w = 1 w = 2 w = 3 w = 4

(b) window at decoding position t+ 1

Fig. 2. Window decoder of size W = 4. The green variable nodes represent
decoded nodes and the red nodes are the target nodes within the current
decoding window. The dashed lines represent the required read access to the
m

cc

previously decoded code blocks.

In sliding window decoding, nodes at position t are updated
in multiple decoding positions. In order to compare the de-
coding complexity for different window sizes and decoding
schedules, we define the average number of node updates
required to decode a node as [16]

U
avg

=

1

L

LX

t=1

Ut , (4)

where Ut denotes the total number of times the variable nodes
at position t are updated during the iterative decoding process.
It can be observed from Table I that the decoding complexity
increases with W , since a larger window size increases the
number of times the nodes at each position are updated.
However, the complexity is essentially independent of L for a
fixed value of W and is well below the decoding complexity
of a block decoder.

The choice of edge-spreading plays a role in determining
the required W , and hence the decoding complexity. The edge-
spreading considered in Fig. 1 results in degree-1 variable
nodes at the right end of the window (see Fig. 2). As a result
the output LLRs from these variable nodes, for every iteration,
will just equal the channel LLRs L

ch

(see (1)) at the input of
the decoder with no update information from check nodes in
the window. Hence, the edge-spreading B

0

= [2, 2],B
1

=

[1, 1], first introduced in [18], is considered a better choice
for window decoding and is considered throughout the rest of
the paper. This edge-spreading avoids degree-1 variable nodes
at the right end of the window and thus achieves the desired
performance with as small a W as possible. A more detailed
set of rules on protograph design for windowed decoding can
be found in [3].

C. Uniform Window Decoding Schedules

In uniform window decoding schedules (parallel and serial),
all the nodes within the decoding window are updated in
each decoding iteration. Note that these schedules are uniform
only with respect to the active decoding window. Figure 3
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Fig. 3. Density evolution results for the target node error probability
(P

b

(w = 1)) as a function of the average number of node updates (U
avg

)
when the uniform parallel and uniform serial window decoding schedules are
applied to a (3, 6)-regular SC-LDPC code, W = 8, � = 0.923.

shows the target node error probability P
b

(w = 1) as a
function of U

avg

4 when the uniform parallel and uniform serial
window decoding schedules with W = 8 are applied for
an AWGN channel with � = 0.923. For the uniform serial
schedule, before updating the check nodes at position w, all
the neighboring variable nodes are asked to produce messages
along all the edges connected to check nodes at position
w. The results were obtained using density evolution with
Pmax

b

= 10

�6 set as the maximum error probability for the
target nodes. The iterative BP decoding algorithm continues
until P

b

(w = 1) < Pmax

b

, with I
max

set to 1000. We see
that the uniform serial window decoding schedule converges
faster than the uniform parallel window decoding schedule.
But the gain in decoding convergence speed is much less than a
factor of two, whereas a factor of two in complexity reduction
occurs when a uniform serial decoding schedule is applied
to an LDPC block code or to a SC-LDPC code with block
decoding [8].

Following the same setup as in Fig. 3, we now examine
P
b

(w), w = 1, . . . ,W , within a window for the uniform
parallel window decoding schedule after I = 1, 15, 30, and
46 decoding iterations are performed. Results are presented
in Fig. 4. Here, after I = 46 iterations the target node
error probability is below the maximum target node error
probability, i.e., P

b

(w = 1) < Pmax

b

. It is observed that P
b

for the nodes other than the target nodes (w > 1) changes
little with iterations, and similar behavior is observed for the
uniform serial window decoding schedule (not shown here).
This is due to the fact that the variable nodes on the left side
of the window are connected to low-degree check nodes and
hence are decoded faster than the other variable nodes in the
window. This property of the window decoder motivates the
examination of non-uniform window decoding schedules in
the next section.

4Since the target nodes in the current decoding window were also involved
in decoding the previous W � 1 sets of target nodes, U

avg

does not start at
0.
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Fig. 4. Density evolution results for P
b

(w), w = 1, . . . ,W , within the
decoding window for the uniform parallel schedule with I iterations for a
(3, 6)-regular SC-LDPC code, W = 8, � = 0.923.

III. NON-UNIFORM WINDOW DECODING SCHEDULES

One possibility to reduce decoding complexity is to switch
off the nodes not directly connected to the target nodes after
the first few decoding iterations are performed. This avoids
unnecessary updates and results in a significant complexity
reduction compared to uniform window schedules. In this
section, motivated by the results in Fig. 4, we propose several
adaptive non-uniform window decoding schedules based on an
estimated BER improvement that reduce complexity compared
to the uniform window decoding schedules.

A. Estimated BER Improvement Based Non-Uniform Decod-

ing Schedules

Here we propose a non-uniform window decoding schedule
that tracks an estimated BER ˆP

b

within the window and, in
the subsequent iteration, updates only those nodes that have
shown sufficient improvement.

1) Estimating Bit Error Rate: Before explaining the sched-
ule, we present the method used to estimate the average BER
ˆP
b

(w) of the variable nodes at position w, called a soft BER

estimate in [4]. The probability that the hard decision for the
kth symbol at position w, with output LLR L

out

(k), is in error
can be estimated as

Z(k) =
1

1 + e|Lout

(k)| ,

termed a soft bit error indicator in [19]. Once the soft bit error
indicators for all the nodes at position w are available, the soft
BER estimates ˆP

b

(w) can be calculated as the expected value
of the random variable Z, i.e.,

ˆP
b

(w) = E[Z] =

1

Nnv

NnvX

k=1

Z(k) , (5)

where Nnv is the number of variable nodes at position w, for
w = 1, . . . ,W .
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2) Decoding Algorithm: Now let ˆP I
b

(w) denote the soft
BER estimates for the nodes at position w within a window
at the Ith iteration. Only the nodes for which ˆP I+1

b

(w) 
✓ · ˆP I

b

(w) are updated in the subsequent iteration, where ✓
defines a pre-specified fractional improvement in estimated
BER compared to the last iteration. The choice of ✓ is
discussed in detail in Section IV. A detailed procedure for
this non-uniform parallel window decoding schedule is given
in Algorithm 1. The inputs to the algorithm are the window
size W , the desired maximum error probability Pmax

b

for the
target nodes (w = 1), the maximum number of iterations I

max

allowed within the window, and the improvement factor ✓.
In the initialization phase, the algorithm computes the soft

BER estimates ˆP
b

(w), w = 1, . . . ,W , for the nodes within
the window using the output LLRs L

out

. We define a Boolean
vector updateList of size W so that the nodes at position
w are updated in an iteration if updateList[w]=true.
The vector updateList is initialized to true so that all
the positions w within the window are updated in the first
decoding iteration. The iterative process starts from line 4.
The loops at lines 5 and 8 simultaneously update all the
check and variable nodes at position w, respectively, for which
the updateList[w] is true. The variable and check node
updates are performed using (1) and (2), respectively.

Algorithm 1: Estimated BER Improvement based non-
uniform parallel decoding schedule
Inputs: W , Pmax

b

, I
max

, ✓

/* initialization phase */
1 for w  1 to W do
2 ˆP

b,old(w)  CalculateSoftBER(w);
3 updateList [w]  true;

/* iterations start here */
4 for i 1 to I

max

do
5 for w  1 to W do
6 if updateList [w] then
7 UpdateCheckNodesAt(w);

8 for w  1 to W do
9 if updateList [w] then

10 UpdateVariableNodesAt(w);
11 CalculateOutputLLR(w);

12 ˆP
b,new(w)  CalculateSoftBER(w);

13 if ˆP
b,new(w)  ✓ · ˆP

b,old(w) then
14 updateList [w]  true;
15 ˆP

b,old(w)  ˆP
b,new(w);

16 else
17 updateList [w]  false;

18 Reinitialize updateList to true if all elements are
false;

19 Break if ˆP
b,new(1)  Pmax

b

The function CalculateOutputLLR(w) calculates
L
out

for the nodes at position w. These are used in
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Fig. 5. Schedules adopted for estimated BER improvement based non-
uniform parallel and serial decoding of a (3, 6)-regular SC-LDPC code,
W = 8, � = 0.923.

CalculateSoftBER(w) to calculate the new soft BER
estimates ˆP

b,new for the symbols at position w within the
window. The vector updateList[w] for the next iteration
is recalculated based on the new ( ˆP

b,new) and old ( ˆP
b,old)

soft BER estimates. The window positions w for which the
estimated BER improvement exceeds the parameter ✓ are
updated in the next decoding iteration. The loop at line 4 is
terminated if ˆP

b,new(w = 1) is less than Pmax

b

. Otherwise, the
iterations continue until I

max

is reached. Algorithm 1 gives
the decoding procedure for the first decoding position. For the
following decoding positions, the soft BER estimates in the
initialization phase are calculated only for the new incoming
nodes in the right side of the window.

Figure 5 shows an example of which nodes are updated in
each iteration, where all iterations until the soft BER estimate
is less than Pmax

b

= 10

�6 are shown for both the parallel
and serial schedules. In the first few iterations all the nodes
show improvement, and hence are updated, but after a certain
number of iterations the BER improvement for the nodes on
the right side of the window is less than ✓, and hence these
nodes are not updated in the following iterations. This results
in a non-uniform schedule, where the decoding complexity
is reduced by eliminating unnecessary updates within the
window.

Note that the decoding schedule in Fig. 5(a) has to be
restarted at iteration index I = 77, i.e., all the nodes are
updated at iteration index 77. This is because, at iteration
index 76, P I=77

b

(w) ⇥ ✓ · P I=76

b

(w), 8w = 1, . . . ,W , while
P I=77

b

(w = 1) > Pmax

b

, and hence all the nodes must be
updated to restart the process.

In general, a potential drawback of using a serial decoding
schedule with a parallel implementation is that all the variable
and check nodes within the decoding window cannot be
updated simultaneously [7]. However, since the decision on
updating in the proposed non-uniform serial decoding schedule
is made on the basis of all Nnv nodes at position w within the
window, it is possible to update these nodes simultaneously,
thus allowing partially parallel operation. Hence, the proposed
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Fig. 6. Schedules adopted for estimated BER improvement based non-
uniform paralel and serial decoding with force update parameter F

U

= 8
of a (3, 6)-regular SC-LDPC code, W = 8, � = 0.923.

serial schedule is actually a hybrid parallel/serial schedule and
can be implemented in a semi-parallel fashion.

B. Further Complexity Reductions for Non-Uniform Window

Decoding Schedules

The non-uniform schedules presented in Section III-A are
pessimistic, in the sense that once a node is excluded from
the updateList, it is never updated again (see Fig. 5).
One consequence of this is that, in some cases, the iterative
process must be restarted, because ˆP I+1

b

(w) ⇥ ✓ · ˆP I
b

(w) (as
in Fig 5(a) at I = 76) for all positions within the decoding
window. Alternatively, we can force updates on any window
positions w that have not been updated in some number F

U

of previous iterations.
Figure 6 shows the schedules adopted when a force update

parameter F
U

= 8 is applied with a window size W = 8, for
both the parallel and serial schedules with Pmax

b

= 10

�6. It
is observed that, for the parallel schedule, the number of iter-
ations in a window is reduced by roughly half (see Fig. 6(a))
compared to those shown in Fig. 5(a), thus improving its
decoding speed. On the other hand, the use of a force update
parameter has less of an effect on the serial schedule (see
Figs. 5(b) and 6(b)).

IV. ASYMPTOTIC PERFORMANCE EVALUATION

In this section, density evolution is used to evaluate the
performance of the proposed non-uniform window decoding
schedules presented in Section III with Pmax

b

= 10

�6 and
I
max

= 1000 for an AWGN channel. The finite length
computer simulation are presented in Section VI. Specifically,
we investigate the effect of two parameters: 1) the fractional
improvement parameter ✓, and 2) the force update parameter
F
U

. We begin by determining the values of ✓ and F
U

that
minimize decoding complexity. Then, using the optimum
choices of ✓ and F

U

, the decoding complexity of the proposed
non-uniform window schedules is compared to the uniform
window schedules.
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Fig. 7. Decoding complexity for non-uniform parallel and serial decoding
schedules for a (3, 6)-regular SC-LDPC code with L = 100.

A. Optimum Parameter Choices

1) Fractional Improvement Parameter ✓: The decoding
complexity of the estimated BER improvement based non-
uniform decoding schedules depends on the fractional im-
provement parameter ✓. To find an optimum choice of ✓, we
compare the decoding complexity for different values of ✓ for
W = 6 and W = 8 in Fig. 7(a). We observe that choosing
✓ = 0.99 works best for the serial schedule5 for the different
values of the channel parameter and the window size W .
Hence we choose ✓ = 0.99 for all subsequent evaluations.

2) Force Update Parameter F
U

: Another parameter that
governs the decoding complexity is the force update parameter
F
U

. Choosing F
U

close to 0 will make the non-uniform
decoding schedule behave similarly to the uniform schedule,
since all nodes will be updated in nearly every decoding
iteration. Similarly, a large value of F

U

will limit the effect

5On the other hand, for the parallel schedule, values of ✓ closer to 1
may result in less complexity. Choosing ✓ = 0.99 in this case may be
suboptimal, but the difference will be significant only in the low Eb/N0

(or high BER) region of the BER curve. Additionally, we have observed that
choosing ✓ > 0.99 results in large complexity compared to ✓ = 0.99 in
finite length computer simulation (results not shown here). Hence our choice
of ✓ = 0.99 is justified.
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Fig. 8. Number of updates Ut for symbols at time t = 1, . . . , L for uniform
and non-uniform window decoding schedules (both parallel and serial) for a
(3, 6)-regular SC-LDPC code, W = 8,� = 0.923, L = 100.

of forcing updates, and the decoding complexity will resemble
that of the non-uniform schedules in Fig. 5. Figure 7(b) shows
the decoding complexity as a function of F

U

for the non-
uniform parallel and serial schedules. The value of F

U

that
results in minimum decoding complexity is marked with an
’x’ and is in most cases equal (or very close) to the window
size. As an example, for the parallel schedule, for W = 8 the
optimum value of F

U

is 8, whereas for W = 6 and W = 10,
the optimum values of F

U

are 5 and 9, respectively, and the
non-uniform serial schedule exhibits similar behavior. Hence
we choose F

U

= W for all subsequent evaluations.

B. Comparison of Uniform and Non-Uniform Schedules

1) Complexity as a Function of Time: Figure 8 compares
the number of updates Ut as a function of time t for the
uniform and non-uniform parallel and serial decoding sched-
ules. It is observed that the deactivation of nodes within the
window for the non-uniform schedules results in a reduction
in decoding complexity compared to the uniform schedules.
For the non-uniform parallel schedule, forcing updates on the
nodes that had stopped showing BER improvement reduces
the complexity by about 10% compared to the non-uniform
parallel schedule without forced updates, a result of the fact
that the number of required iterations was reduced by almost
50%. For the non-uniform serial schedule, the reduction in
complexity with forced updates is less than 10%.

In general, the number of required iterations for the first
decoding position (t = 1), for both the uniform and non-
uniform schedules, is more than for the later positions, since
previously calculated messages are reused when the window
slides. Hence, for the uniform schedules, since all the nodes
are updated at every iteration, a jump6 in Ut is observed in
Fig. 8 at t = W = 8. On the other hand, for the non-uniform
schedules, since unnecessary updates (especially on the right
side of the decoding window) are avoided, we see only a slight

6Since Ut accumulates the number of iterations performed only in the
previous W�1 decoding positions, the effect of the larger number of iterations
at the first decoding position lasts only until t = W .
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Fig. 9. Decoding complexity as a function of the window size W for a
(3, 6)-regular SC-LDPC code, � = 0.923, L = 100.

jump in complexity. Finally, comparing the non-uniform serial
decoding schedule with forced updates to the uniform parallel
decoding schedule, we observe that a complexity reduction of
about 50% is obtained.

2) Complexity as a Function of Window Size: It has been
shown that the BER performance of a window decoder im-
proves as the window size increases [4]. However, for uniform
window schedules (both parallel and serial), the decoding
complexity increases with W (see Fig. 9). This is due to
the overlapping nodes in successive window positions, which
results in unnecessary updates within a window and hence
increased decoding complexity. On the other hand, the com-
plexity for the non-uniform decoding schedules remains nearly
constant with W , since the adaptive nature of the non-uniform
schedule avoids unnecessary updates within the window. Since
W is a decoder parameter, it can be used to obtain a trade-off
between decoding latency and BER performance. Compared
to uniform window schedules, Fig. 9 suggests that this trade-
off has a minimal effect on decoding complexity when the
proposed non-uniform window schedules are used.

V. A PRAGMATIC NON-UNIFORM DECODING SCHEDULE

The schedules presented in Section III require the calcu-
lation of a soft BER estimate after every decoding iteration.
Keeping in mind the structure of the window decoder and the
conclusions drawn from the performance evaluation results in
Section IV, a non-uniform pragmatic decoding schedule (both
parallel and serial) is proposed as follows:

• For a window size of W , define a periodic decoding
schedule with an iteration period of T = W .

• Define the update limit w
max

(i) as the maximum position
index within the window to be updated in iteration i,
i = 1, . . . , T .

• In the first iteration, update all the positions within the
window, i.e., w

max

(1) = W .
• In the succeeding T � 1 iterations, w

max

is decremented
by 1 at each iteration, i.e., w

max

(i) = W � i + 1, i =
1, . . . , T .
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Fig. 10. Two periods of the non-uniform pragmatic schedule for W = T =
4.

• After T iterations, w
max

is reinitialized to W and the
same process continues until I

max

is reached.
The decoding schedule is repeatedly applied within a window
until P

b

(w = 1) < Pmax

b

. This update schedule does not
require the calculation of soft BER estimates during the
iterations and the decoding schedule is fixed over time. As an
example, two periods of the non-uniform pragmatic schedule
for W = T = 4 are shown in Fig. 10. Note that the node
updates in the pragmatic schedule can be performed either
in parallel or serially. Figures 8 and 9 show the density
evolution results for both the pragmatic parallel and serial
schedules. We observe that, for the same channel parameter,
the pragmatic parallel and serial schedules result in the lowest
complexity compared to all other parallel and serial schedules,
respectively.

VI. COMPUTER SIMULATION PERFORMANCE
EVALUATION FOR FINITE-LENGTH CODES

In this section, the performance of an example finite-length
SC-LDPC code on the AWGN channel is examined using
computer simulation. The parity-check matrix with L = 100 is
generated using the progressive edge growth (PEG) algorithm
introduced in [20] with a lifting factor of N = 500 and such
that cycles of length 4 are avoided.

We choose a window of size of W = 8 and apply both
the uniform and non-uniform window decoding schedules
described in the previous sections, where only non-uniform
window schedules with force update parameter F

U

are con-
sidered, since they achieve the smallest complexity. Number
of iterations I is selected such that the decoded BER for the
various schedules is similar. Since serial schedules converge
faster than parallel schedules, we choose a larger value of
I for the parallel schedules. Furthermore, we do not apply
any stopping criterion for the iterations within a window,
i.e., I iterations are always performed within a window.
Figure 11(a) shows decoded BER curves for the uniform
and non-uniform window decoding schedules. Comparing the
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(a) Bit error rate performance

0.6 0.8 1 1.2 1.4 1.6 1.8
100

200

300

400

Eb/N0

[dB]

U
a
v
g

Uniform

Non-Uniform, F
U

= 8

Pragmatic

Parallel

Serial

(b) Average complexity

Fig. 11. BER simulation results and average number of node updates U
avg

on an AWGN channel with N = 500 and W = 8 for a (3, 6)-regular SC-
LDPC code. For uniform and pragmatic parallel window schedules, I = 40,
I = 30 for uniform and serial pragmatic window schedules, I = 50 for
non-uniform parallel window schedule, and I = 40 for non-uniform serial
window schedule.

uniform and estimated BER improvement based schedules, we
see that, for the chosen values of I , there is no significant
performance loss for the non-uniform schedules compared
to the uniform schedules. The complexity of the decoding
schedules is compared in Fig. 11(b), where we see that the
non-uniform parallel decoding schedule provides a 35� 40%

reduction in complexity compared to the uniform parallel
decoding schedule and that the reduction can be increased to
50% by using the non-uniform serial decoding schedule.

Figure 11(a) also shows the decoded BER when the prag-
matic parallel and serial window schedules are applied. Both
pragmatic schedules show similar performance to the uniform
schedules. However, the average decoding complexity for the
pragmatic parallel and serial schedules are only U

avg

= 175

and U
avg

= 130, respectively (see Fig. 11(b)). Finally, com-
paring the average decoding complexity of the uniform parallel
(U

avg

= 300) and pragmatic serial (U
avg

= 130) schedules, a
reduction of 55% is achieved, and there is no need to calculate
soft BER estimates.
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VII. CONCLUSION

We analyzed the reduction in decoding complexity achieved
when non-uniform schedules instead of uniform schedules
are applied to sliding window decoding of SC-LDPC codes.
The decoding complexity of a latency constrained sliding
window decoder is independent of the coupling length L of
the code and is bounded above by a function that increases
linearly with the window size W . Applying the uniform serial
decoding schedule within a window results in only a modest
reduction in decoding complexity compared to the uniform
parallel decoding schedule. However, in the case of block
decoding, serial schedules provide up to a 50% reduction
in complexity. So, in order to reduce the window decoding
complexity further, we proposed several non-uniform decoding
schedules. For the estimated BER improvement based sched-
ules, nodes within a window are switched off once they stop
showing an improvement in their soft BER estimate. This
results in up to a 50% reduction in complexity without any
loss in performance. Furthermore, both parallel and serial non-
uniform update schedules were proposed and the conclusions
were supported by both density evolution results and computer
simulations of finite-length codes. A pragmatic non-uniform
decoding schedule was also proposed that does not require
any calculations within the decoding process. We observe
that the pragmatic serial window schedule reduces decoding
complexity by 55% compared to the uniform parallel schedule.
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