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Abstract

Oncogenetic events and unique phenomena of the tumor microenvironment together in-
duce adaptive metabolic responses that may offer new diagnostic tools and therapeutic tar-
gets of cancer. Hypoxia, or low oxygen tension, represents a well-established and universal
feature of the tumor microenvironment and has been linked to increased tumor aggres-
siveness as well as resistance to conventional oncological treatments. Previous studies
have provided important insights into hypoxia induced changes of the transcriptome and
proteome; however, how this translates into changes at the metabolite level remains to be
defined. Here, we have investigated dynamic, time-dependent effects of hypoxia on the
cancer cell metabolome across all families of macromolecules, i.e., carbohydrate, protein,
lipid and nucleic acid, in human glioblastoma cells. Using GC/MS and LC/MS/MS, 345 and
126 metabolites were identified and quantified in cells and corresponding media, respec-
tively, at short (6 h), intermediate (24 h), and prolonged (48 h) incubation at normoxic or
hypoxic (1% O,) conditions. In conjunction, we performed gene array studies with hypoxic
and normoxic cells following short and prolonged incubation. We found that levels of several
key metabolites varied with the duration of hypoxic stress. In some cases, metabolic
changes corresponded with hypoxic regulation of key pathways at the transcriptional level.
Our results provide new insights into the metabolic response of glioblastoma cells to hypox-
ia, which should stimulate further work aimed at targeting cancer cell adaptive mechanisms
to microenvironmental stress.

Introduction

Glioblastoma (GBM) constitutes the most common type of primary tumors of the brain, and is
characterized by severe hypoxia, vascular hyperproliferation and therapy resistance. With com-
bined extensive surgery, radiochemotherapy and adjuvant chemotherapy the median overall
survival of GBM patients is only approx. 15 months [1]. Hypoxia is primarily a pathophysio-
logic consequence of uncontrolled tumor growth, resulting in structurally and functionally dis-
turbed microcirculation [2, 3]. It is a major driver of cancer progression as it provides a strong
selective pressure resulting in the survival and propagation of the most aggressive malignant
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cells. The magnitude of hypoxia has been associated with invasion, metastasis, tumor recur-
rence, decreased patient survival and intrinsic resistance to chemoradiotherapy. Thus, adaptive
mechanisms to hypoxic stress are potential treatment targets of GBM and other tumor types;
however, an increased understanding of such mechanisms is critical for the development and
implementation of hypoxia-targeted interventions.

Hypoxic tumor cells undergo a significant shift from oxidative phosphorylation in mito-
chondria towards anaerobic glycolysis, manifested by e.g. induction of glucose transporters
(GLUTS), glycolytic enzymes and lactate dehydrogenase (LDH) [4]. Overexpression of pyru-
vate dehydrogenase kinase 1 (PDK1) [5, 6] inactivates pyruvate dehydrogenase (PDH), result-
ing in efficient down regulation of the tricarboxylic acid (TCA) cycle and oxidative
phosphorylation. Along with alterations of bioenergetics, hypoxic tumor cells may show in-
creased synthesis of glycogen [7], lipids [8] and phosphorylated lipid metabolites [9].

Comprehensive metabolomics approaches that simultaneously detect changes in a variety
of metabolites in cells from different oxygenation conditions should be critical for the identifi-
cation of potential metabolic ‘Achilles’ heels’ of cancer cells [10]. In this study, we have used
metabolomics and gene expression profiling approaches to investigate the dynamics of meta-
bolic responses to hypoxic stress in human GBM cells.

Materials and Methods
Hypoxic treatment and sample collection

U-87 MG cells (HTB-14; purchased from American Type Culture Collection) were incubated
in DMEM supplemented with 1% bovine serum albumin (BSA), 2 mM L-glutamine, 100 U/ml
penicillin and 100 pg/ml streptomycin for 6, 24 and 48 h at normoxic (21% O) or hypoxic
conditions (1% O,) in an InVivo, Hypoxia Work station 400 (Ruskinn Technology Ltd).
Conditioned media were collected and centrifuged at 800 x g for 3 min to eliminate cell debris.
Supernatant fractions (500 pl) transferred to 2 ml cryovial tubes were flash-frozen in liquid
nitrogen. Cells were collected by trypsinization, centrifuged at 800 x g for 3 min, counted,
transferred to 2 ml cryovial tubes and flash-frozen in liquid nitrogen. Both media and cells
were stored at -80°C until time of analysis.

Sample preparation for metabolic profiling

Six independent preparations of normoxic and hypoxic U-87 MG cells and corresponding condi-
tioned media were prepared from each time-point for metabolic analyses using a non-targeted
platform that enables relative quantitative analysis of a broad spectrum of metabolites [11, 12].
The metabolic profiling analysis was based on three independent platforms (Metabolon Inc.); ul-
trahigh performance liquid chromatography/tandem mass spectrometry (UHPLC/MS-MS2) in
the positive ion mode, UHPLC/MS-MS2 in the negative ion mode, and gas chromatography/
mass spectrometry (GC/MS). Samples were processed essentially as described previously [11, 12].
Briefly, on the day of extraction, samples were thawed on ice, proteins were precipitated with
methanol using an automated MicroLab STAR system (Hamilton Company). Recovery standards
were added prior to the extraction process for monitoring of the extraction efficiency. The result-
ing extract was divided into two fractions for UHPLC/MS and GC/MS analysis, respectively, and
placed briefly on a TurboVap (Zymark) to remove the organic solvent, followed by freeze drying
under vacuum. For UHPLC/MS analysis, extract aliquots were reconstituted in either 0.1% formic
acid for positive ion UHPLC/MS, or 6.5 mM ammonium bicarbonate pH 8.0 for negative ion
UHPLC/MS. Reconstitution solvents contained instrument internal standards that were used to
monitor instrument performance and as retention index markers. For GC/MS analysis, aliquots
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were derivatized under dried nitrogen using bistrimethyl-silyl-triflouroacetamide (BSTFA). The
derivatization mixture contained a series of alkyl benzenes for use as retention time markers.

Ultrahigh performance liquid chromatography/Mass Spectrometry
(UHPLC/MS)

UHPLC/MS was carried out using a Waters Acquity UHPLC (Waters Corporation) coupled to
an LTQ mass spectrometer (Thermo Fisher Scientific Inc.) equipped with an electrospray ioni-
zation (ESI) source and linear ion-trap (LIT) mass analyzer. Two separate UHPLC/MS injec-
tions were performed on each sample using separate dedicated columns: one optimized for
positive ions and one for negative ions. The mobile phase for positive ion analysis was 0.1%
formic acid in H,O (solvent A) and 0.1% formic acid in methanol (solvent B), while the mobile
phase for negative ion analysis consisted of 6.5 mM ammonium bicarbonate, pH 8.0 (solvent A)
and 6.5 mM ammonium bicarbonate in methanol (solvent B). The acidic extracts were moni-
tored for positive ions and the basic extracts for negative ions in independent injections. The ex-
tracts were loaded via an autosampler (Waters Acquity), and gradient eluted (0% B to 98% B
over 11 min) directly into the mass spectrometer at a flow rate of 350 pl/min. The MS analysis
alternated between MS (99-1000 m/z) and data-dependent MS2 scans using dynamic exclusion.

Gas chromatography/Mass Spectrometry (GC/MS)

The derivatized samples for GC/MS were separated on a 5% phenyldimethyl silicone column
with helium as the carrier gas and a temperature ramp from 40°C to 300°C over a 16 min peri-
od, and then analyzed on a Thermo-Finnigan Trace DSQ MS (Thermo Fisher Scientific, Inc.)
operated at unit mass resolving power with electron impact ionization and a 50 to 750 atomic
mass unit scan range. The instrument was tuned and calibrated for mass resolution and mass
accuracy on a daily basis.

Data Extraction

Data extraction of the raw mass spectra data files was loaded into a relational database and ma-
nipulated without resorting to BLOB manipulation. Once in the database the information was
examined and appropriate QC limits were imposed. Peaks were identified using Metabolon’s
proprietary peak integration software, and component parts were stored in a separate and spe-
cifically designed complex data structure.

Compound identification

Metabolites were identified by automated comparison and spectra fitting to a chemical stan-
dard library, as previously described [11, 12]. Identification of known chemical entities was
based on comparison with metabolomic library entries of purified standards. To date, >1000
commercially available purified standard compounds have been registered into LIMS. The
combination of chromatographic properties and mass spectra provides an indication of a
match to the specific compound or an isobaric entity.

Statistical analysis of data from metabolomic profiling

For statistical analysis and data display purposes, any missing values were assumed to be below
the limits of detection, and these values were imputed with the compound minimum (mini-
mum value imputation). Statistical analysis of log-transformed data was conducted using “R”
(http://www.r-project.org). Welch’s two-sample t-tests were conducted to compare data
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between experimental groups. Multiple comparisons were accounted for by estimating the false
discovery rate (FDR) using q values [13].

Gene expression microarray analysis

Total RNA was extracted with TRIzol Reagent (Life Technologies) and quantified using a Nano-
drop ND-1000 spectrophotometer (Saven Werner). RNA integrity was verified on an Agilent
2100 Bioanalyzer. Microarray experiments were performed at SCIBLU Genomics at Lund Uni-
versity, Sweden using Illumina HumanHT-12 v3 Expression BeadChip. Three independent
preparations of normoxic and hypoxic U-87 MG cells were analyzed on the BeadChip. Data fil-
tration and normalization were performed using BASE2, and subsequent analyses on transcripts
showing a detection P-value below 0.01 were performed using the R statistical programming en-
vironment (http://www.r-project.org). Hypoxia-mediated gene expression changes, calculated
as the ratio of mean hypoxia intensity divided by mean normoxia intensity across the

triplicate assays, were determined. The MeV software was used to extract transcripts differen-
tially expressed between normoxic and hypoxic cells. The data have been deposited in the

Gene Expression Omnibus (GEO) database, http://www.ncbi.nlm.nih.gov/geo (accession

no. GSE45301).

Results and Discussion
Hypoxic regulation of the metabolome of glioblastoma cells and media

We studied the effects on the metabolite profile of U-87 MG GBM cells and corresponding media
at short (6 h), intermediate (24 h), and prolonged (48 h) periods of hypoxia. Metabolome analyses
were performed in a non-targeted fashion using UHPLC/MS (+ESI), UHPLC/MS (-ESI), and
GS/MS mass spectrometry platforms (Fig. 1A). We identified a total of 345 metabolites in cells,
and 126 metabolites in conditioned media (Fig. 1B-E). Quantitative analysis of compounds up-
or down-regulated in hypoxic compared with normoxic GBM cells indicated that significant met-
abolic changes were mainly observed at prolonged exposure to hypoxia (Fig. 1D and S1 Table).
The same time dependence was observed when comparing conditioned media from normoxic
and hypoxic GBM cells (Fig. 1E and S2 Table). There was a strong overweight of metabolite accu-
mulation in hypoxic cells over time, whereas changes in corresponding media were more evenly
distributed between increased and decreased metabolite levels (cf. Fig. 1D and E).

Hypoxia augments the Warburg effect in glioblastoma cells

Cancer cells take up higher amounts of glucose and exhibit a relative increase of glycolysis and
lactic acid fermentation and decrease of oxidative phosphorylation to generate metabolic ener-
gy. This phenotype is known as the Warburg effect and is a hallmark of cancer cell metabolism
[14]. Our gene expression analyses of GBM cells could confirm previous observations on hyp-
oxic enhancement of this metabolic phenotype with increased levels of transcripts encoding
proteins involved in glucose uptake and glycolysis (Fig. 1F and G). In most cases this response
was transient, i.e. the effect was relatively greater at short as compared with prolonged hypoxic
treatment (Fig. 1G). In accordance with the transcriptomic data, hypoxic GBM cells exhibited
increased levels of glucose (approx. 11-fold) and several glycolysis intermediates (Fig. 1H).
However, this was not reflected by increased glucose consumption from media as compared
with time-matched normoxic cells (Fig. 1I), conceivably due to the great excess of extracellular
glucose. At hypoxia, HIF1o diminishes pyruvate flux into the TCA cycle by PDK-mediated in-
hibition of PDH [5, 6]. Accumulating pyruvate becomes converted into lactate by LDH, and
then translocated to the extracellular space by monocarboxylate transporter 4 (MCT4) [15].
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Fig 1. The metabolic phenotype of hypoxic glioblastoma cells. A, U87 MG cells were grown at normoxic (N, 21% O,) or hypoxic (H, 1% O,) conditions
for 6, 24 or 48 h. Cells (n = 6 for each time point) and the corresponding conditioned media (n = 6 for each time point) were analyzed on three separate mass
spectrometry platforms. The identification of known chemical entities was based on comparison to metabolic library entries of purified standards. B and C,
Class distribution of identified metabolites in cells (B) and conditioned media (C). D and E, Summary of number of biochemicals that was significantly down-
or up-regulated in hypoxic cells (D) and corresponding conditioned media (E) when compared with normoxic conditions. F, Schematic diagram of glycolysis.
G, Hypoxia-driven transcriptional activation of genes encoding proteins involved in glycolysis at the indicated time-points. Data represent fold change of
mRNA levels in hypoxic vs. normoxic cells. H and |, Hypoxic modulation of glycolysis associated metabolites. Data represent fold change of metabolite levels
in hypoxic GBM cells (H) and their conditioned media (I) compared with normoxic samples. * P < 0.05; # 0.05 < P < 0.1. ALDO, aldolase; ENO2, enolase 2;
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phosphofructokinase; PFKFB, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase; PGAM, phosphoglycerate mutase; PGK1, phosphoglycerate kinase 1;

PKM2, pyruvate kinase isoenzyme type-M2.

doi:10.1371/journal.pone.0116740.9001

This step is crucial for regeneration of NAD" from NADH for use in the glycolysis. Gene ex-
pression data showed that hypoxia induces a transient increase of PDK3 and MCT4 (Fig. 1G),
and metabolite analyses showed significantly increased lactate in hypoxic compared with nor-
moxic GBM cells (Fig. 11).
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Glucose flux into non-glycolytic metabolic pathways in hypoxic GBM
cells

Apart from being the primary source of energy in hypoxic cells, glucose and glycolysis inter-
mediates are substrates for the synthesis of cellular macromolecules (S1 Fig.) [14]. We found
that hypoxia substantially induced the levels of both sorbitol (approx. 3-fold) and fructose
(up to > 80-fold) (Fig. 2A and B), indicating the profound activation of the alternative glu-
cose metabolism route, the polyol pathway, in hypoxic glioma cells. The polyol pathway,
which is induced by hyperglycemia and implicated in diabetic retinopathies [16], is a two-
step metabolic pathway in which aldose reductase (AKR1B1) reduces glucose to sorbitol
while its cofactor NADPH is oxidized to form NADP™. Sorbitol is then oxidized to fructose
by sorbitol dehydrogenase (SDH) with the concomitant reduction of NAD" to NADH

(Fig. 2A). Induction of aldose reductase may rescue cancer cells from anoxia-dependent cell
death, and its inhibition may prevent important aspects of the adaptive stress response to
hypoxia [17, 18]. Increasing evidence indicates that various types of cancer exhibit enhanced
activation of the polyol pathway, as shown by elevated expression of enzymes of this pathway,
most notably aldose reductase, and by polyol accumulation [19-22]. To our knowledge, we
show for the first time the activation of the polyol pathway by hypoxia in human cancer cells.
This is in line with a previous study, describing a similar phenomenon in rat PC12 neuronal
cancer cells [17]. However, in contrast to PC12 cells, which trigger the polyol pathway under
hypoxic conditions by up-regulating gene expression of aldose reductase [17], hypoxic
human GBM cells seem to induce the polyol pathway through increased substrate availability
(Fig. 1H) rather than by expression of aldose reductase (53 Table), suggesting cell-type specif-
ic mechanisms involved in hypoxia-driven activation of the polyol pathway. The polyol path-
way may confer resistance of glioma cells to hypoxia and drive cancer progression through
pleiotropic mechanisms. Increased flux of glucose into the polyol pathway alters metabolism
of cytosolic pyridine nucleotides to provide an increased ratio of NADP*/NADPH and
NADH/NAD™ (Fig. 2A). As a consequence, increased NADP"/NADPH ratio sustains action
of the pentose phosphate pathway (PPP), whereas an elevated NADH/NAD™ ratio may inhib-
it formation of 1,3-bisphosphoglycerate from glyceraldehyde-3-phosphate, resulting in glu-
cose being converted into diacylglycerol (DAG) or pentoses through PPP [23]. These
metabolic changes may thus supply the requirements of ribose 5-phosphate for DNA and
RNA synthesis, NADPH for biosynthetic and antioxidant reactions as well as DAG for tria-
cylglycerol and phospholipid synthesis. Activation of the polyol pathway may also contribute
to proliferation under hypoxic conditions through the formation of fructose, which has been
shown to induce transketolase activity in pancreatic cancer cells, driving fructose flux to the
nonoxidative PPP and synthesis of nucleic acids [24]. Sorbitol derived from the polyol path-
way may compete for intracellular stores of myo-inositol, inducing depletion of this metabo-
lite [25]. As a consequence, modulated levels of myo-inositol may influence the biosynthesis
and turnover of phospholipids. Furthermore, the osmotic property of polyols contributes to
water and sodium retention, thereby regulating cell volume [26]. Thus, increased polyol levels
could partially explain tumor associated oedema often observed in GBM; we found signifi-
cantly increased sorbitol levels in conditioned medium at prolonged hypoxia (Fig. 2C). Final-
ly, activation of the polyol pathway may be an indicator of increased metabolic flux through
the aldose reductase pathway, which in addition to reducing glucose to sorbitol, catalyzes the
reduction of a wide array of substances, including lipid aldehydes generated during lipid per-
oxidation and their glutathione-conjugates, phospholipids and steroids [26]. In this way, al-
dose reductase may be one of the cell’s defense mechanisms against hypoxic stress through
multiple mechanisms, e.g. the activation of the polyol pathway, inactivation of highly reactive
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Fig 2. Altered glucose shunting in hypoxic GBM cells. A, Schematic of the polyol pathway. B and C, Hypoxic effects on metabolites of the polyol pathway
in cells (B) and media (C). D, Schematic of the pentose phosphate pathway (PPP). E, Hypoxic modulation of PPP metabolites in cells. F, Schematic of
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(UDP-N-Acetyl)-2-epimerase/N-acetylmannosamine kinase; GNPDA, glucosamine-6-phosphate isomerase; GNPNAT, glucosamine-phosphate N-
acetyltransferase 1; G6PD, glucose-6-phosphate dehydrogenase; MPI, mannose phosphate isomerase; NAGK, N-acetylglucosamine kinase; NANP, N-
acetylneuraminic acid phosphatase; NANS, N-acetylneuraminic acid synthase; 6PGD, phosphogluconate dehydrogenase; PGLS, 6-
phosphogluconolactonase; PGM, phosphoglucomutase; PMM1, phosphomannomutase 1; RPE, ribulose-phosphate 3-epimerase; RPIA, ribose-5-
phosphate isomerase; TALDO1, transaldolase 1; TKT, transketolase; TSTA3, GDP-L-fucose synthetase; UAP1, UDP-N-acteylglucosamine
pyrophosphorylase 1; UGDH, UDP-glucose 6-dehydrogenase; UGP, UDP—Ilucose pyrophosphorylase.

doi:10.1371/journal.pone.0116740.g002

molecules and generation of inflammatory substances, triggering a pro-survival NFxB medi-
ated signaling pathway.

An increased ratio of NADP*/NADPH and NADH/NAD™ at hypoxic conditions may lead
to oxidative stress due to compromised reduction of glutathione. Further, an increased
NADH/NAD" ratio may block the activity of GAPDH and thus inhibit the formation of
1,3-bisphosphoglycerate from glyceraldehyde-3-phosphate, resulting in enhanced shunting
into the pentose phosphate pathway (PPP), and diacylglycerol, triglyceride and phospholipid
synthesis pathways (Fig. 2A and D). In support of this, we found that hypoxic GBM cells ex-
hibit increased levels of glycolytic precursors of the PPP (Fig. 1H) as well as metabolic inter-
mediates of the PPP, and the end product of this pathway, ribose 5-phosphate (Fig. 2E), i.e. a
precursor of phosphoribosyl pyrophosphate (PRPP) that is required for the synthesis of pu-
rines and pyrimidines (S2 Fig.). However, despite elevated levels of ribose-5-phosphate and
intermediates of the pyrimidine synthesis pathway, such as N-carbamoylaspartate and orotate
(S2C Fig.), hypoxic GBM cells had decreased amounts of nucleotides and their metabolites,
indicating that later steps of nucleotide synthesis were down-regulated (S2B and S2C Figs.).

As shown in Fig. 2F, activated nucleotide sugars are derived from glycolytic intermediates,
i.e. glucose-6-phosphate and fructose-6-phosphate; hypoxia-driven induction of these metabo-
lites (Fig. 1H) should result in increased levels of activated sugars. Contradicting this notion,
hypoxic cells contained significantly less UDP-glucose (UDP-GIc) (Fig. 2G), possibly related to
the recently demonstrated hypoxic induction of UDP-Glc utilization for glycogen synthesis
[7,27]. We found that hypoxic GBM cells express enhanced levels of several enzymes involved
in glycogen metabolism (Fig. 2H). Interestingly, hypoxic cells showed increased levels of
mRNA encoding UDP-GIlc ceramide glucosyltransferase (UGCG) (Fig. 2I) that catalyzes the
first glycosylation step in glycosphingolipid biosynthesis [28]; enhanced glycosylation of cer-
amides may contribute to the depletion of the intracellular UDP-Glc pool. Hypoxic cancer cells
may also have an increased demand of UDP-galactose (UDP-Gal) and UDP-N-acetylglucosa-
mine (UDP-GIcNAc)/UDP-N-acetylgalactosamine (UDP-GalNAc) for the synthesis of glyco-
proteins and glycolipids, as suggested by decreased UDP-Gal and UDP-GIcNAc/UDP-GalNAc
(Fig. 2G), and increased levels of transcripts encoding beta-1,4-galactosyltransferase 1
(B4GalT1) and -4 (B4GalT4) (Fig. 2I). Further, we found that mannose-6-phosphate was in-
duced by hypoxia in a time-dependent manner (up to approx. 3-fold) (Fig. 2F and G), and its
conversion into GDP-fucose (GDP-Fuc) for glycosylation reactions was supported by in-
creased GDP-Fuc (Fig. 2G) and a several-fold induction of fucosyltransferase 11 (FUT11)

(Fig. 2I). In addition to hypoxia-induced expression of FUT11, we found increased mRNA lev-
els of ST3 beta-galactoside alpha-2,3-sialyltransferase 6 (ST3Gal6) (Fig. 2I), which transfers si-
alic acid from the activated CMP-Neu5Ac to terminal positions of sugar chains on glycolipids

(gangliosides) and to the N- or O-linked sugar chains of glycoproteins.

Together, these data indicate that hypoxia-induced import of glucose can modulate cellular
glycosylation patterns and consequently GBM cell behavior in several ways. Indeed, glycolipids
and glycoproteins emerge as interesting markers and targets of tumor-associated hypoxia [29].
For example, cancer cell adhesion to vascular endothelial cells during metastasis may be
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promoted through enhanced expression of genes encoding enzymes and transporters involved
in the synthesis of sialyl Lewis x and sialyl Lewis a cell determinants [30]. The function of
FUT11, which we found to be transiently up-regulated (> 5-fold) by hypoxia, remains unex-
plored; interestingly, a recent meta-analysis of genes differentially regulated in clear cell renal
tumors, characterized by constitutive activation of HIFs, identified FUT11 as a top candidate
biomarker of disease progression [31].

In addition to UDP-Glc, we observed a slight increase in the level of UDP-glucuronic acid
(UDP-GIcA), one of the crucial substrates for glycosaminoglycan (GAG) synthesis, at 48 h of
hypoxia (Fig. 2G). GAGs are long, unbranched polysaccharides that can reside in the glycocalyx
or in the extracellular space as naked macromolecular saccharide chains, i.e. hyaluronic acid
(HA), or conjugated to proteoglycans. These ECM constituents play critical roles in shaping the
tumor microenvironment and GAGs have been found to be deregulated in cancer [32]. Increased
UDP-GIcA levels suggest altered GAG synthesis at hypoxic conditions; however, the expression
of the enzyme responsible for converting UDP-glucose to UDP-GlcA, UDP-glucose 6-
dehydrogenase (UGDH), was not regulated by hypoxia in glioma cells (data not shown). The lev-
els of sugar residues that together with GlcA make up the GAG chains, i.e. UDP-N-acetylgluco-
samine (UDP-GIcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc), were decreased at
early time points and unchanged at 48 h of hypoxia, which may indicate a transient increase in
their consumption. These divergent levels of specific UDP sugars at hypoxic conditions imply
distinct glycosylation modifications in malignancies. Further supporting this notion, post-trans-
lational O-GlcNAcylation, i.e. the addition of a single GlcNac to serine or threonine residues of
target proteins, has been shown to be elevated in various cancers [33]. O-GlcNAcylation is re-
sponsible for the posttranslational modification of numerous nuclear and cytosolic proteins in-
cluding histone H2B thereby facilitating its monoubiquitination [34], and an open chromatin
structure that is more accessible for transcription factors. It is tempting to speculate that O-
GlcNAcylation would contribute to epigenetic modifications that constitute an alternative tran-
scriptional control mechanism accompanying initial HIF-mediated transcription. Interestingly,
an indirect O-GlcNAcylation-mediated mechanism of transcriptional control has been suggested
where O-GlcNAc transferase increases HIF-1a: levels by reducing the level of o-ketoglutarate,
which is required for HIF-1o hydroxylation and subsequent proteasome degradation [35]. This
may ultimately lead to the maintenance of glycolysis in cancer cells; hence, O-GlcNAcylation
seems as an important post-translational modification in cancer cell metabolic reprograming.

Hypoxia alters the metabolism of nucleotide cofactors NAD and NADP

NAD is synthesized either in a de novo pathway from tryptophan or in salvage pathways from
nicotinic acid (Na), nicotinamide (Nam) and nicotinamide riboside (NamR). NADP is synthe-
sized from NAD in a reaction catalyzed by NAD kinase (NADK) (Fig. 3A) [36]. As depicted in
Fig. 3B, hypoxic cells showed elevated levels of NAD, NADH and their precursor nicotinic acid
dinucleotide (NaAD). NADP levels were decreased in hypoxic vs. normoxic cells (Fig. 3B),
which may result from impaired phosphorylation of NAD as supported by diminished levels of
NADK mRNA (S3 Table). In conjunction with increased levels of ribose-5-phosphate

(Fig. 2E), and profound depletion of tryptophan metabolites, such as kynurenine and anthra-
nilic acid (Fig. 3C), our data suggest enhanced de novo synthesis of NAD in hypoxic cells. Ad-
ditionally, hypoxia may stimulate the synthesis of NAD in a salvage pathway from NamR as
hypoxic cells consumed substantially more NamR from media than normoxic cells (Fig. 3D).
Enhanced synthesis of NAD in hypoxic cells seems to be associated with profound utilization
of NAD for the production of ADP-ribose (Fig. 3B), which can be further polymerized into
poly-ADP-ribose, i.e. a key molecule of DNA repair mechanisms. Notably, NAD is also
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de kinase; QPRT, quinolinate phosphoribosyltransferase.

required for the action of the sirtuin enzymes (SIRT). The seven mammalian SIRTs are NAD-
dependent lysine modifying deacetylases that act on proteins involved in various cancer related
processes including proliferation, DNA damage repair, stress response and cell survival.
Accordingly, high SIRT expression has been associated with a poor prognosis in many cancer
types [37]. However, other studies point to a tumor suppressor role of SIRT's [38]. Interestingly,
SIRT-mediated negative effects on tumor growth involve changes to various aspects of hypoxia
regulated metabolism and even direct regulation of HIF1o. Accordingly, SIRT1 [39], SIRT3
[40, 41] and SIRT6 [42] have been reported to suppress HIF-1a resulting in repression of gly-
colysis, inhibition of mitochondrial ROS production and decreased expression of multiple gly-
colytic genes. The contradictory roles of SIRT's in human malignancies reflect the complex
regulation of SIRT activities that depend on the tissue context, on distinct mechanisms of spe-
cific SIRT isoforms, the expression of SIRT substrates as well as on the access to NAD.

Hypoxic GBM cells show down-regulation of the TCA cycle and
profound accumulation of the oncometabolite 2-hydroxyglutarate

The breakdown of citrate by ATP-citrate lyase (ACLY) is a primary source of cytosolic acetyl-
CoA that is used for protein acetylation as well as fatty acid and cholesterol synthesis [43-45]
(Fig. 4A). Further, metabolism of cytosolic citrate by aconitase and isocitrate dehydrogenase
(IDH) provides the cell with NADPH for redox regulation and synthesis of nucleotides, fatty
acids and steroids. The generation of citrate involves the condensation of glutamine-derived
oxaloacetate and glucose-derived acetyl-CoA. Our data suggest that hypoxia, especially at pro-
longed incubation, significantly decreases the levels of TCA cycle intermediates (Fig. 4B). The
conversion of glucose-derived pyruvate to acetyl-CoA by PDH and of glutamine to oxaloacetate
through the TCA cycle has been shown to be compromised under hypoxic conditions [46]. To
support cell growth and viability, hypoxic cancer cells can reroute glutamine metabolism into
the generation of citrate through reductive carboxylation of glutamine-derived o-ketoglutarate,
a reaction mediated by the NADPH-dependent isoforms of IDH1 and IDH2 [46, 47] (Fig. 4A).
Thus, stable levels of citrate through the course of hypoxia (Fig. 4B) may indicate that this me-
tabolite was replenished via IDH-mediated reductive carboxylation of glutamine-derived
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o-ketoglutarate. In support of this idea, hypoxic GBM cells contained elevated levels of gluta-
mine precursor and its derivatives (Fig. 4C), and increased expression (almost 5-fold vs. nor-
moxic cells) of glutamic pyruvate transaminase 2 (GPT2) that catalyses the conversion of
glutamate into a-ketoglutarate (Fig. 4A and D).
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Interestingly, hypoxic GBM cells exhibited profoundly increased (up to 11-fold) levels of
2-hydroxyglutarate (2-HG) (Fig. 4E). Increased 2-HG may accompany the accumulation of
glutamine-derived o-ketoglutarate and its increased reductive carboxylation, catalysed by
IDH1 and IDH2 [46]. More importantly, 2-HG emerges as an oncometabolite during the in-
duction of several types of cancer, including gliomas [47]. IDH1 and IDH2 are mutated in
more than half of low-grade gliomas and secondary GBM, but more seldom in primary GBM
(approx. 1/20), resulting in neo-enzymatic conversion of o-ketoglutarate to 2-HG. Although
the exact role of IDH mutations in tumor development remains unclear, 2-HG may competi-
tively inhibit a-ketoglutarate—dependent dioxygenase enzymes, e.g. prolyl hydroxylases, caus-
ing epigenetic alterations, abnormal collagen maturation, and down-regulation of
HIF-dependent tumor suppressive signaling. A complex interplay between oncogenetic events
(IDH mutations) and microenvironmental events (hypoxia) may thus be envisioned in glioma
development with a dual role of 2-HG as a tumor initiator and as a suppressor of later stages of
progressive disease.

Hypoxia impairs cholesterol, glycerolipid and sphingolipid metabolism in
GBM cells

Cholesterol is a major membrane component and regulator of cell signaling and membrane
transport by supporting the structure and function of lipid rafts, and is a precursor molecule
for the biosynthesis of steroid hormones, vitamin D and bile acids [48]. Cholesterol level is reg-
ulated by de novo synthesis through the mevalonate pathway, where conversion of 3-hydroxy-
3-methylglutaryl CoA (HMG-CoA) to mevalonate by HMG-CoA reductase (HMGCR) consti-
tutes the rate-limiting step, and by uptake of cholesterol-enriched lipoproteins [48]. The reduc-
tase is subjected to feedback control by sterols and nonsterol end-products of mevalonate
metabolism [49], partly through proteasomal degradation of HMGCR by insulin-induced gene
(Insig) proteins in the endoplasmic reticulum [50]. We found that hypoxic cells display pro-
found accumulation of squalene, lanosterol and lathosterol, whose conversion into cholesterol
requires oxygen (Fig. 5A and B). Moreover, hypoxic cells showed increased expression (approx.
8-fold) of Insig2 (Fig. 5C). Given that lanosterol serves as a signal for Insig-dependent ubiquiti-
nation and degradation of HMGCR this represents another potential mechanism of hypoxia-
mediated down-regulation of cholesterol synthesis [50, 51]. Intriguingly, however, hypoxia did
not result in decreased total cholesterol in GBM cells (Fig. 5B), suggesting compensatory mech-
anisms to maintain cholesterol levels. GBM cells contained reduced amounts of 7-o- and 7--
hydroxycholesterol (Fig. 5B), suggesting decreased conversion of cholesterol into oxysterols as
one potential mechanism. Additional possibilities that remain to be investigated are hypoxic
induction of cholesterol uptake [52], or stimulation of its release from lipid droplets.

Polar glycerophospholipids, including phosphatidylethanolamine (PtdEth), phosphatidylser-
ine (PtdSer), phoshatidylcholine (PtdCho) and phosphatidylinositol (PtdIno) serve as structural
components of cellular membranes and second messengers in signal transduction. De novo syn-
thesis of glycerolipids begins with acylation of glycerol-3-phosphate by glycerol-3-phosphate
acyltransferases (GPATSs), generating lysophosphatidic acid, which is subsequently acylated to
phosphatidic acid by 1-acylglycerol-3-phosphate acyltransferases (AGPATs). Phosphatidic acid
can then be converted into phosphatidic acid, a precursor of PtdIno, or metabolized by phos-
phatidate phosphatase (PAP) to CDP-diacylglycerol (DAG), a precursor of PtdCho, PtdEth,
PtdSer and triacylglycerols (TAGs) (Fig. 6A). Our data suggest that hypoxia does not seem to
deplete metabolites of fatty acid B-oxidation (Fig. 6B), but appeared to increase the levels of pal-
mitic acid, glycerol-3-phosphate, choline and choline phosphate (Fig. 6C and D). Abnormal
choline metabolism has been associated with tumor initiation and progression in glioma and
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several other tumor types [53], and may provide a non-invasive biomarker of glioma transfor-
mation and response to therapy.

Together with gene expression analysis showing hypoxic induction of AGPAT4 and
AGPATS, i.e. enzymes involved in the synthesis of phosphatidic acid (Fig. 6E), our data suggest
that hypoxic GBM cells exhibit increased synthesis of TAGs and PtdCho. Hypoxic cells also
contained decreased levels of lysophospholipids mostly derived from PtdCho and PtdEtn but
not from PtdSer and PtdIno (Fig. 6F and S3 Fig.). This effect could result from lipase-driven
degradation of lysophospholipids into glycerolphosphorylcholine and glycerophosphoryletha-
nolamine (Fig. 6D), which may further explain elevated levels of o-linolenic acid-derived, poly-
unsaturated omega-3 fatty acids, and linoleic acid-derived, polyunsaturated omega-6 fatty
acids, in hypoxic vs. normoxic cells (Fig. 6G and H). Additionally, we found hypoxia-induced
conversion of linoleic acid to 13-hydroxyoctadecadienoic acid (13-HODE) and 9-HODE as
well as arachidonic acid to prostaglandin E2 in GBM cells (Fig. 6G and H). Accordingly, hyp-
oxic GBM cells displayed transcriptional activation of prostaglandin-endoperoxide synthase 2
(PTGS2, also known as cyclooxygenase-2, COX-2) that catalyzes the conversion of arachidonic
acid to prostaglandin E2 (Fig. 6E). COX-2 expression was previously shown to be increased in
high as compared with low grade human gliomas and correlated with worse patient outcome
[54]. Mechanistically, this may be explained by arachidonic acid-mediated stimulation of GBM
cell migration and infiltration, a process dependent on association with the brain fatty acid
binding protein (FABP7) [55]; FABP7 was significantly up-regulated (approx. 1.6-fold,
P<0.05) by hypoxia in GBM cells. COX-2 inhibitors, mainly celecoxib, emerge as interesting
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* P < 0.05; #0.05 < P < 0.1. CDIPT, CDP-diacylglycerol-inositol 3-phosphatidyltransferase; CDS1, CDP-diacylglycerol synthase 1; CEPT1, choline/
ethanolamine phosphotransferase 1; CHK, choline kinase; DGAT, diglyceride acyltransferase; PAP, phosphatidate phosphatase; PCYT1A, choline-
phosphate cytidylyltransferase 1A; PCYT2, ethanolamine-phosphate cytidylyltransferase 2; PEMT, phosphatidylethanolamine N-methyltransferase;
PTDSS1, phosphatidylserine synthase 1.
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cancer preventive agents, but also may sensitize GBM cells to radiotherapy by augmenting ER
stress [56]. Another interesting possibility, supported by recent in vivo studies, is efficient at-
tenuation of the immunosuppressive function of prostaglandin E2 by intratumoral administra-
tion of COX-2 inhibitors [57].

Sphingolipids are structural components of cellular membranes and important mediators in
cellular signaling events [58]. De novo sphingolipid synthesis involves the conversion of palmi-
toyl-CoA and serine into ceramide (S4A Fig.). Ceramide may be glycosylated by glucosylcera-
mide synthase, yielding glycosphingolipids, or be converted into sphingomyelin by the action
of sphingomyelin synthase that in the reverse reaction may be broken down by sphingomyeli-
nase to form ceramide. Breakdown of ceramide by ceramidase yields sphingosine, which upon
phosphorylation forms sphingosine-1-phosphate (S4A Fig.). We found that hypoxic cells had
decreased levels of sphinganine and 2-hydroxy fatty acids (S4B and S4C Fig.), suggesting that
de novo synthesis of pro-apoptotic ceramides is down-regulated. These observations, together
with increased transcriptional activation of UGCG (Fig. 2I) that mediates the formation of glu-
coceramides, indicate that GBM cells may adapt to hypoxic stress by decreasing the pool of in-
tracellular ceramides and increasing their conversion into anti-apoptotic glycosphingolipids.
Another interesting possibility is cellular ceramide metabolite detoxification through increased
release of exosomes [59]. Indeed, cancer cell release of microvesicles was shown to be induced
by hypoxia in a HIF-dependent manner [60]. Further, exosomes isolated from GBM patients
were shown to closely reflect the signalling status of hypoxic donor cells [61]. The role of exo-
somes as transporters of sphingolipids in the hypoxic tumor microenvironment clearly de-
serves further investigation.

Enhanced catabolism of proteins and amino acids in hypoxic GBM cells

Prolonged hypoxia resulted in the accumulation of dipeptides and amino acids with various
posttranslational modifications (Fig. 7A-C), suggesting that hypoxic GBM cells increase their
pool of free amino acids to fulfill the energetic demands that cannot be sufficiently provided
from the glycolytic flux. Hypoxia decreased the levels of numerous y-glutamyl-amino acids
both in cells (Fig. 7D) and in conditioned media (Fig. 7E). As anti-oxidant glutathione provides
the y-glutamyl moiety in the y-glutamyl cycle, GBM cells may decrease the activity of this path-
way to limit glutathione consumption under hypoxic conditions. Increased expression of genes
encoding various amino acids transporters (Fig. 7F), indicate that hypoxic GBM cells may be
more dependent on this amino acid uptake pathway rather than on the y-glutamyl cycle. Nota-
bly, both SLC3A2 and SLC7A5, that together heterodimerize into the large neutral amino acid
transporter (LAT1 or CD98) were significantly up-regulated by hypoxia. High LAT1 expres-
sion has been shown to correlate with poor survival in GBM patients, and specific inhibition of
LAT1 was shown to attenuate glioma growth [62].

Hypoxic GBM cells exhibited increased levels of e.g. lysine-derived 2-aminoadipate and pipe-
colate, proline-derived 5-aminovalerate, phenylalanine-derived phenylacetylglycine, tyrosine-
derived 3-(4-hydroxyphenyl)lactate and histidine-derived imidazole propionate (Fig. 7G), sug-
gesting increased catabolism of proteins. These findings are consistent with enhanced autop-
hagy and protein degradation by chronic hypoxia [27]. Indeed, we found that several
autophagy-related transcripts were significantly induced by hypoxia in GBM cells (e.g. BNIP3L:
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methionine and its metabolites in GBM cells (K) and their conditioned media (L). M, Hypoxic effects on mRNAs of proteins involved in cysteine and
glutathione synthesis. * P < 0.05; # 0.05 < P < 0.1. ADC, arginine decarboxylase; AGMAT, agmatinase; AMD1, adenosylmethionine decarboxylase 1; ARG,
arginase; BHMT, betaine-homocysteine methyltransferase; CBS, cystathionine beta synthase; CTH, cystathionine gamma-lyase; DAO, diamine oxidase;
GAMT, guanidinoacetate N-methyltransferase; GATM, glycine amidinotransferase; GCLC, glutamate-cysteine ligase; GSS, glutathione synthetase; NOS,
nitric oxide synthase; OAT, ornithine aminotransferase; ODC, ornithine decarboxylase; SHMT, serine hydroxymethyltransferase.

doi:10.1371/journal.pone.0116740.9007

4.5-fold; ULK1: 2.4-fold; ATG9: 1.8-fold; VPS34: 1.7-fold as compared with normoxia). Further,
hypoxia-driven degradation of arginine could result in elevated levels of the growth promoting
polyamine putrescine (Fig. 7H and I) that was previously shown to accumulate in hypoxic can-
cer cells and to protect them from hypoxic stress [63].

Finally, hypoxia enhanced cellular levels of cysteine-derived antioxidant metabolites, such as
glutathione and taurine (Fig. 7] and K) with a corresponding increased consumption of extracel-
lular cysteine (Fig. 7L). Transcriptional activation of enzymes involved in cystathionine-beta-
synthase (CBS), cystathionine gamma-lyase (CTH), and glutamate-cysteine ligase (GCLC)

(Fig. 7M), may support increased synthesis of cysteine and glutathione in hypoxic GBM cells.

Conclusions

It is well-established that hypoxia and down-stream features of the tumor microenvironment,
e.g. acidosis correlate with GBM tumor aggressiveness and patient outcome. This gives strong
rationale for studies aiming at the identification of hypoxia-induced metabolic alterations with
the potential to provide a biochemical basis for the development of therapeutic strategies that
specifically kill the most aggressive tumor cells. Also, further development and clinical imple-
mentation of magnetic resonance and positron emission tomography imaging techniques for
non-invasive in vivo analysis of the metabolic status of relatively inaccessible brain tumor
lesions would clearly benefit from such studies. Importantly, several low-molecular weight me-
tabolites and amino acids readily visible in proton MR spectra were significantly and time-
dependently increased by hypoxia in GBM cells (e.g. choline, phosphocholine, glyceropho-
sphocholine, creatine, taurine, lysine, glutamate/glutamine, and polyamine; see Figs. 6 and 7).
This may, at least partially, explain the utility of this technique to distinguish between low and
high grade glioma tumors [64].

As opposed to molecular profiling of clinical specimens that is limited by tumor heterogene-
ity, steady-state measurements and the potential influence of different handling of tissue post
resection, cell culture models provide a powerful tool for dynamic studies at controlled, micro-
environmental conditions. Indeed, we found several metabolites to be transiently regulated by
hypoxia, e.g. glucose, fructose, lysophospholipids, taurine, and orotate, although most metabol-
ic changes were found to increase with prolonged hypoxic stress. Chinnayian et al. recently
performed a global metabolomic analysis of glioma tumors, proposing a biochemical profile
that may differentiate low- from high-grade tumors [65]. Notably, their finding of accumula-
tion of glucose-6-P and key metabolites of the PPP (6-phosphogluconate and ribose-5-P) as a
major discriminator between GBM and low-grade gliomas corresponds with our data, showing
a highly significant and time-dependent increase of these metabolites in hypoxic GBM cells
(Fig. 1 and 2). This metabolic phenotype reflects shunting of glycolytic carbon into macromo-
lecular biosynthesis, and as an important consequence, increased generation of reducing poten-
tial to counteract the toxic effects of oxidative species. This notion was supported by enhanced
level of reduced glutathione in high-grade vs. low grade glioma [65] as well as in hypoxic vs.
normoxic GBM cells (present study; Fig. 7).

Our data support the notion that gene expression data can provide important clues to and
in many cases is in good agreement with metabolic profiling. HIFs and other oxygen-regulated
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genes operate to genetically adapt cancer cells to hypoxic stress; metabolic analyses, including
our study, point at a complex cross-talk between genetic and biochemical changes where me-
tabolites, e.g. 2-HG, contribute to the metabolic status of hypoxic cells through regulation of
HIF stability and by epigenetic events.

To conclude, our studies illustrate the power of combined transcriptomic analysis and com-
prehensive metabolomics for defining adaptive pathways of hypoxia in cancer cells. These new
insights may be further exploited for the identification of treatment targets of hypoxic and
highly aggressive tumors.

Supporting Information

S1 Fig. Glycolysis provides precursors for the synthesis of essential macromolecules.
(TIF)

S2 Fig. Effect of hypoxia on the metabolism of purines and pyrimidines. A, Schematic illus-
tration of the purine (upper panel) and pyrimidine (lower panel) metabolism. B and C, Hypox-
ic modulation of metabolites involved in the purine (B) and pyrimidine metabolism (C).

Data represent fold change of metabolite levels in hypoxic vs. normoxic cells. * P < 0.05;

#0.05 < P < 0.1. ADSL, adenylosuccinate lyase; ADSS, adenylosuccinate synthase; AFMID,
arylformamidase; CAD, carbamoyl-phosphate synthetase 2; GMPS, guanine monphosphate
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phosphate synthetase; UMPS, uridine monophosphate synthetase.

(TIF)

S3 Fig. Hypoxia-driven effects on lysolipids derived from PtdEth, PtdIno and PtdSer. Data
represent fold change of lysolipid levels in hypoxic vs. normoxic GBM cells. * P < 0.05.
(TTF)

S4 Fig. Effects of hypoxia on sphingolipid metabolism in GBM cells. A, Illustration of sphin-
golipid metabolism. B and C, Hypoxic effects on metabolites involved in sphingolipid metabo-
lism. Data represent fold change of metabolite levels in hypoxic GBM cells vs. normoxic samples.
* P < 0.05; # 0.05 < P < 0.1. CDase, ceramidase; CERS, ceramide synthase; DEGS, dihydrocera-
mide desaturase; KDSR, 3-ketodihydrosphingosine reductase; SMase, sphingomyelinase; SMS,
sphinogomyelin synthase; SPHK, sphingosine kinase; SPTLC, serine C-palmitoyltransferase;
UGCG, UDP-glucose ceramide glucosyltransferase.

(TIF)

S1 Table. List of identified metabolites in GBM cells with fold changes, p-values and q-val-
ues for comparison between normoxic and hypoxic samples.
(XLS)

S2 Table. List of identified metabolites in conditioned media from GBM cells with fold
changes, p-values and q-values for comparison between normoxic and hypoxic samples.
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tabolism, as determined by Illumina gene expression analysis.
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