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Abstract

This thesis comprises three papers studying several mathematical models re-
lated to geometric Markov processes and random processes with reinforce-
ments. The main goal of these works is to investigate the dynamics as well as
the limiting behaviour of the models as time goes to infinity, the existence of
invariant measures and limiting distributions, the speed of convergence and
other interesting relevant properties.

In the introduction, we firstly discuss the background: products of random
matrices, asymptotic pseudo-trajectories and Markov chains in a general state
space. We then outline motivation and overview of the main results in the
papers included in this thesis.

In the first paper, we deal with a Markov chain model of convex polygons,
which are random consecutive subdivisions of an initial convex polygon. Ap-
plying the theory of products of random matrices, we prove the universal
convergence of these random convex polygons to a “flat figure”. Beside this,
we present a discussion about the speed of convergence and the computation
of invariant measure in the case of random triangles.

In the second paper, we investigate a model of strongly vertex-reinforced jump
processes (VRJP). Using the method of stochastic approximation, we show the
connection between strongly VRJP and an asymptotic pseudo-trajectory of a
vector field in order to study the dynamics of the model. In particular, we
prove that strongly VRJP on a complete graph will almost surely have an
infinite local time at one vertex, while the local times at all the remaining
vertices remain bounded.

In the last paper, we consider a class of random walks taking values in sim-
plexes and study the existence of limiting distributions. In some special cases
of Markov chain models, we prove that the limiting distributions are Dirichlet.
In addition, we introduce a related history-dependent random walk model in
[0,1] based on Friedman’s urn-type schemes and show that this random walk
converges in distribution to the arcsine law.
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Keywords: random polygons, products of random matrices, vertex-reinforced
jump processes, pseudo-trajectories, random walks in simplexes, Markov chains
in a general state space
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Introduction

This thesis comprises three papers studying several mathematical models con-
cerned to geometric Markov processes and random processes with reinforce-
ments. The main goal of these works is to investigate the dynamics as well as
the limiting behaviour of the models as time goes to infinity, the existence of
invariant measures and limiting distributions, the speed of convergence and
other interesting relevant properties.

In this introduction, we firstly introduce some notations, basic definitions
and main results on several topics: products of random matrices, asymp-
totic pseudo-trajectories and Markov chains in a general state space which
are background material used in this thesis. We then present motivation and
review of the included papers.

Background materials

Random walks on real projective spaces

Let Rd denote the linear space of all d-dimensional real column vectors under
the field of real numbers. The real projective space P(Rd) is defined as the
quotient space (Rd \ {0})/ ∼, where ∼ is the equivalence relation defined by
x ∼ y, x, y ∈ Rd if there exists a real number λ such that x = λy. We denote by
x the equivalence class of x. The projective space P(Rd) becomes a compact
metric space if we consider the following ”angular” metric

δ(x, y) =

√
1− (x, y)2

||x||2.||y||2 , (1)

where ||.|| and (., .) are respectively the Euclidean norm and the Euclidean
scalar product on Rd. For a linear transformation from Rd to itself, we define

Ax = Ax

1



for every x ∈ Rd \ ker(A).

Let µ be a probability measure on GL(d, R), which is the group of non-singular
d × d real matrices. Assuming that (An)n≥1 is a sequence of i.i.d. random
matrices with common distribution µ, we are interested in the asymptotic
behaviour of the random walk (An An−1 . . . A2A1x)n≥1 on P(Rd) as well as the
angular process (δ(An An−1 . . . A1x, An An−1 . . . A1y))n≥1 for some x, y ∈ P(Rd)

as time n goes to infinity.

We first look at the properties for a family of matrices namely irreducible,
strongly irreducible and contracting which are defined as follows.

Definition 1.1. a. We say a family H of d × d matrices is irreducible in Rd if
there exists no proper linear subspace L of Rd such that H(L) = L for all
H ∈ H.

b. We say a family H of d × d matrices is strongly irreducible in Rd if there
exists no union L of finite number of proper linear subspaces of Rd such that
H(L) = L for all H ∈ H.

c. We say a family H of d × d matrices is contracting if there is a sequence of
elements {hn}n≥1 ⊂ H such that ||hn||−1hn converges to a rank-one matrix.

We have the following key result:

Theorem 1.2 (from Theorem III.3.1 and the proof of Proposition III.3.2 in [8],
pp. 50–53). Let (An)n≥1 be a sequence of i.i.d. random matrices in GL(d, R)

with common distribution µ. Suppose that the smallest closed semigroup gener-
ated by the support of µ is strongly irreducible and contracting. Then, there ex-
ists almost surely an one-dimensional space V of Rd such that any limit point of
{‖A1 A2 . . . An‖−1A1A2 . . . An, n ≥ 1} is a rank-one matrix with range V and any
non zero vector x ∈ Rd,

P{x is orthogonal to V} = 0.

Furthermore, for any sequence (xn)n≥1 ⊂ Rd which converges to x,

lim sup
n→∞

‖An . . . A2A1‖
‖An . . . A2A1xn‖

≤ ‖ζx‖−1 < ∞

almost surely, where ζx is the orthogonal projection of x on V.

2



The next theorem shows that strong irreducibility and contracting property
are sufficient conditions for the convergence to 0 of the aforementioned angu-
lar process.

Theorem 1.3 (Theorem III.4.3 in [8], p. 56). Let (An)n≥1 be a sequence of i.i.d.
random matrices in GL(d, R) with common distribution µ. Let Sµ be the smallest
closed semigroup generated by the support of µ. Suppose that Sµ ⊂ GL(d, R) is
strongly irreducible and contracting. Then for any x, y ∈ P(Rd)

lim
n→∞

δ(An . . . A1x, An . . . A1y) = 0 a.s.

Suppose that the semigroup Sµ is irreducible. To show that Sµ is actually
strongly irreducible, one can use the following criterion to give a contradiction
assuming that Sµ is irreducible but not strongly irreducible.

Proposition 1.4 (see the remark and the equation (2.7) on pp. 121-122 of [14]).
If Sµ is irreducible but not strongly irreducible in Rd, then there exist proper linear
subspaces V1, V2, ..., Vr of Rd such that

Rd =
r⊕

j=1

Vj where r > 1, Vi ∩Vj = {0} if i 6= j,

where all the subspaces Vj have the same dimension, and

M(∪r
j=1Vj) = ∪r

j=1Vj,

for all M ∈ Sµ.

While it is not easy to verify the contracting property of a semigroup of
matrices, it suffices to check this property for the Zariski closure which is
a larger class of matrices, thanks to the following important statements by
Goldsheid and Margulis in [15].

Proposition 1.5. If a closed semigroup H ⊂ GL(d, R) is strongly irreducible and its
Zariski closure Zr(H) is contracting, then H is also contracting.

Recall that the Zariski closure Zr(H) of a subset H of an algebraic manifold is
defined as the smallest algebraic submanifold that contains H. Furthermore, if
H is a closed semigroup of GL(d, R), then the Zariski closure Zr(H) is indeed
a group (see [15]).

Taking into account the speed of convergence, we need the following defini-
tion of Lyapunov exponents:

3



Definition 1.6. Let (An)n≥1 be a sequence of i.i.d. random matrices. We define
Lyapunov exponents

µj = lim
n→∞

E

(
1
n

log σ
(n)
j

)
, j = 1, 2, ..., d, (2)

where σ
(n)
1 ≥ σ

(n)
2 ... ≥ σ

(n)
d are the singular values of A(n) = An An−1 . . . A1, i.e.,

the square roots of the eigenvalues of
(

A(n)
)T

A(n).

For A ∈ GL(d, R), denote

`(A) = max(log+(||A||), log+(||A−1||)),

where log+(x) := max{log x, 0}. The next theorem yields information about
the speed of convergence which is connected to Lyapunov exponents.

Theorem 1.7 (from the proof of Proposition III.6.4 in [8], pp. 67–68). Let Ai be
a sequence of i.i.d. random matrices in GL(d, R) with common distribution µ. Let Sµ

be the smallest closed semigroup generated by its support. Suppose that E `(A1) <

∞, the semigroup Sµ ⊂ GL(d, R) is strongly irreducible and contracting then for
any x, y ∈ P(Rd)

lim
n→∞

1
n

log δ(An . . . A1x, An . . . A1y) ≤ µ2 − µ1 < 0 a.s. (3)

For more discussion about products of random matrices, we refer the readers
to excellent monographs written by Bougerol and Lacroix [8], Benoist and
Quint [6].

Asymptotic pseudo-trajectories

This section contains a brief discussion of pseudo-trajectories on a metric space
studied by Benaim and Hirsch (see [1] and [4]), which have many important
applications to asymptotically autonomous differential equations, stochastic
differential equations, stochastic approximation processes and related random
processes.

Definition 1.8. A semiflow Φ on metric space (M, d) is a continuous map Φ :
R+ ×M → M, (t, x) 7→ Φ(t, x) = Φt(x) such that Φ0 is the identity map and Φ
has the semigroup property, i.e. Φt+s = Φt ◦Φs for all s, t ∈ R+.

4



Definition 1.9. A continuous function Z : R+ → M is called an asymptotic pseudo-
trajectory for the semiflow Φ on metric space (M, d) if

lim
t→∞

sup
0<s<T

d(Z(t + s), Φs(Z(t))) = 0

for all T > 0.

Let Φ be a semiflow on a metric space (M, d) and Z be an asymptotic pseudo-
trajectory for Φ. We are interested in the limit behaviour of the asymptotic
pseudo-trajectory Z. Let L(Z) be the limit set of Z, which is defined by

L(Z) =
⋂
t≥0

X([t, ∞))

or equivalently, L(X) is set of limits of convergent sequences X(tk), tk → ∞.
A subset A ⊂ M is called invariant of the semiflow Φ if Φt(A) ⊂ A for all
t ∈ R+. The asymptotic pseudo-trajectory Z is said precompact if its image has
compact closure in M.

Definition 1.10. Let K ⊂ M be a compact invariant set of the semiflow Φ. A
continuous function H : M → R is called a Lyapunov function for K if the function
t ∈ R+ 7→ H(Φt(x)) ∈ R

(i) is a constant function for each x ∈ K.

(ii) is a strictly decreasing function for each x ∈ M \ K.

We denote by CΦ the set of all equilibria points for the semiflow Φ, i.e. the set
of all points x ∈ M such that Φt(x) = x for all t ∈ R+. It is obvious that CΦ is
an invariant set of Φ.

Theorem 1.11 (Theorem 5.7 and Proposition 6.4 in [4]). Let Φ be a semiflow on
a metric space (M, d) and Z be an asymptotic pseudo-trajectory for Φ such that

(a) Z is precompact,

(b) Φ admits a Lyapunov function H for CΦ,

(c) CΦ is a compact subset and H(CΦ) has empty interior in M.

Then the limit set L(Z) is a connected subset of CΦ.

5



In particular, if CΦ is a set of isolated equilibria then we directly obtain the
following important result:

Corollary 1.12. Let Φ be a semiflow on a metric space (M, d) and Z be an asymptotic
pseudo-trajectory for Φ such that the conditions (a) and (b) in Theorem 1.11 are
fulfilled, furthermore

(c’) CΦ has countably many elements.

Then Z(t) converges to an equilibrium z∗ ∈ CΦ as t→ ∞.

To study speed of convergence of pseudo-trajectories, we need the following
definitions:

Definition 1.13. Assume that Z is an asymptotic pseudo-trajectory for a semiflow Φ
on a metric space (M, d). For λ > 0, Z is called a λ-pseudo-trajectory for Φ if

sup
T>0

lim sup
t→∞

1
t

log

(
sup

0≤s≤T
d(Z(t + s), Φs(Z(t)))

)
≤ −λ.

Definition 1.14. Let K ⊂ M be a compact invariant set of a semiflow Φ and B be a
subset of M containing K. For α > 0, we say that K attracts B exponentially at rate
α if there exists a constant C > 0 such that

d(Φt(x), K) ≤ Ce−αtd(x, K)

for all x ∈ B and t ∈ R+.

Theorem 1.15 (Lemma 8.7 in [4]). Let Z be a λ-pseudo-trajectory for a semiflow Φ,
K ⊂ M be a compact invariant set of Φ and B be a subset of M containing K. Assume
that K attracts B exponentially at rate α > 0 such that Z(t) ∈ B for all t ∈ R+. Let
Y(t) ∈ K be the nearest point to Z(t). Then

lim sup
t→∞

1
t

log d(Z(t), Y(t)) ≤ −min(α, λ).

In particular, if K contains only a single point z∗ which is an equilibrium of Φ and B
is a neighbourhood of z∗ such that z∗ attracts exponentially B at rate α and Z(t) ∈ B
for all t ∈ R+, then

lim sup
t→∞

1
t

log d(Z(t), z∗) ≤ −min(α, λ).

6



We now restrict our attention to semiflows generated by vector fields. Let F
be a continuous vector field defined on Rd with unique integral curves. The
semi-flow Φ generated by the vector field F is defined such that Φt(x) is the
unique solution of the following autonomous differential equation{ d

dt Φt(x) = F(Φt(x)),
Φ0(x) = x,

for (t, x) ∈ R+ ×Rd. Note that the equilibria of Φ coincide with the zeros of
F, i.e.

CΦ = {z ∈ Rd : F(z) = 0}.
We say an equilibrium z ∈ CΦ is hyperbolic if all eigenvalues of DF(z), the
Jacobian matrix of F at z, have nonzero real parts. If all eigenvalues of DF(z)
have negative real parts, z is called linearly stable. If there exists at least one
of its eigenvalues having positive real part, it is called linearly unstable. For a
hyperbolic unstable equilibrium z, the stable manifold of z is the set of initial
values z0 whose forward trajectories Φt(z0) converge to z as t→ ∞.

Let Z : R+ → Rd be a bounded asymptotic pseudo-trajectory for Φ. Assume
that Φ admits a Lyapunov function for CΦ and F has countably many zeros.
By Corollary 1.12, there exists an equilibrium z ∈ CΦ such that Zt → z as
t→ ∞.

In many practical problems, we usually expect that Zt converges to a stable
equilibrium. To imply the convergence to stable equilibrium, one might study
the nonconvergence to unstable equilibrium by estimating “distance” from
Zt to stable manifold associated with each unstable equilibrium. This idea
was first introduced by Pemantle in [19], Benaim and Hirsch in [2]. More
specifically, assume that F is a Ck-vector field and let z∗ be a linearly unstable
hyperbolic equilibrium of F. We have the orthogonal decomposition

Rd = Es ⊕ Eu,

where Es and Eu are respectively the generalized eigenspaces generated by
the eigenvalues of DF(z∗) with positive and negative real parts. Therefore, for
each z ∈ Rd, we have the unique decomposition z∗ = z∗s + z∗u, where z∗s ∈ Es

and z∗u ∈ Eu. By the stable manifold theorem (see, e.g. Theorem 10.1 in [20]),
there exist a neighbourhood N0 = N s

0 ⊕N u
0 of z∗, where N s

0 (resp. N u
0 ) is a

neighbourhood of z∗s in Es (resp. z∗u in Eu), and a Ck-function Γ : N s
0 → N u

0
such that

7



• DΓ(z∗s ) = 0;

• The graph of Γ,

Graph(Γ) := {v + Γ(v) : v ∈ N s
0}

equals to the local stable manifold of z∗ defined by

Ws
loc(z

∗) = {z ∈ Rd : ∀t ≥ 0, Φt(z) ∈ N0 and lim
t→∞

Φt(z) = z∗};

• Ws
loc(z

∗) is an invariant manifold, i.e. for all t ∈ R,

Φt(Ws
loc(z

∗)) ∩N0 ⊂Ws
loc(z

∗).

Let R : N0 → R be defined by

R(z) = ‖z− r(z)‖,

where the function r : N0 →Ws
loc(z

∗) is given by

r(z) = r(zs + zu) = zs + Γ(zs).

In this case, R(Zt) is defined as the distance from Zt to the local manifold
Ws

loc(z
∗) in the unstable directions at z∗, which is expected to be not too small

so that Zt can stay away from z∗. For further techniques related to nonconver-
gence theorems and their applications, we refer the interested readers to [19],
[2], [4] and [5].

Let us now consider the speed of convergence to stable equilibrium. Assume
that z∗ is a linearly stable equilibrium and Zt is a λ-pseudo-trajectory for the
semiflow Φ such that Zt converges to z∗ as t→ ∞. Note that there exist α > 0
and a neighbourhood B of z∗ such that z∗ attracts exponentially B at rate α,
i.e. for all z ∈ B and t ∈ R+,

‖Φt(z)− z∗‖ ≤ Ce−αt‖z− z∗‖

where C is some constant depending only on B and α (see, e.g [20], Theorem
5.1). Therefore, by applying Theorem 1.15, one can conclude that

lim sup
t→∞

1
t

log d(Z(t), z∗) ≤ −min(α, λ).

8



Markov chains in general state spaces

Let (Zn)n≥0 be a Markov chain taking values on a measurable state space
(X ,B(X )), where B(X ) is a countably generated σ-algebra (i.e. B(X ) is gen-
erated by a countable family of subsets of X ). We define the probability trans-
ition kernel Pn : X ×B(X )→ [0, 1] by

Pn(z, A) = P(Zn ∈ A|Z0 = z)

for each n ≥ 1, z ∈ X and A ∈ B(X ). We also denote P(z, A) := P1(z, A). We
will always assume that for each A ∈ B(X ), Pn(., A) is a measurable function
while for each z ∈ X , Pn(z, .) is a probability measure.

As usual, we define the total variation distance ‖µ− ν‖ between two probab-
ility measures µ and ν on (X ,B(X )) by

‖µ− ν‖ = sup
A∈B(X )

|µ(A)− ν(A)|.

Definition 1.16. A measure π on (X ,B(X )) is called invariant of the Markov chain
(Zn)n≥0 if

π(A) =
∫
X

P(z, A)π(dz)

for all A ∈ B(X ).

Assumption 1. Assume that there exist a subset V ∈ B(X ), q ∈ (0, 1), a probability
measure ϕ on (X ,B(X )) and some positive integer n0 such that

(i) P(τV < ∞|Z0 = z) = 1 for all z ∈ X , where τV = inf{n ≥ 1 : Zn ∈ V};

(ii) P(Zn0 ∈ B|Z0 = z) ≥ qϕ(B) for all z ∈ V and measurable set B ⊂ V.

It is well-known that the Markov chain (Zn)n≥0 is Harris recurrent if and only
if the Assumption 1 is fulfilled (see e.g. [18]). Here the Harris recurrence is
in the sense that there exists a σ-additive measure ψ on (X ,B(X )) such that
ψ(X ) > 0 and

P (Zn ∈ B for some n ≥ 1|Z0 = z) = 1, ∀z ∈ X

whenever B ∈ B(X ) and ψ(B) > 0.

The Harris recurrence implies the unique existence of a non-trivial σ-additive
invariant measure up to a constant factor while in general it might not be a
finite measure and the weak convergence might not occur.
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Assume that the condition (ii) in Assumption 1 is fulfilled. We construct an
“extended” Markov chain Z∗k = (Z̃(n0)

k , ξk) on X ∗ = X × {0, 1} such that
ξk, k = 0, 1, 2, . . . are i.i.d. random variables taking values on {0, 1} such that
P(ξk = 1) = q and the transition distribution of Z∗k is defined as follows:

• for z /∈ V,

P(Z∗1 ∈ (B, j)|Z∗0 = (z, k)) = Pn0(z, B)P(ξ1 = j);

• for z ∈ V,

P(Z∗1 ∈ (B, j)|Z∗0 = (z, 1)) = ϕ(B)P(ξ1 = j);

P(Z∗1 ∈ (B, j)|Z∗0 = (z, 0)) =
Pn0(z, B)− qϕ(B)

1− q
P(ξ1 = j).

Denote
τ∗ = inf{k ≥ 1 : Z∗k ∈ (V, 1)}.

Proposition 1.17 (Theorem 1.3 in [7]). Let (Zn)n≥0 be a Markov chain correspond-
ing with the measurable state space (X ,B(X )) such that (i), (ii) in Assumption 1
and the following conditions

(iii) gcd{n ≥ 1 : P(Zn ∈ B|Z0 = z) ≥ qϕ(B)} = 1 for all z ∈ V and measurable
subset B ⊂ V;

(iv) E(τ∗) < ∞ for all z∗ ∈ (V, 1)

are fulfilled. Then there uniquely exists an invariant probability measure π defined by

π(B) =
1

E τ∗
E

(
τ∗

∑
k=1

1{Z̃(n0)
k ∈B}

)
.

Moreover, for each z ∈ X ,

‖Pn(z, .)− π‖ → 0 as n→ ∞.

In practical, it is quite complicated to estimate the expectation E(τ∗). Instead
of verifying the condition (iv), we might use the following simpler criterion:

10



Proposition 1.18 (Theorem 2.1 in [7]). Let Zn, n = 0, 1, 2, ... be a Markov chain
corresponding with the measurable state space (X ,B(X )). Assume that there exist a
subset V ∈ B(X ), q > 0, a probability measure ϕ on (X ,B(X )) and some positive
integer n0 such that (i) in Assumption 1, (iii) in Proposition 1.17 and the following
conditions

(i’) supz∈V E (τV |Z0 = z) < ∞;

(ii’) P(Zn0 ∈ B|Z0 = z) ≥ qϕ(B) for all B ∈ B(X ) and z ∈ V

are fulfilled. Then the conclusion in Proposition 1.17 still holds.

11



Consecutive random subdivision of convex polygons

Motivation

We consider the Markov chain (Ln)n≥0 of convex d-polygons (i.e. polygons
with d vertices, d ≥ 3) in the plane recursively defined as follows:

• We begin with an initial convex d-polygon L0 = A(0)
1 A(0)

2 ...A(0)
d .

• For n ≥ 0, assume that we obtained the polygon Ln = A(n)
1 A(n)

2 ...A(n)
d .

For j = 1, 2, . . . , d, we randomly choose a new point A(n+1)
j inside each

edge A(n)
j A(n)

j+1 such that∣∣∣A(n)
j A(n+1)

j

∣∣∣∣∣∣A(n)
j A(n)

j+1

∣∣∣ := ξ
(n)
j , j = 1, 2, . . . , d,

where ξ
(n)
1 , ξ

(n)
2 , . . . , ξ

(n)
d are i.i.d. copies of a random variable ξ with sup-

port in [0, 1]. Here, we use the convention that A(n)
d+1 ≡ A(n)

1 . Therefore,

we obtain the new convex d-polygon Ln+1 = A(n+1)
1 A(n+1)

2 . . . A(n+1)
d .

• Repeating the subdivision process such that
(

ξ
(n)
1 , ξ

(n)
2 , . . . , ξ

(n)
d

)
, n =

1, 2, . . . are i.i.d random vectors and have the same distribution with
(ξ1, ξ2, . . . , ξd), where ξi, i = 1, 2, . . . , d are i.i.d. copies of the random
variable ξ, we obtain a sequence of polygons

(
Ln = A(n)

1 A(n)
2 . . . A(n)

d

)
n≥0

.

It is trivial to see that the random polygons Ln become smaller and smaller
and eventually vanish to a point inside the initial polygon L0 as time goes to
infinity, however the behaviour of the process of their shapes is less clear. To
study the process of shapes we may, for example, always place the vertex A(n)

1
at the origin (0, 0) of the real plane R2 and rescale the polygon Ln such that
its longest edge has always length 1.

In the case of triangles, i.e. d = 3, one can follow the rescaling procedure by
Volkov in [25] as follows: for each n ≥ 0, rescale the triangle A(n)

1 A(n)
1 A(n)

3

to a new triangle B(n)
1 B(n)

1 B(n)
3 such that its longest edge has length 1 and its

vertices are reordered in a way that B(n)
1 B(n)

2 ≥ B(n)
3 B(n)

1 ≥ B(n)
2 B(n)

3 ; let the

12



Cartesian coordinates of vertices be B(n)
1 = (0, 0), B(n)

2 = (1, 0), B(n)
3 = (gn, hn)

as illustrated in Figure 1.

b

b

bb

B
(n)
3

B
(n)
2 ≡ (1, 0)B
(n)
2 ≡ (1, 0)B

(n)
1 ≡ (0, 0)B
(n)
1 ≡ (0, 0)

gn

hn

Figure 1: Illustration of the rescaled triangle B(n)
1 B(n)

1 B(n)
3 .

The limit shape behaviour of these random triangles therefore is reduced to
the limit behaviour of the process (gn, hn)n≥0 in [1/2, 1]×R+ as n → ∞. In
particular, if ξ is uniformly distributed in [0, 1], Volkov showed in [25] that
gn converges almost surely to an uniformly distributed random variable in
[1/2, 1] while hn converges almost surely to 0 at least at exponential rate.

From the above-mentioned example, it is natural to raise a question to determ-
inate some “mild” condition of the distribution of ξ such that the sequence of
rescaled convex polygon (Ln)n converges to a “flat figure”, in the sense that
all its vertices will be lying approximately along the same line, which is in
turn equivalent that the area of the rescaled polygon converges to 0 as n goes
to infinity. Formally, we say that the sequence of polygons Ln converges to a flat
figure as n→ ∞ if

lim
n→∞

S(Ln)(
maxj=1,...,d ‖l(n)j ‖

)2 = 0 a.s.

Here S(Ln) denotes the area of the polygon Ln and l(n)j = A(n)
j A(n)

j+1, j =

1, 2, . . . , d is the vector corresponding to the j-th side of Ln.

Let (x(n)j , y(n)j ) denote the Cartesian coordinates of A(n)
j A(n)

j+1 for j = 1, 2, ..., d.

Note that ∑d
j=1 x(n)j = ∑d

j=1 y(n)j = 0. From elementary geometrical calculations
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one can obtain the following linear recursion:

x(n+1) = Tn+1x(n), y(n+1) = Tn+1y(n), (4)

where x(n) =
(

x(n)1 , x(n)2 , . . . , x(n)d−1

)T

, y(n) =
(

y(n)1 , y(n)2 , . . . , y(n)d−1

)T

are column
vectors and Tn is an i.i.d. copy of the following random (d− 1)× (d− 1) matrix

T = T(ξ1, . . . , ξd) =


1− ξ1 ξ2 0 . . . 0 0

0 1− ξ2 ξ3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1− ξd−2 ξd−1
−ξd −ξd −ξd . . . −ξd 1− ξd−1 − ξd

 .

(5)
Therefore, to understand the limit shape of Ln one should study the asymp-
totic behaviour of the backward product of random matrices

T(n) := TnTn−1 . . . T2T1

as n→ ∞.

Review of Paper A

In Paper A, we apply the theory of products of random matrices to prove the
convergence of the random convex polygon Ln to a “flat figure” under very
mild non-degenerateness conditions on ξ. In addition, we present a discussion
about the speed of convergence and the computation of limiting distribution
in the case of random rescaled triangles.

To ensure that Ln is a non-degenerate convex polygon and that the subdivision
is genuinely random, we need the following

Assumption 2. P(ξ ∈ {0, 1}) = 0 and the support of ξ contains at least two
distinct points in (0, 1), i.e. the distribution of ξ is non-degenerate.

Assumption 3. If d ≥ 4 is an even number, we assume that

d

∏
i=1

ξi 6=
d

∏
i=1

(1− ξi)

almost surely.
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Obviously, Assumption 3 always holds for any continuous random variable ξ.

We observe that Ln converges to a flat figure as n→ ∞ if

lim
n→∞

δ(T(n) x̄, T(n)ȳ) = 0 (6)

almost surely for any x = (x1, ..., xd−1)
T, y = (y1, ..., yd−1)

T ∈ Rd−1, such
that (x1, y1), (x2, y2), ..., (xd−1, yd−1) are coordinates of d− 1 consecutive edges
of the convex d-polygon L0 in the real plane.

Assuming that Assumption 2 and Assumption 3 are fulfilled, we therefore
prove the convergence of random polygons Ln to a flat figure by verifying
the strong irreducibility and the contracting property for the smallest closed
semigroup in GL(d− 1, R) generated by the support of the normalized ran-
dom matrix T̃ = (|det T|)−1/dT. Note that, the convergence to flat figure of
the sequence of random polygons with even number of vertices still requires
the satisfaction of Assumption 3, which we conjecture it is unnecessary.

To study the speed of convergence, we need to assume that the expectation
E `(T) = E max(log+(||T||), log+(||T−1||)) is finite. This condition is actually
equivalent to following:

Assumption 4.

E log (|det(T)|) = E log

∣∣∣∣∣ d

∏
i=1

(1− ξi)− (−1)d
d

∏
i=1

ξi

∣∣∣∣∣ > −∞.

Applying Theorem 1.7, we deduce that if Assumptions 2, 3 and 4 hold, then
the sequence of polygons Ln converges to flatness at least at exponential rate
µ = µ1 − µ2 ∈ (0, ∞).

Assumption 4 can be replaced by an “easier” criterion which depends only
on the distribution of the random variable ξ. Indeed, for d = 3, 5, . . . is odd,
we show that if E | log ξ| < ∞ and E | log(1− ξ)| < ∞ then Assumption 4 is
fulfilled. A sufficient condition for these expectations to be finite is

lim sup
v↓0

P(ξ < v)
vα

< ∞ and lim sup
v↑1

P(ξ > v)
(1− v)α

< ∞

for some α > 0. In particular, in the case that ξ is uniformly distributed
on [0, 1], we prove that Assumption 4 is fulfilled for all d ≥ 3.
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Suppose that Assumptions 2, 3 and 4 are fulfilled, we also show that the length
of the largest side of Ln converges exponentially to 0 at rate µ1, i.e.

lim
n→∞

1
n

log(Mn) = µ1 a.s.

where

Mn = max
j=1,...,d

‖l(n)j ‖. (7)

We now only consider the case of random triangles (i.e. d = 3). Let gn, hn

be respectively the orthogonal projection of B(n)
3 on B(n)

1 B(n)
2 and the height

of the triangle B(n)
1 B(n)

2 B(n)
3 drawn from B(n)

3 as mentioned in the section Mo-
tivation. We firstly prove that gn converges in distribution to some random
variable η ∈ [1/2, 1] if Assumption 2 is fulfilled. Furthermore, assuming that
Assumptions 2 and 4 are both fulfilled, we obtain that

lim
n→∞

1
n

log(hn) = E(log(det(T1)))− 2
∫ 1

1/2
ζ(x, 0)dPη(x), a.s. (8)

where θn = (gn, hn), η is the weak limit of gn, Pη is its probability measure,
and

ζ(x, y) = E (log(M1) | θ0 = (x, y)) .

In particular, in the case where ξ is uniformly distributed on (0, 1), we show
that

1
n

log hn → −
π2 − 6

9
≈ −0.43,

thus strengthening the result of Theorem 4 in [25].
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Strongly vertex-reinforced jump processes

Motivation

Let us consider a continuous time jump process X on a connected finite
(without loops, unoriented) graph G = (V, E) where V = {1, 2, ..., d} such
that

• at time t ≤ 0, each vertex v ∈ V has a local time with a positive initial value
`
(v)
0 ,

• given Ft = σ{Xs, s ≤ t} and {Xt = v}, the jumping rate from v to a neigh-
bour v′ ∼ v at time t is

w
(
`(v

′) +
∫ t

0
1{Xs=v′}ds

)
,

where w : R → (0, ∞) is called a weight function. This type of history-
dependent processes is called a vertex-reinforced jump process (VRJP).

Assume w(t) = tα, for some α > 0. The jump process X is called

• strongly vertex-reinforced if α > 1,

• weakly vertex-reinforced if 0 < α < 1 and

• linearly vertex-reinforced if α = 1.

Denote as L(v, t) = `
(v)
0 +

∫ t
0 1{Xs=v}ds the local time at v up to time t for each

v ∈ V and let

Zt =
(

Z(1)
t , Z(2)

t . . . , Z(d)
t

)
:=
(

L(1, t)
t + `0

,
L(2, t)
t + `0

, ....,
L(d, t)
t + `0

)
stand for the occupation measure process on V at time t, where `0 = `

(1)
0 + `

(2)
0 +

... + `
(d)
0 . Note that Zt is a continuous process taking values on the (d − 1)

dimensional unit simplex ∆, which is defined by

∆ = {(z1, z2, ..., zd) ∈ Rd :
d

∑
j=1

zj = 1, zj ≥ 0, j = 1, 2, · · · , d}.

The model of continuous time vertex-reinforced jump processes was first con-
ceived by Wendelin Werner and later investigated by Davis and Volkov in [9]
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and [10]. In particular, these authors considered in [10] the model of linearly
VJRP on trees and finite graphs. They showed that linearly VRJP on any finite
graph is recurrent, i.e. all local times are almost surely unbounded and the
occupation measure process converges almost surely to an element in the in-
terior of ∆ as time goes to infinity. In [21], Sabot and Tarrès also obtained the
limiting distribution of the centred local times process for linearly VRJP on
any finite graph G = (V, E) with d vertices and showed that linearly VRJP is
actually a mixture of time-changed Markov jump processes. The connections
between linearly VRJP, linearly edge-reinforced random walks and random
walks in random environment as well as their applications have been recently
investigated in [12], [21], [22], [26] and [17].

From now on, we restrict our attention to the case where G is a complete
graph and w(t) = tα, α > 1, i.e. X is strongly reinforced.

Let

T∆ = {(z1, z2, ..., zd) ∈ Rd :
d

∑
j=1

zj = 0}

denote the tangent space of ∆ and e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0),...,
ed = (0, 0, ..., 0, 1) be standard unit vectors in Rd which are also vertices of ∆.

For each j ∈ V, define w(j)
t = w(L(j, t)) = L(j, t)α and wt = w(1)

t + w(2)
t + · · ·+

w(d)
t . For each fixed t ≥ 0, let At be an infinitesimal generator matrix such that

(At)i,j :=


1(i,j)∈Ew(j)

t , i 6= j;
− ∑

k∈V,(k,i)∈E
w(k)

t , i = j.

Note that

πt =

(
w(1)

t
wt

,
w(2)

t
wt

, · · · ,
w(d)

t
wt

)
is the unique invariant probability measure of At in the sense that πt At =

πt. Since πt can be rewritten as a function of Zt, we also use the notation
πt = π(Zt), where we define the function π : ∆ → ∆, such that for each
z = (z1, z2, ..., zd) ∈ ∆,

π(z) =
(

zα
1

zα
1 + · · ·+ zα

d
, · · · ,

zα
d

zα
1 + · · ·+ zα

d

)
.
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For t > 0, which is not a jumping time of Xt, we have

dZt

dt
=

1
`0 + t

(−Zt + eXt) , (9)

We can rewrite (9) as

dZt

dt
=

1
`0 + t

(−Zt + π(Zt)) +
1

`0 + t
(eXt − πt). (10)

Set t + `0 = eu and Zeu−`0 = Z̃u, we can rewrite (10) as

dZ̃u

du
= −Z̃u + π(Z̃u) + (eXeu−`0

− πeu−`0).

Let ηu := eXeu−`0
− πeu−`0 and F : ∆→ T∆ be a vector field defined by

F(z) := −z + π(z). (11)

We hence obtain the following differential equation

dZ̃u

du
= F(Z̃u) + ηu.

If the noise term ∫ t+T

t
ηudu =

∫ et+T`0

et−`0

eXu − πu

`0 + u
du

converges almost surely to 0 as t → ∞ for each T > 0, then one can expect
that the dynamics of the process Z̃ is approximately to the dynamics of the
autonomous differential equation

dz
dt

= F(z).

For an instance, let d = 3 and α = 2, we consider the reduced system of
differential equations on {(z1, z2) ∈ Rd : 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1− z1} defined
as follows

dz1

dt
= −z1 +

z2
1

z2
1 + z2

2 + (1− z1 − z2)2
, (12)

dz2

dt
= −z2 +

z2
1

z2
1 + z2

2 + (1− z1 − z2)2
. (13)

As illustrated in Figure 2, it is reasonable to believe that (Z̃(1)
t , Z̃(2)

t ) as well
as (Z(1)

t , Z(2)
t ) might converge to one of the vertices (0, 0), (0, 1), (1, 0), which

are actually stable equilibria of the system (12)-(13). It turns out that the limit
behaviour of strongly VRJP seems to be completely different from linearly
VRJP.
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Figure 2: Direction field of the system (12)-(13).

Review of Paper B

In paper B, using the method of stochastic approximation, we show the con-
nection between strongly VRJP and an asymptotic pseudo-trajectory of a vec-
tor field in order to study the dynamics of the model. In particular, we prove
that strongly VRJP on a complete graph will almost surely have an infinite
local time at one vertex, while the local times at all the remaining vertices
remain bounded.

Recall that we only consider the case when w(t) = tα, α > 1 and G is a com-
plete graph with the set of vertices V = {1, 2, ..., d}. Let F be the vector field
given by (11) and Φt(z0) stand for the unique solution of the following initial
value problem { d

dt z(t) = F(z(t)) for t > 0,
z(0) = z0.

Note that the solution Φt(z0) can be extended for all t ∈ R+. Thus the con-
tinuous map Φ : R+ × ∆ → ∆ defined by Φ(t, z) = Φt(z) is a semiflow. We
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firstly prove that

lim
t→∞

sup
0≤s≤T

∥∥∥∥∥
∫ es+t−`0

et−`0

eXu − πu

`0 + u
du

∥∥∥∥∥ = 0 a.s.

We then show that Z̃ is actually an asymptotic pseudo-trajectory of the semi-
flow Φ, i.e. for all T > 0,

lim
t→∞

sup
0≤s≤T

∥∥Z̃t+s −Φs(Z̃t)
∥∥ = 0 a.s.

Let
C = {z ∈ ∆ : F(z) = 0}

stand for the equilibria set of F. One can easily obtain that

• S = {e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., ed = (0, 0, ..., 0, 1)} is the set of
stable equilibria, and

• U = {zj1,j2,....,jk ; 1 ≤ j1 < j2 < ... < jk ≤ d, k = 2, ..., d} is the set of
unstable equilibria, where zj1,j2,....,jk stands for the point z = (z1, ...., zd) ∈ ∆
with zj1 = zj2 = ... = zjk =

1
k and all the remaining coordinates are equal to 0.

For α > 1, we notice that the semiflow Φ admits a Lyapunov function H : ∆→
R for C, which is defined by

H(z) = zα
1 + zα

2 + ... + zα
n.

By using Corollary 1.12, we conclude that Zt almost surely converges to an
equilibrium z∗ in C. In addition, we also prove that on the event {Zt → z∗},
where z∗ is a stable equilibrium, then

lim sup
t→∞

t‖Zt − z∗‖ < ∞ a.s.

Beside this, we show that for α ≥ 2, the probability that Zt converges to an
unstable equilibrium is zero. The above results implies that there exists j ∈ V
such that

lim sup
t→∞

L(j, t)→ ∞ a.s.,

while
lim sup

t→∞
L(i, t) < ∞ a.s.

for all i ∈ V \ {j}. The case for 1 < α < 2 is however still open!

21



Random walks on simplexes

Motivation

We denote as

Sd = {(z1, z2, . . . , zd) ∈ Rd : z1 + z2 + · · ·+ zd ≤ 1, zj ≥ 0, j = 1, 2, . . . , d}

the standard unit simplex in Rd, d ≥ 1. Let E0 = (0, 0, . . . , 0) be the origin
and E1 = (1, 0, . . . , 0), E2 = (0, 1, 0, . . . , 0), ..., Ed = (0, . . . , 0, 1) be standard
orthonormal basis vectors in Rd, which are also the vertices of Sd. Let p =

(p1, p2, ..., pd) be a mapping from Sd to itself so-called probability choice function.
Let us consider a random walk (Zn)n≥0 on Sd which is a Markov chain defined
as follows:

• At time n = 0, the walker stays at some initial point Z0 ∈ Sd.

• Assuming that at time n ≥ 0, the walker stays at Zn. The walker ran-
domly selects a point Θn from vertices E0, E1, . . . , Ed, where Θn is a dis-
crete random variable independent such that{

P(Θn = Ej|Zn = z) = pj(z), j = 1, 2, ..., d;
P(Θn = E0|Zn = z) = 1−∑d

j=1 pj(z) := p0(z).

• At time n + 1, the walker randomly moves from Zn to a new position
Zn+1 inside the segment ΦnZn such that

Zn+1 = (1− ξn)Zn + ξnΘn,

where ξn, n = 0, 1, 2, ... are i.i.d copies of a random variable ξ with sup-
port in [0, 1].

Note that the above-mentioned settings could be easily generalized to any
simplex in Rd. We therefore restrict the problem only on the standard unit
simplex Sd without loss of generality.

Let us consider the case where d = 1, p(z) = 1
2 for all z ∈ S1 = [0, 1] and

ξ is uniformly distributed in [0, 1]. Diaconis and Freedman in [11] showed
that the Markov chain (Zn)n≥0 has an unique stationary distribution. If this
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stationary distribution has a density f , then it should be a solution of the
following equation

f (y) =
1
2

∫ 1

y

f (x)
x

dx +
1
2

∫ y

0

f (x)
1− x

dx

for y ∈ (0, 1). Differentiating both sides, we have

f ′(y) =
1
2

(
1

1− y
− 1

y

)
f (y).

It is easy to check that f (y) = 1
π
√

1−y
is the solution of the above equation,

which is also the probability density function of the arcsine law.

A more general one-dimensional case was considered by McKinlay and Borovkov
in [16], where p(z) is piecewise continuous on [0, 1] such that

sup
z∈[0,δ]

max{p(z), 1− p(1− z)} < 1

for some δ ∈ (0, 1
2 ) and ξ is Beta(1, γ) distributed. Recall that we say a distri-

bution with support in [0,1] is Beta(a, b) if its probability density function is
given by

f (z) =
Γ(a + b)
Γ(a)Γ(b)

za−1(1− z)b−1, z ∈ (0, 1),

where Γ is the Gamma function. These authors showed that the Markov chain
(Zn)n≥0 is ergodic with the stationary density defined by

π(z) = Czγ

(
1

1− z
+

1
z

)
exp

(
−γ

∫ z

1/2
p(u)

(
1

1− u
+

1
u

)
du
)

for z ∈ (0, 1), where C is the normalizing constant. In particular, if p(z) =

β1(1− z) + (1− β2)z then the stationary distribution is Beta(β1γ, β2γ).

The multidimensional case was also discussed by Diaconis and Freedman in
[11], Sethuraman in [23] where p = (p1, p2, . . . , pd) is a vector of constants. The
ergodicity as well as the convergence to stationary distribution of the multidi-
mensional Markov chain (Zn)n≥0 in general case, where the probability choice
function p depends on Zn, however, have not been investigated yet.

We are also interested in the modified random walk model (Yn)n≥0 in the unit
interval S1 = [0, 1], which is defined as follows
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• At time n, there are potentials Ln and Rn at 0 and 1 respectively, and the
walker stays at Yn ∈ [0, 1].

• At time n + 1, with probability Ln
Ln+Rn

, the potential at 0 will increase a
value proportional to Yn, i.e. the distance from 0 to the current position
of the particle, and then the particle is pulled to a new uniformly random
position Yn+1 inside the interval (0, Yn). Otherwise, with probability

Rn
Ln+Rn

, the potential at 1 will increase a value proportional to 1 − Yn,
i.e. the distance from 1 to the current position of the particle, and then
the particle is pulled to a new uniformly random position Yn+1 inside
the interval (Yn, 1). More precisely, the new position of the walker is
defined by

Yn+1 = Yn(1− ξ
(L)
n )1{Un<

Ln
Ln+Rn } + (Yn + (1−Yn)ξ

(R)
n )1{Un>

Ln
Ln+Rn },

and the potentials Ln, Rn are defined as follows

Ln+1 = Ln + f (Yn)1{Un<
Ln

Ln+Rn },

Rn+1 = Rn + f (1−Yn)1{Un>
Ln

Ln+Rn },

where f : [0, 1] → [0,+∞) is some function; ξ
(L)
n and ξ

(R)
n , n ≥ 1, are

independent random variables taking values in [0, 1]; Un, n ≥ 1 are i.i.d
uniformly distributed random variables in [0, 1] and independent of ξ

(L)
n ,

ξ
(R)
n , Yn, n ≥ 1.

Since the probabilities jumping to the left or the right of the walker depend on
(Ln, Rn), the random walk {Yn}n≥0 is no longer a Markov chain but depends
on its history.

Assume that ξ
(L)
n = ξ

(R)
n , n ≥ 1, are independent and uniformly distributed in

[0, 1]. Let us consider the following simple cases when f : [0, 1] → [0, ∞) is a
constant:

• If f (x) = 0 for all x ∈ [0, 1], the process is reduced to the Markov model
with constant choice probability p = R0

L0+R0
. Hence, Yn weakly converges

to Beta
(

R0
R0+L0

, L0
R0+L0

)
.

• If f (x) = β > 0 for all x ∈ [0, 1], the process (Ln, Rn)n≥1 is the classical
Friedman urn with the matrix (

0 β

β 0

)
.
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It is well-known that Ln/(Rn + Ln) converges almost surely to 1/2 as
n → ∞ (see e.g. [13], Corollary 5.2). Therefore, one can show that Yn

converges in distribution to the arcsine law Beta(1/2, 1/2).

In general case, one can expect that under some conditions for the function
f , the random walk Yn might converge almost surely to some x∗ ∈ [0, 1] or
weakly converge to some non-trivial distribution.

Review of Paper C

In Paper C, we investigate the existence of stationary distribution and the con-
vergence of the multidimensional Markov chain (Zn)n≥0. In the case where
ξ is Beta distributed and p is an affine map, we prove that the limiting dis-
tributions are Dirichlet. In addition, in a special setting, we show that the
history-dependent random walk (Yn)n≥0 converges in distribution to the arc-
sine law.

To ensure the ergodicity of the Markov chain (Zn)n≥0, we need the following

Assumption 5. There are δ ∈ (0, 1
2d ) and s, t ∈ (δ1/d, 1− δ1/d), s < t such that

(i) Fξ(1− δ) := 1− η < 1;

(ii) there is an ε > 0 such that for any 1 ≤ k ≤ d and any 0 ≤ j1 < j2 < · · · <
jk ≤ d,

inf
z∈Sd :zj1+···+zjk

≤δ

k

∑
l=1

pjl (z) ≥ ε;

(iii) there is c > 0 such that for all Borel measurable subset B ⊂ [s(1− t)d−1 −
δ, t] ∪ [(1− t)d − δ, 1− s],

P(ξ ∈ B) > cλ(B),

where λ is the Lebesgue measure on [0, 1].

Let

V =
d⋃

j=0

Vj,
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where Vj =
{

z = (z1, . . . , zd) ∈ Sd : 1− δ ≤ zj ≤ 1
}

, j = 1, 2, ..., d. We define
the probability measure ϕ such that for each Borel measurable subset B ⊂ Sd,

ϕ(B) =
λd (B ∩ K)

λd (K)
,

where

K :=

{
(u1, . . . , ud) ∈ Sd : s ≤ uj

1−∑d
l=j+1 ul

≤ t, j = 1, 2, . . . , d

}
.

By verifying all conditions in Proposition 1.18 with n0 = d and V, ϕ defined as
above, we conclude that the Markov chain (Zn)n≥0 converges in distribution
if Assumption 5 is fulfilled.

In the case where ξ is Beta(1, γ) distributed and the probability choice function
p = (p1, p2, . . . , pd) is defined by

pk(z1, z2, . . . , zd) = βk(1− zk) +

(
1−

d+1

∑
j=1

β j + βk

)
zk, k = 1, 2, ..., d,

where βk > 0 and ∑d+1
j=1 β j − βk < 1 for k = 1, 2, ..., d + 1, we prove that Zn

converges in distribution to Dirichlet(β1γ, β2γ, . . . , βdγ, βd+1γ). Note that a
distribution with support in Sd is Dirichlet(α1, α2, ..., αd+1) if its probability
density function is given by

f (z1, z2, ..., zd) =
Γ
(

∑d+1
i=1 αi

)
∏d+1

i=1 Γ(αi)

(
1−

d

∑
i=1

zi

)αd+1−1 d

∏
i=1

zαi−1

for interior point (z1, z2, ..., zd) ∈ Sd. Note that the one-dimensional model
considered by McKinlay and Borovkov in [16] is a special case when d = 1,
p(z) = β1(1− z) + (1− β2)z. For the multidimensional case d ≥ 1, where
∑d+1

j=1 β j = 1, i.e. the choice probabilities are constants, we also obtain Sethura-
man’s result derived in [23].

We now return to the modified random walk (Y)n≥0. Assume that f (x) = x
for all x ∈ [0, 1] and ξ

(L)
n = ξ

(R)
n , n ≥ 1, are uniformly distributed in [0, 1]. We

show that
ζn =

Ln

Ln + Rn
→ 1

2
a.s.

as n→ ∞. Moreover, using coupling technique, we prove that Yn converges in
distribution to the arsine law Beta

( 1
2 , 1

2

)
as n→ ∞.
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Paper A

A universal result for consecutive random sub-
division of polygons

Tuan-Minh Nguyen and Stanislav Volkov

Centre for Mathematical Sciences, Lund University

Abstract

We consider consecutive random subdivision of polygons described as fol-
lows. Given an initial convex polygon with d ≥ 3 edges, we choose a point at
random on each edge, such that the proportions in which these points divide
edges are i.i.d. copies of some random variable ξ. These new points form a
new (smaller) polygon. By repeatedly implementing this procedure we obtain
a sequence of random polygons. The aim of this paper is to show that under
very mild non-degenerateness conditions on ξ, the shapes of these polygons
eventually become “flat”. The convergence rate to flatness is also investigated;
in particular, in the case of triangles (d = 3), we show how to calculate the ex-
act value of the rate of convergence, connected to Lyapunov exponents. Using
the theory of products of random matrices our paper greatly generalizes the
results of [11] which are achieved mostly by using ad hoc methods.

Keywords: Random subdivisions, products of random matrices, Lyapunov ex-
ponents.

Introduction

Many problems of consecutive random subdivision of a convex geometrical
figure have been investigated by several authors since 1980s. In [13], G. S. Wat-
son introduced the following model: given an initial triangle, one chooses a
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point on each edge by keeping the same random proportion ξ and hence ob-
taining a new triangle. If one repeats the above process with independent
identically distributed random proportions ξ(n), n = 1, 2, . . . then the limit tri-
angle vanishes to the centroid of the initial triangle. To study the shapes of
these triangles, let us rescale the newly formed in each step triangle in such a
way that the largest side has length 1. It is interesting that the “limit” of these
rescaled triangles is non-vanishing and, in fact, random. Veitch and Watson
in [12] also gave an extension for a system of points in higher dimensional
real space. With the same motivation of random triangles, Mannion in [9]
studied the situation where on each step the triangle is formed by choosing
three uniformly distributed random points inside the interior of the preceding
triangle. The sides of these triangles almost surely converge to collinear seg-
ments. Diaconis and Miclo [5] considered a triangle split by the three medians
such that one of the 6 triangles is chosen at random to replace the original
triangle. It turns out that the limiting triangle’s shape is flat. Volkov in [11]
discovered a similar phenomenon by considering a model where the new tri-
angle is formed by choosing a random point uniformly and independently on
each of the sides of the original triangle; he also studied distribution of the
“middle” point.

In the present paper, we give a generalization of Volkov’s result in [11] for all
convex polygons and nearly all non-degenerate distributions of proportions
in which the sides of the polygon are split.

Let us now formulate the model rigorously. Fix d ≥ 3 and a random vari-
able ξ whose support lies on [0, 1]. Let L0 = A(0)

1 A(0)
2 . . . A(0)

d be a convex d-

polygon (i.e., a convex polygon with d sides) in the plane, with edges A(0)
j A(0)

j+1,

j = 1, 2, . . . , d, with the convention A(1)
d+1 ≡ A(1)

1 . Randomly choose a point A(1)
j

in A(0)
j A(0)

j+1 such that |A(0)
j A(1)

j |/|A
(0)
j A(0)

j+1| = ξ j, where ξ j, j = 1, . . . , d, are
i.i.d. copies of the random variable ξ. Thus we obtain new convex poly-
gon L1 = A(1)

1 A(1)
2 . . . A(1)

d . Repeating the above process such that the random

vectors
(

ξ
(n)
1 , ξ

(n)
2 , . . . , ξ

(n)
d

)
, n = 1, 2, . . . , are i.i.d., we obtain a Markov chain

of polygons (Ln)n≥0 where Ln = A(n)
1 A(n)

2 . . . A(n)
d .

It is easy to see that the polygons Ln become smaller and smaller and even-
tually converge to a point, however the behaviour of their shapes is less clear.
To study the shapes we may, for example, place one of the vertices at the
origin (0, 0) and rescale the polygon in such a way that its longest edge has
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Figure A.1: A new smaller random pentagon L1 obtaining from the primary pentagon L0.

always length 1. We will show that under some regularity conditions on the
distribution of ξ the rescaled polygon will eventually become degenerate, i.e.
flat, in the sense that all of its vertices will be lying approximately along the
same line; observe that this is equivalent to the fact that the area of the rescaled
polygon converges to 0 as n goes to infinity.

Let l(n)j = A(n)
j A(n)

j+1, j = 1, 2, . . . , d, be the vector corresponding to the j-th

side of Ln and (x(n)j , y(n)j ) denote its Cartesian coordinates. From elementary
geometrical calculations one can obtain the following linear relation:

x(n+1) = Hn+1x(n), y(n+1) = Hn+1y(n) (A.1)

where x(n) =
(

x(n)1 , x(n)2 , . . . , x(n)d

)T

and y(n) =
(

y(n)1 , y(n)2 , . . . , y(n)d

)T

are column
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vectors, and Hn is an i.i.d. copy of the following random matrix

H = H(ξ1, . . . , ξd) =



1− ξ1 ξ2 0 . . . 0
0 1− ξ2 ξ3 . . . 0
...

...
...

. . .
...

0 0 0
. . . ξd

ξ1 0 0 . . . 1− ξd

 (A.2)

and ξ1, ξ2, . . . , ξd are i.i.d. copies of a random variable ξ. Note that ∑d
j=1 x(n)j =

0 and ∑d
j=1 y(n)j = 0. In particular,

l(n)j = ((e1, . . . , en)jH(n)x(0), (e1, . . . , en)jH(n)y(0))

where H(n) = HnHn−1 . . . H1 and (e1, . . . , en)j = (0, . . . , 0, 1, 0, . . . , 0) is 1× d
vector with 1 on the j-th place. Note also that if the original polygon is non-
degenerate then H(n)x(0) and H(n)y(0) are non-zero vectors for any n.

To ensure that Ln is a non-degenerate convex polygon and that the subdivision
is genuinely random, we need the following

Assumption 6. P(ξ ∈ {0, 1}) = 0 and the support of ξ contains at least two
distinct points in (0, 1), i.e. the distribution of ξ is non-degenerate.

We can define “thickness” of a two-dimensional object as the smallest possible
ratio between its one-dimensional projections on the two coordinate axes of a
Cartesian coordinate system (where we can orient this system arbitrarily); this
quantity always lies between 0 and 1; moreover, it equals one for a circle, and
it equals zero for any segment. The sequence of Ln converges to a “flat figure”,
or simply to “flatness”, if the sequence of its thicknesses converges to zero. In
the case of polygons, this definition is equivalent to

Definition 1.1. We say that the sequence of polygons Ln converges to a flat figure
as n→ ∞ if

lim
n→∞

A(Ln)(
maxj=1,...,d ‖l(n)j ‖

)2 = 0.

Here A(Ln) denotes the area of the polygon Ln.

The main purpose of our paper is to (partially) establish the following phe-
nomenon.
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Conjecture 1. Suppose that Assumption 6 holds, then the sequence of polygons Ln

converges to a flat figure almost surely as n→ ∞.

Further the dynamics of the random subdivisions will be formulated as a cer-
tain model related to products of random matrices and its point limit in the
projective space. Let Rd (and Cd) denote the linear space of all d-dimensional
real (complex, resp.) column vectors under the field of real (complex) num-
bers. The real (complex) projective space P(Rd) is defined as the quotient
space (Rd \ {0})/ ∼, where ∼ is the equivalence relation defined by x ∼ y,
x, y ∈ Rd if there exists a real (complex) number λ such that x = λy. We
denote x as the equivalence class of x. The projective space P(Rd) becomes a
compact metric space if we consider the following “angular” metric

δ(x, y) =

√
1− (x, y)2

||x||2.||y||2 . (A.3)

where || · || and (·, ·) are respectively the Euclidean norm and the Euclidean
scalar product on Rd. One can see that δ(x, y) is actually the sinus of the
smaller angle between the lines corresponding to x̄ and ȳ.

Next, each linear mapping A : Rd → Rd can be generalized to P(Rd) by
setting

Ax = Ax

for every x ∈ Rd \Ker(A). Let us also define

L = {v ∈ Rd : v1 + v2 + · · ·+ vn = 0}. (A.4)

Observe that since ∑d
j=1 x(n)j = 0, ∑d

j=1 y(n)j = 0, we have x(n), y(n) ∈ L.

Proposition 1.2. Suppose that

lim
n→∞

δ
(

H(n)x, H(n)y
)
= 0 (A.5)

almost surely for every x, y ∈ Ln such that (x1, y1), (x2, y2),. . . ,(xd, yd) are coordin-
ates of vectors corresponding to consecutive edges of the convex d-polygon in the real
plane. Then Ln converges to a flat figure as n→ ∞.

Proof. Using the formula for δ
(

x(n), y(n)
)

and omitting the superscript (n) for

all x(n) and y(n) for simplicity, we obtain that

δ(x, y)2 =

(
∑d

i=1 x2
i

) (
∑d

i=1 y2
i

)
−
(

∑d
i=1 xiyi

)2(
∑d

i=1 x2
i

) (
∑d

i=1 y2
i

) =
∑1≤i<j≤d(xiyj − xjyi)

2(
∑d

i=1 x2
i

) (
∑d

i=1 y2
i

) =: δn
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where δn → 0 a.s.

According to a well-know formula for the signed area A(L) of a planar non-
self-intersecting polygon L with vertices (a1, b1), . . . , (ad, bd), see [1]

2A(L) = det
(

a1 a2

b1 b2

)
+ det

(
a2 a3

b2 b3

)
+ · · ·+ det

(
ad a1

bd b1

)
.

Since we know only the coordinates of the vectors forming the edges of poly-
gon (xi, yi), i = 1, 2, . . . , d with the obvious restriction ∑d

i=1 xi = ∑d
i=1 yi = 0,

we can assume that the polygon’s vertices have the coordinates

ai = x1 + · · ·+ xi,

bi = y1 + · · ·+ yi,

i = 1, 2, . . . , d, thus yielding that ad = bd = 0 so that the last two determinants
in the formula for 2A(L) are 0, and hence

2A(L) =
d−2

∑
i=1

det
(

ai ai+1

bi bi+1

)
=

d−2

∑
i=1

det
(

ai ai + xi+1

bi bi + yi+1

)
=

d−2

∑
i=1

(aiyi+1 − bixi+1)

= [x1y2 + (x1 + x2)y3 + · · ·+ (x1 + x2 + . . . xd−2)yd−1]

− [y1x2 + (y1 + y2)x3 + · · ·+ (y1 + y2 + . . . yd−2)xd−1]

= ∑
1≤i<j≤d−1

det
(

xi yi
xj yj

)
.

Therefore the area A(Ln) of the polygon Ln satisfies

|2A(Ln)| =
∣∣∣∣∣ ∑
1≤i<j≤d−1

det
(

xi yi
xj yj

)∣∣∣∣∣ ≤ ∑
1≤i<j≤d−1

∣∣∣∣det
(

xi yi
xj yj

)∣∣∣∣
≤
√

∑
1≤i<j≤d

(xiyj − xjyi)2 =

√√√√δn

(
d

∑
i=1

x2
i

)(
d

∑
i=1

y2
i

)
.

Consequently,

A(Ln)(
maxj ‖l(n)j ‖

)2 ≤
1
2

√√√√√√δn

(
∑d

i=1 x2
i

) (
∑d

i=1 y2
i

)
(

maxj=1,...,d

[
x2

j + y2
j

])2 ≤
1
2

√
δn · d · d→ 0

since x2
i ≤ maxj=1,...,d(x2

j + y2
j ) for each i, and the same holds for yi.
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Note that L defined by (A.4) is an invariant subspace of H. Therefore, we can
restrict the linear transformation H to Rd−1 by considering only the first d− 1
coordinates of x and y respectively. One can easily deduce that the restriction
of the transformation H can be described by the (d− 1)× (d− 1) matrix

T = T(ξ1, . . . , ξd) =


1− ξ1 ξ2 0 . . . 0 0

0 1− ξ2 ξ3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1− ξd−2 ξd−1
−ξd −ξd −ξd . . . −ξd 1− ξd−1 − ξd


(A.6)

and then the linear relation (A.1) still has the same formulation in Rd−1 for T.
The condition (A.5) for the matrix (A.6) now can be restated as

Proposition 1.3. Let {Tn}n≥1 be a sequence of random matrices, which are inde-
pendent copies of the matrix T in (A.6) and let T(n) = TnTn−1....T2T1. Assume
that

lim
n→∞

δ(T(n) x̄, T(n)ȳ) = 0 (A.7)

almost surely for any x = (x1, ..., xd−1)
T, y = (y1, ..., yd−1)

T ∈ Rd−1, such that
(x1, y1), (x2, y2), ..., (xd−1, yd−1) are coordinates of d− 1 consecutive edges of a con-
vex d-polygon in the real plane. Then Ln converges to a flat figure as n→ ∞.

Proof. Basically, we need to show the following geometric fact. Suppose that
x(n) = (x(n)1 , . . . , x(n)d−1) and y(n) = (y(n)1 , . . . , y(n)d−1) are such that δn := δ(x(n), y(n))

tends to 0 as n→ ∞, then δ̃n := δ(x̃(n), ỹ(n))→ 0, where x̃(n) = (x(n)1 , . . . , x(n)d )

and ỹ(n) = (y(n)1 , . . . , y(n)d ) with x(n)d = −∑d−1
i=1 x(n)i , y(n)d = −∑d−1

i=1 y(n)i , for all n.
Observe that δn and δ̃n represent the angular distance on the spaces P(Rd−1)

and P(Rd) respectively.

Indeed, suppose that δn < ε for some very small ε > 0. Let us from now on
also omit the superscript (n) as this does not create a confusion. Without loss of
generality we can assume that ‖x‖ = ‖y‖ = 1, that is, ∑d−1

i=1 x2
i = 1 = ∑d−1

i=1 x2
i .

Denote by c = (x, y) = ∑d−1
i=1 xiyi = cos(x, y), so that c2 + δ2

n = 1. We have

δ̃2
n =

(1 + x2
d)(1 + y2

d)− (∑d
i=1 xiyi)

2

(1 + x2
d)(1 + y2

d)
=

(1 + x2
d)(1− c2) + (yd − cxd)

2

(1 + x2
d)(1 + y2

d)

≤ (1− c2) + (yd − cxd)
2 = δ2

n +

(
d−1

∑
i=1

ui

)2

(A.8)
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where u = y − cx = (y1 − cx1, . . . , yd−1 − cxd−1) is the difference between
vector y and the projection of y on x. Consequently, u is orthogonal to x
and ‖u‖2 = ‖y‖2 − ‖cx‖2 = 1 − c2 = δ2

n. By the inequality between the
quadratic and arithmetic means |∑d−1

i=1 ui|2 ≤ (d− 1)‖u‖2 hence (A.8) implies
that δ̃2

n ≤ [1 + (d− 1)]δ2
n ≤ dε2.

The rest of the paper is organized as follows. In Section 2, by applying the clas-
sical Furstenberg’s theorem for products of 2× 2 invertible random matrices,
we will show that (A.7) is fulfilled for d = 3 (Theorem 2.2). In a higher di-
mensional case, it is necessary to show that the closed semigroup generated
by the support of the random matrix T is strongly irreducible and contracting.
We will show that (A.7) holds for any odd number d > 3 in Section 3. For the
remaining case when d ≥ 4 is even, we will have to require that the random
matrix T in (A.6) is invertible almost surely. We actually believe that this extra
requirement is not really needed, however we are unable to show the result
without this extra condition. The results are summarized in Theorem 3.5. The
exponential rate of convergence of random polygons will be considered in
Section 4, see Theorems 4.3, 5.4 and 4.10.

Finally, in Section 6 we mention some generalizations of our model, as well as
open problems. Also note that throughout the the paper we denote by GL(d, R)

the group of d× d invertible matrices of real numbers and SL±(d, R) the closed
subgroup of GL(d, R) containing all matrices with determinant +1 or −1.

Random subdivision of triangles (d = 3)

Proposition 2.1. (Furstenberg’s theorem, Theorem II.4.1 in [2], page 30) Let µ

be a probability measure on GL(2, R) and Gµ be the smallest closed subgroup of GL(2, R)

which contains the support of µ. Suppose that the following hold:

(i) Gµ ⊂ SL±(2, R);

(ii) Gµ is not compact;

(iii) There does not exist any common invariant finite union of one-dimensional
subspaces of R2 for all matrices of Gµ.
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Let {Mn, n ≥ 1} be a sequence of independent random matrices with distribution µ

and x, y ∈ P(R2). Then

lim
n→∞

δ (Mn Mn−1...M1x, Mn Mn−1...M1y) = 0.

Note that when M1 is invertible almost surely and det(M1) is possibly not
equal to ±1, it is enough to verify the above conditions for the group Gµ̃

generated by all M̃ = (det M)−1/2M, where M is any invertible matrix in the
support of µ.

Theorem 2.2. Conjecture 1 is fulfilled for d = 3.

Proof. When d = 3 the random matrix T equals

T = T(ξ1, ξ2, ξ3) =

(
1− ξ1 ξ2

−ξ3 1− ξ2 − ξ3

)
where ξ1, ξ2, ξ3 are i.i.d. copies of ξ. Let µ be the probability measure associ-
ated with the random matrix T(ξ1, ξ2, ξ3) . Observe that det(T) = ξ1ξ2ξ3 +

(1− ξ1)(1− ξ2)(1− ξ3) > 0 as long as ξ1, ξ2, ξ3 ∈ (0, 1), thus T̃ = (det T)−1/2T
is a.s. well-defined. Let Gµ be the group generated by all the invertible matrices
in the support of µ and Gµ̃ be the group generated by all T̃, where T ∈
Gµ. Since det(T̃(ξ1, ξ2, ξ3)) = 1 for all possible ξ1, ξ2, ξ3 and the determin-
ant of a product of two matrices equals the product of their determinants, we
have det(T̃) = 1 for all T̃ ∈ Gµ̃. Consequently, condition (i) of Proposition 2.1
is fulfilled.

Now let us verify condition (ii), i.e. that the group Gµ̃ is not compact. From
Assumption 6 it follows that we can choose a, b ∈ supp ξ such that a, b ∈ (0, 1)
and a 6= b. Let

Q = T(a, b, a) T(a, b, b)−1 T(b, a, b) T(b, a, a)−1 =

(
1 0
t 1

)
, (A.9)

where

t = − (a− b)2

2ab + b2 − a− 2b + 1
.

Since a 6= b and 2ab + b2 − a − 2b + 1 = (a + b − 1)2 + a(1 − a) > 0 the
quantity t is well-defined and negative. Observe that Q ∈ Gµ̃ and hence

Qm =

(
1 0

mt 1

)
∈ Gµ̃
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as well. Since ||Qm|| ∼ m → ∞ as m → ∞, the group Gµ̃ is indeed not
compact.

Finally, we need to check the condition (iii) of Theorem 2.1, that is, that Gµ̃ is
strongly irreducible, or equivalently that Gµ is strongly irreducible. Suppose
the contrary, i.e. there is a union L of one-dimensional subspaces of R2 such
that T(L) = L for any T̃ ∈ Gµ̃. Let L = V1 ∪V2 ∪ · · · ∪Vk, k ≥ 1.

First, suppose that L contains a vector of the form (x, y)T such that x 6= 0.
Then at least one of Vi is the linear span of v = (1, r)T, r ∈ R; without
loss of generality let this be V1. Since Q defined by (A.9) belongs to Gµ, for
all m = 1, 2, . . . we must have Qm ∈ Gµ and thus QmL ⊆ L. The latter implies
that vm := Qmv ∈ L. However, the slopes of the vectors vm equal mt + r which
take distinct values for different values of m, therefore L cannot be a union of
a finite number of linear subspaces, leading to a contradiction.

Therefore, the only candidates for Vi can be linear spaces spanned by (0, 1)T.
To show that this is not possible either, pick any a ∈ (0, 1)T which is in the
support of ξ, then

T(a, a, a)
(

0
1

)
=

(
a

1− 2a

)
∈ L.

Hence there must be a vector in L whose first coordinate is non-zero, which
leads to the situation already considered above.

Consequently, the conditions of the Furstenberg’s theorem 2.1 are fulfilled,
implying a.s. convergence to flatness in case d = 3.

General case (d ≥ 4)

We start with a few definitions.

Definition 3.1. We say that a family H of d× d matrices is irreducible in Rd if there
exists no proper linear subspace L of Rd such that H(L) = L for all H ∈ H.

Definition 3.2. We say that a family H of d × d matrices is strongly irreducible
in Rd if there exists no union L of finite number of proper linear subspaces of Rd such
that H(L) = L for all H ∈ H.

Definition 3.3. We say a family H of d× d matrices has contraction property if
there is a sequence of elements {An}n≥1 ⊂ H such that ||An||−1An converges to a
rank one matrix.
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We will make use of the following

Proposition 3.4 (Theorem III.4.3 in [2], p. 56). Let Ai be a sequence of i.i.d. ran-
dom matrices in GL(d, R) with common distribution µ. Let Sµ be the smallest closed
semigroup generated by its support. Suppose that Sµ ⊂ GL(d, R) is strongly irredu-
cible and contracting. Then for any x, y ∈ P(Rd)

lim
n→∞

δ(An . . . A1x, An . . . A1y) = 0 a.s.

Note that, when A1 is only invertible almost surely, it is enough to verify the
strong irreducibility and contraction condition for the semigroup S̃µ generated
by all Ã = (|det A|)−1/d A, where A is any invertible matrix in the support
of µ. In our case the measure µ corresponds to random matrices of type T =

T(ξ1, ..., ξd) defined by (A.6). Observe that

det(T) =
d

∏
i=1

(1− ξi)− (−1)d
d

∏
i=1

ξi.

Thus we have |det(T)| ≤ 2; also obviously det(T) > 0 almost surely for any
odd d ≥ 3; however, if d is an even number, we need the following invertibility

Assumption 7. If d is an even number, we assume that

d

∏
i=1

1− ξi

ξi
6= 1

almost surely.

The main result of this Section is

Theorem 3.5. Conjecture 1 is fulfilled for all odd d ≥ 3, and under Assumption 7
also for all even d ≥ 4.

From now on we will suppose that Assumption 7 is in fact fulfilled. As a
result, we can always choose a, b ∈ supp (ξ) such that a 6= b, a, b ∈ (0, 1)
and T(a1, a2, ...., ad) is invertible for all sequences a1, a2, ..., ad where each ai ∈
{a, b}. Let Sa,b stand for the smallest closed semigroup which contain all of
the following matrices

|det T(a1, a2, ...., ad)|−1/dT(a1, a2, ...., ad),

43



with a1, a2, ..., ad ∈ {a, b}. We will show that Sa,b ⊆ Sµ is strongly irredu-
cible and contracting, hence so is Sµ itself. Then the result of Theorem 3.5
will immediately follow from Proposition 1.3 and 3.4, provided we check the
condition of the latter statement (and this is done in turn in Propositions 3.8
and 3.12 below).

Irreducibility

Proposition 3.6. Suppose that Assumptions 6 and 7 hold. Then the family of
matrices

{T(a1, a2, ..., ad)}a1,a2,...,ad∈{a,b}

is irreducible in Rd−1.

Proof. Observe that, if W is a real proper invariant subspaces of linear oper-
ator A then W̃ = {w′ + iw′′ : w′, w′′ ∈ W} is also a complex proper invariant
subspaces of A. Thus we can complete the proof by proving the irreducibility
in Cd−1.

From now on, let us denote

Ta = T(a, a, ..., a) and Ta,b;k = T(a1, a2, ..., ad)|ak=b, aj=a,j 6=k. (A.10)

Note that Ta has eigenvectors given by

v1 =


1
ε

ε2

...
εd−2

 , v2 =


1
ε2

ε4

...
ε2(d−2)

 , . . . , vd−1 =


1

εd−1

ε(d−1)2

...
ε(d−1)(d−2)

 (A.11)

where ε = e2πi/d is the d−th root of 1; one can easily conclude that these d− 1
eigenvectors are linearly independent in Cd−1, and correspond to eigenval-
ues λl = 1− a + aεl , l = 1, 2, . . . , d− 1 respectively.

Let us prove that all complex proper invariant subspaces of Ta are given by
the linear spans of 2n − 2 non-trivial subsets of {v1, . . . , vd−1}, and only by
them. First of all, suppose V = span(vk1 , vk2 , . . . , vkm) where 1 ≤ k1 < k2 <

· · · < km ≤ d− 1 and m ∈ {1, 2, . . . , d− 1}. Since Tavkl = λkl vkl and λkl 6= 0,
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1 ≤ l ≤ m, we conclude that span(Tavk1 , . . . , Tavkm) = V and hence Ta(V) = V
and thus V is indeed invariant.

On the other hand, suppose V is an invariant subspace of Ta, that is Ta(V) =

V. Since v1, . . . , vd−1 form a basis, any vector w ∈ V can be written as

w = q1vk1 + q2vk2 + · · ·+ qmvkm

where all ql 6= 0. Since V is an invariant subspace, Taw ∈ V, consequently

w′ = q′2vk2 + · · ·+ q′mvkm = q2(λk2 − λk1)vk2 + . . . qm(λkm − λk1)vkm

= Ta;aw− λk1 w ∈ V

with all q′l 6= 0 since all λ’s are distinct. Continuing this by induction, we will
obtain that vkm ∈ V, and hence vkm−1 ∈ V, . . . , vk1 ∈ V. Therefore, V contains
all those vk for which the projection of some vector w ∈ V on vk has a non-
zero coefficient. At the same time the span of all these vk will contain all those
vectors w, hence V is the span of a subset of {v1, . . . , vd−1}.

Next we will show that at the same time no proper invariant subspace V =

span(vk1 , vk2 , . . . , vkm) of Ta can be also an invariant subspace of Ta,b;k, k =

1, 2, ..., d. First, define the sequence of vectors u1, . . . , ud ∈ Rd−1 by

u1 =



1
0
0
...
0
0


, u2 =



−1
1
0
...
0
0


, u3 =



0
−1
1
...
0
0


, . . . , ud =



0
0
0
...
−1
1


. (A.12)

We must have Ta,b;1vr ∈ V for all r ∈ {k1, k2, . . . , km}, hence

(a− b)u1 = Ta,b;1vr − λrvr ∈ V

Now, by using the fact that

(Ta,b;k − Ta)vr = (a− b)εr(k−1)uk ∈ V

for k = 1, 2, . . . , d we obtain that u1, u2, . . . , ud ∈ V. Note that u2, u3, . . . , ud are
linearly independent, hence V = span(u2, . . . , ud) ≡ Rd−1. This contradiction
completes the proof.
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Strong irreducibility

We already know from Proposition 3.6 that Sa,b is irreducible. Now we aim to
show its strong irreducibility.

Lemma 3.7. If Sa,b is irreducible but not strongly irreducible in Rd−1, then there
exist proper linear subspaces V1, V2, ..., Vr of Rd−1 such that

Rd−1 =
r⊕

j=1

Vj where r > 1, Vi ∩Vj = {0} if i 6= j,

where all the subspaces Vj have the same dimension, and

M(∪r
j=1Vj) = ∪r

j=1Vj,

for all M ∈ Sa,b.

Proof of Lemma 3.7. See the remark and the equation (2.7) on pp. 121–122 of [6].

Proposition 3.8. Suppose that Assumptions 6 and 7 hold. Then the semigroup Sa,b
is strongly irreducible.

Proof. For a real linear space W ⊂ Rd−1, we define

W̃ = {w′ + iw′′, w′, w′′ ∈W} ⊂ Cd−1,

which is also a complex linear subspace of Cd−1.

We already know that the semigroup Sa,b is irreducible in Rd−1. Suppose Sa,b
is not strongly irreducible in Rd−1. Then it implies from Lemma 3.7 that there
exist proper linear space V1, V2, ..., Vr ⊂ Rd−1 such that

Cd−1 =
r⊕

j=1

Ṽj,

where Ṽj are disjoint linear subspaces of the same dimension, say m, and

M(∪r
j=1Ṽj) = ∪r

j=1Ṽj,

for all M ∈ Sa,b.
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The rest of the proof is organized as follows. First, we show irreducibility in
the case m > 1. The case when m = 1 is split further in the sub-cases including
the one where k = 2 and k ≥ 3, and yet further sub-sub-case where k = 4.

Observe also that from Lemma III.4.5.b in [2] it follows that for each j ∈
{1, 2, . . . , d − 1}, we have TaṼj = Ṽk for some k = k(j). Suppose k(j) 6= j
for all j. Let e1, . . . , ed−1 be the basis Cd−1 such that e1, . . . , em is the basis of V1,
em+1, . . . , em+m is the basis of V2, etc. In this basis Ta will be a traceless matrix
since all the Vj are disjoint. The property of being traceless is invariant with
respect to changing the basis as tr(PAP−1) = tr(A). However, in the original
basis tr(Ta) = (1− a)(d− 1)− a 6= 0 unless a = d−1

d , but in this case we can
replace a by b 6= a, so we get a contradiction.

Thus we have established that k(j) = j for some j; w.l.o.g. let us assume
that j = 1 and consequently TaV1 = V1. From the arguments in Proposition 3.6
we know that V1 is a linear span of some subset of vk’s from (A.11), that
is V1 = span{w1, . . . , wm} where wj = vrj , for some subset {r1, . . . , rm} ⊂
{1, 2, . . . , d− 1}. By denoting εj := εrj , some d-th root of 1, we get that wj =(

1, εj, . . . , εd−2
j

)T

. Let uk be defined as in (A.12). Then

Ta,b;kwj = λrj wj + (a− b)εk−1
j uk.

For every k, we must have Ta,b;kV1 = Vj for some j = j(k). Now suppose that
there is no k such that Ta,b;kV1 = V1. Recall that V1 = span(w1, . . . , wm). Let

V ′k = Ta,b;kV1 = span({λrj wj + ckuk, j = 1, . . . , m})

where ck = (a− b)εk−1
j 6= 0 for k = 1, 2, . . . , d− 1−m. Observe that at the same

time V ′k = Vq for some q = q(k), so that the collection V ′k , k = 1, . . . , d− 1−m,
is some subset of V1, . . . , Vr, possibly with repetitions.

Let us show that w1, . . . , wm, u1, ..., ud−1−m are linearly independent. Indeed, to
establish the rank of the matrix of d− 1 vectors w1, . . . , wm, u1, u2, . . . , ud−1−m
observe that
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det



1 1 . . . 1 1 −1 0 . . . 0
ε1 ε2 . . . εm 0 1 −1 . . . 0
ε2

1 ε2
2 . . . ε2

m 0 0 1 . . . 0
...

...
. . .

...
...

...
...

. . .
...

εd−m−2
1 εd−m−2

2 . . . εd−m−2
m 0 0 0 . . . 1

...
...

. . .
...

...
...

...
. . .

...
εd−2

1 εd−2
2 . . . εd−2

m 0 0 0 . . . 0


= det

εd−m−1
1 εd−m−1

2 . . . εd−m−1
m

...
...

. . .
...

εd−2
1 εd−2

2 . . . εd−2
m



= εd−m−1
1 · · · · · εd−m−1

m · det

 1 1 . . . 1
...

...
. . .

...
εm−1

1 εm−1
2 . . . εm−1

m


=

m

∏
j=1

εd−m−1
j · ∏

1≤j<k≤m
(εj − εk) 6= 0

since this is a Vandermonde matrix. This, in turn, implies that the sub-
spaces V1, V ′1, V ′2, . . . , V ′d−m−1 are all pairwise distinct; otherwise there would
be a vector which at the same time belongs to span({λrj wj + ckuk, j = 1, . . . , m})
and span({λrj wj + clul , j = 1, . . . , m}) for k 6= l, yielding linear dependence
for the set w1, . . . , wm, uk, ul which is impossible.

On the other hand, it implies that the dimension of V1⊕V ′1⊕ · · · ⊕V ′d−m is m×
(d − 1 − m) > d − 1 unless m = 1, yielding a contradiction that this is a
subspace of Rd−1.

Thus now we have to deal only with the case m = 1. In this case, all the
spaces V1, V2, . . . , Vd−1 are one-dimensional, moreover, by letting ν = ε1

w1 = (1, ν, . . . , νd−2)T,

V1 = span(w1),

V ′k := Ta,b;kV1 = span(λr1 w1 + ckuk), k = 1, 2, . . . , d− 1,

and V ′ks are some subset of V2, . . . , Vd−1 (if V ′k = V1 for some k then uk ∈
span(w1) which is impossible for d ≥ 4). If all the elements of the set V1, V ′1,
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. . . , V ′d−1 are distinct (we know that then they must be linearly independent
since Rd−1 = V1 ⊕ V2 ⊕ · · · ⊕ Vd−1) this would yield a contradiction as our
space is only (d− 1)-dimensional.

Observe that

det(w1, u2, u3, . . . , ud−1) = det



1 −1 0 . . . 0
ν 1 −1 . . . 0
ν2 0 1 . . . 0
...

...
...

. . .
...

νd−2 0 0 . . . −1
νd−1 0 0 . . . 1


= 1 + ν + · · ·+ νd−2 =

1− νd−1

1− ν
=
−1
ν
6= 0

since νd ≡ εd
1 = 1. This implies that the vectors w1, u2, u3, . . . , ud−1 are linearly

independent and hence it is impossible that V ′k = V ′h for some k, h ∈ {2, . . . , d−
1} such that k 6= h.

So the only not covered case is when V ′1 coincides with some V ′k , k = 2, . . . , d−
1, implying a linear dependence between w1, u1 and uk. However, if k = 2,
then

rank(w1, u1, uk) = rank

 1 ν ν2 . . . νd−2

1 0 0 . . . 0
−1 1 0 . . . 0


= 1 + rank

(
ν ν2 . . . νd−2

1 0 . . . 0

)
= 3

since ν2 6= 0. Finally, if k ≥ 3, then

rank(w1, u1, uk) = rank

1 ν . . . νk−2 νk−1 νk . . . νd−2

1 0 . . . 0 0 0 . . . 0
0 0 . . . −1 1 0 . . . 0


= 1 + rank

(
ν . . . νk−2 νk−1 νk . . . νd−2

0 . . . −1 1 0 . . . 0

)
= 3

unless simultaneously d = 4, k = 3 and ν = ε1 = −1.
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Finally, to deal with the case d = 4 and ε1 = −1, observe that

T(ξ1, ξ2, ξ3, ξ4) =

1− ξ1 ξ2 0
0 1− ξ2 ξ3

−ξ4 −ξ4 1− ξ3 − ξ4

 , w1 =

 1
−1
1

 = e1 − e2 + e3

where e1, e2, e3 are the standard basis vectors for R3. Let us consider

w∗1 := T(a, a, b, a)w1 = (1− b− a)w1 + (b− a)e1,

w∗2 := T(a, b, b, a)w1 = (1− b− a)w1 + (b− a)e2,

w∗3 := T(a, b, a, a)w1 = (1− b− a)w1 + (b− a)e3.

Then, in the standard Euclidean coordinates,

A := [w∗1 , w∗2 , w∗3 ] =

 1− 2a b + a− 1 1− b− a
1− b− a 2b− 1 1− b− a
1− b− a b + a− 1 1− 2a

 ,

and

det(A) = (b− a)2(1− 2a).

From Assumptions 6 and 7 it follows that w.l.o.g. we can chooses a and b such
that a 6= 1/2, a 6= b, and a + b 6= 1, implying that the above determinant is
non-zero. Thus we obtain that the three subspaces span by w∗1 , w∗2 , w∗3 are
linearly independent in R3 again yielding a contradiction.

Contracting property

Here we need to show that the semigroup Sa,b is strongly irreducible and
contracting. While in general it is not easy to verify the contraction property
of a semigroup, thanks to the following important statement by Goldsheid
and Margulis in [7], it suffices to check this property for the Zariski closure
of Sa,b (which is easier).

Definition 3.9. Zariski closure of a subset H of an algebraic manifold is the smallest
algebraic submanifold that contains H.

Proposition 3.10 (Lemma 3.3 in [7]). The Zariski closure Zr(H) of a closed semig-
roup of H ⊂ GL(d, R) is a group.
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Proposition 3.11 (Lemma 6.3 in [7]). If a closed semigroup H ⊂ GL(d, R) is
strongly irreducible and its Zariski closure Zr(H) has the contraction property then H
also has the contraction property.

Proposition 3.12. Suppose that Assumptions 6 and 7 hold. Then the semigroup Sa,b
is contracting.

Proof. According to Proposition 3.11 it is sufficient to show that Zr(Sa,b) is
contracting, since we have already established that Sa,b and hence Zr(Sa,b) is
strongly irreducible by Proposition 3.8. Note that T−1 ∈ Zr(Sa,b) for any T ∈
Sa,b, since the Zariski closure is necessary a group by Proposition 3.10. We
consider two separate cases.

Case d = 2l + 1 is odd. Define

M = T(a, b, . . . , a, b, a) T(a, b, . . . , a, b, b)−1T(b, a, . . . , b, a, b) T(b, a, . . . , b, a, a)−1

∈ Zr(Sa,b)

After some algebraic computations, one can obtain that

M =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
ϕ1 ϕ2 . . . ϕ2l−1 1

 ,

where

ϕ2j−1 = − (a− b)2 ((1− a)(1− b))l−j (ab)j−1

(1− a)l(1− b)l+1 + albl+1 , and ϕ2j = 0, j = 1, 2, ..., l.

Hence

Mn =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
nϕ1 nϕ2 . . . nϕ2l−1 1

 ∈ Zr(Sa,b).

It implies that ‖Mn‖ ≈ Const · n hence ||Mn||−1Mn converges to a matrix
whose first d− 2 rows are zero rows, and thus Zr(Sa,b) is contracting by defin-
ition.
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Case d = 2l is even. Define

M = T(a, a, . . . , a, a, a, a) T(a, a, . . . , a, a, a, b)−1

=


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
c1 c2 . . . cd−1 c(a, b)


where c1 = c1(a, b), . . . , cd−1 = cd−1(a, b) are some constants depending on a
and b, and c(a, b) = det T(a, . . . , a, a)/ det T(a, . . . , a, b); observe also that

det T(a, . . . , a, a) = (1− a)d − ad

det T(a, . . . , a, b) = (1− a)d − ad + (a− b)[(1− a)d−1 + ad−1]

Assume initially that |c(a, b)| > 1, then

Mn =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
Anc1 Anc2 . . . Ancn−1 c(a, b)n


where An = 1 + c(a, b) + c(a, b)2 + ... + c(a, b)n−1, so that ||Mn|| ≥ const ×
c(a, b)n → ∞ and thus ||Mn||−1Mn converges to a matrix whose first d − 2
rows are zeros. If |c(a, b)| < 1 then we can consider M−1 instead of M, which
has the form

M−1 =

1 0 . . . 0
...

...
. . .

...
∗ ∗ . . . c(a, b)−1

 ∈ Zr(Sa,b)

and then apply exactly the same arguments as when |c(a, b)| > 1. Note
that c(a, b) 6= 1 since a 6= b, so we only have to consider the case when c(a, b) =
−1.

We have c(a, b) 6= c(b, a) since a 6= b. Hence, w.l.o.g. we can assume that
c(a, b) 6= −1. So in all the cases, either ||Mn||−1Mn or ||M−n||−1M−n con-
verges to a rank one matrix as n→ ∞.
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Convergence rate of random polygons

Convergence rate of rescaled polygons to flatness

Throughout the rest of the paper we use the notation log+(x) := max{log x, 0}.

Let `(T) = max(log+(||T||), log+(||T−1||)). In this section, we suppose that
Assumptions 6 and 7 as well as the following condition hold

E `(T) < ∞. (A.13)

Let T1, T2, .... be a sequence of random matrices having the same distribution
as T. We define Lyapunov exponents

µj = lim
n→∞

E

(
1
n

log σ
(n)
j

)
, j = 1, 2, ..., d− 1 (A.14)

where σ
(n)
1 ≥ σ

(n)
2 ... ≥ σ

(n)
d−1 are the singular values of T(n) = TnTn−1 . . . T1, i.e.,

the square roots of the eigenvalues of
(

T(n)
)T

T(n). Therefore, from the proof

of Proposition III.6.4 in [2] (pp. 67–68), for any x, y ∈ P(Rd−1)

lim
n→∞

1
n

log δ(T(n)x, T(n)y) ≤ µ2 − µ1 < 0 a.s. (A.15)

Lemma 4.1. Let ξ1, ξ2, . . . , ξd ∈ [0, 1]. Then

d

∏
i=1

ξi(1− ξi) ≤ ξ1ξ2 . . . ξd + (1− ξ1)(1− ξ2) . . . (1− ξd) ≤ 1.

Proof. The upper bound follows from the fact that it is equal to probability to
get either all heads or all tails in an experiment with throwing d independent
coins each with probability to turn up head equal to ξi, i = 1, 2, . . . , d. To get
the lower bound observe that for d = 1, 2, . . . we have

d

∏
i=1

ξi +
d

∏
i=1

(1− ξi) ≥
[

d−1

∏
i=1

ξi +
d−1

∏
i=1

(1− ξi)

]
· ξd(1− ξd)

and since the statement is true for d = 1, we have proved the proposition.

As it is implied from the following proposition, we can reformulate the re-
quirement (A.13) as
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Assumption 8.

E log (|det(T)|) = E log

∣∣∣∣∣ d

∏
i=1

(1− ξi)− (−1)d
d

∏
i=1

ξi

∣∣∣∣∣ > −∞.

Proposition 4.2. Condition (A.13) holds if and only if Assumption 8 is fulfilled.

Proof. Noticing that all the elements of T are bounded, and using the formula
for inversion of matrices we obtain that

||T|| ≤ C1, ||T−1|| ≤ C2

|det(T)| (A.16)

where Ci, i = 1, 2, . . . here and further in the text denote some non-random
positive constants. Let σ1 ≥ σ2 ≥ . . . σd−1 > 0 be the singular values of
matrix T, that is, the square roots of the eigenvalues of TTT, arranged in the
decreasing order. Then ||T−1|| = 1/σd−1. On the other hand, using the fact
that there is a unitary matrix U such that UT(TTT)U is a diagonal matrix with
elements σ2

i , we obtain that

det(T) = σ1σ2 . . . σd−1 ≥ (σd−1)
d−1

so that
||T−1|| = 1

σd−1
≥ 1

|det(T)| 1
d−1

.

On the other hand it is easy that

det(T) =
d

∏
i=1

(1− ξi)− (−1)d
d

∏
i=1

ξi

which is always non-negative for odd d, but can be positive as well as negative
for even d; in both cases |det(T)| ≤ 1, as it easily follows from Lemma 4.1.
Consequently,

log+
(
||T−1||

)
≤ log+

(
C2

|det(T)|

)
≤ log+

(
C2 + 1
|det(T)|

)
≤ log

(
1

|det(T)|

)
= − log (|det(T)|) ,

log+
(
||T−1||

)
≥ log+

(
1

|det(T)| 1
d−1

)
≥ − 1

d− 1
log (|det(T)|) .

Since log+ ||T|| is bounded above by some constant, the statement of the pro-
position follows.
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Notice that since

µ1 + µ2 + ... + µd−1 = E(log |det(T)|) (A.17)

all Lyapunov exponents µj, j = 1, 2, ..., d− 1 are finite if and only if Assump-
tion 8 is fulfilled. Therefore, using (A.15), we can deduce the following

Theorem 4.3. Suppose that Assumptions 6, 7 and 8 hold. Then the sequence of
polygons Ln converges to flatness with at least exponential rate with parameter µ =

µ1 − µ2 ∈ (0, ∞)

Now let us give an “easier” sufficient condition for Assumption 8 which de-
pends only on the distribution of one ξ.

Proposition 4.4. Suppose that d = 3, 5, . . . is odd. If E | log ξ| < ∞ and E | log(1−
ξ)| < ∞ then Assumption 8 is fulfilled. A sufficient condition for these expectations
to be finite is

lim sup
v↓0

P(ξ < v)
vα

< ∞ and lim sup
v↑1

P(ξ > v)
(1− v)α

< ∞ (A.18)

for some α > 0.

Remark 4.5. Note that when d is even we would not be able to bound |det(T)|
from below by the products of ξi(1− ξi) as easily as it is done in the following proof.
Indeed, if we let all ξi = 1/2 then det(T) = 0 while all ξi(1− ξi) = 1/4 > 0.

Proof of Proposition 4.4. The first part of the statement follows immediately
from Lemma 4.1 since

E log |det(T)| = E log

[
d

∏
i=1

ξi +
d

∏
i=1

(1− ξi)

]

≥ E log

[
d

∏
i=1

ξ(1− ξi)

]
=

d

∑
i=1

(E log ξi + E log(1− ξi)) .

To prove the second part, note that

E | log ξ| ≤ 1 + E
[
| log ξ| · 1ξ<e−1

]
= 1 +

∫ ∞

0
P
(
−(log ξ) · 1ξ<e−1 > u

)
du

= 1 +
∫ 1

0
· · ·+

∫ ∞

1
. . .

= 1 +
∫ 1

0
P (eξ < 1) du +

∫ ∞

1
P (− log ξ > u) du

= 1 + P (eξ < 1) +
∫ e−1

0

P (ξ < v)
v

dv < ∞
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since
P (ξ < v)

v
≤ const

v1+α

for sufficiently small v. The expectation E | log(1− ξ)| is bounded in exactly
the same way.

An interesting example is when ξ has a uniform distribution, as in the pa-
per [11].

Proposition 4.6. If the distribution of ξ is uniform on [0, 1] then Assumption 8 is
fulfilled for all d ≥ 3.

Proof. The case when d is odd immediately follows from Proposition 4.4 so we
assume that d is even. We have

E log |det T| =
∫ 1

0
· · ·

∫ 1

0
log |(1− x1) . . . (1− xd)− x1 . . . xd| dx1 . . . dxd

=
∫ 1

0
· · ·

∫ 1

0
log (x1 . . . xd) dx1 . . . dxd

+
∫ 1

0
· · ·

∫ 1

0
log
∣∣∣∣1− 1− x1

x1
. . .

1− xd

xd

∣∣∣∣ dx1 . . . dxd

= −d +
∫ ∞

0
· · ·

∫ ∞

0

log |1− u1 . . . ud|
(1 + u1)2 . . . (1 + ud)2 du1 . . . dud

= −d +
∫ ∞

0
· · ·

∫ ∞

0

u1 . . . ud−1

(1 + u1)2 . . . (1 + ud−1)2

×
(∫ ∞

0

log |1− v|dv
(u1 . . . ud−1 + v)2

)
du1 . . . dud−1

where the inner integral∫ ∞

0

log |1− v|dv
(u1 . . . ud−1 + v)2 =

(∫ 1/2

0
+
∫ 3/2

1/2
+
∫ 2

3/2
+
∫ ∞

2

)
log |1− v|

(u1 . . . ud−1 + v)2 dv

≥
∫ 1/2

0

− log 2
(u1 . . . ud−1 + v)2 dv +

∫ 3/2

1/2

log |1− v|
(u1 . . . ud−1 + 1/2)2 dv

+
∫ 2

3/2

− log 2
(u1 . . . ud−1 + v)2 dv + 0

≥
∫ ∞

0

− log 2
(u1 . . . ud−1 + v)2 dv +

∫ 3/2

1/2

log |1− v|
(u1 . . . ud−1 + 1/2)2 dv

= − log 2
u1 . . . ud

+− 1 + log 2
(u1 . . . ud−1 + 1/2)2 .
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Consequently,

E log |det T|

≥ −d− log 2
∫ ∞

0
· · ·

∫ ∞

0

du1 . . . dud−1

(1 + u1)2 . . . (1 + ud−1)2

−
∫ ∞

0
· · ·

∫ ∞

0

(1 + log 2)[u1 . . . ud−1]du1 . . . dud−1

(1 + u1)2 . . . (1 + ud−1)2(1/2 + [u1 . . . ud−1])2

≥ −d−
[

log 2 +
1 + log 2

2

] ∫ ∞

0
· · ·

∫ ∞

0

du1 . . . dud−1

(1 + u1)2 . . . (1 + ud−1)2

> −∞

since a/(1/2 + a)2 ≤ 1/2 for a ≥ 0.

The next statement shows that there are, in fact, examples of distributions for
which Assumption 8 is not fulfilled.

Proposition 4.7. Suppose ξi are i.i.d. with density

f (x) =



c
x log1+δ x

, 0 < x ≤ 1/2;

c
(1− x) log1+δ(1− x)

, 1/2 < x < 1;

0, otherwise

where δ ∈ (0, 1/2] and c = c(δ) ∈ (0, ∞) is the appropriate constant. Then As-
sumption 8 is not satisfied.

Proof. Assuming d is odd and noticing that f (1− y) = f (y) and that

x1 . . . xd + (1− x1) . . . (1− xd) ≤ 1,

by Lemma 4.1 we have
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E log |det T|

=
∫ 1

0
· · ·

∫ 1

0
log (x1 . . . xd + (1− x1) . . . (1− xd)) f (x1) . . . f (xd)dx1 . . . dxd

≤
∫ 1

0
· · ·

∫ 1

0
log (x1x2 + (1− x1)(1− x2)) f (x1) . . . f (xd)dx1 . . . dxd

=
∫ 1

0

∫ 1

0
log(x(1− y) + y(1− x)) f (x) f (y)dx dy

≤
∫ 1/2

0

∫ 1/2

0
log(x + y− xy) f (x) f (y)dx dy

≤
∫ 1/2

0

∫ 1/2

0
log(x + y) f (x) f (y)dx dy

=
∫ 1/2

0

∫ 1/2

0

log(x + y)
(x log1+δ x)(y log1+δ y)

dx dy

=
∫ ∞

log 2

∫ ∞

log 2

log(e−u + e−v)

u1+δv1+δ
du dv = 2

∫ ∞

log 2

∫ ∞

log 2

log(e−u + e−v)

u1+δv1+δ
1u>v du dv

≤ 2
∫ ∞

log 2

(∫ ∞

log 2

log(2e−v)

u1+δv1+δ
1u>v du

)
dv =

2
δ

∫ ∞

log 2

log(2)− v
v1+2δ

dv = −∞

since δ ≤ 1/2. The case when d is even can handled similarly.

The next statement shows how quickly the lengths of the largest side of the
polygon converge to zero.

Lemma 4.8. Suppose that Assumptions 6, 7, 8 are fulfilled. Let

Mn = max
j=1,...,d

‖l(n)j ‖ (A.19)

be the length of the largest side of Ln. Then

lim
n→∞

1
n

log(Mn) = µ1 a.s.

Proof. First of all, observe that by the triangle inequality

max
j=1,...,d−1

‖lj‖ ≤ max
j=1,...,d

‖lj‖ ≤ max
{
‖l1‖+ · · ·+ ‖ld−1‖, max

j=1,...,d−1
‖lj‖

}
≤ (d− 1) max

j=1,...,d−1
‖lj‖
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so it suffices to prove the statement of the lemma for the first d− 1 sides of Ln,
i.e., we can redefine just inside of this proof Mn as max{‖l(n)1 ‖, ‖l

(n)
2 ‖, . . . , ‖l(n)d−1‖}.

Also, to avoid confusion, in this proof we will denote by ‖ · ‖(k) the Euclidean
norm in Rk, while ‖ · ‖ is just a Euclidean norm in R2. By applying The-
orem III.7.2.i (pp. 72) in [2], we obtain

lim
n→∞

1
n

log ‖T(n)x‖(d−1) = lim
n→∞

1
n

log ‖Tn...T2T1x‖(d−1) = µ1 (A.20)

for each x ∈ Rd−1 \ {0}. Now recall that the coordinates of l(n)j ∈ R2 are the j-

th coordinates of x(n) = T(n)x(0) and y(n) = T(n)y(0) respectively. Omitting the
superscript (n), we have

‖lj‖2 = x2
j + y2

j , ‖x‖2
(d−1) = x2

1 + · · ·+ x2
d−1, ‖y‖2

(d−1) = y2
1 + · · ·+ y2

d−1,

so

‖x‖2
(d−1)

d− 1
≤ max

j=1,...,d−1
x2

j ≤ max
j=1,...,d−1

‖lj‖2 ≤ x2
1 + · · ·+ x2

d−1 + y2
1 + · · ·+ y2

d−1

= ‖x‖2
(d−1) + ‖y‖2

(d−1).

Together with (A.20) this immediately implies

lim sup
n→∞

1
n

log max{‖l(n)1 ‖, ‖l
(n)
2 ‖, . . . , ‖l(n)d−1‖} = µ1.

Convergence rate of polygon vertices

The purpose of this Section is to calculate the exact speed of convergence
of (not rescaled) polygons Ln to a random point in the plane in the general
case d ≥ 3, under some conditions.

Let (a(n)j , b(n)j ), j = 1, 2, ..., d, be the Cartesian coordinates of vertices A(n)
d ,

A(n)
1 , A(n)

2 ,..., A(n)
d−1 respectively – please note the unusual enumeration of the

coordinates, which we do in order to use the same notation for matrix H given
by (A.2). We have the following linear relation

a(n) = HT
n+1a(n−1), b(n) = HT

n+1b(n−1)

where a(n) =
(

a(n)1 , a(n)2 , ..., a(n)d

)
, b(n) =

(
b(n)1 , b(n)2 , ..., b(n)d

)
. We will make use

of the following
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Proposition 4.9 (Theorem 4 in [10]). Let (Xk)k≥1 be a sequence of i.i.d. ran-
dom stochastic d × d matrices such that Xn0 Xn−1...X2X1 is a positive matrix with
a positive probability for some n0 < ∞. Then there exists a random nonegative vec-
tor W = (w1, w2, ..., wd) such that w1 + w2 + ... + wd = 1 and

XnXn−1...X2X1 → 1TW

almost surely as n → ∞, where 1 = (1, 1, ..., 1). Moreover, if V = (v1, ..., vd) is a
random non-negative vector such that v1 + v2 + ...vd = 1, V is independent of X1

then VX1 = V in distribution if and only if V = W in distribution.

Theorem 4.10. Suppose that Assumptions 6 and 8 hold then the polygon Ln con-
verges almost surely to a random point P inside the initial polygon L0 such that

max
j=1,2,...,d

‖PA(n)
j ‖ ∼ Ceµ1n

almost surely as n → ∞, in the sense that 1
n log

(
max ‖PA(n)

j ‖
)
→ µ1 where µ1 is

defined in (A.14).

Proof. By Assumption 6 we have that HT
d HT

d−1...HT
2 HT

1 is almost surely a pos-
itive stochastic matrix. Therefore, from Proposition 4.9 it follows that there
exists a random non-negative vector ζ = (ζ1, ..., ζd) such that ζ1 + ... + ζd = 1
for which

a(n) →
(

ζ1a(0)1 + ... + ζda(0)d

)
1

and
b(n) →

(
ζ1b(0)1 + ... + ζdb(0)d

)
1

almost surely as n→ ∞. It implies that the sequence of polygon Ln converges
to a random point P defined by the following vector identity

OP = ζ1OA(0)
d + ζ2OA(0)

1 + ... + ζdOA(0)
d−1

where O = (0, 0) is the origin of the Cartesian plane. (Observe that if ξi
is Beta(α, β) distributed on (0, 1) then ζ = (ζ1, ..., ζd) is a Dirichlet distributed
random vector with parameters (α + β, α + β, ..., α + β). )

Since

‖PAj‖ < ‖Ad A1‖+ ‖A1A2‖+ ... + ‖Ad−1Ad‖ ≤ d× max
k=1,2,...,d

‖Ak Ak+1‖.
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and on the other hand, for each k = 1, 2, ..., d, we have

max
j=1,2,...,d

‖PAj‖ ≥
1
2
(‖PAk‖+ ‖PAk+1‖) ≥

1
2
‖Ak Ak+1‖

the following inequality inequalities hold:

Mn ≤ max
j=1,2,...,d

‖PA(n)
j ‖ ≤ d Mn. (A.21)

Under the Assumption 8 we have (see our Lemma 4.8 and Proposition III.7.2
in [2])

lim
n→∞

1
n

log (Mn) = lim
n→∞

1
n

log ‖TnTn−1...T2T1‖ = µ1 ∈ (−∞, 0)

almost surely. Therefore,

max
j=1,2,...,d

‖PA(n)
j ‖ ∼ Ceµ1n

almost surely as n→ ∞.

Random triangles revisited

The goal of this Section is to show that in three-dimensional case the projec-
tion of the “middle” vertex on the largest side of the triangle converges in
distribution, thus generalizing the result of Theorem 5 in [11]; our main res-
ults is presented in Theorems 5.3 which follows later in the Section. We also
evaluate the speed of convergence to flatness in Theorem 5.4, as well as study
some examples; in particular, we strengthen the result of Theorem 4 in [11].

Since x ∈ L defined by (A.4) we can restrict our attention just to the first d− 1
coordinates of x. Let us introduce the norm

‖x‖∞ = max
j=1,...,d

‖xj‖ = max{|x1|, |x2|, ..., |xd−1|, |x1 + ... + xd−1|}.

and for each x in the unit ball B∞ = {(x1, ..., xd−1) ∈ Rd−1 : ‖x‖∞ = 1} the
map T̂ : B∞ → B∞ by

T̂(x) =
1

‖Tx‖∞
Tx.

Notice that
{

T̂(n)(x)
}

n≥1
is a Markov chain which can be considered as a

system of iterated random functions in the sense mentioned in [4, 8]. We will
use the following result implied from Lemma 2.5 in [8]:
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Lemma 5.1. Let Dε = {(x, y) : x, y ∈ B∞, ‖x− y‖∞ ≤ ε}. Assume that

lim sup
n→∞

sup
(x,y)∈Dε

E

∥∥∥T̂(n)(x)− T̂(n)(y)
∥∥∥

∞
→ 0 (A.22)

as ε→ 0 and for each α > 0, there exist an integer N and a constant c > 0 such that
for every x, y ∈ B∞

P
(∥∥∥T̂′(N)(x)− T̂′′(N)(y)

∥∥∥
∞
< α

)
≥ c, (A.23)

where T̂′(n) and T̂′′(n) are two independent of copies of T̂(n). Then, for every x ∈ B∞,
T̂(n)(x) weakly converges to some random vector, which is independent of x.

Here is a very important result.

Lemma 5.2. Assume that Assumption 6 and 7 are fulfilled then(
max

j=1,...,d

∥∥∥x(n)j

∥∥∥)−1

x(n)

converges in distribution to some random vector as n → ∞, which is independent of
x(0).

Proof. Assume that all the points x, y, etc., belong to B∞ unless stated other-
wise. Next, w.l.o.g. assume that ‖T(n)x‖∞ ≤ ‖T(n)y‖∞, then we have

‖T̂(n)(x)− T̂(n)(y)‖∞

=
1

‖T(n)x‖∞

∥∥∥∥∥T(n)

(
x− ‖T

(n)x‖∞

‖T(n)y‖∞
y

)∥∥∥∥∥
∞

≤ ‖T
(n)‖∞

‖T(n)x‖∞

∥∥∥∥∥x− ‖T
(n)x‖∞

‖T(n)y‖∞
y

∥∥∥∥∥
∞

≤ ‖T
(n)‖∞

‖T(n)x‖∞

(
‖x− y‖∞ +

(
1− ‖T

(n)x‖∞

‖T(n)y‖∞

)
‖y‖∞

)

≤ ‖T
(n)‖∞

‖T(n)x‖∞
‖x− y‖∞ +

‖T(n)‖∞

‖T(n)x‖∞ · ‖T(n)y‖∞

(
‖T(n)y‖∞ − ‖T(n)x‖∞

)
≤ ‖T

(n)‖∞

‖T(n)x‖∞
‖x− y‖∞ +

‖T(n)‖∞

‖T(n)x‖∞ · ‖T(n)y‖∞

(
‖T(n)(y− x)‖∞

)
≤ 2

‖T(n)‖2
∞

‖T(n)x‖∞ · ‖T(n)y‖∞
‖x− y‖∞,
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where ‖T‖∞ = supx∈B∞
‖Tx‖∞, ‖T‖ = sup‖x‖=1 ‖Tx‖ are the usual operator

norms. Therefore, since all the norms on finite dimensional spaces are equi-
valent, there exists a non random constant r > 0 such that

‖T̂(n)(x)− T̂(n)(y)‖∞ ≤ r · ‖T(n)‖2

‖T(n)x‖‖T(n)y‖‖x− y‖∞ (A.24)

On the other hand, by Theorem III.3.1 in [2], for almost all ω, the exist one-
dimensional linear space V(ω) ⊂ Rd−1 which is the range of limit points
of ‖T1(ω) . . . Tn(ω)‖−1T1(ω) . . . Tn(ω). By the proof of Proposition III.3.2 in [2]
if a sequence {xn}n≥1 ⊂ B∞ converges to x and ζx(ω) is the orthogonal pro-
jection of x onto V(ω) then

lim sup
n→∞

‖T(n)‖
‖T(n)xn‖

≤ ‖ζx‖−1 a.s. (A.25)

and

P (‖ζx‖ = 0) = 0. (A.26)

Therefore, we obtain that

lim sup
n→∞

‖T̂(n)(x)− T̂(n)(y)‖∞ ≤ r‖ζx‖−1‖ζy‖−1‖x− y‖∞ a.s. (A.27)

Let us now verify the condition (A.22). We have

E

∥∥∥T̂(n)(x)− T̂(n)(y)
∥∥∥

∞
≤ E

(∥∥∥T̂(n)(x)− T̂(n)(y)
∥∥∥

∞
1
{ ‖T(n)‖2
‖T(n)x‖‖T(n)y‖

≥ 1
4rε }

)
+

+ E

(∥∥∥T̂(n)(x)− T̂(n)(y)
∥∥∥

∞
1
{ ‖T(n)‖2
‖T(n)x‖‖T(n)y‖

≤ 1
4rε }

)
=: (I) + (II)

To bound (I), observe that
∥∥∥T̂(n)(x)− T̂(n)(y)

∥∥∥
∞
≤ 2 and therefore (I) ≤

2 P
(

‖T(n)‖2

‖T(n)x‖‖T(n)y‖ ≥
1

4rε

)
. Suppose

lim sup
n→∞

sup
(x,y)∈Dε

P

(
‖T(n)‖2

‖T(n)x‖‖T(n)y‖ ≥
1

4rε

)
6→ 0 as ε→ 0.
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Then there exists a β > 0 and a decreasing sequence εk ↓ 0 such that this
lim supn→∞ sup(x,y)∈Dεk

P(· · · ≥ (4rεk)
−1) > β for each k; therefore for each k

there is a sequence n(k)
i , i = 1, 2, . . . such that

δ(k) := P

 ‖T(n(k)
i )‖2

‖T(n(k)
i )x

n(k)
i
‖‖T(n(k)

i )y
n(k)

i
‖
≥ 1

4rεk

 > β for all i = 1, 2, . . . .

(A.28)

Let mk = n(k)
k . Without loss of generality assume that xmk → x∗ ∈ B∞

and ymk → y∗ ∈ B∞; since B∞ is compact we can always choose a conver-
gence subsequence.

By (A.25) we have

δx(k) := P

(
‖T(mk)‖2

‖T(mk)xmk‖
≥ 2‖ζx∗‖−1

)
→ 0,

δy(k) := P

(
‖T(mk)‖2

‖T(mk)ymk‖
≥ 2‖ζy∗‖−1

)
→ 0,

as k→ ∞. Hence

δ(k) ≤ δx(k) + δy(k) + P

(
4‖ζx∗‖−1‖ζy∗‖−1 ≥ 1

4rεk

)
= δx(k) + δy(k) + P

(
‖ζx∗‖ · ‖ζy∗‖ ≤ 16rεk

)
≤ δx(k) + δy(k) + P (‖ζx∗‖ ≤ 4

√
rεk) + P (‖ζx∗‖ ≤ 4

√
rεk)→ 0

by (A.26), leading to a contradiction with (A.28).

On the other hand, if (x, y) ∈ Dε and ‖T(n)‖2

‖T(n)x‖‖T(n)y‖ ≤
1

4rε then the inequal-

ity (A.27) implies that ‖T̂(n)(x)− T̂(n)(y)‖∞ ≤ 1
4 , hence

sup
(x,y)∈Dε

(II) = sup
(x,y)∈Dε

E

(∥∥∥T̂(n)(x)− T̂(n)(y)
∥∥∥

∞
1
{ ‖T(n)‖2
‖T(n)x‖‖T(n)y‖

≤ 1
4rε }

)

≤ sup
(x,y)∈Dε

E

(∥∥∥T̂(n)(x)− T̂(n)(y)
∥∥∥

∞
1{‖T̂(n)(x)−T̂(n)(y)‖∞≤ 1

4 }

)
≤ Const · sup

x,y∈B∞

E δ
(

T(n)x, T(n)y
)
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where the last inequality holds since ‖u− v‖∞ ≤ Const · δ(u, v) for any vec-
tors u, v such that the angle between u and v is smaller than π

2 . Finally, from
the proof of Theorem III.4.3 in [2], we have

lim sup
n→∞

sup
x,y∈B∞

E δ
(

T(n)x, T(n)y
)
= 0.

Therefore the condition (A.22) is fulfilled.

We now only have to verify the condition (A.23). Note that

P
(∥∥∥T̂′(n)(x)− T̂′′(n)(y)

∥∥∥
∞
< α

)
≥ P

(∥∥∥T̂′(n)(x)− T̂′′(n)(x)
∥∥∥

∞
+
∥∥∥T̂′′(n)(x)− T̂′′(n)(y)

∥∥∥
∞
< α

)
≥ P

(∥∥∥T̂′(n)(x)− T̂′′(n)(x)
∥∥∥

∞
< α/2,

∥∥∥T̂′′(n)(x)− T̂′′(n)(y)
∥∥∥

∞
< α/2

)
≥ P

(∥∥∥T̂′′(n)(x)− T̂′′(n)(y)
∥∥∥

∞
< α/2

)
− 1

+ P
(∥∥∥T̂′(n)(x)− T̂′′(n)(x)

∥∥∥
∞
< α/2

)
. (A.29)

W.l.o.g., assume that α < 1/2. Observe that

P
(∥∥∥T̂′′(n)(x)− T̂′′(n)(y)

∥∥∥
∞
< α/2

)
≥ P

(
Const · δ(T′′(n)x, T′′(n)y) < α/2)

)
→ 1 (A.30)

as n→ ∞, where the above limit is implied from Theorem III.4.3(i) in [2]. Fur-

thermore, T̂′(n)(x) and T̂′′(n)(x) are independent identically distributed ran-

dom variables. Therefore, P
(∥∥∥T̂′(n)(x)− T̂′′(n)(x)

∥∥∥
∞
< α/2

)
is always posit-

ive. This fact together with (A.29) and (A.30) imply the satisfaction of (A.23).
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From now on assume that d = 3. Following [11], for each n ≥ 0 rescale the
triangle A(n)

1 A(n)
1 A(n)

3 to a new triangle B(n)
1 B(n)

1 B(n)
3 such that its longest edge

has length 1, its vertices are reordered in a way that B(n)
1 B(n)

2 ≥ B(n)
3 B(n)

1 ≥
B(n)

2 B(n)
3 , and let the Cartesian coordinates of vertices be B(n)

1 = (0, 0), B(n)
2 =

(1, 0), B(n)
3 = θn = (gn, hn); formally

hn =
2A(Ln)

M2
n

(A.31)

is the height of the rescaled triangle, corresponding to the largest side with
length Mn, formally defined by (A.19). Without loss of generality, we can also
assume that A(0)

1 ≡ B(0)
1 , A(0)

2 ≡ B(0)
2 , A(0)

3 ≡ B(0)
3 .

Theorem 5.3. Assume that Assumption 6 is fulfilled then gn converges in distribu-
tion to some random variable η ∈ [1/2, 1].

Proof. Recall that (x(n)i , y(n)i ), i = 1, 2, 3 denote the coordinates of the vectors
corresponding to the three sides of the triangle. Since they are asymptotically
collinear, gn has the same limit as

gx,n = f (x(n)1 , x(n)2 , x(n)3 )

where f (a, b, c) is the ratio between the second largest amongst {|a|, |b|, |c|}
and the largest of them; in fact, |gx,n − gn| ≤ hn → 0 a.s. from an elementary
geometric observation. The only problem which could arise is if the triangle is
(nearly) vertical; however this does not happen for large n a.s. by Lemma II.4.2
from [2] which says (equivalently) the the direction of the limiting flat triangle
has a continuous distribution.

Since in our case a + b + c = 0, we can write f as

f (a, b, c) = 1− min{|a|, |b|, |c|}
max{|a|, |b|, |c|} .

Since the function f (·) is continuous, and the vector x(n)/‖x(n)‖ converges
weakly by Lemma 5.2, the result follows.

Theorem 5.4. Suppose that Assumption 8 is fulfilled. Then

lim
n→∞

1
n

log(hn) = E(log(det(T1)))− 2
∫ 1

1/2
ζ(x, 0)dPη(x), a.s.
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where θn = (gn, hn) is defined just above (A.31), η is the weak limit of gn, Pη is its
probability measure, and

ζ(x, y) = E (log(M1) | θ0 = (x, y)) .

Proof. We have the following relation

hn = hn−1 ·
M2

n−1

M2
n
· det(Tn)

which implies that

1
n

log(hn) =
1
n

n

∑
j=1

log(det(Tj))−
2
n

log(Mn) + O
(

1
n

)
.

Suppose that Assumption 8 is fulfilled. By the strong law of large numbers
and equation (A.17) we have

lim
n→∞

1
n

n

∑
j=1

log(det(Tj)) = E(log(det(T1))) = µ1 + µ2 a.s.

By Lemma 4.8

lim
n→∞

1
n

log(Mn)→ µ1 a.s.

so that
lim
n→∞

1
n

log(hn) = µ2 − µ1 a.s.

On the other hand, we have

1
n

log(hn) =
1
n

n

∑
j=1

log(det(Tj))−
2
n

n

∑
j=1

log
(

Mj

Mj−1

)
+

1
n

log(h0).

Let Pn(dθ| θ0) be the conditional probability measure of θn on θ0. We have

E

(
1
n

n

∑
j=1

log
(

Mj

Mj−1

)
| θ0

)
=

n

∑
j=1

1
n

E

(
log
(

Mj

Mj−1

)
| θ0

)
=
∫

ζ(θ)P̃n(dθ| θ0),

where we denote ζ(θ) = E (log(M1) | θ0 = θ) and P̃n(dθ| θ0) =
1
n

n−1

∑
j=1

Pj(dθ| θ0).

We already know that hn → 0 almost surely and gn converges in distribution
to some random variable η taking value on (1/2, 1), therefore θn = (gn, hn)
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converges in distribution to (η, 0) as n → ∞. Since ζ(x, 0) is a continuous
function of x on (1/2, 1), using Cesàro mean result we have

lim
n→∞

∫
ζ(θ)P̃n(dθ| θ0) = lim

n→∞

∫
ζ(θ)Pn(dθ| θ0) =

∫ 1

1/2
ζ(x, 0)dPη(x).

where Pη is the probability measure of η. Therefore

lim
n→∞

1
n

log(hn) = E(log(det(T1)))− 2
∫ 1

1/2
ζ(x, 0)dPη(x). (A.32)

Example 1. Let us consider the case when random variables ξ1, ξ2, ξ3 are uni-
formly distributed on (0, 1), notice that θn = (gn, hn) converges in distribution
to (U, 0), where U is uniformly distributed on ( 1

2 , 1), see [11]. We easily obtain
that

E (log(det(T1))) = E (log ((1− ξ1)(1− ξ2)(1− ξ3) + ξ1ξ2ξ3)) =
−24 + π2

9
.

and

ζ(x, 0) =
x
(
2x2 log(x)− 5x + 5

)
− 2(x− 1)3 log(1− x)

6(x− 1)x
,

hence ∫ 1

1/2
ζ(x, 0)dx =

−15 + π2

18

and we can conclude from (A.32) that

hn ∼ Ce−
π2−6

9 n

as n→ ∞ in the sense that 1
n log hn → −π2−6

9 ≈ −0.43, thus strengthening the
result of Theorem 4 in [11].

Example 2. Suppose that ξ1, ξ2, ξ3 have a continuous distribution with density
symmetric around 1

2 , i.e. p(1− x) = p(x). Let x ∈ (0, 1) and set x1 = xξ1, x3 =

x + (1− x)ξ3, x2 = ξ2 and y1 ≤ y2 ≤ y3 be the triple x1, x2, x3 sorted in the
increasing order. For z < x, we have

P

(
y2 − y1

y3 − y1
< z
)
= I1(z, x) + I2(z, x)
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where

I1(z, x) = P

(
y2 − y1

x3 − y1
< z; y1 < y2 < x < x3

)
= P (y2 < zx3 + (1− z)y1; y1 < y2 < x < x3)

= P (y1 < y2 < x; zx3 + (1− z)y1 > x)

+ P (y1 < y2 < zx3 + (1− z)y1; zx3 + (1− z)y1 < x)

= P

(
y1 < y2 < x;

x− zx3

1− z
< y1 < x; x < x3 < 1

)
+ P

(
y1 < y2 < zx3 + (1− z)y1; zx3 + (1− z)y1 < x; 0 < y1 <

x− zx3

1− z
; x < x3 < 1

)
=
∫ 1

x
dx3

∫ x

x−zx3
1−z

dy1

∫ x

y1

[
1
x

p
(y1

x

)
p(y2) +

1
x

p
(y2

x

)
p(y1)

]
1

1− x
p
(

x3 − x
1− x

)
dy2

+
∫ 1

x
dx3

∫ x−zx3
1−z

0
dy1

∫ zx3+(1−z)y1

y1[
1
x

p
(y1

x

)
p(y2) +

1
x

p
(y2

x

)
p(y1)

]
1

1− x
p
(

x3 − x
1− x

)
dy2,

and

I2(z, x) = P

(
y2 − x1

y3 − x1
< z; x1 < x < y2 < y3

)
= P

(
y3 >

y2 − (1− z)x1

z
; x1 < x < y2 < y3

)
= P

(
y2 − (1− z)x1

z
< y3 < 1;

y2 − (1− z)x1

z
< 1; y2 > x

)
= P

(
y2 − (1− z)x1

z
< y3 < 1; x < y2 < (1− z)x1 + z; (1− z)x1 + z > x

)
= P

(
y2 − (1− z)x1

z
< y3 < 1; x < y2 < (1− z)x1 + z;

x− z
1− z

< x1 < x
)

=
∫ x

x−z
1−z

dx1

∫ (1−z)x1+z

x
dy2

∫ 1

y2−(1−z)x1
z

×
[

1
1− x

p
(

y3 − x
1− x

)
p(y2) +

1
1− x

p
(

y2 − x
1− x

)
p(y3)

]
1
x

p
( x1

x

)
dy3.

For z > x, by the symmetric property, we have

P

(
y2 − y1

y3 − y1
< z
)
= I1(1− z, 1− x) + I2(1− z, 1− x).
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Let η be the invariant distribution defined in Theorem 5.3. Assume that 2η− 1
has the density ϕ(x), then ϕ(x) is the unique solution of the following integral
equation: ∫ z

0
ϕ(x)dx =

∫ z

0
[I1(1− z, 1− x) + I2(1− z, 1− x)] ϕ(x)dx

+
∫ 1

z
[I1(z, x) + I2(z, x)] ϕ(x)dx (A.33)

since one can look, for example, at the linear projections of the vertices of the
triangle, see also [11].

Now fix a positive integer n, and additionally assume that ξ1, ξ2, ξ3 are inde-
pendent Beta(n, n) distributed random variables, i.e. their density function is
given by

pn(ξ) =

{
ξn−1(1−ξ)n−1

B(n,n) , ξ ∈ (0, 1)

0, otherwise
where B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt

is the usual Beta function. Let the corresponding invariant distribution ϕn(x)
be defined by (A.33).

Using a computer algebra system, e.g. MathematicaTM or MapleTM, one can
check that the solution to (A.33) for n = 1, 2, 3, 4, 5 are given by

ϕ1(z) = 1,

ϕ2(z) =
6
7
((1− z)z + 1) ,

ϕ3(z) =
30
143

(
3(1− z)2z2 + 4(1− z)z + 4

)
,

ϕ4(z) =
140
4199

(
13(1− z)3z3 + 22(1− z)2z2 + 25(1− z)z + 25

)
,

ϕ5(z) =
6174
7429

(
17
49

(1− z)4z4 +
5
7
(1− z)3z3 +

13
14

(1− z)2z2 + (1− z)z + 1
)

.

We conjecture that in the general case ϕn(z) is also a mixture of some Beta
distributions, that is, there exist non-negative constants c1, c2, ..., cn summing
up to 1 such that

ϕn(z) =
n

∑
j=1

cj
zj−1(1− z)j−1

B(j, j)

but unfortunately we cannot prove this fact.

70



Figure A.2: For ξ ∼ Beta(3, 3), one can see the similarity between the histogram of {2gj − 1, j = 1, 2, ..., 106} obtained from
simulation and the plot of {ϕ3(x), x ∈ [0, 1]}.

Generalizations and open problems

Let ξ1, ξ2, . . . , ξd be the random variables governing how the sides of the d-
polygon are split at each iteration. Throughout the paper we have assumed
that ξ j, j = 1, . . . , d are i.i.d. However, if one looks at the proofs, one can see
that the independence assumption can be substantially relaxed without any
change in the proofs. Indeed, let ξ̄ = (ξ1, ξ2, . . . , ξd) be the random variable
describing the splitting proportions of the sides of the polygon. Assume that

(i) P(0 < ξi < 1) = 1 for all i;

(ii) there are two distinct numbers a, b ∈ (0, 1) such that all 2d points of the
form x = (x1, . . . , xd) ∈ Rd, where each xi = a or = b, belong to the
support of ξ̄;

(iii) if d is even then ξ1ξ2 . . . ξd 6= (1− ξ1)(1− ξ2) . . . (1− ξd) a.s.
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Then Conjecture 1 is fulfilled (observe that we still suppose that random vari-
ables ξ̄ are drawn in i.i.d. manner for each iteration).

We also strongly feel that assumption (iii) is, in fact, superfluous, so the result
will hold even if some matrices are degenerate. Indeed, intuitively, when some
of the matrices in the product are not full rank, this should even be helpful
for the convergence to lower-dimensional subspaces. However, in this case we
would clearly not be able to form a group containing all the matrices in the
support of the measure and hence cannot use the standard results from the
random matrix theory.

Another possible generalization of our model is to higher dimensional spaces,
e.g. random subdivision of tetrahedrons in R3. We are currently working on
showing similar results in this case.
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Strongly vertex-reinforced jump processes on com-
plete graphs
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Abstract

The aim of our work is to study vertex-reinforced jump processes with super-
linear weight function w(t) = tα, for some α > 1. On any complete graph
G = (V, E), we prove that there is one vertex v ∈ V such that the total time
spent at v almost surely tends to infinity while the total time spent at the
remaining vertices is bounded.

Keywords: Vertex-reinforced jump processes; nonlinear reinforcement; ran-
dom walks with memory; stochastic approximation

Introduction

Let G = (V, E) be a finite connected, unoriented graph without loops, where
V = {1, 2, ..., d} and E respectively stand for the set of vertices and the set of
edges. We consider a continuous time jump process X on the vertices of G
such that the law of X satisfies the following condition:

i. at time t ≤ 0, the local time at each vertex v ∈ V has a positive initial
value `

(v)
0 ,

ii. at time t > 0, given the natural filtration Ft generated by {Xs, s ≤ t}, the
probability that there is a jump from Xt during (t, t + h] to a neighbour
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v of Xt (i.e. (v, Xt) ∈ E) is given by

w
(
`
(v)
0 +

∫ t

0
1{Xs=v}ds

)
· h + o(h),

where w : [0, ∞)→ (0, ∞) is called weight function.

For each vertex v ∈ V, we also denote as L(v, t) = `
(v)
0 +

∫ t
0 1{Xs=v}ds the local

time at v up to time t and let

Zt =

(
L(1, t)
`0 + t

,
L(2, t)
`0 + t

, ...,
L(d, t)
`0 + t

)
stand for the (normalized) occupation measure on V at time t, where `0 =

`
(1)
0 + `

(2)
0 + · · ·+ `

(d)
0 .

In our work, we consider the weight function w(t) = tα, for some α > 0.
The jump process X is called strongly vertex-reinforced if α > 1, weakly vertex-
reinforced if α < 1 or linearly vertex-reinforced if α = 1.

The model of discrete time edge-reinforced random walks (ERRW) was first
studied by Coppersmith and Diaconis in their unpublished manuscripts [7]
and later the model of discrete time vertex-reinforced random walks (VRRW)
was introduced by Pemantle in [11] and [12]. Several remarkable results about
localization of ERRW and VRRW were obtained in [20], [17], [21], [6] and [22].
Following the idea about discrete time reinforced random walks, Wendelin
Werner conceived a model in continuous time so-called vertex reinforced jump
processes (VRJP) whose linear case was first investigated by Davis and Volkov
in [8] and [9]. In particular, these authors showed in [9] that linearly VRJP on
any finite graph is recurrent, i.e. all local times are almost surely unbounded
and the normalized occupation measure process converges almost surely to
an element in the interior of the (d− 1) dimensional standard unit simplex as
time goes to infinity. The relation between VRJP, ERRW and random walks in
random environment as well as its applications were studied in [10], [13], [14],
[18] and [19].

In this paper, we prove that strongly VRJP on a complete graph G = (V, E)
will almost surely have an infinite local time at some vertex v, while the local
times at the remaining vertices remain bounded. The main technique of our
proofs is based on stochastic approximation (see, e.g. [1, 2, 3, 4]).
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Preliminary notations and remarks

Throughout this paper, we denote as ∆ and T∆ respectively the (d− 1) dimen-
sional standard unit simplex in Rd and its tangent space, which are defined
by

∆ = {z = (z1, z2, ..., zd) ∈ Rd : z1 + z2 + · · ·+ zd = 1, zj ≥ 0, j = 1, 2, · · · , d},

T∆ = {z = (z1, z2, ..., zd) ∈ Rd : z1 + z2 + · · ·+ zd = 0}.
Also, let ‖.‖ and 〈., .〉 denote the Euclidean norm and the Euclidean scalar
product on Rd.

For a càdlàg process Y, we denote as Yt− = lims→t− Yt and ∆Yt = Yt − Yt−
respectively the left limit and the size of the jump of Y at time t. Let [Y] be
as usual the quadratic variation of the process Y. Note that, for a càdlàg finite
variation process Y, we have [Y]t − [Y]s = ∑s<u≤t(∆Yu)2. In the next sections,
we will use the following useful well-known results of stochastic calculus (see
e.g. [15]):

1. (Change of variables formula) Let A be a càdlàg finite variation process and
let f be a C1 function. Then

f (At)− f (As) =
∫ t

s
f ′(Au−)dAu + ∑

s<u≤t

(
∆ f (Au)− f ′(Au−)∆Au

)
.

2. Let M be a martingale such that Mt = M0 + It +
∫ t

0 Ksds with K being some
adapted process. Suppose that I is a pure jump process i.e. It = ∑0<s≤t ∆Is.
Then, for f a C1 function,

f (Mt) = f (M0) +
∫ t

0
f ′(Ms)Ksds + ∑

0<s≤t
∆ f (Ms).

In particular,

M2
t = M2

0 + 2
∫ t

0
MsKsds + ∑

0<s≤t
∆M2

s .

If Nt =
∫ t

0 HsdMs, with H a bounded predictable process, then

Nt = ∑
0<s≤t

Hs∆Is +
∫ t

0
HsKsds.

79



It is also a martingale,

[N]t =
∫ t

0
H2

s d[M]s

and

E[N2
t ] = E[ ∑

0<s≤t
(∆Ns)

2] = E[ ∑
0<s≤t

H2
s (∆Is)

2] = E[
∫ t

0
H2

s d[M]s] = E[[N]t],

where we recall that [M]t = ∑0<s≤t(∆Is)2.

3. (Integration by part formula) Let X and Y be two càdlàg finite variation
processes. Then

XtYt − XsYs =
∫ t

s
Xu−dYu +

∫ t

s
Yu−dXu + [X, Y]t − [X, Y]s.

4. (Doob’s Inequality) Let X be a càdlàg martingale. Then for any p > 1,

E[sup
s≤t
|Xs|p] ≤

(
p

p− 1

)p

E[|Xt|p].

5. (Burkholder-Davis-Gundy Inequality) Let X be a martingale. For each
1 ≤ p < ∞ there exist positive constants cp and Cp depending on only p such
that

cpE
[
[X]

p/2
t

]
≤ E

[
sup
s≤t
|Xs|p

]
≤ CpE

[
[X]

p/2
t

]
.

Dynamics of occupation measure process

For t > 0 which is not a jumping time of Xt, we have

dZt

dt
=

1
`0 + t

(−Zt + I[Xt]) , (B.1)

where for each matrix M, M[j] is the j-th row vector of M and I is as usual the
identity matrix. Observe that the process Zt always takes values in the interior
of the standard unit simplex ∆.
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For fixed t ≥ 0, let At be an infinitesimal generator matrix such that the (i, j)
element is defined by

(At)i,j :=


1(i,j)∈Ew(j)

t , i 6= j;
− ∑

k∈V,(k,i)∈E
w(k)

t , i = j,

where we define w(j)
t = w(L(j, t)) = L(j, t)α for each j ∈ V. Also, let wt =

w(1)
t + w(2)

t + · · ·+ w(d)
t . Note that

πt :=

(
w(1)

t
wt

,
w(2)

t
wt

, · · · ,
w(d)

t
wt

)

is the unique invariant probability measure of At in the sense that πt At = πt.
Since πt can be rewritten as a function of Zt, we will also use the notation
πt = π(Zt), where we define the function π : ∆ → ∆, such that for each
z = (z1, z2, ..., zd) ∈ ∆,

π(z) =
(

zα
1

zα
1 + · · ·+ zα

d
, · · · ,

zα
d

zα
1 + · · ·+ zα

d

)
.

Now we can rewrite the equation (B.1) as

dZt

dt
=

1
`0 + t

(−Zt + πt) +
1

`0 + t
(I[Xt]− πt). (B.2)

Changing variable `0 + t = eu and denoting Z̃u = Zeu−`0 for u > 0, we can
transform the equation (B.2) as

dZ̃u

du
= −Z̃u + π(Z̃u) + (I[Xeu−`0 ]− πeu−`0).

Taking integral of both sides, we obtain that

Z̃t+s − Z̃t =
∫ t+s

t

(
−Z̃u + π(Z̃u)

)
du +

∫ et+s−`0

et−`0

I[Xu]− πu

`0 + u
du. (B.3)

Lemma 3.1. For t ≥ 0, the process Mt = (M1
t , M2

t , · · · , Md
t ) defined by

Mt = I[Xt]−
∫ t

0
As[Xs]ds

is a martingale in Rd.
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Proof. For small h > 0, we have

E (I[Xt+h]− I[Xt] | Ft) = ∑
j∼Xt

(I[j]− I[Xt])P(Xt+h = j | Ft)

= ∑
j∼Xt

(I[j]− I[Xt])wj
t.h + o(h)

= At[Xt].h + o(h).

Let us fix 0 < s < t and define tj = s + j(t− s)/n for j = 0, 1, ..., n. Note that

E (I[Xt]− I[Xs]| Fs) = E

(
n

∑
j=1

E(I[Xtj ]− I[Xtj−1 ] | Ftj−1) | Fs

)

= E

(
n

∑
j=1

Atj−1 [Xtj−1 ](tj − tj−1) + n · o
(

t− s
n

)
| Fs

)
.

Since the left hand side is independent on n, by using Lebesgue’s dominated
convergence theorem and taking the limit of the random sum under the ex-
pectation sign on the right hand side, we obtain that

E (I[Xt]− I[Xs]| Fs) = E

(∫ t

s
Au[Xu]du | Fs

)
.

Thus, E (Mt| Fs) = Ms.

Lemma 3.2. Let w(t) = tα. If α > 0 and G = (V, E) is a complete graph, then a.s.

lim
t→∞

sup
1≤c≤C

∥∥∥∥∫ ct−`0

t−`0

I[Xs]− πs

`0 + s
ds
∥∥∥∥ = 0 (B.4)

for each C > 1.

Proof. Note that, for t ≥ 0,

πt − I[Xt] =
1

wt
At[Xt].

By taking integration by part, we obtain the following identity for each c ∈

82



[1, C] ∫ ct−`0

t−`0

πs − I[Xs]

`0 + s
ds =

∫ ct−`0

t−`0

As[Xs]
ds

(`0 + s)ws

=

(
I[Xct−`0 ]

ctwct−`0

− I[Xt−`0 ]

twt−`0

)
−
∫ ct−`0

t−`0

I[Xs]
d
ds

(
1

(s + `0)ws

)
ds

−
∫ ct−`0

t−`0

dMs

(s + `0)ws
.

Observe that for some positive constant k, ws ≥ ksα (which is easy to prove, us-
ing the fact that L(1, t) + L(2, t) + · · ·+ L(d, t) = `0 + t). We now estimate the
terms in the right hand side of the above-mentioned identity. In the following,
the positive constant k may change from lines to lines and only depends on C
and `0. First, ∥∥∥∥ I[Xct−`0 ]

ctwct−`0

− I[Xt−`0 ]

twt−`0

∥∥∥∥ ≤ k/tα+1. (B.5)

Second,

d
ds

(
1

(`0 + s)ws

)
=−

(
1

(`0 + s)2ws
+

1
(`0 + s)w2

s

dws

ds

)
.

When s is not a jump time, it is easy to check that
∣∣∣ dws

ds

∣∣∣ ≤ α(`0 + s)α−1.
Therefore, for s ∈ [t, ct], ∥∥∥∥ d

ds

(
1

(`0 + s)ws

)∥∥∥∥ ≤ k/s2+α

and thus, ∥∥∥∥∫ ct−`0

t−`0

I[Xs]
d
ds

(
1

(`0 + s)ws

)
ds
∥∥∥∥ ≤ k/tα+1. (B.6)

And at last (using first Doob’s inequality), for i, j ∈ {1, 2, · · · , d},

E

[
sup

1≤c≤C

∣∣∣∣∫ ct−`0

t−−`0

dMi
s

(`0 + s)ws

∣∣∣∣2
]
≤ 4 E

[(∫ Ct−`0

t−`0

dMi
s

(`0 + s)ws

)2]
.

Observe that in our setting, for i ∈ {1, 2, · · · , d}, (∆Ii
s)

2 = 1 if s is a jump time
between i and another vertex. Thus [M1]t + [M2]t + · · ·+ [Md]t is just twice
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the number of jumps up to time t of X. So, for i, j ∈ {1, 2, · · · , d},

E

[(∫ Ct−`0

t−`0

dMi
s

(`0 + s)ws

)2]
= E

[∫ Ct−`0

t−`0

d[Mi]s
(`0 + s)2w2

s

]
≤ k

t2(α+1)
E
[
[Mi]Ct−`0 − [Mi]t−`0

]
≤ k

t2(α+1)
(Ct)α(C− 1)t,

where in the last inequality, we have used the fact that the number of jumps
in [t− `0, Ct− `0] is dominated by the number of jumps of a Poisson process
with constant intensity (Ct)α in [t− `0, Ct− `0]. Therefore,

E

[
sup

1≤c≤C

∥∥∥∥∫ ct−`0

t−`0

dMs

(`0 + s)ws

∥∥∥∥2
]
≤ k

tα+1 . (B.7)

From (B.5), (B.6), (B.7) and by using Markov’s inequality, we have

P

(
sup

1≤c≤C

∥∥∥∥∫ ct−`0

t−`0

I[Xs]− πs

`0 + s
ds
∥∥∥∥ ≥ 1

tγ

)
≤ k

tα+1−2γ
(B.8)

for every 0 < γ ≤ α+1
2 . By Borel-Cantelli lemma,

lim sup
n→∞

sup
1≤c≤C

∥∥∥∥∫ cCn−`0

Cn−`0

I[Xs]− πs

`0 + s
ds
∥∥∥∥ = 0.

Moreover, for Cn ≤ t ≤ Cn+1, we have

sup
1≤c≤C

∥∥∥∥∫ ct−`0

t−`0

I[Xs]− πs

`0 + s
ds
∥∥∥∥ ≤ ∥∥∥∥∫ t−`0

Cn−`0

I[Xs]− πs

`0 + s
ds
∥∥∥∥

+ sup
1≤c≤C

∥∥∥∥∥
∫ min(ct,Cn+1)−`0

Cn−`0

I[Xs]− πs

`0 + s
ds

∥∥∥∥∥
+ sup

1≤c≤C

∥∥∥∥∥
∫ max(ct,Cn+1)−`0

Cn+1−`0

I[Xs]− πs

`0 + s
ds

∥∥∥∥∥
≤ 2 sup

1≤c≤C

∥∥∥∥∫ cCn−`0

Cn−`0

I[Xs]− πs

`0 + s
ds
∥∥∥∥+ sup

1≤c≤C

∥∥∥∥∥
∫ cCn+1−`0

Cn+1−`0

I[Xs]− πs

`0 + s
ds

∥∥∥∥∥ .

This inequality immediately implies (B.4).
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From now on, we always assume that w(t) = tα, α > 1 and G = (V, E) is a
complete graph. Let us define the vector field F : ∆ → T∆ such that F(z) =

−z + π(z) for each z ∈ ∆. We also remark that for each z = (z1, z2, · · · , zd) ∈
∆,

F(z) =
(
−z1 +

zα
1

zα
1 + · · ·+ zα

d
, · · · ,−zd +

zα
d

zα
1 + · · ·+ zα

d

)
. (B.9)

A continuous map Φ : R+ × ∆ → ∆ is called a semi-flow if Φ(0, .) : ∆ → ∆
is the identity map and Φ has the semi-group property, i.e. Φ(t + s, .) =

Φ(t, .) ◦Φ(s, .) for all s, t ∈ R+.

Now for each z0 ∈ ∆, let Φt(z0) be the solution of the differential equation
d
dt

z(t) = F(z(t)), t > 0;

z(0) = z0.
(B.10)

Note that F is Lipschitz. Thus the solution Φt(z0) can be extended for all
t ∈ R+ and Φ : R+ × ∆→ ∆ defined by Φ(t, z) = Φt(z) is a semi-flow.

Theorem 3.3. Z̃ is an asymptotic pseudo-trajectory of the semi-flow Φ, i.e. for all
T > 0, a.s.

lim
t→∞

sup
0≤s≤T

∥∥Z̃t+s −Φs(Z̃t)
∥∥ = 0. (B.11)

Proof. Indeed, by the definition of Φ

Φs(Z̃t)− Z̃t =
∫ s

0
F(Φu(Z̃t))du.

Moreover, from (B.3)

Z̃t+s − Z̃t =
∫ s

0
F(Z̃t+u)du +

∫ et+s−`0

et−`0

I[Xu]− πu

`0 + u
du.

Subtracting both sides of the two above identities, we obtain that

Z̃t+s −Φs(Z̃t) =
∫ s

0

(
F(Z̃t+u)− F(Φu(Z̃t))

)
du +

∫ et+s−`0

et−`0

I[Xu]− πu

`0 + u
du.

Observe that F is Lipschitz, hence

‖Z̃t+s −Φs(Z̃t)‖ ≤ K
∫ s

0
‖Z̃t+u −Φu(Z̃t)‖du +

∥∥∥∥∥
∫ es+t−`0

et−`0

I[Xu]− πu

`0 + u
du

∥∥∥∥∥ ,
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where K is the Lipschitz constant of F. Therefore, by the Grönwall’s inequality,

‖Z̃t+s −Φs(Z̃t)‖ ≤ sup
0≤s≤T

∥∥∥∥∥
∫ es+t−`0

et−`0

I[Xu]− πu

`0 + u
du

∥∥∥∥∥ eKs. (B.12)

Finally, (B.11) follows from the inequality (B.12) and Lemma 1 that a.s.

lim
t→∞

sup
0≤s≤T

∥∥∥∥∥
∫ es+t−`0

et−`0

I[Xu]− πu

`0 + u
du

∥∥∥∥∥ = 0.

Convergence to equilibria

Let
C = {z ∈ ∆ : F(z) = 0}

stand for the equilibria set of the vector field F defined in (B.9). We say an equi-
librium z ∈ C is (linearly) stable if all the eigenvalues of DF(z), the Jacobian
matrix of F at z, have negative real parts. If there is one of its eigenvalues
having a positive real part, then it is called (linearly) unstable.

Observe that C = S ∪ U , where we define

S = {e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , ed = (0, 0, · · · , 0, 1)}

as the set of all stable equilibria and

U = {zj1,j2,··· ,jk : 1 ≤ j1 < j2 < · · · < jk ≤ d, k = 2, · · · , d}

as the set of all unstable equilibria, where zj1,j2,··· ,jk stands for the point z =

(z1, · · · , zd) ∈ ∆ such that zj1 = zj2 = · · · = zjk = 1
k and all the remaining

coordinates are equal to 0.

Indeed, for each z ∈ S , we note that DF(z) = −I. Moreover,

DF
(

1
d

,
1
d

, · · · ,
1
d

)
=


(d−1)α

d − 1 − α
d · · · − α

d
− α

d
(d−1)α

d − 1 · · · − α
d

· · · · · · · · · · · ·
− α

d − α
d · · · (d−1)α

d − 1

 .
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and DF(zj1,j2,··· ,jk) = (Dm,n) where

Dm,n =


(k−1)α

k − 1, m = n = ji, i = 1, · · · , k;
−1, m = n, m 6= ji, i = 1, · · · , k;
0, m 6= n, m or n 6= ji, i = 1, · · · , k;
− α

k , otherwise.

Therefore, we can easily compute that for each z ∈ U , the eigenvalues of
DF(z) are −1, α− 1.

Theorem 4.1. Zt converges almost surely to a point in C as t→ ∞.

Proof. Consider the the map H : ∆→ R such that

H(z) = zα
1 + zα

2 + · · ·+ zα
n.

Note that H is a strict Lyapunov function of F, i.e ∇H(z).F(z)T is positive for
all z ∈ ∆ \ C. Indeed, we have

∇H(z).F(z)T =
d

∑
i=1

αzα−1
i

(
−zi +

zα
i

∑d
j=1 zα

j

)

= α

(
−

d

∑
i=1

zα
i +

∑d
i=1 z2α−1

i

∑d
i=1 zα

i

)

=
α

H(z)

−( d

∑
i=1

zα
i

)2

+
d

∑
i=1

z2α−1
i

d

∑
i=1

zi


=

α

H(z) ∑
1≤i<j≤d

zizj

(
zα−1

i − zα−1
j

)2
.

For z ∈ ∆ \ C, there exist distinct indexes j1, j2 ∈ {1, 2, ..., d} such that zj1 , zj2
are positive and zj1 6= zj2 . Therefore,

∇H(z).F(z)T ≥ α

H(z)
zj1 zj2

(
zα−1

j1
− zα−1

j2

)2
> 0.

Let
L(Z) =

⋂
t≥0

Z([t, ∞))

be limit set of Z. Since Z̃ is an asymptotic pseudo-trajectory of Φ, by Theorem
5.7 and Proposition 6.4 in [4], we can conclude that L(Z) = L(Z̃) is a connected
subset of C. Moreover, C is actually an isolated set and this fact implies the
almost sure convergence of Zt toward an equilibrium z ∈ C as t→ ∞.
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Theorem 4.2. Assume that α > 1, G = (V, E) is a complete graph and z∗ = ej ∈ S
is a stable equilibrium, where j ∈ {1, 2, ..., d}. Then, on the event {Zt → z∗},

lim sup
t→∞

t‖Zt − z∗‖ < ∞,

thus implies that the local time at j is unbounded, while the local times at the remain-
ing vertices remain bounded.

Proof. We observe that

F(z) = (z− z∗).DF(z∗) + R(z− z∗),

where

R(y) = y.
(∫ 1

0
DF(ty + z∗)dt− DF(z∗)

)
.

Note that ‖R(y)‖ ≤ k‖y‖1+β, where β = min(1, α− 1) and k is some positive
constant. Therefore, we can transform the differential equation (B.10) to the
following integral form

z(t)− z∗ = (z(0)− z∗)eDF(z∗)t +
∫ t

0
R(z(s)− z∗)eDF(z∗)(t−s)ds.

Note that for z∗ ∈ S , we have DF(z∗) = −I. Therefore,

‖z(t)− z∗‖ ≤ e−t‖z(0)− z∗‖+
∫ t

0
e−(t−s)‖R(z(s)− z∗)‖ds.

For each small ε > 0, if ‖z(s)− z∗‖ ≤
(

ε
k

)1/β for all 0 ≤ s ≤ t, then

et‖z(t)− z∗‖ ≤ ‖z(0)− z∗‖+ ε
∫ t

0
es‖z(s)− z∗‖ds.

Thus, by Gronwall inequality, if ‖z(s)− z∗‖ ≤
(

ε
k

)1/β for all 0 ≤ s ≤ t, then

‖z(t)− z∗‖ ≤ ‖z(0)− z∗‖e−(1−ε)t.

But this is also implies that if ‖z(0)− z∗‖ ≤
(

ε
k

)1/β then ‖z(t)− z∗‖ ≤
(

ε
k

)1/β

for all t ≥ 0. Hence, for all t ≥ 0 and any small ε > 0 and z(0) such that
‖z(0)− z∗‖ ≤

(
ε
k

)1/β, we have

‖z(t)− z∗‖ ≤ e−(1−ε)t‖z(0)− z∗‖. (B.13)
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On the other hand, from the inequality (B.12) in the proof of Lemma 3, we
obtain that for T > 0,

sup
0≤s≤T

‖Z̃t+s −Φs(Z̃t)‖ ≤ k sup
0≤s≤T

∥∥∥∥∥
∫ es+t

et

I[Xu]− πu

`0 + u
du

∥∥∥∥∥ , (B.14)

where k is some positive constant depending on T and may change from lines
to lines. From (B.8), we have

P

(
sup

0≤s≤T

∥∥∥∥∥
∫ es+t

et

I[Xu]− πu

`0 + u
du

∥∥∥∥∥ ≥ e−γt

)
≤ ke−(α+1−2γ)t,

for every 0 < γ ≤ α+1
2 . By Borel-Cantelli lemma, it implies that

lim sup
n→∞

1
nT

log

(
sup

0≤s≤T

∥∥∥∥∥
∫ es+nT

enT

I[Xu]− πu

`0 + u
du

∥∥∥∥∥
)
≤ −γ a.s.

Taking γ → α+1
2 , by the continuity from the right of cumulative distribution

functions, we obtain that

lim sup
n→∞

1
nT

log

(
sup

0≤s≤T

∥∥∥∥∥
∫ es+nT

enT

I[Xu]− πu

`0 + u
du

∥∥∥∥∥
)
≤ −α + 1

2
a.s.

Note that for nT ≤ t ≤ (n + 1)T and 0 ≤ s ≤ T,∥∥∥∥∥
∫ es+t

et

I[Xu]− πu

`0 + u
du

∥∥∥∥∥ ≤ 2 sup
0≤s≤T

∥∥∥∥∥
∫ es+nT

enT

I[Xu]− πu

`0 + u
du

∥∥∥∥∥
+ sup

0≤s≤T

∥∥∥∥∥
∫ es+(n+1)T

e(n+1)T

I[Xu]− πu

`0 + u
du

∥∥∥∥∥ .

Therefore,

lim sup
t→∞

1
t

log

(
sup

0≤s≤T

∥∥∥∥∥
∫ es+t

et

I[Xu]− πu

`0 + u
du

∥∥∥∥∥
)
≤ −α + 1

2
a.s. (B.15)

From (B.14) and (B.15), we obtain that

lim sup
t→∞

1
t

log

(
sup

0≤s≤T
‖Z̃t+s −Φs(Z̃t)‖

)
≤ −α + 1

2
a.s.

Moreover, from (B.13), for each ε > 0 there exist δ(ε) > 0 such that

‖Φs(z)− z∗‖ ≤ e−(1−ε)s‖z− z∗‖
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for all s > 0 and z ∈ Bδ(ε)(z∗) = {z ∈ ∆ : ‖z− z∗‖ < ε}. Therefore, we can
conclude that on the event {Zt → z∗} there exists t(ε) such that Z̃t ∈ Bδ(ε)(z∗)
for all t ≥ t(ε) and furthermore,

‖Z̃t+s − z∗‖ ≤ ‖Z̃t+s −Φs(Z̃t)‖+ ‖Φs(Z̃t)− z∗‖
≤ e−(

α+1
2 −ε)t + e−(1−ε)s‖Z̃t − z∗‖

≤ e−(1−ε)t + e−(1−ε)s‖Z̃t − z∗‖

for all s > 0. It implies that

lim sup
t→∞

1
t

log ‖Z̃t − z∗‖ ≤ −1 + ε

for arbitrary ε > 0. Taking ε→ 0, we obtain that

lim sup
t→∞

1
t

log ‖Z̃t − z∗‖ ≤ −1.

This also implies that on the event {Zt → z∗}, we have

‖Zt − z∗‖ = O
(

1
t

)
as t→ ∞. Therefore, if Zt converges to a stable equilibrium, then there is only
one vertex which eventually has infinite local time.

Nonconvergence to unstable equilibria

On graph with two vertices

Let us consider strongly VRJP on the graph G = (V, E), where V = {1, 2},
E = {(1, 2)} and assume that w(t) = tα, α > 1. Note that, z∗ = (1/2, 1/2) is
the unique unstable equilibrium of the vector field F defined in (B.9) for d = 2.

Throughout this subsection, we use the notation Const for the existence of
some positive constants and they may vary from line to line. We will use the
next results, which are inspired by the work of Brandière and Duflo in [1] for
discrete time processes.
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Lemma 5.1. Assume that ϕt is a Ft-adapted process satisfying the following integral
equation

ϕt = η +
∫ t

p
(λγ(u)ϕu−du + c(u)dAu) , t ≥ p,

where λ > 0; p is not a jump time; η is a Fp-measurable random variable; γ and c are
deterministic continuous real functions such that limt→∞

∫ t
p γ(u)du = +∞; At are

càdlàg finite variation Ft-adapted processes. Assume also that a.s. lim
t→∞

ϕt = ϕ∗ <

+∞. Then ∫ ∞

p
c(t)e−λ

∫ t
p γ(u)dudAt = −η a.s.

Proof. Applying the integration by part formula, we note that the process

ϕt =

(∫ t

p
c(s)e−λ

∫ s
p γ(u)dudAs + η

)
eλ
∫ t

p γ(u)du

is the unique solution to the above-mentioned stochastic integral equation.

Observe that, eλ
∫ t

p γ(u)du → +∞ and ϕt → ϕ∗ < +∞ almost surely as t → ∞.
Thus, ∫ t

p
c(s)e−λ

∫ s
p γ(u)dudAs + η → 0 a.s.

as t→ ∞.

Theorem 5.2. Let F be a differentiable bounded function and z∗ be an unstable equi-
librium of F, i.e F(z∗) = 0 and F′(z∗) > 0. Suppose that F′ is Lipschitz continuous
in a neighbourhood of z∗. Let us consider the finite variation process Zt satisfying the
following equation

Zt − Zs =
∫ t

s
γ(u)F(Zu)du +

∫ t

s
c(u)(Gudu + dNu)

where Nt is a martingale w.r.t Ft = σ(Zs, s ≤ t) and Gt is a Ft-adapted pro-
cess; γ and c are deterministic positive continuous functions such that

∫ ∞
0 γ(t)dt =

∞,
∫ ∞

0 γ(t)2dt < ∞,
∫ ∞

0 c(t)2dt < ∞.

Assume that on the event Γ = {limt→∞ Zt = z∗}, for every t ≥ 0

γ(t)
c(t)
|∆Zt| ≤ Const|Gt|, (B.16)

∫ ∞

0
G2

t dt < ∞, (B.17)
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E

(
1Γ ∑

t<u≤t+1
|∆Zu|2

)
≤ Const.c2(t), (B.18)

lim sup
t→∞

E
(

1Γ |Nt+h − Nt|2 | Ft

)
< Const.h, (B.19)

and
lim inf

t→∞
E
(

1Γ |Nt+h − Nt|2 | Ft

)
> Const.h (B.20)

for every h > 0. Then P(Γ) = 0.

Proof. 1. Define ϕ(z) = zeψ(z), where

ψ(z) =
∫ z

0

λ−
∫ 1

0 F′(tu + z∗)dt

u
∫ 1

0 F′(tu + z∗)dt
du.

Note that ϕ is differentiable and its derivative ϕ′ is Lipschitz in a neighbour-
hood W of 0. Moreover, ϕ(0) = 0, ϕ′(0) = 1. We denote W(z∗) = z∗ + W and
thus W(z∗) is a neighbourhood of z∗.
2. By the change of variables formula for finite variation processes, we have

ϕ(Zt − z∗)− ϕ(Zs − z∗) =
∫ t

s
ϕ′(Zu− − z∗)dZu

+ ∑
s<u≤t

(
∆ϕ(Zu − z∗)− ϕ′(Zu− − z∗)∆Zu

)
.

Define ϕt = ϕ(Zt − z∗), we obtain that

ϕt − ϕs =
∫ t

s
ϕ′(Zu− − z∗) [γ(u)F(Zu)du + c(u)(Gudu + dNu)] + c(u)dHu,

where

Ht = ∑
0<u≤t

1
c(u)

(
∆ϕ(Zu − z∗)− ϕ′(Zu− − z∗)∆Zu

)
.

Therefore, on the event Γp = {Zt ∈W(z∗) for all t ≥ p}, for p ≤ s < t,

ϕt − ϕs = λ
∫ t

s
γ(u)ϕu−du + c(u)(G̃udu + ϕ′(Zu− − z∗)dNu + dHu),

where

G̃t = −
γ(t)
c(t)

ϕ′(Zt− − z∗)∆F(Zt) + ϕ′(Zt− − z∗)Gt.
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Since F is Lipschitz on W(z∗), on the event Γp, we remark from (B.16) that

|G̃t| ≤ Const
γ(t)
c(t)
|∆Zt|+ Const|Gt| ≤ Const|Gt|.

Therefore, from (B.17)

E

(
1Γp

∫ ∞

t
G̃2

udu
)
→ 0, as t→ ∞. (B.21)

By Lemma 5.1, on the event Γp we obtain that∫ ∞

p
k(t)(G̃tdt + ϕ′(Zt− − z∗)dNt + dHt) = −ϕp, (B.22)

where k(t) = e−λ
∫ t

p γ(u)duc(t). We also note that

E

∣∣∣∣1Γp

∫ ∞

t
k(u)dHu

∣∣∣∣
= E

∣∣∣∣∣1Γp ∑
t<u<∞

e−λ
∫ u

p γ(s)ds (∆ϕ(Zu − z∗)− ϕ′(Zu− − z∗)∆Zu
)∣∣∣∣∣ .

Note that ϕ′ is a Lipschitz function on W, therefore∣∣∆ϕ(Zu − z∗)− ϕ′(Zu− − z∗)∆Zu
∣∣

=

∣∣∣∣∫ 1

0
ϕ′(Zu− − z∗ + t∆Zu)dt− ϕ′(Zu− − z∗)

∣∣∣∣ .|∆Zu|

≤ Const.|∆Zu|2.

On the other hand, it implies from (B.18) that

E

(
1Γp ∑

t<u<∞
e−λ

∫ u
p γ(s)ds|∆Zu|2

)

= ∑
n≥0

e−λ
∫ t+n

p γ(s)ds
E

(
1Γp ∑

t+n<u≤t+n+1
|∆Zu|2

)
≤ Const. ∑

n≥0
e−λ

∫ t+n
p γ(s)dsc2(t + n) ≤ Const.

∫ ∞

t
e−λ

∫ u
p γ(s)dsc(u)2du

≤ Const.
(∫ ∞

t

(
e−λ

∫ u
p γ(s)dsc(u)

)2
du
)1/2 (∫ ∞

t
c(u)2du

)1/2

.
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Since
∫ ∞

t c(u)2du→ 0 as t→ ∞, we obtain that

E

∣∣∣∣1Γp

∫ ∞

t
k(u)dHu

∣∣∣∣ = o
(∫ ∞

t
k2(u)du

)1/2

. (B.23)

2. Denote

St = ϕp +
∫ t

p
k(u)(ϕ′(Zu− − z∗)dNu + G̃udu + dHu),

Tt =
∫ ∞

t
k(u)(ϕ′(Zu− − z∗)dNu + G̃udu + dHu)

and

τt =
∫ ∞

t
k(u)

(
G̃udu + dHu + (ϕ′(Zu− − z∗)− 1)dNu

)
, ρt =

∫ ∞

t
k(u)dNu.

We claim that
E
(
|ρt|2 | Ft

)
≤ Const.α2

t (B.24)

and
E (|ρt| | Ft) ≥ Const.αt, (B.25)

where αt =
(∫ ∞

t k2(u)du
)1/2. Indeed, the inequality (B.24) immediately fol-

lows from the assumption (B.19). On the other hand, by Burkholder-Davis-
Gundy inequality, Doob’s inequality and the assumption (B.20)

E
(
|ρt|3/2 | Ft

)
≥ 1√

9
E

(
sup
s≤t
|ρs|3/2 | Ft

)
≥ Const. E

(
[ρ]3/4

t | Ft

)
= Const. E

((∫ ∞

t
k(u)2d[N]u

)3/4

| Ft

)

≥ Const. E

((∫ ∞

t
k(u)2du

)3/4

| Ft

)
= Const.α3/2

t .

Finally, by Hölder inequality we can conclude that

E (|ρt| | Ft) ≥
(
E
(
|ρt|3/2 | Ft

))2

E (|ρt|2 | Ft)
≥ Const.αt.

3. From (B.22), we note that on the event Γp,

Tt = −St.
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Therefore,

||ρt|+ sign(St)ρt| = ||ρt| − sign(Tt)ρt| = ||ρt| − |Tt|+ sign(Tt)(Tt − ρt)|
≤ 2|(Tt − ρt)| = 2|τt|.

Denote Γ(p) = {limt→∞ Zt = z∗} ∩ {Zt ∈ W(z∗), for all t ≥ p} and Γ(p)
t =

{P(Γ(p)|Ft) > 1/2}. By the inequality (B.25), we observe that

P(Γ(p)
t ) ≤ Constα−1

t E
[
1

Γ(p)
t

E (|ρt| | Ft)
]

= Constα−1
t E

[
1

Γ(p)
t

E (|ρt|+ sign(St)ρt | Ft)
]

,

where the later equality follows from the fact that St is Ft-measurable and
E(ρt|Ft) = 0. Thus,

P(Γ(p)
t ) ≤ Constα−1

t E [1Γ(p) E(2|τt| | Ft)] + Constα−1
t E

[∣∣∣1Γ(p) − 1
Γ(p)

t

∣∣∣E(2|ρt|) |Ft

]
≤ Constα−1

t E [1Γ(p) |τt|] + Constα−1
t E

[
|1Γ(p) − 1

Γ(p)
t
|2
]1/2

E [|ρt|2]1/2.

Observe that E
[
|1Γ(p) − 1

Γ(p)
t
|2
]1/2
→ 0 as t → ∞ and E [|ρt|2] ≤ Const.α2

t . On
the other hand,

E [1Γ(p) |τt|] ≤ Const.αt

(
E

(
1Γ(p)

∫ ∞

t
G̃2

udu
))1/2

+Const. E

∣∣∣∣1Γ(p)

∫ ∞

t
k(u)dHu

∣∣∣∣
+Const. E

∣∣∣∣1Γ(p)

∫ ∞

t
k(u)(ϕ′(Zu− − z∗)− 1)dNu

∣∣∣∣ .

The first and the second term have order o(αt) as t → ∞ by (B.21) and (B.23).
Moreover,

E

∣∣∣∣1Γ(p)

∫ ∞

t
k(u)

(
ϕ′(Zu− − z∗)− 1

)
dNu

∣∣∣∣
≤ E

(
1Γ(p)

∫ ∞

t
k2(u)

(
ϕ′(Zu− − z∗)− 1

)2 d[N]u

)1/2

≤ Const E

(
1Γ(p)

∫ ∞

t
k2(u)

(
ϕ′(Zu− − z∗)− 1

)2 du
)1/2

= o(αt),

where the last estimation is implied from the fact that, limt→∞ ϕ′(Zt−− z∗) = 1
on the event Γ(p). Thus,

E [1Γ(p) |τt|] = o(αt).
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Therefore, we can conclude that P(Γ(p)) ≤ limt→∞ P(Γ(p)
t ) = 0. It implies that

P(Γ) = P(∪pΓ(p)) = 0.

We now return to the occupation measure process Zt = (Z1
t , Z2

t ). For t ≥ 0,
define

Z̄t = Z1
t +

1{Xt=1}
(t + `0)α+1

and for each z ∈ R,

F̃(z) = F1(z, 1− z) = −z +
zα

zα + (1− z)α
.

By the integration by part formula, the equation (B.2) can be rewritten as the
following form for 0 ≤ s < t

Z̄t − Z̄s =
∫ t

s

1
u + `0

F̃(Z̄u)du +
∫ t

s

dEu + Rudu
(u + `0)α/2+1 ,

where we define the martingale

Et =
∫ t

0

1
(u + `0)α/2 dM1

u

= ∑
0<u≤t

1
(u + `0)α/2

(
1{Xu=1} − 1{Xu−=1}

)
−
∫ t

0

(Au)Xu,1

(u + `0)α/2 du

and the Ft-adapted process

Rt = (F̃(Z1
t )− F̃(Z̄t))(t + `0)

α/2 − α/2 + 1
(t + `0)α/2+1 1{Xt−=1}.

Note that
|Z1

t − Z̄t| ≤
1

(t + `0)α+1 → 0

as t→ ∞. Furthermore,

|(F̃(Z1
t )− F̃(Z̄t))| ≤ Const.|Z1

t − Z̄t| ≤
Const

(t + `0)α+1 .

It implies that

|Rt| ≤
Const

(t + `0)α/2+1 .
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Therefore ∫ ∞

0
R2

t dt < +∞.

For h > 0 and large t, we observe that

E
(
|Et+h − Et|2 | Ft

)
= E

(
∑

t<u≤t+h

(1{Xu=1} − 1{Xu−=1})
2

(u + `0)α
| Ft

)

<
1

(t + `0)α
×E (number of jumps between 1 and 2 during (t, t + h))

< Const.h,

where in the last inequality, we have used the fact that the number of jumps
between 1 and 2 during (t, t + h) is dominated by the number of jumps of a
Poisson process with constant intensity (t + h)α during (t, t + h).

Beside this, on the event Γ = {Zt → z∗ = (1/2, 1/2)}, L(1, t) = t/2 + o(t) and
L(2, t) = t/2 + o(t) as t→ ∞. We thus have

E
(

1Γ |Et+h − Et|2 | Ft

)
>

1
(t + `0 + h)α

×E (1Γ × number of jumps from 1 to 2 during (t, t + h))

> Const.h,

where in the last inequality, we have used the fact that the number of jumps
from 1 to 2 during (t, t + h) is greater than the number of jumps of a Poisson
process with constant intensity L(2, t)α = ( t

2 + o(t))α during (t, t + h).

Furthermore, for each t > 0,

E

(
∑

t<s≤t+1
|Z̄s|2

)
= E

(
∑

t<s≤t+1

(1{Xs=1} − 1{Xs−=1})
2

(s + `0)2α+2

)

≤ Const
(t + `0)2α+2 . E

(
∑

t<s≤t+1
(1{Xs=1} − 1{Xs−=1})

2

)

≤ Const
(t + `0)2α+2 · (t + `0)

α =
Const

(t + `0)α+2 .

Applying Theorem 5.2 for γ(t) := 1
t+`0

, c(t) := 1
(t+`0)α/2+1 , Nt := Et and Gt :=

Rt, we can conclude that P{Zt → z∗ = (1/2, 1/2)} = P{Z̄t → 1/2} = 0.
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Multivariate nonconvergence theorem

In this subsection, we consider a càdlàg stochastic process Zt taking values in
Rd such that

Zt − Z0 =
∫ t

0
γsF(Zs)ds +

∫ t

0
Gsds +

∫ t

0
Hs−dMs (B.26)

and the following assumptions are fulfilled

Assumption 9. 1. F is a C2-vector field;

2. G and H are cadlag adapted processes taking their values respectively in Rd

and in Rd×d, and there are decreasing deterministic continuous functions t 7→
gt and t 7→ ht with limt→∞ gt = limt→∞ ht = 0 such that for all t ≥ 0,
supi |Gi

t| ≤ gt and supi,j |H
i,j
t | ≤ ht;

3. M is a martingale of the form Mt = Nt −
∫ t

0 Λsds such that for all i ∈
{1, . . . , d},

• Ni is an increasing cadlag process taking its values in N such that ∆Ni
t :=

Ni
t − Ni

t− ∈ {0, 1} and if i 6= j, ∆Ni
t∆N j

t = 0 for all t ≥ 0,

• Λi is a nonnegative cadlag adapted process.

Let z∗ be a non-degenerate unstable equilibrium of F. Then Rd = Es ⊕ Eu,
where Es and Eu are respectively the generalized eigenspaces generated by the
eigenvalues of DF(z∗) with positive and negative real parts. To simplify the
notation, we suppose that Eu is spanned by e1, . . . , em and Es by em+1, . . . , ed.
Since z∗ is unstable, there exist constants C, λ > 0 such that

‖DvΦt(z∗)‖ = ‖eDF(z∗)tv‖ ≥ Ceλt‖v‖

for all v ∈ Eu and t ≥ 0.

Let (z∗s , z∗u) ∈ Es × Eu be such that z∗ = z∗s + z∗u. By the stable manifold
theorem (see, e.g [16], Theorem 10.1), there exist a neighbourhood N0 = N s

0 ⊕
N u

0 of z∗, with N s
0 (resp. N u

0 ) a ball around z∗s in Es (resp. around z∗u in Eu)
and a C2-function Γ : N s

0 → N u
0 such that

(a) DΓ(z∗s ) = 0.
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(b) The graph of Γ:
Graph(Γ) := {v + Γ(v) : v ∈ N s

0}
equals to the local stable manifold of z∗:

Ws
loc(z

∗) = {z ∈ Rd : ∀t ≥ 0, Φt(z) ∈ N0 and lim
t→∞

Φt(z) = z∗}.

(c) Ws
loc(z

∗) is an invariant manifold, i.e. for all t ∈ R,

Φt(Ws
loc(z

∗)) ∩N0 ⊂Ws
loc(z

∗).

Let r : N0 →Ws
loc(z

∗) and R : N0 → R be defined by

r(zs + zu) = zs + Γ(zs)

and
R(z) = ‖z− r(z)‖2.

Then r and R are C2 and R vanishes on Ws
loc(z

∗).

Following Lemma 6.7 in [5], there exists t1 > 0 and a neighbourhood N1 ⊂ N0

of z∗ such that for all z ∈ N1, Φt1(z) ∈ N0 and

R(Φt1(z)) ≥ R(z). (B.27)

Let N2 ⊂ N1 be a neighbourhood of z∗ such that Φ−t(z) ∈ N1 for every
t ∈ [0, t1]. For z ∈ N2, set

η(z) =
∫ t1

0
R(Φ−s(z))ds.

Then η is satisfies the following

Lemma 5.3. (i) η(z) = 0, for every z ∈ N2 ∩Ws
loc(z

∗),

(ii) η is C2 on N2,

(iii) For all z ∈ N2, Dη(z)F(z) ≥ 0,

(iv) There is a constant Cη ∈ [1, ∞) such that for all z ∈ N2 and u ∈ Rd,

‖Dη(z)‖ ≤ Cηη
1
2 (z),

‖D2η(z)‖ ≤ Cη ,

2η(z)D2
u,uη(z)− (Duη(z))2 ≥ −Cη‖u‖2η(z)3/2.
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(v) For every ε > 0 there exists N ε
2 ⊂ N2 such that for all z, z′ ∈ N ε

2 and v =

z′ − z,

η(z′)− η(z)− Dvη(z) ≥ 1
2

D2
v,vη(z∗)− ε‖v‖2,

(vi) D2
u,vη(z∗) = 0 if v ∈ Es and there is a positive constant ρ such that for all

u ∈ Eu, D2
u,uη(z∗) ≥ 2ρ‖u‖2.

Proof. (i) and (ii) are clear. For z ∈ N2,

Dη(z)F(z) = lim
δ→0

1
δ
(η(Φδ(z))− η(z))

= lim
δ→0

1
δ

(∫ 0

−δ
R(Φ−s(z))ds−

∫ t1

t1−δ
R(Φ−s(z))ds

)
= R(z)− R(Φ−t1(z)) ≥ 0.

Therefore, (iii) is implied from (B.27).

Set zt = Φ−t(z), and for u ∈ Rd, ut = Duzt = DuΦ−t(z). Then

Duη(z) = Du

∫ t1

0
‖zt − r(zt)‖2dt = 2

∫ t1

0
〈ut − Dut r(zt), zt − r(zt)〉dt.

The first inequality in (iv) can be proved by using Cauchy-Schwartz inequality
and the fact that r and Φ are C2. The second inequality in (iv) simply follows
from (ii). The inequality in (v) is a simple consequence of the Taylor expansion
of η. We now prove the third inequality in (iv). Using Cauchy-Schwartz
inequality, one obtains that

2η(z)D2
u,uη(z)− (Duη(z))2 ≥ −4η(z)

∫ t1

0
〈D2

ut,ut
r(zt), zt − r(zt)〉dt

+ 4η(z)
∫ t1

0
〈wt − Dwt r(zt), zt − r(zt)〉dt,

where we set wt = Du,uΦ−t(z). Therefore, the third inequality in (iv) is ob-
tained by using again Cauchy-Schwartz inequality.

To prove (vi), we remark that for u, v ∈ Rd,

D2
u,vη(z∗) = 2

∫ t1

0
〈ut − Dut r(z

∗), vt − Dvt r(z
∗)〉dt,

where ut = DuΦ−t(z∗) and vt = DvΦ−t(z∗). Since for v ∈ Es, vt ∈ Es, we have
Dvt r(z∗) = vt. This shows the first assertion of (vi). Following the proof of the
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claim (iv), page 54 in [4], there is a positive constant c0 such that for all u ∈ Eu

and 0 ≤ t ≤ t1,
‖ut − Dut r(zt)‖ ≥ c0‖u‖.

This prove the last statement of (vi), with ρ = c2
0t1.

A consequence of the first inequality in Lemma 5.3(iv) is that for all z, z′ ∈ N2,
if u = z′ − z, it holds that√

η(z′) ≥
√

η(z)− Cη‖u‖
2

.

This with the third inequality of (iv) implies that if ‖u‖ <
2
√

η(z)
Cη

(which
implies that for all t ∈ [0, 1], η(z + tu) > 0), then

√
η(z′)−√η(z)− Duη(z)

2
√

η(z)

=
1
4

∫ 1

0

∫ t

0

2η(z + tu)D2
u,uη(z + su)− (Duη(z + su))2

η(z + su)3/2 dsdt

≥ −Cη

8
× ‖u‖2. (B.28)

Suppose moreover that

Assumption 10. • There are a constant c∗ and a positive decreasing determin-
istic positive function t 7→ ct with limt→∞ ct = 0 such that when Zt ∈ N0,

ct ≤
m

∑
i=1

∑
k
(Hi,k

t )2Λk
t and

d

∑
i=1

∑
k
(Hi,k

t )2Λk
t ≤ c∗ct. (B.29)

• Set ηt = η(Zt)1Zt∈N ε
2
. Let t 7→ αt be a positive decreasing function such that

limt→∞ αt = 0. We suppose also that there is T < ∞ and C < ∞ such that for
all t ≥ T,

4α2
t

ρC
≤
∫ ∞

t
cudu ≤

(
αt

Cηc∗

)
∧
(

α2
t

8C2
ηc∗

)
; (B.30)

4Cη

∫ ∞

t
αugudu ≤ ρ

∫ ∞

t
cudu; (B.31)

4Cη

∫ ∞

t
gudu ≤ αt; (B.32)

ht ≤
(

4√
d

)
∧
(

αt

2Cη

)
. (B.33)
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For ε < ρ
2c∗ we will choose later on, and t > 0, define the following stopping

times

St = inf{s ≥ t : ηs > α2
s}, (B.34)

Ut = inf{s ≥ t : Zs 6∈ N ε
2 }. (B.35)

Lemma 5.4. For all t > T,

P[St ∧Ut < ∞|Ft] ≥ p =
1

2(1 + C)
. (B.36)

Proof. Applying the change of variable formula to (B.26), we have

ηs − ηt =
∫ s

t
γuDη(Zu)F(Zu)du + ∑

i,k

∫ s

t
∂iη(Zu−)Hi,k

u−dMk
u

+
∫ s

t
Dη(Zu)Gudu + ∑

t<u≤s
(∆η(Zu)− Dη(Zu−)∆Zu).

Using Lemma 5.3(iii-iv-v), the definitions (B.34), (B.35) and Assumption 9(2),
for t ≤ s ≤ St ∧Ut, we obtain that

ηs − ηt ≥∑
i,k

∫ s

t
∂iη(Zu−)Hi,k

u−dMk
u − Cη

∫ s

t
αugudu

+
1
2 ∑

t<u≤s
∑
i,j

∂2
i,jη(z

∗)∆Zi
u∆Zj

u − ε ∑
t<u≤s

‖∆Zu‖2.

Since ∆Zi
u∆Zj

u = ∑k,` Hik
u−H j`

u−∆Nk
u∆N`

u = ∑k Hi,k
u−H j,k

u−∆Nk
u, we get for t ≤ s ≤

St ∧Ut,

ηs − ηt ≥∑
i,k

∫ s

t
∂iη(Zu−)Hi,k

u−dMk
u − Cη

∫ s

t
αugudu

+
1
2 ∑

t<u≤s
∑
i,j,k

(
∂2

i,jη(z
∗)− 2εδi,j

)
Hi,k

u−H j,k
u−∆Nk

u

=∑
k

∫ s

t
Kk

u−dMk
u − Cη

∫ s

t
αugudu

+
1
2

∫ s

t
∑
i,j,k

(
∂2

i,jη(z
∗)− 2εδi,j

)
Hi,k

u H j,k
u Λk

udu,

where
Kk

u := ∑
i

∂iη(Zu)Hi,k
u +

1
2 ∑

i,j
(∂2

i,jη(z
∗)− 2εδi,j)Hi,k

u H j,k
u .
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Note that Kk is bounded on [t, St ∧Ut]. For 1 ≤ k ≤ d, Lemma 5.3(vi) and the
assumption (B.29) imply that

1
2 ∑

i,j,k
(∂2

i,jη(z
∗)− 2εδi,j)Hi,k

u H j,k
u Λk

u ≥ ρ
m

∑
i=1

(Hi,k
u )2Λk

u − ε ∑
i
(Hi,k

u )2Λk
u

≥ (ρ− εc∗)cu ≥
ρ

2
cu

(since we have chosen ε ≤ ρ
2c∗ ). We thus have

ηSt∧Ut − ηt ≥∑
k

∫ St∧Ut

t
Kk

u−dMk
u − Cη

∫ ∞

t
αugudu +

ρ

2

∫ St∧Ut

t
cudu. (B.37)

Note that when St < Ut, from the definitions (B.34), (B.35), we have η(ZSt−) ≤
α2

St
and ZSt , ZSt− ∈ N ε

2 ⊂ N2. Furthermore, from Assumption 9(2-3), ‖∆ZSt‖ =
‖HSt−∆NSt‖ ≤ d.hSt . Therefore, from the change of variables formula, the two
first inequalities in Lemma 5.3(iv) and the assumption (B.33), we obtain that

η(ZSt)− η(ZSt−) ≤ Dη(ZSt−)∆ZSt +
1
2

Cη‖∆ZSt‖2

≤ Cη [
√

η(ZSt−)‖∆ZSt‖+
1
2
‖∆ZSt‖2]

≤ Cη [dαSt hSt +
1
2

d2h2
St
] ≤ α2

St
.

Thus we get that ηSt = ηSt− + (ηSt − ηSt−) ≤ 2α2
St

. On the other hand, when
Ut ≤ St, ηUt = 0 and when St ∧Ut = ∞, lims→∞ ηs = 0. Therefore, from (B.37)
and the fact that {Mt}t≥0 is a martingale, we have

2 E[α2
St∧Ut
|Ft] ≥ E[ηSt∧Ut |Ft]

≥ −Cη

∫ ∞

t
αugudu +

ρ

2
E

[∫ St∧Ut

t
cudu

∣∣∣∣Ft

]
≥ −Cη

∫ ∞

t
αugudu +

ρ

2

(∫ ∞

t
cudu

)
P[St ∧Ut = ∞|Ft].

Using that α2
St∧Ut

≤ α2
t 1St∧Ut<∞, we obtain from the above inequality that

P[St ∧Ut < ∞|Ft] ≥
(

1− 2Cη

∫ ∞
t αugudu

ρ
∫ ∞

t cudu

)(
1 +

4α2
t

ρ
∫ ∞

t cudu

)−1

.

In the last estimation, using the assumptions (B.30) and (B.31), we easily obtain
(B.36).
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Lemma 5.5. Let H = {limt→∞ Zt = z∗} and for t ≥ 0, Ht = H ∩ {Ut = ∞}.
Then, for all t > T, on the event {St < Ut},

P[Ht|FSt ] ≤
1
2

. (B.38)

Proof. Set Tt = inf{s ≥ St : ηs = 0}. On the event {St < Ut}, for s ∈
[St, Tt ∧Ut],

√
ηs =

√
ηSt +

∫ s

St

γu
Dη(Zu)F(Zu)

2
√

ηu
du + ∑

i,j

∫ s

St

∂iη(Zu−)

2
√

η(Zu−)
Hi,j

u−dMj
u

+
∫ s

St

Dη(Zu)Gu

2
√

ηu
du + ∑

St<u≤s

(
∆
√

η(Zu)−
Dη(Zu−)∆Zu

2
√

η(Zu−)

)
. (B.39)

We remark from the definition (B.34) that
√

ηSt ≥ αSt . (B.40)

From the second inequality in Lemma 5.3(iv), Assumption 9(2) and (B.32), we
have ∫ s

St

Dη(Zu)Gu

2
√

ηu
du ≥ −Cη

2

∫ s

St

gudu ≥ −1
8

αSt . (B.41)

From (B.28),

∑
St<u≤s

(
∆
√

η(Zu)−
Dη(Zu−)∆Zu

2
√

η(Zu−)

)

≥ −Cη

8
‖∆Zu‖2

≥ −Cη

8 ∑
i,k

∑
St<u≤s

(Hi,k
u−)

2∆Nk
u

≥ −Cη

8 ∑
i,k

∫ s

St

(Hi,k
u−)

2dMk
u −

Cη

8 ∑
i,k

∫ s

St

(Hi,k
u−)

2Λk
udu

≥ −Cη

8 ∑
i,k

∫ s

St

(Hi,k
u−)

2dMk
u −

c∗Cη

8

∫ s

St

cudu (B.42)

≥ −Cη

8 ∑
i,k

∫ s

St

(Hi,k
u−)

2dMk
u −

1
8

αSt , (B.43)
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where (B.42) is implied from the assumption (B.29) and (B.43) is implied from
(B.41).

Set

Mη
t = ∑

i,k

∫ s

St

(
∂iη(Zu−)

2
√

η(Zu−)
Hi,k

u− −
Cη

8
(Hi,k

u−)
2

)
dMk

u (B.44)

and

It = inf
s∈[St,Ut∧Tt]

Mη
s . (B.45)

Then, combining (B.39) together with the inequalities (B.40), (B.41), (B.43), the
definitions (B.44) and (B.45), we have

√
ηs ≥ αSt + It −

1
8

αSt −
1
8

αSt =
3
4

αSt + It

on the event {St < Ut}, for s ∈ [St, Tt ∧Ut]. Therefore,

inf
s∈[St,Ut∧Tt]

√
ηs ≥

1
4

αSt

on the event {St < Ut} ∩ {It ≥ − 1
2 αSt}. Thus on the event {St < Ut},

P[Ht|FSt ] ≤ P

[
It ≤ −

1
2

αSt

∣∣∣∣FSt

]
. (B.46)

Using Doob’s inequality, we have

P

[
It ≤ −

1
2

αSt

∣∣∣∣FSt

]
≤ 4

α2
St

[∫ Ut∧Tt

St
∑

k

(
Lk

u
)2Λk

udu

∣∣∣∣∣FSt

]
, (B.47)

where, for u ∈ [St, Ut ∧ Tt],

Lk
u = ∑

i

∂iη(Zu)

2
√

η(Zu)
Hi,k

u −
Cη

8 ∑
i
(Hi,k

u )2.

From Assumption 9(2), note that ∑i(Hi,k
u )2 ≤ d.h2

u ≤ 1 as u is large enough.
Using the first inequality in Lemma 5.3(iv), we have

|Lk
u| ≤

Cη

2

√
∑

i
(Hi,k

u )2 +
Cη

8 ∑
i
(Hi,k

u )2

≤ Cη

2

√
∑

i
(Hi,k

u )2

[
1 +

√
dhu

4

]
≤ Cη

√
∑

i
(Hi,k

u )2, (B.48)
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where the last inequality of (B.48) is implied from the assumption (B.33). The
assumption (B.29) and (B.48) imply that, for u ∈ [St, Ut ∧ Tt],

∑
k
|Lk

u|2Λk
u ≤ C2

η ∑
k

∑
i
(Hi,k

u )2Λk
u

≤ C2
ηc∗cu. (B.49)

Therefore, from (B.47), (B.49) and the assumption (B.30)

P

[
It ≤ −

1
2

αSt

∣∣∣∣FSt

]
≤

4C2
ηc∗

α2
St

∫ ∞

St

cudu ≤ 1
2

.

This inequality and (B.46) imply the lemma.

Theorem 5.6. P[limt→∞ Zt = z∗] = 0.

Proof. Set A := {∃t; Ut = ∞}. From (B.36) and (B.38), for t > T,

P[Hc
t |Ft] ≥ E[P[Hc

t |FSt ]1{St<Ut}|Ft]

≥ 1
2
×P[St < Ut|Ft]

≥ 1
2
× (p−P[Ut < ∞|Ft]) .

Since H = {limt→∞ Zt = z∗} ⊂ A, for t > T, a.s.

P[Hc|Ft] = lim
s→∞

P[Hc
s |Ft]

= lim
s→∞

E[P[Hc
s |Fs]|Ft]

≥ lim
s→∞

1
2
× (p−E[P[Us < ∞|Fs]|Ft])

≥ lim
s→∞

1
2
× (p−P[Us < ∞|Ft])

≥ 1
2
× (p−P[Ac|Ft]) .

Since, a.s., limt→∞ P[Hc|Ft] = 1Hc and limt→∞ P[Ac|Ft] = 1Ac , we obtain that

1Hc ≥ 1
2
(p− 1Ac) a.s.

This implies that a.s., A ⊂ Hc, which is possible only if P(A) = 0 or P(Hc) =

1. We thus have proved (since H ⊂ A) that P(H) = 0.
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Application to strongly VRJP on complete graphs

Theorem 5.7. Assume that w(t) = tα, α ≥ 2 and G = (V, E) is a complete graph.
Then for every unstable equilibrium z∗,

P{Zt → z∗} = 0.

Proof. Without lost of generality, we only need to consider the event {Zt →
z∗}, where z∗ is a unstable equilibrium such that z∗i = 1/m if 1 ≤ i ≤ m and
z∗i = 0 otherwise, where m ∈ {2, ..., d}. We apply the previous theorem to
Z̄t = Zt +

I[Xt]
(t+`0)α+1 . Then Z̄ satisfies (B.26), by taking

γt :=
1

t + `0
,

Gt :=
F(Zt)− F(Z̄t)

t + `0
−
(α

2
+ 1
)

I[Xt−],

Hi,j
t := δi,j

εi
t

(t + `0)α+1 ,

Ni
t := ∑

0<u≤t
|∆Ii[Xu]|,

Λi
t := εi

t Ai
t[Xt],

where
εi

t := 1{Xt 6=i} − 1{Xt=i}.

Then Ni counts the number of jumps of X from i or towards i.

For some sufficiently large constant g, one can take

gt =
g

tα+2 and ht =
1

tα+1 .

We thus have
sup

i
|Gi

t| ≤ gt, and sup
i,j
|Hij

t | ≤ ht.

Note that

M̄i
t := ∑

0<u≤t
∆Ni

t −
∫ t

0
Λi

udu =
∫ t

0
εi

u−dMi
u

is a martingale. Note also that

Λi
t = ∑

j:j∼i
1{Xt∈{i,j}}w

(j)
t .
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If one assumes that G is a complete graph, then by taking c a sufficiently small
constant, ct = ct−(α+2) and c∗ sufficiently large, one can check that (B.29) is
satisfied.

We then have
∫ ∞

t cudu = c
α+1 t−(α+1).

Set αt = at−
α+1

2 . Then if one takes a such that a2 ≥ 8C2
ηc∗c

α+1 and C ≥ 4a2(α+1)
ρc , T

sufficiently large, then (B.30) is satisfied.

We calculate
∫ ∞

t αugudu = 2ag
3(α+1) t−

3(α+1)
2 = o

(∫ ∞
t cudu

)
, which implies that if

T is taken sufficiently large, (B.31) holds for all t ≥ T.

If now one takes T sufficiently large, then (B.32) and (B.33) also hold.

All this proves that P[Zt → z∗] = 0.

Remark. Since Lemma 5.3 requires that F is a C2-vector field, the case of
subsquare weight functions, i.e. 1 < α < 2, is still not solved for complete
graphs with d ≥ 3 vertices.
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contournent-ils les pièges? (French). Ann. Inst. H. Poincaré Probab.
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On a class of random walks in simplexes

Tuan-Minh Nguyen and Stanislav Volkov
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Abstract

In this paper, we will study the limit behaviour of a class of Markov chain
models taking values in the d-dimensional unit standard simplex, d ≥ 1,
defined as follows: from an interior point z, the chain will choose one from
d+ 1 vertices of the simplex with probabilities depending on z and then it will
randomly jump to a new point z′ in the segment connecting z and the chosen
vertex. In some specific cases using Beta distribution, we prove that the limit-
ing distributions of the Markov chain are Dirichlet. We also consider a related
history-dependent random walk model in [0,1] based on Friedman’s urn-type
schemes. We will show that this random walk converges in distribution to the
arcsine law.

Keywords: Random walks in simplexes, iterated random functions, Dirichlet
distribution, stick-breaking process.

Introduction

We denote as

Sd = {(z1, z2, . . . , zd) ∈ Rd : z1 + z2 + · · ·+ zd ≤ 1, zj ≥ 0, j = 1, 2, . . . , d}

the standard unit simplex in Rd, also let B(Sd) and λd stand for the Borel
σ-algebra and Lebesgue measure on Sd respectively. Let E0 = (0, 0, . . . , 0) be
the origin and E1 = (1, 0, . . . , 0), E2 = (0, 1, 0, . . . , 0), ..., Ed = (0, . . . , 0, 1) be
standard orthonormal basis vectors in Rd, which are also the vertices of Sd.
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Let p = (p1, p2, ..., pd) be a mapping from Sd to itself so-called probability choice
function. For some initial point Z0 ∈ Sd, we consider the following random
iteration

Zn+1 = (1− ξn)Zn + ξnΘn,

for n ≥ 0, where ξn, n = 0, 1, 2, ... are i.i.d copies of a random variables ξ with
support in [0, 1]; Θn is a discrete random variable independent from {ξn}n≥0

such that {
P(Θn = Ej|Zn = z) = pj(z), j = 1, 2, ..., d;
P(Θn = E0|Zn = z) = 1−∑d

j=1 pj(z).

The aforementioned model was first introduced by Sethuraman in [10], in
the case the choice probabilities p1, p2, ..., pd are positive constants. Sethura-
man proved that if ξ ∼ Beta(1, γ), Θ is a discrete random variable such
that P(Θ = Ej) = pj for j = 1, 2, . . . , d, p0 = 1 − p1 − p2 − ... − pd and
Z ∼ Dirichlet(p1γ, p2γ, . . . , pdγ, p0γ), then

Z ∼ (1− ξ)Z + ξΘ,

where Beta(a, b) denotes the beta distribution with the probability density
function

g(ξ) =
Γ(a + b)
Γ(a)Γ(b)

ξa−1(1− ξ)b−1, 0 < ξ < 1,

Γ being the Gamma function and Dirichlet(α1, α2, ..., αd, αd+1) denotes the Di-
richlet distribution with the probability density function

f (z1, z2, ..., zd) =
Γ
(

∑d+1
i=1 αi

)
∏d+1

i=1 Γ(αi)

(
1−

d

∑
i=1

zi

)αd+1−1 d

∏
i=1

zαi−1

defined for each (z1, z2, ..., zd) in the interior of Sd.

This identity is often used for the construction of Dirichlet distribution in
Sd, which has been intensively applied to Bayesian nonparametric statistics.
Further extensions when ξ ∼ Beta(k, γ), k is a positive integer, and Θ has
quasi-Bernoulli distributions were studied by Hitczenco and Letac in [5].

In [4], Diaconis and Freedman reconsidered Sethuraman’s model from the
point of view of random iterated functions and also discussed the case in
which p(z) depends on z ∈ S1 = [0, 1]. Other models in S1 with various
specific cases of p(z) and ξ were studied in [8], [9], and [7]. Inspired by the
work of Diaconis and Freedman, Ladjimi and Peigné in their recent work [6]
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studied iterated random functions with place dependent choice probabilities
and demonstrated several applications to the one-dimensional model where
ξ ∼ Uniform[0, 1] and p(z) is Hölder continuous in [0, 1].

In [7], McKinlay and Borovkov gave a general condition for the ergodicity
of the one-dimensional Markov chain {Zn}n≥0 in S1. By solving integral
equations, they derived a closed-form expression for the stationary density
function in the case where ξ ∼ Beta(1, γ) and p(z) is a piecewise continuous
function on [0, 1]. In particular, if p(z) = (1− c)z + b(1− z), b, c ∈ (0, 1], then
the stationary distribution is Beta(bγ, cγ).

The model, also known in the literature as stick-breaking process, stochastic
give-and-take (see [2], [7]) or Diaconis-Friedman’s chain (see [6]) has numer-
ous applications to other fields such as human genetics, robot coverage al-
gorithm, random search, etc. For further discussions on these, we refer the
reader to [2], [9] and [7].

The aim of our work is to study the limit behaviour of the d-dimensional
Markov chain {Zn}n≥0 in Sd and a related history-dependent random walk
model in [0, 1] which is not a Markov chain. In Section 2, we give an exten-
sion of the work of MacKinlay and Borovkov in higher dimensional simplexes
under some certain assumptions for p(z) and ξ. In the case where ξ is Beta
distributed and the probability choice function p(z) is linearly dependent on
z, we prove that the limiting distributions of these Markov chains are Dirich-
let in Section 3. In Section 4, we also consider a history-dependent random
walk model in [0,1] based on Friedman’s urn-type schemes. Using martin-
gales and coupling techniques, we will show that the random walk converges
in distribution to the arcsine law.

Existence of the limiting distribution

To prove the ergodicity of the Markov chain {Zn}n≥0, we will use the following
result (see [1], Theorem 2.1)

Proposition 2.1. Let Zn, n = 0, 1, 2, ... be a Markov chain corresponding with the
measurable state space (X ,B(X )) such that for n ≥ 1, P(Zn ∈ A|Z0 = z) is a
measurable function of z ∈ X when A ∈ B(X ) is fixed, while it is a probability
measure of A when z is fixed.

Then Zn is ergodic if there exist a subset V ∈ B(X ), q > 0, a probability measure ϕ
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on (X ,B(X )) and some positive integer n0 such that

(a) P(τV < ∞|Z0 = z) = 1 for all z ∈ X , where τV = inf{n ≥ 1 : Zn ∈ V};

(b) supz∈V E (τV |Z0 = z) < ∞;

(c) P(Zn0 ∈ B|Z0 = z) ≥ qϕ(B) for all B ∈ B(X ) and z ∈ V;

(d) gcd{n : P(Zn ∈ B|Z0 = z) ≥ qϕ(B)} = 1 for z ∈ V.

Moreover, if the above conditions are fulfilled, then there exists an invariant measure
µ such that the distribution of Zn converges to µ in total variation norm.

For z = (z1, z2 . . . , zd) ∈ Sd, we define z0 = 1− z1 − z2 − · · · − zd and p0(z) =
1− p1(z)− p2(z)− · · · − pd(z).

Assumption 11. There are δ ∈ (0, 1
2d ) and s, t ∈ (δ1/d, 1− δ1/d), s < t such that

(i) Fξ(1− δ) := 1− η < 1;

(ii) there is an ε > 0 such that for any 1 ≤ k ≤ d and any 0 ≤ j1 < j2 < · · · <
jk ≤ d,

inf
z∈Sd :zj1+···+zjk

≤δ

k

∑
l=1

pjl (z) ≥ ε;

(iii) there is c > 0 such that for all B ∈ B([0, 1]), B ⊂ [s(1− t)d−1 − δ, t] ∪ [(1−
t)d − δ, 1− s],

P(ξ ∈ B) > cλ(B),

where λ is the Lebesgue measure on [0, 1].

Remark. The condition (i) is quite natural to avoid the absorption of Zn at
the boundary of Sd. For d = 1, the above conditions are mostly similar to
the assumptions (E1-E2-E3) of McKinlay and Borovkov in [7]. However, in
comparison with the condition (iii), they required that ξ has a density on
[s− δ, t] and [1− t− δ, 1− s].
Also, observe that in condition (iii) the intervals are properly defined (but may
overlap).

For j = 0, 1, . . . , d, let

Vj =
{

z = (z1, . . . , zd) ∈ Sd : 1− δ ≤ zj ≤ 1
}

.
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In particular,

V0 =

{
z = (z1, . . . , zd) ∈ Sd :

d

∑
j=1

zj ≤ δ

}
.
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Figure C.1: Illustration of Vj, j = 0, 1, 2 in case d = 2.

Let T : [0, 1]d → Sd defined as follows, for each x = (x1, x2, . . . , xd) ∈ [0, 1]d,

T(x) =

(
x1 ∏

1<j≤n
(1− xj), x2 ∏

2<j≤n
(1− xj), . . . , xd−1(1− xd), xd

)
.

Note that T is a homeomorphism from (0, 1)d to the interior of Sd. Moreover,
the inverse T−1 is defined such that, for each z = (z1, . . . , zd) in the interior of
Sd,

T−1(z) =

 z1

1− ∑
2≤j≤n

zj
,

z2

1− ∑
3≤j≤n

zj
, . . . ,

zd−1

1− zd
, zd

 .

For j = 1, 2, . . . , d, z = (z1, . . . , zd), u = (u1, . . . , ud) ∈ Sd, z0 = 1−∑d
k=1 zk, u0 =

1−∑d
k=1 uk, we define the following affine operators

Rj(z1, z2, . . . , zd) = (z0, z1, . . . , zj−1, zj+1, zj+2, . . . , zd),

Gz(u) = (u0z1 + u1, u0z2 + u2, . . . , u0zd + ud) .

Note that provided z0 6= 0, the map Gz is invertible and its inverse can be
computed as

G−1
z (u) =

(
u1 −

z1u0

z0
, u2 −

z2u0

z0
, . . . , ud −

zdu0

z0

)
.
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We also define

K :=

{
(u1, . . . , ud) ∈ Sd : s ≤ uj

1−∑d
l=j+1 ul

≤ t, j = 1, 2, . . . , d

}
= T([s, t]d).

The proof of the following Lemma is given in the Appendix.

Lemma 2.2. (a) If z ∈ V0 then

T−1 ◦ G−1
z (K) ⊂ [s(1− t)d−1 − δ, t]d.

(b) If z ∈ Vk with k ∈ {1, 2, . . . , d} then

T−1 ◦ G−1
Rk(z)
◦ Rk(K) ⊂ [(1− t)d − δ, 1− s]× [s(1− t)d−1 − δ, t]d−1.

Theorem 2.3. Assume that all conditions in Assumption 1 are fulfilled with a com-
mon δ. Then the Markov chain {Zn}n≥0 converges in distribution.

Proof.
Step 1. We define

V =
d⋃

j=0

Vj.

Observe from the assumption (i) that P(Z1 ∈ V|Z0 = z) ≥ η = 1− Fξ(1− δ) >

0 for all z ∈ Sd. Therefore, for all z ∈ Sd, given Z0 = z, τV = inf{n ≥ 1 : Zn ∈
V} stochastically dominates a geometric random variable with parameter η.
Thus,

P(τV > n|Z0 = z) ≤ (1− η)n.

Hence, the conditions (a) and (b) are easily verified.

Step 2. Throughout this proof, we let Const stand for an existence of some
positive constant. From the definition of {Zn}n≥0, we observe that

Zd = ζ0Z0 + ζ1Θ0 + ζ2Θ1 + · · ·+ ζdΘd−1,

where

(ζ1, . . . , ζd) := T(ξ0, ..., ξd−1), ζ0 :=
d−1

∏
j=0

(1− ξ j) = 1−
d

∑
j=1

ζ j.

For 1 ≤ k ≤ d and 0 ≤ j1 < j2 < · · · < jk ≤ d, define

Uj1 j2...jk :=
{

z = (z1, z2, ..., zd) ∈ Sd : zj1 + zj2 + · · ·+ zjk ≤ δ
}

.
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Let B ∈ B(Sd). Then, if Z0 = z ∈ V0 and Θ0 = E1, Θ1 = E2, . . . , Θd−1 = Ed,
then Zj ∈ Uj+1,j+2,...,d for j = 0, 1, . . . , d. Therefore, by assumption (ii), we note
that

P (Zd ∈ B|Z0 = z)
≥ P (Zd ∈ B ∩ K, (Θ0, Θ1, . . . , Θd−1) = (E1, E2, . . . , Ed) | Z0 = z)
≥ ∏d

l=1 infz∈Ul,l+1,...,d

(
∑d

j=l pj(z)
)
×P (ζ0z + ζ1E1 + · · ·+ ζdEd ∈ B ∩ K)

≥ εd P((ζ0z1 + ζ1, ζ0z2 + ζ2, . . . , ζ0zd + ζd) ∈ B ∩ K)
= εd P

(
(ζ1, ζ2, . . . , ζd) ∈ G−1

z (B ∩ K)
)

= εd P
(
(ξ0, ξ1, . . . , ξd−1) ∈ T−1 ◦ G−1

z (B ∩ K)
)

.
(C.1)

Step 3. For B ∈ B(Sd) and z ∈ V0, from the assumption (iii) and Lemma 2.2,
we have

P
(
(ξ0, ξ1, . . . , ξd−1) ∈ T−1 ◦ G−1

z (B ∩ K)
)
≥ λd

(
T−1 ◦ G−1

z (B ∩ K)
)

. (C.2)

We will demonstrate that,

λd

(
T−1 ◦ G−1

z (B ∩ K)
)
≥ λd(B ∩ K). (C.3)

Indeed, the inequality (C.3) is implied from the fact that for any differentiable
mapping Q : Sd → [0, 1]d and A ∈ B(Sd),

λd(Q(A)) ≥ inf
u∈Sd

∣∣∣∣det
(

∂

∂u
Q(u)

)∣∣∣∣ λd(A)

and by setting the Jacobian Q = ∂
∂u G−1

z (u) to get

det
(

∂

∂u
G−1

z (u)
)
= det


1 + z1

z0

z1
z0

z1
z0

. . . z1
z0

z2
z0

1 + z2
z0

z2
z0

. . . z2
z0

...
...

. . . . . .
...

zd−1
z0

. . . zd−1
z0

1 + zd−1
z0

zd−1
z0

zd
z0

. . . zd
z0

zd
z0

1 + zd
z0

 =
1
z0
≥ 1,

119



and

det
(

∂

∂v
T−1(v)

)
= det



1
1−∑d

j=2 vj

v1

(1−∑d
j=2 vj)

2
v1

(1−∑d
j=2 vj)

2 . . . v1

(1−∑d
j=2 vj)

2

0 1
1−∑d

j=3 vj

v2

(1−∑d
j=3 vj)

2 . . . v2

(1−∑d
j=3 vj)

2

...
...

. . . . . .
...

0 . . . 0 1
1−vd

vd−1
(1−vd)2

0 . . . 0 0 1


=

(
d

∏
j=1

(
1−

d

∑
l=j+1

vl

))−1

≥ 1.

From (C.1), (C.2)) and (C.3), for each B ∈ B(Sd) and z ∈ V0, we obtain that

P (Zd ∈ B|Z0 = z) ≥ Const λd (B ∩ K) . (C.4)

Step 4. For each k ∈ {1, 2, ..., d}, B ∈ B(Sd) and z ∈ Vk, we have

P(Zd ∈ B|Z0 = z)

≥ P (Zd ∈ B ∩ (K), (Θ0, Θ1, . . . , Θd−1) = (E0, E1, . . . , Ek−1, Ek+1, . . . , Ed) | Z0 = z)

≥ Const P
(

R−1
k ◦ GRk(z)(ζ1, ζ2, ..., ζd) ∈ B ∩ K

)
= Const P

(
(ζ1, . . . , ζd) ∈ G−1

Rk(z)
◦ Rk(B ∩ K)

)
= Const P

(
(ξ0, ξ1, . . . , ξd−1) ∈ T−1 ◦ G−1

Rk(z)
◦ Rk(B ∩ K)

)
,

where we remark that, for u ∈ Sd and z ∈ Vk,

R−1
k (GRk(z)(u)) = (u0z1 + u2, . . . , u0zk−1 + uk, u0zk, u0zk+1 + uk+1, ..., u0zd + ud) .

From the assumption (iii), we have

P
(
(ξ0, ξ1, . . . , ξd−1) ∈ T−1 ◦ G−1

Rk(z)
◦ Rk(B ∩ K)

)
≥ λd(B ∩ K).

It implies that for each B ∈ B(Sd), k = 1, 2, ..., d and z ∈ Vk,

P (Zd ∈ B|Z0 = z) ≥ Const λd (B ∩ K) . (C.5)

We define the probability measure ϕ as follows, for each B ∈ B(Sd),

ϕ(B) =
λd (B ∩ K)

λd (K)
.
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From (C.4) and (C.5), we can conclude that the condition (c) is verified.

Step 5. For each B ∈ B(Sd) and z ∈ V,

P (Zd+1 ∈ B|Z0 = z) ≥ P (Zd+1 ∈ B, Z1 ∈ V|Z0 = z)

= P (Zd+1 ∈ B|Z1 ∈ V, Z0 = z)P(Z1 ∈ V|Z0 = z)

≥ η P (Zd+1 ∈ B|Z1 ∈ V)

≥ Const λd (B ∩ K) .

Since gcd(d, d + 1) = 1, the condition (d) is now clearly fulfilled.

Beta walks with linearly place-dependent probabilities

Assume that Zn converges in distribution to a random variable Z. Then

Z ∼ (1− ξ)Z + ξΘ,

where Θ is a discrete random variable independent from ξ such that{
P(Θ = Ej|Z = z) = pj(z), j = 1, 2, ..., d;
P(Θ = E0|Z = z) = 1−∑d

j=1 pj(z).

Lemma 3.1. Assume that ξ and Z respectively have the probability density functions
g(u) for u ∈ (0, 1) and f (z1, z2, . . . , zd) for (z1, z2, . . . , zd) in the interior of Sd.
Then Z ∼ (1− ξ)Z + ξΘ if and only if f and g satisfy the following equation

f (z1, z2, . . . , zd) =
d

∑
j=0

Tj, (C.6)

where

T0 =
∫ 1

z1+z2+···+zd

1
ud f

( z1

u
,

z2

u
, . . . ,

zd

u

)
p0

( z1

u
,

z2

u
, . . . ,

zd

u

)
g(1− u)du

and

Tj =
∫ 1

1−zj

1
ud f

(
z1

u
, . . .

zj−1

u
,

zj − 1 + u
u

,
zj+1

u
, . . .

zd

u

)
×pj

(
z1

u
, . . .

zj−1

u
,

zj − 1 + u
u

,
zj+1

u
, . . .

zd

u

)
g(1− u)du

for j = 1, 2, . . . , d.
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Proof. Denote Z̃ = (1− ξ)Z + ξΘ. We have

P
(
Z̃ < z

)
=

d

∑
j=0

∫ 1

0
P

(
Z +

1− u
u

Θ <
z
u

, Θ = Ej

)
g(1− u)du, (C.7)

where for y = (y1, y2, ..., yd), z = (z1, z2, ..., zd) ∈ Rd, we write z < y if zj <

yj, j = 1, 2, ..., d. Note that

P

(
Z +

1− u
u

Θ <
z
u

, Θ = Ej

)
=
∫
Sd

1{y< 1
u (z−(1−u)Ej)} f (y)pj(y)dy.

Observe that for j = 0, 1, ..., d,

∂d

∂z1∂z2...∂zd

∫
Sd

1{y< 1
u (z−(1−u)Ej)} f (y)pj(y)dy

=
1
ud f

(
1
u
(z− (1− u)Ej)

)
pj

(
1
u
(z− (1− u)Ej)

)
1{ 1

u (z−(1−u)Ej∈Sd}

=
1
ud f

(
1
u
(z− (1− u)Ej)

)
pj

(
1
u
(z− (1− u)Ej)

)
1{1−zj≤u≤1}.

Therefore, the density function f̃ of Z̃ is computed as follows

f̃ (z1, z2, ..., zd) =
d

∑
j=0

∫ 1

zj

1
ud f

(
1
u
(z− (1− u)Ej)

)
p
(

1
u
(z− (1− u)Ej)

)
g(1− u)du

=
d

∑
j=0

Tj.

The lemma is implied from the fact that Z and Z̃ have the same distribution if
and only if f (z) = f̃ (z) for all z in the interior of Sd.

Theorem 3.2. Assume that

(a) ξ ∼ Beta(1, γ);

(b) p = (p1, p2, . . . , pd) : Sd → Sd is defined by

pk(z1, z2, . . . , zd) = βk(1− zk) +

(
1−

d+1

∑
j=1

β j + βk

)
zk, k = 1, 2, ..., d,

where βk > 0 and ∑d+1
j=1 β j − βk < 1 for k = 1, 2, ..., d + 1;
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(c) Z ∼ Dirichlet(β1γ, β2γ, . . . , βdγ, βd+1γ).

Then Z ∼ (1− ξ)Z + ξΘ yielding by Lemma 3.1 that Zn converges to a Dirichlet
distribution.

Proof. Let f and g be respectively the probability density functions of ξ ∼
Beta(1, γ) and Z ∼ Dirichlet(β1γ, β2γ, . . . , βdγ, βd+1γ). We only have to verify
that f and g satisfy the integral equation (C.6).

We have

T0 =

Γ

(
γ

d+1

∑
j=1

β j

)
d+1

∏
j=1

Γ(β jγ)

d

∏
j=1

z
β jγ−1
j

∫ 1
d
∑

j=1
zj

(
u−

d

∑
j=1

zj

)γβd+1−1

u
−γ

(
d+1
∑

j=1
β j−1

)
−1

×
[

γβd+1u− γ

(
d+1

∑
j=1

β j − 1

)(
u−

d

∑
j=1

zj

)]
du

=

Γ

(
γ

d+1

∑
j=1

β j

)
d+1

∏
j=1

Γ(β jγ)

(
1−

d

∑
j=1

zj

)βd+1γ d

∏
j=1

z
β jγ−1
j ,

where we note that∫ 1

z
u−b−1(u− z)a−1[au− b(u− z)] du = (1− z)a.

Similarly, for k = 1, 2, ..., d, we also obtain that

Tk =

Γ

(
γ

d+1

∑
j=1

β j

)
d+1

∏
j=1

Γ(β jγ)

(
1−

d

∑
j=1

zj

)βd+1γ−1

zk

d

∏
j=1

z
β jγ−1
j .

Therefore,

d

∑
k=0

Tk =

Γ

(
γ

d+1

∑
j=1

β j

)
d+1

∏
j=1

Γ(β jγ)

(
1−

d

∑
j=1

zj

)βd+1γ−1 d

∏
j=1

z
β jγ−1
j = f (z1, z2, ..., zd).
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Remarks.

• For d = 1, p1(z) = β1(1− z) + (1− β2)z. This is the one-dimensional
case considered by McKinlay and Borovkov in [7].

• For d ≥ 1, if ∑d+1
j=1 β j = 1 then we obtain the model considered by Seth-

uraman in [10].

Random walks in [0,1] based on Friedman’s urn-type schemes

In this section, we are interested in the following random walk model in the
unit interval S1 = [0, 1] with the following assumptions

1. At time n, there are potentials Ln and Rn at 0 and 1 respectively, and we
denote as Zn the position of the particle at this time.

2. At time n, with probability Ln
Ln+Rn

, the potential at 0 will increase a value
proportional to Zn, i.e. the distance from 0 to the current position of
the particle, and then the particle is pulled to a new uniformly random
position Zn+1 inside the interval (0, Zn). Otherwise, with probability

Rn
Ln+Rn

, the potential at 1 will increase a value proportional to 1− Zn, i.e.
the distance from 1 to the current position of the particle, and then the
particle is pulled to a new uniformly random position Zn+1 inside the
interval (Zn, 1).

For more general, we can consider the following random recursion

Zn+1 = Zn(1− ξ
(L)
n )1{Un<

Ln
Ln+Rn } + (Zn + (1− Zn)ξ

(R)
n )1{Un>

Ln
Ln+Rn },

together with two “urns” Ln, Rn respectively at 0 and 1, defined as follows

Ln+1 = Ln + f (Zn)1{Un<
Ln

Ln+Rn },

Rn+1 = Rn + f (1− Zn)1{Un>
Ln

Ln+Rn },

where f : [0, 1] → [0,+∞) is some function; ξ
(L)
n and ξ

(R)
n , n ≥ 1, are inde-

pendent random variables taking values in [0, 1]; Un, n ≥ 1 are i.i.d uniformly
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distributed random variables in [0, 1] and independent of ξ
(L)
n , ξ

(R)
n , Zn, n ≥ 1.

Since the probabilities jumping to the left or the right depend on (Ln, Rn), the
random walk {Zn}n≥1 is no longer a Markov chain but depends on its history.

We assume from now on that ξ
(L)
n = ξ

(R)
n = ξn, n ≥ 1, are uniformly distrib-

uted in [0, 1]. Note that in the case where f (x) = β > 0 for all x ∈ [0, 1], the
process (Ln, Rn)n≥1 is reduced to the classical Friedman urn w.r.t the matrix(

0 β

β 0

)
.

It is well-known in this case that Ln/(Rn + Ln) converges almost surely to
1/2 as n → ∞ (see e.g. [3], Corollary 5.2). Therefore, one can show that Zn

converges in distribution to the arcsine law Beta(1/2, 1/2).

In the remaining part of this paper, for simplicity, we restrict to the case where
f (x) = x for all x ∈ [0, 1].

Lemma 4.1. Ln + Rn → ∞ almost surely as n→ ∞.

Proof. There are the following cases that might occur:

• Case 1: There is ε ∈ (0, 1/2) such that

lim sup
n→∞

Zn > ε and lim inf
n→∞

Zn < 1− ε.

In this case, we will show that there exist infinitely many ns such that
Zn ∈ (ε, 1− ε); therefore Ln+1 + Rn+1 − (Ln + Rn) > ε for all such n
implying that Rn + Ln → ∞. Indeed, assume that Zn ∈ [0, ε] ∪ [1− ε, 1]
for all large n; moreover the assumption on lim inf and lim sup imply
that Zn visit both segments infinitely often; hence it must make infinitely
many moves to the right when Zn ∈ [0, ε]. However, each time it does
so, Zn+1 will land in (ε, 1− ε) with probability at least 1− 2ε > 0 so
eventually this will happen a.s. contradicting the assumption.

• Case 2: limn→∞ Zn = 0. In this case, for each ε > 0, there exists N large
enough such that for all n ≥ N, Zn ∈ (0, ε). If Zn+1 ∈ (Zn, 1) infinitely
many times for n ≥ N, then, since P(Zn+1 ∈ (ε, 1)|Zn+1 ∈ (Zn, 1)) ≥
1− ε, there exists N′ > N such that ZN′ ∈ (ε, 1) which is against our
assumption. This contradiction implies that there exists N0 such that
Zn+1 ∈ (0, Zn) for all n ≥ N0. Hence, we have

Ln = LN0(1 + η1 + η1η2 + ... + η1η2...ηn−N0),
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where η1, η2, ... are independent uniformly distributed random variable
in [0,1]. It is well-known that 1 + η1 + η1η2 + ... + η1η2...ηn converges
almost surely to a finite random variable as n → ∞ (see e.g. [11]). On
the other hand, for all n ≥ N0

P
(
Zn+1 ∈ (Zn, 1)|Zj, j = 1, 2, . . . , n

)
=

Rn

Ln + Rn
≥ RN0

RN0 + L∞
> 0, a.s.,

where L∞ := limn→∞ Ln. The above contradiction implies that this case
cannot happen.

• Case 3: limn→∞ Zn = 1, this case is similar to Case 2.

Lemma 4.2.
1

12
≤ lim inf

n→∞

Ln

Rn
≤ lim sup

n→∞

Ln

Rn
≤ 12.

Proof. The proof is based on the arguments from the previous statement. For
simplicity rewrite the recursion equivalently as

Zn+1 = ξn Zn1{Un<
Ln

Ln+Rn } + (Zn + ξn (1− Zn))1{Un>
Ln

Ln+Rn }.

We know that Zn makes a.s. infinitely many steps to the left as well as to the
right. Hence there exists a sequence of stopping times

τ1 < η1 < τ2 < η2 < . . .

going to infinity, such that

Zn+1 < Zn, if n ∈ [τi, ηi) for some i,

Zn+1 > Zn, if n ∈ [ηi, τi+1) for some i.

Consequently,

Lηi − Lτi = Zηi(1 + ξτi+1 + ξτi+1ξτi+2 + · · ·+ ξτi+1ξτi+2 · · · ξηi−1)

≤ 1 + ξτi+1 + ξτi+1ξτi+2 + · · ·+ ξτi+1ξτi+2 · · · ξηi−2 + 1,

Rηi − Rτi = 0.
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At the same time with probability 1/2 we have ξηi−1 < 1/2. Assuming this,
we get that Zηi ≤ ξηi−1 < 1/2. Since at the time ηi the walk moves to the right,
we have Rηi+1 − Rηi = 1− Zηi > 1/2. Consequently, we obtain that

Lηn+1 ≤
n

∑
j=1

νn, Rηn+1 ≥
n

∑
j=1

ν̃n

where all νn and ν̃n are independent and νn has the distribution of 2+∑∞
k=1 ∏k

i=1 ξi
yielding E νn = 3 while ν̃n equals 1/2 and 0 with equal probabilities 1/2, so
that E ν̃n = 1/4. Now the strong law of large numbers together with mono-
tonicity of Ln and Rn imply that

lim sup
n→∞

Ln

Rn
≤ 3

1/4
= 12.

The complimentary inequality can be proved identically.

Lemma 4.3. ζn :=
Ln

Ln + Rn
converges almost surely to ζ∞ ∈ (0, 1) as n→ ∞.

Remark. From the previous lemma it follows that

1/13 ≤ lim inf ζn ≤ lim sup ζn ≤ 12/13.

Proof. Let Fn stand for the σ-algebra generated by Z1, ..., Zn. Let us consider
the quantity

Wn =

(
1
2
− Ln + Zn

Ln + Rn

)2

+
1

Ln + Rn
.
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We have

E (Wn+1|Fn)

=
Ln

Ln + Rn
E

(
Wn+1

∣∣∣∣Un <
Ln

Ln + Rn
,Fn

)
+

Rn

Ln + Rn
E

(
Wn+1

∣∣∣∣Un >
Ln

Ln + Rn
,Fn

)
=

Ln

Ln + Rn

∫ Zn

0

1
Zn

[(
1
2
− Ln + Zn + u

Ln + Rn + Zn

)2

+
1

Ln + Rz + Zn

]
du

+
Rn

Ln + Rn

∫ 1

Zn

1
1− Zn

[(
1
2
− Ln + u

Ln + Rn + 1− Zn

)2

+
1

Ln + Rn + 1− Zn

]
du

=
Ln

Ln + Rn

3 (Ln − Rn)
2 + 12 (Ln − Rn) Zn + 12 (Ln + Rn + Zn) + 13Z2

n

12 (Ln + Rn + Zn)
2

+
Rn

Ln + Rn

3 (Ln − Rn)
2 + 12 (Ln − Rn) Zn + 12 (Ln + Rn + Zn) + 13(1− Zn)2

12 (Ln + Rn + 1− Zn)
2 .

Substituting ζn =
Ln

Ln + Rn
and εn =

1
Ln + Rn

, or equivalently, Ln =
ζn

εn
, Rn =

1− ζn

εn
, to the above identity, we obtain that

E (Wn+1 −Wn|Fn, Zn = z) =
εn
[
r0(ζn, z) + r1(ζn, z)εn + · · ·+ r5(ζn, z)ε5

n
]

6(εnz + 1)2(1 + εn(1− z))2 ,

(C.8)
where

r0(ζ, z) = −24zζ3 + 36zζ2 + 12 ζ3 − 18zζ − 24ζ2 + 3z + 15ζ − 3

= −3(2ζ − 1)2(ζz + (1− z)(1− ζ)),

r1(ζ, z) = −30 z2ζ2 − 12 zζ3 + 30 z2ζ + 24 zζ2

+ 6 ζ3 − 7 z2 − 38 zζ − 12 ζ2 + 14 z + 13 ζ − 7,

r2(ζ, z) = 10 z3ζ − 12 z2ζ2 − 5 z3 − 9 z2ζ + 7 z2 − 19 zζ + 4 z + 6 ζ − 6,

r3(ζ, z) = −z
(
6 z3ζ2 − 6 z3ζ − 12 z2ζ2 − 17 z3

−12 z2ζ + 6 zζ2 + 28 z2 + 30 zζ − 23 z− 6 ζ + 12
)

,

r4(ζ, z) = −6 z2 (1− z)
(
−2 z2ζ + z2 + 2 zζ + 1

)
,

r5(ζ, z) = −6 z4 (z− 1)2 .
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One can show that maxx,y∈[0,1] ri(x, y) ≤ 0 for i = 0, 2, 3, 4, 5. From the proof of
Lemma 4.1, εn → 0, and one can show that

max
x,y∈[0,1]

(r0(x, y) + r1(x, y))ε ≤ 0

for 0 ≤ ε < 0.5. Hence Wn is a supermartingale. Therefore, by Doob’s martin-
gale convergence theorem, there exists W∞ := lim

n→∞
Wn almost surely.

Observe that ζn ∈
{

1
2 −

√
Wn − 1

Ln+Rn
− Zn

Ln+Rn
, 1

2 +
√

Wn − 1
Ln+Rn

− Zn
Ln+Rn

}
.

On the other hand, note that

|ζn+1 − ζn| ≤ max
{

Ln

Ln + Rn
.

1− Zn

Ln+1 + Rn+1
,

Rn

Ln + Rn
.

Zn

Ln+1 + Rn+1

}
→ 0

as n→ ∞. It implies that lim supn→∞ ζn = lim infn→∞ ζn := ζ∞ almost surely.

Lemma 4.4. ζ∞ =
1
2

almost surely.

Proof. Suppose P(W∞ = 0) < 1. Then, there exists ε > 0 such that P(W∞ >

ε) > 0. Let us denote the stopping time

τm = inf
{

n ≥ m : Wn <
ε

2

}
.

Since P(W∞ > ε) > 0, there exists m such that P(τm = ∞) > 0. Let us consider
Yn = Wn∧τm . Yn is also a supermartingale, hence, there exists Y∞ = limn→∞ Yn.
From (C.8), observe that for N > 0,

E (Wm+N)−E (Wm) =

−E

(
m+N

∑
n=m

1
2
(2ζn − 1)2 (Znζn + (1− Zn)(1− ζn)) εn(1 + O(εn))

)
.

Therefore,

E (Y∞)−E (Ym) (C.9)

= −E

(
τm

∑
n=m

1
2
(2ζn − 1)2 (Znζn + (1− Zn)(1− ζn)) εn(1 + O(εn))

)
.
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Note that Wn ≥ ε
2 , for all n ≤ τm. Hence, combining with the remark in

Lemma 4.3, one can show that there exists γ > 0 such that on the event
{τm = ∞},

1
2
(2ζn − 1)2 (Znζn + (1− Zn)(1− ζn)) > γ,

for large enough n. Since P(τm = ∞) > 0, the LHS of (C.9) is finite while the
RHS is divergent. This contradiction proves the lemma.

Theorem 4.5. As n→ ∞, Zn converges in distribution to the arsine law Beta
( 1

2 , 1
2

)
.

Proof. Using Lemma 4.4, for small ε > 0, there exists (random) N such that

1
2
− ε ≤ Ln

Ln + Rn
≤ 1

2
+ ε

for all n ≥ N. We couple {Zn}n≥0 with two random walks {Z̃n}n≥0 and
{Ẑn}n≥0 defined as follows:

• For 0 ≤ n ≤ N, set Z̃n = Ẑn = Zn.

• For n ≥ N, set

Z̃n+1 =

{
ξnZ̃n if Un ≤ 1

2 − ε;

Z̃n + ξn(1 + Z̃n) if Un > 1
2 − ε,

and

Ẑn+1 =

{
ξnẐn if Un ≤ 1

2 + ε;
Ẑn + ξn(1− Ẑn) if Un > 1

2 + ε.

Assume that for some n ≥ N, Ẑn ≤ Zn ≤ Z̃n. We observe that:

• When Z̃n chooses left, Zn also chooses left since Un ≤ 1
2 − ε < Ln

Ln+Rn
.

In this case, Zn+1 = ξnZn ≤ ξnZ̃n = Z̃n+1. When Z̃n chooses right, Zn

might choose left or right, but we still have Zn+1 ≤ Zn + ξn(1− Zn) ≤
Z̃n + ξn(1− Z̃n) = Z̃n+1.

• When Zn chooses left, Ẑn also chooses left since Un ≤ Ln
Ln+Rn

< 1
2 + ε.

In this case, Zn+1 = ξnZn ≥ ξnẐn = Ẑn+1. When Zn chooses right, Ẑn

might choose left or right, but we still have Ẑn+1 ≤ Ẑn + ξn(1− Ẑn) ≤
Zn + ξn(1− Zn) = Zn+1.
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By induction, we obtain that for all n ≥ 0, Ẑn ≤ Zn ≤ Z̃n. Therefore, we have

P(Z̃n ≤ x) ≤ P(Zn ≤ x) ≤ P(Ẑn ≤ x)

for all n ≥ 0 and x ∈ [0, 1]. On the other hand, by Theorem 3.2, Z̃n and Ẑn

weakly converge respectively to Beta
( 1

2 + ε, 1
2 − ε

)
and Beta

( 1
2 − ε, 1

2 + ε
)

as
n→ ∞. Since ε is arbitrarily small, the theorem is proved.

Appendix

Proof of Lemma 2.2.
(a) For u = (u1, ..., ud) ∈ K and z = (z1, ..., zd) ∈ V0, we will consider

v = (v1, v2, . . . , vd) := G−1
z (u).

Note that u0 ≤ 1− ud ≤ 1− δ ≤ z0, zj ≤ 1− z0 ≤ δ and thus

s(1− t)d−1 − δ ≤ uj − zj ≤ vj = uj −
u0

z0
zj ≤ uj ≤ t

for j = 1, 2, ..., d. Therefore, for j = 1, 2, . . . , d, we have

s(1− t)d−1− δ ≤ vj ≤
vj

1−
d

∑
l=j+1

vl

=
uj − zj

u0

z0

1−
d

∑
l=j+1

ul +
d

∑
l=j+1

zl
u0

z0

≤ uj

1−
d

∑
l=j+1

ul

≤ t.

It implies that v = G−1
z (u) ∈ K0 for each u ∈ K and z ∈ V0, where we denote

K0 =

{
(v1, . . . , vd) ∈ Sd : s(1− t)d−1 − δ ≤ vj

1−∑d
l=j+1 vl

≤ t, j = 1, 2, ..., d

}
.

(C.10)

Observe that T−1(K0) = [s(1 − t)d−1 − δ, t]d. Thus, T−1 ◦ G−1
z (K) ⊂ [s(1 −

t)d−1 − δ, t]d.

(b) For u ∈ K, z ∈ Vk, let

v = (v1, v2, . . . , ..., vk) := G−1
Rk(z)

(Rk(u))

=

(
u0 − z0

uk

zk
, u1 − z1

uk

zk
, . . . , uk−1 − zk−1

uk

zk
, uk+1 − zk+1

uk

zk
, . . . , ud − zd

uk

zk

)
.
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Note that zl ≤ 1− zk ≤ δ for l ∈ {0, 2, ..., d} \ {k} and uk ≤ max{ud, 1− ud} ≤
1− δ ≤ zk. Therefore, we observe that:

(i) for k + 1 ≤ j ≤ d,

vj

1−
d

∑
l=j+1

vl

=
uj − zj

uk

zk

1−
d

∑
l=j+1

ul +
d

∑
l=j+1

zl
uk

zk

≤ uj

1−
d

∑
l=j+1

ul

≤ t

and
vj

1−
d

∑
l=j+1

vl

≥ vj = uj − zj
uk

zk
≥ uj − zj ≥ s(1− t)d−1 − δ.

(ii) for j = 1, we have

v1

1−
d

∑
l=2

vl

=
u0 − z0

uk

zk

u0 +
d

∑
l=1

zl
uk

zk

= 1− uk(
1−

d

∑
l=1

ul

)
zk + uk

d

∑
l=1

zl

≤ 1− uk(
1−

d

∑
l=k

ul

)
zk + uk

≤ 1− uk

1−
d

∑
l=k+1

ul

≤ 1− s

and
v1

1−
d

∑
l=2

vl

≥ v1 = u0 − z0
uk

zk
≥ (1− t)d − δ.

(iii) for 2 ≤ j ≤ k,

s(1− t)d−1 − δ ≤ vj ≤
vj

1−
d

∑
l=j+1

vl

=
uj−1 − zj−1

uk

zk

1−
d

∑
l=j

ul +
d

∑
l=j

zl
uk

zk

≤ uj−1

1−
d

∑
l=j

ul

≤ t.

Therefore,

v ∈ T
(
[(1− t)d − δ, 1− s]× [s(1− t)d−1 − δ, t]d−1

)
.

132



Bibliography

[1] Borovkov, A. A. Ergodicity and Stability of Stochastic Processes (1998).
Wiley, New York.

[2] DeGroot, M. H.; Rao, M. M. Stochastic give-and-take. J. Math. Anal. Appl.
7 (1963), 489–498.

[3] Freedman, D. A. Bernard Friedman’s Urn. Ann. Math. Statist. 36 (1965),
no. 3, 956–970.

[4] Diaconis, P.; Freedman, D. Iterated random functions. SIAM Rev. 41 (1999),
no. 1, 45–76.

[5] Hitczenko, P.; Letac, G. Dirichlet and quasi-Bernoulli laws for perpetuities.
J. Appl. Probab. 51 (2014), no. 2, 400–416.
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