
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Discrete Optimization in Early Vision - Model Tractability Versus Fidelity

Strandmark, Petter

2012

Link to publication

Citation for published version (APA):
Strandmark, P. (2012). Discrete Optimization in Early Vision - Model Tractability Versus Fidelity. [Doctoral
Thesis (monograph), Mathematics (Faculty of Engineering)]. Centre for Mathematical Sciences, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/3420fd5e-5e7a-4e0c-bfd2-6054bacc53fa

Discrete Optimization in Early Vision

DISCRETE OPTIMIZATION IN EARLY VISION

MODEL TRACTABILITY VERSUS FIDELITY

PETTER STRANDMARK

Faculty of Engineering
Centre for Mathematical Sciences

Mathematics

Mathematics
Centre for Mathematical Sciences
Lund University
Box 118
SE-221 00 Lund
Sweden

http://www.maths.lth.se/

Doctoral Theses in Mathematical Sciences 2012:5
ISSN 1404-0034

ISBN 978-91-7473-407-2
LUTFMA-1046-2012

© Petter Strandmark, 2012

Printed in Sweden by Media-Tryck, Lund 2012

Contents

Preface ix

1 Introduction 
1.1 Tractability and Fidelity 
1.2 �esis Overview 
1.3 Previous Publications and Author Contributions 

2 Continuous Optimization 
2.1 Convex Functions 
2.2 Dual Decomposition 
2.3 Non-Linear Least Squares Problems 

3 Discrete Optimization 
3.1 Submodular Functions 
3.2 Submodularity and Minimum Cuts 
3.3 Linearization 
3.4 Roof Duality 
3.5 Reductions 
3.6 Beyond Boolean Variables 
3.7 Branch and Bound 

I Pseudo-Boolean Optimization 

4 Generalized Roof Duality 
4.1 Submodular Relaxations 
4.2 Standard Roof Duality 
4.3 Generalized Roof Duality 
4.4 Cubic Relaxations 
4.5 Quartic Relaxations 

v

4.6 Heuristics 
4.7 Experiments 
4.8 Concluding Discussion 
4.9 Open Problems 

5 Other Approaches to Pseudo-Boolean Optimization 
5.1 Using Bipartite Vertex Packing 
5.2 Elimination on a Grid 

6 Continuous Fields of Experts Denoising 
6.1 Denoising using Fields of Experts 
6.2 Non-linear Least Squares Formulation 
6.3 Experiments 
6.4 Discussion 

7 Parallel and Distributed Graph Cuts 
7.1 Previous Approaches to Graph Cuts in Vision 
7.2 Decomposition of Graphs 
7.3 Experiments on a Single Machine 
7.4 Splitting across Different Machines 
7.5 Conclusion 

8 Parallel Inference on a GPU 
8.1 Splitting the Graph 
8.2 Dynamic Programming 
8.3 Boolean Formulation and Updating of Weights 
8.4 Linear Programming Relaxation 
8.5 Experiments 
8.6 Coordinate Ascent 
8.7 Conclusion 

II Parametric Models 

9 Optimizing Parametric Total Variation Models 
9.1 �e Mumford-Shah Functional 
9.2 Parametric Binary Problems 
9.3 Two-Phase Mumford-Shah Functional 
9.4 Ratio Minimization 
9.5 Gaussian Distributions 

vi

9.6 Conclusion 

III Curvature Regularization 

10 Curvature Regularization in the Plane 
10.1 Problem Formulation 
10.2 Length-Based Regularization 
10.3 Incorporating Curvature 
10.4 Pseudo-Boolean Optimization 
10.5 Types of Meshes 
10.6 Dual Decomposition 
10.7 Convex Shape Priors 
10.8 Solution Refinement 

11 Surface Completion and Segmentation with Curvature 
11.1 Curvature of Surfaces 
11.2 Experiments 
11.3 Conclusion 

IV Applications 

12 Multiple Region Segmentation 
12.1 Multi-Region Framework 
12.2 Solving the Optimization Problem 
12.3 Cardiac Segmentation 
12.4 Lung Segmentation 
12.5 Conclusions 

13 Shift-Map Image Registration 
13.1 Problem Formulation 
13.2 Experiments 
13.3 Conclusion 

14 HEp-2 Staining Pattern Classification 
14.1 Indirect Immunofluorescence 
14.2 Classification Methods 
14.3 Features Used for Classification 
14.4 Results 

vii

14.5 Discussion 

V Conclusion 

15 Recent Work 
15.1 Generalized Roof Duality 
15.2 Parallel Minimum Cut 
15.3 Parametric Models 
15.4 Curvature 

Bibliography 

Index 

viii

Preface

Early vision is the process occurring before any semantic interpretation of an
image takes place. Motion estimation, object segmentation and detection are
all parts of early vision, but recognition is not. Some models in early vision
are easy to perform inference with—they are tractable. Others describe the
reality well—they have high fidelity. �is thesis improves the tractability-
fidelity trade-off of the current state of the art by introducing new discrete
methods for image segmentation and other problems of early vision.

�e first part studies pseudo-boolean optimization, both from a theo-
retical perspective as well as a practical one by introducing new algorithms.
�e main result is the generalization of the roof duality concept to polyno-
mials of higher degree than two. Another focus is parallelization; discrete
optimization methods for multi-core processors, computer clusters, and
graphical processing units are presented.

Remaining in an image segmentation context, the second part studies
parametric problems where a set of model parameters and a segmentation are
estimated simultaneously. For a small number of parameters these problems
can still be optimally solved. One application is an optimal method for
solving the two-phase Mumford-Shah functional.

�e third part shifts the focus to curvature regularization—where the
commonly used length and area penalization is replaced by curvature in
two and three dimensions. �ese problems can be discretized over a mesh
and special attention is given to the mesh geometry. Specifically, hexagonal
meshes in the plane are compared to square ones and a method for generat-
ing adaptive meshes is introduced and evaluated. �e framework is then
extended to curvature regularization of surfaces.

Finally, the thesis is concluded by three applications to early vision prob-
lems: cardiac  segmentation, image registration, and cell classification.

ix

111

Without my colleagues at Lund University, this thesis could not have come
into existence. First, I would like to thank my supervisor, Fredrik Kahl,
for his help and collaboration on several papers. During my four years at
the Centre for Mathematical Sciences, I have also had the great privilege
of working with Fredrik Andersson, Johan Fredriksson, Yubin Kuang, Carl
Olsson, Niels Christian Overgaard, �omas Schoenemann, Linus Svärm,
and Johannes Ulén. Everyone in the Mathematical Imaging Group and at
the Centre for Mathematical Sciences has my thanks for providing great
company, courses and seminars. Bo Bernhardsson was the examiner of my
Licentiate thesis and provided very useful feedback. Emmy Nilsson has
supported me the entire time and has my deepest thanks for reading through
my drafts and offering valuable suggestions for improvement.

I would also like to acknowledge the funding that has made my graduate
studies possible. My work has been funded by the Swedish Foundation for
Strategic Research ( and ) and by the European Research Council
(Global Vision, grant number ).

Lund, December , 

x

Chapter 1

Introduction

Eyes have evolved independently in at least  groups of animals (Coyne,
). Despite considerable complexities and evolutionary hurdles, the
camera-type eye, with a lens focusing the image onto the retina, has evolved
in very different groups: from vertebrates to crustaceans and jellyfish (Nils-
son, ). �is is a testament to the importance of vision for life on earth
and a suggestion that artificial vision systems, if constructed properly, will
be immensely useful to machines for navigation, interaction and measure-
ment. �e construction of such artificial vision systems may therefore be
seen as a subfield of artificial intelligence, and is commonly referred to as
computer vision. It is a relatively recent subfield of artificial intelligence;
recent because it usually involves processing large quantity of data—even
very small images could exhaust the best computers in the s. �e history
of artificial intelligence itself goes back to at least , when Alan Turing
concluded his seminal paper with the following paragraph, suggesting two
lines of future research:

We may hope that machines will eventually compete with men in
all purely intellectual fields. But which are the best ones to start
with? Even this is a difficult decision. Many people think that a very
abstract activity, like the playing of chess would be best. It can also
be maintained that it is best to provide the machine with the best
sense organs that money can buy, and then teach it to understand
and speak English. �is process could follow the normal teaching
of a child. �ings would be pointed out and named, etc. Again I
do not know what the right answer is, but I think both approaches
should be tried.

Half a century later, the first possibility has turned out to be overwhelmingly
successful, whereas the second has had little success. “�e best sense organs
that money can buy” are indeed stunningly powerful today, but any sense



 . 

organ, visual ones certainly not excluded, need a powerful computational
system to process and interpret the data. One of the ultimate goals of
computer vision is precisely this.

Of course, the goal of this thesis is much more modest. I will describe
methods for solving certain optimization problems commonly arising in
computer vision. One of the goals will be globality, that is, the solution
obtained should be guaranteed to be the best possible. Two other goals
will be parallelization to make use of modern microprocessors and memory
efficiency, since solving computer vision problems can be prohibitively
expensive in terms of memory requirements.

�e state of the art of computer vision highly depends on what appli-
cations one has in mind. Computers are able to estimate the scene depth
from a pair of images with great accuracy and to recover the  structure
of an entire city just from arbitrarily downloaded images from the Inter-
net (Agarwal et al., ). On the other hand, computers are still unable
to perform tasks which humans perform effortlessly, such as determining
whether an image contains a chair or not. Recognition is an example of
high-level vision and is very difficult for computers. In contrast, my thesis
mostly focuses on low-level vision, tasks which humans perform subcon-
sciously in every waking second, but still provide challenges for designers of
artificial vision systems. �ese tasks are also commonly referred to as tasks
of early vision. Recognition will only be touched upon towards the end,
where chapter  will show an example of a well-functioning recognition
system—made possible by the very controlled setting in which the images
were captured.

1.1 Tractability and Fidelity

Models in image analysis have two important desiderata: tractability and fi-
delity (McIntosh and Hamarneh, ). Tractability specifies how amenable
the model is to optimization techniques. For example, models involving
curvature and geometric shape priors tend to be harder to optimize than
models only based on image intensities. On the other hand, these more
complex models often describe the reality better and have the potential for
better results—they have higher fidelity. �ere is a natural trade-off between
tractability and fidelity.

Traditionally, most approaches in computer vision rely on local descent



..  

�

Figure 1.1: Segmentation of an image. The foreground region � has the curve

as its boundary.

techniques, e.g. (Lorenzo-Valdés et al., ; Mitchell et al., ; Paragios,
), and may get stuck in local optima which make them less reliable.
�ese models are not always tractable, but their fidelity can still be excellent.
On the other hand, it is possible to apply global optimization techniques
to make the solution more robust to poor initialization, e.g. (Boykov and
Jolly, ; Lin et al., ). �e models used then have great tractability,
but are often less sophisticated.

�e purpose of this thesis is to improve the tractability–fidelity trade-
off. �e first parts focus on optimization, allowing existing models to be
optimized more efficiently. Towards the end, new models are developed
that are still tractable.

1.2 �esis Overview

A major part of my thesis is devoted to image segmentation and the problems
surrounding it. A segment of an image is described by a simple closed curve
γ enclosing an area Γ ⊆ Ω in such a way that the area represents something
significant about the image, e.g. foreground or an interesting object, see
figure .. �e segmentation task is to find the best (closed) curve γ given
an image I , or more precisely,

maximize
γ

P(γ | I), (.)

where P(γ | I) is the posterior probability of γ given the image I : Ω → R3

(or R if the image is black and white). �is thesis will discuss various aspects
of solving (.). Using Bayes’ rule, this expression becomes P(γ | I) =



 . 

P(γ) P(I | γ)/P(I) and, if the log-likelihood is denoted `(γ) = log P(γ),

`(γ | I) = `(γ) + `(I | γ) − `(I)︸ ︷︷ ︸
independent
of γ

. (.)

�is is known as maximum a posteriori () estimation. In computer vision
and image analysis the probabilistic interpretation is sometimes dropped
and `(γ | I) is simply referred to as the energy of γ. �e reason for this is
the influence from the calculus of variations used in physics. Consequently,
image segmentation and other tasks are often referred to by computer vision
researchers as energy minimization problems. �e prior `(γ) is often called
the regularizing term, or smoothness term and `(I | γ) is called the datasmoothness

term term , a vocabulary I will use throughout the thesis. Letting Esmooth(γ) =
data term −`(γ) andEdata(γ) = −`(I | γ), we have finally arrived at the optimization

problem

minimize
γ

Esmooth(γ) + Edata(γ). (.)

It is equivalent to (.), but more similar to how these problems are com-
monly presented in the computer vision community. �e data term is the
likelihood of an image given a particular segmentation and is commonly
written as

Edata(γ) =

∫
Γ
−`(x is foreground | I(x))dx+∫

Ω\Γ
−`(x is background | I(x))dx. (.)

Chapter  of my Licentiate thesis (Strandmark, ) briefly described
how smoothness and regularizing terms arise in the context of conditional
independence between image pixels (the Markov property). �e data term
requires likelihoods `(x is foreground | I(x)) and `(x is background | I(x))
for each position x in the image and these are highly application-dependent.
A typical simple application uses some known or estimated color histogram
to model the two regions. Mumford and Shah () describe various forms
of `(γ) and `(I | γ).

Maximizing (.) with data term (.) becomes very easy under the
assumption that all possible curves γ are equally likely a priori, i.e. `(γ) is



..  

constant. Simply thresholding `(·, I(x)) will give the optimalΓ . Regrettably,
the resulting model is often not good enough. Each point in the image can
under this assumption be classified independently of the others, which is
unrealistic. �is assumption can be removed and a more reasonable prior
is then imposed on the curve γ. Several chapters in this thesis will discuss
the aspects of the optimization problems arising for different classes of
regularizing terms.

�e thesis starts out with chapters  and  about optimization—con-
tinuous and discrete, respectively. �ey will introduce some required termi-
nology and notation. After these introductory chapters, the thesis contains
five parts, each containing one or several chapters, which can be read in any
order. �e rest of this section will briefly summarize the contributions of
these chapters.

Chapter . �e first contribution of the thesis is not directly concerned
with image analysis and computer vision and studies the minimization of
pseudo-boolean functions. Although this problem does arise in vision, the
potential applications extend further than that. �e major contribution of
this chapter is an extension of “roof duality” to polynomials of higher degree
than two. �is framework is called “generalized roof duality.”

Chapter . �ere are other possible approaches to solving pseudo-boolean
optimization problems. Chapter  introduces a few other new methods and
discusses their advantages and shortcomings.

Chapter . One problem used to evaluate discrete optimization methods is
image denoising. �is chapter shows that although the the problem is useful
for benchmarking, continuous methods solve it faster and more accurately.

Chapter . Image segmentation with length regularity may also be con-
verted into the graph theoretical problem of finding the minimum cut in a
directed graph. Many other types of problems can also be formulated as min-
imum cut problems. Fast algorithms for solving these problems are therefore
of the utmost importance in computer vision. Chapter  will introduce
a method for solving the minimum cut problem in parallel, solving small
problems faster and making larger problems tractable by distributing them



 . 

across multiple computers. �is will be achieved by dual decomposition, a
well-known optimization technique summarized in chapter .

Chapter . Devices capable of performing more than a trillion arithmetic
operations per second are today available over the counter. �ese highly
parallel graphical processing units (s) have in the last decade found their
way into computing, with manufacturers like Nvidia diverting more and
more die space from gaming to computing. �is chapter continues the
search for fast algorithms for graph cuts and other more general labeling
problems by exploring possible  algorithms. An algorithm based on
dual decomposition and dynamic programming is introduced, similar to
one presented by Komodakis et al. ().

Chapter . �is chapter considers the case where the prior of the curve γ
is a linear function of its length:

`(γ) = −ρ length(γ), ρ > 0. (.)

�e theory developed can also handle slight variations thereof, such as
anisotropic length (Olsson et al., ). �is optimization problem is well-
known to be solvable and I will describe methods to simultaneously find
the best possible data term under some conditions. As a simple example,
one might wish to model an image as having foreground and background
pixels drawn from two different Gaussian distributions with (unknown)
means but equal variance. �e techniques developed in chapter  enable the
efficient computation of optimally estimated means simultaneously with an
optimal segmentation.

Chapter . After covering length-based regularization, the focus is shifted
to more general functionals involving curvature:

`(γ) = −ρ length(γ)− σ
∫
γ
|κ(s)|dds, ρ, σ ≥ 0, (.)

where the curvature κ(s) = ‖γ ′′(s)‖ for a curve γ parametrized by its arc
length s. Functionals with such terms can be discretized with a grid and
subsequently solved with linear programming, as was shown recently by
Schoenemann et al. (). Chapter  will build upon their work and



..  

extend the method in several ways. A new set of constraints will be intro-
duced which fixes an issue in the original formulation. �e framework is
then extended in two directions: It is shown that the square grid naturally
arising from the image pixels is not as efficient as hexagonal grids. Com-
plementary to this, a method for adaptive grid generation is discussed and
experimentally tested.

Chapter . Whereas the previous chapter expanded upon the existing
framework for functionals involving the curvature of plane curves, chap-
ter  will introduce a new framework for minimizing the curvature of
surfaces. Applications include three-dimensional segmentation and surface
completion, for example, within stereo vision.

Chapter . �e first chapter in the applications part describes an ap-
plication of dual decomposition to multi-region modes for medical 
segmentation. A complete system for the human heart is presented and
evaluated using publicly available data.

Chapter . �e penultimate chapter considers an application of multi-
label minimization to image registration. “Multi-label” refers to that fact
that each variable has more than two possible values and registering a pair of
images means to find pixel-to-pixel correspondences between them. With
both the number of variables and the number of labels ranging in the
millions, the size of the search space is too large for any guarantee of globality
or approximations thereof.

Chapter . Finally, the last contribution chapter is a demonstration of
what can be done if good segmentations are available. Sorting images of
cells into clinically relevant categories is a difficult problem and this chapter
introduces a new classification system that attempts to automate this task.

Recent work. �e field of image processing and computer vision is rapidly
changing. Some work performed by others build on the work in this thesis
and the last chapter is a summary of some of these publications.



 . 

1.3 Previous Publications and Author Contributions

A doctoral thesis is not only an attempt to improve the state of the art in
a research field; it is also the main requirement to obtain a degree. �is
section is an account of previous publications on which this thesis is based
and my contributions to them. Some material presented in this thesis is not
based on previous publications, but most parts of it are.

• Petter Strandmark, Fredrik Kahl and Niels Chr. Overgaard, “Optimizing
Parametric Total Variation Models,” International Conference on Computer
Vision (), Kyoto, .

I and Fredrik developed the theory. I implemented the method and
designed the experiments. Most of the paper was written by me
and the remaining part by Fredrik. Niels Christian developed the
numerical solver.

• Petter Strandmark and Fredrik Kahl, “Parallel and Distributed Graph
Cuts by Dual Decomposition,” Conference on Computer Vision and Pattern
Recognition (), San Francisco, .

�e work distribution between me and Fredrik was practically
identical to the previous paper.

• Linus Svärm and Petter Strandmark, “Shift-map Image Registration,”
International Conference on Pattern Recognition, Istanbul, .

After  , Olof Enqvist suggested using shift-maps for image
registration. I re-implemented the inpainting code and Linus Svärm
developed and implemented the registration method. �e paper
was mostly written by me.

• Petter Strandmark, Fredrik Kahl and �omas Schoenemann, “Parallel and
Distributed Vision Algorithms Using Dual Decomposition.” Computer
Vision and Image Understanding, .

�is is a journal paper whose first part is based on the  
paper. �e remaining two parts were mostly developed and written
by me. Fredrik assisted in writing the paper and �omas contributed
curvature source code and wrote section . in the paper..



..     

• Petter Strandmark and Fredrik Kahl, “Curvature Regularization for
Curves and Surfaces in a Global Optimization Framework,” Energy
Minimization Methods in Computer Vision and Pattern Recognition, St.
Petersburg, .

�e methods in this paper were developed and implemented by me,
with ideas and suggestions by Fredrik. I wrote most of the paper.
�e implementation was an extension of the framework by �omas
Schoenemann.

• Johannes Ulén, Petter Strandmark and Fredrik Kahl, “Optimization for
Multi-Region Segmentation of Cardiac MRI,” MICCAI Workshop on
Statistical Atlases and Computational Models of the Heart: Imaging and
Modelling Challenges, Toronto, .

Johannes did most of the work for this paper. I took part in all
stages of the work, especially the optimization. I wrote the initial
C++ implementation of the optimization routine.

• Johannes Ulén, Petter Strandmark and Fredrik Kahl, “An Efficient
Optimization Framework for Multi-Region Segmentation based on La-
grangian Duality,” IEEE Transactions on Medical Imaging, to appear,
.

�e individual contributions were similar to the above conference
version.

• Fredrik Kahl and Petter Strandmark, “Generalized Roof Duality for
Pseudo-Boolean Optimization,” International Conference on Computer
Vision (), Barcelona, .

Fredrik came up with the idea for this paper while giving a course
in discrete optimization. I implemented the method and designed
the experiments. Consequently, Fredrik wrote most of the first half
of the paper, while I wrote the experiments section.

• Fredrik Kahl and Petter Strandmark, “Generalized Roof Duality,” Discrete
Applied Mathematics, .

�e journal version provided proofs of our claims in the conference
version, some written by me and some by Fredrik.



 . 

• Petter Strandmark, Johannes Ulén and Fredrik Kahl, “HEp- Staining
Pattern Classification,” International Conference on Pattern Recognition,
Tsukuba .

I wrote most of the classification framework, evaluation code and
the initial features. Johannes wrote most of the feature extraction
code together with me and Fredrik. I wrote most of the paper.

�e material in chapters  and  has not been previously published. �e
convex shape prior in section . (page ) and the refinement in sec-
tion . (page ) have also not appeared in previous publications. Much
of the material in my Licentiate thesis (Strandmark, ) appears in revised
form in this thesis, but some parts of it, the largest being chapter , have
been completely omitted. �e experiments in chapter  were conducted by
me in cooperation with Sameer Agarwal during my stay at Google. Finally, I
have presented selected parts of this work at the annual Swedish Symposium
on Image Analysis ():

• Petter Strandmark and Fredrik Kahl, “Pseudo-Boolean Optimization:
�eory and Applications in Vision,” .

• Petter Strandmark and Fredrik Kahl, “Mesh Types for Curvature
Regularization,” .

• Petter Strandmark and Fredrik Kahl, “Parallel and Distributed Graph
Cuts,” .

• Linus Svärm and Petter Strandmark, “Shift-map Image Registration,”
.

• Petter Strandmark, Fredrik Kahl and Niels Christian Overgaard, “Op-
timal Levels for the Two-phase, Piecewise Constant Mumford-Shah
Functional,” .

�is symposium is not peer-reviewed.



Chapter 2

Continuous Optimization

�is chapter and the next will provide an overview of optimization tech-
niques used throughout the thesis. My view of the field of convex optimiza-
tion comes from the books by Boyd and Vandenberghe (), Bertsekas
(), Nesterov (), and Nocedal and Wright (). Dual decompo-
sition is a technique for splitting up an optimization problem into smaller
and, hopefully, easier subproblems. �ese subproblems are solved iteratively
to obtain a solution to the original problem. �e next chapter will cover
methods from combinatorial optimization, which are of utmost importance
for modern low-level vision, and branch and bound, which solves hard
optimization problems by searching the spaces of feasible solutions in a
clever way, thereby eliminating the need for an exhaustive search.

2.1 Convex Functions

�e minimization of a differentiable function f ∈ C1(Rn) is in general
an intractable task. �e class of differentiable functions is too large and
has too little structure for there to exist any method to minimize them all
in any reasonable amount of time. �e best one can expect from gradient
descent schemes is the convergence to a local minima in general, not the
global minimum. One might then ask for a class of functions which are
possible to minimize globally in a reasonable amount of time. What would
be a suitable definition of such a class F ⊂ C1(Rn)?

We must be able to determine whether we have reached the global
optimum. Furthermore, such a certificate would ideally be possible to
compute locally. �erefore, since the functions in F are only assumed to be
differentiable it is natural to require that

f ∈ F , ∇f (x∗) = 0 =⇒ f (x∗) is the global minimum. (A)



 .  

Another useful requirement is that the class F is closed under addition:

f, h ∈ F =⇒ f + h ∈ F . (B)

Lastly, to ensure that the class is non-empty, we require that the affine
functions are members of F . �ey are certainly easy to minimize over Rn.

aTx+ b ∈ F . (C)

It turns out that the requirements A–C are enough to derive a simple
characterization of the functions in F . Let f ∈ F and x0 ∈ Rn be fixed.
Consider the function h defined by

h(x) = f (x)−∇f (x0)Tx. (.)

Assumptions B and C tells us that h ∈ F . We have that ∇h(x0) =
∇f (x0)−∇f (x0) = 0. �erefore, x0 is the global minimizer to h accord-
ing to assumption A, which means that for any x ∈ Rn,

h(x) ≥ h(x0) = f (x0)−∇f (x0)Tx0 (.)

and thus,

f (x) ≥ f (x0) +∇f (x0)T(x− x0). (.)

�is is the definition of differentiable convex functions on Rn. Conversely,convex
functions it is easily seen that A and B hold for convex functions. �is argument

(Nesterov, ) shows the importance of convex functions in optimization.
In general, convex functions are defined by the inequality

f (tx+ (1− t)y) ≤ tf (x) + (1− t)f (y), t ∈ [0, 1]. (.)

If instead the reverse inequality holds for all x,y ∈ Rn, the function is
said to be concave.concave

Convex functions need not be differentiable. Still, it is always possible
to find a tangent plane completely below the function graph at any point.
More precisely, for any x0 it is always possible to find a vector g ∈ Rn such
that

f (x) ≥ f (x0) + gT(x− x0), for all x. (.)

�e vector g is called a subgradient of f at x0. �e analogue for concavesubgradient

functions with a reversed inequality are supergradients, shown in Figure ..supergradient

If f is differentiable, g = ∇f (x0) is the only subgradient to f at x0. If
not, the set of all g satisfying (.) is denoted∇f (x0). �is set is convex.
One can observe that 0 ∈ ∇f (x0) if and only if x0 is the global optimum.



..  

2.2 Dual Decomposition

�is section introduces dual decomposition (Bertsekas, ), a general
technique in optimization to split a large problem into two or more smaller,
better manageable ones. �e technique of decomposing problems with dual
variables was introduced by Everett () and it has been used in many
different contexts, e.g. in control (Rantzer, ). �e application within
computer vision that bears the most resemblance to that of this thesis is
the work of Komodakis et al. () where dual decomposition is used for
computing approximate solutions to general Markov Random Field ()
problems. Consider the following optimization problem:

inf
x∈X

E(x), (P)

where X and E are arbitrary. Sometimes the function E can be split up
into two parts: E(x) = E1(x) + E2(x), where the functions E1 and E2
are much easier to minimize. We will see later that this is the case with
many objective functions associated with s. Now let us consider the
equivalent optimization problem

inf
x,y∈X

E1(x) + E2(y)

subject to x = y.
(.)

�e Lagrangian dual function (Bertsekas, ; Boyd and Vandenberghe,
) of this optimization problem is

d(λ) = inf
x,y∈X

(
E1(x) + E2(y) + λT(x− y)

)
= inf
x∈X

(
E1(x) + λTx

)
+ inf
y∈X

(
E2(y)− λTy

)
.

(.)

�e last two rows show that evaluating the dual function is equivalent to
solving two independent minimization problems. If minimizing E1 and E2
is much easier than minimizing E, the dual function can be evaluated quite
efficiently. Since the value of the dual function d(λ) is a lower bound on
the solution to (P) for every λ, it is of great interest to compute the largest



 .  

Figure 2.1: Two different supergradients of a concave function represented as two
tangent planes.

possible lower bound, i.e. to solve the dual problem:

sup
λ

d(λ). (D)

�e dual function is concave, since it is the infimum over a set of concave
(affine) functions of λ. Furthermore, it is also easy to find a supergradient
to d, as stated by the following lemma:

L . Given a λ0, let x∗ be an optimal solution to

d(λ0) = min
x

(
f (x) + λT

0g(x)
)
. (.)

�en g(x∗) is a supergradient to d at λ0.

Proof. �e following inequality holds for any λ:

d(λ) ≤ f (x∗) + λTg(x∗)

= f (x∗) + λT
0g(x∗) + (λ− λ0)Tg(x∗)

= min
x

(
f (x) + λT

0g(x)
)

+ (λ− λ0)Tg(x∗)

= d(λ0) + (λ− λ0)Tg(x∗),

(.)

which is the definition of a supergradient; see (.).

Maximizing the dual function d in (.) can then be done with subgra-
dient methods as described by Bertsekas (). Lemma . states that a
supergradient to d is x− y. Given a λ, one takes a step in that direction:



..  

Start with λ = 0
repeat

Find x and y by evaluating d(λ)
λ← λ+ τ (x− y), for some step size τ

until x = y

During the maximization of the dual function, we have access to a
lower bound d(λ) of the optimal function value, and also to two feasible
solutions x and y of the original problem. An upper bound on the optimal
function value is then given by min(E(x), E(y)). We can compute the
relative duality gap which gives an indication of how close we are to the duality gap

optimum:

r =
min(E(x), E(y))− d(λ)

min(E(x), E(y))
. (.)

If X is a convex set and E a convex function, the optimal duality gap is
generally zero. However, subsequent chapters consider non-convex sets
consisting of a finite set of points with integral coordinates. In chapter , an
optimal gap of zero is nonetheless guaranteed as it corresponds to solving
an integer linear program whose linear programming relaxation is tight.

2.2.1 Choices of Step Sizes and �eir Limitations

A step size τk needs to be chosen in each iteration k. One of the simplest
ways of doing this and still ensuring convergence is to pick τk = T/k,
with T a constant (Bertsekas, ). In fact, all step sizes chosen such that
τk → 0 and

∑∞
k=1 τk = ∞ guarantee convergence. �e step sizes for

subgradient minimization can be chosen in more sophisticated ways, but
minimizing a non-differentiable convex function is still much harder than
minimizing a differentiable convex function. �is somewhat disappointing
result is a consequence of the following theorem which describes a worst-case
scenario:

T . (Nesterov, , p. ) For any k > 0 and L,R > 0,
there exists a convex function f , Lipschitz continuous with constant L with a
minimizer x∗ such that

f (xk)− f (x∗) ≥ LR

2(1 +
√
k + 1)

, (.)



 .  

for any optimization scheme with ‖x0 − x∗‖ ≤ R generating its points from
subgradients g of f in the following way:

xk ∈ x0 + span{g(x0), . . . , g(xk−1)}. (.)

�e consequence of this theorem is that O
(1
ε2

)
iterations are needed

to get within ε of the optimal function value for any optimization method
generating its iterates as (.). �is is much worse than for differentiable
convex functions, since there are first-order methods requiring O

(
1√
ε

)
iterations.

Despite this, we will sometimes see fast convergence for the applica-
tions in this thesis. �e problems in chapter  converge quickly, but the
convergence in chapter  is much slower.

2.2.2 Projected Supergradient Method

Let us instead consider a minimization problem with an inequality con-
straint:

inf
x∈X

E(x)

subject to g(x) ≤ 0.
(.)

�e dual function of this problem is d(λ) = infx∈X (E(x) + λTg(x)),
but its domain is now {λ ≥ 0}, which turns the dual problem into a
constrained maximization problem. �e updating of λ in the algorithm on
page  is changed into:

λ← [λ+ τg(x)]+ , (.)

where [·]+ is the orthogonal projection onto the feasible set {λ ≥ 0}.

Close to the optimal point, first-order methods may display linear convergence, which
require O

(
log C

ε

)
iterations. Newton’s method require O

(
log log C

ε

)
iterations once suffi-

ciently close to the optimal point (Nesterov, , p. ).



.. -   

2.3 Non-Linear Least Squares Problems

A non-linear least squares problem is a minimization problem with an
objective function f : Rn → R+ of the following form:

f (x) =
1
2

m∑
j=1

(
rj(x)

)2
, (.)

where m > n and each rj is a function from Rn to R and is called a
residual. Collect all residuals in a vector r(x) = (r1(x), . . . , rm(x))T and
define the Jacobian as the matrix

J(x) =

(
∂rj
∂xi

(x)
)
i=1,...,n
j=1,...,m

. (.)

�e gradient and Hessian of f can then be written as

∇f (x) = J(x)Tr(x), (.a)

∇2f (x) = J(x)TJ(x) +

m∑
j=1

rj(x)∇2rj(x). (.b)

A useful property is that the Hessian can be approximated well by J(x)TJ(x)
when the residuals are small. When rj(x) ≈ 0, the last term in (.b) will
be relatively small. With this approximation, a second-order model of f is

f (x+ h) ≈ m(h) =
1
2
‖r(x)‖2 + hTJ(x)Tr(x) +

1
2
hTJ(x)TJ(x)h

=
1
2
‖J(x)h+ r(x)‖2.

(.)

�e Gauss-Newton method is Newton’s method applied to a least-squares
problem using this approximation. It enjoys similar convergence properties.
�e Gauss-Newton step hG-N is obtained by solving (.) in closed form:

J(x)TJ(x)hG-N = −J(x)Tr(x). (.)

�e Gauss-Newton method can run into problems when JTJ is singular or
nearly singular. �e Levenberg-Marquardt method avoids this by adding a



 .  

damping factor µ when computing the step:(
J(x)TJ(x) + µI

)
hL-M = −JTr(x). (.)

To make the algorithm invariant to diagonal scaling of the parameters x,
the matrix diag(J(x)TJ(x)) may be used instead of the identity matrix. If
the damping factor µ is very large, the method reduces to steepest descent,
which is slow but robust. If µ is very small, the method is close to Gauss-
Newton, which is faster. �erefore, depending on the quality of the step,
λ should be increased or decreased. �is is typically done via a quantity
known as the gain factor:

g =
f (x)− f (x+ h)
m(0)−m(h)

. (.)

�e following procedure has been shown to perform well (Nielsen, ):

If g > gmin, set µ← µmax{1
3 , 1− (2g − 1)3} and k ← 2.

Otherwise, set µ← µk and k ← 2k.

�is procedure is what chapter  will use when solving image denoising
problems. For many more details about the Levenberg-Marquardt method
and other approaches to non-linear least squares, see the books by Nocedal
and Wright (), and Madsen et al. ().



Chapter 3

Discrete Optimization

Let B = {0, 1}. A function from Bn to B is called a boolean function and
a function f : Bn → R is a pseudo-boolean function. It can be written
uniquely as a polynomial in its n variables:

f (x) = a0 +
n∑
i=1

aixi +
∑

1≤i<j≤n
aijxixj +

∑
1≤i<j<k≤n

aijkxixjxk + . . .

(.)

�e degree of f ism. �is chapter will describe the current state of the art of
minimizing pseudo-boolean functions. �at is, we will study the following
problem:

minimize
x∈Bn

f (x). (.)

�is problem is well-known to be -hard, so for large n we have to settle
for non-optimal solutions.

�ere are numerous application problems that can be cast in this frame-
work, ranging from portfolio problems in operations research to the mini-
mization of the Ising model in physics. Many graph-theoretic problems can
also be turned into pseudo-boolean optimization problems, for example,
maximum satisfiability and vertex cover (Boros and Hammer, ; Glover
et al., ). �e work on pseudo-boolean optimization in this thesis is
motivated by the many applications in computer vision and machine learn-
ing. State-of-the-art methods for stereo, segmentation and image denoising
are often formulated as the inference of the maximum a posteriori estimate,
which can be cast as a minimization problem where the objective function
is given by a pseudo-boolean function (Kolmogorov and Rother, ).

Naturally, there have been many approaches for solving such optimiza-
tion problems, especially for quadratic (m = 2) pseudo-boolean problems.



 .  

One of the most successful bounds in terms of computational efficiency is
the “roof dual” of a quadratic pseudo-boolean optimization problem, intro-
duced by Hammer et al. (). �e idea is to relax the original problem
and then compute a bound on the optimal value with a polynomial time
algorithm. More specifically, they showed that several different types of
linear programming relaxations of quadratic pseudo-boolean problems yield
the same bound—the roof dual. Chapter  will demonstrate another way
of attaining the same bound with submodular relaxations. Further, partial
solutions can be extracted from the solutions to the relaxations, a property
known as persistency. Subsequent studies have refined the technique and
roof duality has been shown to produce state-of-the-art results for a variety
of application problems compared to other bounding techniques based on
linear programming and semidefinite relaxations; see the works by Billionnet
and Sutter (); Boros and Hammer (); Boros et al. (); and
Kolmogorov and Rother (). A key advantage is that max-flow/min-cut
computations can be applied to an appropriately constructed graph for
quadratic pseudo-boolean polynomials (Boros and Hammer, ). I will
briefly review roof duality in section ..

In recent years, there has been an increasing interest in higher-order
models and approaches for minimizing the corresponding objective func-
tions in computer vision and machine learning. For example, Lan et al.
(b) use approximate belief propagation with a learned higher-order
model for image denoising. Similarly, Cremers and Grady () learn a
higher-order model for texture restoration, but the model is restricted to
submodular functions which can be optimized exactly in polynomial time.
Curvature regularization requires higher-order models and will be studied
extensively in chapters  and .

Even global terms defined over all variables have been considered, for
example, to ensure connectedness (Nowozin and Lampert, ) and to
model co-occurrence statistics of objects (Delong et al., ; Ladicky et al.,
). Another state-of-the-art example is the work by Woodford et al.
(), where second-order surface priors are used for stereo reconstruction.
�e optimization strategies rely on dual decomposition (Komodakis and
Paragios ; and also chapter ), fusion (Kohli et al., ; Lempitsky
et al., ), linear programming (Werner, ), belief propagation (Lan
et al., b) and, of course, max-flow/min-cut.



..  

3.1 Submodular Functions

Define∨ and∧ to be the element-wise maximum and minimum respectively.
�e function f in (.) is submodular if submodular

f (x ∨ y) + f (x ∧ y) ≤ f (x) + f (y), ∀x,y ∈ Bn. (.)

Evidently, if f is a sum of submodular terms, f itself is also submodular.
An equivalent (Nemhauser et al., ) definition is that f is submodular
if and only if

∂2f

∂xi∂xj
(x) ≤ 0 for all 0 ≤ i < j ≤ n and x ∈ Bn. (.)

�e derivative is symbolical on the polynomial representation (.). �is has
a simple consequence for quadratic functions: a quadratic f is submodular
if and only if all coefficients for the quadratic terms are nonpositive.

Submodular functions are in some sense the discrete analogue to convex
functions (Lovász, ). In particular, one can define the set of subgradients
at a point x0 as all vectors g ∈ Rn satisfying

f (x) ≥ f (x0) + gTx− gTx0, for all x ∈ Bn. (.)

�e set of discrete subgradients is also denoted ∇f (x0) (there should be
no possibility of confusion). See the book by Fujishige (, chap. )
for properties of subgradients to submodular functions and similarities to
convex analysis. With this definition, submodular functions satisfy the
analogous properties of convex function from the last chapter (page ):

0 ∈ ∇f (x∗) ⇐⇒ f (x∗) is the global minimum (A)
f, g are submodular =⇒ f + g is submodular (B)

aTx+ b is submodular for all a, b ∈ Rn. (C)

It is always possible to minimize a submodular f in polynomial time,
but the best known algorithm is not very efficient. �e algorithm by Iwata
() runs in O((n6γ + n7) logn) time, where γ is the time required to
evaluate f . Iwata () has also developed a fully combinatorial algorithm
(using additions, multiplication, comparisons and rounding), which runs
in O(n9 log2 n) function evaluations and operations. If the degree m ≤ 3,



 .  

f can be minimized via graph cuts, but Živný et al. () showed that
this is not possible in general when m ≥ 4. In fact, even deciding whether
f is submodular is co--complete for m ≥ 4 (Crama, ). �is fact
will be important later in my thesis and since the proof is quite short I am
reproducing a variant of it here:

T . (Crama ) Recognizing whether a quartic pseudo-boolean
function f is submodular is co-NP-complete.

Proof. Let c1, . . . , cn be a set of integers and define

d(x) =

n∑
i=1

cixi and C =

n∑
i=1

|ci|. (.)

It is now enough to study the function

f (x, xn+1, xn+2) = (1− d(x)2)xn+1xn+2 − 100C2
n∑
i=1

n+2∑
j=i+1

xixj .

(.)

All quadratic monomials except xn+1xn+2 are present in the second sum
with negative coefficients of large magnitude. �erefore, f is nonsubmodular
if and only if ∂2f

∂xn+1∂xn+2
(x) > 0 ⇐⇒ d(x) = 0 for some x. �is is

equivalent to the existence of a subset of c1, . . . , cn whose sum is zero,
which is the well-known -complete subset-sum problem.

�e method in chapter  works by optimizing over the set of submodular
functions of a fixed degree. �is is easy when m ≤ 3, but for m = 4 the
above theorem is one of the obstacles encountered (the other being the fact
that using graph cuts for the minimization is no longer possible).

3.2 Submodularity and Minimum Cuts

Let G be a graph with n nodes (or vertices) in addition to two special nodes
s and t. A non-negative weight wij is associated to each pair (i, j) of nodes,
which is greater than zero if there is an edge between i and j. Because no
self-loops are allowed in the graph, wi,i = 0 is true for all i.



..    

ONMLHIJK1
1

2

ONMLHIJK4
1

1

ONMLHIJK7
1

2
1

????????
ONMLHIJK10

1

1

ONMLHIJK13

1

ONMLHIJKs
3

3

????????
ONMLHIJK2

1

1
2

????????
ONMLHIJK5

1

1

ONMLHIJK8
1

1

ONMLHIJK11
1

2

ONMLHIJK14

1

5 ONMLHIJKt

ONMLHIJK3
1 ONMLHIJK6

1 ONMLHIJK9
2 ONMLHIJK12

2 ONMLHIJK15

Figure 3.1: Example of an undirected graph. One minimum cut in this graph
is S = {s, 1 . . . 6} and T = {t, 7 . . . 15}. Another is S′ = {s, 1 . . . 12, 15} and
T ′ = {t, 13, 14}. Both have the value 3.

A cut is a partition of the nodes of G into two sets S and T , such that cut

s ∈ S and t ∈ T . �e value of a cut is the sum of all weights of edges
leading from S to T . If all these edges are removed, there is no path from
s to t, hence the name “cut.” �e minimum cut of G is the cut with the minimum cut

smallest possible value. Figure . shows an example of an undirected graph
(wij = wji) and its minimum cuts.

Now introduce indicator variables x = (x1, . . . xn), where xi is equal
to 0 if node i is in S and 1 otherwise. For convenience, let Ni denote the
neighborhood of i, that is, the set of all nodes j 6= s, t such that there is an
edge between i and j. For example, N5 = {2, 4, 6, 8} in figure .. With
this notation the problem of finding the minimum cut is to

minimize
x∈{0,1}n

n∑
i=1

∑
j∈Ni

wij(1− xi)xj +

n∑
i=1

wsi(1− xi) +

n∑
i=1

witxi.

(.)

�ere are efficient methods for solving this optimization problem ifwij ≥ 0
for all i, j ∈ {1 . . . n}. �e algorithm by Boykov and Kolmogorov ()
is used extensively in the computer vision community.

Some pseudo-boolean functions can be minimized by computing the
minimal cut of a graph. Consider a function of two boolean variables, which
is often called a clique of size . It can be written as a polynomial of degree clique



 .  

two:

E(x1, x2) = E11x1x2 + E10x1(1− x2)
+ E01(1− x1)x2 + E00(1− x1)(1− x2),

(.)

or, ignoring constant terms:

E(x1, x2) =
(
E11 − E10 − E01 + E00

)
x1x2

+ E10x1 + E01x2 − E00(x1 + x2).
(.)

�is expression can be written on the form (.) if and only if the coefficient
in front of x1x2 is non-positive (since wij is required to be non-negative).
Written out, this requirement is

E00 + E11 ≤ E01 + E10. (.)

�is property of the clique E is submodularity. �e fact that submodu-
lar functions can be efficiently minimized by computing a minimum cut
was shown by Ivănescu () for quadratic functions and Billionnet and
Minoux () for cubic functions.

3.3 Linearization

Take a monomial cxi1xi2 · · ·xid appearing in f of degree d larger than 1.
With the goal of computing a linear programming relaxation of (.), this
monomial can be associated with a new variable y ∈ {0, 1}. Forcing the
equality y = xi1xi2 · · ·xid is possible with the following linear constraints:

y ≤ x, ∀x ∈ {xi1 , xi2 . . . xid} (.a)
y ≥ xi1 + xi2 + · · ·+ xid − d+ 1 (.b)

�ese linear inequalities can easily be seen to uniquely determine y. In fact,
if c < 0, only constraints (.a) are needed and only (.b) is needed

E(0, 0) is abbreviated as E00 etc. E is defined by the four values in its range:
E00, . . . E11.



..  

when c > 0 (because of the minimization of f). Problem (.) is then
equivalent to the following integer program:

minimize
x,y

a0 +
n∑
i=1

aixi +
∑

1≤i<j≤n
aijyij +

∑
1≤i<j<k≤n

aijkyijk + . . .

subject to all y satisfy (.a) and (.b),
all x and y ∈ {0, 1}.

(.)

For quadratic polynomials, this linear program is related to the discrete
Rhys form of f (Rhys, ), which was used by Hammer et al. ()
to introduce roof duality. It is natural to relax the domain of the variables
from {0, 1} to [0, 1], thus obtaining a linear program. �is will always give
a lower bound to problem (.).

3.4 Roof Duality

�e problem of minimizing a quadratic pseudo-boolean function is already
a hard problem. It covers, as will be discussed in the next section, all pseudo-
boolean functions by possible introduction of auxiliary variables. �erefore,
it is in some sense enough to consider

minimize
x∈Bn

a0 +

n∑
i=1

aixi +
∑

1≤i<j≤n
aijxixj . (.)

�is is known as a quadratic pseudo-boolean optimization problem or
. It can be reformulated into (.) according to the previous section. QPBO

Relaxing the constraint x ∈ {0, 1}n to x ∈ [0, 1]n results in a linear
program. It can be shown by looking at the determinant of all submatrices
of the linear constraints and employing Cramer’s rule that there always exists
an optimal solution x̂ ∈

{
0, 1, 1

2
}n to the relaxation of (.) (Hammer

et al., ; Adams and Dearing, ). �e optimal objective value of the
linear program is obviously a lower bound to the minimum of f and is one
way of computing the roof dual of f . roof dual

Given the solution of the linear programming relaxation, one can often
say a lot about the solution to the original problem (.). �is is due to
the following persistency result: persistency



 .  

T . Let x̂ ∈
{

0, 1, 1
2
}n be a solution to (.) and L ={

i |xi 6= 1
2
}

. �en there exists a solution x∗ to (.) with x∗i = x̂i for
all i ∈ L.

�eorem . motivates the following terminology: If i 6= 1
2 the linear

programming relaxation is said to have assigned variable variable i, otherwiseassigned
variable xi is said to be unassigned, which is sometimes written xi = ∅. �us, the

solution of the relaxation is in {0, 1,∅}n. Linear programs can be solved
in polynomial time, but there are even more efficient algorithms. A solution
satisfying �eorem . with the same lower bound of the optimal value as
in (.) can be computed as a minimum cut in a graph with 2n nodes
(Boros and Hammer, ).

If the solution contains several unassigned variables, it can sometimes
be improved with a technique called probing. �e idea is to pick an indexprobing

i with xi = ∅. �en two problems are solved, with xi fixed to 0 and 1,
respectively. If a previously unlabeled variable xj is equal to the same value
(not ∅) in both of the new solutions, then xj is permanently fixed to this
value, as it is known to be optimal. �e process is then repeated. Probing is
sometimes very effective in finding globally optimal solutions.

�e persistency results of a linear programming relaxation were intro-
duced by Hammer et al. (). �ey also gave an efficient method of
calculating the lower bound using a minimum cut in a graph. �e graph
construction by Boros et al. () is what is commonly used today. �e
probing technique is due to Boros et al. (). �eir work was made
popular in the computer vision community by an efficient implementation
by Rother et al. (a; b), which is available for download. In this
context, “” sometimes refers to solving the linear programming relax-
ation with a minimum cut. Blake et al. () call it the “” method
after the authors Boros, Hammer, and Sun.

3.5 Reductions

�e standard way to handle problems wherem > 2 is to employ reductions.
By introduction of new variables, the problem of minimizing f (x) can
always be reduced to minimizing another quadratic pseudo-boolean function
g(x, z) with more variables. �e function g is equivalent to f in the sense
that minz g(x, z) = f (x) and is in general not unique.



.. 

One way (Boros and Hammer, ) of reducing higher-order monomi-
als to quadratic monomials (sometimes called higher-order clique reduction,
or ) is to observe that if

g(x1, x2, z) = x1x2 − 2x1z − 2x2z + 3z, (.)

then

x1x2 = z ⇐⇒ g(x1, x2, z) = 0 and
x1x2 6= z ⇐⇒ g(x1, x2, z) > 0.

(.)

Higher-order monomials like x1x2x3 can then be replaced by the expression
zx3 +Mg(x1, x2, z) in any minimization problem, where M is a constant
larger than any value of f . �is procedure can be iterated until no monomials
of higher degree than  remain.

However, this reduction does not perform well in practice, since the
resulting optimization problems tend to be very hard to solve, due to the
introduction of the large coefficients. Ishikawa (, Sec. .) discusses
this. �ere are, however, alternative reductions which do not introduce large
coefficients. If the coefficient in front of a monomial is negative, one can
use the following identity:

−x1x2 · · ·xd = min
z
z(d− 1− x1 − x2 . . .− xd). (.)

�is eliminates the higher-order monomial at the cost of one introduced
variable z and d new monomials of degree . If the coefficient is positive,
the situation is slightly more complicated. For example,

x1x2x3 = min
z
z(x1 + x2 + x3 − 1)

+ x1x2 + x1x3 + x2x3 − (x1 + x2 + x3) + 1 (.)

and

x1x2x3x4 = min
z
z(3− 2x1 − 2x2 − 2x3 − 2x4)

+ x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4. (.)

�e latter was introduced by Ishikawa () and there are many other
alternatives. �e following theorem gives a general method:



 .  

T . (Ishikawa, ) For x1, . . . , xd ∈ B,

x1x2 · · ·xd = min
z∈Bd

nd∑
i=1

zi

(
ci,d(2i− S1)− 1

)
+ S2, (.)

where

S1 =
∑

1≤i≤k
xi, S2 =

∑
1≤i<j≤k

xixj , nd =

⌊
d− 1

2

⌋
(.)

and

ci,d =

{
1 if d is odd and i = d,

2 otherwise.
(.)

Combining (.) and �eorem . gives a complete procedure of re-
ducing any polynomial to a quadratic one without introducing very large
coefficients. �is reduction method works reasonably well in practice, but a
major part of this thesis is devoted to minimizing the higher-order polyno-
mials directly, instead of first converting them to quadratic ones.

Reductions do not have to be applied for each term individually; there
are more economical reductions available:

T . (Fix et al., ) Consider a set H of terms each of which
contains a common subset of variables C, whose hyperedges H have positive
weights αH > 0. For any assignment of the boolean variables x1, . . . , xn,

∑
H∈H

αH
∏
j∈H

xj = min
y∈B

(∑
H∈H

αH

)
y
∏
j∈C

xj +
∑
H∈H

αH ȳ
∏

j∈H\C

xj .

For the remainder of this thesis, C will only contain a single variable, that
is C = {xk} in all experiments using these reductions. �is is consistent
with the experiments performed by Fix et al. ().

It is not obvious which reduction one should pick. As an example,
consider the problem of minimizing the following cubic polynomial f
over B3:

f (x) = −2x1 + x2 − x3 + 4x1x2 + 4x1x3 − 2x2x3 − 2x1x2x3.
(.)



..   

�e standard reduction scheme (.) can be applied to reduce this to a
quadratic function. Roof duality gives a lower bound of fmin ≥ −3, but
it does not reveal how to assign any of the variables in x. However, there
are many possible reduction schemes from which one can choose. Another
possible reduction is −x1x2x3 = minz∈B z(−x1 + x2 + x3) − x1x2 −
x1x3 + x1. For this reduction, the roof dual bound is tight and the optimal
solution x∗ = (0, 1, 1) is obtained. �is simple example illustrates two
facts: (i) different reductions lead to different lower bounds and (ii) it is not
an obvious matter how to choose the optimal reduction. I will return to
this example in chapter .

3.6 Beyond Boolean Variables

For many low-level problems in computer vision, a Markov random field is
used for modeling and the resulting inference problem consists of estimating
some unknown quantity (e.g., depths) from one or several observations.
�e objective function for such a minimization problem is typically of the
form

E(w) =
n∑
i=1

Ei(wi)︸ ︷︷ ︸
Edata(w)

+
∑
i<j

Eij(wi, wj) +
∑
i<j<k

Eijk(wi, wj , wk) + . . .

︸ ︷︷ ︸
Esmooth(w)

(.)

As was explained in the first chapter, the data term Edata specifies the agree-
ment between w and the observations. �e smoothness term Esmooth mea-
sures how well w agrees with prior information such as smoothness and
noise levels in the image.

In many applications, w is not a boolean vector but instead w ∈ Ln,
where, for example, L = {1, . . . ,K} or L = R. �e number of discrete
values K is sometimes called the number of labels. Although optimization labels

problems with a finite number of possible values for each variable can be
converted into boolean problems by binary encoding, this is normally not
the preferred method as the resulting optimization problems tend to be very
hard to solve. In practice, the multi-label problem is reduced to the boolean
case by iterative algorithms (Boykov et al., ; Lempitsky et al., ):
Given a current solutionw(t) and a proposal y(t), a new and better solution proposal



 .  

is constructed by combining them in an optimal way. �e combination is
determined by a solution x∗ to a pseudo-boolean minimization problem:

w(t+1)
i =

{
y(t)
i if x∗i = 1
w(t)
i if x∗i = 0 or unassigned.

(.)

�is local optimization method is sometimes called fusion and can be seen
as a generating set search (or direct search) method (Kolda et al., ).
However, the number of points considered in each iteration is exponential
in the number of dimensions, whereas the number of points evaluated
in other direct search methods normally is linear. �e fact that solving a
pseudo-boolean problem effectively explores an exponential set of points
efficiently is one way of explaining the success of fusions.

�e pseudo-boolean objective function F (t)(x) at iteration t seeks to
merge y and w optimally. �e data terms are given by

F (t)
i (xi) = Ei(yi)xi + Ei(wi)x̄i, (.)

where x̄ = 1− x. Similarly,

F (t)
ij (xi, xj) = Eij(yi, yj)xixj + Eij(yi, wj)xix̄j +

Eij(wi, yj)x̄ixj + Eij(wi, wj)x̄ix̄j (.)

and so forth. Because of this, the maximum number of variables appearing in
a single term of Esmooth can be referred to as its degree. �e partial solution
obtained via roof duality has a property called autarky, which ensures thatautarky

the objective function value will never increase for any proposed solution if
wi is left unmodified whenever xi = ∅. Autarky will be discussed further
in chapter .

A special case of the fusion algorithm is when yi = α for all i. �is
variant is referred to as α-expansion. An expansion for every pixel valueexpansion

is performed until the function value does not decrease for any value of
α. �is usually happens within a few loops through the set of pixel values.
While reaching the global optimum is not guaranteed, it is possible to prove
(Boykov et al., , �eorem .) that the α-expansion algorithm will end
up within a constant of the optimal function value. �e constant depends
on the type of pairwise interactions between the variables and is under
favorable circumstances equal to .



..   

Computing the optimal α-expansion can often be done exactly. With
the correct assumptions on the interactions between the variables, all pseudo-
boolean problems will be submodular and can be solved readily as minimum
cut problems. �e graph construction by Boykov et al. (, sec. ) uses
additional nodes where α 6= w(t)

i 6= w(t)
j 6= α and j ∈ Ni, although the

construction can be done without extra nodes (Kolmogorov and Zabih,
).

In addition to α-expansion the related α/β-swap (Boykov et al., ) swap

may also be used. Instead of considering a single value α and expanding it as
much as possible, the swap considers two possible labels α, β ∈ {1 . . .K}
and computes the optimal swap between the two. It can handle more general
functions than expansion while still ensuring submodularity. �e downsides
are the lack of any guarantee to end up close to the optimum and the fact
that each full iteration now consists of solving

(
K
2
)

= (K2−K)/2 boolean
problems instead of K.

Geometric Constraints. Several recent papers have extended the framework
for multi-label minimization for which global solutions are tractable. If
there is a geometric relationship between the labels (e.g. the image region
number  is contained in region number ) the energy can sometimes still
be minimized exactly (Delong and Boykov, ). �is framework will be
put to use in chapter .

3.7 Branch and Bound

Let us now once again consider the problem of minimizing a function
E(x), where x takes values in an arbitrary set X . If X is partitioned into
X = {S1, . . . , Sn}, we clearly have:

inf
x∈X

E(x) = inf
i=1...n

inf
x∈Si

E(x). (.)

Let E∗S be the optimal value of E on the set S. In general, E∗S is hard to
compute. Now assume that we can compute bounds E∗S ≤ E∗S ≤ E∗S
much more efficiently than computingE∗S itself. With a method to compute
E∗S and E∗S we can compare the set S to other parts of the search space
X . To see this, assume we have computed these bounds for two sets S
and T . If E∗S < E∗T , we can disregard the set T from further processing,



 .  

X = {X}
repeat

E∗ ← minS∈X E∗S
E∗ ← maxS∈X E∗S
foreach S ∈ X do

if E∗ < E∗S then

Remove S from X
else

Replace S in X by a partition of S
end

end

until E∗ − E∗ is small enough

Figure 3.2: Branch and bound algorithm to minimize E over the set X.

since it is guaranteed to not contain the global minimum of E. An upper
bound is usually easy to compute, since it is possible to choose E∗S = E(x)
where x is any point in S. Finding good ways to compute lower bounds is
harder and problem-specific. As an example of a lower bound, consider the
minimum cut problem. If there is a path from s to t, the lowest arc cost in
that path is a lower bound of the minimum cut value.

�e process of minimizing E consists of two steps which are iterated.
First, bounds are computed for every set in the partition after which sets
known not to contain the global minimum are removed. Second, any
remaining sets are further subdivided. �is is the branch step. Formally, the
algorithm starts with X = {X} and proceeds as shown in figure ..

As an example, consider the following pseudo-boolean optimization
problem:

minimize
x

xTAx+ cTx

subject to x ∈ {0, 1}n,
(.)

where A is a symmetric positive definite matrix. In the terminology of the
previous section, E(x) = xTAx+ cTx and

X = {0, 1}n. (.)



..   

One simple way of branching (dividing the search space) is to use the
following partition {S0, S1} of X :

S0 = X ∩ {x |x1 = 0}
S1 = X ∩ {x |x1 = 1}.

(.)

�is can be continued for more variables:

S00 = X ∩ {x |x1 = 0, x2 = 0}
S01 = X ∩ {x |x1 = 0, x2 = 1}.

...

(.)

Both {S0, S1} and {S00, S01, S10, S11} are partitions of X , and so on for
higher numbers of fixed elements of x. A lower bound can be computed by
replacing the set X with X̃ = [0, 1]n and so on for S̃0, S̃1 etc. We clearly
have X ⊂ X̃ , S0 ⊂ S̃0 etc. which means that minimizing E over these
larger sets will give a lower bound of the optimum values of the boolean
sets. For an upper bound, we can round the real-valued solution vector and
evaluate E(x) for the resulting boolean vector. �e following numerical
example will further explain the procedure. Let us take

A =



46 3 16 −15 −12

3 59 −10 −8 −12

16 −10 39 −10 16

−15 −8 −10 27 8

−12 −12 16 8 46


, c =



−6

−24

−47

−18

−16


. (.)

�e complete optimization procedure is shown as a tree in figure ..
It starts by computing bounds for S0 and S1. �is immediately results
in S1 to be discarded. S0 is split into S00 and S01. For S01 the optimal
value is known since the relaxed and the rounded values are equal. Further
branching down the tree shows that it is in fact globally optimal for X .

Branch and bound is a very general method and its efficiency highly
depends on the quality of the computed bounds. �e next chapter uses
branch and bound to evaluate lower bounds to pseudo-boolean problems
and chapter  uses it to compute optimal solutions to a special class of
segmentation problems.



 .  

S0 : E∗ = −34.9, E∗ = −19

�� ((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR S1 : E∗ = 1.3, E∗ = 19

S00 : E∗ = −23.4, E∗ = −19

�� ((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR S01 : E∗ = −20, E∗ = −20

S000 : f∗ = −3.7, f∗ = 0 S001 : E∗ = −21.4, E∗ = −19

��vvllllllllllllllllllllllllllllll

S0010 : E∗ = −8, E∗ = −8 S0011 : E∗ = −19, E∗ = −19

Figure 3.3: The branch and bound tree for the boolean optimization problem
(3.29), (3.33). The optimal value is -20. Each line is one outer iteration in figure 3.2.



Part I

Pseudo-Boolean Optimization

Chapter 4

Generalized Roof Duality

Roof duality and pseudo-boolean minimization were introduced in chapter .
�e purpose of this chapter is to derive a generalization of roof duality and
explore its properties. Just as in the previous chapter, a pseudo-boolean
function f : Bn → R where B = {0, 1} is represented by a multilinear
polynomial of the form

f (x) =
∑
i

aixi +
∑
i<j

aijxixj +
∑
i<j<k

aijkxixjxk + . . . , (.)

of degree(f) = m. Without loss of generality, we have assumed that
f (0) = 0. �is chapter considers the following optimization problem:

minimize
x∈Bn

f (x). (.)

�e goal is to provide means to compute effective bounds on the optimal
value for large-scale problems (that is, when n is of the order of several
thousands of variables). Submodular function minimization has polynomial
time complexity (Lovász, ), a fact that makes submodular relaxations
practical. �e framework applies for arbitrary degree problems, but I will
only briefly discuss m ≥ 5 and the experiments will focus solely on m ≤ 4.
�e main contributions are (i) how one can define a general bound for any
order (for which the quadratic case is a special case) and (ii) how one can
efficiently compute solutions that attain this bound in polynomial time.
�ese contributions are of course coupled—it makes little sense to define a
bound that is not tractable.

�e inspiration for this work comes primarily from three different
sources. First of all, as max-flow/min-cut computations are considered to
be state-of-the-art for quadratic pseudo-boolean polynomials (Boros et al.,
; Kolmogorov and Rother, ), reduction techniques of higher-order



 .   

polynomials (m > 2) have been explored, for example, by Lu and Williams
(), Freedman and Drineas (), Rother et al. (), Ishikawa (),
Gallagher et al. () and Fix et al. (), which have been summarized
in chapter . However, all of these approaches choose suboptimally be-
tween a fixed set of possible reductions. �en, there exist several suggestions
for generalizations of roof duality for higher-order polynomials. Lu and
Williams () present a roof duality framework based on reduction, but
at the same time the authors note that their roof duality bound depends on
which reductions are applied. Kolmogorov () proposes submodular
relaxations as a generalization for roof duality, but no method is given for
constructing or minimizing such relaxations. �e framework of this chapter
also builds on using submodular relaxations. Finally, the complete charac-
terization of submodular functions up to degree m = 4 is instrumental to
this work; see the works by Billionet and Minoux (), Promislow and
Young () and Živný et al. ().

Outline. �e next section introduces the concept of submodular relax-
ations and formulate the problem of finding relaxations that attain the
maximum lower bound. �en, section . shows how to construct such
relaxations in closed-form for quadratic pseudo-boolean functions. �is con-
struction turns out to be equivalent to the quadratic roof dual relaxation. For
higher-order functions, things are more complicated. �e generalized roof
dual bound is analyzed in section . and a polynomial-time algorithm is
derived to compute the roof dual bound. Sections . and . analyze cubic
and quartic relaxations in more detail. A faster, but non-optimal heuristic
method for constructing the relaxations is also proposed in Section ..

4.1 Submodular Relaxations

I will follow the framework of submodular (and bisubmodular) relaxations
introduced by Kolmogorov (). Consider the optimization problem in
(.) where f has n variables. �e idea in this chapter is to instead study
the following tractable problem over a larger domain:

min
(x,y)∈B2n

g(x,y), (.)



..  

where g : B2n → R is a pseudo-boolean function that satisfies the three
conditions

g(x, x̄) = f (x), ∀x ∈ Bn, (A)
g submodular, (B)

g(x,y) = g(ȳ, x̄), ∀(x,y) ∈ B2n (symmetry). (C)

Here, x̄ = (x̄1, x̄2, . . . , x̄n) = (1 − x1, 1 − x2, . . . , 1 − xn). �e
reason for requirement (A) is that if the range of f is included in the range
of g then the minimum of g is a lower bound to the minimum of f . If the
computed minimizer (x∗,y∗) of the relaxation g happens to fulfill x∗ = ȳ∗

then, of course, x∗ is a minimizer of f as well. Even if it is not the case
that x∗ = ȳ∗, we still obtain a lower bound on f and, as we shall see, it is
possible to extract a partial solution for a minimizer of f .

Requirement (B) is also fairly obvious. Since minimizing g must be
feasible, requiring that g is submodular is natural. �e last requirement will
be motivated below.

4.1.1 Problem Formulation

Let fmin denote the unknown minimum value of f , that is, fmin = min f (x).
Ideally, g(x,y) ≥ fmin for all points (x,y) ∈ B2n. �is is evidently not
possible in general. However, one could try to find the g that gives the
largest possible bound, max minx,y g(x,y), that is,

max
g,`

`

subject to g(x,y) ≥ `, ∀(x,y) ∈ B2n,

g satisfies (A)–(C).

(.)

A relaxation g that provides the maximum lower bound will be called
optimal. Note that the problem involves exponentially many constraints on
g and therefore may seem like an intractable problem. In the quadratic case,
the lower bound coincides with the roof duality bound (Kolmogorov, )
and therefore this bound will be referred to as generalized roof duality. �e
general case will be analyzed in section ., which shows how to compute
the solution when the maximum is taken over a restricted set of submodular
functions in spite of exponentially many constraints on g.



 .   

Symmetry. �e last requirement, (C), which specifies symmetry, is perhaps
not so obvious. Its motivation is two-fold:

• Restricting ourselves to this class of symmetric functions does not
affect the obtained lower bound, i.e. there is a symmetric optimal
relaxation.

• For a symmetric g it is possible to prove persistency—recall that
this means a possibility of extracting a partial solution even though
computing the complete, globally optimal solution is intractable.

A pseudo-boolean function g can be decomposed into a symmetric and
an antisymmetric part, g(x,y) = gsym(x,y) + gasym(x,y), where the
symmetric part is defined by gsym(x,y) = 1

2 (g(x,y) + g(ȳ, x̄)) and the
antisymmetric part by gasym(x,y) = 1

2 (g(x,y) − g(ȳ, x̄)). Note that
gsym(x,y) = gsym(ȳ, x̄) and gasym(x,y) = −gasym(ȳ, x̄). If g satisfies
requirements (A) and (B), then so does gsym.

Consider the function g evaluated at the two points (x,y) and (ȳ, x̄).
�e function values should be larger than some lower bound `, hence
g(x,y) = gsym(x,y) + gasym(x,y) ≥ ` and g(ȳ, x̄) = gsym(x,y) −
gasym(x,y) ≥ `. To achieve a maximum lower bound, it follows that
gasym(x,y) = 0. �us, to solve (.), restricting the attention to symmetric
pseudo-boolean functions is enough.

Existence. �e existence of feasible solutions for the optimization problem
(.) can be seen from the following explicit example:

g(x,y) =

{
f (x) if y = x̄,

−M · {i |xi = yi} otherwise,
(.)

where M is a sufficiently large constant. Because min g = −Mn, this is,
in some sense, the worst possible choice of g. Conditions (A) and (C) are
satisfied by construction and submodularity (B) can be easily verified.

Linearity. Provided that the relaxation g is represented by a multilinear
polynomial, constraint (A) is a linear equality constraint in the coefficients
of g, as is constraint (C). �e submodularity constraint can be expressed
via linear inequality constraints; see sections . and .. �erefore, the



..  

optimization problem (.) is a linear program where the variables are the
coefficients of g (and `). As there always exists a feasible solution and
the objective function is bounded from above, the concept of an optimal
relaxation is well-defined.

Notation. Just as in the previous chapter, x ∧ y and x ∨ y mean element-
wise minimum and maximum, respectively. Let

Sn = {(x,y) ∈ B2n | (xi, yi) 6= (1, 1), i = 1, . . . , n}. (.)

For (x1, y1) ∈ S1 and (x2, y2) ∈ S1, the operators u and t are defined by

(x1, y1) u (x2, y2) = (x1 ∧ x2, y1 ∧ y2)

(x1, y1) t (x2, y2) =

{
(0, 0) if (x1 ∨ x2, y1 ∨ y2) = (1, 1)
(x1 ∨ x2, y1 ∨ y2) otherwise.

(.)

For (x1,y1) ∈ Sn and (x2,y2) ∈ Sn, these operators extends element-
wise. Note that the resulting points still belong to Sn. Further, for a scalar a,
its positive and negative parts will be denoted by a+ and a−, where a+ =
max(a, 0) and a− = −min(a, 0), respectively and hence a = a+ − a−.
�e conventions a+

ij• =
∑

k a
+
ijk and |a|ij•• =

∑
k<l |aijkl| are also used

for ease of notation.

Relationship to bisubmodular functions. For any point (x,y) ∈ B2n, it
follows from the submodularity and symmetry of g that

g(x,y) =
1
2

(g(x,y) + g(ȳ, x̄))

≥ 1
2

(g(x ∧ ȳ,y ∧ x̄) + g(x ∨ ȳ,y ∨ x̄))

= g(x ∧ ȳ,y ∧ x̄),

(.)

where (x ∧ ȳ,y ∧ x̄) ∈ Sn. So, when analyzing min(x,y) g(x,y), consid-
ering the points in Sn is enough. Also, for any two points (x1,y1) ∈ Sn

and (x2,y2) ∈ Sn,

g(x1,y1) + g(x2,y2) ≥ g(x1 ∧ x2,y1 ∧ y2) + g(x1 ∨ x2,y1 ∨ y2)
≥ g(x1∧x2,y1∧y2)+g((x1∨x2)∧ (y1 ∨ y2), (y1∨y2)∧ (x1 ∨ x2))

= g((x1,y1) u (x2,y2)) + g((x1,y1) t (x2,y2)). (.)



 .   

�e first inequality is submodularity and the second is obtained by apply-
ing (.). �e last equality can be easily checked. By definition, a function
satisfying

g(x1,y1) + g(x2,y2) ≥
g((x1,y1) u (x2,y2)) + g((x1,y1) t (x2,y2)) (.)

is called bisubmodular (Fujishige and Iwata, ) and hence, the restrictionbisubmodular

g : Sn → R is indeed a bisubmodular function. �e class of bisubmodular
functions Sn → R is strictly larger than the class of submodular functions
defined on the same domain.

4.1.2 Persistency

�e notion of persistency in this section is no different from section . on
page , but is presented differently. I will start by defining the “overwrite”
operator.

D . For any point x ∈ Bn and (x∗,y∗) ∈ Sn, the operator
Bn × Sn → Bn denoted x← (x∗,y∗) is defined by

x← (x∗,y∗) = u where (u, ū) = ((x, x̄) t (x∗,y∗)) t (x∗,y∗).

One can check that this is well-defined and that

ui =

{
x∗i , if (x∗i , y

∗
i) 6= (0, 0)

xi, otherwise
for i = 1, . . . , n. (.)

So, x← (x∗,y∗) can be thought of as the result of replacing elements of
x by elements of x∗ provided the corresponding element pairs in (x∗,y∗)
are non-zero.

L . (Autarky; Kolmogorov, ) Let g be a function satisfying
(A)–(C) and (x∗,y∗) ∈ argmin g. �en f (x ← (x∗,y∗)) ≤ f (x) for all
x.

Proof. From bisubmodularity, it follows that, for any v ∈ Bn,

g((v, v̄) t (x∗,y∗)) ≤ g(v, v̄) +
(
g(x∗,y∗)− g((v, v̄) u (x∗,y∗))

)
≤ g(v, v̄),

(.)



..   

which implies that, for any x ∈ Bn,

f (x) = g(x, x̄)
≥ g((x, x̄) t (x∗,y∗))
≥ g(((x, x̄) t (x∗,y∗)) t (x∗,y∗))
= f (x← (x∗,y∗)).

Autarky is needed to ensure that the objective function does not in-
crease when generalized roof duality is used in a fusion framework (see
section ..). An arguably more important consequence is persistency: if
x ∈ argmin(f), then x ← (x∗,y∗) ∈ argmin(f). Hence, autarky also
implies the following special case:

L . (Persistency) Let g satisfy (A)–(C) and (x∗,y∗) ∈ argmin g.
If x ∈ argmin(f), then x← (x∗,y∗) ∈ argmin(f).

In other words, all elements (x∗i , y
∗
i) not equal to (0, 0) of a minimizer

of g give us the corresponding elements x∗i of a minimizer of f . Compare
this statement to �eorem . on page .

R . Lemmas . and . hold for any feasible relaxation g, not
just the optimal one. �is fact will be used later on.

4.2 Standard Roof Duality

I will start by analyzing quadratic submodular relaxations g of a quadratic
pseudo-boolean function f . As we shall see, this is no restriction—for a
quadratic f , there are optimal relaxations of degree two.

A symmetric polynomial g : B2n → R with degree(g) = 2 can be
represented by

g(x,y) =
1
2

∑
i

bi(xi + ȳi) +
∑
i

biixiȳi

+
1
2

∑
i<j

(
bij(xixj + ȳiȳj) + cij(xiȳj + ȳixj)

)
.

(.)

�e above expression contains all monomials of degree two or less. �e
symmetry requirement forces some of them to have the same coefficients.



 .   

L . If the quadratic pseudo-boolean function f is represented by a
multilinear polynomial (.) and the symmetric function g by (.), then the
constraint g(x, x̄) = f (x) for all x ∈ Bn implies that

bi + bii = ai for 1 ≤ i ≤ n and bij + cij = aij for 1 ≤ i < j ≤ n.

Proof. For a given pseudo-boolean function, the multilinear polynomial
representation (.) is unique (Boros and Hammer, ). Evaluate g(x, x̄)
and set the corresponding coefficients equal in the multilinear representa-
tions of g(x, x̄) and f (x).

Recall the necessary and sufficient requirement for submodularity (.)
on page . For a submodular, symmetric polynomial g in the form (.),
this is equivalent to

bii ≥ 0, bij ≤ 0 and cij ≥ 0. (.)

It follows that bij = aij − cij ≤ aij and therefore bij ≤ min(aij , 0) =
−a−ij and cij ≥ max(aij , 0) = a+

ij .
�e roof dual construction given by Boros and Hammer () proposes

to set bij = −a−ij and cij = a+
ij so it is in fact a quadratic submodular

relaxation. A stronger statement can be proven, namely that this relaxation
g dominates any other bisubmodular relaxation g̃ of arbitrary degree, that
is, g(x,y) ≥ g̃(x,y) for all (x,y) ∈ Sn.

T . (Kolmogorov, ) An optimal submodular relaxation g of
a quadratic pseudo-boolean function f is obtained through roof duality:

. Set bi = ai and bii = 0 for 1 ≤ i ≤ n in (.),

. Set bij = −a−ij and cij = a+
ij for 1 ≤ i < j ≤ n in (.).

Further, the relaxation g is optimal among all possible bisubmodular relaxations.

Let ei be a vector with zeros everywhere except at position i. �e proof of
�eorem . requires the following lemma:

L . Let (x,y) ∈ Sn and xi = yi = 0. �en g̃(x,y) − g̃(x ∨
ei,y) ≤ g(x,y)− g(x ∨ ei,y).



..   

Proof. �e proof is by induction over N = |{k |xk = yk = 0}|, the
number of (0, 0)-elements in (x,y).

To establish the base caseN = 1, note that g̃(x∨ei,y) = g(x∨ei,y)
because of requirement (A). For the other term,

2g̃(x,y) ≤ (bisubmodularity)
g̃(x ∨ ei,y) + g̃(x,y ∨ ei) = (requirement (A))
g(x ∨ ei,y) + g(x,y ∨ ei) = (bii = 0)
g(x,y) + g(x ∨ ei,y ∨ ei) = (by construction of g).

2g(x,y).

For the inductive step, pick j 6= i such that xj = yj = 0. �ere are
two cases: aij ≥ 0 and aij < 0.
aij ≥ 0 �e function g then contains the term 1

2aij(xiȳj + ȳixj) and
bij = 0. A calculation gives

g̃(x,y)− g̃(x ∨ ei,y) ≤ (bisubmodularity)
g̃(x ∨ ej ,y)− g̃(x ∨ ei ∨ ej ,y) ≤ (induction hypothesis)
g(x ∨ ej ,y)− g(x ∨ ei ∨ ej ,y) = (by construction of g)

−1
2ai −

1
2aij = ′′

g(x,y)− g(x ∨ ei,y),

which is what we want to prove.
aij < 0 �is case is similar to the previous one—g now contains 1

2aij(xixj+
ȳiȳj):

g̃(x,y)− g̃(x ∨ ei,y) ≤ (bisubmodularity)
g̃(x,y ∨ ej)− g̃(x ∨ ei,y ∨ ej) ≤ (induction hypothesis)
g(x,y ∨ ej)− g(x ∨ ei,y ∨ ej) = (by construction of g)

−1
2ai = ′′

g(x,y)− g(x ∨ ei,y).

Proof of �eorem .. �e proof is by induction over n.
For n = 1, we have f (x1) = g(x1, x̄1) = g̃(x1, x̄1). If f (x1) = a1x1

then g(x1, y1) = 1
2a1(x1 + ȳ1) and

g(0, 0) =
1
2
a1 =

1
2

(g̃(0, 1) + g̃(1, 0)) ≥ g̃(0, 0),

which follows from symmetry and bisubmodularity of g̃.



 .   

For n > 1, assume that the statement holds for n− 1 variables. �en,
for any i = 1, . . . , n, note that g(x ∧ ēi,y ∨ ei) is an optimal relaxation
of f (x ∧ ēi) and hence

g(x ∧ ēi,y ∨ ei) ≥ g̃(x ∧ ēi,y ∨ ei) for all (x,y) ∈ Sn.

In a similar manner,

g(x ∨ ei,y ∧ ēi) ≥ g̃(x ∨ ei,y ∧ ēi) for all (x,y) ∈ Sn.

�e only point not checked in Sn is (0, 0). Lemma . establishes that
g(0, 0)− g(0, e1) ≥ g̃(0, 0)− g̃(0, e1) and from this it follows that

g(0, 0) ≥ g̃(0, 0) + (g(0, e1)− g̃(0, e1))︸ ︷︷ ︸
≥0

≥ g̃(0, 0). (.)

�e roof dual bound is also known to be the tightest bound for several
different linear programming relaxations (Hammer et al., ).

4.3 Generalized Roof Duality

For a pseudo-boolean function f in n variables with degree(f) > 2, directly
solving (.) is not tractable since the required number of constraints is
exponential in n. Two obvious heuristic alternatives are:

. Decompose f into a sum f (x) =
∑

i<j<k··· fijk···(xi, xj , xk, . . .)
and compute an optimal relaxation for each term fijk···. However,
the sum of optimal relaxations is generally not optimal.

. Use a subset of the points in Sn for g(x,y) ≥ ` to get an approximate
optimal relaxation.

Neither of these approaches are satisfactory. One may even wonder: is the
optimal relaxation g polynomial time computable at all?

One important issue is to make sure that the set of submodular relax-
ations can be expressed in an easy manner, and in the end, be minimized by
max-flow/min-cut. For this purpose, the notation of expressibility by Živný
et al. () comes in handy.



..   

D . A function h : Bn → R is called expressible if it can
be expressed as h(x) = minx′∈Bk h′(x,x′) for some k, where h′(x,x′) is
a quadratic submodular function. �e variables in x′ are called auxiliary
variables.

An expressible function is always submodular. From the definition
of submodularity, it follows that a submodular function should satisfy
exponentially many inequality constraints, but this is intractable. On the
other hand, we have seen that polynomially many constraints are enough
for quadratic submodular functions (page ).

D . Consider a set of pseudo-boolean functions (up to a fixed
degree) in n variables parametrized by a coefficient vector a ∈ Rd. A subset
of submodular functions is called recognizable if the submodularity condition
can be expressed by polynomially many linear inequality constraints in a with
respect to n.

All cubic submodular functions are expressible, and the set of cubic
submodular functions is recognizable among the set of cubic functions.
Unfortunately, all quartic submodular functions are not expressible (Živný
et al., ) and whether the subset of expressible functions is recognizable
is an open problem. �is makes the quartic and higher-order generalization
of the roof dual much harder to handle than the quadratic and cubic cases.
Section . will define recognizable sets of quartic expressible functions in
two different ways, and investigate their properties.

Requirement (B) is from now on replaced by the following extended
condition:

g ∈ G, where G is a recognizable set of expressible functions. (B’)

�e precise definition of roof duality is then as follows.

D . (Generalized Roof Duality) �e generalized roof duality
bound over a recognizable set of expressible functions is the optimal value of (.)
with constraints (A), (B’) and (C). �e optimal value will be denoted by g∗.

Note that computing the optimal value g∗ directly via (.) still in-
volves exponentially many constraints due to the requirements that g(x,y) ≥
` for all (x,y) ∈ Sn.



 .   

4.3.1 Main Result

Lemma . states that persistency holds for any bisubmodular relaxation
g—optimal or not. From the example in (.) on page , it is clear,
however, that not all relaxations are equally powerful. Instead of solving
(.), which, although possible, may require a large number of constraints,
one can consider a simpler problem:

max
g

g(0, 0)

subject to g satisfies (A), (B’) and (C).
(.)

Instead of maximizing min g(x,y), this problem only maximizes g(0, 0).
�is problem is considerably less arduous and can be solved in polyno-
mial time.Consider the minimizer (x∗,y∗) ∈ arg min(g), which is also
polynomial time computable since g is submodular:

• If (x∗,y∗) is non-zero, persistency will reduce the number of variables
in f and make the problem smaller.

• Otherwise, as the optimum is indeed the trivial solution, and as
g(0, 0) is maximized in the construction of g, it must be an optimal
relaxation and the generalized roof duality bound has been obtained.

�ese observations lead to the following algorithm that computes the gener-
alized roof duality bound:

. Construct g by solving (.).

. Compute (x∗,y∗) ∈ arg min(g).

. If (x∗,y∗) is non-zero, use persistency to simplify f and start over
from . Otherwise, stop.

T . A lower bound on min f (x) which is greater than or equal
to the generalized roof duality bound g∗ over a recognizable set of expressible
pseudo-boolean functions can be computed in polynomial time.

�e condition g(x, x̄) = f (x) for all x does involve exponentially many constraints,
but as g is required to be of fixed degree (independent of n), then its polynomial representa-
tion has only polynomially many terms.



..  

Proof. If (x∗,y∗) is non-zero, persistency can be used to simplify the original
function f . �is is equivalent to adding constraints of the type xi = ȳi = c
to maxg minx,y g(x,y). �is can only increase the computed value. If on
the other hand (x∗,y∗) = (0, 0), then the best possible lower bound is
obtained by construction of g. �erefore, the final bound is at least equal
to the optimal value g∗ of (.).

�e algorithm can obviously not run for more than n iterations, since
in each iteration either persistencies are found and f is simplified or the
algorithm terminates. With all steps being solvable in polynomial time, the
algorithm itself is polynomial.

For the cubic case m = 3, the theorem can be simplified.

C . A lower bound on min f (x) which is greater than or equal
to the generalized roof duality bound g∗ over cubic submodular functions can
be computed in polynomial time.

R . Note that an optimal relaxation g is not explicitly con-
structed by the above procedure, but rather a sequence of relaxations g1,
g2, . . . , gk, such that the final relaxation gk fulfills minx,y gk(x,y) ≥ g∗.

R . As suggested by the proof of �eorem ., the iterative
approach can obtain a better bound than the “optimal” value g∗ in Def-
inition .. �is can be observed in practice for small problems where
directly solving (.) is feasible. One example is

f (x) = 14x1 +15x2−6x3 +9x4−5x1x2 +6x1x3 +3x1x4 +13x2x3

+ 13x2x4 − 6x3x4 + 20x1x2x3 + 9x1x2x4 + 17x1x3x4 + 2x2x3x4,
(.)

for which (.) gives the lower bound g∗ = −8 and the iterative method
above gives −6 > g∗, which is tight.

4.4 Cubic Relaxations

�is section will analyze the properties of relaxations of degree three with
respect to symmetry and submodularity in detail.



 .   

A cubic symmetric polynomial g : B2n → R can be written as

g(x,y) = L+Q+
1
2

∑
i<j

(
biijxiȳi(xj + ȳj) + bijj(xi + ȳi)xj ȳj

)
+

1
2

∑
i<j<k

(
bijk(xixjxk + ȳiȳj ȳk) + cijk(xixj ȳk + ȳiȳjxk)

+ dijk(xiȳjxk + ȳixj ȳk) + eijk(ȳixjxk + xiȳj ȳk)
)
,

(.)

where L and Q denote linear and quadratic terms as in section .. �e
objective function in (.) is then simply equal to

g(0, 0) =
1
2

(∑
i

bi +
∑
i<j

bij +
∑
i<j<k

bijk

)
. (.)

L . If the cubic pseudo-boolean function f is represented by a
multilinear polynomial (.) and the symmetric function g by (.), then the
constraint g(x, x̄) = f (x) for all x ∈ Bn implies that

bi + bii = ai for 1 ≤ i ≤ n
bij + cij + biij + bijj = aij for 1 ≤ i < j ≤ n

bijk + cijk + dijk + eijk = aijk for 1 ≤ i < j < k ≤ n.
(.)

Proof. See the proof of Lemma ..

�e necessary and sufficient conditions for a cubic polynomial to be sub-
modular were given by Billionet and Minoux (). �e characterization
is slightly more complicated than the quadratic case: A cubic multilinear
polynomial f in (.) is submodular if and only if, for every i < j,

aij + a+
ij• + a+

i•j + a+
•ij ≤ 0. (.)

�e set of symmetric, submodular functions of degree  will be denoted by
Γsym,3. It is possible to derive corresponding inequality constraints for this
class:



..  

L . A cubic symmetric polynomial g represented by (.) is sub-
modular if and only if

bij + b+iij + b+ijj ≤ −b
+
ij• − b

+
i•j − b

+
•ij − c

+
ij• − d

+
i•j − e

+
•ij (.a)

−cij + b−iij + b−ijj ≤ −c
−
i•j − c

−
•ij − d

−
ij• − d

−
•ij − e

−
ij• − e

−
i•j (.b)

bii ≥ b−ii• + b−•ii, (.c)

for 1 ≤ i < j ≤ n.

Proof. Both (.) and this lemma can be proved using the second derivative
requirement (.) on page . For the variables xI and xJ this requirement
is

bIJ +
∑
J<k

bIJkxk +
∑

I<k<J

bIkJxk +
∑
k<I

bkIJxk

+
∑
J<k

cIJkȳk +
∑

I<k<J

dIkJ ȳk +
∑
k<I

ekIJ ȳk

+ bIIJ ȳI + bIJJ ȳJ ≤ 0,

(.)

where the sums are taken over all valid indices. Since this expression has to
hold for all (x,y), only the worst case is interesting, where the left hand
side is maximized:

bIJ + b+IJ• + b+I•J + b+•IJ + c+
IJ• + d+

I•J + e+
•IJ + b+IIJ + b+IJJ ≤ 0.

(.)

�is gives (.a). To obtain (.b), one can observe that ∂2g
∂u∂v (x,y) =

− ∂2g
∂u∂v̄ (x,y), repeat the procedure for the variables xI and yJ and use the

requirement that bIJ + cIJ + bIIJ + bIJJ = aIJ .

L . �ere is a solution g represented by (.) to the optimization
problem (.) such that

(i) bii = 0 for 1 ≤ i ≤ n, biij = bijj = 0 for 1 ≤ i < j ≤ n,

(ii) if aijk ≥ 0 then b−ijk = c−ijk = d−ijk = e−ijk = 0 for 1 ≤ i < j <
k ≤ n,

(iii) if aijk ≤ 0 then b+ijk = c+
ijk = d+

ijk = e+
ijk = 0 for 1 ≤ i < j <

k ≤ n.



 .   

Proof. (i) Suppose that biij > 0 for the optimal g. �en (.) and (.a)
show that setting biij to 0 and increasing bij by the same amount will still
be feasible. �is operation increases the objective function g(0, 0). If, on
the other hand, biij < 0, then biij can also be set to 0 and decreasing cij
by the same amount will give a feasible solution; see (.) and (.b),
with no change to the objective function. �e same argument holds for bijj .
Finally, setting bii = 0 and increasing bi by the same amount will always be
feasible and increase the objective function.

(ii) Suppose b−ijk > 0. �en setting b−ijk = 0 and decreasing c+
ijk, d+

ijk

and e+
ijk such that the sum c+

ijk + d+
ijk + e+

ijk is decreased by the same
amount will still be a feasible solution with higher objective function value.
Other variables are similarly handled.

(iii) �e proof is analogous to (ii).

�e above lemma simplifies matters. If, say aijk > 0, then we can
set bijk = b+ijk, cijk = c+

ijk, dijk = d+
ijk and eijk = e+

ijk. Further, the
submodularity conditions (.a) and (.b) become linear inequality
constraints in the unknowns, condition (.c) becomes obsolete and the
optimization problem (.) is turned into an instance of linear program-
ming.

E . Consider again the example of a cubic pseudo-boolean
function f in (.) on page . Finding a g(x,y) of the form (.) by
solving (.) results in

g(x,y) = −(x1 + ȳ1) +
1
2

(x2 + ȳ2)− 1
2

(x3 + ȳ3) + 2(x1ȳ2 + ȳ1x2)

+ 2(x1ȳ3 + ȳ1x3)− (x2x3 + ȳ2ȳ3)− (ȳ1x2x3 + x1ȳ2ȳ3). (.)

Minimizing this submodular relaxation gives gmin = −2 for x∗ = (0, 1, 1)
and y∗ = (1, 0, 0). Since x∗ = ȳ∗, it follows that x∗ is the global mini-
mizer for f as well.

4.5 Quartic Relaxations

Determining whether a given quartic polynomial is submodular or not
is known to be co--complete (�eorem . on page ), and not all
submodular quartic polynomials are expressible by quadratic submodular



..  

functions (Živný et al., ). �erefore, a compromise is required. �is
section defines and analyzes two different proposals of recognizable sets for
quartic functions.

4.5.1 Approach I: �e Set Γsym,4

One possible approach is to work with the quartic polynomials in (.) that
satisfy, for every i < j,

aij + a+
ij• + a+

i•j + a+
•ij + a+

ij•• + a+
i•j• + . . .+ a+

••ij ≤ 0. (.)

�is choice can be seen as a natural generalization of the cubic case; see (.).
�e set has a number of advantageous properties. First, it is a rich set of
submodular functions; Živný and Jeavons () denote the set by Γsuff ,4
and analyze it in more detail. �e set of cubic submodular functions is a
subset of these functions. Second, each quartic term only needs one auxiliary
variable for expressibility. Finally, only O(n2) inequalities are sufficient to
make sure the relaxation is submodular. �us, the set is recognizable among
all quartic pseudo-boolean functions.

Similar to previous derivations, a large class of quartic symmetric poly-
nomials can be written

g(x,y) = L+Q+ C +
1
2

∑
i<j<k<l

(
bijkl(xixjxkxl + ȳiȳj ȳkȳl) + cijkl(xixjxkȳl + ȳiȳj ȳkxl) +

dijkl(xixj ȳkxl + ȳiȳjxkȳl) + eijkl(xiȳjxkxl + ȳixj ȳkȳl) +

pijkl(ȳixjxkxl + xiȳj ȳkȳl) + qijkl(xixj ȳkȳl + ȳiȳjxkxl) +

rijkl(xiȳjxkȳl + ȳixj ȳkxl) + sijkl(xiȳj ȳkxl + ȳixjxkȳl)
)
,

(.)

whereL,Q andC denote lower-order terms, and bijkl+cijkl+. . .+sijkl =
aijkl. Just as for the cubic case, bii = biij = bijj = 0.

By first expanding all conjugate factors in the symmetric form (.)
to a multilinear polynomial and then applying the sufficient condition for
recognizability (.), one obtains the following constraints.

�ese constraints are preferably verified using e.g. Maple



 .   

L . A quartic symmetric polynomial g represented by (.) is
submodular and expressible by a quadratic submodular polynomial if

bij ≤ (.a)− b+ij•• − b
+
i•j• − b

+
i••j − b

+
•ij• − b

+
•i•j − b

+
••ij

− |c|ij•• − |c|i•j• − |c|•ij• − |d|ij•• − |d|i••j − |d|•i•j
− |e|i•j• − |e|i••j − |e|••ij − |p|•ij• − |p|•i•j − |p|••ij
− q+

ij•• − |q|ij•• − q
+
••ij − r

+
i•j• − |r|i•j• − r

+
•i•j

− s+
i••j − |s|i••j − s

+
•ij• (.a)

and

−cij ≤ (.b)− c−i••j − c
−
•i•j − c

−
••ij − d

−
i•j• − d

−
•ij• − d

−
••ij

− e−ij•• − e
−
•ij• − e

−
•i•j − p

−
ij•• − p

−
i•j• − p

−
i••j

− |q|i•j• − |q|i••j − |q|•ij• − |q|•i•j
− |r|ij•• − |r|i••j − |r|•ij• − |r|••ij
− |s|ij•• − |s|i•j• − |s|•i•j − |s|••ij ,

(.b)

for 1 ≤ i < j ≤ n, where (.a) and (.b) denote the right-hand sides of
those inequalities, respectively.

�is subset of symmetric functions is denoted by Γsym,4, and, naturally,
Γsym,3 ⊂ Γsym,4.

E . Ishikawa () proposed the following reduction identity:

x1x2x3x4 = min
z∈B

z(3− 2x1 − 2x2 − 2x3 − 2x4)

+ x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.
(.)

�is can be used to express

f (x) = x1 + x3 − x4 + 2x1x4 + 2x2x3 − x3x4 + x1x2x3x4 (.)

as a quadratic polynomial with one auxiliary variable z. �e quadratic roof
duality bound gives fmin ≥ −2 and does not find an assignment for any of



..  

the four variables. On the other hand, solving the linear program (.),
one obtains the relaxation

g(x,y) =
1
2

(x1 + ȳ1) +
1
2

(x3 + ȳ3)− 1
2

(x4 + ȳ4)

− 1
2

(x1x3 + ȳ1ȳ3) +
1
2

(x1ȳ3 + ȳ1x3)− 1
2

(x1x4 + ȳ1ȳ4)

+
3
2

(x1ȳ4 + x1ȳ4) + (x2ȳ3 + ȳ2x3)− 1
2

(x3x4 + ȳ3ȳ4)

+
1
2

(x1ȳ2x3x4 + ȳ1x2ȳ3ȳ4). (.)

Solving the submodular problem min g(x,y) via max-flow yields x∗ =
(0, 0, 0, 1) and y∗ = (1, 1, 1, 0). Again, since x∗ = ȳ∗, it follows that x∗

is the global minimizer for f , that is, fmin = g∗ = −1.

4.5.2 Approach II: Generators of Expressible Functions

Submodular pseudo-boolean functions form a convex cone in Rd (Promis-
low and Young, ). Recall that a cone in a vector space is a set C such
that 0 ∈ C and λx ∈ C for every λ ≥ 0 and every x ∈ C.

One way to work with a cone of expressible pseudo-boolean functions
is to find a finite set of generators for the cone, that is, a set of pseudo-
boolean functions {e1, . . . , ek} such that every function f in the cone can
be written f (x) =

∑k
i=1 αiei(x) for αi ≥ 0, i = 1, . . . , k. For n = 4

variables, generators of the submodular cone have been derived (Promislow
and Young, ). Apart from the linear functions, there are  generator
classes ( quadratic,  cubic and  quartic generators); see Figure  in the
paper by Živný and Jeavons () for a complete list. Out of these 
generators, one (quartic) generator is not expressible. �is gives a convenient
way to represent all expressible functions in  variables.

We are of course interested in the cone of symmetric, expressible func-
tions in 2n variables. However, it is an open problem to determine this
cone’s set of generators and even if the generators were known, working
with the full set of generators is likely to be intractable.

�e generators {e1, . . . , ek} for the expressible cone of 4 variables will
explicitly define a cone of symmetric and expressible functions over Sn.
Every combination of a non-zero quartic coefficient aijkl of f (x) and a



 .   

quartic generator es, where s = 1, . . . , k, gives a symmetric generator

es(xi, xj , xk, xl) + es(ȳi, ȳj , ȳk, ȳl). (.)

Such a generator will not be able to generate functions with monomials
consisting of both x and y variables. �erefore, xi and yi need to be
exchanged as well:

es(yi, xj , xk, xl) + es(x̄i, ȳj , ȳk, ȳl), (.)

and similarly for the other variables. �ere are up to / =  (and not 
due to symmetry) such combinations for every es. In an analogous manner,
quadratic and cubic generators are constructed for each pair and triplet of
indices, respectively. �is procedure creates, not counting duplicates:

•  quadratic generators for every combination i, j:

−xixj − ȳiȳj and− xiyj − ȳix̄j , (.)

•  cubic generators for every combination i, j, k:

−xixjxk − ȳiȳj ȳk, −yixjxk − x̄iȳj ȳk, . . .
. . . ,−xiyjyk − ȳix̄j x̄k, −yiyjyk − x̄ix̄j x̄k.

(.)

•  quartic generators for every combination i, j, k, l, for example:

−xixjxkxl − ȳiȳj ȳkȳl. (.)

It can be shown that (i) the set of all submodular and symmetric cubic
functions Γsym,3 is generated by the quadratic and cubic generators above
(modulo linear terms), (ii) the set of symmetric quartic polynomials Γsym,4
is a subcone of the cone generated by the generators above (not considering
the linear terms).

Problem (.) has to be tractable to compute the generalized roof dual
bound. �e submodular relaxation g is described by the set of generators
above as g(x,y) =

∑K
i=1 αiei(x,y). Constraint (A), that is, g(x, x̄) =

f (x) is submodular iff f (x̄) is submodular. �is is because min(x,y) = max(x̄, ȳ)
and max(x,y) = min(x̄, ȳ).



.. 

f (x) can be written as Aα = a, where α is a vector of length K and a is
a vector with all polynomial coefficients of f . Constraint (B’) is satisfied
by α ≥ 0 and (C) is automatically satisfied by the construction of the set
of generators. �e objective function g(0, 0) can be written cTα where
c ∈ RK . In summary, the maximization problem in (.) using generators
can be cast as the linear programming problem

maximize
α

cTα

subject to Aα = a

α ≥ 0.

(.)

4.6 Heuristics

In many cases, the optimization problem (.) does not need to be solved
exactly. Minimizing g amounts to solving a maximum flow problem, which
is considerably faster than solving a linear program to create g. Simpler,
heuristic methods which approximately maximize g(0, 0) are therefore of
interest.

Since cij = aij − bij , Lemma . (and similarly Lemma .) can be
written on the form

bij ≤ (.a) (.a)
bij ≤ aij + (.b). (.b)

Because bij appears in the objective function, taking the minimum of
(.a) and (.b) will give the optimal value. �erefore, if all higher-
order coefficients are fixed, the optimal value of bij (and, consequently,
cij) is known. A heuristic method tries to quickly choose the higher-order
coefficients as well as possible. �en, the quadratic coefficients are chosen
optimally. While this does not give the best relaxation, all submodularity
constraints will at least be tight.

Naturally, any heuristic can be combined with the generalized roof
duality method. �e following procedure can be used to compute the roof
dual bound:

. Use heuristics or any type of relaxations to obtain persistencies and
simplify f .



 .   

. Apply the generalized roof duality procedure from section ..

�e end result will still attain the generalized roof dual bound g∗ for the
original function f , but much faster for some problems due to the fact that
much smaller linear programs are solved.

Cubic Case. For the cubic case the following heuristics is natural: let f
be written as the sum of functions f1 + f2 + . . . fN , where each fi is a
function of three variables only. Computing the optimal gi for each of these
functions is possible to do very quickly. �e sum of optimal relaxations is
in general not optimal, as noted before, but the approximation might give a
reasonable heuristic.

Quartic Case. For the quartic case, the following, even simpler, approach
is effective: Use the procedure from the cubic case and set

dijkl = a+
ijkl and bijkl = −a−ijkl. (.)

Even this simple method performs surprisingly well for some application
problems, as the experimental section will show (see Figures . and .).
Presumably this is due to the fact that setting bij to the minimum of (.a)
and (.b) is optimal given that the higher-order coefficients are deter-
mined. �e submodularity inequalities will always be tight.

4.7 Experiments

�is section evaluates generalized roof duality experimentally. When com-
puting the generalized roof duality, every step used linear programming,
that is, combinations of linear programming and heuristics were not used,
as mentioned in section .. �e exception is section .., where the
problems were preprocessed with heuristic relaxations and simplified, after
which the linear programming relaxation was computed. In practice how-
ever, one would typically always use a combination of heuristics and linear
programming, or heuristics only. Table . lists the abbreviations of the
different relaxation methods.

All linear programming problems were solved using Clp, which is
a free open-source solver. I have tested the implementation thoroughly;

http://www.coin-or.org/Clp



http://www.coin-or.org/Clp

.. 

GRD Generalized Roof Duality using �sym,m

(sections 4.4 and 4.5.1).
GRD-gen. GRD using generators for m = 4 (section 4.5.2).

GRD-heuristic The heuristic relaxations (section 4.6).
Fix et al. The reductions proposed by Fix et al. (2011).

HOCR The reductions proposed by Ishikawa (2011).

Table 4.1: Abbreviations used in the experimental section.

persistency and lower bounds for each method has been verified on tens
of thousands of small polynomials for which the global optimum could be
calculated via exhaustive search. �e implementation is freely available.

4.7.1 Random Polynomials

�e first experiment used synthetically generated polynomials with random
coefficients:

f (x) =
∑

(i,j,k)∈T
fijk(xi, xj , xk), (.)

where T ⊆ {1 . . . n}3 is a random set of triplets and each fijk is a cubic
polynomial in xi, xj and xk with all its coefficients picked uniformly in
{−100, . . . , 100}. �e set of coefficients T was drawn uniformly after
making sure that all variables were used once.

Each f was minimized with the different methods listed in table ..
After each algorithm finishes, the number of persistencies (also called the
number of assignments) is a measure of how well the algorithm performed.
�e results from  problem instances can be seen in Figure .. For this
type of polynomials, generalized roof duality significantly outperforms the
previous state of the art for every problem. �e time required to solve the
linear program (.) was longer, but in combination with heuristics this
time may be shortened significantly. �e minimum and maximum number
of iterations required was  and , respectively, with  of the problem
instances requiring  or less. �e figures also report the relative difference
(`GRD − `)/|`GRD|.

https://github.com/PetterS/submodular
�at is, first the triplets (1, 2, 3), (4, 5, 6), . . . , (n−2, n−1, n) were added to T , after

which the remaining triplets were picked uniformly at random.



https://github.com/PetterS/submodular

 .   

200 300 400 500 600 700 800 900 10000

10

20

30

40

Number of assigned variables

Fr
eq

ue
nc

y GRD
Fix et al.
HOCR

100

Rel. bounds Time (ms)

Min Med. Max Min. Med. Max

GRD 0 0 0 422 514 749
GRD-heur. 0.00 0.00 0.00 31 63 125
Fix et al. 0.05 0.09 0.13 15 16 32
HOCR 0.10 0.14 0.20 0 15 31

Figure 4.1: Number of assigned variables, relative bounds and running time for
100 random cubic polynomials with n = 1000 and |T | = 1000. GRD-heuristic is
not shown in the histogram because it is almost indistinguishable from GRD.

I also generated random quartic polynomials in the same manner; see
figure .. �is experiment also resulted in a large separation, and the
relative lower bound differences were much larger. �e best performing
method in terms of lower bounds is, not surprisingly, the  method based
on generators. Perhaps somewhat surprisingly, it is also faster than 
based on Γsym,4. Even though the linear program for the generator method
is much larger, it is easier to solve. Note that this experiment only used
|T | = 300; with |T | = 1000, generalized roof duality only obtained a
median of  persistencies while  obtained .

4.7.2 Applications in Computer Vision

Section . on page  discussed how more general multi-label problems can
be solved with fusions. Lemma . guarantees that the objective function
value will never increase when performing such moves. �is subsection
applies generalized roof duality to a few problems in computer vision.

Image Denoising. Ishikawa () used image denoising as a benchmark
problem for higher-order pseudo-boolean minimization. In each iteration



.. 

100 200 300 400 500 700 800 900 10000

20

40

60

80

Number of assigned variables

Fr
eq

ue
nc

y
GRD-gen.
GRD
GRD-heur.
Fix et al.
HOCR

600

Rel. bounds Time (ms)

Min Med. Max Min. Med. Max

GRD-gen. −0.10 −0.07 −0.05 360 438 560
GRD 0 0 0 599 810 1478
GRD-heur. 0.04 0.06 0.09 60 100 160
Fix et al. 0.13 0.16 0.20 0 10 20
HOCR 0.42 0.48 0.55 0 10 17

Figure 4.2: Number of assigned variables, relative bounds and running time for
100 random quartic polynomials with n = 1000 and |T | = 300.

the proposals are generated in two possible ways which are alternated: by
blurring the current image or picking all pixels at random. �e smoothness
term consists of a Fields of Experts model using patches of size  Ö . �us,
quartic polynomials are needed to formulate the image restoration task as
a pseudo-boolean minimization problem (see page ). See chapter  for
a complete formulation and discussion of the Fields of Experts denoising
problem.

Figures . and . show a comparison between the different methods for
this problem. Generalized roof duality performed very well, often assigning
very close to  of the problem variables. �e plots displaying the number
of persistencies in each iteration show the average over the two types of
proposals generated, just as Fix et al. () does. Otherwise, the oscillating
graphs overlap and the plot becomes hard to read.

If we instead look at the objective function values versus the time spent
computing, the heuristic method still outperforms , but the difference
is smaller. �is is due to the fact that  has to solve multiple graph cut
problems in each iteration while  only has to solve one. �e results are
shown in figure .. �e best performing method is the one by Fix et al.,
which also solves just one graph cut problem in each iteration, but has better



 .   

reductions than  in general. In this application it does not pay off to
iterate and compute the best possible solution; it is better to just generate a
new proposal.

See chapter  for another method for Fields of Experts denoising. As it
turns out, continuous methods can solve this problem significantly faster
than discrete methods.

Stereo Reconstruction. In dense stereo reconstruction, second order surface
priors have recently been used to obtain very good results (Woodford et al.,
); see Figure .. �e problem is to estimate a depth d(x, y) for each
pixel in a specific view. A reasonable model is to assign zero cost to all
planar surfaces and non-zero cost to all non-planar ones. �is requires
the smoothness term to contain three types of terms: ∂2d

∂x2 , ∂
2d
∂y2 and ∂2d

∂x∂y .
�e first two derivatives require polynomials of degree three, since three
points are necessary for estimating non-mixed second derivatives. �e mixed
derivative, however, requires four points for estimation. Woodford et al.
() did not include the mixed derivative in their framework, since no
good methods for minimizing degree  polynomials were known at the
time.

Since the framework uses a heuristic to obtain a complete non-optimal
solution (i.e. an upper bound), we instead compare to . Table .
shows the result for a few image sets. For this problem type, the simple
heuristics does not perform better than .

(a) Image from in-
put sequence

(b) Result (c) Image from in-
put sequence

(d) Result

Figure 4.3: From a calibrated sequence of images, stereo reconstruction can be
used to recover a dense depth map (Woodford et al., 2009).

Woodford et al. () claimed that the result of not including ∂2d
∂x∂y

resulted in all
harmonic functions having zero cost. �is is incorrect, but there are of course non-planar
harmonic functions which satisfy ∂2d

∂x2 = ∂2d
∂y2 = 0, for example d(x, y) = xy.



.. 

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

%
as

si
gn

ed
va

ria
bl

es

Iteration

GRD-gen
GRD
GRD-heuristic
Fix et al.
HOCR

0 10 20 30 40 50 60 70 80 90 100
2000

4000

6000

8000

10000

12000

En
er

gy

Iteration

GRD-gen.
GRD
GRD-heuristic
Fix et al.
HOCR

(a) Each method progresses independently

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Iteration

%
as

si
gn

ed
va

ria
bl

es

GRD-gen.
GRD
GRD-heuristic
Fix et al.
HOCR

(b) Each method solves the same problem in each iteration

(c) Noisy image (d) Restored image

Figure 4.4: Restoring a small image. In each iteration a proposal is generated and
each pixel can either stay the same or switch to the proposal. A quartic smoothness
function is used.



 .   

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
%

as
si

gn
ed

va
ria

bl
es

Iteration

GRD-heuristic
Fix et al.
HOCR

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

En
er

gy

Iteration

GRD-heuristic
Fix et al.
HOCR

×104

(a) Each method progresses independently

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Iteration

%
as

si
gn

ed
va

ria
bl

es

GRD-heuristic
Fix et al.
HOCR

(b) Each method solves the same problem in each iteration

(c) Noisy image (d) Restored image

Figure 4.5: Restoring a larger image.



.. 

0 10 20 30 40 50 60 70 80 90 100
2000

4000

6000

8000

10000

12000

En
er

gy

Time (s)

(a) Problem in figure 4.4

0 100 200 300 400 500 600 700
2

4

6

8

10

12

En
er

gy

Time (s)

×104 GRD-gen.
GRD
GRD-heuristic
Fix et al.
HOCR

(b) Problem in figure 4.5

Figure 4.6: Objective function value vs. time for the denoising experiments. The
method by Fix et al. (Fix et al., 2011) wins since it performs a single graph cut
computation per iteration while having better reductions than HOCR.

Set Problems n Lower bounds (·1010)

GRD GRD-heuristic HOCR

Cones 259 506250 1.22974 1.22972 1.22945
Cloth3 392 462870 0.833185 0.833176 0.833110

Persistencies (·105)

GRD GRD-heuristic HOCR

4.998 4.917 4.986
4.60 4.55 4.59

Table 4.2: Comparison between HOCR and generalized roof duality for stereo
reconstruction. The computed numbers are the sample means over all problem
instances.



 .   

Set Problems n Lower bounds

GRD GRD-heur. HOCR

CBS 1000 100 −173±2.90 −181±2.63 −251±4.25

RTI 500 100 −183±2.87 −192±2.65 −268±4.77

uf20-91 1000 20 −26±1.39 −31±1.51 −54±2.55

Times (ms)

GRD GRD-heur. HOCR

77.54±14.88 8.93±10.34 2.20±5.62

86.80±16.73 8.26±8.77 2.47±5.60

6.78±8.15 1.21±4.11 0.53±2.83

Table 4.3: Lower bounds on some 3-SAT problems from (Hoos and Stützle, 2000).
The instances are all satisfiable, so the optimal value is always 0. The computed
numbers are the sample means ± one standard deviation.

4.7.3 3-SAT

If “true” and “false” are encoded as 1 and 0, respectively, a clause “xi or not
xj or not xk” is encoded as the term x̄ixjxk. �e satisfiability problem
() seeks to find an assignment of n variables such that many such clauses
are simultaneously satisfied. In other words,  amounts to minimize

f (x) = x̄1x2x3 + x1x̄3x6 + . . .+ x2x̄3x̄4. (.)

If the problem is satisfiable, then the optimal value is 0. Table . shows the
performance on some publicly available  databases (Hoos and Stützle,
). Since persistencies are almost never found for these problems, only
lower bounds are interesting. Knowing how the problems are generated, it
is trivial to prove a lower bound of 0. �is information about the problem
structure is not available to any method in Table ., though.

4.7.4 Branch and bound

�e experiments so far have mostly focused on the number of assigned
variables and the obtained lower bounds. �e practical usefulness of better
lower bounds has not been discussed. To show that better lower bounds
can actually matter in practice, I let each method compute the globally
optimal solution of randomly generated polynomials using branch and
bound (section . on page ).



..  

n = 100, |T | = 30 n = 300, |T | = 80

iterations total time (s) iterations total time (s)

GRD-gen 61 0.7 8,565 92
GRD 515 2.4 ≥ 42,280,410 ≥ several days
GRD-heur. 2,521 2.3 — —
Fix et al. 16,195 7.2 — —
HOCR 1,848,373 1,324 — —

Table 4.4: Branch and bound on two randomly generated polynomials of degree 4.

Table . shows that lower bounds can indeed matter—by a lot. �e
values of |T | have been carefully chosen though; decreasing |T | a little
would make the problem easier and the reduction methods would have
an advantage. On the other hand, increasing |T | a little would render the
problem hopelessly hard for all methods.

�is experiment used the simple branching strategy of always splitting
the node with the highest bound and replacing it with two new nodes
with the first available variable fixed; see section . on page . A good
problem-specific branching strategy can be very important in practice.

4.8 Concluding Discussion

�is chapter has shown how the roof duality bound for unconstrained
quadratic pseudo-boolean functions can be generalized for higher-order
functions. �e bound is defined as the maximum lower bound over a set of
submodular relaxations. �e main result is that a solution that attains this
bound can be computed in polynomial time.

�e main focus of the analysis is on cubic and quartic submodular
relaxations, which are the most interesting from an application point of view.
�e cubic case is more straight-forward and the solution is more elegant than
the quartic case, mainly due to the fact that all cubic submodular functions
are expressible and the functions form a set which is recognizable. For
m ≥ 5, one can work with any set of higher-order, expressible generators.
�e generators can be problem-specific and the number of them can depend
on the computational resources available.

�e experimental results demonstrate that much better lower bounds,
and many more assignments can be determined with the generalized roof



 .   

dual bound compared to the state of the art. �e price to pay is the compu-
tational effort due to the time spent on (i) constructing the relaxations, and
(ii) the iterative improvements. �e method is still very attractive in terms
of speed, particularly for large-scale problems involving several thousands
of variables. For m = 4, the roof dual based on generators is preferable to
the approach using relaxations in Γsym,4, both in terms of execution times
and bounding performance.

Linearization revisited. Recall the integer programming formulation (.)
on page  for minimizing a pseudo-boolean function f (x) (.). For
quadratic f , the linear programming relaxation of (.) is the roof duality
bound and persistency holds for this relaxation (Hammer et al., ; Adams
and Dearing, ). Another natural way of extending roof duality to
functions of higher degree could be to instead call the linear programming
relaxation a “generalized roof duality” bound. However, this alternative
method does not generally possess the persistency property, as the explicit
examples in this subsection will show.

Call the lower bound obtained from the linear programming relaxation
R(f) and the generalized roof duality bound g∗(f). �e first example will
show that generalized roof duality can give a better bound than linearization;
let

f1(x) = 80x0 + 59x1 + 16x2 − 36x3

− 12x0x1 + 114x0x2 + 3x0x3 − 55x1x2 − 33x1x3 + 72x2x3

− 15x0x1x2 − 86x0x1x3 − 63x0x2x3 + 71x1x2x3.

(.)

�e minimum of f1 is f1(0, 0, 0, 1) = −36. �e lower bounds areR(f1) =
−72.5 and g∗(f1) = −41 (no assignments were obtained in the first
maximization of g(0, 0)). As a second example, consider

f2(x) = −116x0 − 27x1 + 20x2 − 140x3

− 11x0x1 + 106x0x2 + 104x0x3 + 69x1x2 + 28x1x3 + 4x2x3

+ 58x0x1x2 + 79x0x1x3 + 79x0x2x3 − 94x1x2x3.

(.)

�e unique minimizer to f2 is (1, 1, 0, 0), with an optimal value of−154. A
solution to the  relaxation, however, is

(1
2 ,

1
2 ,

1
2 , 1
)
, with R(f2) = −186.

�is disproves persistency for the  relaxation of degrees> 2. On the other



..  

hand, generalized roof duality gives g∗(f2) = −239.5, showing that the
 relaxation can indeed give better lower bounds.

I should add that during these experiments the integral variables in
the relaxed solution almost always took the correct value. In fact, many
polynomials were tested before the counterexample f2 was found. �erefore,
keeping the integer-valued variables would probably be a good heuristic in
e.g. a branch and bound framework.

Linearization hierarchies. Adams et al. () have proposed a hierarchy of
linear programming relaxations LP(d, n), where degree(f) = m ≤ d ≤ n.
When d = m = 2, standard roof duality is obtained (Adams and Dearing,
) and the relaxation becomes stronger as d increases. When d = n,
the relaxation is always tight. Unfortunately, persistency only holds in two
cases: d = 2 and d = n − 1. However, Adams et al. () proves that
persistency can be extracted anyway in some cases: either using duality or
when n− d components of the solutions are boolean. I think investigating
this hierarchy for difficult problems in computer vision might be interesting.

Beyond the boolean case. Our first results on generalized roof duality ap-
peared in  . Windheuser et al. () have subsequently generalized
some of the theorems in this chapters to ordered sets with more than two
elements. Chapter  contains a brief account of this work.

4.9 Open Problems

Generators for higher degrees. It is an open problem to characterize the
symmetric submodular cone Γsym,m ⊂ Γsuff ,m and to derive generators for
the cone of expressible pseudo-boolean functions when m ≥ 5. Živný et al.
() conjecture that the generators are given by so-called upper and lower
fans. �ese issues are left for future work.

Cubic relaxations. Another open problem is whether the cubic submodular
relaxations can be improved by enlarging the set of relaxations to include
bisubmodular and higher-order submodular relaxations. �eorem . tells
us that when degree(f) = 2, considering relaxations of the same degree is
enough. On the other hand, Kolmogorov () gives an example with



 .   

degree(f) = 4 where a bisubmodular relaxation strictly dominates any
submodular relaxation.

C . When degree(f) = , the tightest cubic submodular
relaxation dominates all other submodular relaxations of arbitrary degree.

Generalized roof duality and reductions. A natural question to ask is whether
the generalized roof duality bound always is at least as good as the bound
obtained from any reduction. A reduction is a polynomial f̃ (x, z) such that
f (x) = minz f̃ (x, z). When roof duality is applied to the reduction, one
obtains g̃(x, z,y,w), where y and w correspond to x and z, respectively.
�ese variables can then be minimized out from g̃:

h(x,y) = min
z,w

g̃(x, z,y,w). (.)

�e function h is almost like a submodular relaxation of f . It is submodular,
since submodularity is preserved when minimizing out variables. It is
symmetric, since

h(x,y) = min
z,w

g̃(ȳ, w̄, x̄, z̄) = min
z,w

g̃(ȳ,w, x̄, z) = h(ȳ, x̄). (.)

However, it does not exactly satisfy requirement (A) (on page ). But

h(x, x̄) = min
z,w

g̃(x, z, x̄,w) ≤ min
z
g̃(x, z, x̄, z̄)

= min
z
f̃ (x, z) = f (x). (.)

Although I do not have a proof, I think the above motivation and the
extensive experimental results make the following conjecture reasonable:

C . Let f : Bn → R be of degree  and f̃ : Bn+n′ → R
be of degree  such that f̃ (x) = minz f̃ (x, z) for all x ∈ Bn. �en the
generalized roof duality bound of f is greater than or equal to the roof duality
bound of f̃ .

To see this, let f (x) = minz g(x,z) where g is submodular. �en f (x∨ y) + f (x∧
y) ≤ g(x∨ y,z ∨w) + g(x∧ y,z ∧w) = g((x,z)∨ (y,w)) + g((x,z)∧ (y,w)) ≤
g(x,z) + g(y,w) for any z andw. Minimizing over them proves submodularity for f .



Chapter 5

Other Approaches to

Pseudo-Boolean Optimization

�e discussion in the previous chapter mentioned an alternative definition
of “generalized roof duality.” �at definition amounted to solving a lin-
ear programming relaxation and could, in some cases, give a better lower
bound than generalized roof duality. Unfortunately, it lacked the important
property of persistency. In this short chapter, I will introduce two new
optimization methods for pseudo-boolean functions. �e first one works
for functions of any degree and has persistency. �e second method is an
idea on how quadratic functions can be optimized better than using roof
duality if the variables are arranged in a grid.

5.1 Using Bipartite Vertex Packing

Hammer et al. () used the vertex packing problem to introduce persis-
tency to quadratic pseudo-boolean functions. �e approach readily carries
over to higher degree polynomials, although I am not aware of anyone
actually trying it. �e purpose of this section is to explore this alternate
approach to “generalized roof duality.”

�e vertex packing problem is the following integer linear program:

maximize
x

n∑
i=1

αixi

subject to xi + xj ≤ 1, (i, j) ∈ E,
and xi ∈ {0, 1},

(.)

where the weights {αi} are non-negative and E is a set of index pairs.
Nemhauser and Trotter () showed that when relaxing the integer con-



 .  

straint to xi ∈ [0, 1], there is an optimal solution x̂ for which x̂i ∈{
0, 1

2 , 1
}

. More importantly, persistency holds for this solution, in precisely
the same sense as I have discussed in earlier chapters (e.g. �eorem . on
page ). Finally, the relaxation of (.) can be efficiently solved as another
vertex packing problem in a bipartite graph. �is is a crucial fact, as it allows
a generalization of roof duality which never uses the relatively costly linear
programming at any step.

I should note that the (weighted) vertex packing problem is also referred
to as the problem of finding the maximum (weighted) independent set.
Also, seeing that it is, informally, the complement of finding the (weighted)
minimum vertex cover is not hard.

�e vertex packing problem is a standard problem formulated as maxi-
mization. �erefore, this section will also discuss maximization. Write f as
a posiform

f (x) = φ(x) =
∑
i

αiui +
∑

(i,j)∈Q
αi,juiuj +

∑
(i,j,k)∈C

αi,j,kuiujuk + . . .

or, more succinctly,

φ(x) =
∑
T∈T

αT
∏
i∈T

uT ,i, (.)

where all αT > 0. �e symbol uT ,i should be thought of as a placeholder
which is equal to either xi or x̄i. Now we introduce the following integer
program:

maximize
x,y,z

M
∑
i

(xi + yi − 1) +
∑
T∈T

αT zT

subject to xi + yi ≤ 1,
zT + ūT ,i ≤ 1, ∀i ∈ T , ∀T ∈ T ,
and all variables in {0, 1}.

(.)

In this formulation, yi is a variable representing x̄i. �e placeholder uT ,i
is therefore replaced with xi or yi and ūT ,i with the opposite. M is a
sufficiently large constant (i.e. guaranteed to be larger than the maximum
of f). Note that no extra variables are needed whenever |T | = 1.



..    

Example. �e function f (x) = x1x2 − x1x2x3 can be reformulated as
the posiform φ(x) = x1x2x̄3. �e objective function in (.) becomes
M
∑3

i=1(xi + yi − 1) + z with the constraints xi + yi ≤ 1 for all i,
z + x̄1 ≤ 1, z + x̄2 ≤ 1, and z + x3 ≤ 1.

L . If x∗ is part of a maximizer (x∗,y∗, z∗) to (.) with optimal
value r, then r = maxx f (x) = f (x∗).

Proof. �e linear inequalities along with the first M -sum in the objective
function guarantees that x = ȳ in the optimum. �e variables zT represent
each monomial and since all αT > 0, zT = 1 in the solution if and only if∏
i∈T uT ,i = 1.

Problem (.) is a vertex packing problem (.). I used a maximum flow
solver (Goldberg et al., ) to solve the resulting bipartite vertex packing
problem as a minimum cut problem. Figure . shows the same experiment
as in figure . on page . Although using this approach almost always gives
worse results than  from the previous chapter, there are counterexamples.
For a degree-three polynomial with five variables the optimal submodular
relaxation gave a lower bound of −, while the vertex packing approach
found the global optimum of −.

Solving the vertex packing problem as a general minimum cut problem
is not that efficient. �e time required for the vertex packing method was
about the same as for the heuristic method from the previous chapter. �e
main advantage of this approach is that it offers an alternate generalization
of roof duality that immediately works for polynomials of any degree. �e
downsides are that the result depends on how the conversion to a posiform
is done and that the performance is not better than the state of the art
for low-degree polynomials. Whether custom maximum flow methods for
bipartite graphs can improve the performance considerably is left as future
work.

5.2 Elimination on a Grid

�is section will describe an idea for minimizing quadratic pseudo-boolean
functions defined on a grid similar to the work by Carr and Hartley ().
Let us take figure .a as an example. �e variable x8 is a point in a grid



 .  

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

Number of persistencies

Fr
eq

ue
nc

y
GRD-gen
Vertex packing
HOCR

Figure 5.1: Vertex packing experiment with the same types of polynomials as in
figure 4.2 on page 61. The approach in this section is slightly better than HOCR,
but not by much.

and x3, x7, x9 and x13 are its four neighbors. Let the terms involving x8
be denoted

E1(x3, x8) + E2(x7, x8) + E3(x8, x9) + E4(x8, x13). (.)

Minimizing the sum of these four terms is equivalent to minimizing the
new function

E8(x3, x7, x9, x13) =

min
x8

(E1(x3, x8) + E2(x7, x8) + E3(x8, x9) + E4(x8, x13)) . (.)

E8 is a function of the four remaining variables and its  values can be
computed quickly (by trying both possibilities for x8). In the end, x8 and
the terms containing it are replaced by

x̄3x̄7x̄9x13E8(0, 0, 0, 1) + x̄3x̄7x̄9x̄13E8(0, 0, 0, 0) + . . .

+ x3x7x9x13E8(1, 1, 1, 1). (.)

�is gives us a method of replacing every other variable in the grid with
cliques of degree four in the remaining variables. Figure .b shows the
resulting grid after all eliminations of this type have been performed.

Why would this be a better idea than using quadratic roof duality?
One way of solving the quartic problem is to use a special set of reductions



..    

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

(a) Original grid. Edges denote pair-
wise terms between variables.

1 3 5

7 9

11 13 15

17 19

(b) Grid after reduction. Higher-order
terms are represented by dashed
ovals.

Figure 5.2: Half the number of variables in a 4-connected grid can be eliminated
and replaced by degree-4 cliques.

2.35 2.4 2.45 2.5
0

100

200

300

400

500

Number of persistencies

Fr
eq

ue
nc

y

×105

Figure 5.3: Experiments on 500 Ö 500 grids with randomly generated pairwise
terms. Pink is quadratic roof duality and black is the method described in this
section. Note the scale on the x-axis! There is not much separation between the
two methods.



 .  

that recovers the original quadratic problem. Because the previous chapter
showed that generalized roof duality often performed better than a fixed
set of reductions, this is potentially a better way than using quadratic roof
duality.

To evaluate this method, I generated  Ö  grids with random
pairwise terms. �e number of persistencies is shown in figure .. �e
baseline method is standard quadratic roof duality, which is compared to
quadratic roof duality alternated with eliminations. By itself, elimination
and quartic roof duality do not perform better than standard roof duality
(recall that the quartic relaxation is computed for a subset of all submodular
functions), but combined with standard roof duality more persistencies are
always found. When computing the generalized roof duality of the quartic
functions, the generators from the previous chapter were used. Although
using eliminations always found more persistencies, I did not find the
difference great enough to motivate further testing.



Chapter 6

Continuous Fields of Experts

Denoising

For many optimization problems, a local model built using derivatives
simply does not give any useful information about the global structure,
making it hard for gradient descent methods to find good solutions. For
some of these problems, the discrete optimization methods discussed in
chapter  are able to avoid undesired local minima.

Fields of Experts (o) is a sophisticated prior on the statistics of natural
images (Roth and Black, ). It has a larger clique structure that is capable
of capturing higher order interactions around each image pixel than models
solely based on pairwise interactions. One area where the o priors have
been used to great success is image denoising. For example, the recent
state-of-the-art results in image denoising (Jancsary et al., ) use o as
one part in a more complicated machine learning system.

�ere seems to be a general sense that  inference in problems arising
from the use of o models is hard and that continuous optimization
methods may not be suitable for it. �us an increasingly sophisticated (and
expensive) array of discrete optimization methods have been developed
to solve them (Lan et al., a; Potetz, ; Ishikawa, a,b, ;
Fix et al., ). For this reason, chapter  used image denoising with
an o prior as a benchmark problem for generalized roof duality. �is
short chapter will explore another approach. In fact, a relatively simple
continuous optimization method can be used to solve the o denoising
problem cheaply and effectively.



 .     

6.1 Denoising using Fields of Experts

Given a noisy image u, the negative log-likelihood for an image x ∈ Rn

using the o prior is

f (x) =

n∑
i=1

(xi − ui)2

2σ2 +
∑
P∈P

K∑
k=1

αk log
(

1 +
1
2

(
bT
kxP

)2
)
, (.)

where P is an image patch in the set of all m×m patches P of x and σ is
the standard deviation of the Gaussian noise in u. �e coefficients αk and
the filters bk for k = 1, . . . ,K are estimated from a database of natural
images (Roth and Black, ). �us, finding the maximum likelihood
image given a noisy image u can be formulated as finding the image x that
minimizes (.).

6.2 Non-linear Least Squares Formulation

A robustified non-linear least squares problem is the minimization of a
function of the form (Agarwal and Mierle, ):

N∑
i=1

ρi
(
‖fi(xPi)‖2) . (.)

Here, ρi is a loss function. If it is the identity function, the problem is an
ordinary non-linear least squares problem; see section . on page . Oth-
erwise, under some mild conditions on ρi, (.) can still be solved (locally)
using a non-linear least squares algorithm after appropriate modifications
to the residual vector and the Jacobian matrix (Triggs et al., ).

Observe that the first sum in (.) can be written in the form of (.)
by setting

fi(x) =
x− ui√

2σ
and ρi(s) = s, (.)

and the second sum by setting

fk(xP) = bT
kxP and ρk(s) = αk log

(
1 +

s

2

)
. (.)

�us, minimizing (.) is a robustified non-linear least squares problem.



.. -   

Method
test001 test002

obj. time obj. time

Reported by
Ishikawa

(2011; 2009a) 37769 1326 s. 25030 1330 s.
(2009b) 38132 71 s. 24831 81 s.

Own
computer

(2011; 2009a) 37691 625 s. 24997 631 s.
(2009b) 37686 16 s. 25129 24 s.

Levenberg-Marquardt 37374 2 s. 24556 2 s.

test003 test004
obj. time obj. time

29805 1305 s. 27356 1290 s.
29683 67 s. 27354 79 s

29762 623 s. 27330 604 s.
29734 22 s. 27219 18 s.
29434 2 s. 27088 2 s.

Table 6.1: Denoising the four 160 Ö 240 test images used by Ishikawa (2009a,b,
2011) (shown in figure 6.1) with 2 Ö 2 filters, K = 3 and � = 20. The table reports
final objective function values and running times.

Figure 6.1: The four denoised test images using a 2 Ö 2 FoE model. Table 6.1
shows the quantitative results.



 .     

Method
test001 test002

obj. time obj. time

Levenberg-Marquardt, 3 Ö 3, K = 8 55186 25 s. 39750 24 s.
Levenberg-Marquardt, 5 Ö 5, K = 24 61304 132 s. 42518 139 s.

test003 test004
obj. time obj. time

44798 25 s. 42367 20 s.
47093 149 s. 44820 113 s.

Table 6.2: Denoising with higher-order FoE models using the noisy images in
figure 6.1. The objective function values are from different optimization problems
and are therefore not comparable.

6.3 Experiments

�e continuous experiments used Ceres Solver (Agarwal and Mierle, )
with the Levenberg-Marquardt algorithm (Nocedal and Wright, ) in
combination with the  sparse Cholesky factorization library (Chen
et al., ) to minimize the robustified non-linear least squares formula-
tion of (.). �e two state-of-the-art discrete optimization methods are
based on proposals (see section . on page ) generated in two differ-
ent ways. An implementation of the method using random and blurred
proposals (Ishikawa, ) is publicly available. Higher-order gradient
descent (Ishikawa, b) is not, but was easy to implement.

All experiments used the noisy image as the initial point for the solver.
Since the discrete methods use integer images, the continuous solution using
the  Ö  filters was rounded to the nearest integer in {, . . . , } to get
a fair comparison. �is increased the final objective function value a little
bit (< .). All of the experiments were performed on a . z Intel
Xeon and did not use any multi-threaded capabilities.

�e first experiment processed four test images that has been commonly
used for evaluating discrete methods using the  Ö  o model. Table .
shows the results, both as reported by Ishikawa (b) and of my own
experiments. Figure . illustrates the minima found by the continuous
method; all methods produce visually indistinguishable results. �e non-
linear least squares solver finds a lower objective function value in a fraction
of the time used by the discrete methods.



.. 

0 1 2
0

5

10

15

20

25

Number of pixels

Ti
m

e
(s

)

3
×105

0 1 2
0

200

400

600

800

1000

Number of pixels
3
×105

Figure 6.2: The time required to denoise an image is approximately linear in the
number of pixels. The figure shows graphs for 2 Ö 2 (left), 3 Ö 3 and 5 Ö 5 (right)
filter sizes.

Apart from the four test images used for benchmarking in previous
publications, the next experiment added noise to the  test images in
the Berkeley Segmentation Database (Martin et al., ). �e non-linear
least squares solver always found a better objective value than the method
in (Ishikawa, b) ( on average) and was much faster ( and 
seconds, respectively, on average). �e choice of initial point does not seem
important; an all-zero image worked just as well.

Because of limitations of the methods used for pseudo-boolean opti-
mization, discrete methods for o inference have focused on the  Ö 
case. �e methods by Ishikawa (), Fix et al. (), and chapter  are
not capable of handling the degree- polynomials that would be required
for  Ö  inference. Even representing an arbitrary degree- term requires
 coefficients and each one of them has to be reduced to quadratic terms.
In contrast, nothing is preventing a non-linear least squares solver from
using  Ö  or  Ö  filters. Table . contains the running times and final
objective function values for the four test images.

Finally, the last experiment processed the same image in many different
sizes with the non-linear solver. Figure . shows that the running time is
approximately linear in the number of pixels.



 .     

6.4 Discussion

Non-linear least squares performs very well when applied to  Fields of
Experts denoising. It is several times faster than the fastest method based
on discrete optimization and it is immediately applicable to problems with
larger filter sizes.

As pointed out in chapter  (page ), the more efficient reductions
by Fix et al. () do improve the speed, but only by at most  seconds when
used with higher-order gradient descent (Ishikawa, b). Generalized roof
duality (chapter ) also solves the individual pseudo-boolean problems better,
but is slower. Two other approaches exist, but they are both significantly
slower (Lan et al., a; Potetz, ).

While o denoising is a useful benchmark problem for discrete opti-
mization, we should keep in mind that continuous methods can solve these
problems much more efficiently.



Chapter 7

Parallel and Distributed

Graph Cuts

Chapter  briefly explained that many problems in low-level computer
vision can be formulated as labeling problems using Markov random fields.
Among the examples are image segmentation, image restoration, dense
stereo estimation and shape estimation (Greig et al., ; Boykov and
Kolmogorov, ; Boykov et al., ; Rother et al., ; Lempitsky and
Boykov, ). For problems with three or more labels, α-expansion and
other approximation methods (Komodakis et al., ; Komodakis and
Tziritas, ; Carr and Hartley, ) are available.

�is and the next chapter will describe how the technique of dual decom-
position (see chapter , page ) applies to these and related optimization
methods. �e focus for this chapter will be graph cuts. We will see that dual
decomposition is a valuable tool to parallelize existing algorithms to make
them run faster on modern multi-core processors. We will also see that
prohibitively large memory requirements can be made tractable on both
desktop computers and supercomputer clusters. Examples of optimization
problems with huge memory requirements are segmentation problems in
three or more dimensions and curvature regularization problems. Finally,
we will see that dual decomposition also provides an interesting way of
implementing algorithms on parallel hardware, such as graphical processing
units (s).

Decomposition of graph cuts. �e contribution of this chapter is a parallel
version of the graph cut method by Boykov and Kolmogorov (), which
is henceforth referred to as “.” �e approach has a number of advantages
compared to other parallelization methods:



 .     

. �e -method has been shown to have superior performance com-
pared to competing methods for a number of applications (Boykov
and Kolmogorov, ), most notably sparse  graphs and moder-
ately sized  graphs.

. It is possible to reuse the search trees in the -method (Kohli and
Torr, , ), which makes the dual decomposition approach
attractive.

. Perhaps most importantly, experiments demonstrate good empirical
performance with significant speed-ups compared to single-threaded
computations, both on multi-core platforms and multi-computer
networks.

Naturally, there are also some disadvantages:

. �ere is no theoretical guarantee that the parallelization will be faster
for every problem instance. Already for the -method no polynomial
time guarantee is known, and I do not give one for the number of
iterations, either. In practice this matters little.

. �e current implementation is only effective for graphs for which the
-method is effective. �e underlying dual decomposition principle
can however be applied in combination with any graph cut algorithm.

7.1 Previous Approaches to Graph Cuts in Vision

�e work in this chapter builds on the following two trends: the ubiquity
of maximum flow computations in computer vision and the tendency of
modern microprocessor manufacturers to increase the number of cores in
mass-market processors. �is implies that an efficient way of parallelizing
maximum flow algorithms would be of great use to the community. Due
to a result from Goldschlager et al. (), there is little hope in finding a
general algorithm for parallel maximum flow with guaranteed performance
gains. However, the graphs encountered in computer vision problems are
often sparse with much fewer edges than the maximum n2 − n in a graph
with n vertices. �e susceptibility to parallelization depends on the structure
and costs of the graph.

�ere are essentially three types of approaches used in computer vision
for solving the maximum flow/minimum cut problem:



..        

Augmenting paths. �e most popular method due to its computational
efficiency for  problems and moderately sized  problems with low
connectivity (i.e., sparse graphs) is the -method using augmenting paths
(Boykov and Kolmogorov, ). However, as augmenting path algorithms
use non-local operations, they have not been considered as a viable candidate
for parallelization. One way of making multiple threads cooperate is to
divide the graph into disjoint parts. �is is the approach taken by Liu
et al. (), in which the graph is split, solved and then split differently
in an iterative fashion until no augmenting paths can be found. �e key
observation is that the search trees of the subgraphs can be merged relatively
fast. �e more recent work by Liu and Sun () splits the graph into
many pieces which, in turn, multiple threads solve and merge until only
one remains and all augmenting paths have been found. �e method in this
chapter also splits the graph into multiple pieces, but differs in that it does
not require a shared-memory model, which makes distributed computation
possible.

Push-relabel. �e push-relabel algorithm (Goldberg and Tarjan, ) is
an algorithm suitable for parallelization. �e implementation by Delong
and Boykov () has been tested for up to  processors with good results.
�ere have been attempts to implement this method on a , the latest
being  cuts by Vineet and Narayanan (; ), but my tests
of the (freely available) implementation only gave the correct result for
graphs with low regularization. Another attempt was made by Hussein et al.
(), which performed all experiments on generated images with a very
low amount of regularization. Solving such graphs essentially reduces to
trivial thresholding of the data term. �e earliest reference I was able to find
was the paper by Dixit et al. () which does not report any speed-up
compared to sequential push-relabel.

Convex optimization. Another approach to parallel graph cuts is to for-
mulate the problem as a linear program. Under the assumption that all
edges are bidirectional, the problem can then be reformulated as an `1 min-
imization problem. �e work by Bhusnurmath and Taylor () attempts
to solve this problem with Newton iterations using the conjugate gradient
method with a suitable preconditioner. Matrix-vector multiplications can
be highly parallelized, but this approach has not proven to be significantly



 .     

faster than the single-threaded  algorithm for any type of graph, even
though Bhusnurmath and Taylor used a  in their implementation.

Convex optimization based on a  has also been used to solve contin-
uous versions of graph cuts, e.g. (Klodt et al., ). However, the primary
advantage of continuous cuts is the reduction of metrication errors due to
discretization.

Graph cuts is also a popular method for multi-label problems using,
e.g., iterated α-expansions. Such local optimization methods can naturally
be parallelized by performing two different expansions in parallel and then
trying to fuse the solutions, as done in (Lempitsky et al., ).

7.2 Decomposition of Graphs

Section . on page  gave an introduction to dual decomposition. �is
section describes how the graph is split and how the dual variables enter
the two subgraphs. �e next two sections provide extensive experiments
for graphs in ,  and  dimensions, both multi-threaded and distributed
across many computational nodes in a supercomputer.

7.2.1 Graph Cuts as a Linear Program

Finding the maximum flow, or, by duality, the minimum cut in a graph
can be formulated as a linear program. Let G = (V , c) be a graph where
V = {s, t} ∪ {1, 2, . . . , n} are the source, sink and vertices, respectively,
and c the edge costs. A cut is a partition S, T of V such that s ∈ S and
t ∈ T . �e minimum cut problem is finding the partition where the sum
of all costs of edges between the two sets is minimal. It can be formulated as

minimize
x

∑
i,j∈V

cijxij

subject to xij + xi − xj ≥ 0, i, j ∈ V
xs = 0, xt = 1, x ≥ 0.

(.)

�e variable xi indicates whether node i is part of S or T (xi = 0 or 1,
respectively) and xij indicates whether the edge (i, j) is cut or not. �e
variables are not constrained to be 0 or 1, but there always exists one such
solution, according to the duality between maximum flow and minimum



..   

ONMLHIJK1 oo 1 //
OO
2
��

ONMLHIJK−1 oo
1 //

OO
1
��

ONMLHIJK2 oo 1 //
OO
2
��

__
1

��????????
ONMLHIJK−3 oo

1 //
OO
1
��

ONMLHIJK−1
OO
1
��ONMLHIJK2 oo 1 //

OO
1
��

__
2

��????????
ONMLHIJK−1 oo

1 //
OO
1
��

ONMLHIJK1 oo 1 //
OO
1
��

ONMLHIJK−1 oo
1 //

OO
2
��

ONMLHIJK0
OO
1
��

ONMLHIJK2 oo 1 //
OO
1
��

ONMLHIJK1 oo 1 //
OO
1
��

ONMLHIJK3 oo 2 //
OO
3
��

ONMLHIJK0 oo 1 //
OO
1
��

ONMLHIJK2
OO
1
��ONMLHIJK1 oo 1 //ONMLHIJK0 oo 1 //ONMLHIJK1 oo 3 //ONMLHIJK0 oo 2 //ONMLHIJK1

(a) Original graph. Numbers inside the nodes indicate
s/t connections, positive for s, negative for t.

ONMLHIJK1 oo 1 //
OO
2
��

ONMLHIJK−1 oo
1 //

OO
1
��

ONMLHIJK1+�1

OO
1
��ONMLHIJK2 oo 1 //

OO
1
��

__
2

��????????
ONMLHIJK−1 oo

1 //
OO
1
��

ONMLHIJK1
2 +�2

OO
1
2
��ONMLHIJK2 oo 1 //

OO
1
��

ONMLHIJK1 oo 1 //
OO
1
��

ONMLHIJK3
2 +�3

OO
3
2
��ONMLHIJK1 oo 1 //ONMLHIJK0 oo 1 //ONMLHIJK1

2 +�4

ONMLHIJK1−�1 oo
1 //

OO
1
��

__
1

��????????
ONMLHIJK−3 oo

1 //
OO
1
��

ONMLHIJK−1
OO
1
��ONMLHIJK1

2−�2
oo 1 //

OO
1
2
��

ONMLHIJK−1 oo
1 //

OO
2
��

ONMLHIJK0
OO
1
��ONMLHIJK3

2−�3
oo 2 //

OO
3
2
��

ONMLHIJK0 oo 1 //
OO
1
��

ONMLHIJK2
OO
1
��ONMLHIJK1

2−�4
oo 3 //ONMLHIJK0 oo 2 //ONMLHIJK1

(b) Subproblems with vertices in M and N, respectively.

Figure 7.1: The graph decomposition into sets M and N. The pairwise functions
in M ∩ N are part of both EM and EN and has to be weighted by 1/2. Four dual
variables �1 . . .�4 are introduced as s/t connections.



 .     

cut. Let DV denote the convex set defined by the constraints in (.) for a
node set V .

7.2.2 Splitting the Graph

Now pick two sets M and N such that M ∪N = V and {s, t} ⊂M ∩N
and assume that when i ∈ M \N and j ∈ N \M , cij = cji = 0. �at
is, every edge is either within M or N , or within both; see figure .. �e
objective function in (.) can be rewritten as:∑

i,j∈V
cijxij =

∑
i,j∈M

cijxij +
∑
i,j∈N

cijxij −
∑

i,j∈M∩N
cijxij . (.)

Define two objective functions for M and N , respectively:

EM (x) =
∑
i,j∈M

cijxij −
1
2

∑
i,j∈M∩N

cijxij

EN (y) =
∑
i,j∈N

cijyij −
1
2

∑
i,j∈M∩N

cijyij .
(.)

�is leads to the following equivalent linear program:

minimize
x∈DM
y∈DN

EM (x) + EN (y)

subject to xi = yi, i ∈M ∩N.
(.)

Here x is the variable belonging to the set M (left in figure .b) and y
belongs to N . �e two variables x and y are constrained to be equal in the
overlap. �e dual function of this optimization problem is:

d(λ) = min
x∈DM
y∈DN

(
EM (x) + EN (y) +

∑
i∈M∩N

λi(xi − yi)

)

= min
x∈DM

(
EM (x) +

∑
i∈M∩N

λixi

)

+ min
y∈DN

(
EN (y)−

∑
i∈M∩N

λiyi

)
.

(.)



..   

(a) 2 Ö 2 (b) 2 Ö 2 Ö 2

Figure 7.2: Splitting a graph into several components. The blue, green and red
parts are weighted by 1⁄2, 1⁄4 and 1⁄8, respectively.

Just as in section . on page , this shows that evaluating the dual function
d amounts to solving two independent minimum cut problems. �e extra
unary terms λixi are shown in figure .b. Let x∗,y∗ be the solution
to (.) and let λ∗ maximize d. Because strong duality holds, d(λ∗) =
EM (x∗) + EN (y∗) (Bertsekas, ). Each subproblem may in general
have multiple solutions—a unique solution can be chosen by setting the
optimal x∗ and y∗ equal to 1 wherever possible.

Splitting a graph into more than two components can be achieved with
the same approach. �e objective functions analogous to (.) might then
contain terms weighted by / and /, depending on the geometry of the
split; see figure ..

7.2.3 Implementation

Solving the original problem (.) amounts to finding the maximum value
of the dual function. It follows from Lemma . that xi−yi, for i ∈M∩N ,
is a supergradient to d. �e iterative scheme described in section . can be
used to maximize d. �is scheme requires the dual function to be evaluated
many times. �is is done efficiently by reusing the search trees as described by
Kohli and Torr (). Only a small part of the cost coefficients is changed
between iterations and my experiments show that the subsequent max-flow
computations can be completed within microseconds; see table ..

�e step size τ needs to be chosen in each iteration. One possible choice
is τ = 1/k, where k is the current iteration number. For this particular
application, this scheme and others appearing in the literature (Bertsekas,



 .     

; Komodakis et al., ) can be a bit too conservative. Instead of using
a single step length τ , each node in the overlap has its own step length τi.
�e reason for this is because different parts of the graph behave in different
ways. In each iteration, λi should ideally force xi = yi; therefore, if xi− yi
changed sign, then the step length was too large and the next step should
go in the opposite direction with a reduced length.

foreach i ∈M ∩N do

if xi − yi 6= 0 then

λi ← λi + τi(xi − yi)
if xi − yi 6= previous difference then

τi ← τi/2
end

end

end

To handle cases like the one shown in figure ., the step length should
increase if nothing happens between iterations. Empirical tests show that
keeping an individual step length improves convergence speed for all graphs.
�e extra memory requirements are insignificant.

Convergence. Some graphs may have problems converging to the optimal
solution. �is can occur for graphs admitting multiple solutions. Figure .
shows an illustrative example. While the proposed scheme will converge
toward λ = 1 for this graph, it will not reach it in a finite number of
iterations. If λ 6= 1, the two partial solutions will not agree for the node
marked black. In practice, I observed this phenomenon for a few pixels
when processing large graphs with integer costs.

One possible solution is to add small, positive, random numbers to the
edge costs of the graph. If the graph only has integer costs, this is not a
problem. Increasing edge costs only increases the maximum flow, so the
global maximum flow in the original graph is the integer part of the flow
in the modified graph provided the sum of all values added is less than .
However, there is an alternative way of handling graphs with integer costs.

Floating point arithmetic is not always desirable in discrete optimiza-
tion. Round-off and cancellation errors may cause a suboptimal cut to
be generated. An interesting question is then whether d has an integer
maximizer.



..   

/.-,()*+s
1

��=======
_ _ _ _ _ _�
�
�
�
�
�
�

�
�
�
�
�
�
�

_ _ _ _ _ _

�������� oo 1 // �������� oo 1 // • oo 1 // �������� oo 1 // ��������
1

��=======

/.-,()*+t
(a) Original graph

/.-,()*+s
1

��=======

�������� oo 1 // �������� oo 1 // •
�

��/.-,()*+t
(b) Left part

/.-,()*+s
�

��
• oo 1 // �������� oo 1 // ��������

1

��=======

/.-,()*+t
(c) Right part

Figure 7.3: Convergence problem. The original graph (a) has multiple solutions,
i.e., multiple minimum cuts. If � 6= 1, the solutions for the two graphs (b) and (c)
will not agree.

T . If all the edge costs c are even integers, then there is an integer
vector λ maximizing the dual function (.).

Proof. �e constraint setsDM andDN in (.) can be described byAz ≥ b,
where A is an (integer) matrix, z = (x,y) and b is an (integer) vector.
�erefore, the optimization problem (.) can be written as:

minimize
z

aTz

subject to Az ≥ b

xi − yi = 0, i ∈M ∩N.
z ≥ 0.

(.)

Here, a is an integral vector describing the objective function in (.).
Write Bz = 0 for the equality constraint. �en, the dual function to this
optimization problem is

d̃(w,λ) = min
z

{
aTz +wT(b− Az) + λTBz

}
.



 .     

�e dual is also a linear program,

maximize
w,λ

bTw

subject to ATw + BTλ ≤ a

w ≥ 0.

(.)

Since A is totally unimodular (t.um.) (see section . in the book by
Papadimitriou and Steiglitz ()), so is AT. Also, B is t.um. and a is
integral, and thus the dual function d̃ has an integer optimum (w∗,λ∗).
Since d(λ) = maxw≥0 d̃(w,λ), the proof is complete.

Remark. �e theorem does not necessarily hold if the costs contain odd

integers. �e graph s
∞ // �������� 1 // �������� 1 // t, split at the second node, provides a

counterexample. �e subproblems are s
∞ // �������� 1 // ��������1/2+λ// t and s

λ // �������� 1/2 // t .
�en d(0) = d(1) = 1/2, but d(1/2) = 1.

For a general graph with integer costs split into two pieces, multiplying
each edge by  results in an equivalent problem with an integer maximizer λ.
�e graph may be split in more than two pieces in such a way that smaller
costs than / are used, as in figure .. �ese problems can be set up by
multiplying every cost by  and , respectively, to ensure integer maximizers.

7.3 Experiments on a Single Machine

�is section describes experiments performed in parallel on a single machine
executed across multiple threads. All experiments used the -method (v.)
both for the single-threaded baseline and for solving the subproblems. �e
timings of the multi-threaded runs include any overhead associated with
starting and stopping threads, allocation of extra memory etc. �e time
required to construct the graphs is not taken into account. However, graph
construction trivially benefits from parallel processing.

Image segmentation. �e first experiment used the  images in the Berke-
ley segmentation database (Martin et al., ); see figure . for examples.
�e segmentation model was a piecewise constant model (the pixel values



..     

were normalized to [0, 1]) with the boundary length as a regulating term:

E(x) = ρ
∑
i

∑
j∈N (i)

wij |xi − xj |+
∑
i

xi

(
(Ii − c1)2 − (Ii − c0)2

)
.

(.)

�e boundary length is here approximated using a neighborhood N (i) of
edges around each pixel, usually of sizes ,  or  in the two-dimensional
case. See (Boykov and Kolmogorov, ; Kolmogorov and Boykov, )
for details on how to choose wij . �e overall influence of the bound-
ary length is specified with the parameter ρ, where larger values usually
correspond to harder optimization problems (longer s/t paths). �e two
constants c1 and c0 specify the intensity of the foreground and background.
�ey were estimated in an alternating EM fashion for each image separately
before the experiments.

�e relative times (tmulti-thread/tsingle) using two computational threads
are shown in figures . and .. Since the images in the database are quite
small, the total processing time for a single image is around  milliseconds.
Even with the overhead of creating threads and iterating to find the global
minimum, almost all images saw a significant speed improvement.

Table . shows how the processing time varies with each iteration.
In the last steps, very few vertices change and solving the maximum flow
problems can therefore be done very quickly within microseconds.

It is very important to note that the problem complexity depends heav-
ily on the amount of regularization used. �at is, segmentation problems
with low penalties on boundary length are easy to solve and parallelize. In
the extreme case where no regularization is used, the problem reduces to
simple thresholding, which of course is trivial to parallelize. �erefore, it is
relevant to investigate how the algorithm performs with different amounts
of regularization. �e graph decomposition scheme in this chapter per-
forms well for a wide range of different settings; see figure .. �e relative
improvement in speed remains roughly constant over a large interval of
different regularizations, whereas the absolute processing times vary by an
order of magnitude.

When the number of computational threads increase, the computation
times decrease as shown in figure ..



 .     

Cameraman (256 Ö 256)

Iteration 1 2 3 4 5

Number of Differences 36 17 3 3 0
Time (ms) 6.8 0.141 0.078 0.071 0.447

Tree (1152 Ö 1536, shown in figure 7.7)

Iteration 1 2 3 4 8 9 10 11

Differences 108 105 30 33 · · · 16 9 9 0
Time (ms) 245 1.5 1.2 0.1 · · · 0.15 0.06 0.07 0.47

Table 7.1: The processing time for each iteration for two example images. The
number of overlapping pixels (M∩N) was 256 and 1536, respectively (one column).
Deallocating memory and terminating threads is the cause of the processing time
increase in the last iteration. Note the short processing times after the first iteration
due to the reuse of search trees.

Figure 7.4: Examples from the Berkeley database (Martin et al., 2001).

20

40

60

0.25 0.5 0.75 1 1.25 Relative time

Fr
eq

ue
nc

y

Figure 7.5: Relative times with 2 (red) and 4 (dotted blue) computational threads
for the 301 images in the Berkeley segmentation database, using 4-connectivity.
The medians are 0.596 and 0.455.



..     

20

40

60

0.25 0.5 0.75 1 1.25 Relative time

Fr
eq

ue
nc

y

Figure 7.6: Relative times using 8-connectivity and 2 computational threads. The
median is 0.628.

�

Re
la

tiv
e

sp
ee

d

1 2 3 4 50

0.2

0.6

1

Figure 7.7: Relative improvement in speed with two computational threads when
the regularization parameter changes. Although the processing time ranged from
230 ms to 4 seconds, the relative improvement was not affected.

Stereo problems. �e “Tsukuba” data set, which can be obtained from
University of Western Ontario (), consists of a sequence of max-flow
instances corresponding to the first iteration of α-expansion. See section .
on page  and also the paper by Boykov et al. () for a more thorough
explanation. I solved the  problems first without any parallelization and
then, using two computational threads. �e relative times ranged from .
to ., with the average being ..

�ree-dimensional graphs. Lempitsky and Boykov () use a  graph
construction to fit a surface to a point cloud. �e graphs are regular, -
connected and are suitable tests for the algorithm in three dimensions. Data
is available for download at . For the “bunny” data set the relative time
was . with two computational threads.

Limitations. It is interesting to see how the algorithm performs when the
choice of split is very poor. Figure . shows an image split it in half from
top to bottom. �e leftmost pixel column is attached to the source and the



 .     

Figure 7.8: “Worst-case” test. The left and right side of the image is connected
to the source and sink, respectively. The edge costs are determined by the image
gradient. The entire flow must be communicated between the two computational
threads when splitting the graph vertically.

rightmost to the sink. Splitting horizontally would have been much more
preferable, since splitting vertically severs every possible s-t path and all flow
has to be communicated between the threads. Still, the parallel approach
finished processing the graph  faster than the single-threaded approach.
�is is a good indication that the choice of the split is not crucial.

Figures . and . contain a few examples (< ) where the multi-
threaded algorithm actually performs slower or almost the same as the
single-threaded algorithm. �e single example in figure . is interesting,
because solving one of the subgraphs once takes significantly longer than
solving the entire original graph. �is can happen for the  algorithm, but
is very uncommon in practice. I have noted that slightly perturbing any of
the problem parameters (regularization, image model, split position etc.)
makes the multi-threaded algorithm faster also for this example.

�e other slow examples have a simpler explanation: there is simply
nothing interesting going on in one of the two halves of the graph, see e.g. the
first image in figure .. �erefore, the overhead of creating and deallocating
the threads and extra memory gives the multi-threaded algorithm a slight
disadvantage. �e approach by Liu and Sun () (using smaller pieces) is
better suitable for these graphs.



..    

Computer #3 Computer #4

Computer #1 Computer #2

Figure 7.9: Splitting a graph across many computers. Colors indicate nodes that
should be equal.

7.4 Splitting across Different Machines

�ere exist other, large-scale, applications of graph decomposition. Instead
of assigning each part of the graph to a computational thread, one may assign
each subgraph to a different machine and let the machines communicate
the flow over a network. Figure . shows a diagram of the setup.

Memory is often a limiting factor for maximum flow calculations. Split-
ting the graph made segmenting -dimensional (space + time)  heart
data with  Ö  Ö  Ö  = . voxels possible. �e connectivity
used was , requiring .  memory for the graph representation. By
dividing this graph among four (two by two) different machines and using
 for communication (Snir and Otto, ), the graph was solved in
, seconds. Since only a small amount of data ( k in this case) needs
to be transmitted between machines each iteration, this is an efficient way of
processing large graphs. On the experimental system, the communication
time was about – ms per iteration, for a total of  iterations until
convergence.

 Iris, http://www.lunarc.lu.se/Systems/IrisDetails



http://www.lunarc.lu.se/Systems/IrisDetails

 .     

I have also evaluated the algorithms for some of the big problems avail-
able from the University of Western Ontario. �e largest version of the
“bunny” data set is  Ö  Ö  =  with  edges was solved
in  seconds across  machines. As a reference, a slightly larger version of the
same data set (not publicly available) was solved in over a minute with an
(iterative) touch-and-expand approach in (Lempitsky and Boykov, ).

�e largest data set was a  Ö  Ö , =  voxel  scan
with -connectivity. Storing this graph required   of memory divided
among  ( Ö  Ö ) machines. �e regularization used was low, which
ensured convergence in  seconds with fairly even load distribution. Even
with low regularization, the computation required  iterations.

Splitting graphs across multiple machines also saves computation time,
even though the  introduces some overhead. For the small version of the
“bunny” data set, a single machine solved the problem in  milliseconds,
while two machines used  ms. Four machines (two by two) required
 ms. For the medium sized version the elapsed times were ., . and
. seconds, respectively.

It should be noted that in many cases the  algorithm is not the fastest
possible choice, especially for graphs with higher dimensionality than 
and connectivity greater than the minimum (Boykov and Kolmogorov,
). However, the method described in this chapter could just as easily
be combined with a push-relabel algorithm better suited for graphs with 
or  dimensions. Using a method optimized for grid graphs with fixed con-
nectivity instead of the general  would also reduce memory requirements
significantly.

7.5 Conclusion

�is chapter has shown that it is possible to split a graph and obtain the
global maximum flow by iteratively solving subproblems in parallel. Two
applications of this technique were demonstrated:

• Faster maximum flow computations when multiple  cores are
available (section .).

• �e ability to handle graphs which are too big to fit in the computer’s
, by splitting the graph across multiple machines (section .).



.. 

�is is in contrast to other approaches (Liu and Sun, ; Liu et al.,
) where shared memory is required.

Methods based on push-relabel generally perform better than  for large,
high dimensional and highly connected graphs as discussed in (Boykov
and Kolmogorov, ). �erefore, using this approach with push-relabel
should be investigated in the future.

�e work in this chapter is based on a publication from  (Strand-
mark and Kahl, b). Since then, others have continued the work on
parallelization of discrete optimization algorithms in computer vision. Chap-
ter  contains a brief summary of these developments.



 .     



Chapter 8

Parallel Inference on a G

I will now shift the focus from two-label problems to multi-label segmenta-
tion problems. �e goal is to use dual decomposition for a highly parallel
algorithm which can be run on hardware such as a field-programmable gate
array () or a graphics processing unit (). �e objective function to
be minimized is

E(x) =
n∑
i=1

Ti(xi) +
n∑
i=1

∑
j∈Ni

Eij(xi, xj), (.)

where x ∈ L = {1 . . . L}n and the functions Ti and Eij are arbitrary. �e
setNi is the neighborhood of i, that is, all nodes that are directly dependent
on i. �is chapter focuses on -connectivity, but the ideas are able to handle
higher connectivities.

While this chapter does not offer any new theoretical insights, I will offer
a practical way to parallelize previous approaches with good performance.
�e method uses dual decomposition and dynamic programming similar
to Komodakis et al. (), but the subproblems are simpler and therefore
more easily solved on massively parallel architectures. �e potential for
parallelization was not explored by Komodakis et al. and this chapter will
show that these methods are useful to greatly increase the speed of algorithms
for which other fast methods already are available, such as minimum cut
problems.

Graphical processing units (s) have been used extensively to facilitate
the often very computationally expensive tasks in low-level vision. Segmenta-
tion with total variation models (e.g. problem (Q) in chapter  on page )
has successfully been implemented and can be performed in real time (Pock
et al., ; Unger et al., ). Computing the optical flow between two
images (Werlberger et al., ) and stereo estimation have also benefited
greatly from the parallelization offered by a multi-processor .



 .     

�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������

=

�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������

∪

�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������
�������� �������� �������� �������� ��������

Figure 8.1: The graph decomposition. An edge between two nodes i and j indicate
that j ∈ Ni so that the two nodes are directly dependent on each other. Note
that the two subproblems each consists of many independent one-dimensional
problems.

Solving discrete labeling problems such as minimum cuts and its gener-
alizations on a  has proven to be harder. Often the speed-up is not great
compared to algorithms that run on a  or the method might work well
for only a restricted amount of regularization. In my experience, existing
approaches do not work well, as I mentioned in the previous chapter on
page  about push-relabel. Figure . shows one of my experiments.

8.1 Splitting the Graph

�e first thing to do is to split the objective function E in (.). �e
approach is simple: instead of considering a single graph, I consider two
graphs, one of which contains all vertical connections and one contains all
horizontal connections. �e two new objective functions are

E1(x) =
1
2

n∑
i=1

Ti(xi) +
n∑
i=1

∑
j∈Hi

Eij(xi, xj),

E2(x) =
1
2

n∑
i=1

Ti(xi) +
n∑
i=1

∑
j∈Vi

Eij(xi, xj),

(.)

whereHi and Vi denotes the horizontal and vertical neighbors of i, respec-
tively. �e factor ½ is needed to have E(x) = E1(x) + E2(x). Figure .
illustrates this split of the objective function.

After splitting the graph, the next step is to solve the dual problem (D)
on page . Not only are the two subproblems independent, but each also



..  

consists of many one-dimensional subproblems, completely independent of
each other. Such (acyclic) one-dimensional problems can always be solved
exactly in polynomial time using dynamic programming.

8.2 Dynamic Programming

It is well-known that one-dimensional functions of the type (.) can be
minimized exactly. �e one-dimensional version of (.) is

E(x) =

n∑
i=1

Ti(xi) +

n−1∑
i=1

Ei(xi, xi+1). (.)

To solve this problem, define Ck(y) to be the lowest objective value possible
when assigning xk = y, and only counting the variables up to k. �at is:

Ck(y) ≡ min
x1...xk=y

(
k∑
i=1

Ti(xi) +
k−1∑
i=1

Ei(xi, xi+1)

)
. (.)

�e following lemma describes how to compute Ck(y) recursively over k:

L .

Ck(y) =

{
T1(y) k = 1

Tk(y) + minz∈L
(
Ck−1(z) + Ek−1(z, y)

)
k > 1.

Proof. �e first case C1(y) = T1(y) is trivial. For any k > 1,

Ck(y) = min
x1...xk=y

(
Tk(y) + Ek−1(xk−1, y) +

k−1∑
i=1

Ti(xi) +
k−2∑
i=1

Ei(xi, xi+1)

)

= Tk(y) + min
x1...xk−1=z

(
Ek−1(z, y) +

k−1∑
i=1

Ti(xi) +

k−2∑
i=1

Ei(xi, xi+1)

)
= Tk(y) + min

z∈L

(
Ck−1(z) + Ek−1(z, y)

)
.

Lemma . gives an algorithm to efficiently compute Ck(y) for all
nodes k and labels y. An optimal labeling x∗ can be extracted from this
information. �e value of xk can be computed recursively given x∗k+1.



 .     

L . �e optimum x∗ to (.) satisfies

x∗k =


arg min
y∈L

Cn(y) k = n

arg min
y∈L

Ck(y) + Ek(y,x∗k+1). k < n

Proof. �e case k = n is the definition of Cn(y). If k < n,

x∗k = arg min
y∈L

min
x∈L, xk=y

E(x)

= arg min
y∈L

min
x∈L, xk=y

(
n∑
i=1

Ti(xi) +
n−1∑
i=1

Ei(xi, xi+1)

)

= arg min
y∈L

min
x∈L, xk=y

(k∑
i=1

Ti(xi) +
k−1∑
i=1

Ei(xi, xi+1)

+
n∑

i=k+1

Ti(x∗i) +
n−1∑
i=k

Ei(x∗i ,x
∗
i+1)

)

= arg min
y∈L

(
Ck(y) +

n∑
i=k+1

Ti(x∗i)

+ Ek(y,x∗k+1) +
n−1∑
i=k+1

Ei(x∗i ,x
∗
i+1)

)
= arg min

y∈L
Ck(y) + Ek(y,x∗k+1).

Lemmas . and . together give an efficient method of minimizing
E(x). �e time required for arbitrary objective functions will be quadratic
in the number of labels, which makes the method described in this chapter
prohibitively slow for problems with a huge number of labels, such as
problems arising in (Pritch et al., ).

8.3 Boolean Formulation and Updating of Weights

�e problem formulation of minimizing (.) such that x ∈ L imposes
an ordering on the labels. �is is because a supergradient to d is x∗ − y∗



..      

(see Lemma . on page ) and this difference depends on the numerical
values of the labels. To avoid this dependence, reformulate the optimization
problem as a boolean problem:

Ê(x̂) =

n∑
i=1

∑
`∈L

x̂`,i · Ti(`) +

n∑
i=1

∑
j∈Ni

∑
`1∈L

∑
`2∈L

x̂`1,i · x̂`2,j · Eij(`1, `2),

(.)

where now x̂`,i ∈ {0, 1} and x̂`,i = 1 ⇐⇒ xi = `. Minimizing Ê is
clearly equivalent to minimizing E. �e constraint x = y is reformulated
as x̂` = ŷ`, ` ∈ L and each of these is associated with a dual variable λ̂`.
�e supergradient is according to Lemma . on page 

(∇d̂(λ̂1, . . . , λ̂`))`,i = x̂`,i − ŷ`,i. (.)

If the two solutions disagree for node i, the dual variables will then have to
be updated accordingly:

λ̂`,i ← λ̂`,i + τ (x̂`,i − ŷ`,i), (.)

where τ is the step length for the current iteration. Since the dual variables
enter as multiplicative constants in front of {0, 1}-variables, adding a num-
ber c to λ`,i is equivalent to adding c to Ti(`). �erefore, the dual variables
need not be stored explicitly and the data terms are instead modified directly.

8.3.1 Step Lengths

�e step length rule I found to work best in practice was simply τ =
C/k, where k is the iteration number. To allow for data terms of different
magnitudes, the step lengths can be normalized to τ = m/(3k), where m
is the maximum value of the data terms. If the data terms contain hard
constraints with infinite cost weights, these will have to be excluded. I have
also tried the primal-dual based rule used by Komodakis et al. (), but
in this context it was slightly inferior. I discussed different step size schemes
in section .. on page  and mentioned that no method working with
supergradients alone can be very effective in general, and the problems in
this chapter are very general indeed.



 .     

8.4 Linear Programming Relaxation

A very relevant question is whether the decomposed problem will solve
the original problem. In general, this is too much to hope for, but how
good will the solution be? �is is answered by Komodakis et al. ().
�e combinatorial minimization problem of minimizing E can be relaxed
to a linear programming problem. Problem (.) on page  is such a
relaxation for the case L = {0, 1}. For the one-dimensional subproblems
the relaxation is always tight, and this fact can be used to show that the
optimal value of the decomposed problem is equal to the value of the relaxed
linear program. �is is very similar to what was used in the previous chapter
to prove that dual decomposition always converges to the global optimum
in the submodular boolean case.

8.5 Experiments

All  experiments were performed with an Intel Core Quad . z
processor (using a single core only) and the  experiments used an Nvidia
Tesla . �e iterations continued until the computed relative duality
gap was smaller than .. Results are given for the standard Potts model
for which the regularizer is simply

Eij(`1, `2) =

{
ρ `1 6= `2

0 `1 = `2
. (.)

If the number of labels is L = 2, the exact solution can be computed as the
minimum cut in an appropriate graph. If L ≥ 3, two approximate methods
provide good comparisons: α-expansion (section . on page ) and Fast
(Komodakis and Tziritas, ). �e results are given in tables .–. as
well as Figures .–.. Comparing to  cuts (Vineet and Narayanan,
) was not possible—the publicly available algorithm did not give the
correct solution for any of the problems in figure .. For ρ = 105 and 106

the algorithm produced a constant image. �ere are other methods available,
e.g. - which are not included, but other researchers (Alahari et al., ;
Carr and Hartley, ) have made comparisons to these methods.

�e data terms for the three-class experiments (table . and figure .)
were created by estimating a Gaussian mixture model using the standard



.. 

� BK time CPU time GPU time Rel. duality gap # iter.

104 0.0108s 0.0691s 0.042s 0.00024 71
105 0.0204s 0.0166s 0.01s 0.00017 16
106 0.4973s 0.0330s 0.017s 0.00046 26

Table 8.1: Boolean segmentation results for the “cameraman” image in figure 8.2.
This table compares the BK algorithm (Boykov and Kolmogorov, 2004, v.3.01) to a
CPU and GPU implementation of the algorithm described in this chapter. The dual
decomposition algorithm seems to perform best using high regularizations.

� Images
CPU Relative speed CPU Absolute time (s)

Min. Median Max. Median

104 300 0.45 3.99 9.13 0.0120
5 · 104 293 0.43 2.50 8.69 0.0240

105 279 0.35 1.55 4.18 0.0373
5 · 105 163 0.07 0.31 1.77 0.1548

106 95 0.04 0.13 0.77 0.3483

Table 8.2: Binary segmentation results using (7.8) on page 93 for the images in
the Berkeley segmentation data set (CPU, single thread). If the result was a trivial
(constant) segmentation, that image was excluded; therefore, the lower number
of images for higher regularization. Two facts can be seen from these numbers:
(i) that higher regularization results in far more difficult problems and that (ii) the
row/column decomposition performs much better for those problems and those
problems only.

expectation maximization algorithm. However, the figures in tables .
and . do not exploit the possibility of massive parallelization, making dual
decomposition a very attractive alternative, provided that the architecture
can support the execution of many dynamic programming threads. Unlike
in the previous chapter (fig. . on page ), a speed-up is present mainly
for problems where the amount of regularization is high.

When the number of labels increases, the time until convergence in-
creases drastically. �is is illustrated in figure .. Furthermore, for general
objective functions, the processing time required for a single iteration in-
creases quadratically with the number of labels. �ese two facts make
the method unattractive for a large number of labels and inferior to e.g.
α-expansion.



 .     

Figure 8.2: Pseudo-boolean segmentation with different regularizations � ∈
{104, 105, 106}. See table 8.1.

Figure 8.3: Result using CUDA cuts (Vineet and Narayanan, 2008) with � = 104.
The correct solution is shown in figure 8.2. For � = 105 and 106 the algorithm
produces a constant image.

Figure 8.4: Result using the Potts model with 64 labels. To the left the solution
obtained by �-expansion is shown, followed by the row and column solutions
of figure 8.1 after 500 iterations. Running 10000 iterations did not improve the
solutions significantly.

�
Decomposition (s) FastPD (s) α-expansion (s)

Min. Med. Max. Min. Med. Max. Min. Med. Max.

2 0.02 0.27 3.06 0.13 0.15 0.33 0.22 0.34 0.76
10 0.04 0.27 2.93 0.13 0.16 0.39 0.22 0.38 1.08

100 0.02 0.23 4.15 0.14 0.32 1.46 0.16 0.64 2.67

Table 8.3: Multi-label segmentation with the Potts model for the 300 images in
the Berkeley data set. All three methods produced virtually indistinguishable results.
The decomposition method was run single-threadedly, i.e. the possibility of massive
parallelization was not used.



..  

Figure 8.5: Three-class example. Top row: Original image and segmentations with
the Potts model for different regularizations � ∈ {2, 10, 100}, respectively. Bottom
row: data terms. See table 8.3.

8.6 Coordinate Ascent

I will end this chapter with a comment on the shape of the dual function
d in the boolean case where x ∈ {0, 1}n. �e goal is to maximize d. For
this purpose, let us consider the dual function as a function of only one
component of λ, say corresponding to xj , and keep all other components
fixed: λi = µi if i 6= j. We can then drop the subscript and write λj = λ.
It is natural to consider the two parts of the dual function separately by
introducing the two functions

d1(x, λ) = E1(x) +
∑
i 6=j

µixi + λxj

d2(y, λ) = E2(y)−
∑
i 6=j

µiyi − λyj .
(.)

�e dual function is then the sum of the two functions

d1(λ) = min
x∈{0,1}n

d1(x, λ)

d2(λ) = min
y∈{0,1}n

d2(y, λ).
(.)

What do d1 and d2 look like? In fact, they are quite simple: Figures .a
and .b show the shape of these functions and the following lemmas prove
that this is the case.



 .     

L . d1 is increasing.

Proof. Let λ′ ≥ λ. �en d1(λ) ≤ d1(x′, λ) ≤ d1(x′, λ′) for any x′.
Taking the minimum gives d1(λ) ≤ d1(λ′).

L . Let λ′ > λ. If xj = 0 for some solution x to the minimization
problem d1(λ), then

(a) x′j = 0 for all solutions x′ to the problem d1(λ′) and

(b) d1(λ) = d1(λ′).

Proof. Let x be a solution to d1(λ) with xj = 0. To prove statement
(a), assume that there is a solution x′ to d1(λ′) with x′j = 1. �en
d1(x, λ) = d1(x, λ′) ≥ d1(x′, λ′) > d1(x′, λ), which is a contradiction
to the optimality of x.

To prove (b), observe that d1(λ) = d1(x, λ) = d1(x, λ′) ≥ d1(λ′).
Since d1 is increasing this establishes that d1(λ) = d1(λ′).

L . Let λ′ < λ. If xj = 1 for some solution x to d1(λ), then

(a) x′j = 1 for all solutions x′ to d1(λ′) and

(b) d1(λ′) = d1(λ)− (λ− λ′).

Proof. �e proof proceeds in the same manner as in the previous lemma.
Let the solutions to d1(λ) and d1(λ′) be x and x′, with xj = 1 and
x′j = 0. �en d1(x′, λ) = d1(x′, λ′) ≤ d1(x, λ′) < d1(x, λ), which is a
contradiction to the optimality of x.

For (b), d1(λ)− (λ−λ′) = d1(x, λ)− (λ−λ′) = d1(x, λ′) ≥ d1(λ′).
On the other hand, d1(λ)− (λ− λ′) ≤ d1(x′, λ)− (λ− λ′) ≤ d1(x′, λ′)
for anyx′ ∈ {0, 1}n. Taking the minimum gives the reverse inequality.

�e previous lemmas show that d1 has at most one breakpoint and is
constant for values larger than the breakpoint and increasing with slope
1 for values smaller. It is now easy to see that there must be exactly one
breakpoint, by letting λ → ±∞. Figure .a shows the function d1(λ).
�e function d2 is of course analogous, as shown in figure .b. In this case:

L . d2 is decreasing.



.. 

xj = 1 = 0

�1

(a) d1(�)

+

= 0 yj = 1

�2

(b) d2(�)

=

�2 �1

(c) d1(�) + d2(�)

Figure 8.6: The dual function value as a function of one of the components in λ.

L . Let λ′ < λ. If yj = 0 for some solution to d2(λ), then y′j = 0
for all solutions to d2(λ′).

L . Let λ′ > λ. If yj = 1 for some solution to d2(λ), then y′j = 1
for all solutions to d2(λ′).

L . Let λ′ ≤ λ. If y is a solution to d2(λ) with yj = 0, then
d2(λ) = d2(λ′).

L . Let λ′ ≥ λ. If y is a solution to d2(λ) with yj = 1, then
d2(λ′) = d2(λ)− (λ′ − λ).

�e full dual function d(λ) = d1(λ) + d2(λ) must be constant between
the two breakpoints λ1 and λ2 and have slope ±1 outside this interval; see
figure .c. �is holds both if λ1 > λ2 or the other way around. �is gives
an ascent method for the dual function. �e breakpoints of d are easily
obtained from the dynamic programming scheme seen previously in this
chapter.

8.7 Conclusion

�e method of splitting the graph used in the previous chapter is not suitable
for massive parallelization. If a lot of parallelism is desired, the graph needs
to be split in another way, preserving some of the long paths of the original
graph. �is chapter has proposed such a decomposition, with the additional
benefit of being able to find approximate solutions for arbitrary objective
functions and number of labels. While the idea of tree decompositions is
not new, the possibilities for parallelism and  implementation have not



 .     

been previously investigated. However,  parallelization of minimum cut
algorithms for vision is still an unsolved problem in general. Implementing
the dynamic programming schemes on a massively parallel architecture is
non-trivial.



Part II

Parametric Models

Chapter 9

Optimizing Parametric Total

Variation Models

In the introduction, I presented the segmentation problem as finding an
optimal curve γ enclosing a region Γ ⊆ Ω. Alternatively, this can be
formulated as finding a function θ : Ω → {0, 1}, such that θ(x) =
1 ⇐⇒ x ∈ Γ . �e optimal function then defines the region of interest
directly.

�e data term (.) on page  is constructed from an observation model,
which normally contains one or several unknown parameters that either
must be known a priori or estimated together with the segmentation itself.
�is estimation is a minimization problem, where the optimal parameters
depend on the proposed segmentation θ̂. �is chapter investigates special
cases of these functionals, where the image to be estimated is binary and
the number of unknown parameters is relatively small.

9.1 �e Mumford-Shah Functional

�e functional introduced by Mumford and Shah () is a widely used
functional for image segmentation. As a special case, Chan and Vese ()
proposed a segmentation method where an image is approximated with
a function taking only two values. By minimizing an objective function
consisting of a smoothness term added to the squared distance between the
original and the approximation, a large variety of images can be segmented
correctly. However, the exact minimization of this functional is a difficult
problem and this chapter will describe new results on this topic obtained by
using recent works by Chambolle () and Chan et al. ().

Without loss of generality the image I : R2 ⊃ Ω → R is assumed to



 .   

take values in [0, 1]. �e main contribution of this chapter is a method to
evaluate real-valued functions of the following type:

m(t) = min
θ,s

E(θ, s, t), (.)

where E is a functional depending on the binary valued function θ : Ω →
{0, 1}, the one-dimensional parameter s ∈ R as well as some additional
vector of real parameters t. �e ability to evaluate such functions allows us
to efficiently optimize parametric, binary total variation models including
several variants of the Mumford-Shah functional. �e standard way of
solving such problems is by alternating optimization:

. Keep the real parameters s, t fixed and solve for θ.

. Keep θ fixed and solve for the real parameters s, t.

By including one additional parameter in the first step, the neighborhood
search is enlarged and the risk of getting trapped in local minima is reduced.

Another consequence of (.) is the possibility of obtaining globally
optimal solutions to low-order parametric total variation models. One of
the primary problems in this class of segmentation models is the Chan-Vese
model, in which the image is approximated with a function taking only two
values, µ0 and µ1, by solving the following optimization problem:

minimize
θ,µ0,µ1

ρJ (θ)

+

∫
Ω

(1− θ(x))(I(x)− µ0)2 + θ(x)(I(x)− µ1)2 dx

subject to θ(x) binary
0 ≤ µ0 < µ1 ≤ 1. (.a)

Here J(θ) is the total variation of θ, J(θ) =
∫
Ω | ∇θ | dx. When θ is

binary, the total variation is the length of the boundary between the two
regions defined by θ. �e weight ρ > 0 controls how important a short
boundary is. �e assumption that µ1 > µ0 is without loss of generality
and it prevents (.a) from inherently having two optima. Section . will
show how to find the optimal segmentation as well as the optimal values of
the two parameters µ0 and µ1 by a simple branch and bound search over a
single dimension.



..  - 

(a) �1 = 0.7, �0 = 0, E = 615 (b) �1 = 1, �0 = 0.2, E = 600

Figure 9.1: Segmenting a simple image. The result shown in (a) was obtained after
setting �0 = 0, �1 = 1 and alternating between minimizing � and updating �0,�1.
In (b), the global minimum is shown.

9.1.1 Related Work

If µ0 and µ1 are fixed, problem (.a) becomes equivalent to

minimize
θ(x) boolean

ρJ (θ) +

∫
Ω
θ(x)

(
(I(x)− µ1)2 − (I(x)− µ0)2

)
dx .

(.b)

�is problem is still non-convex, because the discrete set {0, 1} is non-
convex. Chan et al. () showed that globally optimal solutions can still
be obtained by relaxing θ to the interval [0, 1], solving the resulting convex
problem and then thresholding the result. Several algorithms have been
developed to solve this convex minimization problem, e.g. by Bresson et al.
(). If the image is discretized, optimal solutions can also be obtained
via graph-cuts, with a suitable J .

On the other hand, if one wants to also optimize over µ0 and µ1 simul-
taneously the problem is no longer convex. In practice, this is solved by
alternating between minimizing over θ with µ0, µ1 fixed and minimizing
µ0, µ1 with θ fixed (Bresson et al., ; Chan et al., ; Chan and
Vese, ). �e latter step is very simple, it just consists of taking the
means of the two regions defined by θ (Mumford and Shah, ). �is
procedure does not guarantee that the final solution obtained is globally
optimal. Indeed, figure . shows an image where this procedure fails. �e
result with initial values of µ0 = 0 and µ1 = 1 is shown in figure .a,



 .   

which is only a local optimum, because the segmentation in figure .b has
a lower objective function value.

Another method is of course to perform an exhaustive search over the
parameters µ0 and µ1, solving (.b) for each possible pair. �is is done by
Darbon (), where a maximum-flow formulation of (.b) is solved for
every pair of the two levels. �e size of the graphs is reduced with a method
that bears some resemblance to the one described here. An alternative
approach was pursued by Lempitsky et al. () where branch and bound
was applied over µ0 and µ1 for a discretized version of (.a).

9.1.2 Example: Existence of Local Minima

Constructing an explicit example of an image for which (.a) has a non-
optimal local minimum is not hard. Let Ω = [0, 4] × [0, 1]. Let I(x)
consist of three regions separated by the two vertical lines described by
x = 1 and x = 2, respectively. �e three regions have gray values 1, 0.5
and 0. �e areas of the three regions are:

A1 = 1, A2 = 1 and A3 = 2. (.)

Because of symmetry, an optimal segmentation will always be a vertical line.
Consider the simplest case where ρ = 0. If the line x = 1 is chosen the
optimal values of the mean values are µ0 = 0.5A2+0A3

A2+A3
= 1

6 and µ1 = 1,
for a total objective function value of

A1(1− 1)2 +A2

(
0.5− 1

6

)2

+A3

(
0− 1

6

)2

=
1
6
. (.)

And for these values of µ0 and µ1 the segmentation is optimal since |0.5−
µ0| < |0.5− µ1| makes the pixels valued 0.5 be optimally assigned to the
background (0). If the outer boundary is chosen the optimal mean values
are µ0 = 0 and µ1 = 1A1+0.5A2

A1+A2
= 3

4 , for a total function value of

A1

(
1− 3

4

)2

+A2

(
0.5− 3

4

)2

+A3(0− 0)2 =
1
8
. (.)

Because |0.5− µ0| > |0.5− µ1| the gray (0.5) pixels are optimally assigned
to the foreground (µ1). Since 1/8 < 1/6, the first segmentation is a non-
optimal local minimum with respect to alternating minimization. Figure .
shows how this can occur in practice.



..   

9.2 Parametric Binary Problems

For any function v, let v(t) denote the function thresholded at t; that is,
v(t)(x) = 1 if v(x) > t and 0 otherwise. From now on, the smoothness
function J satisfies the following requirements:

. J (v) is convex and J (v) ≥ 0.

. J (tv) = tJ (v) for every t > 0.

. J (v) =
∫∞
−∞ J (v(t))dt (general co-area formula).

For example, the total variation
∫
Ω | ∇v | dx satisfies these three conditions.

We will now define two optimization problems and show that thresh-
olding the solution to one gives a solution to the other. Let f (x, s) be a
real-valued function such that f (x, ·) is continuously strictly increasing for
each fixed x ∈ Ω and f (x, z(x)) = 0 for all x and some bounded function
z. Let F be any function such that ∂F/∂s(x, s) = f (x, s) for all (x, s).
Consider the following discrete problem, defined for a real parameter s:

minimize
θ(x) boolean

ρJ (θ) +

∫
Ω
θ(x)f (x, s) dx. (Ps)

We will need the following property of the solutions to (Ps):

L . Let s1 > s2. �en the solutions θ1 and θ2 to (Ps1) and (Ps2),
respectively, satisfy θ1(x) ≤ θ2(x) (a.e.).

Proof. Define operators ∧ and ∨ by:

(η ∧ θ)(x) = min(η(x), θ(x))
(η ∨ θ)(x) = max(η(x), θ(x)).

(.)

Let Es(θ) denote the functional to be minimized in (Ps). Since θ1 and
θ2 are optimal, Es1(θ1) ≤ Es1(θ1 ∧ θ2) and Es2(θ2) ≤ Es2(θ1 ∨ θ2).
Summing these inequalities and using the fact that J (θ1∧θ2)+J (θ1∨θ2) ≤
J (θ1) + J (θ2) (Chambolle, , Lemma .) results in∫

Ω

(
f (x, s1)(θ1(x)− (θ1 ∧ θ2)(x)) +

f (x, s2)(θ2(x)− (θ1 ∨ θ2)(x))
)
dx ≤ 0. (.)



 .   

But θ1(x)− (θ1 ∧ θ2)(x) = −(θ2(x)− (θ1 ∨ θ2)(x)), so this is equivalent
to ∫

Ω
(f (x, s1)− f (x, s2))(θ1(x)− (θ1 ∧ θ2)(x))dx ≤ 0. (.)

Since f (x, s1) − f (x, s2) > 0, θ1(x) − (θ1 ∧ θ2)(x) must be equal to 0.
θ1(x) ≤ θ2(x) a.e. follows.

�e corresponding convex variational problem to (Ps) is:

minimize
w(x)∈R

ρJ (w) +

∫
Ω
F (x, w(x)) dx . (Q)

Problems (Ps) and (Q) are related, as stated by the following theorem:

T . A function w solves (Q) if and only if w(s) solves (Ps) for any
s ∈ R.

Proof. Define w, for every x ∈ Ω, as follows:

w(x) = sup {s | ∃θ solving (Ps) with θ(x) = 1}.

�e first task is to show that w is a well-defined real-valued function. If
f (x, s) ≤ 0 for allx it follows that θ ≡ 1 solves (Ps). Similarly, f (x, s) ≥ 0
implies that θ ≡ 0 is a solution. �is means that w is bounded, more
precisely that infy z(y) ≤ w(x) ≤ supy z(y). To see this, choose s′ <
infy z(y). By definition we have w(x) ≥ s′ for all x.

�e second task is to show that the thresholded functionw(s) solves (Ps).
Let s be fixed. If s < w(x), any solution θ of (Ps) must satisfy θ(x) = 1,
while if s > w(x) we must have θ(x) = 0 (Lemma .). Since w(s) satisfies
these requirements, we see that w(s) is a solution to (Ps). If the set where
w(x) = s is not a null set, we can consider s′ arbitrary close to s.

Finally, to show that w is the solution to (Q), start out by letting
s∗ < infy v(y) for some v and observe that∫ ∞

s∗

v(s)(x)f (x, s) ds =

∫ v(x)

s∗

f (x, s) ds = F (x, v(x))− F (x, s∗).

(.)



..   

Now integrate over problem (Ps) for all s:∫ ∞
s∗

(
ρJ (v(s)) +

∫
Ω
v(s)(x)f (x, s) dx

)
ds

= ρJ (v) +

∫
Ω
F (x, v(x)) dx−

∫
Ω
F (x, s∗) dx .

But w(s) minimizes the integrand for every s. �is means that for any
function v,

ρJ (v) +

∫
Ω
F (x, v(x)) dx ≥ ρJ (w) +

∫
Ω
F (x, w(x)) dx . (.)

�is shows that w is the unique solution of the strictly convex functional in
(Q).

R . Problem (Q) with F (x, w(x)) = 1
2 (w(x) − I(x))2 is a

well-studied convex functional for image restoration, (Rudin et al., ). I
will refer to it as an  problem.

R . Chambolle () proved �eorem . for the special case
f (x, s) = s − G(x) and used the result to approximate the solution to
problem (Q) with a series of discrete solutions to (Ps). �is chapter uses the
result in the other direction, for solving a one-parameter family of discrete
problems by thresholding a single  solution.

R . If f (x, s) = H(x)s−G(x) with H(x) > 0, then

F (x, w(x)) =
1
2

(√
H(x)w(x)− G(x)√

H(x)

)2

. (.)

�is is the result the rest of this chapter will use. I will call problem (Q)
with this data term a weighted  problem.

9.2.1 Numerical Method

All numerical experiments in this chapter use the following smoothness
function:

J (θ) =
M∑
i=0

N∑
j=0

√
(θi+1,j − θi,j)2 + (θi,j+1 − θi,j)2, (.)



 .   

which can be seen as a discretization of the “true” length of the boundary.
Problem (Q) with (.) can be written as

minimize
w

J (w) +
1

2ρ

∫
Ω

(D(x)w(x)−B(x))2 dx , (.)

and can be solved by adapting a method by Chambolle (, ). It
involves a projection onto

K = {div ξ | ξ ∈ C1(Ω,R2), |ξ(x)| ≤ 1}. (.)

A solution can be found by iterating the following scheme:
w(n)
i,j =

(
Bi,j + ρ

(
div ξ(n))

i,j
/Di,j

)
/Di,j

ξ(n+1)
i,j =

ξ(n)
i,j + (τ/ρ)(∇w(n))i,j

max{1, |ξ(n)
i,j + (τ/ρ)(∇w(n))i,j |}

, (.)

where τ is the step-length. �e initial condition can be set to ξ(0) = 0 and
w(0) = B. A suitable stopping criterion when D ≡ 1 is also derived by
Chambolle (): if w∗ is the true solution, the error is bounded by

‖wn − w∗‖2 ≤ ρJ (w)− ρ
∑
i,j

ξni,j · (∇wn)i,j . (.)

�is error bound can be divided by the number of pixels to get a bound
independent of the size of the image being processed.

9.3 Two-Phase Mumford-Shah Functional

Recall the original problem (.a). �e following change of variables is
required to proceed:{

δ = µ1 − µ0

ν = µ2
1 − µ2

0
⇐⇒

µ1 = ν + δ2

2δ
µ0 = ν − δ2

2δ .
(.)

In these new variables, the objective function in (.a) is

E(θ, ν, δ) =

ρJ (θ) +

∫
Ω
θ(x)(ν − 2δI(x)) +

(
ν − δ2

2δ
− I(x)

)2

dx . (.)



.. - - 

(a) Solutions to (Q)

(b) Thresholded solutions

0.1 0.2 0.3

0.4

0.6

0.8

1

·104

�

En
er

gy

0.4 0.6 0.8
2,000

3,000

4,000

5,000

�

(c) Objective function values vs. �

Figure 9.2: Finding the globally optimal objective function value for a fixed � by
thresholding the solution to problem (Q). The two columns correspond to different
values of �: left, 0.2, and right, 0.6. Note the completely different non-convex
profiles for the two different values of �.



 .   

Let the function m(δ) previously introduced in (.) denote the minimum
objective function value possible given a fixed δ, m(δ) = minθ,ν E(θ, ν, δ).
�e set of parameters (µ0, µ1) has two degrees of freedom and evaluating
m(δ) means optimizing over one degree of freedom while keeping the other
one fixed.

9.3.1 Optimization with Fixed Difference

�e result in �eorem . implies thatm(δ) can be evaluated by thresholding
the solution to the real-valued problem (Q) for all ν and evaluating the
objective function. �is is because evaluating m(δ) amounts to solving

min
ν

(
min
θ

E(θ, ν, δ)
)
. (.)

�e inner problem is a special case of (Ps) with f (x, s) = s− 2δI(x). To
see this, recall that the last term of E(θ, ν, δ) in (.) does not depend on
θ. Remark . states that it can be solved with (.). After the solution to
(Q) is obtained, the solution is thresholded and E evaluated for all ν. To
summarize, computing m(δ) consists of the following steps:

. Solve problem (Q) with F (x, s) = 1
2 (s− 2δI(x))2.

. For each ν, threshold the solution w at ν and evaluate the resulting
objective function value (.).

. �e pair (ν∗, θ∗) with the lowest objective value is the global solution
to problem (.a) with δ fixed.

Step one is a standard  problem, for which there exist fast minimization
methods; see (Pock, ) for an overview and (Pock et al., ) for a 
implementation. �e simple  implementation I used performed one
(.)-iteration in about  ms for ρ = δ = 0.5. �e number of iterations
required until convergence is strongly dependent on ρ and δ. �e second
step does not need as much attention as it is a very fast procedure and can
trivially be parallelized.

Figure . shows an example where δ has been fixed to . and .,
respectively. �e graphs show that the objective function has a lot of local
minima as ν varies. �e thresholding process finds the global minimum
quickly. It is also interesting to note that the graph of the objective function



.. - - 

looks entirely different for different δ, which suggest that the minimum
objective function value is a complicated function with respect to (δ, ν),
and therefore nontrivial to minimize.

Figure . shows m(δ) evaluated on the entire interval [0, 1] for five
images. Note thatm(δ) is often very flat around the global optimum, which
has two consequences: (i) it will be difficult to find the optimum δ∗ with
certainty, but (ii) one evaluation of m(0.5) is often enough to find a good
solution, close to the global solution.

9.3.2 Optimization with Varying Difference

It is also possible to solve problem (.a) along another direction. �e
analogous function to m(δ) is

m̂(ν) = min
θ,δ

E(θ, ν, δ), θ(x) boolean. (.)

If we let s = −δ computing this function means solving

min
s

(
min
θ(x)

ρJ (θ) +

∫
Ω
θ(x)(2I(x)s+ ν) dx

)
. (.)

�e procedure for calculating m̂(ν) is the same as the one described in the
previous section, with the first step replaced by:

’. Solve problem (Q) with F (x, s) = 1
2 (2I(x)s+ ν)2.

�e resulting minimization problem can be written in the form (.).
�erefore, this step can be performed with the method described in sec-
tion ...

Figure . shows an example with the “camera man” image. In the
experiment ν was fixed to . and .. �is resulted in two very different
curves for the same image.

9.3.3 Obtaining a Lower Bound

We have a method to compute m(δ); the next logical step is to minimize it.
To be able to prove a lower bound, a way to obtain a bound for m on an
interval [δ1, δ2] is required. A good lower bound is an essential part of the
branch and bound framework; see section . on page .



 .   

Figure 9.3: The function m(�) for 5 images with � = 0.5. Note that m is very
flat near the optimum. The dashed line shows the objective function value after
subsequent alternating optimization of �0 and �1. Image credit: Martin et al.
(2001).

0.4 0.6 0.8
2,000

4,000

6,000

En
er

gy

(a) � = 0.55

0.5 0.6 0.7 0.8 0.9
4,000

4,500

5,000

5,500

(b) � = 0.75

Figure 9.4: “Camera man” image. Objective function values (y-axis) for problem
(9.2a) on the curve �2

1 − �2
0 = �, each obtained by thresholding all possible �

(x-axis).



.. - - 

Finding a lower bound for m(δ) requires finding one for the objective
function E(θ, ν, δ) defined in (.) for any δ ∈ [δ1, δ2]. �is function
can be bounded from below on the interval by:

Ebound
δ1,δ2

(θ, ν) = ρJ (θ) +

∫
Ω
θ(x)(ν − 2δ2I(x)) dx

+ min
δ∈[δ1,δ2]

∫
Ω

(
ν − δ2

2δ
− I(x)

)2

dx . (.)

It follows that the minimum of Ebound
δ1,δ2

is a lower bound to the minimum of
m on [δ1, δ2]. �e last term does not depend on θ and can be computed by
choosing δ such that ν−δ

2

2δ is as close to the mean of the image as possible.
Finding the lower bound therefore amounts to solving (Ps) with f (x, s) =
s − 2δ2I(x) for every s and computing the minimum of the resulting
objective function values. Just like before, every solution can be obtained
by thresholding the solution to (Q). Denote the obtained lower bound
mbound(δ1, δ2).

9.3.4 Global Optimization

�e lower bound can be used to perform a branch and bound search on
the interval [0, 1], splitting each subinterval until it can either be discarded
or contains the optimum. However, obtaining a useful bound for even
moderately large subintervals is hard because m is flat (see figure .). Since
every calculated bound and every evaluation of m require a solution to
(Q), it is essential that previous solutions can be reused. �e number of
(.)-iterations can then be kept to a minimum.

�e following method to search for the optimum δ∗ satisfies these
requirements: A feasible region [δL, δH] is maintained, known to contain
the optimal value. �is region is initially set to [0, 1]. �e goal is to shrink the
feasible region from both ends, i.e. to provide new regions [δ(n+1)

L , δ(n+1)
H] ⊂

[δ(n)
L , δ(n)

H] containing δ∗, with the limit of the lengths equal to 0. �e
algorithm consists of three main steps: two for shrinking the interval from
both endpoints using lower bounds and one to search the remaining feasible
interval after good candidates to the optimal value E∗. Good candidates
are necessary for the bounds to be useful; fortunately, good candidates are
found very quickly in practice.



 .   

�e algorithm iterates three main steps, each associated with a cached
dual field ξ for speeding up the (.)-iterations. �e two bounding steps
also store step lengths tL, tH which controls the size of the interval to be
removed. �e steps are detailed in the following list:

. Try to shrink the interval from above

• Using the cached dual field ξH , solve problem (.) with
G(x) = 2(δH + tH)I(x).

• Evaluate mbound(δH , δH + tH) by thresholding the solution.

• If the bound is greater than the currently best function value,
discard the interval by setting δH ← δH + tH . Otherwise,
replace tH by a smaller step; I used 0.8tH .

. Similarly, try to shrink the interval from below.

. Choose δ inside the feasible interval from
〈 1

2 ,
1
4 ,

3
4 ,

7
8 ,

5
8 ,

3
8 ,

1
8 ,

1
16 , . . .

〉
and evaluate m(δ).

Because the sequence of evaluated δ is dense in [0, 1], m will eventually be
evaluated arbitrarily close to the optimal value. Also, mbound(δ, δ + t)→
m(δ) as t → 0. From these observations, it is not hard to show that the
algorithm is convergent.

9.3.5 Results

Because m(δ) typically is very flat (figure .), the interval cannot be made
very small without substantial computational effort. But an approximate
localization of the global optimum can be computed and proved in reason-
able time. Figure . shows the cumulative number of (.)-iterations
required to localize the global optimum for the “camera man” image. �e
computation of the first bound for m(δ) required  iterations, while
the total number of iterations required to compute the bounds for every
subinterval was . �e search for the optimal point within the feasible
interval required  iterations.

It should be noted that even a single evaluation of m at e.g. δ = 0.5 is
enough for most images in practice, due to the flatness of m and the fact
that the solution will be optimal in the s-direction, which typically has lots



..  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

�

Ite
ra

tio
ns

re
qu

ire
d

(c
um

ul
at

iv
e)

Figure 9.5: Iterations required to shrink the interval for the “camera man” image.
A precision of 0.001 was used for the ROF problems. As the intervals grow small,
the cached dual field � can be reused, allowing the total number of iterations to
stay reasonable.

of local minima as shown in figure .. Also, after the optimal solution
for a particular δ is obtained, µ0 and µ1 are updated before evaluating the
function. In fact, the first evaluation of m(0.5) during the test in figure .
resulted in a solution that could not be further improved.

9.4 Ratio Minimization

Problem (Ps) appears in (Kolmogorov et al., ) as “parametric max-flow”,
where it is used, among other things, to minimize a ratio of two functionals.
A similar method is used in (Kolev and Cremers, ), where instead a
sequence of convex problems is solved. Some problems of the same type
can be optimized by solving a single convex minimization problem. Pick
two functionals P and Q with Q(θ) > 0 and consider the ratio

R(θ) =
P (θ)
Q(θ)

. (.)

Let s∗ = R(θ∗) be the optimal value of R(θ). �en P (θ∗)− s∗Q(θ∗) = 0
and

min
θ
P (θ)− sQ(θ) ≥ 0 ⇐⇒ s ≤ s∗

min
θ
P (θ)− sQ(θ) ≤ 0 ⇐⇒ s ≥ s∗.

(.)



 .   

�is means that repeatedly solving problems for different values of s con-
verges to the optimal value s∗ via bisection. �is is done by Kolmogorov
et al. () with repeated max-flow problems.

�e result in �eorem . provides a method to minimize functionals
of the following form:

P (θ)
Q(θ)

=
ρJ (θ) +

∫
Ω θ(x)g(x) dx∫

Ω θ(x)h(x) dx+K
, h(x) > 0. (.)

Finding the minimizer of P (θ)− sQ(θ) amounts to solving

minimize
θ(x) boolean

ρJ (θ) +

∫
Ω
θ(x) (h(x)(−s) + g(x)) dx. (.)

Solving (Q) once and thresholding the result at −s finds minimizers to
P (θ)− sQ(θ). Searching for s∗ is now reduced to thresholding the solution
w at different levels and evaluating a function, which can be performed very
fast. Define Es(θ) = P (θ)− sQ(θ) and

. Start with smin, smax

. s← (smin + smax)/2.

. θ ← w(−s).

. If Es(θ) > 0 set smax ← s. Otherwise, set smin ← s.

. Repeat from step .

�is scheme will rapidly converge to s∗. Figure . shows an example. More
examples of ratio minimization are found in the paper by Kolmogorov et al.
().

9.4.1 Constrained Optimization

It is interesting to note that minimizing a ratio of two functionals bears some
similarities to constrained minimization. Consider the following problem,
where in addition to a functional, the area of the resulting foreground (where



..  

(a) Minimizing P(�) (b) Minimizing P(�)/Q(�)

Figure 9.6: Minimizing a ratio of two functions. Q(�) =
∫

�(x)h(x) dx, where h(x)

is chosen to be larger in the center of the image domain, which makes �(x) = 1
more favorable.

θ(x) = 1) is also required to be larger than a predetermined minimum
value:

minimize
θ

E(θ, µ0, µ1)

subject to θ(x) boolean∫
Ω
θ(x) dx ≥ A .

(.)

�e dual function d(s) of this problem is

min
θ

(
E(θ, µ0, µ1) + s

(
A−

∫
Ω
θ(x) dx

))
. (.)

For any s ≥ 0, d(s) ≤ E∗, where E∗ is the optimum for (.). �e best
lower bound is given by d∗ = maxs≥0 d(s), which can be computed by
thresholding a solution to (Q), since computing d(s) is equivalent to solving

minimize
θ

E(θ, µ0, µ1) +

∫
Ω
θ(x) s dx , (.)

followed by an evaluation of (.). However, since θ is constrained to be
boolean, strong duality does not generally hold (Boyd and Vandenberghe,
), that is, d∗ < E∗ in general.



 .   

9.5 Gaussian Distributions

Many variants of the two-phase Mumford-Shah functional have been used
for image segmentation. For example, ultrasound images can be segmented
using a maximum-likelihood formulation with the assumption that the im-
age pixels are Rayleigh distributed (Sarti et al., ). A model emphasizing
the difference to (.a) is to assume that all pixels have equal expected values.
�e resulting problem has previously been treated by Rousson and Deriche
() with local methods. Consider the following observation model, were
the image pixels comes from two Gaussian distributions with zero mean
and different variance:

I(x) ∼

{
N(0, σ2

1), θ(x) = 1
N(0, σ2

0), θ(x) = 0 .
(.)

Given that θ(x) = i, the log-likelihood for the image pixel is

`i(I(x)) = log
(

1
σi
√

2π
exp
(
I(x)2

2σ2
i

))
. (.)

Given an observed image, recovering θ means solving the following mini-
mization problem:

minimize
θ,σ0,σ1

ρJ (θ) +

∫
Ω
θ(x) [−`1(I(x))]

+
(
1− θ(x)

)[
− `0(I(x))

]
dx . (.)

Following the same approach as in section .., we remove the term which
does not depend on θ. After rearranging the factors inside the logarithms of
the functional, we obtain:

ρJ (θ) +

∫
Ω
θ(x)

(
log

σ1

σ0
+ I(x)2

(
1

2σ2
1
− 1

2σ2
0

))
dx .

�is suggests the following change of variables:{
r = log σ1

σ0

t = 1
2σ2

1
− 1

2σ2
0

⇐⇒

σ1 =

√
−2t(e2r−1)

2t

σ0 =

√
−2t(e2r−1)

2ter .



.. 

10

20

30

40

50

60

70

80

90

100

(a) Original image with �1 = 6 and
�0 = 10

10

20

30

40

50

60

70

80

90

100

(b) Resulting segmentation. Recov-
ered �: 6.07 and 10.35

Figure 9.7: Segmentation of an image composed of two Gaussian distributions
with zero mean.

Problem (.) is now tractable for t = constant. �e first step is solving
an  problem with (w(x) + I(x)2t)2 as data term. �en, threshold the
solution at all possible levels r, evaluating the function in (.) and choose
the lowest value. A result with this segmentation model can be seen in
figure ..

9.6 Conclusion

�is chapter has shown that the two-phase, binary Mumford-Shah func-
tional can be effectively optimized by solving a continuous problem followed
by thresholding. �e method works if the difference between the two levels
is fixed. A branch and bound-like method is required to solve the general
problem. It is interesting to note that a single evaluation of m(δ), which is
optimal along one dimension, often seems to be enough to find the global
optimum.

�e work in this chapter is based on a publication from  (Strand-
mark et al., b). Since then, “Little work has been devoted to global
optimization over the regions and parameters simultaneously in the im-
age segmentation models” (Bae et al., ), with a few exceptions briefly
summarized in chapter .



 .   



Part III

Curvature Regularization

Chapter 10

Curvature Regularization in the

Plane

�e previous chapter involved finding the optimal curve with respect to its
contents and its length. �is chapter adds a curvature term, which requires
radically different methods. �e discussions I have had on this topic with
�omas Schoenemann have been very useful, and as this chapter builds
upon the framework by Schoenemann et al. (, ), familiarity with
their papers will be useful.

10.1 Problem Formulation

In this chapter and the next, the goal is to improve the computational
methods for solving variational problems involving length and curvature
regularization. �is chapter starts by looking at the most basic setting in
the plane; the next chapter will consider extensions:

inf
γ

(∫
Int(γ)

g(x) dx+

∫
γ

(
ρ+ σκ(s)d

)
ds

)
, (.)

where the infimum is taken over all γ = γ(1) + . . .+ γ(n) and each γ(k) is a
simple, closed, twice differentiable Jordan curve parametrized by arc length.
�e interiors, denoted by Int(γ(k)), are required to be pairwise disjoint. �e
domain is a compact subset Ω ⊂ R2. Note that the number of curves n
is also considered to be an unknown. �e function g : Ω → R is called
the data term and is, because of the nature of image acquisition, piecewise
constant over the pixels [i, i+ 1)× [j, j + 1) for all integers i and j. �e
scalars ρ ≥ 0 and σ ≥ 0 are given weighting factors for controlling the
amount of length and curvature regularization, respectively.



 .     

�e curvature power d controls how sharp turns are penalized. If d = 1,
sharp turns cost the same as slow turns, whereas if d = 2, sharp turns cost
more than slow ones. Figure . shows the difference between the two;
using d = 2 gives the letter ‘R’ rounded corners. Unless otherwise stated, I
have used d = 2 for all experiments in this paper.

Problem (.) is an infinite-dimensional problem that is unlikely to
be solved analytically (i.e. by giving a closed-form solution). It is hence
natural to resort to a computational approach. Any such approach will
eventually have to discretize the problem. �is work follows a line of spatially
discretizing the problem by only allowing polygonal region boundaries.
Indeed, the work of Bruckstein et al. () shows that the integrals in
(.) can be approximated by polygonal curves, so that if one successively
enlarges the set of considered curves one will eventually converge to the
continuous problem.

�erefore, we consider the following problem instead:

inf
Γ=Γ (1)+...+Γ (n)

n∑
k=1

(∫
Int(Γ (k))

g(x) dx+

∑
(~̀i,~̀i+1)∈Γ (k)

(
ρ|~̀i|+ σκd(~̀i, ~̀i+1)

))
, (.)

where Γ (1), . . . , Γ (n) are closed, simple and piecewise linear curves. �e
inner sum is taken over all pairs of consecutive segments (~̀i, ~̀i+1) of the
curve Γ (k). �is chapter uses the discrete curvature κd(~̀i, ~̀i+1) = |αi|d,
where αi is the angular difference between the line segments ~̀i and ~̀i+1.

Problem (.) is still not finite-dimensional. However, by restricting
Γ to a finite mesh of allowable line segments, the problem can be turned
into a combinatorial optimization problem. �is is the approach pursued
by Schoenemann et al. (). It is clear that finer meshes with shorter
line segments and higher number of angular directions will yield lower
objective functions values and thus approximate the original problem (.)
more accurately. I will explore different types of meshes; see for example
figure .. It may not come as a surprise that hexagonal meshes are more
economical than square ones in the sense that they achieve lower objective
function values with fewer line segments.



.. - 

10.2 Length-Based Regularization

�e basis for this work is the discrete differential geometry framework
developed by Sullivan () and Grady () for computing minimal
surfaces and shortest paths. Schoenemann et al. () recast the final
combinatorial problem as an integer linear program and solved it via 
relaxation. �is section limits the exposition to the standard case without
the curvature term (corresponding to σ = 0). Interestingly, this integer
linear program can be shown to be totally unimodular and hence the 
relaxation will be tight.

�e method is based on tessellating the domain of interest into a so-
called cell complex, a collection of non-overlapping basic regions whose
union gives the original domain. Several different kinds of tessellations are
possible. Some two-dimensional examples are given in figure .. Typical
choices are square meshes (), resulting in -connectivity. To mimic -
connectivity, pixels are subdivided into four triangular regions each. �is
issue will be elaborated upon in section ..

�e boundaries of  regions are called edges. It is necessary to consider
both possible orientations of each edge and facet. In the integer linear
program, there are two sets of boolean variables, one reflecting regions and
the other related to boundaries. For each basic region, a binary variable
reflects whether the region belongs to the foreground or the background.
Let xi, i = 1, . . . ,m denote these binary variables, where m is the number
of basic regions. �e region integral in (.) is now easily approximated
by a linear objective function of the form

∑m
i=1 gixi.

In this chapter xi denote region variables and yi boundary variables.
�e length term in (.) is then represented with ρ

∑
i |~̀i|yi, where |~̀i|

denotes the length of edge i. To enforce consistency between the region and
boundary variables, surface continuation constraints (Schoenemann et al.,
) are used:

Surface continuation constraints. Assume that a basic region is part of the
foreground. �en, each of its edges can have two valid configurations: either
the associated basic region on the other side of the edge is also part of the
foreground—or the foreground region terminates here in an appropriately
oriented boundary element. �ese constraints, together with the cases
where the considered basic region is background, can be phrased as a linear



 .     

equation system, with one constraint for each edge k:∑
i

bk,ixi +
∑
i

bk,iyi = 0, (.)

where bk,i indicates whether region i is positive (1), negative (−1) or not
incident (0) to edge k. Two terms in each sum will be nonzero.

10.2.1 Computation of the Data Term

�e data term for the region Ri is the integral of g over that region:

gi =

∫
Ri

g(x)dx. (.)

�at is, to determine the contribution of each region to the data term
requires the computation of many integrals of the type

∫
Int(Γ) g(x) dx. A

routine application of Green’s theorem yields∫
Int(Γ)

g(x) dx =

∫
Γ
G(x, y) dy, (.)

where G(x, y) =
∫ x

0 g(x̂, y) dx̂ can be computed in advance. �is tech-
nique is similar to the “summed area tables” (Crow, ) and “integral
images” (Viola and Jones, ) commonly used in computer graphics and
vision.

10.3 Incorporating Curvature

To be able to handle curvature regularization, pairs of boundary variables
has to be introduced. Let us denote these pairs by yij . Schoenemann et al.
() described how to introduce boundary continuation constraints to
ensure that an actual boundary curve is formed. Without this constraint,
only straight line pairs would be used.

Boundary continuation constraints. If a pair of line segments (l1, l2) is part
of the boundary line, there must be another pair of line segments (l2, l3)
that is also part of the boundary line. Furthermore, there must be a pair



..  

xc

xd

xa

xb

yij

(a)

xcxa

xb = xd

(b)

Figure 10.1: The line pair variable yij and its four incident region variables xa, xb, xc
and xd. The four region variables may coincide for some edge pairs.

(l0, l1) that likewise belongs to the boundary line. Again, these constraints
can be phrased as a linear equation system for each oriented edge `:∑

i,j

c`,ijyij = 0, (.)

where

c`,ij =


1 if ` = i

−1 if ` = j

0 otherwise.
(.)

Having introduced the line pair variables, the last term in (.) may
also be represented as a linear function: σ

∑
i,j bijyij .

10.3.1 Avoiding Extraneous Arcs

�e constraints introduced by Schoenemann et al. admit too many feasi-
ble solutions. �is is illustrated in figure .a, where sharp corners are
avoided by introducing extra curves, which due to the nonexistent length
penalty have low cost. �is solution is integral and optimal in the original
formulation, because along the spurious large arcs both yij and yji are
active.

�e solution seems simple: to add constraints yij + yji ≤ 1. �is
would indeed solve the problem if the variables could be restricted to be
integral, but in practice these constraints give a fractional solution with even
more spurious arcs (fig. .b). �erefore, the additional linear constraints
proposed in this chapter are of a different type:



 .     

(a) Using the original constraints from (Schoenemann et al., 2009). The small black
regions to the right have their boundary costs reduced by the large arcs of extra
boundaries.

(b) Simply requiring that yij + yj,i ≤ 1 would work if the variables were integers,
but causes the LP relaxation to output a fractional solution.

(c) Result using the additional constraints (10.9). The LP-relaxation output an
integral solution.

Figure 10.2: Segmentation with and without region consistency constraints. A very
crude mesh was used to make the visualization clearer. Gray scale polygons indicate
region variables and red lines indicate edge pair variables. Gray lines show the mesh
used. Parameters: � = 0, � = 300000. The time to solve the problem decreased
by adding the extra constraints: 0.251s vs. 3.402s for the original problem.



..  

Region consistency constraints. Consider a line pair variable yij and call its
four incident regions xa, xb, xc and xd, located as shown in figure .a.
If xa = xb = 1 or xa = xb = 0, the region pair should not be active.
Similarly for xc and xd. �is can be linearly encoded as

xa + xb + yij + yji ≤ 2
−xa − xb + yij + yji ≤ 0.

(.)

Similar constraints hold for xc and xd. All in all, four new constraints are
introduced for each pair of edges. It might be the case that xa and xc or xb
and xd coincide; see figure .b. �e constraint (.) still looks the same.
To reduce the total number of constraints, the constraints can be combined
into four constraints per edge k:

xk1 + xk2 +
∑

(k,j) a pair

yk,j ≤ 2

−xk1 − xk2 +
∑

(k,j) a pair

yk,j ≤ 0

xk1 + xk2 +
∑

(j,k) a pair

yj,k ≤ 2

−xk1 − xk2 +
∑

(j,k) a pair

yj,k ≤ 0.

(.)

Here xk1 and xk2 denote the two regions adjacent to edge k. �e first two
constraints sum over all line pairs starting with edge k and the last two sum
over all pairs ending with edge k.

Figure .c shows the result with these additional constraints where
the boundary now is consistent with the region variables. As a bonus, the
new constraints reduced the time required to solve the problem to about .
Figure . also shows that both before and after the additional constraints,
the optimal solution has its region variables equal or very close to 0 or 1.

I have also run more quantitative experiments. Table . shows how
the new constraints perform compared to no constraints and the simple fix.
�e new constraints always perform much faster and obtains a much higher
quality solution when the amount of length regularization is low. Even when
the correct global optimum is found without the new constraints, including
them speeds up the computation by more than one order of magnitude.



 .     

Image
Overlapping arcs Non-integral pairs Runtime (s)

(a) (b) (c) (a) (b) (c) (a) (b) (c)

0 0 0 0 0 0 1.8 2.1 0.5

221 625 0 680 1589 0 36.0 56.4 2.4

930 1343 0 1952 3880 0 51.5 125.0 6.9

0 0 0 0 0 0 38.0 42.3 1.0

640 860 0 1123 2044 0 37.2 56.1 2.2

Table 10.1: Evaluation of the new constraints for a 16 Ö16 mesh. (a) is no overlap
prevention; (b) is the simple requirement that yij + yji ≤ 1 and the (c) columns
show the new constraints. Even for the cases where the solution is correct, the new
constraints allows the solution to be computed faster.

For these reasons, all subsequent experiments in the paper use the new,
additional constraints.

10.4 Pseudo-Boolean Optimization

Solving the discrete optimization problem does not have to be done using
a linear program. It is also possible to use discrete optimization methods.
Each edge pair is represented as a - or -clique in a pseudo-boolean ob-
jective function. �is formulation has the advantage that it readily carries
over to three dimensions. El-Zehiry and Grady () used -cliques for
minimizing curvature functionals and their formulation is equivalent to the
 formulation for -connected grids. �is is because in a -connected grid,
only configurations of the type in figure .b are present. If one wants
to go to higher connectivities, configurations as shown in figure .a are
present and -cliques are required. We will now see why.

3-cliques. An edge pair connected to three region variables is shown in
figure .b. �e edge pair adds a cost to the segmentation objective if



.. - 

(a) Square mesh with 4-
connectivity. Each cell has
1 region and 2 lines (on
average).

(b) Hexagonal mesh with
6-connectivity. Each cell
has 6 regions and 9 lines.

(c) Square mesh with 8-
connectivity. Each cell
has 4 regions and 6 lines.

(d) Square mesh with 16-
connectivity. Each cell
has 32 regions and 52
lines.

(e) Square mesh with 12-
connectivity. Each cell
has 25 regions and 44
lines.

(f) Hexagonal mesh with
12-connectivity. Each cell
has 12 regions and 18
lines.

Figure 10.3: Different types of grids. The maximum angle between the possible
straight lines is 90◦ in (a), 60◦ in (b) and 45◦ in (c). Meshes (d), (e) and (f) have
about 27◦, 37◦ and 30◦ as their maximum angle, respectively.



 .     

xa = xc = 1 and xb = 0 or the opposite: xa = xc = 0 and xb = 1:

bij

(
xaxc(1− xb) + (1− xa)(1− xc)xb

)
. (.)

It is noted in (El-Zehiry and Grady, ) that this expression, when
simplified, does not contain any monomials of degree . It is equal to

bij

(
xaxc − xaxb − xbxc + xb

)
, (.)

which contains only pairwise interactions between the three variables.

4-cliques. For all connectivities higher than , many edge pairs are adjacent
to  regions; see figure .a. Just as before, this can be represented as

bij

(
xaxc(1− xb)(1− xd) + (1− xa)(1− xc)xbxd

)
. (.)

Representing this, however, requires an optimization method capable of
handling higher degrees, because the above expression simplifies to

bij

(
2xaxbxcxd − xaxbxc − xaxcxb

− xaxbxd − xbxcxd + xbxd + xaxc

)
,

(.)

where the high-arity factors have not canceled each other out. How to
handle terms like this was described in detail in the first part of this this
thesis. Representing the above -clique with  requires  extra nodes
and  monomials of degree . �is is much worse than the three clique
which required no extra nodes and only  monomials.

10.4.1 Comparison Between the Two Approaches

In the case of -connectivity, El-Zehiry and Grady () solve exactly the
same problem as the  relaxation. Since El-Zehiry and Grady do not use
nor discuss higher-order cliques, comparisons in the -connected case are
interesting even though such grids are far too coarse for any practical use.



.. - 

�
Time (s) Unassigned

LP HOCR Probe LP HOCR Probe

1000 23.9 0.1 0.7 0% 6% 3%
2000 30.6 0.7 5.2 0% 53% 39%
3000 41.4 1.7 14.4 ≈0% 95% 56%
4000 43.5 2.0 6.7 ≈0% 100% 66%
5000 49.1 1.9 5.1 ≈0% 100% ≈100%
6000 54.6 2.0 5.1 ≈0% 100% ≈100%
7000 60.5 2.1 5.1 ≈0% 100% ≈100%
8000 64.1 2.2 5.0 0% 100% ≈100%
9000 70.5 2.2 5.1 0% 100% ≈100%

10000 76.6 2.9 5.6 0% 100% 100%
50000 553.3 3.1 5.2 0% 100% 100%

100000 1714.9 3.0 5.3 0% 100% 100%
1000000 12166.3 3.0 5.2 0% 100% 100%

Table 10.2: 4-connectivity results with � = 100. The LP formulation always found
or ended up very close to the global optimum. For � = 1000, the curvature part of
the energy at the optimum was about 10 times larger than the length part.

4-connectivity. �e first experiment used the standard image shown in
figure . and the data term

g(x, y) = (I(x, y)− µ1)2 − (I(x, y)− µ0)2, (.)

with µ0 = 128 and µ1 = 0. I used a small amount of length regularization
(ρ = 100) to increase the likelihood of a unique solution. When σ varies,
the segmentation changes as shown in figure ..

�e experimental results shown in table . are in strong contrast to
the results reported by El-Zehiry and Grady (), who reported good
performance for -connected meshes. For really simple problems (low
curvature weight) the method works. Other research groups have also
evaluated this method of solving discrete curvature problems without success
(Andrew Delong, personal communication).

Higher Connectivities. Tables . and . show the result for - and
-connected square meshes, respectively; table . uses a hexagonal mesh.
Quadratic roof duality (using reductions) is not strong enough to solve
the boolean problem, except for negligible amounts of regularization (see
figures ., . and .).



 .     

Figure 10.4: Input image and results with regularizations � = 100 and � ∈
{1000, 10000, 100000, 1000000}. The mesh is 4-connected of size 256 Ö 256
(corresponding to the image pixels).

Figure 10.5: Input image and results with an 8-connected 128 Ö 128 mesh, using
the same parameters as in Fig. 10.4.

Figure 10.6: Input image and results with a 16-connected 64 Ö 64 mesh, using
the same parameters as in Fig. 10.4. The solution for � = 106 is fractional, as
shown by the gray regions.

Figure 10.7: Input image and results with a 64 Ö 64 hexagonal mesh, using the
same parameters as in Fig. 10.4.



.. - 

�
Time (s) Unassigned

LP HOCR Probe LP HOCR Probe

1000 25.1 43.8 764.0 ≈0% ≈100% ≈100%
2000 26.9 46.8 753.7 ≈0% 100% 100%
3000 28.2 54.0 756.3 ≈0% 100% 100%
4000 29.9 51.1 755.9 ≈0% 100% 100%
5000 31.3 53.7 755.8 ≈0% 100% 100%
6000 32.5 45.4 747.6 0% 100% 100%
7000 32.6 50.1 751.3 0% 100% 100%
8000 34.3 51.3 757.4 0% 100% 100%
9000 35.9 55.2 755.8 0% 100% 100%

10000 36.8 51.9 754.7 0% 100% 100%
50000 81.5 54.0 751.9 0% 100% 100%

100000 232.8 53.4 750.9 0% 100% 100%
1000000 10843.5 54.0 751.9 0% 100% 100%

Table 10.3: 8-connectivity results with � = 100. The LP formulation always found
or ended up very close to the global optimum. Roof duality never worked.

�
Time (s) Unassigned

LP HOCR Probe LP HOCR Probe

1000 100.5 58.3 2243.1 0% 100% 100%
2000 118.2 61.9 2238.7 ≈0% 100% 100%
3000 130.9 63.4 2249.5 ≈0% 100% 100%
4000 144.7 66.4 2250.5 ≈0% 100% 100%
5000 158.5 67.1 2245.2 ≈0% 100% 100%
6000 169.6 69.2 2242.6 ≈0% 100% 100%
7000 177.6 70.2 2248.9 ≈0% 100% 100%
8000 186.3 75.0 2258.6 ≈0% 100% 100%
9000 211.6 69.2 2255.2 ≈0% 100% 100%

10000 215.2 72.4 2293.5 ≈0% 100% 100%
50000 791.3 69.0 2318.8 0% 100% 100%

100000 2688.9 70.0 2292.5 ≈0% 100% 100%
1000000 362419.0 72.8 2359.7 ≈0% 100% 100%

Table 10.4: 16-connectivity results with � = 100. The LP formulation always found
or ended up very close to the global optimum. Roof duality never worked.



 .     

�
Time (s) Unassigned

LP HOCR Probe LP HOCR Probe

1000 22.0 32.9 988.2 0% 100% 100%
2000 23.2 32.1 989.4 0% 100% 100%
3000 26.0 34.1 1003.4 ≈0% 100% 100%
4000 26.9 36.5 997.1 ≈0% 100% 100%
5000 28.3 33.0 996.3 ≈0% 100% 100%
6000 29.6 34.9 997.7 ≈0% 100% 100%
7000 30.7 36.3 996.9 0% 100% 100%
8000 30.8 34.5 1002.1 0% 100% 100%
9000 32.6 36.4 1001.5 ≈0% 100% 100%

10000 33.5 36.2 1008.2 ≈0% 100% 100%
50000 74.3 35.7 1000.6 0% 100% 100%

100000 188.2 37.7 1011.8 0% 100% 100%
1000000 6459.8 35.7 1000.6 0% 100% 100%

Table 10.5: Hexagonal 12-connectivity results with � = 100. The LP formulation
always found or ended up very close to the global optimum. Roof duality never
worked.

�
Time (s) Unassigned

GRD HOCR Probe GRD HOCR Probe

1000 1.4 0.1 0.3 0% 1% 0%
2000 1.4 0.3 1.8 1% 6% 1%
3000 1.6 0.7 23.4 4% 30% 15%
4000 3.0 1.1 29.7 9% 52% 37%
5000 4.2 1.2 32.1 39% 56% 52%
6000 4.5 2.9 45.8 54% 78% 56%
7000 4.7 1.5 59.7 56% 97% 72%
8000 12.7 1.5 52.5 69% 98% 89%
9000 14.3 1.3 53.7 87% 99% 96%

10000 3.9 1.4 53.0 98% 99% 98%

Table 10.6: Comparison between generalized roof duality (GRD, chapter 4) and
reductions using a small (32 Ö 32) 8-connected mesh.



..   

Generalized Roof Duality. Chapter  proposed a new method of minimizing
higher-order pseudo-Boolean functions. While generalized roof duality
performs better than using reductions to handle the higher-order terms, it
does not perform well enough to compete with the linear programming
relaxation. See table .. Computing the optimal submodular relaxation
for each problem requires smaller meshes (section . introduced an efficient
heuristic, though).

�e experiments in this section show that formulating the discrete curva-
ture problem (.) as a general pseudo-boolean problem and using current
optimization methods is not a good approach. �e linear programming
approach is able to solve much harder problems exactly (but it might take a
while).

10.5 Types of Meshes

�e mesh used for segmentation can be created in a number of ways. �e
quality of the approximation depend on how many different possible straight
lines that can be represented by the mesh, since a larger possible choice of
line directions allows the mesh to approximate a continuous curve more
closely. Figure . shows some possible meshes and the straight lines they
admit. If a mesh allows n possible straight line directions, it is referred to as
n-connected.

10.5.1 Hexagonal Meshes

Hexagonal meshes have long been studied for image processing (Middleton
and Sivaswamy, ). One characterizing fact of hexagons is that they are
the optimal way of subdividing a surface into regions of equal area while
minimizing the sum of the boundary lengths (Hales, ). However, the
property that is more important to us is the neighborhood structure. In a
hexagonal lattice every region has  equidistant neighbors. When approxi-
mating curvature we would like to represent as many different straight lines
as possible and we would like the maximum angle between them to be small,
as that gives us a better approximation of a smooth curve (Bruckstein et al.,
). �e neighborhood structure of the hexagonal mesh allows for similar
performance (number of lines and angle between them) while using fewer
regions. �is is illustrated in figure ., where three crude meshes and three



 .     

finer meshes are shown. �e meshes in figures .d and .f have similar
maximal angle between the possible straight lines, but the hexagonal mesh
achieves this with fewer regions due to the favorable intersection pattern of
the lines. �is suggests that hexagonal meshes can achieve the same accuracy
as the mesh (d) used by Schoenemann et al. () with a significantly
smaller linear program.

With the introduction of the hexagonal grid, every region is no longer
contained within a single pixel. Some regions will partly overlap more than
one pixel. �e contribution gk to the data term of each region can be
efficiently computed; see section .. on page .

10.5.2 Adaptive Meshes

�e memory requirements for solving the linear programs arising from the
discretizations are very large. Each pair of connected edges introduce two
variables. Linear programs are typically solved using the simplex method
or interior point methods, both of which require a substantial amount of
memory for these problems. As one example, a problem with ,
regions and ,, edge pairs required about .  of memory to solve
using the Clp solver.

For this reason, it is desirable to keep the size of the mesh small. However,
a fine mesh is needed to be able to approximate every possible curve. �e
solution to this conflict of interest is to generate the mesh adaptively, to
only give it high resolution where the segmentation boundary is likely
to pass through. Adaptive meshes have previously been considered for
image segmentation in the level-set framework (Xu et al., ) and in
combinatorial optimization of continuous functionals (Kirsanov and Gortler,
).

�e mesh is refined using an iterative process. First, a single region is
put into a priority queue. �en regions are removed from the priority queue
and subdivided into smaller regions which are put back into the queue.
�e region which most urgently needs to be split is removed first from the
priority queue. �is is determined by a score which is computed for each
region as follows.

Start with q an empty priority queue
R← (0, 0, w, h)
Add R to q with priority = score(R)



..   

(a) 16-connectivity by subdividing rect-
angles

(b) 12-connectivity by subdividing trian-
gles

Figure 10.8: Adaptive meshes can be constructed by recursively subdividing basic
shapes into several similar shapes and finally adding the extra connectivity.

while size(q) < L do
Remove R from q
Split R into R1 . . . Rk
Add R1 . . . Rk to q with score(R1) . . . score(Rk)

end while

Both square and triangular basic shapes can be split up into four identical
shapes similar to the original one. All adaptive meshes in this chapter use
k = 4. �e score function can be chosen in many different ways. One way
is to use the squared deviation from the mean of each region, i.e.:

score(R) =

∫
R

(I(x)− µ(R))2dx, (.)

where µ(R) = 1
|R|
∫
R I(x)dx. �is way, regions where the data term varies

a lot will be split before regions which have a uniform data term. �e score
is not normalized, because otherwise many very small regions would tend
to have a big score. Once again, the integrals may be computed efficiently
via (.) on page .



 .     

0.5 0.7 0.9 1.1 1.3

·105

2

2.01

2.01

2.02

2.02

2.03

2.03
·108

Number of regions

En
er

gy

Hexagonal mesh (12-connectivity)
Square mesh (16-connectivity)
Square mesh (8-connectivity)

Figure 10.9: Optimal objective function value vs. the total number of regions. The
best accuracy obtained by the square mesh was achieved by the hexagonal mesh
with about half the number of regions. This experiment used � = � = 10000. The
objective function difference might seem small, but differences of these magnitudes
often correspond to significant changes in segmentation; see figure 10.10.

10.5.3 Experiments

All experiments in this chapter use the simple, two-phase data term in
(.) on page . �e constants µ0 and µ1 were iteratively estimated
without any regularization.

Hexagonal Meshes. �e experiment evaluating hexagonal vs. square meshes
compares three types of meshes, the - and -connected square mesh and
the -connected hexagonal mesh, shown in figure .c, d and f. �e
comparison uses a fixed data term of a  Ö  image and places meshes
of various types and sizes on top of it and calculates the optimal objective
function value.

�e result is shown in figure ., where the optimum is plotted as
a function of the number of regions used. �e number of regions is a
good indicator of the total size of the linear program and plots using the



..   

Image
Objective value Number of regions Runtime (s)

Square (16) Hex Square Hex Square Hex

1.74239 · 108 1.74536 · 108 131072 128856 45.0 48.6

2.02461 · 108 2.01979 · 108 131072 128856 381.7 337.4

1.66482 · 108 1.65938 · 108 131072 66528 303.5 71.8

3.32766 · 107 3.34633 · 107 131072 128856 43.7 42.9

1.44697 · 108 1.44208 · 108 131072 66528 179.9 39.6

Table 10.7: Evaluation of hexagonal meshes for image segmentation on the same set of
images as in Table 10.1. Parameters: � = 104, � = 105.

number of line pairs or edges look essentially the same. �e -connected
grid converges quickly, but to a suboptimal objective value. �e hexagonal
mesh consistently outperforms the -connected grid. With a very large
number of regions, the -connected grid would probably achieve a lower
objective value than the hexagonal, due to it having  more possible straight
lines. I have not been able to observe this in practice, though, due to the
large memory requirements.

Table . shows experiments for a couple of images. �e difference
is not great, but in some cases the hexagonal meshes can save a significant
amount of computation time. �is experiment used another very simple
score to rank the regions: counting the number of pixels with positive and
negative data term pixels and then taking the minimum of the two.

Adaptive Meshes. �e effect of adaptive meshes can be evaluated in a num-
ber of ways. Firstly, figure . show the visual quality of the segmentation
for regular and adaptive -connected meshes with the same number of
regions. �e fact that the adaptive mesh achieved a smoother curve is also
reflected in the lower optimal objective function value. Figure . shows
results for -connected meshes with similar visual improvement.

Solving the same segmentation problem a large number of times for
different number of regions evaluates the performance more quantitatively.
Figure . shows the optima for the different number of regions and the



 .     

(a) Regular mesh (b) Adaptive mesh

Figure 10.10: Results with regular and adaptive 16-connected mesh. The number
of regions used were 32,768 in both cases and the number of edge pairs were
291,664 and 285,056, respectively. The adaptive mesh gives a smoother curve and
correctly includes the hand of the camera man. The optimum for the regular mesh
was 2.470 · 108 and 2.458 · 108 for the adaptive. This experiment used � = 30000
and � = 1000.

two types of meshes. �e adaptive mesh converged to what probably is the
optimum for that connectivity, while the regular mesh did not. �e regular
mesh would have required more than  times more regions to achieve the
same objective value. In addition to this single-image experiment, table .
shows results for five other images. It is not surprising to see simpler images
benefit more from adaptive meshes than more complicated ones.

10.6 Dual Decomposition

Chapter  described a dual decomposition scheme, where the domain is
split into two pieces which are solved separately and constrained to be equal
on an overlap; see figure . on page . �e same method can be used
to split curvature linear programs to reduce the memory requirements of
the linear solver. While splitting an adaptive mesh into two or more parts
takes some care, splitting a regular square mesh is relatively straightforward.
A specialized solver for the original problem must be able to solve the
subproblems as well. �erefore, some care has to be taken to make sure
all edge pairs are counted the correct number of times in and around the
overlap. It is easy to test if the split has been made correctly—the sum of the



..   

(a) Regular mesh (b) Adaptive mesh

Figure 10.11: Results with (a) regular and (b) adaptive 8-connected mesh. The
optimum for the regular mesh was 2.517 · 108 and 2.481 · 108 for the adaptive.
This experiment used � = 30000 and � = 1000.

minima in the left and right part has to match the minimum of the original
problem exactly. �e solutions to the two problems are constrained to be
equal for all overlapping regions. �e updating scheme for graph cuts in
section .. on page  also works for curvature problems.

�e difference in peak memory usage was evaluated by experiments
using a  Ö  mesh. �e memory reduction with dual decomposition
was significant; see table .. �e achieved memory reduction was slightly
less than  since the intermediate states of the solvers are stored between
iterations to increase execution speed. �e total time required by dual
decomposition (single-threaded) was usually slightly shorter than solving the
original problem, but the main benefit is the reduced memory consumption.

10.7 Convex Shape Priors

An interesting prior for image segmentation is to require the object to be
convex. I find it interesting because it is a prior without any tuning param-
eters to choose. Raphael and Geman () introduced a method based
on dynamic programming. �e method required the prior knowledge of a
point within the object to be segmented. Curiously, their experiments do
not produce convex objects and the authors do not comment on this. A
subsequent publication (Raphael, ), however, has corrected this. �e
dynamic programming problem is prohibitively large and a coarse-to-fine



 .     

Image
Objective value Number of regions Runtime (s)

Regular Adaptive Regular Adaptive Regular Adaptive

1.6846 · 108 1.68423 · 108 131072 12800 16.7 4.4

1.48637 · 108 1.4852 · 108 131072 80000 784.7 964.7

1.217 · 108 1.21622 · 108 131072 72032 787.1 722.2

2.50306 · 107 2.50257 · 107 131072 12800 54.8 5.6

8.96085 · 107 8.8855 · 107 131072 48032 167.1 111.7

Table 10.8: Evaluation of adaptive 16-connected meshes for image segmentation on the same
set of images as in Table 10.1. Parameters: � = 100, � = 104.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

2.1

2.12

2.14

2.16

2.18

2.2
·108

Number of regions

En
er

gy

Regular mesh
Adaptive mesh

Figure 10.12: Optimum vs. the total number of regions for a square 16-connected
mesh. To get the same accuracy as the finest parts of the adaptive mesh, the regular
mesh would need 21 · 105 regions. In contrast, the adaptive mesh converged using
about 1 · 105 regions. This experiment used � = � = 10000.



..   

Peak memory usage (MB)

Original problem 468
Dual decomposition (2 parts) 279

Table 10.9: Peak memory usage for a 128 Ö 128 homogenous 8-connected mesh.
The reduction is not as good as 50% because the solvers cache the solutions and
system matrices between iterations.

(a) 180 seconds (b) 425 seconds (c) 1393 seconds

Figure 10.13: Implementation of the method by Raphael (2001). The red dots are
the specified center points and the blue dots are the discretized radii.

heuristic needs to be used to solve it (global optimality is preserved). Fig-
ure . shows my implementation of their method on very small images.
�e running time is dependent on how strongly the data term supports a
convex object. Felzenszwalb and McAllester () have improved the run-
ning times by using a more sophisticated search technique. �e framework
by Strekalovskiy and Cremers () can handle a convex shape prior with-
out any seed point. �eir method is also very computationally expensive;
using it requires a  to efficiently solve the optimization problem.

�e framework described in this chapter seems very suitable for convex
shape priors at a first glance. Indeed, when one walks along the positively
oriented boundary of a convex set one will never turn left. Each non-straight
pair of line segments has two variables associated with it: yij and yji. If all
variables representing non-convex boundary segments are removed, only
convex shapes will be possible.

Unfortunately, this approach has several issues. First, nothing guarantees
that a single convex object is produced—a very noisy image can produce



 .     

(a) 0.28 seconds (b) 49 seconds (c) 371 seconds

Figure 10.14: Segmentation without any length or curvature regularization.
(a) Without a convex prior (thresholding). (b) Removing all non-convex pairs makes
many line pair variables in the linear programming relaxation fractional. (c) With
the additional constraint that the number of objects equal one (see text).

hundreds of small objects. Second, figure .b shows what happens when
the non-convex pairs are removed. �e linear programming relaxation is
then no longer integral and the solution is very far from a convex object.
While there is nothing wrong with the formulation (and, indeed, an integer
programming solver will give the correct result), it is virtually useless in
practice. �ird, the time required to solve the linear program increased
more than  times for the very small problem in figure ..

�e solution to the first two issues is to constrain the number of objects.
�e solution will consist of several closed curves, each of whose angles sum
up to 2π. By adding a single constraint, the number of objects can be
constrained to one: ∑

all pairs (i,j)

αijbij = 2π. (.)

Figure .c shows the result for the small test image. In my experience,
the relaxation is always tight. However, the third issue not only remains,
but is amplified: the time to solve the relaxation with the new constraint
added goes up by almost another order of magnitude. Adding the convex
shape prior works, but the increased difficulty when removing almost half
of the variables and adding a single constraint is surprising.

�e use of a commercial solver can reduce the computation time signifi-
cantly. To solve the linear program in figure ., Gurobi’s barrier method



..  

Figure 10.15: Segmentation with a convex prior without any length or curvature
regularization on a 16-connected 32 Ö 32 mesh. The time required to compute
this (globally optimal) solution exceeded 4 hours.

required  seconds to and Clp’s dual simplex method required more
than  hours. �e barrier method is not suitable for all curvature problems,
though, as it uses more memory.

10.8 Solution Refinement

Because the grids used for curvature optimization in the previous chapters
have only a small number of directions, the result often looks jagged, even
when a -connected grid is used. I have been asked several times when
talking about this discrete approach to curvature whether local optimization
would be able to fix this and produce a more visually pleasing solution. My
answer has been that this would definitely be possible and that it would be
interesting to try. Hence, it is almost fair to say that this short section has
been written by popular demand.

10.8.1 Detaching the Mesh Points

So far, this chapter has been about solving (.) on page  over a fixed
mesh. �e linear programming procedure results in a number of simple,



 .     

closed curves Γ (1), . . .Γ (n), which may be nested, depending on the topol-
ogy of the foreground. �e refinement stage post-processes each of these
curves individually.

Each curve can be seen as a m-dimensional vector of its point coordi-
nates: Γ = (p(1), . . . ,p(m)) ∈ R2m. �e objective function for the curve
can then be written as

E(Γ) =

m∑
k=1

g̃
(
p(k+1),p(k)

)
+

ρ
m∑
k=1

∥∥∥p(k+1) − p(k)
∥∥∥+ σ

m∑
k=1

κ̃
(
p(k+1),p(k),p(k−1)

)
, (.)

where p(m+1) = p(1) and p(0) = p(m). �e first sum is exactly equal to the
integral in (.) by using the technique in section ... �e function g̃ is
the computation of the line integral of G between two points. �e function
κ̃ is the computation of the discrete curvature for the line pair defined by
the three points.

�e sum ofE(Γ (k)) for each k is exactly the objective function in (.),
but instead formulated as a function of all corner points of the curves. �e
refinement step attempts to minimize this quantity locally. Since the data
term g is discontinuous (piecewise constant over each image pixel), g̃ will
not be differentiable everywhere. �e same is true for the distance ‖·‖. Two
simple approaches are possible:

• Coordinate descent for a single p(k) in a specified direction while
keeping all other points fixed.

• Minimizing t 7→ Γ + tΛ for some specified direction Λ.

In practice, alternating between the two works better than using either
exclusively. Computing a descent direction can be done in two ways:

• (easy way) Computing E(Γ+he(k))−E(Γ)
h for small h for all coordi-

nates k.

• (smart way) Using automatic differentiation to simultaneously com-
pute a “gradient” when evaluating E (Nocedal and Wright, ).
�is procedure is often quite easy when working with object-oriented



..  

languages like C++. I used the implementation of the open-source
library ++.

Both methods gave very similar results and the choice did not affect the
final solution noticeably.

It is important that the topology of the interior of each curve stays the
same; for example, self-intersections must be avoided. Currently I do not
have a sophisticated way of doing this, other than preventing each curve
point from moving too much from its initial position. Large movements are
an indication of something gone wrong; after a self-intersection the outside
becomes the inside. Self-intersections are also avoided by small enough steps
in each iteration.

10.8.2 Experiments

�e time required for the complete refinement process is negligible—less
than a second for all problems in this chapter. Even if a very large mesh
is used, the solution curves will only cover a small part of that mesh. Fig-
ures . and . show two examples. �e large decrease in objective
function value (from 8.1× 107 to 4.7× 107) is typical.



 .     

(a) Segmented image.

(b) Close-up on the “R.” (c) Same close-up, but with the curvature
power equal to 1.

Figure 10.16: Refinement of a curvature segmentation on an 8-connected grid.
The global discrete solution is shown in red and the refined solution in green. The
objective function decreased from 8.1× 107 to 4.7× 107 during refinement.



..  

(a) 32 Ö 32 hexagonal mesh and high
regularization.

(b) 64 Ö 64 hexagonal mesh and low
regularization.

Figure 10.17: Refinement of a curvature segmentation on a (12-connected) hexag-
onal grid. The global discrete solution is shown in red and the refined solution in
green.



 .     



Chapter 11

Surface Completion and

Segmentation with Curvature

�e previous chapter showed that it is in many cases possible to minimize
functionals involving the curvatures of plane curves. �is chapter will extend
the framework to surfaces in three dimensions. �e task is to minimize the
following function:

E(R) =

∫
R
g(x) dx+

∫
∂R

(
ρ+ σκ(x)2) dA(x), (.)

whereR is a volume with boundary ∂R. Here κ(x) is the mean curvature of
the surface ∂R at x. g(x) is the data term, which may take many different
forms depending on the application. It is typically present in segmentation
problems and not present in surface completion problems. ρ and σ controls
the amount of area and curvature regularization, respectively.

In differential geometry, functions of the type in (.) have been
studied for a long time. �e functional is known as the Willmore energy
(Willmore, ). It gives a quantitative measure of how much a given
surface deviates from a round sphere. Local descent techniques have been
derived for minimizing (.) (Hsu et al., ), but they are very dependent
on a good initialization. �is chapter will attempt to create a framework for
minimizing these functions globally.

11.1 Curvature of Surfaces

Each facet in a  mesh is associated with a variable y = (y1, . . . , y2n)
of areas a = (a1, . . . , a2n). �ere are twice as many variables as facets,
because each facet is associated with two variables, one for each orientation.



 .    

�e two are distinguished by (arbitrarily) assigning a normal to each face
in the mesh. �e optimization problem for surface completion with area
regularization is

minimize
y

ρaTy

subject to By = 0

y ∈ {0, 1}2n

yk = 1, k ∈ K.

(.)

K is the set of facets that are supposed to be part of the minimal surface a
priori. �e matrix B is defined by Grady () as:

Be,yi =


+1, if edge e borders yi with coherent orientation

−1, if edge e borders yi with incoherent orientation

0, otherwise.

(.)

�is section extends this formulation to support curvature by introducing
face pairs. Each pair of facets in the mesh with an edge in common are
associated with two variables {yij} (one for each orientation). Enforcing
consistency between the face variables and the variables corresponding to
the pairs of faces can be done with linear constraints:

Surface continuation constraints. For each oriented facet k and each one
of its edges e the following constraint prevents the surface from ending
abruptly:

yk =
∑

(i,j) with edge e

dk,ijyij . (.)

�e sum is over all pairs i, j with edge e in common. �e indicator dk,ij is
1 if facet k is part of the pair (i, j).

Having introduced the facet pairs, we can follow Wardetzky et al. ()
and associate them with a cost bij , approximating the squared mean curva-
ture:

bij =
3‖eij‖2

2(ai + aj)

(
2 cos

θij
2

)2

, (.)



..   

(a) One unit cube. (b) Eight unit cubes in
a 2 Ö 2 Ö 2 mesh.

Figure 11.1: Each unit cube is split into 5 tetrahedrons. This is the type of mesh
used for our experiments in 3D. When stacking several, every other cube has to be
mirrored in order to fit.

where θij is the dihedral angle between the two facets in the pair. Here,
‖eij‖ is the length of their common edge. �e objective function is then
ρ
∑

i aiyi + σ
∑

i,j bijyij , subject to the constraints in (.) and (.).
�is approximation is far from perfect; for example, it will not give the
correct approximation for saddle points. However, it measures how much
the surface bends and fulfills a couple of requirements listed by Wardetzky
et al. (): it is invariant under similarity transformations and vanishes
for flat surfaces.

Segmentation, as opposed to surface completion, requires variables for
each volume element to incorporate the data term. Let xi be variables
associated with the volume elements. Additional consistency constraints are
then required:

Volume continuation constraints. For each facet k,∑
i

βk,iyi +
∑
i

gk,ixi = 0, (.)

where βk,i indicates whether the facet yi is positively or negatively incident
w.r.t. the chosen face normal. �e variable gk,i is 1 if the volume element
xi is positively incident (the face normal points towards its center), −1 if it
is negatively incident and 0 otherwise. Both sums have two non-zero terms.



 .    

(a) Area regularization (b) Curvature regularization

Figure 11.2: Segmentation using a 16 Ö 16 Ö 16 mesh with area and curvature
regularization and volume element variables. The data term and the optimal surface
using area regularization coincide. Note that any sphere containing the cross is a
minimizer for the continuous problem.

11.2 Experiments

�e three-dimensional experiments used a mesh in which each unit cube
is split into  tetrahedrons; see figure .. �e first experiment used a
set K consisting of two circular surfaces at z = 0 and z = zmax, with
nothing in between. �e analytic solution with area penalty is the catenoid
(Pressley, ). Figure .a shows the discrete version obtained with
ρ = 1 and σ = 0. If instead the mean curvature is chosen as the regularizer,
the optimal surface instead bends outwards. �e solution to this problem is
shown in figure .b and is the global optimum, since all variables ended
up integral in the  relaxation of (.). Just as in the previous chapter, all
linear programs were solved by Clp.

Another experiment used variables for the volume elements. �e data
term was a  ‘cross’ where the volume elements were forced to be equal to
1, whereas the volume elements at the boundary were forced to be 0. �e
optimal segmentation when the area was minimized coincided with the data
term and is shown in figure .a. When instead minimizing the curvature
the optimal segmentation should resemble a sphere, which is observed in
figure .b.



.. 

(a) Area regularization on a 40 Ö 40 Ö 15 mesh (491k variables, 398k constraints
and 447 seconds). A 25 Ö 25 Ö 7 mesh required 91k variables and 5 seconds.

(b) Curvature regularization on a 25 Ö 25 Ö 7 mesh (637k variables, 441k con-
straints and 178 seconds).

Figure 11.3: Surface completion with area and curvature regularization. Two flat,
circular surfaces at the top and bottom were fixed to 1. One surface bends inwards
to approximate a catenoid and the other correctly bends outwards to minimize the
curvature.



 .    

11.3 Conclusion

�is chapter has introduced constraints for  surface completion and seg-
mentation. Experiments are encouraging with exclusively globally optimal
solutions. To my knowledge, this is the first time the mean curvature of
surfaces has been optimized globally. �e next step would be to apply this
method to e.g. the partial surfaces obtained by stereo estimation algorithms.
Another line of further research is how to be able to cope with finer dis-
cretizations of the  volume and, of course, to speed up the computation in
general. �e adaptive meshes and and refinement from the previous chapter
will surely have to play a part in this.



Part IV

Applications

Chapter 12

Multiple Region Segmentation

�e field of medical imaging is full of challenging segmentation tasks. �e
aim of this chapter is to segment multiple regions with a model that encom-
passes both the underlying appearance and shape of the different regions
as well as their geometric relationships. �is is often overlooked in present
methods. For example, many successful approaches to cardiac segmentation
concentrate on segmenting the left ventricle () as this part is the most
interesting for diagnostic purposes. Still, quantifiable information about
the cardiac function can be gained from segmenting the right ventricle ()
as well. �e framework presented in this chapter allows for the construction
of a joint model of the whole heart, which is general enough to support
other applications such as lung segmentation. �e final result is improved
compared to segmenting the parts independently.

�e main contribution is a multi-region segmentation framework with
good tractability. �e framework builds on the multi-region scheme pre-
sented by Delong and Boykov (), who showed that geometric relation-
ships, for example, when one object is included in another, can be modeled
and globally optimized via graph cuts. �e key property that makes this
possible is that the resulting minimization problem is submodular. Not all
geometric relationships, however, are submodular. Delong and Boykov used
roof duality for these harder problems, but that becomes too memory in-
tensive for large three-dimensional problems. Instead, I will describe a dual
approach, which is very similar to what I used in chapter  for parallelization.

Another contribution is the evaluation of the optimization framework
for medical segmentation problems. �e cardiac segmentation model is ap-
plied to publicly available data and the optimization framework is compared
to roof duality in terms of memory and speed.



 .   

2

3
4

4

4
4

1
0

(a) Four-region model (b) MR view

rp xp

0 (0, 0, 0, 0)
1 (1, 0, 0, 0)
2 (1, 1, 0, 0)
3 (1, 0, 1, 0)
4 (1, 1, 0, 1)

(c) Representation

1

2

3

4

∞

∞

∞
�1 − �0 st

�4 − �2

�2 − �1

�3 − �1

(d) Graph

Figure 12.1: (a) A constructed short-axis view showing the model of the heart.
Region 0 is the background, region 1 contains myocardium and the left and right
ventricular cavities. Region 2 is the left ventricular cavity and region 3 the right
ventricular cavity. Region 4 is the papillary muscles of the left ventricle. (b) An
example of a slice from a short-axis image acquired with MRI where all four regions
have been manually delineated. (c) The boolean representation of the four regions
reflect their geometric relationships. (d) Graph construction for one voxel. The
circled number corresponds to a node associated with the region number. The
directed arrows are the directed edges in the graph.



.. - 

12.1 Multi-Region Framework

Before introducing the general framework, figure . presents an example
of a construction using the framework. �e geometric inclusion constraints
are encoded as edges in a graph with infinite weight.

LetR be the set of region labels (excluding the background) and let P
be the set of voxel indices. Each voxel p should be assigned a region label
r ∈ R. �e segmentation variables are x ∈ B|R|×|P|, where B = {0, 1}
and x is indexed as xrp with r ∈ R and p ∈ P . �e partial indexing xr

represents all boolean variables associated with region r and xp represents
all boolean variables associated with voxel p. Each voxel in the image is
represented by |R| boolean variables, which will make it possible to directly
encode geometric relationships between regions, like inclusion and exclusion.
Figure .c shows the correspondence between r and xp for the cardiac
model. Here, the fact that regions  and  should be contained in region 
is encoded in the boolean representation by the fact that the first boolean
variable is set to one. Similarly, region  is contained in both region  and
region  and consequently, the first two boolean variables are equal to one.

�e objective function the framework minimizes is:

E (x) = D(x) + V (x) +W (x), (.)

whose three components are, in order, the unary terms, the pairwise terms
(regularization) and the geometric interaction terms. For every voxel p, the
unary terms introduce a cost for each labeling of xp:

D(x) =
∑
p∈P

∑
r∈R

Dr
p

(
xrp
)
. (.)

�e pairwise terms use a connectivity N to favor smooth and correctly
located boundaries:

V (x) =
∑
p,q∈N

∑
r∈R

V r
p,q

(
xrp, x

r
q

)
. (.)

�e geometric interaction terms associate a cost with labeling voxel p in
region i with different labelings for voxel q in region j. �ese terms are used
either to attract or repel different regions to each other:

W (x) =
∑
p,q∈N

∑
i,j∈R
i 6=j

W i,j
p,q

(
xip, x

j
q

)
. (.)



 .   

For any voxel p, the probability of this voxel to belong to region r is
P
(
xrp = 1

)
. �is probability will have to be estimated from image data

during a training phase.

12.1.1 Unary Terms

�e unary terms are constructed from the probability of each voxel belonging
to any of the regions. Define

µr(p) = − log
(
P
(
xrp = 1

))
, (.)

for voxel p and region r.
A region i is parent to a region j if region j is forced to be contained

inside i directly. Regions not forced to be contained inside any specific
regions have, by definition, the background (region ) as parent.

Consider any region r and let Gr denote the set of all parents to r, then
the unary term should be constructed as

Dr
p

(
xrp
)

= xrp

µr (p)−
∑
g∈Gr

µg (p)

 , (.)

for all p ∈ P and r ∈ R. Examples of these constructions are given in
figures . and .. �e general case above is of limited interest, however,
and the reason it works is most easily explained through an example:

E . Consider the cardiac model in figure .. According to
(.)

4∑
r=1

Dr
p

(
xrp
)

= x4
p (µ4 (p)− µ2 (p)) + x3

p (µ3 (p)− µ1 (p))

+ x2
p (µ2 (p)− µ1 (p)) + x1

p (µ1 (p)− µ0 (p)) . (.)

Now consider a voxel assigned to region 4 from the model. �en x4
p = 1,

x2
p = 1, x1

p = 1 and x3
p = 0 . It follows that

4∑
r=1

Dr
p

(
xrp
)

= (µ4 (p)− µ2 (p)) + (µ2 (p)− µ1 (p)) + (µ1 (p)− µ0 (p))

= µ4 (p)− µ0 (p) . (.)



.. - 

�e reason this construction works is that boolean variables with parents
are linked to their parents by the geometric interaction term. �e final cost
for assigning a voxel to a region is added up like a telescopic sum resulting
in µr − µ0 for each region r.

12.1.2 Pairwise Terms

�e regularization weights are chosen differently for each region in a method
related to the discussion by Grady and Jolly (). For each region i the
pairwise terms are:

V r
p,q

(
xrp, x

r
q

)
=

wp,q

1 + β
(
P
(
xrp = r

)
− P

(
xrq = r

))2 , (.)

where β can be used to tune the regularization. �e neighborhood N for
the regularization is in all experiments -connectivity. �e multipliers wp,q
give different weights to different types of edges. One common choice is
wp,q = 1/ dist (p, q); however, an arguably more correct way is described by
Boykov and Kolmogorov () and is based on solid angles. �e fact that
 has anisotropic resolution is very important to take into consideration
both when calculating the distance between voxels and when using the
method by Boykov and Kolmogorov ().

12.1.3 Geometric Interaction Terms

Some regions should be contained inside other regions, while other regions
should be forced apart. �is is controlled by the geometric interaction terms.
Recall the definition of submodularity on page  and that submodular
functions can be transformed into minimum cut problems and are thus
easily optimizable.

Submodular Interaction Terms. Suppose region j should be contained inside
region i. �is is accomplished by setting

W i,j
p,p (0, 1) =∞ for all p ∈ P. (.)

Computing the weights correctly is not completely trivial and requires a Voronoi
tessellation of the unit sphere. I used the software package by Burkardt () for this
task. See also the book edited by Goodman and O’Rourke () and the article by Renka
().



 .   

�is term is clearly submodular. Enforcing a margin (minimum distance)
between two regions is also possible by setting

W i,j
p,q (0, 1) =∞ for all p ∈ P, (.)

where q is taken in some neighborhood Np of p. As an example, let Np be
the -connected neighborhood of p. Now region j will not only be forced
to be inside region i, it will be forced to be slightly smaller than region i.

Non-Submodular Interaction Terms. Similarly, if region i should be ex-
cluded from region j, set

W i,j
p,p (1, 1) =∞ for all p ∈ P. (.)

�is term is non-submodular. In some special cases the boolean variables
can be transformed to allow for a submodular construction with exclusion
constraints (Delong and Boykov, ). However, this is not possible for
either model in this chapter.

12.2 Solving the Optimization Problem

�e standard approach for minimizing non-submodular functions of this
type is to use roof duality (Delong and Boykov, ). Using supergradients
is also possible and results in a fast and memory-efficient method.

Let E ′(x) be the objective function without the non-submodular terms
above. It will then be easy to minimize. �e non-submodular terms can be
written g (x) ≤ 0. Adding this constraint results in the new problem

minimize
x

E ′(x)

subject to g (x) ≤ 0.
(.)

It can be solved as an integer programming problem, but that is not tractable
due to the large number of variables. Instead, look at the dual problem:

maximize
λ

d(λ) = max
λ

(
min
x

(
E ′(x) + λTg (x)

))
subject to λ ≥ 0,

(.)



..  

where d(λ) is the dual function. Let d∗ denote the optimal value for (.)
and p∗ the optimal value for (.). �en d∗ ≤ p∗. �e constraint on λ
requires using the projected supergradient method (section .. on page )
to solve the dual problem. Just as in chapter , evaluating d consists of
solving a minimum cut problem.

12.3 Cardiac Segmentation

�e heart below the atrioventricular plane is modeled by four different
regions as shown in figures .a and b. �e joint model describes both the
geometry of the different regions and their appearances in the  images.
Region  (the myocardium) contains both region  and region —this is
modeled by the use of geometric interaction terms as W 1,2

p,p (0, 1) =∞ and
W 1,3
p,p (0, 1) =∞, for all p ∈ P . Furthermore, the left ventricular papillary

muscles must be inside the left ventricle. �is is modeled asW 2,4
p,p (0, 1) =∞

for all p ∈ P ; see figure .d. Excluding region  from  is taken care of
by terms of the form W 2,3

p,p (1, 1) = ∞. �ese terms are not submodular
and they can be handled by either supergradient ascent or roof duality.
For the supergradient approach, the (primal) optimization problem can be
formulated as:

minimize
x

E ′(x)

subject to x2 + x3 ≤ 1,
(.)

where E ′(x) is the objective function without the non-submodular terms.
�e unary terms construction as given in figures .c and d results in:

D1
p(1) = µ1(p)− µ0(p), D2

p(1) = µ2(p)− µ1(p), (.)

D3
p(1) = µ3(p)− µ1(p), D4

p(1) = µ4(p)− µ2(p)

and Dr
p(0) = 0 for all r ∈ R and p ∈ P .

�e spatial probability is split into four categories: left ventricle, right
ventricle, myocardium and background. Similarly, the intensity is split into
three categories: blood, muscle and background. �e probability for each
region is then calculated with the assumption that the spatial and intensity
distributions are independent. An example of the final µr’s can be found in
figure .. �e spatial distribution is estimated by first resizing each image



 .   

(a) Slice (b) �0 (c) �1 (d) �2 (e) �3 (f) �4

4

10

Figure 12.2: Example of �r for the slice shown in (a). Recall that
�r (p) = − log

(
P
(
xrp = 1

))
. A lower intensity corresponds to higher probability.

in the training data to the same size by linear interpolation. �en a binary
mask is constructed for each category and and each image. �e masks are
enlarged and smoothed and then they are all added together to the final
probability mask. �e intensity distribution for each region is estimated by
collecting all intensities from the examples in the training data.

�e user selects which slices to be segmented and selects a center point
of the right and left ventricle in one slice. �e two center points are used
to roughly align the hearts to get good spatial statistics. �e algorithm can
handle slices lacking some of the regions.

All ground truth data me and my colleagues have used only have delin-
eations for the left ventricular epicardium. �e method in this chapter does
not have this restriction and segments the full myocardium. All myocardium
which is not part of the left ventricular epicardium must be removed to com-
pare the results to the ground truth. To do this, the thickness of the septum
is approximated as the shortest distance between the left and right ventricles
in the resulting segmentation. �en the outlying myocardium is removed
based on this thickness approximation; see figure .a. Since assuming the
two ventricles to be convex is a reasonable model, the final segmentation is
the convex hull in each slice. �e regularization can sometimes make the
segmentation miss the apical slice, whose location is provided by the user.
When this happens, either the segmentation from the same slice at another
time step or, if it is not available, the segmentation from a more basal slice
is shrunk and fitted at the bottom.

See section . on page  for a general discussion about convex shape priors.



..  

Figure 12.3: Example segmentation from Lund, 3D rendering and nine slices.

Figure 12.4: Example how modeling the papillary muscles improved both the
segmentation of the left ventricle and the myocardium. Left, complete model; right,
without modeling the papillary muscles.



 .   

(a) Left, complete model; right, without modeling the right ventricle.

(b) Left, complete model; right, only the right ventricle.

Figure 12.5: Examples of how modeling multiple regions improves the segmenta-
tion of the ventricular epi- and endocardium. The color scheme is the same as in
figure 12.1b.



..  

Method
Memory (MB) Running time (s)

Sunnybrook Lund Sunnybrook Lund

Supergradient 2727±680 2103±788 46±27 30±27

RD (improve) 5038±985 3913±1407 135±165 80±113

RD (probe) 5041±1014 3949±1402 6109±12451 1934±7984

Relative duality gap Dice (average)

Sunnybrook Lund Sunnybrook Lund

0.00054±0.0013 0.00054±0.0021 0.888±0.0484 0.892±0.0815

0.00016±0.00034 0.00049±0.0021 0.888±0.0485 0.892±0.0816

0.0011 ±0.0030 0.00056±0.0021 0.888±0.0484 0.892±0.0825

Table 12.1: Memory consumption of the optimization in megabytes and the relative du-
ality gap. The data resolution was for Sunnybrook and Lund 146 Ö 146 Ö 10 Ö 2 and
126 Ö126 Ö 10 Ö 2 voxels, respectively, on average. The average dice metric is the average
over parts where ground truth was available.

End systole End diastole

LV endo. LV epi. RV LV endo. LV epi. RV

Multi 0.87±0.05 0.88±0.05 0.80±0.11 0.96±0.02 0.93±0.03 0.91±0.07

Single 0.47±0.25 0.86±0.04 0.42±0.14 0.62±0.12 0.90±0.03 0.57±0.14

Table 12.2: Results in the dice metric for the Lund data set reported as mean ± one standard
deviation. “Multi” is the full multi-region model and “single” is each region segmented
separately (using the same data term and smoothness). Note that the multi-region model
has a huge influence on the segmentation results.



 .   

Method
Dice LV Mass (g) LV ejection

fraction (%)LV endo. LV epi.

This ch. 0.86±[0.05] 0.92±[0.02] 27.1±[28.3] 12.5±[8.7]

A 0.86±0.04 0.93±0.01 23±? 14±?

B 0.89±0.03 0.94±0.02 21.6±14.6 8.08±5.06

C 0.89±0.03 0.93±0.01 28.7±18.7 7.02±4.78

D ? 0.93±? † ?
E 0.81±? 0.91±? ? ?
F 0.89±0.04 0.92±0.02 † †
G 0.89±0.04 0.94±0.01 ? ?
H 0.88±0.04 0.93±0.02 31.8±17.7 8.35±5.78

A Marak et al. (2009)

B Lu et al. (2009)

C Wijnhout et al. (2009)

D Casta et al. (2009)

E O’Brien et al. (2009)

F Constantinides et al. (2009)

G Huang et al. (2009)

H Jolly (2009)

Table 12.3: Results for Sunnybrook. “?” means not reported in the corresponding
paper. “†” means that the result is not directly comparable. Mass and ejection
fraction is reported as difference between manual and automatic value.



..  

12.3.1 Experiments

�e segmentation is only performed on the slices of the heart which are
fully below the atrioventricular plane. �e quality of the segmentation is
measured by the dice metric, given by 2 |A ∩B| /

(
|A|+ |B|

)
, where A

and B are the ground truth and the computed segmentations, respectively.
�e algorithm was evaluated on two data sets: Lund and Sunnybrook.

Each data set was trained and evaluated separately. Lund consists of cine
short-axis steady state free precession  images of  healthy normals
captured on a Philips Interera  .  with a five channel cardiac synergy
coil. Each heart has the left and right ventricular endocardium and the left
ventricular epicardium manually delineated by an expert. �e data set is
split into two equally sized parts, one used for training and one used for
evaluation. Results are given in table .a and an example segmentation in
figure .. �e experiments evaluated three clinical parameters: the left
ventricular mass has an error of .±11.5 g, the left and right ventricular
ejection fraction errors are .±2.9 and .±5.2, respectively.

A very important question is whether using multiple regions actually
improves the segmentation performance. �is is easy to answer by running
a simplified version wherein the segmentation for each region is run sep-
arately; see table .b. Without the complete multi-region model, the
localization of the ventricles becomes very difficult and the blood pools are
often overestimated. Figures . and . give two examples where the
multi-region model improves the segmentation significantly.

Our method found a globally optimal solution for 52 of the hearts,
and for the other hearts we can from the very small relative duality gap be
certain that the method found a solution close to the global optimum. For
4 out of a total of 46 hearts the probing took more than  hours and we
terminated the calculations after that time. �is highlights the problem
with probing - there is no real guarantee that the computations will be
done within a reasonable time; on some problem instances we had probing
running for several weeks without returning a complete solution.

�e Sunnybrook set consists of  patients with different heart diseases
and is split up into two equally sized parts, one for training and one for
evaluation. �e data set was used in the   cardiac  left ventri-
cle segmentation challenge. Sunnybrook lacks ground truth for the right
ventricles, so Johannes Ulén drew this for all images. Skillful as Johannes is,



 .   

he is not a physician; therefore, this ground truth was only used for training
and not for evaluation. �e results given by the evaluation code used in
the challenge are given in table . along with results from competing
methods. �e evaluation in the challenge calculates the dice metric per slice
and averages over all slices.

Another important question is whether the supergradient method per-
forms worse or better than roof duality (). Using subgradients was consis-
tently faster than  and at the same time giving a very small relative duality
gap. �e small gaps gives us certificates that the solutions are very close to
(and in many cases exactly) the global minimum; see table .. �is table
reports results using the two variants of roof duality “probe” and “improve”
by Rother et al. (a).

Extending the cardiac model to also include papillary muscles in the
right ventricle is of course possible; one more variable per voxel is then
required. Initial experiments gave worse results for both the right ventricle
and myocardium segmentation with the added region. �e new region had
a tendency to overflow into the septum (the wall separating the ventricles)
since this would give region  a rounder shape giving a lower regularization
cost, and therefore it has not been incorporated in the model.

�e Lund data set was manually delineated by experts using both short-
and long-axis images. For a number of hearts the most basal slice for the
short-axis images containing the left ventricular cavity also cut through to
the atrium. For these slices it was hard or even impossible to even manually
delineate the left ventricle solely based on information from the short-axis
images. When the experts produced the ground truth, they used long-axis
images to be able to correctly segment the short-axis images. It would be
desirable for the segmentation method to incorporate information from
long-axis images as well so these few slices could be handled correctly as
well.

12.4 Lung Segmentation

�e second application is the segmentation of lungs in a full-body X-ray
 scan. �e model is shown in figure . and uses four regions: the body
(region ), the two lungs (regions  and ) and the heart together with the
throat (region ). Regions ,  and  are all forced to be contained inside
region  by adding the terms W 1,2

p (0, 1) = ∞, W 1,3
p (0, 1) = ∞ and



..  

1

3 2
4

0

(a) Four-region model (b) CT scan with seeds
provided by the user

rp xp

0 (0, 0, 0, 0)
1 (1, 0, 0, 0)
2 (1, 1, 0, 0)
3 (1, 0, 1, 0)
4 (1, 0, 0, 1)

(c) Representation

12

3

4

∞
∞

�1 − �0 st

�4 − �1

�2 − �1

�3 − �1

∞

(d) Graph

Figure 12.6: (a) A diagram showing the model used for lung segmentation. Region
0 is the background, region 1 the body, regions 2 and 3 are the right and left lungs,
respectively, and region 4 is the throat. (b) The seeds in one slice used for the
segmentation. In a clinical setting, these are provided by a physician. (c) The
boolean representation of the four regions. (d) Graph construction for one voxel,
showing the geometrical relationships.



 .   

W 1,4
p (0, 1) =∞ for all p ∈ P. �e major difference to the cardiac model

is that more than one separation need to be enforced during optimization,
that is,

min
x

E ′(x)

subject to x2 + x3 + x4 ≤ 1.
(.)

Alternatively, the three-variable constraint could equivalently be replaced
with three constraints of the same type as in the previous section:

x2 + x3 ≤ 1 (.)

x2 + x4 ≤ 1

x3 + x4 ≤ 1.

�ese two sets of constraints perform almost identically in the experiments,
but, obviously, the second set requires three times as many dual variables.

Figure .d shows the unary terms construction—that is

D1
p(1) = µ1(p)− µ0(p), D2

p(1) = µ2(p)− µ1(p), (.)

D3
p(1) = µ3(p)− µ1(p), D4

p(1) = µ4(p)− µ1(p)

and Dr
p(0) = 0 for all r ∈ R and p ∈ P .

�e user gives ground truth seeds only in one slice of the data as shown
in figure .b. �e background is removed by thresholding on an intensity
level between the seeds given from the background and the body. �e seeds
are then used to build intensity histograms for the five regions which are
used to estimate the intensity distribution. Figure . shows an example of
the final unary terms using the estimated intensity distributions. �e unary
terms do not use any spatial component estimated from training data, but a
gradient is present (figures .d and e) to be able to distinguish between
the left and the right lung.

12.4.1 Experiments

�e experimental test of the algorithm used a full-body X-ray  data set
with seed as shown in figure .. A sample result from a few slices can be
seen in figure .. �e running time for roof duality is  seconds and



..  

Figure 12.7: Sample result from the segmentation. The color coding is the same
as in figure 12.6 (page 189).



 .   

(a) Original (b) �0 (c) �1

(d) �2 (e) �3 (f) �4

4

10

Figure 12.8: An example slice from the data set with the five calculated unary
terms for this slice.

(a) Region of interest marked with
a rectangle.

(b) Forced separation. (c) No separation.

Figure 12.9: An advantage of the multi-region model. (b) The model have forced
regions two and three apart. (c) The exclusion constraint between region 2 and 3
was removed, resulting in an over-smoothed boundary.



.. 

for supergradient ascent  seconds. Both methods give exactly the same
solution.

�e current implementation used two different general-purpose max-
flow implementations (Boykov and Kolmogorov, ; Goldberg et al.,
). �e performance of the two algorithms was quite similar. One thing
not taken into account is the fact that the structure of the graph is highly
repetitive. For instance, all geometric interaction terms are equal and they
need not be explicitly stored in the graph. A specialized-purpose solver for
this problem could lead to a large reduction of memory requirements.

12.5 Conclusions

�e following three points summarize the main observations from the
experiments:

. �e experiments have shown that a multi-region model achieves sig-
nificantly better results, all else being equal, than segmenting the
regions one at a time (figures ., . and .). Enforcing geomet-
ric constraints, and more generally, incorporating prior information
into the model, result in qualitative improvements. �is is not always
captured well by quantitative measures such as the dice metric.

. �e optimization method based on supergradients significantly out-
performs roof duality, both in terms of speed, quality of solution and
memory consumption.

. Application of the multi-region framework for cardiac segmentation
achieves results on par with dedicated  methods on a publicly
available data set. Although there are fine-tunings one can make to
the model to improve performance, these results are encouraging.

�e introduction to this thesis mentioned the trade-off between tractabil-
ity and fidelity. Increasing the fidelity of models in medical image segmen-
tation without sacrificing tractability has been the purpose of this chapter.
�e human heart is composed of several interacting geometric parts—this
fact really should be reflected in the model.

Popular methods for segmenting lungs use multiple steps, where the
first finds an initial segmentation and the subsequent second step separates



 .   

the left and right lungs. For example, Hu et al. () and Armato III
and Sensakovic () separate the lungs in each slice individually, whereas
Ukil and Reinhardt () separate the whole volume at the same time.
In contrast, the optimization problems in this chapter can be solved opti-
mally without having to resort to multiple phases. �is is what increased
tractability without sacrificing fidelity means.



Chapter 13

Shift-Map Image Registration

�is chapter will describe how multi-label optimization can be used for
image registration. Shift-map image processing was recently introduced
by Pritch et al. () who applied their framework to image inpainting,
content aware resizing, texture synthesis and image rearrangement. �e
purpose of this chapter is to extend the range of applications to image
registration.

13.1 Problem Formulation

Registration can be performed using a parametric model, e.g. an affine or a
projective transformation estimated from point correspondences between
two images. �is chapter considers a non-parametric model. We have a
base image B(i, j) and an input image I(i, j). �ese two images need not
have the same size. �e goal is to register the pixels of the input image onto
the base image using a shift-map T (i, j) =

(
ti(i, j) , tj(i, j)

)
. �e pixel

I(i, j) is registered onto B
(
i+ ti(i, j) , j + tj(i, j)

)
. Figure . shows

the input and base images and the resulting image obtained by moving all
pixels in the input image as specified by the computed shift-map.

I B(i, j)(i′, j′) (i, j)

(i, j) + T (i, j)

Figure 13.1: Shift-map between two images



 . -  

(a) Input image I (b) Base image B

(c) Shift-map result (d) Final locations of pixels

(e) SIFT Flow result (Liu et al.,
2008)

(f) SIFT Flow final locations

Figure 13.2: Registration of two images using a shift-map. Each pixel in the input
image is placed on the base image as described by the shift-map.



..  

Each possible shift-map T (i, j) ∈ {−m, . . . ,m} × {−n, . . . , n} is
assigned a cost, based on a priori assumptions on what a good shift-map
typically looks like and how well the two images match each other. �e goal
is then to find the optimal shift-map, that is, the shift-map with the lowest
cost:

E(T) = ρ
∑

1≤i≤m
1≤j≤n

Eijd (T (i, j))+

∑
1≤i≤m
1≤j≤n

∑
(i′,j′)

Eijs (T (i, j),T (i′, j′)),
(.)

where the last summation refers to summations over all (i′, j′) in a neigh-
borhood N (i, j) of (i, j). Figure . shows one such neighbor. �is
chapter uses -connectivity exclusively. Eijd and Eijs are the data terms and
smoothness terms, respectively. �ey will be described in separate sections
below.

Comparison of pixels. A related problem to image registration is dense
depth estimation from two images of the same object with known camera
positions. �is problem has been studied extensively; see for example the
work by Kolmogorov and Zabih (). Recently a new descriptor, ,
was proposed by Tola et al. (), tailored to dense stereo estimation where
the position of the two cameras differ by a large amount. �is descriptor is
shown to outperform other approaches (e.g. ,  and pixel differences)
in extensive experiments. �erefore, it seems relevant to try and apply this
descriptor to the related problem of estimating a dense image registration.

Not unlike  (Lowe, ), a  descriptor samples the image
derivative in different directions. Eight different directions and three differ-
ent scales are used. By sampling these fields at different points around the
feature location, a descriptor of dimensionality  is obtained. Since the
same fields are used for all image locations, a dense field of descriptors can be
computed in a couple of seconds. �e main goal of the  descriptor was
efficient dense computation. �e work by Winder et al. () is helpful
when facing the task of choosing the correct parameters.

Data terms. �e data terms Eijd were previously used by Pritch et al. to
enforce hard constraints on the shift-map. When inpainting an image, the



 . -  

data term makes sure no pixels in the “hole” are used in the output image
by assigning such shifts a cost of∞.

In this chapter, where image registration is considered, more complex
data terms are needed to incorporate the fact that we want to find a mapping
between two images such that similar pixels are mapped to similar pixels.
�e data terms dictate that similar parts of the images should end up on
top of each other. To measure similarity, dense  is used.

It might only be possible to register parts of the input image, so shifting
pixels outside the base image is permitted, at a constant cost P per pixel.
�e data terms are then given by

Eijd (T) =


∥∥∥Î(i, j)− B̂

(
(i, j) + T (i, j)

)∥∥∥
2

P when (i, j) + T (i, j) is outside B,
(.)

where Î(i, j) is the  descriptor describing the image I at pixel location
(i, j). If the shift takes pixel (i, j) outside the bounds of the base image, a
constant cost is issued. Otherwise, dissimilarity of the pixels determines the
cost of the assignment. Figure .e shows a heat map of the distance from
the circled feature in the first row to all locations in the image in row .

Smoothness terms. �e smoothness terms are used to enforce global consis-
tency to the shift-map, while allowing discontinuities at a limited number of
places. Pritch, Kav-Venaki and Peleg’s () smoothness terms compared
the color and gradient pixel-wise. Where a discontinuity in the shift-map
occurs, the penalty is computed as the difference in color and gradients. �e
smoothness function takes the form of the Euclidean distance between the
endpoints of the two shifts:

Eijs (T (i, j),T (i′, j′)) = ‖(i′, j′) + T (i′, j′)− (i, j)− T (i, j)‖2.
(.)

Here, (i, j) and (i′, j′) are neighboring pixels; see (.). Using the shift
difference ‖T (i′, j′)− T (i, j)‖2 will penalize smoothly varying shift-maps
too much, and hence it is important to compare the end points (as in (.)).

Color information. �e  descriptor does not use color information,
yet intuitively it makes little sense to match pixels of very different colors.



.. 

Because of this, Linus Svärm and I also made experiments where the color
information of the images is incorporated into the above data terms. �e
color model used assigned a cost of P to pixels with large difference in
hue, given that the intensity and saturation allowed a reliable value of the
hue. �is model improved the result of the registration in figure .. �e
experiment shown in figure . did not use color information, though.

13.2 Experiments

�e objective function (.) can be minimized with α-expansion (sec-
tion . on page ). To make the optimization problem tractable, a
Gaussian pyramid was used. �e images in figure . used an initial size
of  Ö . �e size was then doubled  times until the final resolution of
 Ö  was reached. Each doubling of the image size is followed by a
linear interpolation of the shift-map. �is shift-map was used as a starting
guess for the optimization at the larger level. At each level after the first, only
 possible shifts then need to be considered: {−1, 0, 1} in each direction.

To verify the implementation, I inpainted an example image used by
Pritch et al. (); see figure .. I tried to follow their implementation
as closely as possible and got different, but qualitatively similar results. �e
pixels outside the area to be removed were not allowed to move at all, which
is in contrast to the work by Pritch et al. (), in which all pixels except
the border of the image were allowed to be shifted. Pritch et al. ()
truncated every non-submodular term when calculating the moves. An
arguably better approach is to use roof duality. I tried both and concluded
that truncation seems to work well for these problems; figure . shows
examples of both approaches.

Figures . and . show shift-map registration results. �e bear
image in figure . shows the same object from two different views and is
from (Kushal and Ponce, ). �e building images in figure . register
correctly, except for the light pole, which is very thin and does not have a
large enough data term. An experiment evaluating shift-maps quantitatively
consisted of two images related by a known deformation. �e results are
displayed in figure ..

During large-scale reconstruction of a city using images taken with
a cylindrical camera (Hitta.se street view), my coauthor Linus Svärm has
encountered many difficult image pairs where  is unable to provide



 . -  

(a) Input image I (b) Base image B (c) Final location of pixels

Figure 13.3: Registration of two images of a building.

useful correspondences. �e top two rows in figure . show one of the
hardest. �e computed  features for the two images ( and 
feature points, respectively) only gave  correct matches. �e main reason
for this was the image geometry and large, repetitive patterns. Computing a
shift-map resulted in a dense, mostly correct map between the images. �is
was then used as an aid to compute  correspondences, where features
in one image were only allowed to match within a neighborhood of the
location obtained by following the shift-map. �is resulted in  matches,
of which  were correct. �e run time for this image was about  minutes.

I have also compared shift-map registration to the recent  flow algo-
rithm (Liu et al., ). Both algorithms worked well for simple distortions
of small magnitudes, which can be seen in figure .. However, for the
other, more challenging experiments, I was not able to get any satisfactory
results using  flow. An example is shown in figure ..

13.3 Conclusion

In conclusion, computing the smoothness term with color and gradient
differences as done by Pritch et al. () did not give satisfactory results
when extended to image registration. Using the dense  descriptor
resulted in a great improvement.

Shift-maps perform better than  flow for some problems because it is
not (initially) restricted to a neighborhood and can find large shifts in every
direction. A downside is that the first iteration at the coarsest resolution has
to find a good initial map since all subsequent steps are refinements of the
maps from the previous steps.



.. 

(a) Original (b) Shift-map inpainting (c) With roof duality

Figure 13.4: The inpainting algorithm by Pritch et al. (2009). The run times were
3.1415 seconds (pure coincidence!) for truncation (b) and 17.8 seconds for roof
duality (c). Roof duality found a 5% lower objective value.

(a) Base image (b) Input image

(c) Shift-map result (d) SIFT Flow result (e) Ground truth

Figure 13.5: Recovering a known image distortion. The maximum and mean error
for the shift-map estimation was 7.3 and 0.7 pixels, respectively. Photo by Tristan
Savatier obtained through Flickr.



 . -  

(a) Input image I

(b) Base image B

(c) Final locations of the pixels in I

(d) Resulting shift-map

(e) DAISY distance between the circled feature in I to all pixel locations in B

Figure 13.6: Registration of 1024×179 Hitta images. The result is a dense,
highly non-linear registration. This shift-map allowed us to obtain useful point-
correspondences between the images, which was not possible using SIFT alone.



Chapter 14

HEp- Staining Pattern

Classification

�e major part of my thesis is about developing new optimization methods
for low-level vision. In constrast, this chapter will present something from
the other end of the spectrum—a demonstration of what can be done when
a good segmentation is available. �e work presented here was presented at
the International Conference on Pattern Recognition (, ) contest
“p- Cells Classification.” Apart from describing a classification system,
this chapter will explain why all of the participants in the contest severely
overestimated their classification performance.

14.1 Indirect Immunofluorescence

Indirect immunofluorescence () is a method for detecting antinuclear
antibodies in patient serum. �is is important when diagnosing autoim-
mune connective tissues disorders (Rigon et al., ). Using  images,
it is possible to locate cells as well as to classify their type in the sample.
�e manual classification of these cells suffer from the usual problems in
medical imaging, such as: (i) �e result is dependent on the experience and
expertise of the specialist and (ii) it requires a lot of manual work. Reliable
automatic systems are in great demand.

�is chapter introduces a new classification method for mitotic cells in
 images, where each mitotic cell is classified into one out of six categories.
�is classification is one step in the detection of antinuclear autoantibodies
(Percannella et al., ). �e method works in an automatic setting, where
it is assumed that the segmentation of the cell boundary in the image is
known.



 . -    

Figure 14.1: Seven random input images with given segmentation boundaries.

Figure 14.2: The rows show 20 samples from classes 1–6, respectively. The images
have been resized to 100 Ö 100, converted to gray-scale and histogram equalized
to enhance visibility.

Data Set. �e training data set consists of  segmented and classified
images. Figure . shows seven random images exactly as they appear in
the data set. Since the test data set of the contest was not available to us, I
evaluated the classification system using leave-one-out cross-validation on
the training data set.

�e task of the challenge was to classify a given segmented input image
of a cell as one of six classes. �e six classes of the data set are:

. Homogeneous

. Coarse-speckled

. Fine-speckled

. Nucleolar

. Centromere

. Cytoplasmatic.

Figure . shows  examples from each class.

Previous Work. A recent work on the same data set is the paper by Cordelli
and Soda (). �ey used the full data set with  cell images, evalu-



..   

ated many different methods and achieved a best accuracy of . using
AdaBoost. Accuracy is simply defined as the percentage of correctly clas-
sified images. Foggia et al. () and Percannella et al. () have also
performed experiments on this data set, but for a different task: mitotic cell
detection.

Papers using other data sets have been written by Perner et al. ()
with  accuracy, Sack et al. () with  and Soda and Iannello
() with  accuracy. �ese earlier works, however, used a different
data set and only four classes, making direct comparison difficult. I am
not aware of any other publicly available data set for this task. Prior to the
 contest, comparing our results to the state of the art would have been
difficult.

14.2 Classification Methods

Convolutional neural nets are state of the art for this kind of “easy” image
classification tasks. For example, the work by Ciresan et al. () obtains a
recognition rate of .± . on the  data set of handwritten
digits. On the same data set, a simple neural network trained via back-
propagation (Ciresan et al., ) can also perform extremely well with an
accuracy of .. Another recent result of neural nets is the German
traffic sign recognition benchmark (Stallkamp et al., in press), where the win-
ning entry (Ciresan et al., ) used a committee of convolutional neural
networks and obtained an accuracy of ., significantly outperforming
humans.

�e method has some drawbacks, however, which makes it less useful
in our context. First, neural networks have a strong tendency of overfitting.
�is can be alleviated by creating new training data by rotating, translating
and skewing existing data. In this way, the same image is never fed to the
network twice during training. In any case, the possibility of overfitting
must be carefully monitored during training. Second, the training requires
a vast amount of computer resources. For example, (Ciresan et al., )
used more than two weeks for training with a system with four graphics
processing units.

�e contest data set has larger images than e.g. , which makes
training an ensemble of networks computationally infeasible. Instead, the
classification system developed in this chapter uses a random forest (Breiman,



 . -    

; Criminisi et al., ). A random forest computes averages over several
hundreds of small decision trees, each of which is trained on a subset of the
features and the training examples. It is not sensitive to overfitting and the
total time required for training is  seconds.

14.3 Features Used for Classification

As a random forest classifier is relatively insensitive to irrelevant features,
adding redundant and poor features is not a problem. �erefore, one should
not worry about whether a specific feature is relevant when developing
classification software. �e relevant ones will be picked automatically. One
guideline we used was that for this particular task, unlike e.g. , there
should be no reason to include features that are not rotationally symmetric.

�e fluorescence light captured is essentially monospectral. �erefore,
the first step is to project the  color of each pixel onto the principal
component of all pixel colors in the training set. Before any further process-
ing, the background of each image is removed using the segmentation mask
provided in the data set. Some images suffer from a few bright (saturated)
pixels. Taking all intensities in an image and calculating a  binned his-
togram and emptying each bin which contains less than . of the pixels
reduces this problem. If two consecutive bins are empty, the image intensity
is truncated at this level. �e program then starts to calculate features on
the newly formed image.

�e first feature is the “positive” or “intermediate” flag given in the
data set. �e second feature is the aspect ratio of the image. �e image
is then thresholded at  intensities equally spaced from its minimum to
its maximum intensity. Each threshold level gives a binary image with the
following features:

• Number of objects
• Area
• Area of the convex hull
• Eccentricity
• Euler number
• Perimeter.

�ese features are also calculated on the segmentation mask. Each binary
image is also used in the same way as the mask to create a cut-out of the



.. 

original image. On this cut-out the means of the following image properties
constitute a new group of features:

• Intensity
• Standard deviation in  Ö  neighborhoods.
• Entropy ( Ö  neighborhood) (Gonzalez et al., )
• Range ( Ö  neighborhood) (Gonzalez et al., ).

�e means of these features are also taken on a smaller mask formed by
eroding the initial mask by a Ö  kernel of ones. Another set of features are
the average gradient magnitudes of the image after it has been smoothed with
a Gaussian kernel with  different σ equally spaced in [0.6, 10.5]. �e final
features are based on gray-level co-occurrences (Haralick et al., ) with
offsets {−1, 1}. �e co-occurrences are calculated on images which have
been transformed to contain only k ∈ {2, 5, 8, 11, 14} different intensities.
�e gray-level co-occurrences are probabilities p(a, b) of intensity pairs (a, b)
in the image. Four features are computed using these probabilities:

• Contrast:
∑

(a,b)|a− b|p(a, b).
• Correlation:

∑
(a,b)

(a−µa)(b−µb)
σaσb

p(a, b), where µa is the mean of the
first component of all intensity samples (a, b) etc.

• Energy:
∑

(a,b) p(a, b)2.
• Homogenity:

∑
(a,b)

p(a,b)
1−|a−b| .

�e described features make up a feature vector F1 with  features.
�e same features are also calculated on the image after it has been smoothed
by a gaussian kernel with σ = 1 and σ = 2.5 to reduce image noise. �is
forms two new feature vectorsF2 andF3. �e final feature vector is obtained
by concatenation and subtraction as (F1, F2 − F1, F3 − F2). �e total
number of features is then . All the parameters (e.g. the amount of
smoothing) were chosen by local optimization with cross-validation on a
subset of the training data.

14.4 Results

�e average time for loading a single-cell image from disk and computing
all its features is . seconds on an Intel Core i  . z. Although
this could probably be improved, I believe it is still within the requirements



 . -    

1 2 3 4 5 6

1: 142 0 6 0 1 1
2: 0 108 0 1 0 0
3: 5 0 89 0 0 0
4: 0 0 0 102 0 0
5: 1 0 2 1 204 0
6: 0 0 0 1 0 57

Table 14.1: Confusion matrix. Rows show ground truth and columns our classifica-
tion.

of a system for clinical use. �e time to classify the features is negligible
(µs on average). Combining this with a total training time of  seconds
gives a quite efficient classification system. I used the default ensemble size
of  trees, but the out-of-bag error rate (Breiman, ) during training
suggests that using less () trees would have worked just as well.

�e overall accuracy is . based on leave-one-out cross-validation.
Figure . shows all  images which the system fails to correctly classify.
�e same information is presented in table . as a confusion matrix. �e
accuracy of our system may be on par with the inter-lab variability (Bizzaro
et al., ), but additional studies are required to confirm this.

�e votes from the individual trees can be used to obtain a (normalized)
confidence score of each class. It is then interesting to see whether the
misclassified examples have lower confidence than the correctly classified
ones; see figure .. Another experiment allowed the system to abstain from
classifying examples for which the confidence was low, in a similar manner
to (Soda and Iannello, ). �is feature is useful in a semi-supervised
setting, where easy instances are classified automatically and the harder ones
are sent to a specialist for further consideration. Figure . shows that
allowing . of the cells to remain unclassified yields an accuracy of
.

14.5 Discussion

Whether our increased accuracy with respect to Cordelli and Soda () is
due to better and more discriminative features or the use of random forests
is a relevant question. Cordelli and Soda tried several classifiers (k-, ,



.. 

0 10 20 30 40 50 60 70 80 90 100
97

97.5

98

98.5

99

99.5

100
A

cc
ur

ac
y

(%
)

Reject rate (%)

Figure 14.3: Accuracy as a function of the number of rejected examples. A reject
rate of 11.1% gives a perfect accuracy.

Adaboost, etc.). Table . shows a comparison of six different classifiers
on the same features:

• Random forest as described in this chapter.
• Linear .
• One-versus-all AdaBoost using thresholding of single features as weak

classifiers.
• k-, where a vector is classified as the most common class among

its k neighbors using the `1 distance. Each component of the feature
vector is divided by its standard deviation in the training data set.

Figure . shows how the accuracy of a random forest increases as the
number of features increases.

Random forests and nearest neighbors achieve very similar performance,
but the very time-efficient classification make random forests the preferable
choice. �is experiment strongly suggests that the main reason for the
increased accuracy is the feature design. By thresholding at different intensity
levels and computing descriptors for each resulting level set, more shape
information of the image is incorporated in a robust manner.

Contest results. �e contest results will be published by Percannella, Foggia
and Soda. All  participants severely overestimated their classification
performance. �e training set, as stated above, consisted of  images
of cells. However, the total number of microscopic images used to extract



 . -    

RF SVM AdaBoost 1-NN 3-NN 5-NN

96.9% 88.1% 91.7% 95.0% 96.1% 95.0%

Table 14.2: Accuracy of different classifiers applied to the features in this chapter.
This experiment used a training set of 321 images and a test set of 320 images.

0 10 20 30 40 50 60 70 80 90
40

50

60

70

80

90

100

Number of features used

A
cc

ur
ac

y
(%

)

Figure 14.4: The accuracy increases as the number of features increases. This
experiment used the same training and test sets as table 14.2.

Figure 14.5: All 19 images the classification system assigns the wrong class. The
red number is the incorrect classification; the green is the ground truth. Each image
also shows the confidence score.



.. 

them were only . Cells within the same image are presumably very similar
and should not be present in both the training and test set during cross-
validation. A much better cross-validation study would have left all cells
from the same image out and used the rest as training set. However, the
cell-image correspondences were not available to the participants of the
contest. Virtually all participants used some form of cross-validation to
estimate their accuracy, with many of the participants ending up between
 and . �e test set of the contest consisted of cells from another
set of  different images, different from the training set, and the results
on this set were almost uniformly distributed between  and . �e
method in this chapter obtained about .

Foggia and Soda reported that an independent immunologist obtained
an accuracy of about . However, the immunologist did not even have
access to histogram equalization and, as figure . shows, some images in
the data set are very dark. It is therefore possible that a human expert would
perform better than .

If nothing else, this shows the importance of correct cross-validation
studies for estimating the accuracy of unseen data. �e training set of
the contests had undocumented structure, which led all participants to
overestimate their accuracy.

I do not know the exact value at the time of writing.



 . -    



Part V

Conclusion

Chapter 15

Recent Work

�e work in this thesis has been published in conferences and journals over
the course of several years. In some cases other researchers have continued
the work. �is chapter is a brief account of some of these works. It is not
exhaustive and should be seen only as a help to the interested reader rather
than a complete account.

15.1 Generalized Roof Duality

Beyond boolean sets. Our first paper on generalized roof duality (Kahl
and Strandmark, ) was published toward the end of the year. We
considered pseudo-boolean functions exclusively, but many theorems have
analogues when the domainB = {0, 1} is replaced by L = {0, . . . , L−1}.
Windheuser et al. () have developed this theory. For ordered sets (where
min and max are available), the same definition of submodularity can be
used; a function f : Ln → R is submodular if

f (x ∨ y) + f (x ∧ y) ≤ f (x) + f (y), ∀x,y ∈ Ln. (.)

�is is the exact same definition as (.) found on page . Submodular
functions can be minimized in polynomial time even when B is replaced
by L.

A submodular relaxation can be defined in the same way as for the
boolean case (page ):

g(x, x̄) = f (x), ∀x ∈ Ln, (A)
g submodular, (B)

g(x,y) = g(ȳ, x̄), ∀(x,y) ∈ L2n (symmetry). (C)



 .  

�e only question is how the negation operation ·̄ should be defined. It
turns out that a good choice is

x̄ = L− (x+ 1). (.)

Just as in the quadratic case for pseudo-boolean functions, the optimal
relaxation can be constructed explicitly when f is a sum of functions of
arity two (with two arguments). Windheuser et al. do this and show that
the resulting relaxation is the same as a construction proposed earlier (Kohli
et al., ) and thus prove its optimality. Higher arities are not considered
by Windheuser et al.

�is generalization also has persistency. If (x∗,y∗) ∈ argmin g(x,y)
and x ∈ argmin(f), then

x∗i ≤ xi ≤ ȳ∗i for all i. (.)

Just as in the boolean case, (x∗,y∗) = (0, 0) gives no additional informa-
tion.

�e usefulness of this generalization of generalized roof duality depends
on whether L has a natural ordering and this is true for some applications,
such as stereo and image denoising. Somehow choosing the best ordering
for the non-natural cases is perhaps possible and would be interesting to
investigate. A more general notion of submodularity when L is only partially
ordered also exists (Kolmogorov, ).

Symmetric extensions. Chapter  outlined a few other methods that can
perform better than generalized roof duality. Fredriksson et al. () pro-
posed another based on symmetrization (Boros et al., ). �e symmetric
extension of f is the function

φ(x, x0) = x0f (x) + x̄0f (x̄). (.)

�e function φ is symmetric in the sense that φ(x) = φ(x̄). We obtain
the original function f if we set x0 = 1. �e key insight is that we can
fix other variables of φ and still obtain persistency for f when using roof
duality on φ:

min
x
f (x) = min

x,x0
φ(x, x0) = min

x,x0
xk=1

φ(x, x0). (.)

�is procedure sometimes gives additional assigned variables for f .
I was a co-author, but did not discuss this work in previous chapters.



..   

15.2 Parallel Minimum Cut

Message passing. Others have continued the work in chapter  on parallel
minimum cuts after we published those results in . Schwing et al.
() used splitting and duality for distributed message passing, which
works for general discrete problems. �ey report good results for medium-
scale problems split into  Ö  subproblems.

Push-relabel. Shekhovtsov and Hlavac (a,b) have proposed a com-
bination of the work in this thesis and the work by Delong and Boykov
(). Just as in chapter , their method splits the graph into several pieces
which are solved independently with augmenting paths. However, the com-
munication between subproblems consists of pushes and relabel operations
instead of duality. In this way, they are able to obtain an upper bound on the
number of iterations until convergence, which is very nice. �e downside
is that a few heuristic techniques are needed to make the algorithm fast in
practice—this is often the case for methods based on push-relabel. I think
this approach shows great promise.

Bundle methods. �is thesis has focused on supergradients to maximize the
dual function d (see page ). Kappes et al. () use a different approach
based on bundle methods. �ey obtained similar results for minimum cuts
(as chapter  showed, they converge quickly), but for other problems bundle
methods could significantly outperform methods based on supergradients.

Cache-efficiency. As we have seen throughout the thesis, graphs in computer
vision are often very regular—all node neighborhoods typically look the
same. �is fact can be exploited to significantly reduce the memory cost of
storing the graph. Jamriska et al. () did this and also demonstrated a
significant speed-up due to taking better advantage of the microprocessor
cache.

Graph reductions. Scheuermann and Rosenhahn () have proposed
yet another way of reducing the memory consumption of minimum cuts.
With a pre-processing step, they can find nodes which provably cannot be
in different parts of any minimum cut. �ese two nodes are then joined



 .  

into one. �e result is an increased processing speed and a reduced memory
consumption by a factor of two.

15.3 Parametric Models

Convex relaxations. We first presented the work in chapter  in  and,
as Brown et al. () notes, “there is surprisingly little work done in the
direction of global methods in which the values are unknown.” �e values
they refer to are the mean values of the background and foreground. Brown
et al. proceed to introduce another method for the two-phase problem
studied in chapter . �ey discretize the unit interval of possible values for
µ1 and µ0 into N values. �eir convex relaxation is often able to solve the
problem optimally without having to resort to branch and bound. However,
their experiments only use N equal to  and , with running times until
convergence ranging up to almost an hour. Trying all

(
N
2
)

combinations of
the parameter values seems more efficient. �e method still holds potential,
as it is more general (the authors perform three-phase experiments) and
future work might be able to increase its efficiency.

Bae et al. () introduced a method which seems to allow much finer
discretizations. �ey also stated that “Little work has been devoted to global
optimization over the regions and parameters simultaneously in the image
segmentation models.”

Branch and bound. Lempitsky et al. have a more recent work (), which
discusses segmentation with branch and bound extensively and includes the
two-phase Mumford-Shah functional as a special case. For many problems,
only about /th of the tree needs to be traversed.

15.4 Curvature

Shekhovtsov et al. () have recently taken a different approach to curva-
ture regularization based on patches. Each m×m patch in the resulting
segmentation has a cost according to

E(xP) = min
y∈{1,...,k}

(
〈wy,xP 〉+ cy

)
, (.)



.. 

where xP is a vector with the variables associated with an m ×m patch.
Each patch is penalized by the affine function giving the smallest value
out of k possibilities. �ese linear functions can be chosen such that they
together approximate the curvature of the segmentation boundary of the
patch. Shekhovtsov et al. use - to minimize the resulting objective
function. �is approach can also be used for other regularization priors.
However, it is unclear how accurate the approximation becomes and the
optimization problem seems even harder than our original formulation.



 .  





Bibliography

Adams, W. P., J. Bowers Lassiter and H. D. Sherali. . “Persistency
in - Polynomial Programming.” Mathematics of Operations Research
():–. Cited on page .

Adams, W. P. and P. M. Dearing. . “On the equivalence between roof
duality and Lagrangian duality for unconstrained - quadratic program-
ming problems.” Discrete Applied Mathematics ():–. Cited on
pages ,  and .

Agarwal, S. and K. Mierle. . Ceres Solver: Tutorial & Reference. Google
Inc. http://code.google.com/p/ceres-solver. Cited on pages  and .

Agarwal, S., N. Snavely, I. Simon, S. M. Seitz and R. Szeliski. . Building
Rome in a Day. In Int. Conf. Computer Vision. Cited on page .

Alahari, K., P. Kohli and P. H. S. Torr. . “Dynamic Hybrid Algorithms
for MAP Inference in Discrete MRFs.” IEEE Trans. Pattern Analysis and
Machine Intelligence :–. Cited on page .

Armato III, S. G. and W. F. Sensakovic. . “Automated lung segmen-
tation for thoracic CT: Impact on computer-aided diagnosis.” Academic
Radiology ():–. Cited on page .

Bae, E., J. Yuan and X. C. Tai. . Simultaneos convex optimization of
regions and region parameters in image segmentation models. In Dagstuhl
Seminar Proceedings. Springer. Cited on pages  and .

Bertsekas, D. P. . Nonlinear programming. Athena Scientific. Cited on
pages , , ,  and .





Bhusnurmath, A. and C. J. Taylor. . “Graph Cuts via `1 Norm
Minimization.” IEEE Trans. Pattern Analysis and Machine Intelligence
():–. Cited on pages  and .

Billionet, A. and M. Minoux. . “Maximizing a supermodular pseudo-
boolean function: a polynomial algorithm for cubic functions.” Discrete
Appl. Math. :–. Cited on pages  and .

Billionnet, A. and A. Sutter. . “Persistency in Quadratic - Optimiza-
tion.” Math. Programming (-):–. Cited on page .

Billionnet, A. and M. Minoux. . “Maximizing a supermodular pseu-
doboolean function: A polynomial algorithm for supermodular cubic
functions.” Discrete Applied Mathematics (): – . Cited on page .

Bizzaro, N., R. Tozzoli, E. Tonutti, A. Piazza, F. Manoni, A. Ghirardello, D.
Bassetti, D. Villalta, M. Pradella and P. Rizzotti. . “Variability between
methods to determine ANA, anti-dsDNA and anti-ENA autoantibodies: a
collaborative study with the biomedical industry.” Journal of Immunological
Methods (–): – . Cited on page .

Blake, A., P. Kohli and C. Rother. . Markov Random Fields for Vision
and Image Processing. MIT Press. Cited on page .

Boros, E. and P. L. Hammer. . “Pseudo-boolean optimization.” Discrete
Applied Mathematics :–. Cited on pages , , ,  and .

Boros, E., P. L. Hammer and G. Tavares. . Preprocessing of uncon-
strained quadratic binary optimization. Technical report  
-. Cited on page .

Boros, E., P. L. Hammer, R. Sun and G. Tavares. . “A max-flow
approach to improved lower bounds for quadratic unconstrained binary
optimization (QUBO).” Discrete Optimization ():–. Cited on
pages ,  and .

Boros, E., P. L. Hammer and X. Sun. . Network flows and minimization
of quadratic pseudo-boolean functions. Technical report   -
. Cited on page .





Boyd, S. and L. Vandenberghe. . Convex Optimization. Cambridge
University Press. Cited on pages ,  and .

Boykov, Y. and M.-P. Jolly. . Interactive organ segmentation using
graph cuts. In Conf. Medical Image Computing and Computer-Assisted
Intervention. Cited on page .

Boykov, Y., O. Veksler and R. Zabih. . Markov Random Fields with Ef-
ficient Approximations. In Conf. Computer Vision and Pattern Recognition.
Cited on page .

Boykov, Y., O. Veksler and R. Zabih. . “Fast approximate energy
minimization via graph cuts.” IEEE Trans. Pattern Analysis and Machine
Intelligence ():–. Cited on pages , ,  and .

Boykov, Y. and V. Kolmogorov. . Computing Geodesics and Minimal
Surfaces via Graph Cuts. In Int. Conf. Computer Vision. Cited on pages 
and .

Boykov, Y. and V. Kolmogorov. . “An Experimental Comparison
of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision.”
IEEE Trans. Pattern Analysis and Machine Intelligence ():–.
Cited on pages , , , , , ,  and .

Breiman, L. . “Random forests.” Machine learning ():–. Cited
on pages  and .

Bresson, X., S. Esedoḡlu, P. Vandergheynst, J. �iran and S. Osher. .
“Fast Global Minimization of the Active Contour/Snake Model.” Journal
of Mathematical Imaging and Vision ():–. Cited on page .

Brown, E. S., T. F. Chan and X. Bresson. . “Completely Convex
Formulation of the Chan-Vese Image Segmentation Model.” Int. Journal
Computer Vision ():–. Cited on page .

Bruckstein, A. M., A. N. Netravali and T. J. Richardson. . “Epi-
convergence of discrete elastica.” Applicable Analysis, Bob Caroll Special
Issue :–. Cited on pages  and .

Burkardt, J. . “Voronoi Diagram of Points on the Unit Sphere.”
http:// people.sc.fsu.edu / ~jburkardt / m_src / sphere_voronoi /
sphere_voronoi.html. Cited on page .



http://people.sc.fsu.edu/~jburkardt/m_src/sphere_voronoi/sphere_voronoi.html
http://people.sc.fsu.edu/~jburkardt/m_src/sphere_voronoi/sphere_voronoi.html



Carr, P. and R. Hartley. . Minimizing energy functions on -connected
lattices using elimination. In Int. Conf. Computer Vision. Cited on pages ,
 and .

Casta, C., P. Clarysse, J. Schaerer and J. Pousin. . “Evaluation of the
Dynamic Deformable Elastic Template model for the segmentation of the
heart in MRI sequences.”. Cited on page .

Chambolle, A. . “An Algorithm for Total Variation Minimization
and Applications.” Journal of Mathematical Imaging and Vision :–.
Cited on page .

Chambolle, A. . Total Variation Minimization and a Class of Binary
MRF Models. In Energy Minimization Methods in Computer Vision and
Pattern Recognition. Vol.  of Lecture Notes in Computer Science Springer
pp. –. Cited on pages , ,  and .

Chan, T. and L. Vese. . Active contours without edges. In IEEE
Transactions on Image Processing. Vol.  pp. –. Cited on pages 
and .

Chan, T., S. Esedoglu and M. Nikolova. . “Algorithms for Finding
Global Minimizers of Image Segmentation and Denoising Models.” SIAM
Journal on Applied Mathematics ():–. Cited on pages 
and .

Chen, Y., T. A. Davis, W. W. Hager and S. Rajamanickam. . “Algo-
rithm : CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate.” ACM Transactions on Mathematical Software (TOMS)
():. Cited on page .

Ciresan, D. C., U. Meier, J. Masci and J. Schmidhuber. . “Multi
Column Deep Neural Network for Traffic Sign Classification.” Neural
Networks (to appear) . Cited on page .

Ciresan, D. C., U. Meier, L. M. Gambardella and J. Schmidhuber. .
“Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition.”
Neural Computation, Volume , Number , December . Cited
on page .





Ciresan, D. C., U. Meier, L. M. Gambardella and J. Schmidhuber. .
Convolutional Neural Network Committees For Handwritten Charac-
ter Classification. In Document Analysis and Recognition (ICDAR), 
International Conference on. IEEE pp. –. Cited on page .

Constantinides, C., Y. Chenoune, N. Kachenoura, E. Roullot, E.
Mousseaux, A. Herment and F. Frouin. . “Semi-automated car-
diac segmentation on cine magnetic resonance images using GVF-Snake
deformable models.”. Cited on page .

Cordelli, E. and P. Soda. . Color to grayscale staining pattern represen-
tation in IIF. In CBMS. IEEE pp. –. Cited on pages  and .

Coyne, J. A. . Why evolution is true. Oxford University Press. Cited
on page .

Crama, Y. . “Recognition problems for special classes of polynomials in
- variables.” Math. Programming (–):–. Cited on page .

Cremers, D. and L. Grady. . Statistical Priors for Efficient Combinato-
rial Optimization Via Graph Cuts. In European Conf. Computer Vision.
Graz, Austria: . Cited on page .

Criminisi, A., J. Shotton and E. Konukoglu. . Decision Forests for
Classification, Regression, Density Estimation, Manifold Learning and
Semi-Supervised Learning. Technical Report MSR-TR-- Mi-
crosoft Research. Cited on page .

Crow, F. . “Summed-area tables for texture mapping.” ():–.
Cited on page .

Darbon, J. . A Note on the Discrete Binary Mumford-Shah Model.
In MIRAGE. Vol.  of Lecture Notes in Computer Science Springer
pp. –. Cited on page .

Delong, A., A. Osokin, H. Isack and Y. Boykov. . Fast approximate
energy minimization with label costs. In Conf. Computer Vision and Pattern
Recognition. Cited on page .

Delong, A. and Y. Boykov. . A Scalable graph-cut algorithm for N-D
grids. In Conf. Computer Vision and Pattern Recognition. Cited on pages 
and .





Delong, A. and Y. Boykov. . Globally Optimal Segmentation of Multi-
Region Objects. In Int. Conf. Computer Vision. Cited on pages , 
and .

Dixit, N., R. Keriven and N. Paragios. . GPU-Cuts: Combinatorial
Optimisation, Graphic Processing Units and Adaptive Object Extraction.
Technical Report - CERTIS. Cited on page .

El-Zehiry, N. and L. Grady. . Fast Global Optimization of Curvature.
In Conf. Computer Vision and Pattern Recognition. Cited on pages ,
 and .

Everett, H. . “Generalized Lagrange Multiplier Method for Solv-
ing Problems of Optimum Allocation of Resources.” Operations Research
:–. Cited on page .

Felzenszwalb, P. F. and D. McAllester. . “�e generalized A* architec-
ture.” Journal of Artificial Intelligence Research ():–. Cited on
page .

Fix, A., A. Grubner, E. Boros and R. Zabih. . A Graph Cut Algorithm
for Higher-order Markov Random Fields. In Int. Conf. Computer Vision.
Barcelona, Spain: . Cited on pages , , , , , ,  and .

Foggia, P., G. Percannella, P. Soda and M. Vento. . Early experiences
in mitotic cells recognition on HEp- slides. In CBMS, ed. T. S. Dillon,
D. L. Rubin, W. Gallagher, A. S. Sidhu and A. Tsymbal. IEEE pp. –.
Cited on page .

Fredriksson, J., C. Olsson, P. Strandmark and F. Kahl. . Tighter Re-
laxations for Higher-Order Models based on Generalized Roof Duality.
In HiPot: ECCV  Workshop on Higher-Order Models and Global Con-
straints in Computer Vision. Cited on page .

Freedman, D. and P. Drineas. . Energy Minimization via Graph Cuts:
Settling What is Possible. In Conf. Computer Vision and Pattern Recognition.
San Diego, USA: . Cited on page .

Fujishige, S. . Submodular functions and optimization. Vol.  Elsevier
Science. Cited on page .





Fujishige, S. and S. Iwata. . “Bisubmodular Function Minimization.”
SIAM J. Discrete Math. ():–. Cited on page .

Gallagher, A. C., D. Batra and D. Parikh. . Inference for Order Re-
duction in Markov Random Fields. In Conf. Computer Vision and Pattern
Recognition. Colorado Springs, USA: . Cited on page .

Glover, F., B. Alidaee, C. Rego and G. Kochenberger. . “One-pass
heuristics for large-scale unconstrained binary quadratic problems.” Euro-
pean Journal of Operational Research ():–. Cited on page .

Goldberg, A. V. and R. E. Tarjan. . A new approach to the maximum
flow problem. In ACM symposium on �eory of computing. pp. –.
Cited on page .

Goldberg, A. V., S. Hed, H. Kaplan, R. E. Tarjan and R. F. Werneck. .
Maximum Flows By Incremental Breadth-First Search. In European Sym-
posium on Algorithms, ALGO ESA. Cited on pages  and .

Goldschlager, L. M., R. A. Shaw and J. Staples. . “�e Maximum
Flow Problem is Log Space Complete for P.” �eoretical Computer Science
():–. Cited on page .

Gonzalez, R. C., R. E. Woods and S. L. Eddins. . Digital Image Process-
ing Using MATLAB. Prentice Hall Press. Cited on page .

Goodman, Jacob E. and Joseph O’Rourke, eds. . Handbook of discrete
and computational geometry. CRC Press, Inc. Cited on page .

Grady, L. . “Minimal Surfaces Extend Shortest Path Segmentation
Methods to D.” IEEE Trans. on Pattern Analysis and Machine Intelligence
():–. Cited on pages  and .

Grady, L. and M. P. Jolly. . Weights and topology: A study of the effects
of graph construction on d image segmentation. In Conf. Medical Image
Computing and Computer-Assisted Intervention. Cited on page .

Greig, D. M., B. T. Porteous and A. H. Seheult. . “Exact Maximum A
Posteriori Estimation for Binary Images.” Journal of the Royal Statistical
Society . Cited on page .





Hales, T. C. . “�e Honeycomb Conjecture.” Discrete & Computational
Geometry ():–. Cited on page .

Hammer, P. L., P. Hansen and B. Simeone. . “Roof duality, Com-
plementation and Persistency in Quadratic - Optimization.” Math.
Programming ():–. Cited on pages , , , ,  and .

Haralick, R. M., K. Shanmugam and I. H. Dinstein. . “Textural features
for image classification.” Systems, Man and Cybernetics, IEEE Transactions
on ():–. Cited on page .

Hoos, H. H. and T. Stützle. . SATLIB: An Online Resource for
Research on SAT. In SAT . IOS Press pp. –. Cited on
page .

Hsu, Lucas, Rob Kusner and John Sullivan. . “Minimizing the squared
mean curvature integral for surfaces in space forms.” Experimental Mathe-
matics :–. Cited on page .

Hu, S., E. A. Hoffman and J. M. Reinhardt. . “Automatic lung segmen-
tation for accurate quantitation of volumetric X-ray CT images.” Medical
Imaging, IEEE Transactions on (): –. Cited on page .

Huang, S., J. Liu, L. Lee, S. Venkatesh, L. Teo, C. Au and W. Nowinski.
. “Segmentation of the Left Ventricle from Cine MR Images Using a
Comprehensive Approach.”. Cited on page .

Hussein, M., A. Varshney and L. Davis. . On Implementing Graph
Cuts on CUDA. In Workshop on General Purpose Processing on Graphics
Processing Units. Cited on page .

Ishikawa, H. a. Higher-Order Clique Reduction in Binary Graph
Cut. In Conference on Computer Vision and Pattern Recognition. Cited on
pages  and .

Ishikawa, H. b. Higher-order gradient descent by fusion-move graph
cut. In International Conference on Computer Vision. Cited on pages ,
, ,  and .

Ishikawa, H. . “Transformation of General Binary MRF Minimiza-
tion to the First Order Case.” IEEE Trans. Pattern Analysis and Machine





Intelligence ():–. Cited on pages , , , , , , ,
,  and .

Ivănescu, P. L. (Hammer). . “Some Network Flow Problems Solved
with Pseudo-Boolean Programming.” Operations Research ():–.
Cited on page .

Iwata, S. . “A Faster Scaling Algorithm for Minimizing Submodular
Functions.” SIAM Journal on Computing :–. Cited on page .

Iwata, S. . “A Fully Combinatorial Algorithm for Submodular Function
Minimization.” Journal of Combinatorial �eory, Series B :–.
Cited on page .

Jamriska, O., D. Sykora and A. Hornung. . Cache-efficient graph cuts
on structured grids. In Conf. Computer Vision and Pattern Recognition.
Cited on page .

Jancsary, J., S. Nowozin and C. Rother. . Loss-Specific Training of
Non-Parametric Image Restoration Models: A New State of the Art. In
European Conference on Computer Vision. Cited on page .

Jolly, M. . “Fully Automatic Left Ventricle Segmentation in Cardiac
Cine MR Images Using Registration and Minimum Surfaces.”. Cited on
page .

Kahl, F. and P. Strandmark. . Generalized Roof Duality for Pseudo-
Boolean Optimization. In Int. Conf. Computer Vision. Barcelona, Spain: .
Cited on pages  and .

Kahl, F. and P. Strandmark. . “Generalized roof duality.” Discrete
Applied Mathematics (–):–. Cited on page .

Kappes, J. H., B. Savchynskyy and C. Schnorr. . A bundle approach
to efficient MAP-inference by Lagrangian relaxation. In Conf. Computer
Vision and Pattern Recognition. Cited on page .

Kirsanov, D. and S. J. Gortler. . A Discrete Global Minimization
Algorithm for Continuous Variational Problems. Technical Report TR-
- Harvard. Cited on page .





Klodt, M., T. Schoenemann, K. Kolev, M. Schikora and D. Cremers. .
An Experimental Comparison of Discrete and Continuous Shape Opti-
mization Methods. In European Conf. Computer Vision. Cited on page .

Kohli, P., A. Shekhovtsov, C. Rother, V. Kolmogorov and P. H. S. Torr. .
On partial optimality in multi-label mrfs. In Int. Conf. Machine learning.
ACM. Cited on page .

Kohli, P., M. P. Kumar and P. H. S. Torr. . “P3 & Beyond: Move
Making Algorithms for Solving Higher Order Functions.” IEEE Trans.
Pattern Analysis and Machine Intelligence ():–. Cited on
page .

Kohli, P. and P. H. S. Torr. . Efficiently Solving Dynamic Markov
Random Fields Using Graph Cuts. In Int. Conf. Computer Vision. Cited
on page .

Kohli, P. and P. H. S. Torr. . “Dynamic graph cuts for efficient inference
in markov random fields.” IEEE Trans. Pattern Analysis and Machine
Intelligence . Cited on pages  and .

Kolda, T. G., R. M. Lewis and V. Torczon. . “Optimization by direct
search: New perspectives on some classical and modern methods.” SIAM
review pp. –. Cited on page .

Kolev, K. and D. Cremers. . Continuous Ratio Optimization via
Convex Relaxation with Applications to Multiview D Reconstruction.
In Conf. Computer Vision and Pattern Recognition. Cited on page .

Kolmogorov, V. . Generalized roof duality and bisubmodular functions.
In Neural Information Processing Systems. Cited on pages , ,  and .

Kolmogorov, V. . “Submodularity on a Tree: Unifying L\-Convex and
Bisubmodular Functions.” Mathematical Foundations of Computer Science
 pp. –. Cited on page .

Kolmogorov, V. . “Generalized roof duality and bisubmodular func-
tions.” Discrete Applied Mathematics (–):–. Cited on page .

Kolmogorov, V. and C. Rother. . “Minimizing nonsubmodular func-
tions with graph cuts - A review.” IEEE Trans. Pattern Analysis and Machine
Intelligence ():–. Cited on pages ,  and .





Kolmogorov, V. and R. Zabih. . “What energy functions can be
minimized via graph cuts?” IEEE Trans. Pattern Analysis and Machine
Intelligence ():–. Cited on page .

Kolmogorov, V. and R. Zabih. . Graph Cut Algorithms for Binocular
Stereo with Occlusions. In Handbook of Mathematical Models in Computer
Vision. Springer. Cited on page .

Kolmogorov, V. and Y. Boykov. . What Metrics Can Be Approximated
by Geo-Cuts, Or Global Optimization of Length/Area and Flux. In Int.
Conf. Computer Vision. Cited on page .

Kolmogorov, V., Y. Boykov and C. Rother. . Applications of parametric
maxflow in computer vision. In Int. Conf. Computer Vision. Cited on
pages  and .

Komodakis, N. and G. Tziritas. . “Approximate Labeling via Graph
Cuts Based on Linear Programming.” IEEE Trans. Pattern Analysis and
Machine Intelligence ():–. Cited on pages  and .

Komodakis, N. and N. Paragios. . Beyond pairwise energies: Efficient
optimization for higher-order MRFs. In Conf. Computer Vision and Pattern
Recognition. Miami, USA: . Cited on page .

Komodakis, N., N. Paragios and G. Tziritas. . MRF Optimization via
Dual Decomposition: Message-Passing Revisited. In Int. Conf. Computer
Vision. Cited on pages , , , ,  and .

Komodakis, N., N. Paragios and G. Tziritas. . “MRF Energy Min-
imization and Beyond via Dual Decomposition.” IEEE Trans. Pattern
Analysis and Machine Intelligence ():–. Cited on page .

Kushal, A. and J. Ponce. . Modeling D objects from stereo views
and recognizing them in photographs. In European Conf. Computer Vision.
Cited on page .

Ladicky, L., C. Russell, P. Kohli and P. H. S. Torr. . Graph Cut Based
Inference with Co-occurrence Statistics. In European Conf. Computer
Vision. Crete, Greece: . Cited on page .





Lan, X., S. Roth, D. Huttenlocher and M. Black. a. “Efficient belief
propagation with learned higher-order markov random fields.” European
Conference on Computer Vision . Cited on pages  and .

Lan, X., S. Roth, D. P. Huttenlocher and M.J. Black. b. Efficient
Belief Propagation with Learned Higher-Order Markov Random Fields.
In European Conf. Computer Vision. Graz, Austria: . Cited on page .

Lempitsky, V., A. Blake and C. Rother. . Image Segmentation by
Branch-and-Mincut. In European Conf. Computer Vision. Marseille,
France: pp. –. Cited on page .

Lempitsky, V., A. Blake and C. Rother. . “Branch-and-Mincut: Global
Optimization for Image Segmentation with High-Level Priors.” Journal of
Mathematical Imaging and Vision . in press. Cited on page .

Lempitsky, V., C. Rother, S. Roth and A. Blake. . “Fusion Moves for
Markov Random Field Optimization.” IEEE Trans. Pattern Analysis and
Machine Intelligence ():–. Cited on pages ,  and .

Lempitsky, V. and Y. Boykov. . Global Optimization for Shape Fitting.
In Conf. Computer Vision and Pattern Recognition. Minneapolis, USA: .
Cited on pages ,  and .

Lin, X., B. Cowan and A. Young. . Model-based graph cut method for
segmentation of the left ventricle. In IEEE-EMBS. Cited on page .

Liu, C., J. Yuen, A. Torralba, J. Sivic and W. T. Freeman. . SIFT
Flow: Dense Correspondence across Different Scenes. In European Conf.
Computer Vision. Cited on pages  and .

Liu, J. and J. Sun. . Parallel Graph-cuts by Adaptive Bottom-up
Merging. In Conf. Computer Vision and Pattern Recognition. Cited on
pages ,  and .

Liu, J., J. Sun and H.-Y. Shum. . “Paint selection.” ACM Transactions
on Graphics ():–. Cited on pages  and .

Lorenzo-Valdés, M. et al. . “Segmentation of D cardiac MR images
using a probabilistic atlas and the EM algorithm.” Medical Image Analysis
():–. Cited on page .





Lovász, L. . “Submodular functions and convexity.” Mathematical
Programming: �e State of the Art pp. –. Cited on pages  and .

Lowe, D. . “Distinctive image features from scale-invariant keypoints.”
Int. Journal Computer Vision :–. Cited on page .

Lu, S. H. and A. C. Williams. . “Roof duality for polynomial -
optimization.” Math. Programming ():–. Cited on page .

Lu, Y., P. Radau, K. Connelly, A. Dick and G. Wright. . “Automatic
Image-Driven Segmentation of Left Ventricle in Cardiac Cine MRI.”.
Cited on page .

Madsen, K., H. Bruun and O. Tingleff. . Methods for non-linear
least squares problems. Technical report Informatics and Mathematical
Modelling, Technical University of Denmark. Cited on page .

Marak, L., J. Cousty, L. Najman and H. Talbot. . “D Morphological
segmentation and the MICCAI LV-segmentation grand challenge.”. Cited
on page .

Martin, D., C. Fowlkes, D. Tal and J. Malik. . A Database of Human
Segmented Natural Images and its Application to Evaluating Segmentation
Algorithms and Measuring Ecological Statistics. In Int. Conf. Computer
Vision. Cited on pages , ,  and .

McIntosh, C. and G. Hamarneh. . “Medial-based Deformable Mod-
els in Non-convex Shape-spaces for Medical Image Segmentation using
Genetic Algorithms.” IEEE transactions on medical imaging . Cited on
page .

Middleton, L. and J. Sivaswamy. . Hexagonal Image Processing: A
Practical Approach. Springer-Verlag New York, Inc. Cited on page .

Mitchell, S. C., B. P. F. Lelieveldt, R. J. van der Geest, H. G. Bosch, J. H. C.
Reiber and M. Sonka. . “Multistage hybrid active appearance model
matching: segmentation of left and right ventricles in cardiac MR images.”
IEEE Trans. Medical Imaging ():–. Cited on page .

Mumford, D. and T. Shah. . Optimal Approximation by Piecewise
Smooth Functions and Associated Variational Problems. In Comm. on
Pure and Applied Mathematics. Cited on pages ,  and .





Nemhauser, G. L., L. A. Wolsey and M. L. Fisher. . “An analysis of ap-
proximations for maximizing submodular set functions – I.” Matematical
Programming ():–. Cited on page .

Nemhauser, G. L. and L. E. Trotter. . “Vertex packings: Structural
properties and algorithms.” Mathematical Programming :–. Cited
on page .

Nesterov, Y. . Introductory lectures on convex optimization: A basic course.
Kluwer Academic Publishers. Cited on pages , ,  and .

Nielsen, H. B. . Damping parameter in Marquardt’s method. Technical
Report IMM-REP-- Department of Mathematical Modelling,
Technical University of Denmark. Cited on page .

Nilsson, D.-E. . “Vision Optics and Evolution.” BioScience ():–
. Cited on page .

Nocedal, J. and S. J. Wright. . Numerical Optimization. Springer. Cited
on pages , ,  and .

Nowozin, S. and C. H. Lampert. . “Global Interactions in Random
Field Models: A Potential Function Ensuring Connectedness.” SIAM J.
Imaging Sciences ():–. Cited on page .

O’Brien, S., O. Ghita and P. Whelan. . “Segmenting the Left Ventricle
in D Using a Coupled ASM and a Learned Non-Rigid Spatial Model.”.
Cited on page .

Olsson, C., M. Byröd, N. C. Overgaard and F. Kahl. . Extending Con-
tinuous Cuts: Anisotropic Metrics and Expansion Moves. In International
Conference on Computer Vision. Cited on page .

Papadimitriou, C. H. and K. Steiglitz. . Combinatorial Optimization;
Algorithms and Complexity. Dover Publications. Cited on page .

Paragios, N. . “A Variational Approach for the Segmentation of the
Left Ventricle in Cardiac Image Analysis.” Int. Journal Computer Vision
():–. Cited on page .





Percannella, G., P. Soda and M. Vento. . Mitotic HEp- cells recogni-
tion under class skew. In Int. Conf. Image Analysis and Processing – Volume
Part II. Springer-Verlag pp. –. Cited on pages  and .

Perner, P., H. Perner and B. Müller. . “Mining knowledge for HEp-
cell image classification.” Artificial Intelligence in Medicine :–.
Cited on page .

Pock, T. . Fast Total Variation for Computer Vision PhD thesis Graz
University of Technology. Cited on page .

Pock, T., M. Unger, D. Cremers and H. Bischof. . Fast and Exact
Solution of Total Variation Models on the GPU. In CVPR Workshop on
Visual Computer Vision on GPUs. Cited on pages  and .

Potetz, B. . Efficient belief propagation for vision using linear constraint
nodes. In Conference on Computer Vision and Pattern Recognition. Cited
on pages  and .

Pressley, A. . Elementary differential geometry. Springer. Cited on
page .

Pritch, Y., E. Kav-Venaki and S. Peleg. . Shift-Map Image Editing. In
Int. Conf. Computer Vision. Cited on pages , , , , , 
and .

Promislow, S. D. and V. R. Young. . “Supermodular Functions on
Finite Lattices.” Order ():–. Cited on pages  and .

Rantzer, A. . Dynamic Dual Decomposition for Distributed Control.
In American Control Conference. Cited on page .

Raphael, C. . “Coarse-to-fine dynamic programming.” IEEE Trans.
Pattern Analysis and Machine Intelligence ():–. Cited on
pages  and .

Raphael, C. S. and S. Geman. . Grammatical approach to mine
detection. In Proceedings of SPIE. Vol.  p. . Cited on page .

Renka, Robert J. . “Algorithm : STRIPACK: Delaunay triangula-
tion and Voronoi diagram on the surface of a sphere.” ACM Trans. Math.
Softw. :–. Cited on page .





Rhys, J. . “A selection problem of shared fixed costs and networks.”
Management Science :–. Cited on page .

Rigon, A., P. Soda, D. Zennaro, G. Iannello and A. Afeltra. . “Indirect
immunofluorescence in autoimmune diseases: assessment of digital images
for diagnostic purpose.” Cytometry Part B: Clinical Cytometry ():–
. Cited on page .

Roth, S. and M. J. Black. . “Fields of experts.” International Journal of
Computer Vision ():–. Cited on pages  and .

Rother, C., P. Kohli, W. Feng and J. Jia. . Minimizing sparse higher
order energy functions of discrete variables. In Conf. Computer Vision and
Pattern Recognition. Cited on page .

Rother, C., V. Kolmogorov and A. Blake. . “GrabCut”: interactive
foreground extraction using iterated graph cuts. In ACM Transactions on
Graphics. pp. –. Cited on page .

Rother, C., V. Kolmogorov, V. Lempitsky and M. Szummer. a. Op-
timizing Binary MRFs via Extended Roof Duality. In Conf. Computer
Vision and Pattern Recognition. Cited on pages  and .

Rother, C., V. Kolmogorov, V. Lempitsky and M. Szummer. b. Opti-
mizing Binary MRFs via Extended Roof Duality. Technical Report MSR-
TR-- Microsoft. Cited on page .

Rousson, M. and R. Deriche. . A variational framework for active
and adaptative segmentation of vector valued images. In In Proc. IEEE
Workshop on Motion and Video Computing. pp. –. Cited on page .

Rudin, L. I., S. Osher and E. Fatemi. . “Nonlinear Total Variation
Based Noise Removal Algorithms.” Physica D :–. Cited on
page .

Sack, U., S. Knoechner, H. Warschkau, U. Pigla, F. Emmrich and M.
Kamprad. . “Computer-assisted classification of HEp- immunoflu-
orescence patterns in autoimmune diagnostics.” Autoimmunity Reviews
():–. Cited on page .





Sarti, A., C. Corsi, E. Mazzini and C. Lamberti. . “Maximum like-
lihood segmentation with Rayleigh distribution of ultrasound images.”
Computers in Cardiology pp. –. Cited on page .

Scheuermann, B. and B. Rosenhahn. . Slimcuts: Graphcuts for high
resolution images using graph reduction. In Energy Minimization Methods
in Computer Vision and Pattern Recognition. Springer pp. –. Cited
on page .

Schoenemann, T., F. Kahl and D. Cremers. . Curvature Regularity for
Region-based Image Segmentation and Inpainting: A Linear Programming
Relaxation. In Int. Conf. Computer Vision. Cited on pages , , ,
, ,  and .

Schoenemann, T., F. Kahl, S. Masnou and D. Cremers. . “A Linear
Framework for Region-Based Image Segmentation and Inpainting In-
volving Curvature Penalization.” Int. Journal Computer Vision . Cited on
pages  and .

Schwing, A., T. Hazan, M. Pollefeys and R. Urtasun. . Distributed
Message Passing for Large Scale Graphical Models. In Conf. Computer
Vision and Pattern Recognition. Cited on page .

Shekhovtsov, A., P. Kohli and C. Rother. . “Curvature prior for MRF-
based segmentation and shape inpainting.” Pattern Recognition pp. –.
Cited on pages  and .

Shekhovtsov, A. and V. Hlavac. a. A Distributed Mincut/Maxflow
Algorithm Combining Path Augmentation and Push-Relabel. In Energy
Minimization Methods in Computer Vision and Pattern Recognition. Vol.
 of Lecture Notes in Computer Science Springer. Cited on page .

Shekhovtsov, A. and V. Hlavac. b. A Distributed Mincut/Maxflow
Algorithm Combining Path Augmentation and Push-Relabel. Research
report K–/, CTU–CMP–– Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical University. Cited on
page .

Snir, M. and S. Otto. . MPI—�e Complete Reference: �e MPI Core.
Cambridge, MA, USA: MIT Press. Cited on page .





Soda, P. and G. Iannello. . “Aggregation of classifiers for staining
pattern recognition in antinuclear autoantibodies analysis.” Trans. Info.
Tech. Biomed. :–. Cited on pages  and .

Stallkamp, J., M. Schlipsing, J. Salmen and C. Igel. in press. “Man vs.
computer: Benchmarking machine learning algorithms for traffic sign
recognition.” Neural Networks . Cited on page .

Strandmark, P. . Early Vision Optimization: Parametric Models,
Parallelization and Curvature. Licentiate thesis, Lund University. Cited
on pages  and .

Strandmark, P. . “Persistency for Higher-Order Pseudo-Boolean Opti-
mization.” Tiny Transactions on Computer Science . (Not cited.)

Strandmark, P. and F. Kahl. a. Parallel and Distributed Graph Cuts.
In Swedish Symposium on Image Analysis. Cited on page .

Strandmark, P. and F. Kahl. b. Parallel and Distributed Graph Cuts by
Dual Decomposition. In Conf. Computer Vision and Pattern Recognition.
San Francisco, USA: . Cited on pages  and .

Strandmark, P. and F. Kahl. a. Curvature Regularization for Curves and
Surfaces in a Global Optimization Framework. In Energy Minimization
Methods in Computer Vision and Pattern Recognition. Vol.  of Lecture
Notes in Computer Science Springer. Cited on page .

Strandmark, P. and F. Kahl. b. Mesh Types for Curvature Regularization.
In Swedish Symposium on Image Analysis. Cited on page .

Strandmark, P. and F. Kahl. . Pseudo-Boolean Optimization: �eory
and Applications in Vision. In Swedish Symposium on Image Analysis. Cited
on page .

Strandmark, P., F. Kahl and N. C. Overgaard. a. Optimal Levels for the
Two-phase, Piecewise Constant Mumford-Shah Functional. In Swedish
Symposium on Image Analysis. Cited on page .

Strandmark, P., F. Kahl and N. C. Overgaard. b. Optimizing Parametric
Total Variation Models. In Int. Conf. Computer Vision. Cited on pages 
and .





Strandmark, P., F. Kahl and T. Schoenemann. . “Parallel and distributed
vision algorithms using dual decomposition.” Computer Vision and Image
Understanding ():–. Cited on page .

Strandmark, P., J. Ulén and F. Kahl. . HEp- Staining Pattern Classifi-
cation. In Int. Conf. Pattern Recognition. Cited on page .

Strekalovskiy, E. and D. Cremers. . Generalized Ordering Constraints
for Multilabel Optimization. In Int. Conf. Computer Vision. Cited on
page .

Sullivan, J. M. . Crystalline Approximation �eorem for Hypersurfaces.
Phd thesis, Princeton Univ. Cited on page .

Svärm, L. and P. Strandmark. a. Shift-map Image Registration. In Int.
Conf. Pattern Recognition. Cited on page .

Svärm, L. and P. Strandmark. b. Shift-map Image Registration. In
Swedish Symposium on Image Analysis. Cited on page .

Tola, E., V. Lepetit and P. Fua. . “DAISY: An Efficient Dense Descriptor
Applied to Wide Baseline Stereo.” IEEE Trans. Pattern Analysis and Machine
Intelligence . Cited on page .

Triggs, B., P. McLauchlan, R. Hartley and A. Fitzgibbon. . “Bundle
adjustment—a modern synthesis.” Vision algorithms: theory and practice
pp. –. Cited on page .

Turing, A. . “Computing Machinery and Intelligence.” Mind
LIX():–. Cited on page .

Ukil, S. and J. M. Reinhardt. . “Anatomy-guided lung lobe segmenta-
tion in X-ray CT images.” IEEE Trans. Medical Imaging ():–.
Cited on page .

Ulén, J., P. Strandmark and F. Kahl. . Optimization for Multi-Region
Segmentation of Cardiac MRI. In MICCAI Workshop on Statistical Atlases
and Computational Models of the Heart: Imaging and Modelling Challenges.
Cited on page .





Ulén, J., P. Strandmark and F. Kahl. . “An Efficient Optimization
Framework for Multi-Region Segmentation based on Lagrangian Duality.”
IEEE Trans. Medical Imaging . To appear. Cited on page .

Unger, M., T. Pock, D. Cremers and H. Bischof. . TVSeg - Interactive
Total Variation Based Image Segmentation. In British Machine Vision Conf.
Cited on page .

Vineet, V. and P. J. Narayanan. . CUDA cuts: Fast graph cuts on the
GPU. In Computer Vision and Pattern Recognition Workshops, CVPRW.
Cited on pages ,  and .

Vineet, V. and P. J. Narayanan. . Solving Multi-label MRFs using
Incremental alpha-expansion move on the GPUs. In Asian Conference on
Computer Vision. Cited on page .

Viola, P. and M. Jones. . “Robust Real-Time Face Detection.” Int.
Journal Computer Vision ():–. Cited on page .

Wardetzky, M., M. Bergou, D. Harmon, D. Zorin and E. Grinspun. .
“Discrete quadratic curvature energies.” Comput. Aided Geom. Des. (-
):–. Cited on pages  and .

Werlberger, M., W. Trobin, T. Pock, A. Wedel, D. Cremers and H. Bischof.
. Anisotropic Huber-L Optical Flow. In British Machine Vision
Conf. Cited on page .

Werner, T. . High-arity interactions, polyhedral relaxations, and cutting
plane algorithm for MAP-MRF. In Conf. Computer Vision and Pattern
Recognition. Anchorage, USA: . Cited on page .

Wijnhout, J., D. Hendriksen, H. van Assen and R. van der Geest. . “LV
Challenge LKEB Contribution: Fully Automated Myocardial Contour
Detection.”. Cited on page .

Willmore, T. J. . “Note on Embedded Surfaces.” An. Sti. Univ. ”Al. I.
Cuza” Iasi Sect. I a Mat. (N.S.) pp. –. Cited on page .

Winder, S., G. Hua and M. Brown. . Picking the best DAISY. In
Conf. Computer Vision and Pattern Recognition. pp. –. Cited on
page .





Windheuser, T., H. Ishikawa and D. Cremers. . Generalized Roof
Duality for Multi-Label Optimization: Optimal Lower Bounds and Per-
sistency. In European Conference on Computer Vision. Cited on pages ,
 and .

Woodford, O. J., P. H. S. Torr, I. D. Reid and A. W. Fitzgibbon. .
“Global Stereo Reconstruction under Second-Order Smoothness Priors.”
IEEE Trans. Pattern Analysis and Machine Intelligence ():–.
Cited on pages  and .

Xu, M., P. M. �ompson and A. W. Toga. . “An Adaptive Level Set
Segmentation on a Triangulated Mesh.” IEEE Trans. on Medical Imaging
():–. Cited on page .

Živný, S., D. A. Cohen and P. G. Jeavons. . “�e Expressive Power of
Binary Submodular Functions.” Discrete Appl. Math. ():–.
Cited on pages , , , ,  and .

Živný, S. and P. G. Jeavons. . Which submodular functions are express-
ible using binary submodular functions? Technical Report CS-RR--
Oxford University Computing Laboratory. Cited on page .

Živný, S. and P. G. Jeavons. . “Classes of Submodular Constraints
Expressible by Graph Cuts.” Constraints ():–. Cited on page .









Index

α-expansion, , , , , 
α/β-swap, 
assignment, , 

autarky, , , 
auxiliary variable, 

bisubmodular, 

, 

boolean, , , , 
branch and bound, –, –,

–

cell complex, 
clique, , 
computer vision, 
concave function, 

connectivity, see neighborhood
convex function, 

curvature, , 
cut, , , 

data term, , , , , , 
dice metric, 
dual decomposition, , , 
dual function, , 
duality gap, 

early vision, ix, 
edge, , , , , , 
energy, , 

expressible, 

fidelity, , 

Gauss-Newton, 
, , , 
graph, 

graph cuts, 

, 

label, , , 
Levenberg-Marquardt, 
likelihood, , , 
linear programming, , , 
log-likelihood, see likelihood
low-level vision, see early vision
, see linear programming

, , 
maximum a posteriori, see 
maximum likelihood, see likelihood
minimum cut, 

, 
multi-label, see label

neighborhood, , , , , 
node, 

pairwise terms, see regularizing term
persistency, , 





probing, 

projected supergradient, , 
proposal, 
pseudo-boolean, 

, 

, see roof duality
recognizable, 

regularizing term, , , , ,


relative duality gap, 
relaxation, , , , , , 
residual, 
roof duality, , –, –, 

segmentation, , , 
smoothness term, see regularizing term
subgradient, , 
submodular, , , , 

relaxation, , 
supergradient, , , , –
symmetric extension, 

tractability, , 

undirected graph, 

vertex, see node

weight, 



	Introduction
	Tractability and Fidelity
	Thesis Overview
	Previous Publications and Author Contributions

	Continuous Optimization
	Convex Functions
	Dual Decomposition
	Non-Linear Least Squares Problems

	Discrete Optimization
	Submodular Functions
	Submodularity and Minimum Cuts
	Linearization
	Roof Duality
	Reductions
	Beyond Boolean Variables
	Branch and Bound

	I Pseudo-Boolean Optimization
	Generalized Roof Duality
	Submodular Relaxations
	Standard Roof Duality
	Generalized Roof Duality
	Cubic Relaxations
	Quartic Relaxations
	Heuristics
	Experiments
	Concluding Discussion
	Open Problems

	Other Approaches to Pseudo-Boolean Optimization
	Using Bipartite Vertex Packing
	Elimination on a Grid

	Continuous Fields of Experts Denoising
	Denoising using Fields of Experts
	Non-linear Least Squares Formulation
	Experiments
	Discussion

	Parallel and Distributed Graph Cuts
	Previous Approaches to Graph Cuts in Vision
	Decomposition of Graphs
	Experiments on a Single Machine
	Splitting across Different Machines
	Conclusion

	Parallel Inference on a GPU
	Splitting the Graph
	Dynamic Programming
	Boolean Formulation and Updating of Weights
	Linear Programming Relaxation
	Experiments
	Coordinate Ascent
	Conclusion

	II Parametric Models
	Optimizing Parametric Total Variation Models
	The Mumford-Shah Functional
	Parametric Binary Problems
	Two-Phase Mumford-Shah Functional
	Ratio Minimization
	Gaussian Distributions
	Conclusion

	III Curvature Regularization
	Curvature Regularization in the Plane
	Problem Formulation
	Length-Based Regularization
	Incorporating Curvature
	Pseudo-Boolean Optimization
	Types of Meshes
	Dual Decomposition
	Convex Shape Priors
	Solution Refinement

	Surface Completion and Segmentation with Curvature
	Curvature of Surfaces
	Experiments
	Conclusion

	IV Applications
	Multiple Region Segmentation
	Multi-Region Framework
	Solving the Optimization Problem
	Cardiac Segmentation
	Lung Segmentation
	Conclusions

	Shift-Map Image Registration
	Problem Formulation
	Experiments
	Conclusion

	HEp-2 Staining Pattern Classification
	Indirect Immunofluorescence
	Classification Methods
	Features Used for Classification
	Results
	Discussion

	V Conclusion
	Recent Work
	Generalized Roof Duality
	Parallel Minimum Cut
	Parametric Models
	Curvature

