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Distributed Robust Stability Analysis of

Interconnected Uncertain Systems∗

Martin S. Andersen1, Anders Hansson1, Sina K. Pakazad1, and Anders Rantzer2

Abstract—This paper considers robust stability analysis of a
large network of interconnected uncertain systems. To avoid
analyzing the entire network as a single large, lumped system,

we model the network interconnections with integral quadratic
constraints. This approach yields a sparse linear matrix inequal-
ity which can be decomposed into a set of smaller, coupled linear
matrix inequalities. This allows us to solve the analysis problem
efficiently and in a distributed manner. We also show that the
decomposed problem is equivalent to the original robustness
analysis problem, and hence our method does not introduce
additional conservativeness.

I. INTRODUCTION

Robust stability analysis with integral quadratic constraints

(IQCs) provides a unified framework for analysis of un-

certain systems with different kinds of uncertainties [1].

The main computational burden in IQC analysis lies in the

solution of a semi-infinite linear matrix inequality (LMI)

which is generally dense. One method for solving this semi-

infinite LMI makes use of the KYP lemma to reformu-

late the frequency-dependent semi-infinite LMI as a sin-

gle frequency-independent LMI. However, this reformulation

yields a dense LMI, and hence the computational cost is high

for large systems even if the underlying structure is exploited

as in [2], [3], [4], [5], [6], [7], [8], [9], [10]. The semi-infinite

LMI can also be solved approximately by discretizing the

frequency variable to obtain a finite number of LMIs. The

resulting LMIs are generally dense, and as a consequence,

IQC analysis of large-scale systems is prohibitively expensive

in most cases.

In this paper, we consider IQC-based robustness analysis

of a large network of interconnected uncertain systems. We

show that by representing the network interconnections as

quadratic constraints, we obtain a semi-infinite LMI that

is sparse. Reformulating this LMI using the KYP lemma

destroys sparsity, but discretizing the frequency variable does

not, and hence we limit our attention to frequency-gridding

methods. We can exploit sparsity in each LMI in different

ways: (i) we can use an SDP solver that exploits sparsity [11],

[12], [6], or (ii) we can use chordal decomposition methods

to split a sparse LMI into a set of smaller, coupled LMIs [7],

[13]. The first method solves the robustness analysis problem

in a centralized manner, and hence it requires complete

information about all the subsystems in the network. The

decomposition approach, on the other hand, allows us to

solve the robustness analysis problem in a distributed manner

where a small cluster of subsystems only communicates with

its neighboring clusters in the network.

A. Related Work

Control and robustness analysis of interconnected systems

is an active area of research that has been considered in

several papers in the past few decades; see e.g. [14], [15],

[16], [17], [18]. Different methods for robustness analysis

have been developed, e.g., µ analysis and IQC analysis

[19], [20], [21], [1], [22]. While these analysis tools are

effective for small and medium-sized interconnected systems,

they fail to produce results for large-scale interconnected

systems because of the high computational cost. To address

this issue, [23] and [24] propose an efficient method for

robust stability analysis of interconnected uncertain systems

with an interconnection matrix that is normal, and [18]

considers stability analysis and design methods for networks

of certain systems with uncertain interconnections. A similar

problem is also considered in [25]. In [26], the authors

consider robust stability analysis of interconnected uncertain

systems using IQC-based analysis, and they show that when

the interconnection matrix is unitarily diagonalizable, the

analysis problem can be decomposed into smaller problems

that are easier to solve. Finally, [27] shows that by using

Nyquist-like conditions and by considering the dynamics of

individual subsystems and their neighbors, it is possible to

relax the interconnection constraints and arrive at scalable

analysis conditions for interconnected uncertain systems.

B. Outline

The paper is organized as follows. In Section II, we present

an integral quadratic constraint for interconnected uncertain

systems, and we show how this can be used to obtain a

sparse analysis problem. In Section III, we show how the

sparse analysis problem can be decomposed into smaller,

coupled problems, and we discuss how the analysis problem

can be solved distributedly. Finally, we conclude the paper

in Section IV.

C. Notation

We denote with R the set of real numbers and with

Rm×n the set of real m × n matrices. The transpose and

conjugate transpose of a matrix G are denoted by GT

and G∗, respectively. Given matrices Gi, i = 1, . . . , N ,

diag(G1, . . . , GN ) denotes a block diagonal matrix with
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blocks Gi. Similarly, given a set of vectors v1, . . . , vN , the

column vector (v1, . . . , vN ) is obtained by stacking these.

The matrix inequality G ≻ H (G � H) means that G −H
is positive (semi)definite. We denote with L2 the set of

square integrable signals, and RH∞ represents the set of

real, rational transfer functions with no poles in the closed

right half plane.

II. STABILITY ANALYSIS OF INTERCONNECTED SYSTEMS

We begin this section with a brief review of some key

results from IQC analysis.

A. IQC Analysis

Let ∆ : Rd → Rd be a bounded and causal operator.

The mapping q = ∆(p) can be characterized using integral

quadratic constraints defined as follow.

Definition 1 ([1], [22]): Let Π be a bounded, self-adjoint

operator. The operator ∆ is said to satisfy the IQC defined

by Π, i.e., ∆ ∈ IQC(Π), if

∫
∞

0

[
q

∆(q)

]T
Π

[
q

∆(q)

]
dt ≥ 0, ∀q ∈ L2. (1)

This can also be written in frequency domain as

∫
∞

−∞

[
q̂(jω)

∆̂(q)(jω)

]∗

Π(jω)

[
q̂(jω)

∆̂(q)(jω)

]
dω ≥ 0, (2)

where q̂ and ∆̂(q) are Fourier transforms of the signals q
and ∆(q), respectively, and Π(jω) = Π(jω)∗ is a transfer

function matrix.

IQCs can be used to describe different classes of op-

erators and hence different uncertainty sets, e.g., operators

with bounded gain, sector bounded uncertainty, and static

nonlinearities [1]. We now consider a system described by

the equations

p = Gq, (3a)

q = ∆(p), (3b)

where G ∈ RHm×m
∞

is a transfer function matrix and ∆
represents the uncertainty in the system. Recall that ∆ is

bounded and causal. Robust stability of the system (3) can

be established using the following theorem.

Theorem 1 ([1], [22]): The uncertain system in (3) is

robustly stable, if

1) for all τ ∈ [0, 1] the interconnection described in (3),

with τ∆, is well-posed.

2) for all τ ∈ [0, 1], τ∆ ∈ IQC(Π).
3) there exists ǫ > 0 such that

[
G(jω)

I

]∗
Π(jω)

[
G(jω)

I

]
� −ǫI, ∀ω ∈ R. (4)

It follows from Theorem 1 that, given a multiplier Π, IQC

analysis requires the solution of the semi-infinite LMI (4). As

∆i

Gi
pq

pi(t) qi(t)

Gi
pw

Gi
zqzi(t) wi(t)Gi

zw

Fig. 1. The ith uncertain subsystem with structured uncertainty.

mentioned in the introduction, we consider an approximate

solution to the IQC analysis problem where the feasibility

of the LMI in (4) is checked only for a finite number of

frequency points. We will see later in this section that this

allows us to reformulate the robust stability problem as a

sparse LMI when the system of interest is a network of

uncertain interconnected systems.

Remark 1 ([22], [26]): Suppose ∆i ∈ IQC(Πi) where

Πi =

[
Πi

11 Πi
12

Πi
21 Πi

22

]
. (5)

The block-diagonal operator diag(∆1, . . . ,∆N ) then satisfies

the IQC defined by

Π̃ =

[
Π̄11 Π̄12

Π̄21 Π̄22

]
(6)

where Π̄ij = diag(Π1
ij , . . . ,Π

N
ij ).

B. Network of Uncertain Systems

Consider a network of N uncertain subsystems of the form

pi = Gi
pqq

i +Gi
pww

i

zi = Gi
zqq

i +Gi
zww

i

qi = ∆i(pi),

(7)

where Gi
pq ∈ RHdi×di

∞
, Gi

pw ∈ RHdi×mi

∞
, Gi

zq ∈ RHli×di

∞
,

Gi
zw ∈ RHli×mi

∞
, and ∆i : Rdi → Rdi . The ith subsystem

is shown in Fig. 1. The network interconnections are defined

by the equation




w1

w2

...

wN




︸ ︷︷ ︸
w

=




Γ11 Γ12 · · · Γ1N

Γ21 Γ22 · · · Γ2N

...
...

. . .
...

ΓN1 ΓN2 · · · ΓNN




︸ ︷︷ ︸
Γ




z1

z2

...

zN




︸ ︷︷ ︸
z

, (8)

where the ijth block Γij is a 0-1 matrix that defines the con-

nections from system j to system i, and w = (w1, . . . , wN )
and z = (z1, . . . , zN) are the stacked inputs and outputs,

respectively. Similarly, we define q = (q1, . . . , qN ) and

p = (p1, . . . , pN). Using the interconnection matrix, the
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∆
Γ

Gpq

p(t) q(t)

Gpw

Gzqz(t) w(t)Gzw

Fig. 2. Compact representation of the network of interconnected systems.

entire system can be expressed as

p = Gpqq +Gpww (9a)

z = Gzqq +Gzww (9b)

q = ∆(p) (9c)

w = Γz, (9d)

where the matrices Gpq,, Gpw, Gzq , and Gzw are block-

diagonal and of the form Gij = diag(G1
ij , . . . , G

N
ij ), and

∆ = diag(∆1, . . . ,∆N ) is block-diagonal. The full system

is shown in Fig. 2. One approach to robustness analysis of

interconnected systems of the form (9) is to eliminate w and

z from the system equations. This yields the lumped system

p = Ḡq, (10a)

q = ∆(p), (10b)

where

Ḡ = Gpq +Gpw(I − ΓGzw)
−1ΓGzq

is the lumped system matrix. Note that the matrix I−ΓGzw

must have a bounded inverse for all frequencies in order

for the interconnection to be well-posed. The lumped system

matrix Ḡ is unfortunately dense in general, even if the matrix

I−ΓGzw is sparse. This follows from the Cayley–Hamilton

theorem. As a result, IQC analysis based on the lumped

system description (10) is prohibitively expensive for large

networks of uncertain systems.

C. IQCs for Interconnections

Robust stability of the interconnected uncertain system (9)

can be investigated using the IQC framework. To this end, we

now define an IQC for the interconnection equation w = Γz.

The equation w = Γz can be expressed as the following

quadratic constraint

−‖w − Γz‖2X = −

[
z
w

]∗ [
−ΓT

I

]
X

[
−Γ I

] [z
w

]
≥ 0

(11)

where ‖ · ‖X denotes the norm induced by the inner product

〈α,Xβ〉 for some X ≻ 0 of order m̄ =
∑N

i=1 mi. As a

result, we can define an IQC for the interconnections using

the following multiplier

Π̂ =

[
−ΓTXΓ ΓTX

XΓ −X

]
(12)

where X is positive definite. Note that the framework de-

scribed in this paper can be extended to incorporate dynamic

and/or uncertain interconnections by defining suitable IQCs

for such interconnections.

We now show that the IQC analysis problem can be

expressed as a sparse LMI by using (12) to model the in-

terconnections. Consider the interconnected uncertain system

defined in (9), and suppose that

∆i ∈ IQC(Πi), i = 1, . . . , N

such that ∆ ∈ IQC(Π̄) where Π̄ is defined in (6). We will

henceforth assume that ∆ satisfies conditions 1 and 2 in

Theorem 1. Then, by Remark 1, the network of uncertain

systems is robustly stable if there exists Π̄ and X ≻ 0 such

that






Gpq Gpw

Gzq Gzw

I 0

0 I







∗









Π̄11 0 Π̄12 0

0 Π̂11 0 Π̂12

Π̄21 0 Π̄22 0

0 Π̂21 0 Π̂22















Gpq Gpw

Gzq Gzw

I 0

0 I






� −ǫI, (13)

for ǫ > 0 and for all ω ∈ [0,∞]. This can also be written as






Gpq Gpw

I 0

Gzq Gzw

0 I







∗









Π̄11 Π̄12 0 0

Π̄21 Π̄22 0 0

0 0 Π̂11 Π̂12

0 0 Π̂21 Π̂22















Gpq Gpw

I 0

Gzq Gzw

0 I






� −ǫI, (14)

or equivalently, as

[
Gpq Gpw

I 0

]∗ [
Π̄11 Π̄12

Π̄21 Π̄22

] [
Gpq Gpw

I 0

]
−

[
−G∗

zqΓ
T

I −G∗

zwΓ
T

]
X

[
−ΓGzq I − ΓGzw

]
� −ǫI. (15)

The following theorem establishes the equivalence between

robustness analysis of the lumped system (10) via (4) and

robustness analysis of (9) via (15).

Theorem 2: The LMI (15) is feasible if and only if

G̃11 =

[
Ḡ
I

]∗
Π̄

[
Ḡ
I

]
� −ǫI (16)

is feasible.

Proof: We start by applying a congruence transformation

A 7→ T ∗AT to the left-hand side of (15) where T is

nonsingular and defined as

T =

[
I 0

(I − ΓGzw)
−1ΓGzq I

]
.

The result is a 2-by-2 block matrix

G̃ =

[
G̃11 G̃12

G̃21 G̃22

]
(17)
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where G̃11 is defined as in (16), and

G̃12 = G̃∗

21 =

[
Ḡ
I

]∗
Π̄

[
Gpw

0

]
,

G̃22 =

[
Gpw

0

]∗
Π̄

[
Gpw

0

]
− (I − ΓGzw)

∗X(I − ΓGzw).

Since G̃ is homogeneous in Π̄ and X , it follows that (15)

is equivalent to G̃ ≺ 0. Now if (16) is feasible, then (15) is

feasible if

S = G̃22 − G̃21G̃
−1
11 G̃

∗

21 ≺ 0. (18)

Since (I−ΓGzw) is nonsingular for any Π̄ such that G̃11 ≺ 0,

we can scale X ≻ 0 so that S ≺ 0. Conversely, if (15) is

feasible, then G̃11 ≺ 0 and hence we can scale Π̄ and X so

that G̃11 � −ǫI .

Theorem 2 implies that our approach does not introduce

conservativeness. However, the LMI (15) is generally dense

if the matrix X is dense. We have the following corollary to

Theorem 2.

Corollary 1: In (15), it is sufficient to consider a diagonal

scaling matrix of the form X = xI with x > 0.

Proof: Suppose Π̄ is feasible in (16). Then we can

choose X = xI with x > 0 such that the Schur complement

S in (18) is negative definite.

Corollary 1 implies that we can choose X to be any pos-

itive diagonal matrix. This mean that the LMI (15) becomes

sparse when the interconnection matrix Γ is sufficiently

sparse. In the next section, we discuss how we can solve

(15) efficiently when the LMI is sparse.

III. DECOMPOSING THE ANALYSIS PROBLEM

In networks where each subsystem is connected only to

a small number of neighboring subsystems, the LMI (15) is

generally quite sparse. As mentioned in the introduction, we

can solve the LMI (15) in a centralized manner using a sparse

SDP solver such as DSDP, or alternatively, we can make

use of decomposition techniques to facilitate parallel and/or

distributed computation. In this section, we discuss chordal

decomposition, and we show how this decomposition can be

used to formulate an efficient distributed algorithm for robust

stability analysis.

A. Chordal Decomposition

Chordal sparsity plays a fundamental role in many sparse

matrix algorithms [28]. We say that a matrix is chordal if the

corresponding sparsity graph is chordal, and a graph is called

chordal if all its cycles of length at least four have a chord;

see e.g. [29, Ch. 4]. A clique is a maximal set of vertices

that induce a complete subgraph. The cliques of the sparsity

graph correspond to the maximal dense principal submatrices

in the matrix. We will use the following result from [30] to

decompose the LMI (15).

Theorem 3 (Agler et al. [30]): Let A be negative

semidefinite and chordal with cliques J1, J2, . . . , JL. Then

there exists a decomposition

A =

L∑

i=1

Ai, Ai � 0, i = 1, . . . , L (19)

such that [Ai]jk = 0 for all (j, k) /∈ Ji × Ji.
Proof: See [30] and [31].

Remark 2: It is also possible to apply Theorem 3 to nega-

tive semidefinite matrices with nonchordal sparsity by using

a so-called chordal embedding. A chordal embedding can be

computed efficiently with symbolic factorization techniques;

see e.g. [32].

A band matrix is an example of a chordal matrix, i.e., if

A has half-bandwidth w, then

Ajk = 0, |j − k| > w,

and the cliques of the corresponding sparsity graph are given

by the sets

Ji = {i, i+ 1, . . . , i+ w}, i = 1, . . . , n− w,

where n is the order of A.

The cliques of a chordal graph can be represented using

a clique tree which is a maximum-weight spanning tree

of a weighted clique intersection graph; refer to [28] for

further details. The clique tree can be used to parameterize all

possible clique-based splittings of A. For example, consider

an irreducible chordal matrix A � 0 with two cliques J1 and

J2, and let A = Ã1 + Ã2 be an any clique-based splitting

of A such that [Ãi]jk = 0 for all (j, k) /∈ Ji × Ji. Then, by

Theorem 3, there exists a symmetric matrix Z that satisfies

Zij = 0, (i, j) /∈ (J1 ∩ J2)× (J1 ∩ J2)

such that

A1 = Ã1 + Z � 0, A2 = Ã2 − Z � 0.

It is easy to verify that the matrices A1 and A2 satisfy (19).

We can use this decomposition technique to parameterize

all possible splittings of the LMI (15). Suppose (15) is

irreducible and chordal with cliques J1, . . . , JL. Then if we

choose X = xI , we can split (15) as

Ã1 + Ã2 + · · ·+ ÃL (20)

such that the matrices Ã1, . . . , ÃL share only the variable x,

and [Ãi]jk = 0 for all (j, k) /∈ Ji × Ji. This means that (15)

is equivalent to L coupled LMIs

Ãi + Zpii −
∑

j∈ch(i)

Zij � 0, i = 1, . . . , L (21)

where pi is the parent of the ith clique in the clique tree

and ch(i) is the set of children of clique i. The matrix Zij

couples cliques i and j, and it satisfies

[Zij ]kl = 0, (k, l) /∈ (Ji ∩ Jj)× (Ji ∩ Jj).

1551



p

i

c1 c2 ck

Zpi

Ẑpi

Zic1

Ẑic1

Zic2

Ẑic2

Zick

Ẑick

· · ·

Fig. 3. Subtree of clique tree: clique i, its parent, and its children.

G1(s) G2(s) GN (s)

δ1 δ2 δN

p1 q1

z1

z21

p2 q2

z22

z31

pN qN

zN−1
2

zN
· · ·

Fig. 4. A chain of N uncertain system.

Note that the term Zpii in (21) disappears if clique i is the

root of the clique tree, and the summation over the children

of clique i disappears if i is a leaf clique. Furthermore, note

that the sum of the left-hand sides of the LMIs in (21) is

equal to (20).

B. Distributed Algorithm

The set of LMIs (21) can be expressed as

Ãi + Ẑpii −
∑

j∈ch(i)

Zij � 0, i = 1, . . . , L (22a)

xk = xl, Ẑkl = Zkl, ∀(k, l) ∈ T (22b)

where Ẑpii is the copy of Zpii associated with clique i, xi

is the copy of x associated with clique i, and (k, l) ∈ T
means that (k, l) is an edge in the clique tree T . The coupling

between the LMIs (22a) is now described as a set of equality

constraints (22b). Fig. 3 shows a subtree of the clique tree

with the auxiliary variables associated with the subtree. The

formulation (22) is a convex feasibility problem of the form

find x, s1, s2, . . . , sL
subject to si ∈ Ci, i = 1, . . . , L

si = Hi(z), i = 1, . . . , L
(23)

where C1, . . . , CL are convex sets, s1, . . . , sL are local vari-

ables, and the constraints si = Hi(z) ensure global con-

sensus. The problem (23) can be solved distributedly using

e.g. the alternating projection (AP) method, Dykstra’s AP

method, or the alternating direction method of multipliers

[33].

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

(a) Before reordering.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

(b) After reordering.

Fig. 5. Sparsity pattern associated with (15) for a chain of 50 systems.

C. Example: Chain of Uncertain Systems

We now consider as an example a chain of N uncertain

systems where each system Gi(s) is defined as in (7) with

scalar uncertainties δ1, . . . , δN . Fig. 4 shows the chain of

uncertain systems.

The inputs and outputs are defined as wi = (w1
i , w

2
i ) and

zi = (z1i , z
2
i ) for i = 2, . . . , N − 1, and moreover, w1 = w2

1 ,

wN = w1
N , z1 = z21 , and zN = z1N . The interconnections are

described by the equations w1
i = z2i−1 and w2

i = z1i+1 for

i = 2, . . . , N−1, and w2
1 = z12 and w1

N = z2N−1. We assume

that the signals wj
i and zji are scalar-valued. As a result,

the interconnection matrix Γ that describes this network has

nonzero blocks Γi,i−1 = ΓT
i−1,i for i = 2, . . . , N , and these

blocks are given by

Γi,i−1 = ΓT
i−1,i =

[
0 1
0 0

]
, i = 3, . . . , N − 1, (24)

and

Γ21 = ΓT
12 = (1, 0), ΓN−1,N = ΓT

N,N−1 = (0, 1). (25)

In this example, we will assume that the uncertainties

δ1, . . . , δN are scalar, and moreover, δi ∈ IQC(Πi) for all

i = 1, . . . , N . If we let X be diagonal, the sparsity pattern

associated with the LMI (15) is then chordal with 2N − 2
cliques, and the largest clique is of order 4. The LMI (15)

can therefore be decomposed into 2N − 2 coupled LMIs of

order at most 4. The sparsity pattern associated with (15) for

a chain of 50 uncertain systems is shown in Fig. 5. In this

example, it is also possible to combine overlapping cliques

such that we get a total of N cliques of order at most 5, and

in general, there is a trade-off between the number of cliques

and the order of the cliques. Note that analyzing the lumped

system yields an LMI (16) of order N whereas the sparse

LMI (15) is of order 3N−2. For large networks, solving the

sparse LMI can be much faster, but for small and medium-

sized networks, the original dense LMI (16) may be cheaper

to solve.

IV. CONCLUSIONS

IQC-based robustness analysis of a large network of in-

terconnected systems involves the solution of a large, dense
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LMI. By expressing the network interconnections in terms

of IQCs, we have shown that it is possible to express

the robustness analysis problem as a sparse LMI that can

be decomposed into a set of smaller but coupled LMIs.

The decomposed problem can be solved using distributed

computations, and we have shown that it is equivalent to the

original problem. These findings suggest that our method

is applicable to robustness analysis of large networks of

interconnected uncertain systems, but further work needs to

be done to establish what types of network structure yield

computationally efficient decompositions.
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