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Modeling of cotunneling in quantum dot systems

Jonas Nyvold Pedersen and Andreas Wacker∗

Mathematical Physics, Lund University, Box 118, 22100 Lund, Sweden

Transport through nanosystems is treated within the second order von Neumann approach. This
approach bridges the gap between rate equations which neglect level broadening and cotunneling,
and the transmission formalism, which is essentially based on the single-particle picture thereby
treating many-particle interactions on an approximate level. Here we provide an alternative presen-
tation of the method in order to clarify the underlying structure. Furthermore we apply it to the
problem of cotunneling. It is shown that both elastic and inelastic cotunneling can be described
quantitatively, while the transmission approach with a mean-field treatment of the interaction pro-
vides an artificial bistability.

PACS numbers: 73.23.Hk,73.63.-b

I. INTRODUCTION

Nanostructure technology allows for the fabrication of
small structures, such as quantum dots [1], nanowires [2],
carbon nanotubes [3], as well as molecular structures,
whose electronic properties are dominated by a small
number of electrons. The insertion into electrical cir-
cuits exhibits current-bias (IV ) relations, which strongly
differ from conventional resistors. Typical features are
the suppression of current for low bias due to Coulomb
blockade and pronounced current steps, whose position
can be easily controlled by a gate bias, thus suggesting
transistor action.
Due to the small spatial dimensions, the level quantisa-

tion with a spacing ∆E is of fundamental relevance. Fur-
ther relevant energy scales are: The Coulomb interaction
between electrons (or similarly any other type of many-
particle interaction [4]) of the order U = e2/C, where
C is the geometrical capacitance; the tunneling rate Γ/~
for the transition of particles between the structure and
the contacts; as well as the thermal energy kBT . For
typical nanostructured electronic systems studied exper-
imentally, these energies are all in the range of 0.1–10
meV, where Γ can be even smaller. Generic examples of
IV -characteristics are shown in Fig. 1.
The task to describe the current through such struc-

tures quantitatively is an evolved topic and a large variety
of approaches has been used within the last two decades.
The general starting point is to divide the Hamiltonian
of the system as

H = HD +Hleads +HT . (1)

Here HD describes the central region (such as a single
or multiple quantum dot structure, a molecule, a car-
bon nanotube, or a nanowire), which we refer to as the
quantum dot in the following.

Hleads =
∑

kσℓ

Ekσℓc
†
kσℓckσℓ, (2)
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FIG. 1: Schematic current-bias relation for a quantum dot,
showing the qualitative influence of the key energy scales.

describes the leads, where σ =↑, ↓ denotes the spin, k
labels the spatial wave functions of the contact states,
and ℓ denotes the lead (typically ℓ = L/R for the left
and right lead, respectively). In most works a thermal
occupation of the leads

〈

c†kσℓckσℓ

〉

= fkσℓ =
1

e(Ekσℓ−µℓ)/kBT + 1
,

with chemical potential µℓ is assumed, where the bias
eVbias = µL − µR drives the current in a two termi-
nal system. Conventionally noninteracting leads are
assumed.[37] Finally, HT describes the coupling between
the leads and the quantum dot.
If HD does not contain many-particle interactions, it is

straightforward to derive a transmission formula (see [6]
and references therein) yielding a particle current from
lead ℓ into the quantum dot

Jℓ =
1

2π~

∫

dE Tℓ→ℓ′(E) [fℓ(E) − fℓ′(E)] . (3)

Here the transmission function is determined by the
single-particle spectrum of HD in connection with the

http://arxiv.org/abs/0904.3249v2
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coupling HT , which essentially broaden the levels. A for-
mal tool is the nonequilibrium Green function formal-
ism [7]. An inclusion of many-particle effects within
the mean-field level is straightforward and exchange-
correlation effects can be taken into account by more
involved mean-field potentials [8]. Also time-dependent
simulations are possible using time-dependent density
functional theory [9]. However, hardly any results ex-
ist, which go beyond mean-field (a rather old example is
[10]). Thus this approach works for arbitrary tempera-
tures if correlation effects due to the Coulomb interaction
in the system are small.
Another approach is to start from the von-Neumann

equation

i~
d

dt
ρ = −[ρ,H ] (4)

treating the time evolution of the density operator ρ con-
taining both the system and the leads. As only the time-
evolution of the system is of interest, one can trace-out
the lead degree of freedom in order to obtain the reduced
dot density operator

ρdot(t) = Trleads {ρ(t)} . (5)

The key task is to find an approximate equation of motion
for ρdot(t) taking into account the coupling HT . This
provides (generalized) master equations [11].
To lowest order in HT electron transitions between

the quantum dot and the leads are treated indepen-
dently from each other (here called first order follow-
ing the number of correlated transitions). Restricting
to diagonal elements of ρdot(t), one obtains to lowest or-
der the Pauli master equations [12].[38] Furthermore, co-
herences, represented by nondiagonal matrix elements,
can be treated in different ways (frequently also denoted
quantum master equations). The traditional approach is
the Wangness-Bloch Redfield kinetics [14, 15] which has
been applied to quantum dots in [16, 17]. While reason-
able results are typically found, there is a fundamental
problem due to the occurrence of negative occupations
as the equations are not of Lindblad type [18]. Lindblad-
type kinetic equations were derived in [19, 20], but only
for the high-bias limit. All first-order approaches entirely
neglect broadening effects but can treat the interactions
in the system exactly by a diagonalization of the isolated
dot Hamiltonian [21]

HD =
∑

a

Ea|a〉〈a|, (6)

where the states |a〉 are many-particle states, which may
be highly correlated.
In order to treat both broadening and interaction, we

introduced a second order approach based on the von
Neumann equation (4) which considers both the dynam-
ics of ρdot(t) and higher-order tunneling transitions [22].
This second order von Neumann approach (2vN) bridges
the gap between the transmission formalism, which is

fully reproduced for systems without interactions at ar-
bitrary temperatures, and the first order generalized mas-
ter equation schemes, which are recovered in the limits
of high temperature or large bias.

In this paper we provide a slightly different presenta-
tion of our 2vN method in Sec. II in order to highlight
its structure. Its range of validity and previous results
are summarized in Sec. III. In Sections IV,V we show
new results demonstrating its applicability to the cases
of elastic and inelastic cotunneling, respectively. The fail-
ure of mean-field models, providing a fictitious bistability
is addressed in Sec. V as well.

II. THE SECOND ORDER VON NEUMANN

APPROACH

Using HD in its diagonal representation (6), the tun-
neling between the states in the leads and the dot reads
(see Appendix A of [22])

HT =
∑

kσℓ,ab

Tba(kσℓ)|b〉〈a|ckσℓ + h.c. (7)

The matrix element Tba(kσℓ) is the scattering amplitude
for an electron in the state kσℓ tunneling from the lead
onto the dot, thereby changing the dot state from the
state |a〉 to the state |b〉. Note that this amplitude van-
ishes unless the number of electrons in state |b〉, Nb,
equals Na + 1. Here we use the convention that the par-
ticle number increases with the position in the alphabet
of the denoting letter.

A general state vector for the entire system is written
as |ag〉 = |a〉 ⊗ |g〉, with |g〉 = |{Nkℓσ}〉 denoting
the state of both leads, where Nkσℓ ∈ {0, 1}. To
ensure the anti-commutator rules of the operators we
use the following notation |g − kσℓ〉 ≡ ckσℓ|g〉 and

|g + kσℓ〉 ≡ c†kσℓ|g〉. The order of indices is opposite to
the order of the operators. E.g. |g − k′σ′ℓ′ + kσℓ〉 =

c†kσℓck′σ′ℓ′ |g〉 = −ck′σ′ℓ′c
†
kσℓ|g〉 = −|g + kσℓ − k′σ′ℓ′〉,

taking into account the anti-commutation rules of the
operators. To simplify the notation, σℓ is only attached
to k the first time the index k appears in the equation,
and in the following it is implicitly assumed to be
connected with k. Furthermore, we apply the convention
that

∑

kσ(ℓ) means summing over k and σ with a fixed ℓ

being connected to k in this sum.

The density matrix elements are defined as

ρ
[n]
ag;bg′ = 〈ag|ρ̂|bg′〉 (8)

where the label n provides the number of electron or hole
excitations needed to transform g into g′. Examples are

ρ
[1]
bg−k;ag and ρ

[2]
cg−k;ag+k′ . We denote the elements as n-

ehx elements in the following.
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The von Neumann equation (4) gives equations of mo-
tion of the type

i~
d

dt
ρ
[0]
bg;b′g = (Eb − Eb′)ρ

[0]
bg;b′g

+
∑

a,kσℓ

Tba(k)ρ
[1]
ag+k;b′g +

∑

c,kσℓ

T ∗
cb(k)ρ

[1]
cg−k;b′g

−
∑

c,kσℓ

ρ
[1]
bg;cg−kTcb′(k)−

∑

a,kσℓ

ρ
[1]
bg;ag+kT

∗
b′a(k), (9)

and

i~
d

dt
ρ
[1]
cg−kσℓ;bg = (Ec − Eb − Ek)ρ

[1]
cg−k;bg

+
∑

b′

Tcb′(k)δNk,1ρ
[0]
b′g;bg −

∑

c′

ρ
[0]
cg−k;c′g−kTc′b(k)

+
∑

k′σ′ℓ′

[

∑

b′

Tcb′(k
′)ρ

[2]
b′g−k+k′ ;bg +

∑

d

T ∗
dc(k

′)ρ
[2]
dg−k−k′ ;bg

−
∑

c′

ρ
[2]
cg−k;c′g−k′Tc′b(k

′)−
∑

a

ρ
[2]
cg−k;ag+k′T

∗
ba(k

′)
]

.

(10)

Thereby we obtain a hierarchy of n-ehx density matrix
elements, where the n-ehx elements show a phase rotation
due to the energy difference involved and are coupled to
different (n − 1) and (n + 1)-ehx elements. In order to
break the infinite hierarchy we neglect all n-ehx elements
with n ≥ 3 and obtain a closed set of equations.
For all density matrix elements we perform a sum over

all possible lead configurations g and define

Φ
[0]
b′b =

∑

g

ρ
[0]
b′g;bg, (11)

which are the elements of the reduced density matrix
ρdot, and

Φ
[1]
ba (kσℓ) =

∑

g

ρ
[1]
bg−k;ag, (12)

which describe the transitions of electrons between the
leads and the quantum dot. The particle current from
the lead ℓ into the structure, Jℓ, equals the rate of change
of the occupation in the lead. This gives

Jℓ = −
d

dt

∑

kσ(ℓ)

〈

c†kck

〉

= −
d

dt

∑

g,,b,kσ(ℓ)

δNk,1ρ
[0]
bg,bg

= −
2

~

∑

kσ(ℓ),cb

ℑ

{

∑

g

T ∗
cb(k)ρ

[1]
cg−k;bg

}

= −
2

~

∑

kσ(ℓ),cb

ℑ
{

T ∗
cb(k)Φ

[1]
cb (k)

}

.

(13)

Thus the Φ
[1]
ba (kσℓ) terms describe current ampli-

tudes. Note that all 1-ehx terms can be described by

Φ
[1]
ba (kσℓ) as ρ

[1]
ag;b−kg =

(

ρ
[1]
bg−k;ag

)∗

and
∑

g ρ
[1]
ag+k;bg =

∑

g′ ρ
[1]
ag′;bg′−k.

Performing the sum
∑

g to the time evolution (10)

some terms do not directly obtain the form Φ
[n]
ba . Here

we approximate

∑

g

δNk,1ρb′g;bg ≈ fk
∑

g

ρb′g;bg = fkΦ
[0]
b′b,

∑

g

ρ
[0]
cg−k;c′g−k =

∑

g′

δNk,0ρ
[0]
cg′;c′g′ ≈ (1 − fk)Φ

[0]
cc′ .

Similar approximations are done for the ρ
[1]
bg−k;ag ele-

ments appearing in the equation for the 2-ehx terms.
This approximation is a factorization of the lead occu-
pations, which are assumed not to be affected by the
transition processes. The result is a closed set of dif-

ferential equations for the reduced density matrix Φ
[0]
b′b,

the current elements Φ
[1]
ba(kσℓ) and the similarly defined

2-ehx terms Φ
[2]
b′b(−kσℓ+k′σ′ℓ′; 0), Φ

[2]
ca(−kσℓ−k′σ′ℓ′; 0).

Defining a discrete set of k-states, one can set up a col-
umn vector consisting of all the elements of the density-
matrix Φ =

(

Φ
[0],Φ[1],Φ[2]

)

, where the sub-vectors con-
tain all the elements of the density-matrix with a specific
n-value, as well as the complex conjugates of the complex
elements. The equation of motion for the vector Φ can
be cast on a matrix form

i~
d

dt
Φ =





E00 M01 0

M10 E11 M12

0 M21 E22



Φ = MΦ. (14)

The submatricesEnn are diagonal and contain the energy
differences between the states involved.
Now we consider the Φ[2] terms in a stationary approx-

imation, yielding

Φ
[2] =

(

−E22 + i0+
)−1

M21Φ
[1],

where the i0+ ensures causality, corresponding to the
Markov limit for the highest-order elements.
Inserting the result into Eq. (14) leads to the matrix

equation

i~
d

dt

(

Φ
[0]

Φ
[1]

)

=

(

E00 M01

M10 M11

)(

Φ
[0]

Φ
[1]

)

, (15)

where M11 = E11 +M12 (−E22 + i0+)
−1

M21 is not di-
agonal. Due to the k-dependence it is very laborious to
express Φ[1] solely in terms of Φ[0] thereby reducing the
problem to a generalized master equation. The explicit,
and completely general, expressions for the equation of
motion for Φ[0] and Φ

[1] are given in Eqs. (10,11) of [22]
and is the main result of that paper.[39]
The sub-matrices M10 and M01 only contain elements

proportional to the tunneling amplitude Tba, while the
matrix M11 involves terms proportional to T 2

ba. Thus the
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stationary solution of Eq. (15), together with the normal-

ization
∑

b Φ
[0]
bb = 1, will contain all powers of Tba, and

so will the stationary occupations and coherences. That
is, the approach does not provide a systematic expansion
in powers of the tunneling coupling. For the current,
which is proportional to TbaΦ

[1], all terms up to order
T 4
ba as well as a class of higher-order terms are taken into

account.
Summarizing, the 2vN approach considers the reduced

density matrix (11) and the current amplitudes (12) as
variables, which are determined by the closed set of dy-
namical equations (15). In deriving these, three approxi-
mations are applied; (i) only coherent processes involving
transitions of at most two different k-states are consid-
ered, i.e. all n-ehx terms with n ≥ 3 are assumed to
vanish, (ii) the time-dependence of terms generating 2-
ehx terms is neglected which corresponds to the Markov
limit, (iii) the level occupations in the leads, fkσℓ, is un-
affected by the couplings to the dot, i.e. the densities in
the leads and on the dot can be factorized.

III. RANGE OF VALIDITY AND COMPARISON

WITH OTHER METHODS

For noninteracting systems, Eq. (3) gives the correct
result for arbitrary temperature and bias. In [22] we
demonstrated analytically that using the 2vN approach,
Eq. (3) is fully recovered for a single-level system. Nu-
merically, we also found full agreement for all ranges of
parameters, including double dots [23] and the ferromag-
netic Anderson model with an applied magnetic field [24],
where coherences are of central importance.[40] Thus we
have strong indications that the 2vN method is able to
treat transport correctly for noninteracting systems over
the full temperature and bias ranges.
For interacting systems and temperatures kBT ≫ Γ

or in the high bias limit, the 2vN reproduces the well-
known results of the methods presented in [20, 25]. This
demonstrates the correct treatment of charging effects in
interacting systems.
For the Anderson model with infinite Coulomb repul-

sion, the 2vN equations could be solved analytically, see
[23], and the result agree with the diagrammatic real-
time transport theory in the resonant tunneling approxi-
mation [26], where the onset of Kondo physics is observed
(see also Eq. (2) of [27]). However, in the Kondo limit
itself, the model misses the unitary limit and unphysical
results are found, as the strong correlations between the
dot and the leads are not properly reflected.
The validity of the 2vN approach for time-dependent

problems has not been carefully investigated. As the
Markov approximation is invoked, it might not be
valid for strongly time-dependent systems, where non-
Markovian effects are important due to memory effects,
which are also relevant when evaluating higher-order mo-
ments, as e.g., the noise [28, 29]. As an example, the
current through a single spinless level was presented in

[22] which does not exhibit the oscillations found from a
time-dependent Green function approach [30].
In a recent paper, Jin et al. also consider quantum

transport in the same spirit as in the 2vN approach by
keeping correlations between the leads and the dot and
performing an expansion in the tunneling Hamiltonian
[31]. They report a proof that they obtain the 2vN ap-
proach as a second-order expansion.

IV. ELASTIC COTUNNELING

As an example we apply the 2vN method in the elastic
cotunneling regime for a two-level spinless system. We
show that the 2vN results agree with a mean-field solu-
tion and with a scattering result.
The system is described by the Hamiltonian

H =
∑

k,ℓ=L,R

Ekℓc
†
kℓckℓ +

∑

kℓn

[

Vkℓnc
†
kℓdn + h.c

]

+
∑

n

End
†
ndn + Ud†1d1d

†
2d2,

(16)

with n = 1, 2 denoting the two dot states. The first
term is the Hamiltonian of the leads, and the last two
terms are the two single-particle states of the dot and
the interaction between them. The second term is the
tunnel Hamiltonian with the tunneling amplitudes Vkℓn.
Below it is assumed that Vkℓn = xℓntk, i.e. the
couplings between both dot states and the lead states
have a fixed phase factor xℓn, and tk is assumed to be
a real number. The coupling constants are defined as
Γℓn(E) = 2π

∑

k |Vkℓn|
2δ(E − Ekℓn) = |xℓn|

2Γ(E). For
the 2vN calculations a constant value Γ for |E| ≤ 0.95W
is used, and it is assumed that Γ(E) = 0 for |E| > W .
For 0.95W < |E| < W an elliptic interpolation is applied.
Using the Hamiltonian above, the system can be in four
different many-particle states, denoted |0〉, |1〉, |2〉, |d〉 =

d†2d
†
1|0〉, with energies 0, E1, E2, Ed, respectively.
The transport is calculated in a setup with E1 ≪ µℓ

and E2 + U ≫ µℓ such that the state |1〉 is the ground
state. Sequential tunneling processes are blocked due
to the Coulomb interaction between the electrons, but a
leakage current due to elastic cotunneling processes can
occur. Here, the 2vN results are compared with a mean-
field solution embedded in a nonequilibrium Green func-
tion framework, and a scattering formalism.
In the mean-field solution, the interaction term in the

Hamiltonian is replaced with

Ud†1d1d
†
2d2 → U

{[

d†1d1

〈

d†2d2

〉

+ d†2d2

〈

d†1d1

〉]

−
[

d†1d2

〈

d†2d1

〉

+ d†2d1

〈

d†1d2

〉]}

,

(17)

where the first [. . .]-bracket is the Hartree term and
the second the Fock term. The occupations are cal-
culated self-consistently whereafter the current can be
evaluated.[41]
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For the scattering result, the elastic second-order scat-
tering rate, γRL

11 , is the sum over all processes where an
electron labelled k′L has been transferred from the left
contact to the state kR in the right contact, leaving the
dot state unchanged. This can be realized in two differ-
ent ways, |1〉 → |0〉 → |1〉 and |1〉 → |d〉 → |1〉, where the
amplitudes for these two processes are added coherently.
The rate is calculated as follows [32]: Assume that

initially the dot is in state |1〉 and the leads are in a state
|νLνR〉, i.e. the initial state is |i〉 = |νLνR1〉 with energy
Ei = EνLνR + E1. The probability for the leads to be in
the state νLνR is denotedWνLνR = WνLWνR , as the leads
are assumed uncorrelated. In the final state an electron
k′L has been transferred from left to right ending up in

the state kR, i.e. the final state is |fkk′ 〉 = c†kRck′L|i〉
with energy Ei−Ek′L+EkR. According to the T -matrix
formalism the second-order scattering rates are [32]

γRL
11 = 2π

∑

kk′

∑

νLνR

WνLνR

∣

∣

∣

∣

〈fkk′ |HT
1

Ei −H0
HT |i〉

∣

∣

∣

∣

2

× δ(Ef
kk′

− Ei),

(18)

and after some algebra we arrive at

γRL
11 =

Γ2

2π

∫

dE
∣

∣

∣

x∗
L1xR1

E1 − E
+

xR2x
∗
L2

E2 + U − E

∣

∣

∣

2

× nF (E − µL)[1 − nF (E − µR)],

(19)

where nF (E) = [1 + eE/kBT ]−1 is the Fermi function,
and energy-independent coupling constants are assumed
(the Wide-Band Limit). The rate γLR

11 is found by inter-
changing L ↔ R. Below we only calculate the integral
for kBT = 0, but note that for finite temperatures the in-
tegral diverges and a regularization procedure is needed
[33].
For kBT = 0, µR = eVbias > 0 and µR = 0, we obtain

γRL
11 =

Γ2

2π

∫ eVbias

0

dE
∣

∣

∣

x∗
L1xR1

E1 − E
+

xR2x
∗
L2

E2 + U − E

∣

∣

∣

2

, (20)

and γLR
11 = 0. Assuming the state |1〉 to be almost com-

pletely occupied (i.e. |E1|/Γ ≪ 1 and (E2 + U)/Γ ≫ 1),
the second-order elastic cotunneling current is Iel.cotun =
1
~
γRL
11 .
In Fig. 2 the current versus bias voltage is calculated in

the elastic cotunneling regime using the 2vN method, the
mean-field approximation in a Green function framework,
and the second-order scattering method. For the latter,
the calculation is for vanishing temperature, while the
other calculations are for kBT = Γ/10. For E1 = −3Γ
almost perfect agreement between all three methods is
found, while deviations between the scattering method
and the others occur for E1 = −2Γ, which is most likely
due to the fact that the state |1〉 is not fully occupied in
this case as assumed in the derivation of the second-order
scattering rate (19).
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FIG. 2: (Color online) The IV -characteristics for two different
values of E1 calculated using the 2vN approach, mean-field
(MF) nonequilibrium Green functions, and, finally, the scat-
tering cotunneling current Iel.cotun = 1

~
(γRL

11 − γLR
11 ) , where

the latter is calculated for kBT = 0. The chemical potentials
are µL = eVbias and µR = 0, and the phase factors are all
equal xℓn = 1/

√

2, i.e. Γℓn = Γ/2. The other parameters are:
E2 = 16Γ, U = 20Γ, kBT = Γ/10 and W = 50Γ.

In summary, from a comparison with both a mean-
field solution and a scattering formalism, we have shown
that the 2vN method is able to quantitatively describe
elastic cotunneling processes even for temperatures much
lower than the energy scale set by the coupling to leads,
kBT ≪ Γ.

V. INELASTIC COTUNNELING

For higher bias voltages the agreement between the
2vN approach and the mean-field solution is assumed to
be less perfect, as the latter can lead to bistable solutions
[34], which are not present in a generalized master equa-
tion approach. Fig. 3 shows a comparison between the
2vN approach and the mean-field solution over the full
bias range for E1 = −2Γ, with the rest of the parameters
as in Fig. 2.
Considering first the 2vN result, the curve shows in-

creased current when the bias matches the energy differ-
ence between the levels, eVbias = |E1−E2| = 18Γ. This is
due to the onset of inelastic cotunneling [32], which leads
to a population of the excited state, |2〉. After the inelas-
tic cotunneling process, additional cotunneling-assisted
sequential tunneling processes can occur [35, 36]. Finally,
at eVbias = E2 + U = 36Γ sequential tunneling through
the upper level becomes possible. The value for the cur-
rent is consistent with the master equation result (3Γ/8~)
plus additional cotunneling through the lower level.
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FIG. 3: (Color online) The IV -characteristic over the full bias
range for E1 = −2Γ calculated within the mean-field approx-
imation and using the 2vN approach. The other parameters
are as in Fig. 2. The arrows indicate the direction of the bias
sweep in the mean-field calculation.

In contrast, the mean-field solution misses the onset of
inelastic cotunneling and instead a bistable behaviour is
observed, and it also overestimates the current after the
onset of sequential tunneling. Both is due to an insuf-
ficient description of the Coulomb interaction and em-
phasizes the need for a method which can describe both
higher-order tunneling processes (as elastic and inelastic
cotunneling) and many-particle interactions.

VI. SUMMARY

The second order von Neumann approach provides
a quantitative description of transport through nanos-
tructures for arbitrary bias and temperatures above the
Kondo temperature. In the low-bias regime, the elastic
cotunneling current is in very good agreement with both
the second-order scattering result and the mean-field so-
lution, even for temperatures much lower than the energy
scale set by the coupling to leads. Inelastic cotunneling is
also well captured by the 2vN approach, whereas a mean-
field solution within a nonequilibrium Green functions
framework shows an artificial bistability in this regime.
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