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Preface

The mathematical study of water waves has an old and impressive history [9].
Still, several centuries after Leonard Euler derived the equations of hydrodynam-
ics, those continue to pose a great challenge to mathematics. Not only are there
numerous physical settings—including assumptions concerning depth, dimen-
sion, density, surface tension, wave breaking, viscosity, periodicity, and asymp-
totic behaviour, to name a few—but also a wide range of matematical models and
techniques have been developed to attack the problem. One of the main reasons
for this is the extreme difficulty involved in handling the exact governing equa-
tions analytically. As a result, mathematicians also study a variety of so called
model equations, the solutions of which in different ways approximate the exact
solutions of the original problem [22, 23, 30]. In addition, the advent of mod-
ern computers and numerical analysis have brought complementing tools into
the field: by means of numerical schemes the time-dependent evolution of water
waves can be studied both as discrete approximations of smoother solutions, but
also from the more heuristic point of view of images (see e.g. [2]).

One important class of water waves are the periodic steady waves [20]. Those
are approximately two-dimensional wave trains travelling with constant speed and
shape. Generated by wind at sea, they arise as a result of dispersion: larger waves
move faster than smaller ones, and eventually sort themselves out [24]. This
phenomen is known as swell. The mathematical study of such waves is classically
known as the water-wave problem, and for a large class of waves it involves the
study of a harmonic function [28]. The problem is overdetermined in the sense
that, within an arbitrary domain, the boundary conditions at the surface excludes
a solution. Instead, the solution of the problem can be reduced to finding an a
priori unknown, free surface.

Until recently, the study of steady water waves focused primarily, or even al-
most exclusively, on waves propagating on irrotational currents. Such a current
is one for which there is no local rotation, or curl, within the fluid. For waves
entering, say, a region of still water, that is an appropriate model. On the opposite
side, there are also rotational currents. One then says that vorticity is present. An
example of this is tidal flow, for which constant vorticity is considered a realistic
assumption [27]. Except from constant vorticity, the findings on steady waves
with vorticity had for a long time been limited to an explicit solution by Gerst-
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Preface

ner [3, 19], discovered already in 1809 (and for a long time overlooked [9]). A
break-through in this area was the announcement by Constantin and Strauss in
[7], that for an arbitrary vorticity distribution there exist steady periodic gravity-
waves propagating over a flat bed. Since then, several other results on existence,
uniqueness, stability, and other properties of different kinds of waves with vortic-
ity have been accomplished. Among those are the three first papers contained in
this thesis.

The first paper [11],

Deep-water waves with vorticity: symmetry and rotational behaviour,

deals with the mathematical theory behind an every-day observation: travelling
waves are essentially symmetric with respect to their crestline. The first result
in this direction was given by Garabedian in [18], and it concerns irrotational
waves for which all the streamlines have a single maximum and minimum within
a period. But it was not until much later, with the arrival of [25], that a proof
without assumptions on the interior of the fluid was presented. A full history can
be found in [11]. Shortly said, the main difficulty with extending the ideas from
[25] is that the study of rotational waves is not the study of a harmonic func-
tion, but of a function satisfying a nonlinear elliptic partial differential equation.
One thus needs to find sharp maximum principles for a general class of vorticity
distributions. Specifically, in order to use the Serrin–Aleksandrov method of the
moving plane, we rely on an observation presented in [10]. As a result, in [11]
we may consider an arbitrary vorticity distribution, and unite the cases of finite
and infinite depth. This paper also presents a short proof for that deep-water
waves restrict the possible classes of vorticity distributions. As described in the
introduction of [11], the paper is closely related to [5] and [6].

The second paper [15],

Linear water waves with vorticity: rotational features and particle paths,

is the result of a joint project with Prof. Gabriele Villari, Florence, and it deals
with a subject simultaneously classical and novel. The study of linear water waves
is by no means new [9], and already Stokes knew that there was a forward mass
drift of the fluid particles within such waves [26]. Considering waves with vor-
ticity is, however, a different issue, and the investigation [15] is the first of its
kind. It was triggered by a series of papers—the first of which was [8]—that re-
visited, and spread new light upon, the problem of understanding and describing
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the particle trajectories within travelling waves. In various ways for different kinds
of waves, those investigations all show that the classical first approximation [1],
depicting the particle trajectories as closed ellipses, needs to be complemented
(even in the linear case): in steady periodic waves without vorticity the particles
traverse non-closed oval orbits with a mean forward drift. In our deduction and
investigation of linear waves with constant vorticity, it very soon became evident
that vorticity may fundamentally change the interior fluid motion, even though
the linearized surface is exactly the same as for irrotational waves. We find in [15]
waves with interior vortices, and show that there are particle paths deviating from
those of irrotational waves. At the time of publication, the existence of some of
the corresponding waves in the setting of the full governing equations was not
yet established. Very recently, however, the existence and properties of those have
been confirmed for the Euler equations [29], as small perturbations of the ones
presented in [15].

For the regular waves investigated in [15]—i.e. waves without stagnation
points—there was the question as to what one could analytically deduce for the
particle paths of the corresponding exact steady waves with vorticity. That even-
tually led to the third paper [13]:

On the streamlines and particle paths of gravitational water waves.

As mentioned above, [8] paved the way for new findings on particle trajectories
within steady waves. Among those there were also results for Stokes waves [4, 21],
i.e. the symmetric and periodic solutions of the irrotational water-wave problem.
Since [15] indicated that vorticity has a major impact on the streamlines and the
particle trajectories of waves with vorticity, the next step was to see what could
be said by combining the ideas from [4] and [15]. The result turned out to be
in line with the findings in [15]: for some classes of vorticity distributions, the
picture resembles that of irrotational periodic waves; but a general statement for
rotational waves could not be achieved. On the other hand, some new results
concerning irrotational waves were obtained. In particular, in [13] it is shown
that for Stokes waves and small waves with negative vorticity, the mean forward
drift of the particles is strictly increasing from bottom to surface. The paper
contains several other results, and is a first step towards an understanding of the
interior fluid motion within exact steady waves with vorticity. The mathematical
techniques are to a large extent ad hoc combinations of standard techniques and
inequalities, although the basis is sharp maximum principles for elliptic equations
[17]. To apply those we use the hodograph transformation reintroduced in [7],
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and then exploit the properties of the equations. Some results are also based on
an idea developed in [12].

The fourth paper [14] covers a slightly different topic, namely steady waves
for an equation modelling irrotational waves. It is the fruit of a collaboration with
Dr. Henrik Kalisch, Bergen, and is entitled

Travelling waves for the Whitham equation.

In [30] Whitham proposed a new model for the surface evolution of shallow wa-
ter waves, the reason for this being that the dispersion relation for the widely used
Korteweg–de Vries (KdV) equation does not allow for wave breaking. Whitham
thus modified the KdV equation by replacing its dispersion term with the lin-
ear dispersion relation obtained from the full Euler equations. The result is no
longer a differential equation, but a non-local integro-differential equation with
a discontinuous kernel that blows up at the origin. Maybe because of this, the
original kernel was in many investigations soon replaced by a continuous approx-
imation matching the decay, but not the local behaviour, of the original one.
That approximation yields a differential equation, sometimes referred to as the
Burgers-Poisson equation [16], but at times also named the Whitham equation.

In [14] we return to the original equation, considering steady waves from
an analytic as well as from a numerical perspective. By means of the Crandall–
Rabinowitz bifurcation theorem we show existence for periodic waves in a suitable
subalgebra of the Wiener algebra. The paper also contains a non-existence result
for waves of large speeds, and a compactness theorem that yields convergence of
bounded periodic waves. Because of the definition of the Whitham kernel, much
of the work in [14] rely on Fourier integrals and Fourier theory in general. For
the numerical results—which also indicate convergence to a highest wave—we
use spectral methods, closely related to Fourier series. The article has recently
been submitted.
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Deep-water waves with vorticity: symmetry

and rotational behaviour

Abstract

We show that for steady, periodic, and rotational gravity deep-water
waves, a monotone surface profile between troughs and crests implies sym-
metry. It is observed that if the vorticity function has a bounded derivative,
then it vanishes as one approaches great depths.

1 Introduction

The study of symmetries in partial differential equations is well established, and
the recent decades have seen some well-known contributions to the literature of
maximum principles, notably [2, 18, 25]. In the field of fluid mechanics these
methods have drawn interest because of the symmetries present in the govern-
ing equations. In particular, there are several results concerning the symmetry of
steady gravity water-waves. These results date back at least to [16]. The author
considers wave trains propagating with a steady speed across the open sea. These
are two-dimensional periodic waves with gravity as the dominant restoring force.
In this steady context, when the observer travels along with the wave, a streamline
is the path of a fluid particle (though from a fixed reference point this is not the
case, cf. [4, 8]). The author shows that if every streamline has one minimum
and one maximum per period, then the wave is symmetric around the crest. The
proof given in [16] was later simplified in [26]. In between, the authors of [10]
took on the problem of proving symmetry for steady solitary waves. That in-
vestigation showed that for irrotational solitary waves the surface profile has to
be monotonically decreasing from the crest. The basic tools of the symmetry
argument—being maximum principles and the connected Aleksandrov method
of moving planes—were used by the same authors also in [11]. Related papers are
[1, 23].

In [24] the authors present a proof of symmetry based on the assumption that
the surface profile has a positive derivative from trough to crest. As in earlier pa-
pers, the method of moving planes is used in a clever way. This idea is sometimes
attributed also to Serrin for his famous paper [25]. The methods were recently
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Paper I

generalized to include water waves with vorticity, i.e. waves propagating on a ro-
tational current. The main difference between the governing equations in this
case and in the irrotational setting is that the refined methods of complex analysis
cannot be used in the same way, since the velocity potential is not a harmonic
function when vorticity is present. In the papers [6, 7], the authors prove that if
the surface profile is strictly monotone between crests and troughs, then the wave
is symmetric. This is done for periodic gravity waves on finite and infinite depth,
respectively. The class of vorticity distributions allowed for is the one where the
vorticity is a non-increasing function of the depth.

From a physical point of view this assumption is reasonable, but it is of inter-
est to investigate the case of a general vorticity. The recent paper [13] shows that
it is possible to apply similar methods to the general case. That discovery was uti-
lized in [5], where the results from [7] were extended to include general vorticity
distributions. A complementing view was offered in [21]: it is assumed that every
streamline attains its minimum below the trough, and that the trough is the sin-
gle lowest point in a period; if the surface profile is also locally strictly monotone
around the trough, it is proved that the wave is symmetric and the surface profile
strictly monotone from trough to crest. Though based on maximum principles,
the method of proof in [21] is different from that of [5]. Moreover, while the
assumption of [5] is a requirement only on the surface profile, the conditions in
[21] are mainly “vertical” and require precise knowledge of the streamlines below
the surface.

The aim of the present paper is to generalize the corresponding deep-water
investigation [6] to an arbitrary vorticity distribution. In doing so we unify the
cases of finite and infinite depth, thereby extending the results of [5] to deep-
water waves. We also prove that for any steady deep-water wave—including soli-
tary waves and waves with capillarity—if the vorticity function has a bounded
derivative, then it tends to zero as it reaches great depths. That result relaxes the
assumptions of a similar proposition in [6] concerning vorticity distributions for
which the vorticity decreases with greater depths. In particular, it yields non-
existence for deep-water waves of constant vorticity.

The methods used for the proof of symmetry are essentially the same as in
[6, 7, 5]. To handle the larger class of vorticity distributions we use a partial
hodograph transform, reintroduced in [9], and dating back to [12]. The main
differences from [6, 7] lies in the use of a highly nonlinear operator defined in
[13], and the fact that the proof is reduced to handle only two cases instead of
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Deep-water waves with vorticity

three. This however was observed also in [27]. Note also that our approach unifies
the cases of finite and infinite depth. The proof of the vanishing vorticity is totally
different from that in [6]. It is very simple, in the sense that it is based upon an
application of the Green’s identity.

2 Preliminaries

Let d > 0 be the depth below the mean water level, y = 0, so that the flat
bottom can be described by y = −d. The free surface is then represented by
y = η(x) ∈ C3(R, R), and

Ωη :=
{
(x, y) ∈ R2 : − d < y < η(x)

}

denotes the fluid domain. A point (x, η(x)) for which η(x) = minx∈R η(x)
is called a trough, and if η(x) = maxx∈R η(x) it is said to be a crest. In the
following, we shall assume that we have a solution ψ ∈ C2(Ωη) to the system

∆ψ = −γ(ψ), (x, y) ∈ Ωη

|∇ψ|2 + 2gy = C, y = η(x)

ψ = 0, y = η(x)

ψ = −p0, y = −d,

(2.1)

that is L-periodic in the x-variable, 0 < L < ∞. To deal also with deep-water
waves, we accept d = ∞, and in that case the last line of (2.1) is exchanged for

∇ψ → (0,−c) uniformly for x ∈ R as y → −d.

The system (2.1) can be deduced from the Euler equations (see e.g. [7, 9, 20, 28]
for a more detailed discussion). Here, p0 is the relative mass flux (cf. Remark 2.1
below), the vorticity function γ : [0,−p0] → R is continuously differentiable,
g > 0 is the gravitational constant of acceleration, and C is a constant related to
the energy. The second equation of (2.1) is sometimes referred to as the Bernoulli
surface condition. The setting is that of gravitational water waves, hence the influ-
ence of capillarity is neglected in (2.1).

In the deduction of the system (2.1), the stream function ψ is defined (up to a
constant) by

ψx = −v, ψy = u − c < 0,

5
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where u and v are the horizontal and vertical velocity, respectively, and c > 0
is the constant horizontal speed of propagation. The requirement that ψy < 0
in the fluid domain is used for the transformation of the Euler equations to the
system (2.1). This assumption is supported by physical measurements [22]: for a
wave not near breaking or spilling, the speed of an individual fluid particle is far
less than that of the wave itself. In this paper we consequently demand that

ψy ≤ −δ < 0 in the closure Ωη,

for some δ ∈ R.
When ψy < 0 in Ωη, the system (2.1) is equivalent to yet another system (cf.

[9]). Since for every fixed x ∈ R, the mapping ψ ↔ y is a bijection in Ωη, we
can use a partial hodograph transform, setting

(q, p) := (x,−ψ),

in the domain
Ω :=

{
(q, p) ∈ R2 : p0 < p < 0

}
,

where p0 := − limy→−d ψ(x, y) < 0. In the case of finite depth, if one lets
h(q, p) := y(q, p) + d be the height above the flat bottom, then

hq = −
ψx

ψy
=

v

u − c
, hp = −

1

ψy
=

1

c − u
,

and the following system emerges as an equivalent of (2.1):
(
1 + h2

q

)
hpp − 2hphqhpq + h2

phqq + γ(−p)h3
p = 0, p ∈ (p0, 0),

1 + h2
q + (2gh − Q)h2

p = 0, p = 0,

h = 0, p = p0.
(2.2)

Here Q > 0 is determined by the constant C in (2.1), and the height function
h ∈ C2(Ω) is periodic with period L > 0. Knowing h(q, 0) is equivalent to
knowing the free surface y = η(x); indeed h(q, 0) = η(q) + d. For deep-water
waves one instead lets

h(q, p) := y(q, p) − Q/(2g),

and the condition that h = 0 on the bottom p = p0 is exchanged for

∇h(q, p) → (0, 1/c) uniformly in q ∈ R as p → p0 = −∞. (2.3)

6



Deep-water waves with vorticity

Remark 2.1.

(i) The exact values of the quantities g,C,Q do not matter in our investiga-
tion.

(ii) The notion of relative mass flux [9] captures the physical fact that the
amount of water passing any vertical line is constant throughout the fluid
domain: ∫ η(x)

−d
(u(x, y) − c) dy = p0, x ∈ R,

holds since u − c = ψy, and ψ is constant on the surface y = η(x) as
well as on the bottom y = −d. Thus, determining the relative mass flux is
equivalent to determining the constant value of ψ at the bottom, which is
equivalent to determining p0 in the definition of the domain Ω.

Before presenting the main results we state here two lemmas used in the proof
of the main theorem. Lemma 2.2 is adapted specifically to the problem at hand,
and Lemma 2.4 contains three simplified versions of classical maximum princi-
ples. While i) and ii) are due to Hopf [19], iii) originates from [25]. A good
exposition over maximum principles, and the full details of the proofs, can be
found in [15].

Lemma 2.2. [13] Let h, h̃ ∈ C2(Ω) be solutions of the water-wave problem (2.2),
with hp > 0 bounded away from zero. Then there is a uniformly elliptic operator
with continuous coefficients,

L =
(
1 + h2

q

)
∂2

p + h2
p∂

2
q − 2hphq∂p∂q

+
[
h̃qq

(
hp + h̃p

)
− 2h̃qh̃pq + γ(−p)

(
h2

p + hph̃p + h̃2
p

)]
∂p

+
[
h̃pp

(
hq + h̃q

)
− 2hph̃pq

]
∂q, (2.4)

which satisfies

L
(
h − h̃

)
= 0 in Ω.

Remark 2.3. Note that, for any λ ∈ R, h̃(q, p) := h(2λ− q, p) is also a solution
to (2.1). This follows since all the q-derivatives go in pairs, making the minus
signs cancel each other.
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Lemma 2.4. [15] Let Ω ⊂ R2 be a rectangle, possibly extending infinitely in one
direction, w ∈ C2(Ω), and suppose thatLw = 0 for some uniformly elliptic operator
L =

∑
i,j aij∂ij +

∑
i bi∂i with continuous coefficients in Ω. Then the following

hold:

i) [The maximum principle] If minΩ w or maxΩ w is attained in the interior
of Ω, then w is a constant in Ω.

ii) [The Hopf boundary-point lemma] Let p be a point on the smooth part of
the boundary ∂Ω such that w(p) < w(x) or w(p) > w(x) for all x ∈ Ω.
Then ∇w(p) )= (0, 0).

iii) [The Serrin egde-point lemma] Let p be a corner point on ∂Ω such that
w(p) < w(x) or w(p) > w(x) for all x ∈ Ω. Suppose also that a12(p) =
0 = a21(p). Then at least one of the first or second partial derivatives of w is
non-vanishing at p.

Remark 2.5. Substituting L for the explicit operator presented in Lemma 2.2 we
see that the condition a12(p) = 0 = a21(p) in Lemma 2.4 (iii) is satisfied exactly
when hq = 0 (remember that hp > 0 by assumption). This will be used in the
proof of Theorem 3.1.

3 Main results

Theorem 3.1. Steady periodic gravity water waves with a monotone surface profile
between troughs and crests are symmetric.

Remark 3.2. In [6, 7] monotonicity means strictly increasing from trough to
crest, and vice versa. We require only that the surface be non-decreasing (non-
increasing) on the same intervals. Since “trough” and “crest” then become some-
what ambiguous, they should be used for the middle points of possible flat troughs
or crests. If the vorticity decreases with depth—which is assumed in [6, 7]—it is
shown in [14] that such flat parts are impossible at the surface of symmetric waves.

Remark 3.3. In [24]—whose authors proposed the result in the irrotational
setting—it is suggested that the same result is valid for waves with capillarity.
So far, we have been unable to extend our result to such a general setting.
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Wind-generated vorticity is initially a surface process, therefrom penetrating
the fluid downwards. It is therefore physically reasonable to assume that the ro-
tational motion decreases with depth. Assuming this, the authors of [6] showed
that the vorticity vanishes as one approaches great depths. The following obser-
vation vindicates that proposition with a different type of argument, and extends
the setting to a larger class of vorticity distributions. The result is consistent with
the only known explicit solution of steady gravity deep-water waves, the Gerstner
wave (see [3, 17]).

Theorem 3.4. For any steady deep-water wave, if ‖γ̇‖∞ < ∞, then the vorticity
function satisfies γ(ψ(x, y)) → 0, uniformly for x ∈ R, as y → −∞.

Proof of Theorem 3.1. Since the system (2.2) is symmetric in the q-variable—one
may as well consider h(−q, p)—we can always assume that the horizontal posi-
tion of the crest is in [0, L/2). For a reflection parameter, λ ∈ (−L/2, 0), let us
introduce the reflection of q around λ,

qλ := 2λ− q,

and the associated reflection function,

w(q, p;λ) := h(q, p) − h(2λ − q, p),

(q, p) ∈ [λ, 2λ+ L/2] × [p0, 0].

In the setting of infinite depth, w is defined only for p ∈ (p0, 0]. The reflection
function satisfies the boundary conditions

w(λ, p;λ) = 0,

lim
p→p0

w(q, p;λ) = 0, uniformly for q ∈ R. (3.1)

The first property is immediate from the definition of w(q, p;λ), and the second
follows from the bottom boundary condition of (2.2) and (2.3); in the deep-water
case by an application of the mean value theorem. Since the surface profile is non-
decreasing from trough to crest by assumption, the reflection function satisfies
w(q, 0;λ) ≥ 0 for λ close enough to the trough. Hence exists

λ0 := sup{λ : w(q, 0;λ∗) ≥ 0 for all λ∗ ∈ (−L/2,λ)},

and it suffices to consider the following two cases:

9
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  L/2!L/2 q 0

p = 0 !

" 2"+ L/2

Figure 1: The (q,p)-reflection (top), steady variables below.

i) λ0 = 0.

ii) λ0 ∈ (−L/2, 0), and there exists q0 > λ0 for which w(q0, 0;λ0) = 0.

In the case of i) the domain of reflection is maximal. The second situation is
what occurs if the surface “collides” with its reflection, so that there is a point of
tangency at q = q0 (see Figure 1).

Assuming i), and keeping periodicity in mind, we get the additional boundary
conditions

w(L/2, p;λ0) = 0, w(q, 0;λ0) ≥ 0. (3.2)

Let us restrict the fluid domain to a half-period,

Ω := (0, L/2) × (p0, 0).

Lemma 2.2 implies that maximum principles are available for the reflection func-
tion in Ω (see Remark 2.3 and note that w ∈ C2(Ω)). By Lemma 2.4 [i] there
cannot exists an interior point for which w(q, p;λ0) ≤ 0, unless w vanishes ev-
erywhere in Ω. This follows from the boundary conditions (3.1) and (3.2). If w
vanishes completely, we have symmetry, so suppose on the contrary that

w(q, p;λ) > 0 in Ω.

10
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At the trough, where (q, p) = (L/2, 0), both w and wp vanishes by (3.2). Since
hq(±L/2, 0) = 0, also

wq(L/2, 0;λ0) = 0.

Differentiating the Bernoulli surface condition of (2.2) with respect to q, we then
get

0 = 2hqhqq + (2ghq)h
2
p + 2(2gh − Q)hphqp = 2(2gh − Q)hphqp,

forcing hqp(L/2, 0) = 0, in view of that (2gh − Q)hp never vanishes according
to the same surface condition. A similar argument holds for the λ0-reflection
h(−q, p), whence

wqp(L/2, 0) = 0.

Keeping the definition of w(q, p;λ0) in mind we thus see that at the trough,
(q, p) = (L/2, 0), we have that

w = wq = wp = wqq = wqp = wpp = 0.

At the trough it is moreover so that hq = 0 by assumption. According to
Lemma 2.4 [iii] and Remark 2.5 this contradicts the earlier conclusion that
w(q, p;λ0) > 0 in Ω, and we infer that if i) is the case then

h(q, p) = h(−q, p),

meaning that the wave is symmetric around the crest, located at q = 0.
Now for the case of ii). It is clear that w(q, 0;λ0) > 0 for all q > λ0 is

impossible, for this would contradict the maximality of λ0, in view of that the
crest is located to the right of q = 0. We shall increase the domain of definition
of w by the following extension:

w(q, p;λ0) := h(q, p) − h(2λ0 + L − q, p),

(q, p) ∈ (2λ0 + L/2,λ0 + L/2] × [p0, 0].

As above, in the setting of infinite depth we require p ∈ (p0, 0]. If we redefine

Ω := (λ0,λ0 + L/2) × (p0, 0),

it turns out that periodicity guarantees w ∈ C2(Ω). Furthermore, note that as
long as 2λ + L/2 lies to the left of the crest, w(q, 0;λ) ≥ 0 always holds for

11
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Figure 2: Symmetrization in the (q,p)-variables.

λ <q ≤ 2λ + L/2, which follows from monotonicity of the surface profile.
In the case of ii), we thus have that 2λ0 + L/2 lies to right of—or at least in
line with—the crest. Consequently ii) implies that h(q, p) is non-increasing for
q ∈ (2λ0 + L/2, L/2), yielding the useful boundary condition

w(q, 0;λ0) ≥ 0 for all q ∈ [λ0,λ0 + L/2].

Summing up the situation, we have

w(λ0, p;λ0) = 0, w(λ0 + L/2, p;λ0) = 0

w(q, 0;λ0) ≥ 0, lim
p→p0

sup
q∈R

|w(q, p;λ0)| = 0,

for (q, p) ∈ Ω. As in dealing with i), we shall make use of Lemma 2.2. By that,
Remark 2.3, and the regularity of w, we may apply Lemma 2.4 [i] to conclude
that

w(q, p;λ0) > 0 in Ω, unless w vanishes identically.

Suppose first that w vanishes identically. Then h(q, 0) = h(L/2, 0) whenever
2λ0+L/2 ≤ q ≤ L/2, as a consequence of that h(q, p) is non-increasing on that
interval. Moreover h(q, 0) is symmetric around λ0 for q ∈ [−L/2, 2λ0 + L/2],
so it is fact symmetric for all q. Then h(q, p) − h(2λ − q, p) vanishes whenever
p = 0 or p → p0. Once more applying Lemma 2.4 then yields that h(q, p) is
symmetric around q = λ0, which then must be the location of the crest.

12
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Now assume that w(q, p;λ0) > 0 in Ω. At (q0, 0), the only possibil-
ity is wq(q0, 0) = 0 meaning that hq(q0, 0) = −hq(2λ0 − q0, 0). Since
h(q0, 0) = h(2λ0 − q0, 0), the Bernoulli surface condition of (2.2) forces
hp(q0, 0) = hp(2λ0 − q0, 0). Consequently

∇w(q0, 0) = 0,

contradicting Lemma 2.4 [ii], and in extension the assumption thatw(q, p;λ0) >
0 in Ω.

Proof of Theorem 3.4. For a contradiction, suppose there exists a sequence (xn, yn)n≥1

with yn → −∞ as n → ∞, such that |γ(ψ(xn, yn))| ≥ α > 0. Let ε > 0, and
let Rn be squares containing (xn, yn), all of fixed horizontal length

|Rn| = δ = min

{
1

4
,

α

2
√

2(c + ε)‖γ̇‖∞

}
.

By the governing equations for deep-water waves, there exists yε such that |∇ψ−
(0,−c)| < ε whenever y < yε. Consequently Green’s identity implies that

∣∣∣∣

∫

Rn

∆ψ(x, y) dx dy

∣∣∣∣ < 4δε ≤ ε,

whenever Rn lies underneath y = yε. For any two points (x, y), (x0, y0) ∈ Rn

we have that
|γ(ψ(x, y)) − γ(ψ(x0, y0))|
≤ ‖γ̇‖∞ |ψ(x, y) − ψ(x0, y0)|
≤ ‖γ̇‖∞ sup

R
|∇ψ| |(x, y) − (x0, y0)|

≤ ‖γ̇‖∞(c + ε)
√

2δ,

whence
inf
Rn

|∆ψ| ≥ α−
√

2(c + ε)‖γ̇‖∞δ ≥ α/2.

It then follows that

δ2α

2
≤

∫

Rn

|∆ψ(x, y)| dx dy =

∣∣∣∣

∫

Rn

∆ψ(x, y) dx dy

∣∣∣∣ < ε,

for all n with yn+δ < yε. Since δ is uniformly bounded from below for all ε < c,
we may let ε→ 0, yielding α = 0, and reaching the desired contradiction.
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Linear water waves with vorticity: rotational

features and particle paths

Abstract

Steady linear gravity waves of small amplitude travelling on a current of
constant vorticity are found. For negative vorticity we show the appearance
of internal waves and vortices, wherein the particle trajectories are not any
more closed ellipses. For positive vorticity the situation resembles that of
Stokes waves, but for large positive vorticity the trajectories are affected.

1 Introduction

The subject of this paper are periodic gravity water waves travelling with constant
shape and speed. Such wave trains are an everyday observation and, typically, one
gets the impression that the water is moving along with the wave. In general,
this is not so. Rather, the individual fluid particles display a motion quite dif-
ferent from that of the wave itself. While for irrotational waves, recent studies
(see below) have enlightened the situation, we investigate the situation of waves
propagating on a rotational current, so that there is a non-vanishing curl within
the velocity field.

For irrotational waves, a first approximation shows that the fluid particles
move in ellipses, back and forth as the wave propagates above them. This can
be found in classical [2, 27, 34] as well as modern [13, 23] text books, and it
is consistent with the only known explicit solutions for gravity water waves: the
Gerstner wave [4, 18] for deep water, and the edge wave solution for a flat beach
[3], both with a depth-varying vorticity. A formal physical argument involving a
balance between opposing forces was used in [24] to get a similar result without
the use of irrotationality. There are also experimental evidence supporting this
picture. Those include photographs [13, 33, 34] and movie films [1].

However, as anyone having used bottle post would guess, there are other find-
ings. Even in [24], where it is asserted that the orbits are elliptic—and where
the photographs and movie films are referenced—the author notes that “I am not
aware of any measurements that show that the particle orbits of shallow water waves
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are indeed ellipses.” In fact it was observed already in the 19th century that there
seems to be a forward mass drift [35], so that the average motion of an average
fluid particle is along with the wave. This phenomenon can be seen by making a
second approximation of the governing equations, and it is known as Stokes drift
(see also [39, 43]). In [28, 29] it was deduced that for steep waves the orbits devi-
ate from simple ellipses. There is also mathematical evidence uniformly showing
that a more thorough study of the equations yields non-closed orbits with a slight
forward drift. Those include investigations of the precise orbits of the linearized
system [6, 11, 20], and two recent papers on exact Stokes waves [5, 19] (steady
irrotational and periodic gravity waves which are symmetric and monotone be-
tween trough and crest). The relation between such results and experimental data
is discussed in [5], where it is argued that the ellipses, at least near the bottom, are
approximations of the exact trajectories.

While many situations are adequately modelled by irrotational flows—for ex-
ample waves propagating into still water—there are situations when such a math-
ematical model is insufficient. Tidal flow is a well-known example when constant
vorticity is an appropriate model [37], a fact confirmed by experimental studies
[36]. This is one reason why, recently, the interest for exact water waves with
vorticity has increased. At this point existence [10], variational characterization
[9], uniqueness [14, 17], symmetry [8], and a unique continuation principle [16]
for finite depth steady gravity waves with vorticity are established. There is also a
theory for deep-water waves [7, 21], as well as for capillary and capillary-gravity
waves [41, 42]. However, due to the intricacy of the problem, studies of the
governing equations for water waves are extremely difficult. In-depth analyses
are very rare. To gain insight into qualitative features of flows with vorticity, Ko
and Strauss recently performed a numerical study [26], extending earlier work by
da Silva and Peregrine [37]. We will pursue a different approach. Notice that
the intuitive notion of vorticity is captured in what happens when one pulls the
tap out of a bath tub. It should therefore come as no surprise that the particle
paths of waves travelling upon a rotational current deviate from those in the case
of waves without vorticity. That is the main result of this paper. More precisely,
we make a first attempt at understanding the particle trajectories by deducing a
linear system for constant vorticity. Here, linearity means that the waves are small
perturbations of shear flows, hence of small amplitude. The system obtained is
solvable in the sense of closed expressions, and thus it is possible to make a phase
portrait study of the steady wave.
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It is found that for positive vorticity, the steady wave resembles that of the
irrotational situation [6, 11], though the particles behave differently if the size of
the vorticity is large enough. For negative vorticity, however, we show the exis-
tence of a steady periodic surface wave containing an internal wave as well as a
vortex, or so called cats-eye (cf. [22] and [30, Ex. 2.4]). For unit depth this sit-
uation occurs if the absolute size of the negative vorticity exceeds the wave speed,
while in the opposite situation both the steady wave and the physical particle tra-
jectories resemble the irrotational case. When the size of the negative vorticity
exceeds the wave speed the particle trajectories of the internal wave behave in the
same manner as in the irrotational case – nearly closed ellipses with a forward
drift – but within the vortex and the surface wave the particles are moving mainly
forward. This indicates that such a wave may be uncommon or unstable, since
measurements show that for waves not near breaking or spilling the speed of an
individual particle is generally considerably less than that of the wave itself [27].
Such a situation is excluded in [5, 19], and our results are therefore not in contrast
to those investigations.

An interesting feature of the phase portrait for negative vorticity is that it
captures the almost ideal picture of what vorticity is. It furthermore indicates that
in the case of large negative vorticity the governing equations allow for travelling
waves very different from the classical Stokes waves (see [38] for a good reference
of that subject). Finding those waves with analytic tools requires a novel approach;
so far the existence results [10, 21, 40] for steady waves with vorticity rely on the
assumption that no particle moves as fast as the wave itself. This study suggests that
the presence of vorticity—even when it is constant—changes the particle trajectories
in a qualitative way, that this change depends on the size of the vorticity, and that it
applies less to particles near the bottom.

The disposition is as follows. Section 2 gives the mathematical background
for the water-wave problem, while in Section 3 we deduce the linearization and
its solution. The main findings are presented in Section 4, and the implications
for the particle trajectories in Section 5. In Section 6 we give a brief summary and
discussion of our results.

2 Preliminaries

The waves that one typically sees propagating on the surface of the sea are locally
approximately periodic and two-dimensional (that is, the motion is identical in
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any direction parallel to the crest line). Therefore, for a description of these waves
propagating over a flat bed, it suffices to consider a cross section of the flow that
is perpendicular to the crest line. Choose Cartesian coordinates (x, y) with the
y-axis pointing vertically upwards, and the x-axis pointing rightwards from the
point of view of some observer, while the origin lies on the flat bed below the
crest. Let (u(t, x, y), v(t, x, y)) be the velocity field of the flow, let h > 0 be the
depth below the mean water level y = h, and let y = h + η(t, x) be the water’s
free surface. We assume that gravity is the restoring force once a disturbance was
created, neglecting the effects of surface tension. Homogeneity (constant density)
is a physically reasonable assumption for gravity waves [27], and it implies the
equation of mass conservation

ux + vy = 0 (2.1a)

throughout the fluid. Appropriate for gravity waves is the assumption of inviscid
flow [27], so that the equation of motion is Euler’s equation

{
ut + uux + vuy = −Px,

vt + uvx + vvy = −Py − g,
(2.1b)

where P (t, x, y) denotes the pressure and g is the gravitational constant of accel-
eration. The free surface decouples the motion of the water from that of the air
so that, ignoring surface tension, the dynamic boundary condition

P = P0 on y = h + η(t, x), (2.1c)

must hold, where P0 is the constant atmospheric pressure [23] . Moreover, since
the same particles always form the free surface, we have the kinematic boundary
condition

v = ηt + uηx on y = η(t, x). (2.1d)

The fact that water cannot penetrate the rigid bed at y = 0 yields the kinematic
boundary condition

v = 0 on y = 0. (2.1e)

The vorticity, ω, of the flow is captured by the curl,

vx − uy = ω. (2.1f)
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We now introduce a non-dimensionalization of the variables. As above, h is
the average height above the bottom, and we let a denote the typical amplitude,
and λ the typical wavelength. It is reasonable, and fruitful, to take

√
gh as the

scale of the horizontal velocity. That is the approximate speed of irrotational long
waves [23]. We shall use c to denote the wave speed, and we let

c .→
c√
gh

be the starting point of the non-dimensionalization. We then make the transfor-
mations

x .→
x

λ
, y .→

y

h
, t .→

√
gh t

λ
, u .→

u√
gh

, v .→
λ v

h
√

gh
, η .→

η

a
.

Having made these transformations, define furthermore a new pressure function
p = p(t, x, y) by the equality

P := P0 + gh(1 − y) + ghp.

Here P0 is the constant atmospheric pressure, and gh(1 − y) is the hydrostatic
pressure distribution, describing the pressure change within a stationary fluid.
The new variable p thus measures the pressure perturbation induced by a passing
wave. It turns out that the natural scale for the vorticity is

√
h/g and we thus

map

ω .→
√

h
g ω.

The water-wave problem (2.1) then transforms into the equations

ux + vy = 0, (2.2a)

ut + uux + vuy = −px, (2.2b)

vt + uvx + vvy = −
λ2

h2
py, (2.2c)

h2

λ2
vx − uy = ω, (2.2d)

valid in the fluid domain 0 < y < 1 + a
hη, and

v =
a

h
(ηt + uηx), (2.2e)

p =
a

h
η, (2.2f)
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valid at the surface y = 1 + a
hη, in conjunction with the boundary condition

(2.1e) on the flat bed y = 0. Here appear naturally the parameters

ε :=
a

h
, δ :=

h

λ
,

called the amplitude parameter, and the shallowness parameter, respectively. Since
the shallowness parameter is a measure of the length of the wave compared to
the depth, small δ models long waves or, alternatively, shallow water waves. The
amplitude parameter measures the relative size of the wave, so small ε is custom-
arily used to model a small disturbance of the underlying flow. We now set out
to study steady (travelling) waves, and will therefore assume that the equations
(2.1) have a space-time dependence of the form x − ct in the original variables,
corresponding to λ(x − ct) in the equations (2.2). The change of variables

(x, y) .→ (x − ct, y)

yields the problem

ux + vy = 0, (2.3a)

(u − c)ux + vuy = −px, (2.3b)

(u − c)vx + vvy = −
py

δ2
, (2.3c)

δ2vx − uy = ω, (2.3d)

valid in the fluid domain 0 < y < 1 + εη,

v = ε(u − c)ηx, (2.3e)

p = εη, (2.3f)

valid at the surface y = 1 + εη, and

v = 0 (2.3g)

along the flat bed y = 0.

3 The linearization

To enable the study of explicit solutions, we shall linearize around a laminar,
though rotational, flow. Such shear flows are characterized by the flat surface,
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y = 1, corresponding to η = 0, so insertion of this into (2.3) yields the one-
parameter family of solutions,

U(y) := U(y; s) := s −
∫ y

0
ω(y) dy,

with η = 0, p = 0, v = 0. We now write a general solution as a perturbation of
such a solution U , i.e.

u = U + εũ, v = εṽ, p = εp̃. (3.1)

We know from the exact theory of water waves that such solutions exist at the
points where the non-trivial solutions bifurcate from the curve of trivial flows
[10]. Remember that small ε corresponds to waves whose amplitude is small in
comparison with the depth. Since the surface is described by 1 + εη, η should
thus be of unit size. Dropping the tildes, we obtain

ux + vy = 0, (3.2a)

(U − c)ux + vUy + ε(vuy + uux) = −px, (3.2b)

(U − c)vx + ε(vvy + uvx) = −
py

δ2
, (3.2c)

valid in the fluid domain 0 < y < 1 + εη;

v = (U − c + εu)ηx, (3.2d)

p = η, (3.2e)

valid at the surface y = 1 + εη; and

v = 0, (3.2f)

on the flat bed y = 0. The corresponding linearized problem is valid in the sense
that its solution satisfies the exact equations except for an error whose size can be
expressed as a square of the size of the linear solution. The linearization is attained
by formally letting ε→ 0, and it is given by

ux + vy = 0, (3.3a)

(U − c)ux + vUy = −px, (3.3b)

(U − c)vx = −
py

δ2
, (3.3c)

25



Paper II

valid for 0 < y < 1; and

v = (U − c)ηx, (3.3d)

p = η, (3.3e)

valid for y = 1. In order to explicitly solve this problem we restrict ourselves to
the simplest possible class of vorticity distributions, i.e. when ω(y) = ω ∈ R is
constant. It then follows that

U(y; s) = −ωy + s.

Looking for separable solutions we make the Ansatz η(x) = cos (2πx) (note
that the original wavelength λ and the original amplitude a have both been non-
dimensionalized to unit length). The solution of (3.3) is then given by

u(x, y) = 2δπC cos (2πx) cosh (2πδy) ,

v(x, y) = 2πC sin (2πx) sinh (2πδy) ,

p(x, y) = C cos (2πx)
(
2πδ(c − s + ωy) cosh (2πδy) − ω sinh (2πδy)

)
,

(3.4)
where C := (c − s + ω)/ sinh(2πδ), and c, δ, h, s,ω must satisfy the relation

(c − s + ω)
(
2πδ(c − s + ω) coth(2πδ) − ω

)
= 1 (3.5)

This indicates that the properties of the wave are adjusted to fit the rotational char-
acter of the underlying flow. Note in (3.4) that while the horizontal and vertical
velocities are given by straightforward expressions, the complexity of the pressure
has drastically increased compared to the irrotational case [6, 11]. Remember that
this solution is a small disturbance of the original shear flow, according to (3.1).
For small ε, we thus have an approximate solution to (2.3).

To normalize the reference frame Stokes made a now commonly accepted
proposal. In the case of irrotational flow he required that the horizontal velocity
should have a vanishing mean over a period. Stokes’ definition of the wave speed
unfortunately cannot be directly translated to waves with vorticity (see [10]). In
the setting of waves with vorticity we propose the requirement

∫ 1

0
u(x, 0) dx = 0, (3.6)
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a “Stokes’ condition” at the bottom. This is consistent with deep-water waves (cf.
[15]), and for U(y; s) it results in s = 0. As we shall see in subsection 3.1 this
indeed seems to be the natural choice of s, since this and only this choice recovers
the well established bound

√
gh for the wave speed. This is also the choice made

in [37]. We emphasise that (3.6) is only a convention for fixing the reference
frame; without such a reference it is however meaningless to for example discuss
whether physical particle paths are closed or not.

The corresponding approximation to the original system (2.1) is





u(t, x, y) = −ωy + a(f+khω)
sinh(kh) cos (kx − ft) cosh (ky) ,

v(t, x, y) = a(f+khω)
sinh(kh) sin (kx − ft) sinh (ky) ,

P (t, x, y) = P0 + g(h − y) + a(f+khω)
k sinh(kh) cos (kx − ft)

×
(
(f + kωy) cosh (ky) − ω sinh (ky)

)
,

η(t, x) = h + a cos (kx − ft) .

(3.7)

Here

k :=
2π

λ
and f :=

2πc

λ
are the wave number and the frequency, respectively. The size of the disturbance is
proportional to a in the whole quadruple (η, u, v, p), so this solution satisfies the
exact equation with an error which is O(a2) as a → 0. Concerning the uniform
validity of the approximation procedure, leading to the linear system, a closer look
at the asymptotic expression indicates that this solution is uniformly valid for

−∞ < x − ct < ∞ as ε→ 0,

while for the vorticity we have uniform validity in the region

εω = o(1) as ε→ 0.

A rigorous confirmation of this requires a detailed analysis similar to that pre-
sented in [12, 32], but is outside the scope of our paper.

3.1 The dispersion relation

The identity (3.5) can be stated in the physical variables as the dispersion relation

c− s
√

gh + hω =
1

2k

(
ω tanh (kh) ±

√
4gk tanh (kh) + ω2 tanh2 (kh)

)
,

(3.8)
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valid for linearized small amplitude gravity waves on a sheared current of con-
stant vorticity. Note that s

√
gh−hω is the surface velocity of the trivial solution

U(y; s) stated in the physical variables. The equation (3.8) is the general ver-
sion of the dispersion relation presented in [10, Section 3.3]. They found the
dispersion relation

c − u∗
0 =

1

2

(
ω tanh(h) +

√
4g tanh(h) + ω2 tanh2(h)

)
, (3.9)

where u∗
0 is the surface velocity of the trivial solution. The authors consider

waves of wavelength 2π, whence k = 1. They also require that u < c, and
that the relative mass flux is held constant along the bifurcation curve for which
the linearization is the first approximation. In the case of (3.8) the problem to
uniquely determine c from k, h, and ω is related to the fact that the requirement
u < c is necessary for the theory developed in [10], while in our linear theory,
ω and s can be chosen as to violate that assumption. For example, when s = 0
and hω < −c it is easy to see from (3.7) that for waves of small amplitude,
a << 1, the horizontal velocity u exceeds the wave speed, at least at the surface
where u ≈ −hω > c. The sign in front of the square root depends on the sign of
c− s

√
gh + hω. It is immediate from (3.8) that this expression is bounded away

from 0. Positivity corresponds to the case dealt with in [10], and in that case the
existence of exact solutions is well established. Our investigation indicates that
there might also be branches of exact solutions fulfilling the opposite requirement
u > c, and as shall be seen below, in that case it is possible that c is negative so
that there are left-going waves on a right-going current. In [10] it is assumed that
c > 0.

If c − s
√

gh + hω is positive, and the vorticity is positive as well, we get a
uniform bound for the wave speed. Let

α :=
tanh hk

hk
∈ (0, 1).

Then

c

h
− s

√
g

h
=

1

2

(

ω(α− 2) +

√
4gα

h
+ ω2α2

)

=
2
(
ω2(α− 1) + gα

h

)

(2 − α)ω +
√

4gα
h + ω2α2

<

√
gα

h
,
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meaning that

c <

(
tanh kh

kh
+ s

)√
gh < (1 + s)

√
gh

If instead c − s
√

gh + hω < 0 and ω < 0, the same argument gives that

c > − (1 + s)
√

gh.

These calculations vindicate the choice of s = 0, since in that case we recover the
classical critical speed

√
gh. To summarize, we have proved

Theorem 3.1. For a linear gravity wave on a linear current U(y; 0) = −ωy we
have

c )= −hω,

and the dispersion relation is given by (3.8) with s = 0, where the square root is
positive (negative) according as c + hw is positive (negative). In particular, if the
speed and the vorticity are of the same sign, then

|c| <
√

gh.

Remark 3.2. Another comment is here in place. In [10, Section 3.3] the authors
show that for positive vorticity, local bifurcation from shear flows requires addi-
tional restrictions on the relative mass flux. This is related to the requirement that
u < c, and the reason can be seen directly from (3.9), according to which

c − s
√

gh + hω > 0. (3.10)

If ω → ∞, the inequality (3.10) admits both large negative and large positive s.
But for s > 0 large enough, we find that U(0; s) = s

√
gh > c, which violates

the assumptions made in [10]. Since in this paper u > c is permitted, there is no
corresponding restriction for positive ω.

4 The phase portraits for right-going waves

In this section we study a cross section of the steady solution for a right-going
wave. This corresponds to a phase-portrait analysis of the ODE-system in steady
variables with c > 0. Since

(
ẋ(t), ẏ(t)

)
=

(
u(x(t), y(t), t), v(x(t), y(t), t)

)
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we find that the particle paths are described by the system

{
ẋ(t) = −ωy + A cos (kx − ft) cosh (ky)

ẏ(t) = A sin (kx − ft) sinh (ky)
(4.1)

where

A :=
a(f + khω)

sinh(kh)
(4.2)

is proportional to the amplitude parameter a. In order to study the exact lin-
earized system, let us rewrite (4.1) once more via the transformation

x(t) .→ X(t) := kx(t) − ft, y(t) .→ Y (t) := ky(t), (4.3)

yielding {
Ẋ(t) = Ak cos (X) cosh (Y ) − ωY − f

Ẏ (t) = Ak sin (X) sinh (Y )
(4.4)

Recall that the obtained wave is a perturbation of amplitude size, and thus the
constant A (which includes a) should always be considered very small in relation
to ω and f . Changing sign of A corresponds to the mapping X .→ X + π, so
we might as well consider A > 0. Since we now study only right-going waves for
which c > 0, when the vorticity is positive, A too will be positive by (4.2). For
large enough negative vorticity, −ω > c/h, the original A is however negative,
meaning that the phase portrait will be translated by π in the horizontal direction.
This is important for the following reason: the presumed surface

h + a cos(X)

attains its maximum at X = 0. Thus the crest for c + hω > 0 is at X = 0 in our
phase portraits, but at X = π for c + hω < 0.

4.1 The case of positive vorticity

Lemma 4.1. The phase portrait for the irrotational case is given by Figure 1, where
the physically realistic wave corresponds to the area of bounded trajectories.

Remark 4.2. The details of this are given in [11] and a similar investigation is pur-
sued in [6]. We therefore give only the main phase plane arguments for Figure 1.
Analytic details can be found in the just mentioned papers.
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Proof. Symmetry and periodicity of (4.4) allow for considering onlyΩ := [0,π]×
[0,∞). In this region the 0-isocline, Ẏ = 0, is given by the boundary ∂Ω, i.e.
X = 0, X = π, and Y = 0. Within Ω holds Ẏ > 0. The ∞-isocline, Ẋ = 0,
is the graph of a smooth and convex function

γ(X) = cosh−1

(
f

Ak cos X

)
, X ∈ [0,π/2),

with γ(X) → ∞ asX ↗ π/2. Here and elsewhere in this paper cosh−1 denotes
the positive branch of the preimage of cosh. We have

Ẋ(X,Y ) > 0 exactly when Y > γ(X),

whence Ẋ < 0 for X ∈ [π/2,π] as well as below γ(X).
The only critical point is thus given by P :=

(
0, cosh−1(f/Ak)

)
. Any

trajectory intersecting X = 0 below P can be followed backwards in time below
γ(X) until it reaches X = π. For any trajectory intersecting γ(X) the same
argument holds. Hence there exists a separatrix separating those two different
types of trajectories, and connecting X = π with P .

Any trajectory intersecting X = 0 above P can be followed forward in time
above γ(X), and is thus unbounded. Any trajectory intersecting γ(X) can in the
same way be followed forward in time above γ(X) and is likewise unbounded.
There thus exists a second separatrix, unbounded as well, going out from P above
γ(X) and separating the trajectories intersecting X = 0 from those intersecting
γ(X). By mirror symmetry around X = 0 the critical point P must be a saddle
point, and the phase portrait is complete. The last proposition of Lemma 4.1 is
the only reasonable physical interpretation.

Theorem 4.3. For positive vorticity, ω > 0, the qualitative properties of the phase
portrait are the same as for the irrotational case, ω = 0.

Proof. The proof is based on what we call the comparison principle, i.e. by com-
paring the phase portrait for ω > 0 with that for ω = 0. Now, changing ω does
not affect the 0-isoclines. The change of Ẋ induced by adding the term ωY is

Ẋω>0 < Ẋω=0, (4.5)

at any fixed point in the phase plane with Y > 0 (where the subscripts denote
the two different phase-portraits). Hence the velocity field is conserved wherever

31



Paper II

Ẋ < 0 in the portrait for ω = 0, and we need only check what happens with the
∞-isocline (which encloses all the points where Ẋ > 0).

For any fixed X ∈ (−π/2,π/2) and ω ≥ 0, the function

ϕ(Y ) := Ak cos X cosh Y − ωY − f, Y > 0, (4.6)

is convex, satisfying ϕ(0) < 0 and ϕ(Y ) → ∞ as Y → ∞, whence it has a
exactly one zero in (0,∞). It is moreover decreasing in ω, so that if ω increases
the solution Y of ϕ(Y ) = 0 increases. This means that the∞-isocline for ω > 0
remains practically the same as in the irrotational case: it is a convex graph lying
above the one for ω = 0. Just as before there is no∞-isocline for X ∈ (π/2,π),
since there ϕ(Y ) < 0.

!0 2!

Figure 1. The phase portrait for positive and zero vorticity.

4.2 The case of negative vorticity

Theorem 4.4. For negative vorticity and small amplitude, a << 1, the qualitative
properties of the phase portrait are given by Figure 2. For hω > −c the crest is at
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X = 0, while for hω < −c the crest is at X = π. In particular, the steady wave for
hω < −c contains from bottom and up: an internal wave propagating leftwards, a
vortex enclosed by two critical layers, and a surface wave propagating rightwards.

Remark 4.5. In all essential parts this resembles the Kelvin–Stuart cat’s-eye flow,
which is a particular steady solution of the two-dimensional Euler equations [30,
Ex 2.4]. It arises when studying strong shear layers (which in our case means large
constant negative vorticity).

2!0 !

Figure 2. The phase portrait for negative vorticity.

In order to handle this we need to investigate the ∞-isocline for ω > 0.
Recall that A = A(a) depends linearly on the amplitude (see (4.2)).

Lemma 4.6. For negative vorticity ω < 0, if the amplitude, a > 0, is small enough
so that

ω

α
sinh−1

(ω
α

)
−

√
1 +

(ω
α

)2
−

f

α
(4.7)
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is positive for α := Ak, then the ∞-isocline of (4.4) for X ∈ [0,π] consists of two
disjoint parts:

i) the graph of an increasing function Y1(X) defined for X ∈ [0,π], and

ii) the graph of a decreasing function Y2(X) defined in (π/2,π].

We have Y1(X) < Y2(X) → ∞ as X ↘ π/2, and for any δ > 0 there exist
Y ∗ > 0 and a possible smaller a such that the slope satisfies

0 <
∂Y

∂X
<
δ

π
in R := [0,π] × [Y ∗, Y ∗ + δ].

Proof. Just as before ϕ(Y ) as in (4.6) is convex for X ∈ (−π/2,π/2) with
ϕ(0) < 0. However, as

X → π/2, we now have Y → −f/ω,

along the∞-isocline {(X,Y ) : ϕ(Y ) = 0}. According to the Implicit Function
Theorem [25, Theorem I.1.1] the curve can be continued across this point into
X ∈ (π/2,π]. There cos X < 0, and consequently ϕ(Y ) is now concave with
ϕ(0) < 0, ϕ̇(0) > 0, and ϕ(Y ) → −∞ as Y → ∞. The function ϕ(Y ) attains
its global maximum when

Y = sinh−1
( ω

Ak cosX

)
> 0, X ∈ (π/2,π].

Substituting this expression into (4.6), and dividing by −Ak cos X > 0 yields
(4.7), for α := −Ak cos X. Thus the equation ϕ(Y ) = 0 has none, one, or two
solutions according as (4.7) is negative, vanishing, or positive, for that α.

It is easy to see that ifα > 0 is small enough this expression is positive, while it
becomes negative for large α. In view of that α vanishes as X ↘ π/2, we see that
at X = π/2 a new branch of the ∞-isocline appears from Y = +∞. Keeping
in mind that ϕ(Y ) is concave for X ∈ (π/2,π), where cos X is decreasing, it
follows that the upper branch of ϕ(Y ;X) = 0 is decreasing as a parameterization
Y (X), while the lower branch is increasing in the same manner.

Depending on the relation between A, ω, and f , it may be that the two
branches both reach X = π separately, that they unite exactly there, or that they
unite for some X < π, where they cease to exist. However, if A is small enough
in relation to |ω| and f , (4.7) guarantees that both branches of the ∞-isocline
exist as individual curves throughout X ∈ (π/2,π].
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For the final assertion, remember that the slope is given by

∂Y

∂X
=

Ak sin X sinhY

Ak cosX cosh Y − ωY − f
. (4.8)

Fix Y ∗ with −ωY ∗ > (1 + f + δ). Since A → 0 as a → 0 there exists a0 such
that for any a < a0 the inequality Ak cosh(Y ∗ + δ) < δ/π holds. In view of
that sinh ξ < cosh ξ this proves the lemma.

We are now ready to give the proof of Theorem 4.4.

Proof. By periodicity and horizontal mirror symmetry it is enough to consider
Ω := [0,π] × [0,∞) (remember that Y = 0 is the bed). The first critical point
is

P0 := (0, Y0), where Ak cosh Y0 − ωY0 − f = 0;

while the second and third critical points are

P1 := (π, Y1) and P2 := (π, Y2),

where Y1 and Y2 are, in order of appearance, the smallest and largest solutions of

Ak cosh Y + ωY + f = 0.

In Ω holds Ẏ > 0, while the sign of Ẋ is negative below Y1(X) and above
Y2(X); elsewhere inΩ the sign of Ẋ is positive (except for the∞-isoclines Y1(X)
and Y2(X)). This follows from Lemma 4.6, and can be confirmed by considering
∂Y Ẋ for a fixed X.

The system (4.4) admits a Hamiltonian,

H(X,Y ) := Ak cos X sinhY −
1

2
ωY 2 − fY, (4.9)

with

Ẋ = ∂Y H,

Ẏ = −∂XH,

for which the trajectories of (4.4) are level curves. To determine the nature of the
critical points we study the Hessian,

D2H = −Ak




cos X sinhY sin X cosh Y

sin X cosh Y − cos X sinhY +
ω

Ak



 .
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At P0, where X = 0, we immediately get that there exist one positive and one
negative eigenvalue, whence the Morse lemma [31] guarantees that P0 is a saddle
point. Insertion of P2 = (π, Y2(π)) yields

D2H(P2) = Ak




sinhY2(π) 0

0 − sinhY2(π) −
ω

Ak



 . (4.10)

Now remember that P2 is the point where the function ϕ(Y ), for X = π, attains
its second zero. This happens when the derivative ϕ′(Y ) = −Ak sinhY − ω <
0, and consequently also P2 is a saddle point.

That P1 is a centre can be seen in the following way: D2H(P1) differs from
(4.10) only in that Y2(π) is substituted for Y1(π). Since P1 is the point of the first
zero of ϕ(Y ) for X = π, it follows that there ϕ′(Y ) = −Ak sinhY − ω > 0,
whence the Hessian is a diagonal positive definite matrix. According to the Morse
lemma there exists a chart (x, y) : R2 → R2 such that

H(X,Y ) = H(P1) + x2(X,Y ) + y2(X,Y )

in a neighbourhood of P1. (An alternative and efficient way is a phase-portrait
argument using the symmetry, which ensures that any trajectory that intersects
X = π twice is closed.)

P0 being a saddle point, there is a separatrix γ−1 —i.e. a trajectory separating
two qualitatively different trajectory behaviours1—which can be followed back-
wards in time from P0 below Y1(X), and a separatrix γ+

2 which can be followed
forward in time from P0 above Y1(X). By the direction of the velocity field, γ−1
connects P0 with X = π below P1.

In the same manner there are separatrices γ−3 and γ+
4 leaving the saddle point

P2, and since γ+
4 lies above Y2(X) it is unbounded and encloses a family of

unbounded trajectories starting from X = π above P2. The separatrix γ
−
3 can be

followed backward from P2 below Y2(X).
Now, according to the last part of Lemma 4.6, there is a family of trajectories,

{F}, starting from X = 0 above P0 and reaching X = π in finite time in
between P1 and P2. Following γ−3 we therefore must intersect X = 0 above

1The use of the word separatrix is somewhat ambiguous. In our case, however, the geometrical
definition corresponds to the analytic notion of the stable and unstable manifolds which are defined
by H(X,Y ) = H(Pi), i ∈ {0, 2}, and whose existence follow from the Implicit Function
Theorem [25, Theorem I.1.1].
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{F}. In general, starting from Y2(X), following any trajectory backwards, we
find that it must intersect X = 0 above {F}. Since Ẋ|Y2(X) = 0, the same
trajectory starting from Y2(X) is contained above Y2(X) and is unbounded.
The family {F} also guarantees that γ+

2 connects P0 with X = π above P1, but
below P2. The phase portrait is thus complete.

2!0 ! 2!0 !

Figure 3. The bifurcation of the phase portrait.

Remark 4.7. In case (4.7) does not hold to be positive one might still pursue the
analysis, finding a fluid region where the situation is the same as for positive and
vanishing vorticity. Above the surface the situation is, however, radically differ-
ent and, for fixed amplitude and other parameters, indicates a transition between
negative and positive vorticity. In particular, there exists an ω < 0 for which
a bifurcation takes place: a second critical point appears, and as ω decreases it
immediately gives birth to a third critical point. Since our linearized model pre-
supposes that the amplitude is small, we do not investigate this transition further.
Some of the main features are given, without proof, in Figure 3.

5 The physical particle paths

In this section we shall investigate how from the behaviour of the trajectories
(X(t), Y (t)) we might infer the motion of the physical particles (x(t), y(t)).
Remember that the relation between those two pairs are given by (4.3).

Before moving on we recall from [6, 11] that in the case of irrotational linear
waves, the particles were found to move in almost closed orbits, with a slight but
positive forward drift. This is in line with the classical Stokes drift [35] according
to which there is a forward mass drift. It is also consistent with results for the
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exact equations [5, 19], showing that within regular Stokes waves—which are
irrotational—no orbits are closed.

We emphasize that the appearance of vorticity radically changes the picture. In
particular, it will be shown that both when the vorticity is negative and satisfies
c+hω < 0, and in the case of large positive vorticity, there does not exist a single
pattern for all the fluid particles. Rather, different layers of the fluid behave in
qualitatively different ways, with some layers moving constantly in one direction.
For the same reason, it is hard to formulate any transparent results other than
Theorem 5.3, stating that for small amplitude waves on a current of large positive
vorticity there are indeed closed orbits; and Theorem 5.5 which asserts that for
negative vorticity all fluid particles display a forward drift. Figure 4 however
shows the main features for negative vorticity, as well as a possible situation when
the vorticity is positive and very large.

Lemma 5.1. Particles near the flat bed display a forward (rightward) drift.

Proof. Consider the time τ that it takes for a particle (X(t), 0), with X(0) = π,
to reach X(τ) = −π. We have

τ =

∫ −π

π

dt(X)

dX
dX =

∫ π

−π

dX

f − Ak cos X

=

∫ π/2

−π/2

(
1

f − Ak cos X
+

1

f + Ak cosX

)
dX

= 2f

∫ π/2

−π/2

dX

f2 − (Ak cos X)2
>

2π

f
.

We assert that this holds also near the bed: for any fixed X we may differen-
tiate Ẋ(X,Y ) with respect to Y , obtaining

∂Y Ẋ = Ak cos X sinhY − ω.

By continuity, there exists δ(ε) > 0 such that |Ẋ(X,Y )− Ẋ(X, 0)| < ε when-
ever 0 < Y < δ, uniformly for X ∈ R. If we thus consider τ for a trajectory
intersecting X = 0 at level Y ∈ (0, δ), we may choose ε arbitrarily small to
obtain that τ > 2π/f .

Now a closed physical trajectory implies y(T ) = y(0) for some T > 0 so
that Y (T ) = Y (0) in view of (4.3). It follows from the phase portraits that for
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trajectories close enough to the bed, this forces

X(T )−X(0) = −2πn, meaning 0 = x(T )−x(0) = fT −2πn, (5.1)

for some n ∈ N. By periodicity, T/n = τ is the time it takes the trajectory X(t)
to pass from X = π to X = −π (which any trajectory near the bottom does).
From (5.1) we infer that τ = 2π/f .

Remark 5.2. We also see from this reasoning that if τ > 2π/f , then the particle
will be to right of its original position, and contrariwise.

5.1 The case of positive vorticity

Theorem 5.3. If the vorticity ω > 0 is large enough, and the amplitude small
enough, then there are particles moving constantly forward, as well as particles moving
constantly backward. In particular, there are closed orbits.

Proof. By Lemma 5.1 the particles nearby the flat bed y = 0 display a slight
forward drift. In principle, they behave as in the irrotational case (see [6, 11]).

By continuity Ẋ(X,Y ) can be made arbitrarily small, uniformly for all
(X,Y ), close enough to the critical point P0. Thus for the trajectories near
P0 the time τ as in Lemma 5.1 can be made arbitrarily large, and hence there is a
forward drift ẋ > 0 for the corresponding physical particles.

In between those two layers something different might happen. Fix Y ∗, δ >
0, and choose 0 < a 2 1 small enough such that

Ak cosh(Y ∗ + δ) < δ.

Then choose ω 3 1 such that ωY ∗ − δ > π, and such that the solution Y0 of
Ak cosh Y0 − ωY0 − f = 0 satisfies Y0 > Y ∗ + δ (cf. (4.6) and the paragraph
following it). Then the slope given by (4.8) satisfies

|∂Y/∂X| < δ/π,

so that the trajectory for which Y (0) = Y ∗ + δ remains in [Y ∗, Y ∗ + δ] where
Ẋ < −π − f . Hence

ẋ(t) < 0,

for all t for the physical particle and there is a constant backward drift. Since the
physical surface is given by Y = k(h + a cos X) we can adjust our choices so
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that Y ∗ + δ < k(h− a) guarantees that the orbits we consider are indeed within
the fluid domain.

Using continuity once more we find that for large positive vorticity and small
amplitude, there do exist closed physical orbits.

Remark 5.4. Since the physical crest might lie below the critical point P0 we can
only be sure that there is at least one (infinitesimally thin) layer of closed orbits.
However, this appears to happen only for small a and large ω, and even so it
does not have to affect more than one single trajectory in the (X,Y )-plane. The
particle paths are depicted to the left in Figure 4.

5.2 The case of negative vorticity

In the case of irrotational linear waves, it was found in [6, 11] that all fluid parti-
cles display a forward drift. This is confirmed for negative vorticity, and the proof
of Theorem 5.5 also shows the situation in the three different layers of the fluid.
A schematic picture of this can be found to the right in Figure 4. Recall that, for
c + hω > 0, all of the fluid domain lies beneath the lowest separatrix, so that
the situation is the same as for zero vorticity. For c + hω < 0 the fluid domain
stretches above the vortex so that the picture is quite different from irrotational
waves.

Theorem 5.5. For negative vorticity, all the fluid particles have a forward drift.

Proof. For reference, consider Figure 2. We treat separately

i) the interior wave (beneath the lowest separatrix),

ii) the vortex (between the first and second separatrices from bottom and up),
and

iii) the surface wave (between the second and third separatrices from bottom
and up).

i) Any trajectory (X(t), Y (t)) in this region passes X = kπ, k ∈ Z. We
may thus consider τ :=

∫ −π
π

dt
dX dX as in Lemma 5.1, τ being the time it takes

for the particle to travel from X(0) = π to X(τ) = −π. Again, for any fixed X,

∂Y Ẋ = Ak cosX sinhY − ω > −ω − Ak sinhY = ϕ′(Y )
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with the notation of (4.6). Since ϕ′ has its only zero at the level of P1, it follows
that ∂Y Ẋ > 0 in the interior wave. Since Ẋ < 0 at Y = 0, we deduce that

τ =

∫ π

−π

dX

−Ẋ
>

∫ π

−π

dX

−Ẋ|Y =0
>

2π

f
,

so that, according to Remark 5.2, the physical particle path describes a forward
motion.

ii) Any trajectory (X(t), Y (t)) within the vortex is bounded and passes
X(0) = π, whence

x(t) = x(0) +
ft + B(t)

k
, where |B(t)| ≤ π.

In particular, at P1 we have Ẋ = 0, so that the physical particle moves straight
forward according to x(t) = (π + ft)/k, for all t > 0.

iii) We need only observe that whenever Ẋ is positive so is ẋ = (Ẋ + f)/k,
whence all trajectories above the 0-isocline connecting P0 and P1 correspond to
fluid particles moving constantly forward.

!X(0) =!

S S

S

S

CC

C

X(0) =
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Figure 4. To the left the physical particle paths for small-amplitude waves with large

positive vorticity is depicted. The arrows describe what happens to some typical particles

in time, while the axis marked S correspond to the separatrix of Figure 1, and the C

is the critical point in the same figure. Note that depending on the amplitude and the

vorticity, the surface of the physical wave need not correspond to the uppermost arrow.

Theorem 5.3 however guarantees that for large enough vorticity and small enough am-

plitude the surface lies strictly above the closed particle path (the first circle from bottom

and up), so that there are particles with a mean backward drift as well as the opposite. To

the right we see the particle paths when the vorticity is negative such that c + hω < 0.

This corresponds to Figure 2 with the same notation as above. Near the bottom we have

a mean forward drift with nearly closed ellipses, but within the vortex of Figure 2 we see

a drastic change of behaviour with a constant forward drift. This is retained even above

the separatrix separating the vortex from the surface wave.

6 Summary and discussion

We have deduced and investigated the closed solutions of linear gravity water
waves on a linearly sheared current (constant vorticity). Such linear waves satisfy
the exact governing equations with an error of magnitude a2, where a is the am-
plitude of the wave. The main purpose has been to understand how the presence
of vorticity influences the particle paths. While in the irrotational case all the
particles describe nearly closed ellipses with a slight forward drift, we have found
that vorticity might change the picture. For positive vorticity the situation is very
much the same as in the irrotational case, but for large enough vorticity and small
enough waves, there are closed orbits within the fluid domain. For negative vor-
ticity exceeding the wave speed sufficiently much all the particles describe a mean
forward drift, but the nearly closed ellipses can be found only in an interior wave
near the flat bed.

It seems that all waves of constant vorticity are qualitatively (though not quan-
titatively) the same, unless we accept the speed of individual particle to exceed the
speed of the wave. Then appears waves with interior vortices. So far there is no
corresponding exact theory of such rotational waves, since all work has focused
on regular waves not near breaking and without stagnation points.

When discussing particle paths it is important to remember that the question
of closed orbits is valid in relation to some reference speed. For irrotational waves
Stokes required that the average horizontal velocity should vanish. For waves with
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vorticity we propose that the same requirement at the bottom is the most sensible
counterpart of Stokes’ definition. This is supported by the fact that only for that
choice we recover the classical critical wave speed

√
gh.

While interesting in its own right, the investigation pursued here might have
further implications for the numerous and well-known model equations for wa-
ter waves, e.g. the Korteweg–deVries, Camassa–Holm, and Benjamin–Bona–
Mahony equations. They all describe the surface – or nearly so – of the wave.
Though reasonable for irrotational waves, findings on uniqueness for rotational
waves indicate the same as our investigation: beneath two identical surfaces there
might be considerable different fluid motions (see Figures 1 and 2). Apart from
the trivial case of a flat surface there are so far no known exact examples of this
possible phenomenon, but if true it might motivate a new understanding of in
what sense the established model equations model the fluid behaviour. Indeed
vorticity, even when constant, is a major determining factor of the fluid motion,
and it should as such be considered highly important in the study of water waves.
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On the streamlines and particle paths of

gravitational water waves

Abstract

We investigate steady symmetric gravity water waves on finite depth.
For non-positive vorticity it is shown that the particles display a mean for-
ward drift, and for a class of waves we prove that the size of this drift is
strictly increasing from bottom to surface. This includes the case of parti-
cles within irrotational waves. We also provide detailed information con-
cerning the streamlines and the particle trajectories.

1 Introduction

This paper is concerned with the streamlines and the particle trajectories of steady
gravity water waves on finite depth. Such water waves are one of the most com-
mon wave formations at sea. As a result of dispersion, wind-generated gravity
waves eventually sort themselves out [22, 24]. Larger waves move faster than
smaller ones and swell is generated: approximately two-dimensional wave trains
of periodic and symmetric waves moving with constant speed across the sea. The
exact mathematical theory for such waves is well established, in particular for ir-
rotational flows [18, 31]. Those model very well the situation when the waves
propagate into a region of still water. There are however experimental evidence
that for some situations such a model is inadequate [29]. One example is tidal
flow, which is more correctly modelled by waves entering a rotational current of
constant vorticity [30]. Therefore the importance of water motion with a non-
vanishing curl—i.e. in the presence of vorticity—has recently come to draw a lot
of attention (see e.g. [8, 12, 21, 35]). For us it is of relevance that for arbitrary vor-
ticity distributions there exist symmetric waves [9], and that any wave for which
the surface profile is monotone from crest to trough necessarily is symmetric [6].

In a number of recent articles the exact behaviour of fluid particles within
such waves have been investigated [4, 5, 11, 15, 19, 20]. The background is the
following. For over a century it has been known that the very first approximation
of steady irrotational gravity water waves display closed elliptic particle trajectories
[28]. However, as was first noted in [11], a thorough study of the linearized
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system shows that the particle paths indeed have the shape of an oval, but are
not closed. This is so for other types of waves too, as has been shown in [5, 20].
Since the linearized problem can be solved explicitly, details of the particle paths
can be more easily studied. In particular, it can be seen that all particles traverse
oval orbits. When vorticity is present things are not as transparent, not even
for linear waves on a current of constant vorticity. For example, in [15] it is
shown that when the size of the vorticity is large, the particle paths of linear waves
need not all be oval; some particles may move constantly forward along with the
wave. Near the flat bed, though, the particles always behave like the classical first
approximation: they move slightly forward in non-closed oval shapes. As will be
discussed below this is all in relation to some reference speed, i.e. the generalized
Stokes condition (2.4).

For exact water waves the details are far more elusive since closed expressions
are not available. The investigations [4, 19] show, however, that even for exact
irrotational water waves the particles display a mean forward drift. The notion of
mean forward drift means that every new time a particle reaches its highest point
it has moved some distance along with the wave. The papers [4, 19] also assert
that for irrotational Stokes waves on finite, as well as on infinite, depth all particles
move in oval orbits. In this paper we show that the mean forward drift is preserved
for all negative vorticity distributions. For irrotational waves and small enough
rotational waves, we are able to show that this forward drift is strictly increasing
from bottom to surface. A proof of this for linear waves without vorticity was
given in [5]. In addition we establish some surprisingly nice properties of the
velocity field and the particle paths, in particular so for irrotational waves. We
have not been able to confirm the oval orbital shapes for rotational waves.

The novelty of our approach lies in the fact that we establish precise point-
wise information about the velocity field and its derivatives within the entire fluid
domain. In this way we extend the propositions in [4, 19], providing further un-
derstanding even for the irrotational case. The proof techniques rely heavily on
sharp maximum principles, for which we refer the reader to the excellent sources
[16, 26]. For steady rotational waves, to our knowledge this is the first investiga-
tion of its kind apart from [15]. Some of the results here obtained can be extended
to deep-water waves and solitary waves. However, it should be noted that there
are important differences between those types of waves. Notably, the investiga-
tion [7] shows that the particle trajectories within irrotational solitary waves differ
in fundamental ways from those in periodic waves; and in [13] it is proved that
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the class of vorticity distributions allowed for in deep-water waves is much more
restrictive than for finite depth.

The paper is organized as follows. Section 2 gives the mathematical back-
ground, and the main results are proved in Sections 3 and 4. A synthesis and an
analysis of the particle paths are given in Section 5, presented as two, hopefully
illustrative, examples.

2 Mathematical formulation

Let d > 0 be the depth below the mean water level, y = 0, so that the flat bottom
can be described by y = −d. The free surface can be represented by a function

η ∈ C3(R, R),

and we require that η(0) = maxx∈R{η(x)} be the vertical coordinate of the
crest, unique within a period. Naturallyminx∈R{η(x)} > −d, so that the trough
is above the flat bed, y = −d. We shall be concerned with the nontrivial case
when max η > min η. The wave is steady of period L > 0—without loss
of generality we may take L = 2π—and we require the surface profile to be
monotone between crests and troughs. It is therefore symmetric around the crest
[6], and we have that

η(x + 2π) = η(x), η(x) = η(−x), and η′(x) < 0 for x ∈ (0,π).

We let Ωη denote the fluid domain and define it as the interior of its boundary

∂Ωη := {y = −d} ∪{ (x, η(x))}x∈R.

A solution to the water-wave problem is then defined as a function ψ ∈ C2(Ωη),
such that






∆ψ = −γ(ψ), (x, y) ∈ Ωη,

|∇ψ|2 + 2gy = C, y = η(x),

ψ = 0, y = η(x),

ψ = −p0, y = −d,

(2.1)

that is even and 2π-periodic in the x-variable. In (2.1) p0 is called the relative
mass flux, the vorticity function γ : [0,−p0] → R is continuously differentiable,
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g > 0 is the gravitational constant, and C is a constant related to the energy.
The setting is that of gravitational water waves, meaning that the influence of
capillarity is neglected in (2.1), and the water is assumed to be inviscid. The
stream function ψ is defined (up to a constant) by

ψx = −v, ψy = u − c < 0,

where u and v are the horizontal and the vertical velocity, respectively, and c > 0
is the constant horizontal speed of propagation. The notion of relative mass flux
introduced in [9] captures the physical fact that the amount of water passing any
vertical line is constant throughout the fluid domain:

∫ η(x)

−d
(u(x, y) − c) dy = p0, x ∈ R,

holds since u− c = ψy , and ψ is constant on the surface y = η(x), as well as on
the bottom y = −d.

Provided that u − c = ψy < 0, the system (2.1) can be deduced from the
Euler equations (see e.g. [9, 34] for a more detailed discussion). This assumption
is supported by physical measurements [24]: for a wave not near breaking or
spilling, the speed of an individual fluid particle is far less than that of the wave
itself. For irrotational waves it is known, however, that there exist so called highest
waves for which the crest is a stagnation point (see e.g. [1]), i.e. ∇ψ = 0.
While the exact problem is still open for waves with vorticity [10, 32], there
are indications that for some classes of vorticity there do exist steady waves with
particle layers not satisfying ψy < 0 [15, 23]. In this paper we shall consider only
waves that are not near breaking or stagnation, so that ψy < 0 in Ωη.

A hodograph transform converts the free boundary problem (9) into a prob-
lem with a fixed boundary. Let us express the height,

h := y + d,

above the flat bed in terms of the new space variables

q := x, and p := −ψ. (2.2)

Notice that ψy < 0 so that (2.2) is a local change of variables, with

hq := −
ψx

ψy
=

v

u − c
, hp := −

1

ψy
=

1

c − u
.
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The above local coordinate transform is actually a global change of variables (see
[9]) so that we can transform the problem (2.1) into these variables to obtain

(
1 + h2

q

)
hpp − 2hphqhpq + h2

phqq + γ(−p)h3
p = 0, p ∈ (p0, 0),

1 + h2
q + (2gh − Q)h2

p = 0, p = 0,

h = 0, p = p0.
(2.3)

with h even and of period 2π in the q variable. This is an elliptic equation (since
hp > 0) with a nonlinear boundary condition. Instead of studying (2.1) in the
domain Ωη, which depends on η, we investigate (2.3) in the fixed rectangle R :=
(−π,π) × (p0, 0), looking for functions h ∈ C2(R) that are 2π-periodic in q.
Notice that knowing h(q, 0) is equivalent to knowing the free surface y = η(x),
as h(q, 0) = η(q) + d.

Let (x,σ(x)) denote the parameterization of a (general) streamline

{(x, y) : ψ(x, y) = −p}.

Notice that since ψy < 0, the above definition is sensible, and we have that

σ′(x) = −
ψx(x,σ(x))

ψy(x,σ(x))
= hq(q, p).

To normalize the reference frame Stokes made a now commonly accepted
proposal. In the setting of irrotational flow he required that the horizontal velocity
should have a vanishing mean over a period. Stokes’ definition of the wave speed
unfortunately cannot be directly translated to waves with vorticity, a consequence
of the fact that if div∇ψ )≡ 0, then ψy has different means at different depths
in view of the Divergence theorem. In the setting of periodic waves with vorticity
we propose the requirement

∫ π

−π
u(x,−d) dx = 0, (2.4)

a “Stokes’ condition” at the bottom. This is consistent with deep-water waves (cf.
[13]), and is also the choice made in [30] (In [25], however, the normalization
is done at the surface of the underlying flow). Calculations performed on linear
water waves with constant vorticity indicate that this is the natural choice, since
that and only that choice recovers the well-established bound

√
gh for the wave
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speed [15]. We emphasize that (2.4) is only a convention for fixing the reference
frame; except from the assertion of forward drift it does not change the results of
this paper. Without such a reference it is however meaningless to discuss whether
physical particle paths are closed or not.

3 Streamlines and the horizontal velocity

In this section we establish the main results for the steady reference frame.

Lemma 3.1.

i) Every streamline satisfies σ′ < 0 for x ∈ (0,π), and the maximal steepness of
the streamlines is a strictly monotone function of depth.

ii) For γ′ ≥ 0 and γ ≤ 0, the maximal horizontal velocity, maxx∈R

u(x,σ(x)), is strictly increasing from bottom to surface.

iii) The vertical velocity is strictly positive for x ∈ (0,π), and if γ′ ≤ 0, then
maxx∈R |v(x,σ(x))| is strictly increasing from bottom to surface.

Lemma 3.2 (The horizontal velocity).

i) If γ ≤ 0, then the horizontal velocity u is non-increasing from crest to trough,
i.e.

Dxu(x, η(x)) ≤ 0 for x ∈ (0,π). (3.1)

ii) If γ = 0 and |η′| ≤ 1/
√

3, then along any streamline (x,σ(x)) holds

Dxu(x,σ(x)) < 0 for x ∈ (0,π),

and the pointwise steepness of the streamlines is everywhere decreasing with
depth.

iii) If γ(0) ≥ 0 and γ′, γ′′ ≤ 0 then

∂xu(x, y) < 0 in (0,π)

for waves in a neighbourhood of the bifurcation point in [9].
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iv) If the horizontal velocity attains its maximum at the surface, then it does so
either at the crest, or at the concave part of the surface where

(c − u)γ ≤ g = −η′′(c − u)2.

Corollary 3.3.

If (3.1) holds, then for x ∈ (0,π) we have the uniform bound η′′ ≥ − g
C−2gη(0) ,

together with

η′(x) ≥ −
gx

C − 2gη(0)
, and η(x) ≥ η(0) −

gx2

2(C − 2gη(0))
.

Remark 3.4. Part iii) of Lemma 3.2 equivalently states that ∂yv > 0 within the
half-period (0,π). Note also that the equality of part iv) in Lemma 3.2, as well as
Corollary 3.3, is based solely on the surface conditions of 2.1, and hence unrelated
for example to periodicity, symmetry, and depth.

Proof of Lemma 3.1.

i) For details see [9, Eq. (5.18)]. The key idea is that hq is annihilated by
(
1 + h2

q

)
∂2

p − 2hphq∂p∂q + h2
p∂

2
q

+ 2hqhpp∂q +
[
3γ(−p)h2

p − 2hqhpq
]
∂p.

(3.2)

The second statement follows from applying the strong maximum principle
to subdomains (0,π) × (−d, p) of this half-period.

ii) Consider hp = 1/(c − u) > 0. Since hp belongs to the kernel of the
uniformly elliptic operator

(
1 + h2

q

)
∂2

p − 2hqhp∂p∂q + h2
p∂

2
q

− 2hphqp∂q + hp (2hqq + 3γhp) ∂p − γ′h2
p,

(3.3)

the strong maximum principle implies that maxu is never attained in the
interior of any C2-subdomain of the fluid. In view of that

uy = ψyy = −γ(−p0) ≥ 0

at the flat bed, it is a consequence of the Hopf boundary point lemma
that u does not attain its maximum on the bottom. The proposition then
follows by periodicity.
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iii) Since σ′ = −ψx/ψy and ψy < 0, the positivity of v is immediate from i).
Note also that v vanishes on the flat bed. Since v ∈ Ker{∆ + γ′(ψ)}, we
may apply the strong maximum principle to any subdomain

{(x, y) : 0 < x < π,−d < y < σ(x)}.

Symmetry then yields the assertion.

Proof of Lemma 3.2.

i) See [33, Thm 2.2]

ii) We first note that

∂qhp =

(
∂x

∂q
∂x +

∂y

∂q
∂y

)
1

c − u(x,σ(x))
=

Dxu(x,σ(x))

[c − u(x,σ(x))]2
.

It thus suffices to show that hqp < 0 everywhere in q ∈ (0,π). In view of
the above calculation, Lemma 3.2 i) shows that hqp ≤ 0 along the surface
for q ∈ [0,π]. At the bottom we have hqp < 0 for q ∈ (0,π). This follows
from Lemma 3.1 i) and the Hopf boundary point lemma: since σ′ = hq

vanishes on the flat bed, and hq satisfies the strong maximum principle ac-
cording to (3.2), it must have a negative derivative in the direction inwards
the fluid domain. Along the vertical sides, where q = 0 and q = π, sym-
metry implies that hqp = 0. On the boundary containing a half-period
we thus conclude that hqp ≤ 0. The aim now is to establish that the
strong maximum principle holds for hqp in q ∈ [0,π], according to which
hqp ≥ 0 at an interior point of the half-period would force hqp = const
everywhere.

We begin by differentiating (3.2) with respect to p. That gives

[ (
1 + h2

q

)
∂2

p − 2hqhp∂q∂p + h2
p∂

2
q − 2hphqp∂q

+
(
3γ(−p)h2

p − 2hqhqp
)
∂p

+ 2hpphqq + 6γ(−p)hphpp − 3γ′(−p)h2
p − 2h2

qp

]
hqp

= −2hphpphqqq − 2hqhqqhppp.

(3.4)
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Now, rewrite (3.2) and (3.3) as

hqqq =
1

h2
p

(
2hphq(hqp)q − 2hqhpphqq

− (1 + h2
q)(hqp)p − (3γ(−p)h2

p − 2hqhqp)(hqp)
)
,

and

hppp =
1

(1 + h2
q)

(
2hqhp(hqp)p − h2

p(hqp)q

+ 2hp(hqp)
2 − hp(2hqq + 3γ(−p)hp)hpp + γ′(−p)h3

p

)
.

To proceed, substitute those expressions into (3.4), to eliminate the third
order expressions hqqq and hppp. We consider then the result as an operator
acting on hqp, and deal with the coefficients one at a time.

First, let us leave the highest derivatives untouched in (3.4), i.e.
(
1 + h2

q

)
∂2

p−
2hqhp∂q∂p + h2

p∂
2
q . The terms involving ∂q are

(

4hqhpp − 2hqhqp −
2hqh2

phqq

1 + h2
q

)

∂q,

and those involving ∂p are

(

3γ(−p)h2
p − 2hqhqp +

4h2
qh

2
phqq

hp
(
1 + h2

q

) −
2hpp

(
1 + h2

q

)

hp

)

∂p.

Collecting the zero order terms we obtain

2hpphqqhqp + 6γhphpphqp − 3γ′h2
phqp − 2(hqp)

3

+
2hpp

hp

(
2hq(hqp)

2 − 2hqhpphqq − 3γh2
phqp

)

+
2hqhqq

1 + h2
q

(
2hp(hqp)

2 − 2hphqqhpp − 3γh2
phpp + γ′h3

p

)

=
1

hp
(
1 + h2

q

)
(

hp
(
1 + h2

q

) [
2
(
hpphqq − (hqp)

2
)
− 3γ′h2

p

]
hqp

+ 4hq
(
(hqp)

2 − hqqhpp
) [(

1 + h2
q

)
hpp + h2

phqq
]
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+ 2hqh
3
phqq

(
γ′hp − 3γhpp

))

=
1(

1 + h2
q

)
( (

1 + h2
q

) [
2
(
hpphqq − (hqp)

2
)
− 3γ′h2

p

]
hqp

+ 4hq
(
(hqp)

2 − hqqhpp
) [

2hqhqp − γh2
p

]

+ 2hqh
2
phqq

(
γ′hp − 3γhpp

))
,

where we have made repeated use of the elliptic equality in (2.3). Bringing
everything together, a last simplification yields the identity

[
(
1 + h2

q

)
∂2

p − 2hphq∂p∂q + h2
p∂

2
q

+

(

4hqhpp − 2hphqp −
2hqh2

phqq

1 + h2
q

)

∂q

+

(

3γh2
p − 2hqhqp +

4h2
qhqqhp

1 + h2
q

−
2hpp(1 + h2

q)

hp

)

∂p

+
1

1 + h2
q

(
2(hqqhpp − h2

qp)(1 − 3h2
q) − 3γ′h2

p

)]

hqp

=
2hqh2

p

1 + h2
q

(
γ(hqqhpp + 2h2

qp) − γ′hphqq
)
.

(3.5)

By multiplying the elliptic equation in (2.3) with hpp and then completing
the squares, we obtain for γ = 0 that

0 = (hqhpp − hphqp)
2 + h2

pp + h2
p(hqqhpp − h2

qp), (3.6)

which forces h2
qp ≥ hqqhpp everywhere in the fluid. Finally, Lemma 3.1 i)

and the assumption guarantees that h2
q ≤ 1/3 everywhere. This means that

the coefficient in front of hqp in (3.5) is non-positive, so that hqp satisfies
the strong maximum principle.

iii) We shall determine ψxy in a manner similar to that used in [14]. Since
ψ = 0 along the surface, we have ψx = −η′ψy , and insertion into the
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Bernoulli surface condition of (2.1) yields that

ψ2
y =

C − 2gη

1 + η′2
. (3.7)

By differentiation along the surface, (x, η(x)), it follows that

ψxy + η′ψyy = −∂x

√
(C − 2gη)/(1 + η′2). (3.8)

On the other hand, we may differentiate ψx = η′ψy once more along the
surface, obtaining

ψxx + η′2ψyy + 2η′ψxy + η′′ψy = 0. (3.9)

A third equality is supplied by

ψxx + ψyy = −γ(0). (3.10)

We now combine (3.8), (3.9), and (3.10) to isolate ψxy . The calculation—
cf. [14] for details—yields that at the surface ψxy can be determined as

ψxy = η′
(
1 + η′2

)−5/2
(C − 2gη)−1/2

(
2η′′(C − 2gη)

+
(
1 − η′4

)
g + γ(0)

√
C − 2gη

(
1 + η′

2
)3/2

)
.

(3.11)

Since C − 2gη, g, and γ(0) are all positive, and η′ < 0 in (0,π), we have
that for η′ and η′′ small enough, ψxy ≤ 0 at the surface. Moreover, ψxy =
0 for x = kπ, k ∈ Z, by symmetry. And on the bottom holds ψxy ≤ 0,
according to Lemma 3.1 iii) and the boundary condition ψx(x,−d) = 0.
Since ψxy obeys the maximum principle,

(
∆ + γ′

)
ψxy = −γ′′ψxψy ≥ 0,

a non-negative maximum thus cannot be attained in the interior of the
half-period 0 < x < π.

iv) According to (3.7), differentiation along the surface gives

Dxψ
2
y(x, η(x)) =

2η′
[
(2gη − C)η′′ − g

(
1 + η′2

)]

(
1 + η′2

)2 . (3.12)
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Thus a maximum of ψy along the surface implies that either η′ = 0 or

(2gη − C)η′′ = g(1 + η′2). The equality g = −η′′(c − u)2 is obtained
by substituting the second expression into the Bernoulli surface condition
of (2.1). To obtain the inequality, first note that if a maximum is attained
at the surface, then ψyy ≥ 0 at that point. Since (3.8), (3.9), and (3.10)
can be used to show that (cf. [14] for details)

ψyy =
(
1 + η′

2
)−5/2

(C − 2gη)−1/2
(
η′′(C − 2gη)

(
η′

2 − 1
)

+ 2gη′2
(
1 + η′2

)
− γ(0)

√
C − 2gη

(
1 + η′2

)3/2
)

,

(3.13)

we need only substitute (2gη − C)η′′ = g
(
1 + η′2

)
into that expression

to see that

0 ≤ ψyy

∣∣
η′′=

g(1+η′2)
(2gη−C)

=
g
√

1 + η′2 − γ(0)
√

C − 2gη
(
1 + η′2

)√
C − 2gη

. (3.14)

Proof of Corollary 3.3. Recall (3.12). It follows from the assumption that

2η′η′′

1 + η′2
≤

−2gη′

C − 2gη
, meaning

d

dx
log

(
1 + η′2

C − 2gη

)

≤ 0. (3.15)

This can be integrated to

1 + η′2

C − 2gη
≤

1

C − 2gη(0)
. (3.16)

Since η′ < 0 in (0,π), we may rearrange to obtain that

−η′
√

2g(η(0) − η(x))
≤

1
√

C − 2gη(0)
. (3.17)

The assertion concerning η is established by integrating (3.17). The bound on
η′ follows from employing the lower bound on η to (3.16). Finally, the uniform
bound on η′′ is immediate from combining the left-hand side of (3.15) with
(3.16).
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4 The forward drift

Theorem 4.1.

i) For γ ≤ 0 there are no closed particle trajectories. In particular, all fluid
particles display a mean forward drift.

ii) If γ = 0 with |η′| ≤ 1/
√

3, then the mean forward drift is strictly increasing
from bed to surface.

iii) If γ < 0 then for all waves in a neighbourhood of the bifurcation point found
in [9], the mean forward drift is strictly increasing from bed to surface.

Remark 4.2. In the proof of Theorem 4.1 i) we describe a relationship between
the closedness of paths and a certain time, called τ . That idea comes from [11].
It is crucial in all recent investigations concerning particle trajectories in periodic
water waves.

Lemma 4.3. For (x,σ(x)) a non-trivial streamline, and γ ≤ 0, the quantity
∫ π

0
|ψy(x,σ(x))|

(
1 + σ′2(x)

)
dx

is non-decreasing as a function of depth, and
∫ π

0
|ψy(x,σ(x))| dx < cπ. (4.1)

Proof of Lemma 4.3. For two streamlines (x,σ1(x)) and (x,σ2(x)) with σ1(x) <
σ2(x), let

Σ := {(x, y) : 0 < x < π, σ1(x) < y < σ2(x)} .

According to the Divergence theorem we have that

−
∫

Σ
γ dA =

∫

Σ
∇ ·∇ψ dA =

∫

σ1

∇ψ ·
∇ψ
|∇ψ|

ds −
∫

σ2

∇ψ ·
∇ψ
|∇ψ|

ds

=

∫ π

0

(
|∇ψ(x,σ1(x))|

√
1 + σ′1

2(x) − |∇ψ(x,σ2(x))|
√

1 + σ′2
2(x)

)
dx

=

∫ π

0

(
|ψy(x,σ1(x))|

(
1 + σ′1

2(x)
)
− |ψy(x,σ2(x))|

(
1 + σ′2

2(x)
))

dx.
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This implies that for any nontrivial streamline (x,σ(x)),

∫ π

0
|ψy(x,σ(x))|

(
1 + σ′2(x)

)
dx = cπ +

∫ π

0

∫ σ(x)

−d
γ dA,

in view of that
∫ π
0 ψy(x,−d) dx = −cπ by the normalization (2.4). The lemma

follows.

Proof of Theorem 4.1.

i) Let (X(t), Y(t)) be any physical trajectory, so that

(x(t), y(t)) = (X(t) − ct, Y(t))

is the corresponding path in the steady variables. We have that ẋ(t) =
u− c ≤ −δ < 0. Thus (x(t), y(t)) passes any x ∈ R, and there is no loss
of generality in choosing x(0) = π. We may also define τ through

x(τ) := −π.

Since

σ′ =
v

u − c
=

ẏ

ẋ
,

the streamlines describe the flow of the particles in the steady reference
frame. By symmetry we thus have y(τ) = y(0). It moreover follows from
Lemma 3.1 that y(0) is the lowest point of the trajectory, attained below
the trough, and in view of symmetry y(τ/2) is the highest, attained below
the crest. In between, ẏ(t) )= 0. Hence

y(T ) = y(0) implies that x(T ) − x(0) = 2πn,

for some n ∈ Z. In particular, n = −1 for T = τ .

Returning to the physical variables, this means that any new time a particle
(X(t), Y(t)) attains its lowest (or highest) position it has moved a distance
of

X(τ) − X(0) = cτ − 2π

in the horizontal direction. We infer that a physical particle trajectory is
closed if and only if τ = 2π/c. We also see from this reasoning that if τ >
2π/c, then the particle displays a mean forward drift, and contrariwise.
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The good thing is that τ can be evaluated:

τ/2 = t(0) − t(π) = −
∫ π

0

dt

dx
dx

= −
∫ π

0

dx

ẋ(x,σ(x))
=

∫ π

0

dx

c − u(x,σ(x))
=

∫ π

0

dx

|ψy(x,σ(x))|
.

According to Hölders inequality,

π2 =

(∫ π

0
dx

)2

≤
∫ π

0
|ψy(x,σ(x))| dx

×
∫ π

0

dx

|ψy(x,σ(x))|
≤ cπ

∫ π

0

dx

|ψy(x,σ(x))|
,

so that τ ≥ 2π
c . Notice that Lemma 4.3 guarantees that there is strict

inequality above the flat bed. So the only way we could have equality is if
there is equality in Hölder on the flat bed, implying ψy(x,−d) = −1. But
if ψy is constant at the bottom, then so is hp, and hence

hqp(q, p0) = 0.

On the other hand, hq satisfies the strong maximum principle (cf. (3.2)).
And since hq = σ′, it is strictly negative within the half-period (0,π) (cf.
Lemma 3.1), and it vanishes at the flat bed. The Hopf boundary point
lemma then forces

hqp(q, p0) < 0, for 0 < q < π.

Thus the Hölder inequality must be strict, and we conclude that

τ >
2π

c
.

ii) For two streamlines (x,σ1(x)) and (x,σ2(x)) with σ1(x) < σ2(x) we are
interested in the difference

∫ π

0

(
1

|ψy(x,σ2(x))|
−

1

|ψy(x,σ1(x))|

)
dx,
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the positivity of which we want to prove. Let p1 and p2 correspond to σ1

and σ2, respectively. Then we need to prove exactly that
∫ π

0
(hp(q, p2) − hp(q, p1)) dq =

∫

Σ
hpp dq dp > 0,

for Σ := (0,π) × (p1, p2). As follows from (2.3),

hpp =
2hqhphqp

1 + h2
q

−
hqqh2

p

1 + h2
q
.

Recall that σ′ = hq so that, according to Lemma 3.1 i), we have hq < 0
in Σ. Furthermore, as explained in its proof, Lemma 3.2 ii) asserts that
hqp < 0 in Σ. In view of that hp > 0, we see that the first term is positive
everywhere in Σ. As for the second, integration by parts in the q-variable
yields that

−
∫

Σ

hqqh2
p

1 + h2
q

dq dp = 2

∫

Σ
arctan(hq)hphqp dq dp,

since hq vanishes on the vertical sides, q = 0 and q = π. Summing up, it
follows from the oddness of arctan that

∫

Σ
hpp dq dp > 0.

iii) Consider the quotient
(∫ π

0

dx

|ψy(x,σ2(x))|
−

∫ π

0

dx

|ψy(x,σ1(x))|

)/
(σ2(x) − σ1(x)) ,

the sign of which determines the change of τ and thus of the mean drift.
The Lebesgue dominated convergence theorem can be applied to consider
the limit σ2 → σ1, being

d

dσ

∫ π

0

dx

|ψy(x,σ(x))|
:=

∫ π

0

ψyy(x,σ(x)) dx

ψ2
y(x,σ(x))

. (4.2)

Since ψyy = −γ > 0 at the bifurcation point, it follows by continuity that
the expression in (4.2) is positive in a neighbourhood of the trivial flow
from which the nontrivial waves bifurcate.

64



On streamlines and particle paths

Figure 1: The streamlines and the velocity field for irrotational gravity waves of
small amplitude. The steepness of the streamlines and the vertical velocity is
pointwise increasing from bottom to surface. The horizontal velocity is every-
where decreasing along the streamlines, and it is increasing from bottom and up
beneath the crest, whilst decreasing beneath the trough.

5 The particle trajectories

We are now ready to discuss what our results mean for the streamlines and particle
trajectories. We shall do so with the aid of two examples.

5.1 Irrotational waves

Irrotational waves display extraordinary regular features (see Figure 1). From bot-
tom and up the angles between the streamlines and the horizontal plane are point-
wise increasing, and for small enough waves this is true also for the vertical veloc-
ity. So is the maximal horizontal velocity, which for every streamline is attained
below the crest, wherefrom it strictly decreases towards the trough. The surface is
bounded below by a concave parabola, the curvature of which is determined by
gravity and the maximal horizontal velocity.

In the language of particle paths, every particle traverses a non-closed oval or-
bit as the wave passes above. This forward drift is strictly increasing from bottom
to surface. As the wave propagates above, the particle moves upwards starting
from the time a trough passes until the next crest passes (see Figure 2). At the
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Figure 2: Left: For irrotational waves and small waves of negative vorticity the
forward drift is strictly increasing from bottom to surface. Centre: To an observer
standing still as the waves passes the particles in irrotational waves traverse non-
closed oval orbits, corresponding to what an observer travelling along with the
wave understands as a streamline. Not only the forward drift, but also the ver-
tical size of these orbits is increasing from bottom to surface, and the horizontal
velocity of each particle is strictly increasing from the bottom of the orbit to its
top.

top of its orbit the particle attains its maximal horizontal velocity. The movement
then continues in a symmetric way, and the particle begins its descent with the
horizontal speed strictly decreasing until it reaches its minimal value as the next
trough passes.

5.2 Waves of negative vorticity

Some of the above features persist for waves of negative vorticity. The maximal
steepness of the streamlines is strictly increasing from bed to surface, but we lack a
proof of this property holding along any vertical line. At the surface the horizontal
velocity is non-increasing from crest to trough, and so is it at the bottom; in
between we do not know.

The surface is bounded below by the same parabola as are irrotational waves.
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The fluid particles show a mean forward drift. The forward drift is always strictly
increasing from bed to surface in some neighbourhood of the bifurcation point
from laminar flows (cf. [9]). We have not been able to verify the oval shape of the
trajectories throughout the fluid since there is no general control of the horizontal
velocity in the interior of the fluid. At present the possibility of particles moving
constantly forward cannot be ruled out.

Remark 5.1. We remark that for water of infinite depth there is an explicit solution
due to Gerstner [17], and re-discovered by Rankine [27]. For that solution, with
a particular non-zero vorticity, all paths are circular. We refer to the discussion in
[3]. There is also an extension to three-dimensional edge waves in [2].
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Travelling Waves for the Whitham Equation

Abstract

The existence of travelling waves for the original Whitham equation is
investigated. This equation combines a generic nonlinear quadratic term
with the exact linear dispersion relation of surface water waves on finite
depth. It is found that there exist small-amplitude periodic travelling waves
with sub-critical speeds. As the period of these travelling waves tends to
infinity, their velocities approach the limiting long-wave speed c0, and the
waves approach a solitary wave. It is also shown that there can be no solitary
waves with velocities much greater than c0. Finally, numerical approxima-
tions of some periodic travelling waves are presented.

1 Introduction

The study of waves on the surface of a fluid has been a source of intriguing math-
ematical problems for a long time. When studying such waves, viscosity is of-
ten neglected, so that the governing equations are the nonlinear Euler equations,
supplemented by a set of nonlinear boundary conditions at the unknown fluid
surface. This set of equations is commonly known as the water-wave problem.
Of special interest is the study of permanent progressive waves, such as solitary or
travelling periodic waves. These waves which are also called steady waves propa-
gate without changing their shape over time.

An early highlight in the study of such steady waves was the discovery by Ger-
stner [16] of a family of exact solutions of the two-dimensional Euler equations in
the form of periodic travelling waves. A special feature of this family of solutions
is that it includes surface profiles that are not smooth, but have a cusp [11, 9].
While Gerstner’s wave has non-zero vorticity, most studies of steady surface waves
have been pursued in the case when the flow is irrotational. Starting with the sem-
inal work of Stokes [30] in the mid 1800s, periodic wave trains on the surface of
a fluid have attracted a great deal of attention. Stokes made the conjecture that
the highest wave has a sharp crest [31], and a great deal of work has been directed
towards understanding this phenomenon, including the mathematical proof of
the fact that this highest wave exists. For an overview of results in this direction,
the reader may consult the surveys by Toland [33] and Groves [17], and the book
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by Okamoto and Shoji [25]. While Gerstner’s wave is an exact solution only for
infinite depth, Stokes waves have been shown to exist for any depth.

A different line of research was initiated by the discovery of the solitary wave
by John Scott Russell [28]. His observations and experiments gave an impetus
to finding a mathematical formulation capable of describing such waves. The
Korteweg-de Vries (KdV) equation

ηt + c0 ηx + 3
2

c0
h0
η ηx + 1

6c0h
2
0 ηxxx = 0 (1.1)

is a simplified model equation for waves at the water surface which includes the
essential effects of nonlinearity and dispersion [7, 22]. Balancing these two effects
is the basic mechanism behind the existence of both solitary-wave solutions and
periodic travelling waves. Equation (1.1) is given in dimensional form, and c0 :=√

gh0 is the limiting long-wave speed, h0 denotes the undisturbed water depth
(assuming a flat bottom), and g is the gravitational constant of acceleration. The
function η(t, x) describes the deflection of the fluid surface from the rest position
at a point x at time t. The equation is a valid approximation describing the
evolution of surface water waves in the case when the waves are long compared to
the undisturbed depth h0 of the fluid, and the average amplitude of the waves is
small when compared to h0 [18]. In addition, transverse effects are assumed to
be weak.

The success of the KdV equation in describing steady waves and the discovery
of its completely integrable Hamiltonian structure has led to an intense study of
this equation for the last four decades. The mathematical theory for the KdV
equation has reached a very advanced level, with a solid theory of well-posedness
in place, and a sound understanding of the stability properties of solitary and
travelling waves [1, 2, 4, 5, 20, 26]. However, as a model for water waves, the KdV
equation may not be the best choice for a number of reasons. Most importantly, it
has some shortcomings concerning the propagation of shorter waves. The linear
wave speed in the KdV equation is given by

c(ξ) = c0 − 1
6c0h

2
0ξ

2, (1.2)

where ξ = 2π
λ is the wave number, and λ is the wavelength. This is a second-order

approximation to the wave speed

c(ξ) = ω
ξ =

√
g tanh ξh0

ξ , (1.3)
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Figure 1: Comparison of linear wave speeds c = ω/ξ for the KdV and Whitham
equations. Here g = 9.81 and h0 = 1. The maximum of both graphs is at
c0 =

√
gh0.

of the linearized water-wave problem. The latter expression for c(ξ) appears when
the full water-wave problem is linearized around the vanishing (irrotational) so-
lution, and solutions of the form exp(ixξ − iωt) are sought [18, 35]. However,
as noted in [12, 13], the dispersion relation takes a different form in the pres-
ence of vorticity. A comparison of the two expressions (1.2) and (1.3) for c(ξ)
is presented in Figure 1. As can be seen, the linearized KdV equation does not
give a faithful representation of the full dispersion relation even for intermediate
values of the wave number ξ. This problem with the KdV equation as a model
for water waves was recognized early on, and has been remedied somewhat by the
introduction of the regularized long-wave equation

ηt + c0 ηx + 3
2

c0
h0
η ηx − 1

6h2
0 ηxxt = 0, (1.4)

by Peregrine [27] and Benjamin, Bona and Mahoney [3]. The linear wave speed
of (1.4) is given by

c(ξ) =
c0

1 + 1
6h2

0ξ
, (1.5)
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which is qualitatively closer to (1.3) than (1.2). A comprehensive review of these
modelling issues was given in [3].

Also recognizing the problems of the KdV equation as a model equation
for water waves, Whitham introduced what is now called the Whitham equa-
tion [34]. The idea was to use the exact form of the wave speed (1.3) instead
of a second-order approximation like (1.2) or (1.5). The equation proposed by
Whitham has the form

ηt + 3
2

c0
h0
η ηx + Kh0 ∗ ηx = 0, (1.6)

where the convolution is in the x-variable. The equation is written in dimensional
variables, with η(t, x) representing the deflection of the surface from rest, just as
in the KdV equation. The convolution kernel is given by

Kh0 := F−1

(√
g tanh h0ξ

ξ

)
, (1.7)

where F−1 is the inverse Fourier transform to be defined by (2.1) in Section 2.
Often, instead of the kernel Kh0 , the kernel

π
4 exp

(
−π

2 |x|
)

(1.8)

is used. This kernel matches the asymptotic behaviour of Kh0 [35], and has
certain mathematical advantages over (1.7), such as not having a singularity at the
origin. Moreover, this approximation gives rise to a differential equation, the so-
called Burgers-Poisson equation [14]. The properties of (1.8) were exploited by
Seliger [29], who showed that for this simplified kernel wave breaking is possible.

Even though there does not exist a formal asymptotic expansion or a rig-
orous proof of convergence of solutions of (1.6) to solutions of the water-wave
problem, the Whitham equation remains a source of intriguing problems. The
monograph by Naumkin and Shishmarev [24] is devoted entirely to equations
like (1.6). In particular, some questions of Whitham concerning breaking and
peaking of waves described by generalizations of (1.6) are answered. However,
the work of Naumkin and Shishmarev is mainly focused on problems of time
evolution. Steady solutions of the equation (1.6) with the kernel (1.8) were stud-
ied in [36]. However, for the original Whitham equation the literature is rather
sparse. The inherently non-local character of (1.6) makes things much more in-
tricate. In particular, it is still not known whether the proper Whitham equation
(with the kernel Kh0) admits a nontrivial solitary-wave solution.
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The present article is a study of steady waves for the non-local Whitham equa-
tion with its original kernel. In Section 3 we make use of the Crandall–Rabinowitz
local bifurcation theorem to prove the existence of small-amplitude periodic trav-
elling waves. A similar treatment was outlined by Gabov in [15], but for the exact
kernel (1.7) no proof was given. In Section 4 we prove a priori continuity and
compactness properties of bounded travelling-wave solutions. These properties
imply convergence of periodic solutions to solitary-wave solutions. Section 5 is
on non-existence. It is shown that for large velocities there can be no contin-
uous solitary-wave solutions of the steady Whitham equation. In Section 6 we
compute numerical approximations of both travelling and solitary waves. It is
worth mentioning that the Whitham equation has excited interest precisely for
the reason that it features wave breaking and peaking. This was indicated already
by Whitham [34], and investigated at length by Naumkin and Shishmarev in the
monograph [24]. According to this theory, there is a highest wave, which will
have a cusp at the centre. Some computations in this direction are carried out in
Section 6.

2 Preliminaries

In this article, the standard notation of mathematical analysis is used. For 1 ≤
p < ∞, the space Lp(Ω) is the set of measurable real-valued functions of a
real variable whose pth powers are Lebesgue integrable over a subset Ω ⊆ R. If
f ∈ Lp(Ω), its norm is given by ‖f‖p

Lp(Ω) :=
∫
Ω |f |P dx. The space L∞(Ω)

consists of all measurable, essentially bounded functions with norm ‖f‖L∞(Ω) :=
ess supx∈Ω |f(x)|. We define the Fourier transformF of a function f ∈ L1(R)
by

Ff(ξ) :=

∫ ∞

−∞
f(x) exp(−ixξ) dx,

and the inverse Fourier transform F−1 by

F−1f(x) :=
1

2π

∫ ∞

−∞
f̂(ξ) exp(ixξ) dξ, (2.1)

for any f̂ ∈ L1(R). We shall also use the notation f̂ := Ff . The Fourier
coefficients of 2L-periodic functions on R are defined by

f̂k :=

∫ L

−L
f(x) exp

(
−ixkπ

L

)
dx.
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We write

f(x) ∼
1

2L

∑

k∈Z

f̂k exp
(
ixkπ

L

)

to indicate that under certain conditions on f , this infinite trigonometric se-
ries converges to f pointwise, uniform, or in norm. For example, if f ∈
Lp((−L,L)), p > 1, then the Carleson–Hunt theorem [19] guarantees that
the series converges to f(x) almost everywhere. If in addition f(x) is an even
function, the series can be written as

f(x) ∼
1

2L
f̂0 +

1

L

∞∑

k=1

f̂k cos
(
ixkπ

L

)
=

1

L

∞∑

k=0

′

f̂k cos
(
ixkπ

L

)
,

where the prime indicates that the first term of the sum is multiplied by 1/2.
Next we turn to recording some elementary properties of the Whitham kernel,
Kh0 , and its Fourier transform. It is immediate that the function

√
g(tanh h0ξ)/ξ

is even and strictly decreasing on (0,∞). It is in fact real analytic since in a neigh-
bourhood of the origin

tanh ξ

ξ
=

∞∑

n=1

22n
(
22n − 1

)
B2nξ2(n−1)

(2n)!
> 0,

by using the Taylor series expansion for tanh (Bn are the Bernoulli numbers).
Moreover,

√
g(tanh h0ξ)/ξ takes the following limits:

lim
ξ→0

√
g tanh h0ξ

ξ =
√

gh0, lim
ξ→∞

√
g tanh h0ξ

ξ = 0.

Consequently,
∫ ∞
−∞ Kh0(x) dx =

√
gh0, and

‖Kh0‖L1(R) =
√

gh0

∥∥∥F−1
(√

tanh ξ
ξ

)∥∥∥
L1(R)

. (2.2)

Thus it can be shown that Kh0 ∈ L1(R) in the following way. The substi-
tution of variables y := xξ and partial integration shows that the growth of

F−1
(√

(tanh ξ)/ξ
)
is of order x−1/2 as x → 0 (for a rigorous proof of this

fact, cf. Section 4). Since the function
√

(tanh ξ)/ξ is analytic, the inverse
Fourier transform has rapid decay. Thus splitting the integral according to

‖Kh0‖L1(R) =

∫

|x|≤1
|Kh0(x)| dx +

∫

|x|≥1
|Kh0(x)| dx,
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it is plain that Kh0 has finite L1(R)-norm. In fact, this argument establishes
more generally that Kh0 ∈ Lp(R) for 1 ≤ p < 2.

Since the existence of travelling waves is in view, we make the usual ansatz
η(t, x) = φ(x − ct), with c > 0 being the propagation speed of a right-going
steady wave. Using this form, the equation (1.6) transforms into

−cφ′ + 3
2

c0
h0
φφ′ + Kh0 ∗ φ

′ = 0,

which may be integrated to

−cφ+ 3
4

c0
h0
φ2 + Kh0 ∗ φ = B, (2.3)

for some real constant B. For solutions φ ∈ L2(R), it appears that the convo-
lution Kh0 ∗ φ is in L2(R) since Kh0 is in L1(R). Therefore, the left-hand side
must vanish as |x| → ∞, and we shall consider here only the case when B = 0.
The scaling

φ .→ 3
4

c0
h0 cφ

then yields the normalized problem

φ = φ2 + 1
cKh0 ∗ φ. (2.4)

3 Existence of periodic travelling waves

Theorem 3.1. For a given L > 0 and a given depth h0 > 0, there exists a local bi-
furcation curve of steady, 2L-periodic, even and continuous solutions of the Whitham
equation. Those solutions are perturbations of C cos(πx/L), C ∈ R, and their
wave speed at the bifurcation point is determined by the full dispersion relation

c∗ =

√
gL tanh (h0π/L)

π
. (3.1)

In particular, as L → ∞ we have c∗ →
√

gh0.

We shall make use of the Crandall–Rabinowitz bifurcation theorem [21, Sec-
tion I.5], which we state in a form suitable for our purposes. Here and elsewhere
Dc is the Fréchet derivative with respect to c.
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Lemma 3.2. Let W be a Banach space, c ∈ I := (0,
√

gh0) a parameter, and let
L : W → W be the Fréchet derivative at 0 with respect to u of the Whitham map

u .→ u − 1
cKh0 ∗ u − u2. (3.2)

Suppose that L and Dc L exist and are continuous W → W , and that for some
c∗ ∈ I the following conditions hold:

i) dim ker(L) = 1,

ii) W = ker(L) ⊕ ran(L),

iii) (Dc L) ker(L) ∩ ran(L) = 0.

Then there exist some ε > 0, and a continuous bifurcation curve {(cs,φs) : |s| < ε}
with cs|s=0 = c∗, such that φ0 is the vanishing solution of (2.4), and {φs}s is a
family of nontrivial solutions with corresponding wave speeds {cs}s. Moreover, we
have

dist(φs, ker(L)) = o(s) in W.

Remark 3.3. We remark that our method works equally well for the generalized
Whitham equation

ηt + 3
2

c0
h0
ηp ηx + Kh0 ∗ ηx = 0,

whenever 1 ≤ p ∈ Z. In that case the Whitham map becomes u .→ u − 1
cKh0 ∗

u − up. Since the linearization around the vanishing solution is the same for this
map as for (3.2), all that is needed to check is the continuity of the full map in
W . As we shall see in the proof of Theorem 3.1, our choice of W is an algebra,
so that continuity is evident.

Remark 3.4. It can be seen from the proof of Theorem 3.1 that for wave speeds
c )=

√
gh0 and different from (3.1), the linear Whitham map L is a continuous

bijection W → W . It then follows from the implicit function theorem [21, Thm
I.1.1] that in a neighbourhood of the trivial flows, there are no other solutions in
W of the Whitham equation.

Before we turn to the proof, let us explain how the convolution operatorKh0∗
acts on periodic functions. Suppose then that f ∈ L∞(R) is periodic. Since Kh0
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is in L1(R), we can write the integral

∫ ∞

−∞
Kh0(x − y)f(y) dy =

∞∑

k=−∞

∫ L

−L
Kh0(x − y + 2kL)f(y) dy

=

∫ L

−L

( ∞∑

k=−∞

Kh0(x − y + 2kL)

)

f(y) dy =:

∫ L

−L
A(x − y)f(y) dy.

Inspection of the the definition of A(x) shows that it is 2L-periodic, even,
and continuous on [−L,L] \ {0}. Moreover, a straightforward proof using
Minkowski’s inequality shows that A(x) belongs to Lp(−L,L), for 1 ≤ p < 2.
Therefore, according to the Carleson–Hunt theorem [19], A(x) can be approxi-
mated pointwise by its Fourier series. Thus we have

A(x) =
∞∑

k=0

′

Âk cos
(

kπx
L

)
, a.e.,

where the Fourier coefficients of A are given by

Âk =

∫ L

−L

∞∑

j=−∞
Kh0(x + 2jL) exp

(
− ixkπ

L

)
dx

=
∞∑

j=−∞

∫ L

−L
Kh0(x + 2jL) exp

(
− i(x+2jL)kπ

L

)
dx

=

∫ ∞

−∞
Kh0(x) exp

(
− ixkπ

L

)
dx = K̂h0(

kπ
L ).

(3.3)

Thus it appears that the periodic problem is given by the same multiplier as the
problem on the line, and we have the representation

Kh0 ∗ f(x) =
1

L

∞∑

k=0

′

f̂kÂk cos
(

kπx
L

)
=

1

L

∞∑

k=0

′

f̂kK̂h0(
kπ
L ) cos

(
kπx
L

)
. (3.4)

Proof of Theorem 3.1. Looking for a steady solution we consider first the lin-
earized equation

Lψ := ψ − 1
cKh0∗ ψ = 0.

81



Paper IV

For ψ ∈ L∞(R) we see that

ψ̂
(
1 − 1

c

√
g tanh hξ

ξ

)
= 0.

This makes sense in the setting of distributions. Let S(R) denote the Schwartz

class of rapidly decreasing functions (see [32]). Then 1
c K̂h0∗ ψ, ψ̂ and ˆ1

cKh0 all

exist in S ′(R). Since 1−
√

g tanh(hξ)/ξ is in L∞(R)∩C∞(R), the product of

ψ̂ and this function is well-defined acting on functions in S(R). The convolution

theorem [32, Section 4.3] then implies that 1
c K̂h0∗ ψ(v) = 1

c (ψ̂K̂h0)(v) for any

v ∈ S(R). Now, if c <
√

gh0 the support of ψ̂ is contained in {±ξ0}, where
ξ0 := ξ0(c, h0) is the unique positive root of g tanhh0ξ = c2ξ; if c =

√
gh0

then supp (ψ̂) ⊂ {0}; and if c >
√

gh0 it follows that ψ̂(ξ) = 0 for all ξ. The
non-trivial solutions of the linear problem are thus given by

{
ψ(x) = C, c =

√
gh0,

ψ(x) = C cos(ξ0x), c <
√

gh0,
(3.5)

where C ∈ R can be any constant. Note that the constant solutions different
from zero are non-physical, and therefore discarded in this analysis. We want to
find even periodic small amplitude solutions by bifurcating from a curve of trivial
flows. For this purpose, fix the depth h0 and the half wavelength L > 0. The
speed c > 0 shall be our bifurcation parameter. It is clear from (3.5) that, in any
real linear space of 2L-periodic functions,

dimker(L) = 1,

if and only if ξ0 = kπ/L, k ∈ Z+. Settling for the lowest mode, k = 1, gives a
unique c as in (3.1), which from now on will be presupposed as our candidate for
c∗ as in Lemma 3.2.

Looking for even, continuous, and periodic solutions, we introduce the com-
muting Banach algebra

W :=

{

u(x) =
1

L

∞∑

k=0

′

ûk cos
(

kπx
L

)
∣∣∣∣ ‖u‖ :=

1

L

∞∑

k=0

′

|ûk| < ∞

}

,

which is a suitable subalgebra of the Wiener algebra (cf. [6]). This follows since
for even functions the complex Fourier coefficients satisfy ûk = û−k, so that
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our norm is equivalent to the classical norm for the Wiener algebra. Note that
each member of W is uniformly continuous on all of R. We shall consider the
Whitham equation as the map (3.2) from W , and it will be shown that it is a
continuous map into W . As shown in (3.4) the periodic problem is given by the
same multiplier as the problem on the line. In effect,

Lu ∼
1

L

∞∑

k=0

′

û(k)
(
1 − 1

c Â(k)
)

cos
(

kπx
L

)
(3.6)

holds a.e. on [−L,L]. By the Riemann-Lebesgue lemma [23, p.133] Â(k) → 0
as k → ∞, so the right-hand side is in W , hence continuous, and

‖Lu‖ ≤
(
1 + 1

c max
k

{Â(k)}
)
‖u‖,

so that L : W → W is continuous. Since also the left-hand side is continuous,
(3.6) is an equality, which in its turn implies that the full nonlinear Whithammap
u .→ Lu−u2 is a continuous endomorphism onW , since this is an algebra. The
fact that ker(L) = spanR (cos(πx/L)) yields

Â(1) = c, and Â(k) )= c, k )= 1. (3.7)

To show that codim ran(L) is one-dimensional, consider a given u ∈ W . Take

u⊥ ∈ W with û⊥(1) = 0. Then the function

v(x) :=
1

L

∞∑

k=0

′
cu⊥(k)

1−1
c Â(k)

cos
(

kπx
L

)

is well-defined and belongs to W (this can be seen from (3.3), but it also follows
from the Riemann-Lebesgue lemma in combination with (3.7)). Indeed

v(x) = L−1 u⊥(x).

Consequently,

u(x) = L v + û(1)
L cos

(
kπx
L

)
,

so that W = ker(L) ⊕ ran(L). The derivative with respect to the bifurcation
parameter c is

(Dc L)u = −(Dc
1
cKh0) ∗ u =

1

c2
Kh0 ∗ u.
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Hence—by exactly the same arguments as above—we have that

(Dc L)u =
1

Lc2

∞∑

k=0

′

û(k)Â(k) cos
(

kπx
L

)

is bounded as a map on W . In particular,

(Dc L) ker(L) = ker(L) ∩ ran(L) = 0.

4 Continuity and compactness of bounded solutions

We present here a regularity and a compactness result for travelling solutions of the
Whitham equation. This casts light on the relation between L-periodic solutions
and solitary wave solutions.

Theorem 4.1. Let φ be a solution of (2.4) such that ‖φ‖∞ < 1/2. Then φ is
continuous.

Proof. Without loss of generality we pursue the analysis for k(ξ) :=
√

tanh(ξ)/ξ.
In view of that Dξ tanh ξ = 1 − tanh2 ξ ∈ S(R), it follows from the Leibniz
rule that

Dn
ξ k(ξ) ∈ O

(
ξ−1/2−n

)
as |ξ| → ∞.

Hence we use partial integration to rewrite

K(x) :=
1

2π

∫
k(ξ) exp(ixξ) dξ =

1

(−ix)n

∫
k(n)(ξ) exp(ixξ) dξ,

for any x )= 0, n ∈ Z+. Consequently, we have well-defined derivatives of all
orders away from the origin,

Dj
x

∫
k(ξ) exp(ixξ) dξ ∈ O(xj−n) as |x| → ∞.

For any fixed j, we may choose n as large as required to obtain that K(x) is
smooth away from the origin, and all its derivatives have rapid decay at infinity.
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Consider then

K ∗ φ(x) = I1(x) + I2(x)

:=

∫

|x−z|≤1

K(x − z)φ(z) dz +

∫

|x−z|≥1

K(x − z)φ(z) dz.

Since |K(x−z)| ≤ C|x−z|−2 and φ is bounded, it follows from an application
of the dominated convergence theorem that I2(x) is continuous. By the change
of variables ξ .→ s := (x − z)ξ we have that

I1(x) =
1

2π

∫∫

|z−x|≤1

k(ξ) exp (i(x − z)ξ)φ(z) dξ dz

=
1

2π

∫

|z−x|≤1

x − z

|x − z|3/2

(∫ √
tanh (s|x − z|−1)

s
exp (is) ds

)

φ(z) dz.

Likewise, the inner integral can be divided into two parts,

∫ √
tanh sy

s
exp (is) ds = Ii(y) + Iii(y)

:=

∫

|s|≤1

√
tanh sy

s
exp (is) ds +

∫

|s|≥1

√
tanh sy

s
exp (is) ds,

where we have used the shorthand y := |x− z|−1. It is clear that | tanh sy| ≤ 1,
so that Ii(y) is well-defined. Its integrand is furthermore bounded by |s|−1/2,
uniformly for all y. Now to Iii. Using partial integration, we obtain that

∫

|s|≥1

√
tanh (sy)

s
exp (is) ds = −2 sin(1)

√
tanh(y)

+
1

2i

∫

|s|≥1

(
sy tanh2 (sy) − sy + tanh (sy)

)

s3/2
√

tanh (|s|y)
exp (is) ds

= −2 sin(1)
√

tanh(y) +
1

2i

∫

|s|≥1

f (sy)

s3/2
exp (is) ds,
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where f(τ) := (τ tanh2 τ − τ + tanh τ)/
√

| tanh τ |. It is immediate that the
boundary term is bounded by 2, and it can be seen that f is uniformly bounded
with ‖f‖∞ = 1. This implies that if xn → x, then there is a uniform integrable
bound, C|x − z|−1/2(|s|1/2 + |s|3/2)−1, for the integrands of I1(xn). Just as
for I2(x) it follows from dominated convergence that I1(x) is continuous, and
hence K ∗ φ(x) is. Using (2.4), we see that

|φ(x) − φ(y)| =
|K ∗ φ(x) − K ∗ φ(y)|

1 − φ(x) − φ(y)
≤

|K ∗ φ(x) − K ∗ φ(y)|
1 − 2‖φ‖∞

, (4.1)

and hence φ is continuous. Here we have used the assumption that ‖φ‖∞ <
1/2.

Corollary 4.2. Let r < 1/2. The set of solutions of the steady Whitham equation
(2.4) contained in the closed ball ‖φ‖∞ ≤ r is compact in L∞

loc(R).

Proof. Pick any sequence (φn)n of solutions of (2.4) that fulfil ‖φn‖∞ ≤ r.
By Theorem 4.1 those are continuous on R. Moreover, it can be seen from the
proof of Theorem 4.1 that the continuity of φ ∗ K(x) is uniform with respect
to ‖φ‖∞. It then follows from (4.1) that φn are equicontinuous. The Arzela-
Ascoli theorem thus yields the existence of a subsequence (φnk

)k ⊆ (φn)n and a
continuous function φ, such that φnk

converges to φ in L∞
loc(R).

To prove that φ is a solution of the Whitham equation, let v ∈ C0(R) be any
continuous function with compact support. Then

∫ (
φn(x) − φ2

n(x) −
∫

1
cKh0(y − x)φn(y) dy

)
v(x) dx = 0.

Since φn(x) converges pointwise to φ(x), the functions v, 1
c Kh0 ∈ L1, and

‖φn‖∞ ≤ r, it follows from the Lebesgue bounded convergence theorem that
∫

(φ− φ2 − 1
cKh0 ∗ φ)v dx = 0.

In view of that v is arbitrary this implies that φ fulfils (2.4) almost everywhere.
The fact that φ is continuous implies that it is indeed a solution of the steady
Whitham equation in the pointwise sense.

Remark 4.3. In Section 3 we find periodic solutions for any period L > 0. Un-
der the conditions of Corollary 4.2, any such sequence of solutions converges to
travelling-wave solution on the line as L → ∞. This will be illustrated numeri-
cally in Section 6.
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5 Nonexistence of a class of solitary waves

The Whitham equation was designed to incorporate both breaking and disper-
sion. However, if the depth h0 > 0 is small when compared to the wave speed,
then the dispersion term is small, and moreover, dispersion is very weak. As a
result, for large velocities c, there are no travelling waves.

Theorem 5.1. There are no steady and bounded continuous solutions of the Whitham
equation with

c > κ
√

gh0 and inf φ ≤ 0 < supφ, (5.1)

where κ = 2
(√

2 + 1
) ∥∥∥F−1

(√
(tanh ξ)/ξ

)∥∥∥
L1(R)

.

Remark 5.2. Note that the condition (5.1) means that there are no solitary waves
with velocities much larger than the critical long wave speed

√
gh0. Using the

estimate

1 =
∥∥∥FF−1

(√
tanh ξ
ξ

)∥∥∥
L∞(R)

≤
∥∥∥F−1

(√
tanh ξ
ξ

)∥∥∥
L1(R)

,

the value of κ appearing in the statement of the theorem may be estimated below
by 2

(√
2 + 1

)
.

Proof of Theorem 5.1. The proof proceeds by contradiction. Suppose that there
exists a nontrivial bounded solution φ to (2.4). Then the following inequalities
must hold.

(
‖φ‖L∞(R) − ‖1

c Kh0‖L1(R)

)
‖φ‖L∞(R) ≤ ‖φ‖L∞(R),

and
‖φ‖L∞(R) ≤

(
‖φ‖L∞(R) + ‖1

c Kh0‖L1(R)

)
‖φ‖L∞(R),

so that
1 − ‖1

c Kh0‖L1(R) ≤ ‖φ‖L∞(R) ≤ 1 + ‖1
cKh0‖L1(R), (5.2)

in view of that supφ > 0. Note first that

φ2(x) ≥ φ(x) − ‖1
c Kh0‖L1(R)‖φ‖L∞(R)

for all x. This is a simple consequence of (2.4). For the desired contradiction it is
thus enough to show that there is some x, such that

φ2(x) < φ(x) − ‖1
c Kh0‖L1(R)‖φ‖L∞(R),
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or in other words

φ2(x) − φ(x) + ‖1
c Kh0‖L1(R)‖φ‖L∞(R) < 0. (5.3)

An application of (5.2) yields that

φ2(x) − φ(x) + ‖1
c Kh0‖L1(R)‖φ‖L∞(R)

≤ φ2(x) − φ(x) + ‖1
c Kh0‖L1(R)(1 + ‖1

c Kh0‖L1(R)),

and we set out to examine the right hand side,

F (φ) := φ2 − φ+ ‖1
c Kh0‖L1(R)(1 + ‖1

c Kh0‖L1(R)).

Observe that F (φ) is negative whenever

1

2

(
1 −

√
2 − (2‖1

c Kh0‖L1(R) + 1)2
)

< φ, and

φ <
1

2

(
1 +

√
2 − (2‖1

c Kh0‖L1(R) + 1)2
)

.

(5.4)

The left and right hand sides of (5.4) are real if ‖1
c Kh0‖L1(R) ≤ 1

2(
√

2 − 1).
Taking the scaling and (2.2) into consideration, that follows from the requirement
(5.1). Therefore, under that assumption, we have that

1

2

(
1 −

√
2 − (2‖1

c Kh0‖L1(R) + 1)2
)

<
1

2
< 1 − ‖1

cKh0‖L1(R) ≤ ‖φ‖L∞(R),

in view of (5.2). Since φ is continuous with inf φ ≤ 0, there is thus an x, such
that both inequalities in (5.4) are satisfied. As a result, we have obtained that (5.3)
holds, reaching the desired contradiction.

6 Numerical Approximation

For the numerical approximation of periodic travelling waves of the Whitham
equation, a spectral projection is used. As above, the undisturbed depth h0 and
the wavelength L are fixed, and the speed c is used as the bifurcation parameter.
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For the purpose of approximating periodic solutions of (2.3), a Fourier method is
optimal. To define the Fourier-collocation projection, define the subspace

SN = spanC

{
exp(ikx)

∣∣∣ k ∈ Z, −N/2 ≤ k ≤ N/2 − 1
}

of L2((0, 2π)). The collocation points are defined to be xj = 2πj
N for j =

0, 1, ...N − 1. Let IN be the interpolation operator from C∞
per([0, 2π]) onto

SN . As explained in [10], this operator is defined in the following way. Given
u ∈ C∞

per([0, 2π]), INu is the unique element of SN that coincides with u at
the collocation points xj . For the spectral projection, we use the equation (2.3)
with B = 0. According to Theorem 3.1, the equation is defined on the interval
[−L,L], whereas the discrete Fourier transform to be used is most conveniently
defined on [−π,π]. Therefore, the scaling φ(x) → φ(ax) is used, where a = L

π .
Special attention has to be paid to the operatorKh0 . A straightforward calculation
shows that (

Kh0 ∗ u
)
(ax) =

√
aKh0/a ∗

(
u(a ·)

)
(x). (6.1)

Therefore, the rescaled equation for 2π-periodic solutions is

−cφ+ 3
4

c0
h0
φ2 +

√
aKh0/a ∗ φ = 0.

The discretized form of this equation is

−cφN + 3
4

c0
h0
φ2

N +
√

a
[
Kh0/a

]
N
φN = 0, (6.2)

which is enforced at the collocation points xj . If φN is written in terms of its
discrete Fourier coefficients φ̃N (k) as

φN (x) =
∑

−N/2≤k≤N/2−1

φ̃N (k) exp(ikx),

the operator
[
Kh0/a

]
N
can be evaluated using the formula

[
Kh0/a

]
N
φN (x) =

√
gh0
a φ̃N (0)

+
∑

1−N/2≤k≤N/2−1
k *=0

√
g
k tanh k(h0/a) φ̃N (k) exp(ikx).
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Thus the operator
[
Kh0/a

]
N
is the truncation at the N/2-st Fourier mode of the

operator given by the periodic convolution with Kh0/a. Note that this formu-

lation includes the truncation of the Fourier mode φ̃N (−N/2) which otherwise
can lead to instabilities in the computation. The equation (6.2) is treated pseu-
dospectrally. That is, multiplication is carried out in physical space, while the
term involving Kh0/a is evaluated using the discrete Fourier transform.

The resulting system of equations can be solved using any standard nonlinear
equation solver. We have chosen to use the Matlab routine fsolve which appears to
work very efficiently. To make sure that the computed functions are approximate
travelling waves for the Whitham equation, we have also used a dynamic integra-
tor for the time-dependent Whitham equation. The equation (1.6) is translated
to the interval [0, 2π] by the scaling η(x, t) → 1

a η(ax, t), where a = L
π as be-

fore. The discretization is then defined by the following problem. Find a function
ηN : [0, T ] → SN , such that

{
∂tηN + 3

2
c0
h0
∂xIN (η2N ) + 1√

a

[
Kh0/a

]
N
∗ ∂xηN = 0, x ∈ [0, 2π],

ηN (·, 0) = φN .
(6.3)

In Figure 2, a branch of travelling-wave solutions is shown. Here the wavelength
is chosen to be 2π, and the depth is h0 = 1. Note that in this case, the wavenum-
ber is k = 2π

2L = 1, and therefore the phase velocity of a linear wave is given

by
√

g tanh(h0) ∼ 2.7334. In panel (c) shown in Figure 2, it appears that as
the amplitude approaches zero, the velocity of the travelling wave approaches the
linear wave speed. Note also that not the whole branch is shown in panels (a) and
(b). Two periods of the highest wave we were able to compute is shown in panel
(d). This solution seems to nearly have a cusp, a fact already noted by Whitham
[34] using an asymptotic argument. Since a Fourier-collocation method is used,
it is implicitly assumed that the solutions are smooth, and it is not possible to find
the very highest wave predicted by Whitham. A possible method for finding the
highest wave is outlined in [8], where a scheme based on Lagrange polynomials is
used, and the highest point on the wave is treated as a boundary condition. How-
ever, the Whitham equation as it appears here was not treated in [8]. In Table 1,
we record the numerical errors incurred by the time integration of an approximate
travelling wave with velocity c = 2.7 propagating for 5 and 50 periods. To find
the most advantageous combinations of the number of Fourier modes N and the
time step h, we used a computation for one period. We then use this combina-
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Figure 2: (a) and (b) Part of a branch of solutions of (6.2) with h0 = 1 and
L = π. Note that the highest wave is not shown here. (c) Amplitude vs. wave
speed. (d) Two periods of the (nearly) highest wave.

N h L2-error |u|∞ − |uN |∞ L2-error |u|∞ − |uN |∞
25 1.0e-03 7.092e-04 9.927e-04 0.0078 0.0045
26 1.0e-03 3.821e-06 3.606e-06 3.316e-05 3.022e-06
27 1.0e-04 6.058e-06 1.208e-08 9.899e-07 6.675e-09
28 5.0e-06 1.217e-07 2.038e-11 2.198e-07 5.417e-11

5 periods 50 periods

Table 1: Error in evolution code after 5 and 50 periods for the travelling wave
shown in Figure 3.
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tion, and integrated for 5 and 50 periods. The discrete L2-error, the difference in
maximal height between the original wave, and the profile after 5 and 50 periods
were computed. As can be seen, the error is decreasing for increasing N and de-
creasing h. Moreover, the fact that the difference in maximal height is generally
smaller than the L2-error suggests that the error incurred during the time evo-
lution is mostly due to a phase shift of the solution. This can also be observed
in Figure 3, where the same travelling wave is shown after time integration for
10000 periods. These results also suggest that the travelling waves are orbitally
stable, but no special investigation of this question has been carried out.
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Figure 3: Solid line: approximate travelling wave φN for the Whitham equation
with h0 = 1, L = π, and c = 2.7. Dashed line: ηN after time integration using
(6.3) for 10000 periods. In (a), the difference between φN and ηN is hardly visi-
ble. In this computation, N = 512 and h = 0.0005. The L2 error was 0.0021,
while the difference in height was 2.2385e − 06. This and the magnification (b)
suggests that the the error is mainly due to a phase shift.

In Section 4, a connection between travelling waves with finite period and
solitary waves is given. In particular, it is shown that if the amplitude of a fam-
ily of travelling waves with increasing wavelength L is bounded below 1

2 , then
these travelling waves converge to a solitary wave. Here, we want to illustrate
this result numerically. In Figure 4, a family of approximate travelling waves is
shown in the case when the wavelength L in increasing, while h0 and c are held
constant. Note that amplitude is initially increasing, but seems to level off to an
approximate value of 0.145. As Figure 5 shows, even though the wavelength L
keeps increasing, the shape of the travelling waves does not change very much if a
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Figure 4: (a) Approximate travelling waves for the Whitham equation with h0 =
1 and c = 2.733, and with increasing wavelength. (b) Amplitude as a function of
wavelength.

certain threshold is passed. The numerical evidence suggests that these waves con-
verge to a solitary wave, as was intimated by the proof in Section 4. Generally, a
solitary wave is assumed to decay to zero at infinity. For the limiting solitary wave
suggested in figures 4 and 5, this can be achieved by a Galilean transformation of
the form

φ→ φ+ γ and c → c + 2γ.

This introduces a non-zero constant B in equation (2.3). However, it can be seen
that the constant levels off to zero as the amplitudes of the sequence of travelling
wave approaches the asymptotic value as shown in Figure 4 (b).

7 Conclusion

We have investigated the existence of travelling-wave solution of the Whitham
equation, a nonlinear dispersive integro-differential equation capable of support-
ing breaking and peaking solutions. It has been found that small-amplitude
travelling-wave solutions exist. Moreover, in the limit as the wavelength goes
to infinity, these solutions converge to travelling-wave solutions on the real line.
Nontrivial bounded and continuous solutions do not exist if the wave speed c
is much larger than the limiting long-wave speed c0. Numerical approximations
have been found of various travelling-wave solutions, including small-amplitude
and finite-amplitude waves, as well as waves which are near the highest wave which
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Figure 5: (a) Approximate travelling wave for the Whitham equation with h0 =
1, c = 2.733, and L = 5π. (b) Approximate travelling wave for the Whitham
equation with h0 = 1, c = 2.733, and L = 7.5π.

is known to have a cusp. As the wavelength increases, the travelling waves appear
to converge to a nontrival solitary wave.
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