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Dedicated to my parents



“The journey of a thousand miles begins beneath one’s feet.”

–Lao Zi, Tao Te Ching, 604 BC.



Abstract

The concept of Channel Shortening (CS) is a well-known technique that has a rich his-
tory over 40 years. CS transfers linear vector channels such as multi-input multi-output
(MIMO) and intersymbol interference (ISI) channels into “shortened” versions, for the
purpose of reducing demodulation-complexity and improving data-transmission perform-
ance. The original CS idea can trace back to the minimum-phase filtering on ISI channels to
concentrate channel energy into a first few number of channel taps, and afterwards truncate
the remaining channel tails or mitigate the ISI according to the tails with fed back hard-
decisions. Since then, many other CS techniques have been extensively developed through
various criteria. The CS demodulators investigated in this thesis are based on maximizing
the achievable information rate (AIR), which is also referred to as the generalized mutual
information (GMI).

This thesis comprises three parts, with AIR-maximization based CS extensively investig-
ated both for reduced-complexity demodulation and precoding designs for wireless com-
munication systems, and then followed by investigations on a newly envisioned system
that is beyond traditional massive MIMO. In the first part, the designs of CS demodulat-
ors are considered for turbo equalization in linear vector channels with priori informations
from outer decoder. Following that, a low-complexity reduced-state soft-output Viterbi
equalizer (RS-SOVE) for ISI channels in a non-iterative receiver structure, and an AIR
based partial marginalization (AIR-PM) detector for MIMO channels are introduced, re-
spectively. In addition, a novel modulus operation based MIMO detection, namely, the
modulus zero-forcing (MZF) detector, is proposed for boosting the detection perform-
ance of linear equalizers. In the second part, the CS idea is extended to precoder designs,
and a generalized zero-forcing based dirty-paper (GZF-DP) precoder is developed for the
broadcast channel (BC). Later, a linear precoder design is considered for MIMO-ISI chan-
nel, with priori information that receivers are using CS demodulation. In the last part, a
new concept called “Large Intelligent Surface (LIS)” beyond a traditional massive MIMO
concept is envisioned and its information-theoretical properties for both data-transmission
and terminal-positioning are studied. LIS in its fundamental form uses the entire sur-
face for transmission and reception of radiating signals, which provides ultimate limits
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that a traditional large antenna-array system can possible achieve within the same deployed
surface-area. In addition, as the effective channel after a matched-filtering (MF) process
can be modeled as a sinc-function like linear vector channel, the CS techniques developed
in the previous two parts can also be applied to the LIS system.



Popular Science Summary

Wireless communication systems has evolved for several generations, staring from Global
System for Mobile communications (GSM), followed by Universal Mobile Telecommunic-
ations System (UMTS), and then the fourth generation (4G) Long-Term-Evolution (LTE)
systems. Now it evolves toward the fifth generation (5G) with the concept of Internet-of-
Things (IoT), device-to-device (D2D), and machine-to-machine (M2M) types of commu-
nications. Commercial 5G communication systems are expected to be deployed around
year 2020 and featured to provide ubiquitous connectivity for various kinds of devices and
applications. 5G enables the IoT, D2D, and M2M communications by providing massive
number of connections with stringent energy and transmission constraints, as well as high
data-throughput. The great demand for the number of connectivities and the ever increas-
ing data-rate in wireless communication systems impose strong need on improving the
spectral-efficiency (bits/s/Hz) and energy-efficiency (bits/J) compared to existing cellular
networks. Moreover, in M2M communications, the built-in batteries are featured to last
for more than ten years. All these aspects require more efficient physical layer algorithm
designs that have better trade-offs between computational-cost and performance.

Massive multi-input multi-output (MIMO), as a promising and potential technology for
5G, can increases the throughput of cells by applying a large number of antenna-elements at
the base-transceiver station (BTS). Not only that, when the number of antennas increases,
channel vectors according to different antennas can become asymptotically orthogonal,
which yields a favorable propagation condition for data transmission and reception. As a
result, low-complexity physical layer algorithms such as linear precoders and detectors can
perform close to optimal. However, massive MIMO cannot solve all issues. One potential
problem is interference-mitigation, such as when users are located at cell-edges, the inter-
ference from neighboring cells can degrade the throughputs of them. Even within the same
cell, closely located users such as in a stadium or a concert venue may still interfere with each
other. Therefore, a receiver design needs to cope with such difficult cases to guarantee a
satisfying service under all circumstances for the users. Further, in order to extend coverage
and support mobility, a trend in modern wireless communication systems is heterogeneous
cell-deployments, where the circuit power in small cells become dominant in addition to
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transmission power. In these small cells, traditional MIMO with a few number of an-
tennas may still be deployed to save cost. In all the mentioned scenarios, applying linear
algorithms in physical layer design may yield suboptimal data-transmission performances,
and better complexity-performance efficient algorithm designs are of interest.

One efficient and promising technique that satisfies such requirements is Channel Shorten-
ing (CS), which transfers original linear vector channels (such as MIMO and intersymbol
interference (ISI) channels) into shortened versions, to simplify successive processes such as
precoding and demodulation. There are many different ways of designing CS transceivers.
In the first two parts of the thesis, we investigate an achievable information rate (AIR) based
CS, and apply it to demodulator and precoder designs, respectively. The AIR is the highest
information rate (in units of information per unit time) that can be achieved with arbitrar-
ily small error probability in a communication channel, which is essentially developed by
Claude E. Shannon in 1948. Due to the AIR-maximization used as the optimization target,
the obtained CS designs can guarantee that an optimal AIR is attained with the shortened
channel. Not only that, another nice property with the AIR-maximization based CS is
that, the optimization procedures can be solved in closed-forms with proper designs, and
information-theoretical analysis can be carried out.

As massive MIMO is getting mature, new directions for future evolutions is of particular
interest. In a third part of this thesis, we envision a new concept called Large Intelligent
Surface (LIS), which is an extension of existing massive MIMO systems, but scales beyond
a traditional antenna-array concept. In its fundamental form, we assume that a LIS uses
its entire surface for transmitting and receiving radiating signals, which is an ultimate limit
for what a traditional large antenna-array can possibly achieve within a given surface-area.
With LIS, we carry out analysis both for data-transmission and terminal-positioning. We
reveal that, the effective channel of the LIS is close to a sinc-like function (a function is
central to the field of communications and has been studied at least since H. Nyquist’s
seminal 1928 paper), and it is efficient in interference suppression. To be specific, if two
users are separated half a wavelength apart, there is almost no interference to the other. We
also show that, the lower-bounds for positioning decreases not linearly in the surface-area
as one may expect, but quadratically and even cubicly, which enlightens the potential of
using LIS in future wireless communication systems.
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Chapter 1

Introduction

“Everything should be made as simple as possible, but not simpler.”
– Albert Einstein

1.1 Linear Vector Channels in Wireless Communication

In wireless communication systems, information data-blocks are sent from a base trans-
ceiver station (BTS) to either a single or multiple receivers through wireless propagation
channels [1–4], which can, in many cases of practical importance and interest, be modeled
by linear vector channels as depicted in Fig. 1.1. Traditionally, there are two basic types
of linear vector channels, the intersymbol interference (ISI) channel and the multi-input
multi-output (MIMO) channel. In some systems, these two different types of channels co-
exist which yields the MIMO-ISI channel by applying MIMO in combination with single-
carrier (SC) modulation. Examples of this include extended coverage Global System for
Mobile Communications (GSM) (EC-GSM) aimed for narrowband IoT (NB-IoT) applic-
ations [5], and although not a wireless channel, the partial response (PR) channel in the field
of multi-track magnetic recording [6]. Other frequently encountered channels are non-
linear, for example the underwater acoustic channel [7] and the satellite-communication
channel [8], to name a few. The nonlinearity, which inarguably complicates the mathemat-
ical modeling of the channel, often has limited impact on signal processing after a number
of countermeasures are taken. These include, e.g., pre-distortion at the transmitter, Vol-
terra series expansion, and linear approximations of various kinds [7, 9]. Therefore, in this
thesis the research area is limited to linear vector channels.

The ISI channel is due to the dispersive nature of propagation channels, through which
the transmitted signals are scattered and reflected by objects and surroundings in the en-
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4 Introduction

Figure 1.1: A BTS with multiple antennas is communicating to a number of users through DL channel H and UL channel HT

(although the additive noise is only shown for users, it presents at both sides).

vironment. This yields multiple paths arriving at the BTS in the uplink (UL) or the re-
ceiver(s) in the downlink (DL) at different time-delays, attenuations, and phases [10]. ISI
channels are often encountered in SC modulated systems such as GSM and Universal Mo-
bile Telecommunications System (UMTS) [11], which causes performance degradation of
data-transmission when not properly handled. In the fourth generation (4G) long-term
evolution (LTE) [12] systems, orthogonal frequency-division multiplexing (OFDM) mod-
ulation is used in the DL which inserts a cyclic-prefix (CP) in the transmitted symbols to
mitigate ISI, at a cost of a spectral-efficiency loss corresponding to the relative length of
the ISI duration compared to the symbol duration. Due to a better peak-to-average power
ratio (PAPR), SC frequency-division multiple access (SC-FDMA) is still used in the UL of
LTE which leads to ISI.

Different from the ISI channel, a MIMO channel arises from spatial multiplexing tech-
niques, which range from 2× 2 MIMO in UMTS to 8× 8 in LTE-advanced (LTE-A)
systems [13]. In the featured fifth generation (5G) systems [14, 15], it is further increased
following the concept of massive MIMO, where hundreds of antennas are deployed at the
BTS. Massive MIMO is a key feature for achieving high data-throughputs and providing
massive connectivities for various kinds of devices. Time division duplex (TDD) mode
based massive MIMO exploits the UL-DL channel reciprocity for DL data-transmission,
and relieves the overheads of channel state information (CSI) feedback in UL and acquir-
ing in DL in a frequency division duplex (FDD) mode [16, 17]. There are a number of
advantages with massive MIMO systems. Firstly, the spatial multiplexing gain, i.e., the
pre-log factor of the channel capacity, linearly increases in the minimum number of trans-
mit and receive antennas. Secondly, the beamforming (BF) efficiency is increased with
more antennas deployed which yields highly power-efficient BF and low interference-levels
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noise

BTS User

h

Figure 1.2: A single-antenna BTS is communicating to a single-antenna user through an ISI channel h.

at the receiver(s), due to increased capability of spatial focusing of energy. Thirdly, with
increased number of antennas, the channel conditions become better, and the channel vec-
tors are asymptotically orthogonal to each other. Such a nice property facilitates close to
optimal performance with simple linear signal processing such as matched-filtering (MF),
zero-forcing (ZF), and linear minimum-mean-square-error (LMMSE), both for precoding
in DL and demodulation in UL.

Mathematically, with K transmit-antennas and N receive-antennas in either DL or UL,
a complex-valued N×K MIMO channel H ∈CN×K (for a narrowband system without
ISI) is modeled as

H=


h0,0 h0,1 · · · h0,K−1

h1,0 h1,1 · · · h1,K−1
...

...
...

...
hN−1,0 hN−1,1 · · · hN−1,K−1

, (1.1)

where each element hn,k corresponds to one transmit and receive antenna pair, and the
received signal y∈CN equals

y = Hx+ n. (1.2)

In this thesis, the transmitted signal x ∈ CK comprises unit average energy information
symbols that belong to a constellation X , and n∼CN (0, N0I) represents additive white
Gaussian noise (AWGN) with zero-mean and a covariance matrix N0I .

With data transmission over a single-input single-output (SISO) dispersive ISI channel
with an L-tap channel impulse response (CIR)

h=(h0 h1 . . . hL−1), (1.3)

such as depicted in Fig. 1.2, the notation is slightly different. The received signal in this case
is modeled as

y = h ⋆ x+ n. (1.4)
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Encapsulated into a matrix form, (1.4) can be written in the same form as (1.2), but H now
is a N×K Toeplitz matrix representing the linear convolution and generated from h as¹

H=



h0
h1 h0
... h1

. . .

hL−1
...

. . . h0

hL−1
. . . h1
. . .

...
hL−1


, (1.5)

where in this case K denotes the size of the transmit-block of a single-antenna transmitter
andN=K+L−1 is the number of information-carrying observations at a single-antenna
receiver, respectively.

Note that, Fig. 1.1 can also represent a MIMO-ISI channel with each link representing an
individual ISI channel. That is, with the same received signal model (1.2), each entry hn,k
in matrix H in (1.1) now represents a convolution matrix with structure as in (1.5). In what
follows, the signal model (1.2) is referred to as an arbitrary N×K linear vector channel,
and when the processing based on (1.2) is tailored for a particular structure of the matrix
H , such as for MIMO, ISI, and MIMO-ISI channels, it will be explicitly stated.

1.2 Challenges in Designing Physical Layer Algorithms

A typical transmit and receive diagram with linear vector channels applying optional turbo
equalization is depicted in Fig. 1.3. The challenges in physical layer algorithm design usually
comprise many aspects such as good complexity-performance trade-off, high power and
memory efficiency, hardware-friendliness, low processing-latency, small buffer and die-size.
Among them, good complexity-performance trade-off is essential and of particular interest,
as a high computational cost typically consumes high power by the circuits and introduces
a high processing-latency, as well as requiring large buffers. In many algorithm designs,
such as precoding and demodulation, the channel H plays a critical role in deciding which
algorithm to apply.

In ideal cases where the column or row vectors of H are orthogonal to each other (also
known as a favorable propagation condition [16, 17]), linear precoders and demodulators are
lossless when applied at both the transmitting and the receiving sides. Under the cases that

¹The effective channel may look a bit different due to operations such as inserting dummy symbols in GSM
or a CP in LTE. For instance, H becomes circular with a CP inserted in LTE.



Introduction 7

the vectors of H are correlated, the power-efficiency and performance of linear precoders
and demodulators may incur a penalty compared to optimal performance such as with the
dirty-paper-coding (DPC) precoder in DL and maximum likelihood (ML) detection in
UL, respectively. Even with massive MIMO, there are circumstances where H does not
fulfill the favorable propagation condition, even asymptotically, due to a number of reasons.

Firstly, the number of antennas at a BTS cannot grow indefinitely [18] due to the limited
physical-size of the transmitting device. When the number of served users is comparable
to the number of transmit antennas such as in IoT applications, H can be ill-conditioned.
Secondly, for closely located users such as in a stadium or a concert venue, the channel vec-
tors in large antenna-array systems can still be correlated [19]. Thirdly, even though massive
MIMO can effectively eliminate intra-cell interferences, there can still be interferers from
neighboring cells, especially in dense cellular network deployments [20, 21]. Fourthly, the
micro and pico cells in heterogeneous networks may still use traditional MIMO systems
that apply only a few number of antennas for cost-savings or due to size-limitations. Lastly,
hardware impairments, e.g., radio-frequency (RF) and analog circuits, can introduce un-
wanted distortions to H that impacts its properties.

For the reasons mentioned above, nonlinear precoder and demodulator designs are still of
importance to boost data-transmission with affordable complexity to cope with difficult
situations such as mitigating interference, in both traditional and massive MIMO systems.
Channel shortening (CS) is one promising technique that can be utilized to design effective
precoders and demodulators, which is extensively investigated in this thesis.

1.3 CS Technique and Related Work

Over the past 40 years, substantial amount of literature have been published in develop-
ing demodulators that have low complexity yet good performance. Among those works,
one promising concept is called “CS” [22–33], which can be traced back to Falconer and
Magee in 1973 [22], with the idea to filter the received signal with a prefilter such that the
effective channel after filtering has a much shorter duration than the original one. Then,
the Viterbi Algorithm (VA) [34, 35] is applied for detection with affordable complexity.
Since then, CS demodulators have been developed and optimized from various perspect-
ives such as minimum-phase filtering [36], Kalman-filtering [29], minimum mean-square-
error (MMSE) [26], signal-to-noise ratio (SNR) [33, 37], minimum-mean-output-energy
(MMOE) [38], and achievable information rate (AIR) [39–41]. In [39] the authors firstly
consider the AIR [42–44] that a transceiver system can achieve if a CS demodulator is ad-
opted for ISI channels, and later in [41], the authors extended the concept to any linear
vector channel.
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{

Shortened channel matrix F

v

Shortened gram matrix G

0
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0

Figure 1.4: Illustrations of the effective channel matrix F and the gram matrix G, respectively. Note that, the main diagonal is
not included in the brackets in both cases.

The main idea proposed in [41] is to transfer the linear vector channel H into an effective
channel F such that only the main diagonal and the first ν lower (or upper) diagonals
can take nonzero elements, followed by a demodulation upon the Ungerboeck detection
model [45–48]. Since with the Ungerboeck model, it is notF butG=F †F that matters in
the detection process, the constraint is thereby put onG that, it is Hermitian and has a ban-
ded shape where only the main diagonal and the first ν lower and upper diagonals can take
nonzero elements (a more elaborate discussion is given in Sec. 2.1). Such a generalization
by replacing F †F with G is important and meaningful in the sense that, the optimization
procedure over F is relaxed to one over G (which is not necessarily positive-definite, but
I+G is) and this can be solved for in closed-form [41].

An illustration of F and G is depicted in Fig. 1.4, where the choice of ν in CS demodu-
lator implies a trade-off between demodulation complexity and performance. For MIMO
channels (ISI channels are similar), by setting ν = 0, F and G are diagonal and the CS
demodulator is identical to LMMSE; while by setting ν =K−1, the channel H is not
shortened and the CS demodulator is identical to ML. Compared to earlier works, the CS
technique in [41] has an advantage that, it is based on the AIR which guarantees that a
certain information rate is attained for a given parameter ν in a coded system. In addition,
the optimization procedures are in closed-form which allows for an information-theoretical
analysis.

1.4 Motivation for CS

Abstractly, the intention of using CS can be interpreted from Fig. 1.5, where we use a sig-
moid curve to illustrate a representative relationship between the complexity (in terms of
measurable quantities such as processing time, computational cost, memory, etc) and per-
formance (in terms of measurable quantities such as frame-error-rate (FER), bit-error-rate
(BER), information-rates, etc). To pursue optimal performance and theoretical limits, the
complexity can be prohibitive. What is of major interest from an engineering point of view
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Theoritical limit

Region of interest

Complexity

P
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fo
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Sigmoid-curve:

Marginal utility:

Figure 1.5: An illustration of the complexity-performance relationship in physical algorithm design through an analogous sig-
moid curve.

is to optimize the complexity-performance trade-off [49] so that one operates in a region
with sufficiently high marginal utility.

A nice property of the considered AIR-maximization based CS technique and what makes
it useful is that, a small ν can yield reasonably good performance compared to the optimal
algorithms in many cases of interest, as shown in the contributions. In other words, the
sigmoid curves which reflect the complexity-performance trade-off in Fig. 1.5 for CS based
precoding and demodulation are rather steep. This justifies the effectiveness of using CS in
designing demodulator and precoder in wireless communication systems.

1.5 Looking One-Step Ahead

As of today, wireless communication systems have evolved toward the concept of massive
MIMO [50]. A question of research interest is: What will be the next big thing? Go-
ing one-step beyond massive MIMO, this thesis envisions the concept of Large Intelligent
Surface (LIS), which origins from the idea of using the entire deployed large surface for
transmitting and receiving radio signals. LIS is a natural evolution of massive MIMO;
by (theoretically) packing more and more antenna-elements within a given surface-area,
the ultimate outcome is the LIS. Therefore, LIS corresponds to fundamental limits that a
traditional large antenna-array system can possibly achieve.

Although LIS shares similarities with massive MIMO, it also brings new features and prop-
erties that are not revealed by traditional large antenna-array systems such as the fun-
damental limits for data-transmission and terminal-positioning with a certain deployed
surface-area. Moreover, with LIS we usually consider a large surface system (either cent-
ralized or distributed) such that users are in the near-field. Typical examples can be using
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Figure 1.6: An illustration of a typical LIS application, where three devices are communicating to three separate units of a LIS
system.

walls in the departure halls at airports or facades of tall buildings for deploying (or being)
the LIS, which is illustrated in Fig. 1.6. In addition, artificial-intelligence (AI) technologies,
such as machine-learning and convolutional neural networks [51], can be incorporated to
the LIS system, with the abundant data and signal dimensions that are provided by the
LIS, to make the whole system intelligent. This may facilitate a provision for applications
such as terminal-positioning, remote-sensing, motion-detection, load-prediction, wireless-
charging, etc.





Chapter 2

Channel Shortening based
Demodulator Designs

We start with introducing the optimal maximum a posteriori (MAP) detection for MIMO
channels in Sec. 2.1, followed by a review of the original AIR based CS demodulator [41]
design for non-iterative receivers in Sec. 2.2. Across the iterations in a turbo equaliza-
tion [52–57] process, the CS design in [41] is static, i.e., the parameters of the CS demodu-
lator are not changing. In Sec. 2.3, we extend the design of the CS demodulator into a
dynamic version where the parameters are updated across iterations in turbo equalization.
This involves an interference cancellation (IC) step that was not present in [41]. Further,
we extensively analyze the CS designs based on three different detection models, which are
the main contributions of Paper i [58] in the included papers of this thesis. As turbo equaliz-
ation suffers from high computational-cost and processing-latency, a new design of CS de-
modulator in a non-iterative receiver for ISI channels is introduced in Sec. 2.4 and dealt with
in detail in Paper ii [59]. This new CS demodulator cooperates with hard-decision feedbacks
from a reduced-state soft-output equalizer (RS-SOVE). In Sec. 2.5, an AIR-maximization
based partial marginalization (AIR-PM) MIMO detector, in Paper iii [60], is introduced
which has low detection-complexity and processing-latency since all layers can be processed
in parallel. Lastly in Sec. 2.6, a modulus ZF (MZF) MIMO detector is also introduced,
which is the main contribution of Paper iv [61]. MZF perfectly fits into the framework
of CS from a broadened perspective that, CS applies a prefilter that modifies the channel
matrix into one that allows for simpler detection.

13



14 Channel Shortening based Demodulator Designs

2.1 Optimal MAP Demodulation

With linear vector channels, the conditional probability p(y|x) according to model (1.2)
equals

p(y|x) = 1

(πN0)
N

exp

(
− 1

N0
∥y −Hx∥2

)
. (2.1)

Denoting xmn as the mth bit of the nth symbol xn in x, and given the observable y and
prior distribution p(x), the MAP detector generates the posterior probability distribution,
commonly in the form of a log-likelihood ratio (LLR), of bit xmn as

L(xmn |y) = ln
p(xmn = 1|y)
p(xmn = −1|y)

= ln

∑
x:xm

n =1
exp (µ(y|x) + ln p(x))∑

x:xm
n =−1

exp (µ(y|x) + ln p(x))
, (2.2)

with the metric µ(y|x) being

µ(y|x) = − 1

N0
∥y −Hx∥2, (2.3)

and the priori probability p(x) can be computed from soft information, such as the ex-
trinsic output from the outer decoder. To reduce the computational complexity in (2.2),
using Jacobian approximation [62]

ln(ea + eb)≈max(a, b) (2.4)

yields the ML with Max-Log (MLM) approximation of (2.2) as

L(xmn |y) = max
x:xm

n =1
(µ(y|x) + ln p(x))− max

x:xm
n =−1

(µ(y|x) + ln p(x)). (2.5)

The evaluations of (2.2) and (2.5) can be based on the BCJR algorithm [63]. For a MIMO
channel, a tree-search process (after a proper QR-decomposition on H) is needed which
is illustrated with an example in the left part of Fig. 2.1, where the number of states at the
last detection-stage equals |X |K (assuming N ≥ K), with |X | being the cardinality of
the constellation which is assumed identical for all layers. For an ISI channel, H has a
banded structure and the band-size is limited to the length of the ISI response L, and the
number of states at each detection-stage is |X |L−1. When K (in MIMO) and L (in ISI)
are relatively large, the computational costs and processing latencies of MAP and MLM
can be prohibitive. Therefore, in order to reduce the detection complexity, CS is applied
to H to force it to have a banded shape (for an ISI channel, since it is already banded, the
purpose is to reduce the band-size). Then, the BCJR is implemented using a simplified
trellis-search (instead of tree-search) such as in the right part of Fig. 2.1, and importantly,
without compromising much of the performance.
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Figure 2.1: A tree-search example (left) for a 4×4 MIMO channel with binary phase shift keying (BPSK) modulation with an
optimal demodulation. Applying CS, we can shorten the channel to have nonzero elements only along the main
diagonal and the first lower diagonal. With that, the demodulation only requires a trellis-search (right) with 2 states
at each stage in the BCJR. Note that, alternatives to CS for detection of MIMO channels via trellis-searches exist.
In [64] the authors demonstrate that, there is always a lattice with a trellis-description that is close to the lattice
generated by the MIMO channel.

2.2 Previous CS Design without Priori Information

Note that, µ(y|x) in (2.3) can be expressed as

µ(y|x) = 1

N0

(
2R{x†H†y} − x†H†Hx− y†y

)
. (2.6)

As the last term y†y is irrelevant for detection, it can be removed in (2.6). Further, by
generalizing H and H†H as Hr and G, respectively, we can get

µ(y|x) = 2R{x†H†
ry} − x†Gx, (2.7)

which corresponds to a mismatched detection model²

p̃(y|x) = exp
(
2R{x†H†

ry} − x†Gx
)
. (2.8)

Without loss of generality, the noise power N0 is absorbed into both Hr and G. In order
to obtain a trellis-diagram in the demodulation [45, 46], constraints are put on G such
that, it is Hermitian and only the main diagonal and the first ν upper and lower diagonals
can take nonzero values (ν≤K).

With model (2.8), the AIR is defined as [42, 43]

IAIR (y;x) = Ep(x,y) [ln p̃(y|x)]− Ep(y) [ln p̃(y)] , (2.9)

²Such a mismatched detection model does not necessarily correspond to a probability-density-function
(pdf ), but this is irrelevant for detection.
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where the expectations are taken over the true pdf p(y,x) and p(y), respectively. Following
the approach in [41], and under the assumption that x is complex Gaussian distributed,
a closed form for IAIR (y;x) can be reached. Optimizing (2.9) over the N×K prefilter
matrix Hr yields

Hr = W †(I +G), (2.10)

where W is the LMMSE filter³

W = H†
(
HH† +N0I

)−1
. (2.11)

Denote the mean-square-error (MSE) matrix of the LMMSE estimator as

C = I −WH. (2.12)

The resulting IAIR (y;x) can be shown to be [41, 58]

IAIR (y;x) = K + log det(I +G)− Tr
(
C(I +G)

)
, (2.13)

where G is chosen such that (I+G)≻0, and obtained through maximizing (2.13) under
the constraints stated earlier. This optimization is treated in [41], and the optimal AIR is

IAIR(Gopt) = log
(
det(I+Gopt)

)
.

For ISI channels, since IAIR is then dependent on the block lengthK, the asymptotic rate
is considered which is defined as

Ī = lim
K→∞

1

K
IAIR. (2.14)

As the dimensions of involved matrices are rather large, Szegő’s eigenvalue distribution
theorem [65, 66] can be applied to simplify the calculations. Moreover, for an ISI channel,
the operation H†

ry becomes a filter operation and G has a Toeplitz structure.

2.3 Design of CS Demodulator in Turbo Equalization

Turbo equalization [52–57], is a powerful scheme to improve data detection performance
through IDD. Typically, suboptimal demodulators such as dimension-reduction [67], sub-
space based detections [68], and LMMSE based approaches [53, 56] are used to replace
optimal demodulators in turbo equalization for complexity savings. Therefore, it is of in-
terest to evaluate the AIR-maximization based CS demodulator in combination with turbo

³As can be seen from here, the AIR-maximization based CS is closely connected to the LMMSE.
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equalization, which takes soft information provided by an outer decoder into consideration
such that, the parameters of the CS demodulator are designed for a particular level of prior
knowledge. There are several possible ways of designing such a CS demodulator and we
research three of them that are based on Ungerboeck model, Forney model, and LMMSE
with parallel IC (LMMSE-PIC), respectively.

2.3.1 Ungerboeck Model based CS Demodulator

With soft information x̂, the CS demodulator based on the Ungerboeck detection model
[45] is modified from (2.8) to

p̃(y|x) = exp
(
2R{x†(V y−Rx̂)}−x†Gx

)
, (2.15)

where CS matrices V , R and G are denoted as the front-end filter, IC matrix, and trellis-
representation matrix, respectively. Following the definition of AIR in (2.9), the AIR can
be derived in closed-from, and based on that, the optimal CS parameters which depend on
the selected structure of R and the quality of soft information, can be found.

Note that, although other approaches than the model (2.15) would be possible for designing
CS with soft information, (2.15) follows a natural extension of the normal CS model (2.8)
with the additional information that x∼CN (x̂,C). In this case, the posterior probability
p(x|y) becomes

p(x|y)∝ p(y|x)p(x)

∝ exp

(
− 1

N0
∥y −Hx∥2

)
exp

(
−(x− x̂)†C−1(x− x̂)

)
∝ exp

(
2R
{
x†
(

1

N0
H†y+C−1x̂

)}
−x†

(
1

N0
H†H+C−1

)
x

)
. (2.16)

As can be seen, (2.15) is a generalization of model (2.16), since by substituting

V =
1

N0
H†, R = −C−1, and G =

(
1

N0
H†H +C−1

)
(2.17)

into (2.15) can yield (2.16).

2.3.2 Forney Model based CS Demodulator

Instead of using Ungerboeck’s model, the Forney detection model [34] can also be used for
designing a CS demodulator by identifying

V = F †W , R = F †T , and G = F †F , (2.18)
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and then inserting (2.18) into (2.15), which yields a detection model

p̃(y|x) = exp
(
−∥Wy − T x̂− Fx∥2

)
. (2.19)

In this case, F is lower-triangular, where only elements on the main diagonal and the first
ν lower diagonals are nonzero. Further, T is constrained to be zero wherever F can take
nonzero values. The intention is that, the constraint on F is to shorten the memory for the
trellis-search in BCJR, while the constraint on T is to cancel the signal part that F cannot
handle with feedbacks.

Similarly as with the Ungerboeck model, the AIR and the CS parameters can be optim-
ized. But unlike the optimization over G which is convex, the optimization over F is not.
Moreover, in general the detection performance of the Forney model is inferior to that
obtained with the Ungerboeck model, due to less degrees-of-freedom (DoF) in designing
the CS parameters. However, the Forney model has the advantage that the branch metric
defined in BCJR has a probabilistic meaning, which favors its application in many cases,
for example in the CS with a reduced-state equalizer that will be introduced in Sec. 2.4.

2.3.3 LMMSE-PIC based CS Demodulator

Except for the Ungerboeck and Forney detection models, a suboptimal (in the sense of
AIR) but simpler CS demodulator, which is closely related to LMMSE-PIC [52, 53, 55], is
also proposed in Paper i [58]. This version has, unlike the two versions in Sec. 2.3.1 and
2.3.2, explicit constructions of the CS parameters.

By inserting the optimalV obtained with Ungerboeck model into (2.15) and settingR=0,
the demodulator actually operates on the mismatched model

p̃(y|x) = exp
(
2R
{
x†(I+G)x̌

}
−x†Gx

)
, (2.20)

where

x̌=H†(HH†+N0I)
−1y, (2.21)

is the LMMSE estimate, which can analogously be replaced by LMMSE-PIC estimates x̃
over iterations in turbo equalization. That is, instead of (2.20) we operate on

p̃(y|x) = exp
(
2R
{
x†(I+G)x̃

}
−x†Gx

)
, (2.22)

where only one parameter G, which has the same constraints as the first two methods,
needs to be optimized. A remark is that, as we prefer to handle the interference through
the trellis-search process, the IC should not be present within the memory size ν, which is
perfectly aligned with the LMMSE-PIC process.
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2.4 CS based RS-SOVE for ISI Channel

Although turbo equalization provides significant gains through IDD, the latency and the
computational complexity are too high, which limit its applications in many practical sys-
tems. Therefore, it is of interest to develop a similar CS demodulator cooperating with
hard feedbacks rather than soft symbols for a non-iterative receiver, in particular for ISI
channels.

In [69], Koch and Baier proposed the reduced-state soft output Viterbi equalizer (RS-
SOVE) for ISI channels, in which the BCJR trellis only spans the first ν+1 taps, and
the signal part corresponding to the tail L− ν− 1 channel taps is canceled by a state-
dependent decision-feedback mechanism along the detection. The CS demodulator can
also be designed to cooperate with RS-SOVE in a similar way, with taking into consider-
ation the quality of the fed back hard symbols when designing the CS parameters. From
an information-theoretical perspective, as the traditional RS-SOVE is a special case of the
proposed CS based RS-SOVE as shown in Paper ii [70], the latter one is superior for data-
detection. Such a CS demodulator design also outperforms the original CS [41], as no
feedback is utilized in the latter one.

Note that, due to the lack of a probabilistic meaning of the branch metric [47, 71], the
Ungerboeck model is not applicable for RS-SOVE and the CS demodulator design uses
the Forney model in (2.19), where W , T and F areK×K convolution matrices generated
from filters w, t and f , respectively, and x̂ is the fed-back hard symbols. There is no
constraint on w, while f and t have the below shapes,

f =
(
f0, f1, · · · , fν

)
, (2.23)

t =
(
0, · · · , 0︸ ︷︷ ︸

ν+1

, t0, t1, · · · , tL−ν−2

)
. (2.24)

Based on Szegő’s theorem [66], the AIR corresponding to (2.19) equals [70]

Ī = lim
K→∞

1

K
IAIR(W ,T ,F )

=
1

2π

∫ π

−π

(
log
(
1+|F (ω)|2

)
−|F (ω)|2− L(ω)

1+|F (ω)|2

)
dω

+
1

π

∫ π

−π
R
{
F ∗(ω)

(
W (ω)H(ω)−σT (ω)

)}
dω, (2.25)

where W (ω), T (ω), and F (ω) are the discrete time Fourier transforms (DTFT) of w, t
and f , respectively, and

L(ω) = |F (ω)W (ω)|2
(
N0 + |H(ω)|2

)
+ σ|F (ω)T (ω)|2

−2σ|F (ω)|2R{H(ω)W (ω)T ∗(ω)} .
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The same optimization procedure can be taken to optimize the CS filters as with turbo
equalization. However, one difference is that, with RS-SOVE the quality of feedback,
reflected by the parameter σ, is unknown and an estimate of it has to be used for designing
the optimal CS parameters.

2.5 AIR-PM Detection for MIMO Channel

Among many different kinds of MIMO detectors, one interesting approach to reduce com-
plexity is via partial marginalization (PM) [72, 73], which carefully selects ν parent layers
out of K layers, and marginalizes over the remaining K−ν child layers using ZF with
decision feedback (ZF-DF) estimates. With PM, x (possibly after reordering) is split into
two parts as

xa = (xK−ν+1, xK−ν+2, · · · , xK) ,

xb = (x1, x2, · · · , xK−ν) .

The posterior density is marginalized exactly over xa, while the density is marginalized
approximately over xb. The metric µ(y|x) in (2.3) can be equivalently written as

µ(y|xb,xa) = −
1

N0
∥y −Hbxb −Haxa∥2, (2.26)

where Ha and Hb are the sub-channels corresponding to the signals parts xa and xb,
respectively. With marginalization over xb, the LLRs in (2.2) corresponding to a bit xmn in
xa and xb are approximated [72] as

L(xmn |y) = ln

∑
xa:xm

n =1
exp

(
max
xb

µ(y|xb,xa)

)
∑

xa:xm
n =−1

exp

(
max
xb

µ(y|xb,xa)

) , (2.27)

and

L(xmn |y) = ln

∑
xa

exp

(
max

xb:xm
n =1

µ(y|xb,xa)

)
∑
xa

exp

(
max

xb:xm
n =−1

µ(y|xb,xa)

) , (2.28)

respectively. To further reduce the complexity and improve the performance, it is of interest
to improve the ZF-DF process in PM through AIR-maximization based CS. The proposed
AIR-PM detector in Paper iii [60] provides a simpler and fully parallel hardware structure
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The shape of matrix G in AIR-PM

{

{

0

0

v

v

A special case with v=1

0

0

Figure 2.2: Design of G with the AIR-PM detector, where the gray parts in the left figure corresponds to the signal part xa,
and the right figure is a special case of ν=1 when xa only contains a single signal.

both for the parent and the child layers. With AIR-PM, which is a special case of CS, the
shape of the matrix G changes to a special shape for the purpose of PM as depicted in
Fig. 2.2; compare to the CS in Fig. 1.4.

With detection model (2.8) and the shape of G in the left part of Fig. 2.2, the metric in
(2.26) can be rewritten as

µ(y|xb,xa) =

K−ν∑
n=1

µn1 (ỹn|xn,xa) +

K∑
n=K−ν+1

µn2 (ỹn|xn, xn+1, · · · , xK), (2.29)

where µn1 (ỹn|xn,xa) and µn2 (ỹn|xn, xn+1, · · · , xK) are defined as

µn1 (ỹn|xn,xa) = 2R

{(
ỹn−

K∑
k=K−ν+1

gn,kxk

)
x∗n

}
− gn,n|xn|2, (2.30)

µn2 (ỹn|xn, xn+1, · · · , xK) = 2R

{(
ỹn−

K∑
k=n+1

gn,kxk

)
x∗n

}
− gn,n|xn|2. (2.31)

Inserting (2.29) back into the LLR calculations in (2.27) and (2.28), the processes are greatly
simplified with the AIR-PM detector. As from (2.30), under each assumption of parent
layers xa, the optimization over each child layer xn is separate. Further, as µn1 (ỹn|xn,xa)
is quadratic in xn, a least-square (LS) estimate can be easily obtained. Moreover, utilizing
(2.29) it can be shown that the chain rule of AIR holds as

IAIR (y;x) = I (y;xa)+

K−ν∑
n=1

I (y;xn|xa) , (2.32)

which facilities an information-theoretical analysis.

Another favorable property with AIR-PM is that, the orderings inside parent and child
layers have no impact on the AIR (which is not the case for the original PM due to ZF-
DF processes), which saves complexity required for finding optimal orderings. However,
selecting ν best parent layers that maximizes the AIR is still needed.
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Figure 2.3: A simplified trellis-search with AIR-PM detector when selecting only a single parent layer, and all child layers are
detected in parallel.

2.6 Modulus ZF based MIMO Detection

Tomlinson-Harashima precoding (THP) [74] and vector perturbation (VP) [75, 76] are well
acknowledged techniques for approximating DPC through nonlinear modulus arithmetic
operations. Using the underlying ideas of them, in Paper iv [61], we propose a modulus
based zero-forcing (MZF) detector for MIMO channels, which falls in the framework of
CS by filtering the channel into a simpler version that allows for mitigating the interference
with modulus operation.

Using modulus operation for MIMO detection has been proposed earlier as integer-forcing
(IF) receivers [77–79]. In [77], the authors show that transmitted messages can be recovered
by decoding integer combinations of codewords according to an effective channel matrix
comprising integer-valued entries. Further, IF significantly outperforms conventional lin-
ear architectures such as ZF and LMMSE and attains the optimal diversity-multiplexing
trade-off (DMT) in the high SNR regime. Despite promising theoretical evidences, the
IF receiver in [77] require each transmit-antenna to employ the same lattice code [80],
which is challenging for higher-order modulations. A simpler IF receiver using binary
linear codes (such as turbo codes and low-density parity-check code (LDPC) codes) is pro-
posed in [78, 79]. Although the encoding/decoding process is simplified, the IF designs in
[78, 79] still need to detect the linear combinations of different codewords first, followed
by a matrix inversion process to recover the codeword on each transmit-antenna.

In our proposed MZF detector, the integer matrix is optimized according to each specific
modulation-order such that, the symbol detection is separate and in parallel for all layers,
and no encoding/decoding process is required for each transmit-antenna. Moreover, there
is no need to invert an integer-valued effective matrix over a finite-field.

Without loss of generality, the matrix H can be assumed to be a square matrix, and with
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modulus operation (solid lines): mod(r, 4)-2

-1
0

1
-2 2

modulus operation (dashed lines): mod((r+2), 4)-2

Figure 2.4: The decision regions and modulus operations with MZF detection for a 2-PAM (BPSK) modulation.

the following definitions,

ỹ =

[
R{y}
I{y}

]
, x̃ =

[
R{x}
I{x}

]
, ñ =

[
R{n}
I{n}

]
, H̃ =

[
R{H} −I{H}
I{H} R{H}

]
, (2.33)

we can rewrite (1.2) as a real-valued model

ỹ = H̃x̃+ ñ, (2.34)

where the K×K channel matrix⁴ H̃ is known, and x̃ = [x1 . . . xK ]T contains pulse-
amplitude-modulation (PAM) symbols from an alphabet A = {±1, ±3, . . . ,±(

√
M −

1)} (that is, complex-valued x is M -QAM modulated), and ñ is random Gaussian noise
with a covariance matrix (N0/2)I .

A traditional ZF detector is given by

x̂k = QA(rk), 1 ≤ k ≤ K, (2.35)

where QA(·) denotes entrywise quantization to the nearest point in A, and

rk = δkH̃
+
y, (2.36)

with H̃
+ being the pseudo-inverse⁵ of H̃ and the vector

δk = [0 . . . 0︸ ︷︷ ︸
k−1

1 0 . . . 0︸ ︷︷ ︸
K−k

]. (2.37)

Since the ZF nulls out all interferences from other layers, it suffers from noise-enhancement
and we improve it by replacing (2.36) with

rk = (τδk + qk)H̃
+
y, (2.38)

where qk=[qk1, qk2, . . . qkK ] and qkℓ∈2Z, i.e., the even integers, and τ is set to

τ = 2(1−log2
√
M), (2.39)

⁴Note that, although for simplicity we still use K to represent the dimensions of H̃ , its dimensions should
be twice those of the complex-valued H .

⁵In fact, H̃
+

can be replaced by other linear equalizers and the remaining processes remain similar.
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Then, for each layer

rk = τxk +

K∑
ℓ=1

qkℓxℓ + wk, (2.40)

and xk can be recovered with a modulus operation (that depends on a property of qk) with
one example shown in Fig. 2.4. The target of designing qk is to optimize the post-processing
SNR as

qoptk = argmin
qk

∥(τδk + qk)H̃
+∥2, (2.41)

which is an instance of sphere detection with integers [81], but lattice-reduction (LR) based
suboptimal approaches can also be used. Note that, here we optimize qk for each layer
separately, whereas the IF receiver designs in [77, 78] optimize all qk jointly since they
require the integer-valued effective channel to be full-rank over the reals.



Chapter 3

Channel Shortening based Precoder
Designs

The same idea, using CS to strike a complexity-performance trade-off in demodulation,
can also be applied in precoder design, and we consider two different cases. The first case
is to apply CS in a nonlinear precoder design in combination with successive DPC [82] for
multi-input single-output (MISO) BCs. The traditional DPC and its suboptimal variant,
the ZF based DPC (ZF-DP) precoder, are briefly introduced in Sec. 3.1. In Sec. 3.2, a gen-
eralized ZF based DPC (GZF-DP) precoder is proposed to generalize the ZF-DP precoder
for complexity savings. Such a precoder design is optimized via two different approaches⁶,
maximizing the sum-rate, and maximizing the minimum user-rate, respectively, which are
the main contributions of Paper v [83]. In Sec. 3.3, a linear precoder design is optimized by
taking into account that the receivers are using CS demodulators for MIMO-ISI channels,
which is the main contribution of Paper vi [84].

3.1 Traditional ZF-DP Precoder Designs

Gelfand and Pinsker [85] derived the capacity of a single-user memoryless channel with an
additive interference signal known to the transmitter but not the receiver, and show that
the channel capacity C is the same as if the interference is not present. Based on that, Costa
proposed the DPC [82] precoder which achieves the capacity. Practical DPC designs based
on finite-alphabets have been extensively developed and are based on techniques such as

⁶When applying the CS in precoder designs, the AIR is considered as the sum-rate or the user-rate that can
be achieved (with the optimal or the CS receivers) under a total transmit-power constraint and with an effective
channel matrix (after precoding) F , which has the same banded-shape as in the design of CS demodulators.

25
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THP, lattice precoding [86], and trellis coded quantization and modulation [87, 88].

Consider a MISO-BC with an N -antenna transmitter and K single-antenna users and
under the assumption N ≥K. Denote by xn the DPC-encoded symbol of the nth user
that cancels the non-causal interference from the other users, and yn, zn are the received
sample and the noise term corresponding to the nth user, respectively. With an N×K
precoding matrix P applied at the transmitter, the received signals at the K autonomous
users can be written as

y = HPx+ z, (3.1)

whereK×N matrix H represents the MISO-BC channel, and the noise term z comprises
complex Gaussian variables with zero-mean and a covariance matrix N0I . The transmit
symbols xn are uncorrelated due to DPC encoding and have unit-transmit power, i.e.,
E[xx†]=I . In addition, the transmit node is subject to a total transmit-power constraint
PT such that

Tr
(
PP †

)
≤ PT. (3.2)

Denote the K×K effective channel F =HP , the interference channel corresponding to
each of the K users from (3.1) can be written as

yn = fn,nxn +
n−1∑
k=1

fn,kxk +
K∑

k=n+1

fn,kxk + zn. (3.3)

With a successive DPC [82] encoding scheme, the non-causal interference is canceled, while
the causal interference is regarded as additive noise.

Caire and Shamai in [89] propose a ZF-DP design for MISO-BC, which is suboptimal
but only exacts a small penalty compared to the optimal DPC. Assuming the channel de-
composition H =RU , where R is a K×K lower-triangular matrix and U is a K×N
unitary matrix, the ZF-DP precoder is set to P =U †D, where theK×K diagonal matrix
D represents the power allocation. The effective channel with the ZF-DP precoder equals
F =RD, and the received sample yn reads

yn = fn,nxn +
n−1∑
k=1

fn,kxk + zn. (3.4)

Through successive DPC encoding, the non-casual interference is nulled out for each user,
and the sum-rate maximization problem degrades to an optimal power allocation problem
that can be solved through standard water-filling over D.
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3.2 GZF-DP Precoder Design

To generalize the ZF-DP precoder, we assume that the effective channelF is a band-shaped
and lower-triangular matrix (the same shape as for CS demodulation) which yields the
GZF-DP precoder design, and the received sample yn of the nth user reads

yn = fn,nxn +
n−1∑

k=max(n−ν,1)

fn,kxk + zn, (3.5)

where ν denotes the interfering depth of the effective channel F . Under the case ν = 0,
the GZF-DP precoder degrades to the linear ZF precoder and no DPC is needed, while
with ν =K−1, the GZF-DP precoder is identical to the ZF-DP. As the interference is
non-causally known at the transmit node, we can apply the same successive DPC encoding
as the ZF-DP precoder to cancel it. For each of the K users, as there are at most ν users
to be considered in the DPC and ν≪K−1, the GZF-DP precoder renders much lower
complexity of the successive DPC operations than the ZF-DP.

The remaining problem is now to design the matrix F , which we deal with in two different
ways in Paper v [83], outlined in the following two subsections.

3.2.1 Sum-rate Maximization

Denoting Λ=(HH†)−1, and for GZF-DP precoder with a fixed ν, the problem for the
sum-rate maximization subject to the transmit-power constraint can be formulated as

maximize
F

K∑
n=1

log

(
1 +
|fn,n|2

N0

)
subject to Tr

(
F †ΛF

)
≤ PT. (3.6)

As can be shown, the GZF-DP precoder actually sacrifices the user-rate of the last ν users
to increase the sum-rate. Since ZF-DP is a special case of GZF-DP with ν =K−1, the
user-rates of the last users are sacrificed to maximize the sum-rate with the ZF-DP precoder.
Hence, it is of interest to consider the minimum user-rate maximization with the proposed
GZF-DP precoder for improving the information rate for each of the users.
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3.2.2 Minimum User-rate Maximization

To maximize the minimum user-rate R, the design of GZF-DP precoder is formulated as

maximize
F , R

R

subject to R ≤ log

(
1 +
|fn,n|2

N0

)
, 1 ≤ n ≤ K,

Tr
(
F †ΛF

)
≤ PT. (3.7)

Again, it is implicit in (3.7) that a given ν is used. With GZF-DP, both optimizations
in (3.6) and (3.7) can be solved in closed-forms, and we can guarantee a certain sum-rate
and a minimum user-rate to all users, respectively, while at the same time reducing the
interference depth from K−1 to ν, thereby lowering the complexity of the DPC encod-
ing/decoding procedure. Moreover, with a small ν, the performance of GZF-DP is close
to that of the ZF-DP as shown in Paper v [83].

Note that, the GZF-DP precoder can also be extended to MIMO-BC in similar ways,
which we have dealt with in [90].

3.3 Linear Precoder Design for MIMO-ISI Channels

Conventionally, precoder design at the BTS assumes that either a linear or the ML detec-
tion is utilized at the receivers. This is because the precoder optimization for any other type
of receiver operation is complicated [91, 92]. However, in practice the actual receiver oper-
ation typically falls between these two extremes. Within a CS framework, it is possible to
optimize the precoder for a given level of receiver complexity and this is what we deal with
in Paper vi [84]. We provide a brief overview next. With the priori information that CS
demodulators are applied at receivers, the linear precoding can be optimized accordingly
to improve its performance.

Consider a MIMO-ISI effective channel

F =


F 1,1 F 1,2 · · · F 1,K

F 2,1 F 2,2 · · · F 2,K
...

...
...

...
FK,1 FK,2 · · · FK,K

, (3.8)

where each block F n,k is anN×N circular convolution matrix generated from an effective
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ISI channel after precoding. The received signal vector of the nth user reads

yn = F n,ndn +
K∑

k=1,k ̸=n

F n,kdk +wn, (3.9)

where dn and wn are the transmitted symbols and received noise vectors, respectively. The
CS target on model (3.9), similar to (2.8), is to maximize the AIR with the detection model

p̃(yn|dn) = exp
(
−2R

{
d†
nVnyn

}
+ d†

nGndn

)
, (3.10)

where the circular convolution matrix Vn performs a filtering of the received samples, and
Gn is a Hermitian Toeplitz matrix with only the middle 2ν+1 diagonals allowed to be
nonzero. The detection of dn can then be carried out over a trellis with |X |ν states.

In order to optimize (Vn,Gn), the AIR corresponding to detection model (3.10) for each
user is adopted as the objective function. With optimal (Vn,Gn) in [41, Proposition 2],
the AIR equals

In = − log det (Bν
n) , (3.11)

where the (ν + 1)×(ν + 1) Hermitian matrix Bν
n is the principal submatrix formed by

any contiguous (ν+1) rows and the corresponding columns of the MSE matrix

Bn = I − F †
n,n

(
K∑
k=1

F n,kF
†
n,k +N0I

)−1

F n,n. (3.12)

Moreover, the total transmit-power PT equals

PT =
1

N
Tr
{
F †ΛF

}
≈ 1

2π

∫ π

−π

K∑
n=1

K∑
k=1

(
K∑
t=1

Fn,t(ω)F
∗
k,t(ω)

)
Λk,n(ω)dω, (3.13)

where the approximation (3.13) holds whenN is sufficiently large, andFk,n(ω) andΛk,n(ω)
are the DTFTs of the (k, n)th block entry in F and Λ=(HH†)−1, respectively. Then,
the sum-AIR optimization is formulated as

max
{Fn,k(ω)}

K∑
n=1

In

subject to PT ≤ 1, (3.14)

according to which the optimal set of {Fn,k(ω)} for 1≤n, k≤K can be found.





Chapter 4

Beyond Massive-MIMO: Large
Intelligent Surface

A Large Intelligent Surface (LIS) is a new concept in wireless communication, envisioned
in Paper vii [93] and viii [94]. LIS can be seen as an extension of traditional massive
MIMO [14, 15, 50] systems, however, it scales up beyond the traditional antenna-array
concept, and the whole contiguous surface is used as transmitting and receiving device. LIS
makes new and disruptive applications that require high energy-efficiency and transmission-
reliability, low-latency, and ability to interact with the environment, possible such as in the
IoT systems [95–97]. In Sec. 4.1, we briefly introduce the narrowband received signal model
of the LIS under perfect line-of-sight (LOS) condition. Based on the received signal model,
the capabilities of data-transmission with LIS is summarized in Sec. 4.2, which are the main
contributions of Paper vii [93]. Since the effective channel with LIS after MF, mathemat-
ically, is a linear vector channel, the CS demodulators can therefore be applied, which is
introduced in Sec. 4.3. In Sec. 4.4, the fundamental limits of positioning a device with LIS
are summarized, which are the main contributions of Paper viii [94].

4.1 Narrowband Signal Model with Perfect LOS

Consider a transmission from K autonomous single-antenna terminals located in a three-
dimensional space to a two-dimensional LIS deployed on a plane as shown in Fig. 1.6.
Expressed in Cartesian coordinates, the LIS center is located at x = y = z = 0, while
terminals are located at z>0 and arbitrary x, y coordinates. For analytical tractability, we
assume perfect LOS propagation. The kth terminal located at (xk, yk, zk) transmits data
symbols uk with power Pk, and all uk are assumed to be independent Gaussian variables

31
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with zero-mean and unit-variance.

Denote λ as the wavelength andN0 as the spatial power spectral density (PSD) of AWGN.
Considering a narrowband system, the received signal after the MF can be modeled as (with
details in Paper vii [93]),

r = Gu+w, (4.1)

where the (ℓ, k)th element of matrix G equals

gk,ℓ =
√
PℓPkϕk,ℓ, (4.2)

and w is the effective discrete noise after MF with zero-mean, and colored according to

E[wwH] = N0G. (4.3)

Further, we have that

ϕk,ℓ =

∫∫
(x, y)∈S

sxℓ,yℓ,zℓ(x, y)s
∗
xk,yk,zk

(x, y)dxdy, (4.4)

with S being the surface-area spanned by the two-dimensional LIS, and sxk, yk, zk(x, y) is
the effective channel at the LIS location (x, y, 0) corresponding to the kth user as

sxk, yk, zk(x, y) =

√
zk

2
√
πη

3/4
k

exp

(
−
2πj
√
ηk

λ

)
, (4.5)

where ηk=(x−xk)2+(y−yk)2+(z−zk)2.

4.2 Data-Transmission Capabilities with LIS

With the received signal model (4.1), the channel capacity C [98, 99] averaged by the num-
ber of terminals, in nats/s/Hz, equals

C= 1

K
log

(
I +

G

N0

)
. (4.6)

In Paper viii [94], a special interest is put on the number of independent signal dimensions
per deployed area-unit of the LIS that is possible to harvest, and is derived based on the
capacity normalized with the total deployed surface-area; a quantity we refer to as Ĉ with
unit [nats/s/Hz/area-unit]. It is shown that, the limit of Ĉ, achieved when wavelength λ
approaches zero, is P̂ /(2N0) [nats/s/Hz/volume-unit], where P̂ is the transmit-power per
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Figure 4.1: The interference powers (normalized by the signal powers) are measured for two users in front of the LIS.

volume-unit of the terminal-deployment. In particular, we show that for an infinitely large
LIS, 2/λ terminals can be spatially multiplexed per meter (m) deployed surface for one-
dimensional terminal-deployment, and π/λ2 terminals can be spatially multiplexed per m2

deployed surface-area for two and three dimensional terminal-deployments, respectively.

In Fig. 4.1, the interference power for a square LIS with length⁷ 1 and centered at x=y=
z=0 is measured. The wavelength is λ=0.125 (corresponding to a carrier-frequency 2.4
GHz) and two users that are located in front of the LIS, with coordinates−4≤x, y≤4 and
0< z ≤ 8 for both users. The empirical cumulative density function (CDF) is measured
for 1000 realizations of random uniform user locations. As can be seen, in most cases the
interference power normalized by the received signal power is below -20 dB, which shows
that the interference from the other user is significantly suppressed [100].

4.3 Utilizing CS Demodulation in LIS

Since the received signal model (4.1) represents a linear vector channel model, CS demodu-
lators can be directly applied, while noticing that the noise in this case is colored. As ex-
plained earlier, CS demodulators can provide a complexity-performance trade-off between
LMMSE and the optimal ML demodulator via selecting different interference depth ν. A
nice property of a LIS system is that, even the LMMSE demodulator performs close to the
optimal MAP, due to the strong interference-suppressing properties of the LIS illustrated
in Sec. 4.2. However, as can be seen from Fig. 4.2, there is still a gap between LMMSE and
MAP, which quickly reduces as ν increases.

The sum-rate is evaluated with the same LIS as in Fig. 4.2, but now the LIS is deployed

⁷In this thesis, the unit of all lengths is meter (m).
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Figure 4.2: The sum-rate achieved with CS demodulators with a considered LIS system.

on the roof of a room of length 8, width 8, and height 4, and with N0 = 1, λ= 0.5 and
P̂ = 10 dB. The channel capacity is compared to those achieved with the CS demodulators
where 15 terminals are located on the ground in a line and with spacing ∆x, while the LIS
is deployed in the center of the roof. As can be seen in Fig. 4.2, when ∆x is larger than
λ/2=0.25, the CS demodulator with ν=1 converges fast to the channel capacity, but has
much less demodulation complexity.

4.4 CRLB for Positioning with LIS

With the effective channel model (4.5) with a LIS, the fundamental limits of terminal-
positioning can also be analyzed. Denote the first-order derivatives of sx0, y0, z0(x, y) with
respect to variables x0, y0, and z0 as ∆s1, ∆s2, and ∆s3, respectively. From [3, Chapter
15], the elements of the Fisher-information matrix (FIM) are given by the double integrals
across the LIS,

Iij =
2

N0

∫∫
(x, y)∈S

R{∆sj (∆si)∗}dxdy. (4.7)

For terminals along a central-perpendicular-line (CPL), i.e., with coordinates (0, 0, z0),
the CRLBs of all three Cartesian coordinates can be derived in closed-form. Based on that,
the CRLB for arbitrary positions can be obtained with good approximations (see Paper
viii [94] for details), and we show that in general the CRLB decreases quadratically in
the surface-area. The same derivations can be applied to practical LIS systems where an
unknown phase can be present in the received signal model. In such a case, the CRLB for
x and y dimensions remains the same as without an unknown phase. However, the CRLB
for z-dimension in relation to the surface-area (in logarithmic domain) varies between 1
and 3, which shows the potential gains of going from massive MIMO to LIS systems.



Chapter 5

Summary of Specific Contributions of
the Thesis

The main results and contributions of all the included papers are summarized in this chapter.

Paper i: On the Design of Channel Shortening Demodulators for Iterative Re-
ceivers in Linear Vector Channels

We consider the problem of designing demodulators for linear vector channels with memory
that use reduced-size trellis descriptions for the received signal. We assume an overall iterat-
ive receiver, and use interference cancellation (IC) based on the soft information provided
by the outer decoder, to mitigate the parts of the signal that are not covered by the reduced-
size trellis description. In order to reach a trellis description, a linear filter is applied as
front-end to compress the signal structure into a small trellis. This process requires three
parameters to be designed: (i) the front-end filter, (ii) the feedback filter through which
the IC is done, and (iii) a target response which specifies the trellis. Demodulators of this
form have been studied before under then name channel shortening (CS), but the inter-
play between CS, IC and the trellis-search process has not been adequately addressed in
the literature. In this paper, we analyze two types of CS demodulators that are based on
the Forney and Ungerboeck detection models, respectively. The parameters are jointly op-
timized based on a generalized mutual information (GMI) function. We also introduce a
third type of CS demodulator that is in general suboptimal, but has closed-form solutions.
Moreover, signal to noise ratio (SNR) asymptotic properties are analyzed and we show that
the third CS demodulator asymptotically converges to the optimal CS demodulator in the
sense of GMI-maximization.
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Paper ii: Optimal Channel Shortener Design for Reduced-State Soft-Output Vi-
terbi Equalizer in Single-Carrier Systems

We consider optimal channel shortener design for reduced-state soft-output Viterbi equal-
izer (RS-SOVE) in single-carrier (SC) systems. To use RS-SOVE, three receiver filters
need to be designed: a prefilter, a target response and a feedback filter. The collection of
these three filters are commonly referred to as the “channel shortener”. Conventionally,
the channel shortener is designed to transform an intersymbol interference (ISI) channel
into an equivalent minimum-phase equivalent form. In this paper, we design the channel
shortener to maximize a mutual information lower bound (MILB) based on a mismatched
detection model. By taking the decision-feedback quality in the RS-SOVE into considera-
tion, the prefilter and feedback filter are found in closed forms, while the target response is
optimized via a gradient-ascending approach with the gradient explicitly derived. The in-
formation theoretical properties of the proposed channel shortener are analyzed. Moreover,
we show through numerical results that, the proposed channel shortener design achieves su-
perior detection performance compared to previous channel shortener designs at medium
and high code-rates.

Paper iii: A Soft-Output MIMO Detector with Achievable Information Rate
based Partial Marginalization

We propose a soft-output detector for multi-input multi-output (MIMO) channels that
utilizes achievable information rate (AIR) based partial marginalization (PM). The pro-
posed AIR based PM (AIR-PM) detector has superior performance compared to previously
proposed PM designs and other soft-output detectors such as K-best, while at the same time
yielding lower computational complexity, a detection latency that is independent of the
number of transmit layers, and straightforward inclusion of soft input information. Using
a tree representation of the MIMO signal, the key property of the AIR-PM is that the con-
nections among all child layers are broken. Therefore, least-square (LS) estimates used for
marginalization are obtained independently and in parallel, which have better quality than
the zero-forcing decision feedback (ZF-DF) estimates used in previous PM designs. Such a
property of the AIR-PM detector is designed via a mismatched detection model that max-
imizes the AIR. Furthermore, we show that the chain rule holds for the AIR calculation,
which facilitates an information theoretic characterization of the AIR-PM detector.

Paper iv: Modulus Zero-Forcing Detection for MIMO Channels

We propose a modulus based zero-forcing (MZF) detection for multi-input multi-output
(MIMO) channels. Traditionally, a ZF detector nulls out all interferences from other layers
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when detecting a current layer, which can yield suboptimal detection-performance due
to the noise-enhancement issue. In many communication systems, finite alphabets such
as M quadrature-amplitude-modulation (QAM) are widely used, which comprises

√
M

pulse-amplitude-modulation (PAM) symbols for the real and imaginary parts. With finite
alphabets, one feasible way to improve ZF detection is to allow controllable interferences
that can be removed away by modulus operations.

Paper v: A Generalized Zero-Forcing Precoder with Successive Dirty-Paper Cod-
ing in MISO Broadcast Channels

We consider precoder designs for multiuser multi-input single-output (MISO) broadcast-
ing channels. Instead of using a traditional linear zero-forcing (ZF) precoder, we propose a
generalized ZF (GZF) precoder in conjunction with successive dirty-paper coding (DPC)
for data-transmissions, namely, the GZF-DP precoder, where the suffix ‘DP’ stands for
‘dirty-paper’. The GZF-DP precoder is designed to generate a band-shaped and lower-
triangular effective channel F such that only the entries along the main diagonal and the
ν first lower-diagonals can take nonzero values. Utilizing the successive DPC, the known
non-causal inter-user interferences from the other (up to) ν users are canceled through suc-
cessive encoding. We analyze optimal GZF-DP precoder designs both for sum-rate and
minimum user-rate maximizations. Utilizing Lagrange multipliers, the optimal precoders
for both cases are solved in closed-forms in relation to optimal power allocations. For the
sum-rate maximization, the optimal power allocation can be found through water-filling,
but with modified water-levels depending on the parameter ν. While for the minimum
user-rate maximization that measures the quality of the service (QoS), the optimal power
allocation is directly solved in closed-form which also depends on ν. Moreover, we pro-
pose two low-complexity user-ordering algorithms for the GZF-DP precoder designs for
both maximizations, respectively. We show through numerical results that, the proposed
GZF-DP precoder with a small ν (≤3) renders significant rate increments compared to the
previous precoder designs such as the linear ZF and user-grouping based DPC (UG-DP)
precoders.

Paper vi: Linear Precoder Design for MIMO-ISI Broadcasting Channels under
Channel Shortening Detection

We consider optimal precoder design for multi-user multi-input multi-output (MIMO)
broadcasting channels in single-carrier (SC) systems. Instead of linear detection, we as-
sume that advanced nonlinear channel shortening (CS) detectors are utilized at the receiv-
ers. Such a scenario is challenging for precoder design as the uplink-downlink duality is
inapplicable. The target of our linear precoder design is to maximize the sum of the achiev-
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able information rate (sum-AIR), with AIR of each user being explicitly derived. We ana-
lyze such a precoder design in general, and provide an efficient per-user based optimization
algorithm for the design of block-diagonalization precoder.

Paper vii: Beyond Massive-MIMO: The Potential of Data-Transmission with
Large Intelligent Surfaces

We consider the potential of data-transmission in a system with a massive number of radi-
ating and sensing elements, thought of as a contiguous surface of electromagnetically active
material. We refer to this as a large intelligent surface (LIS). We firstly consider capacit-
ies of single-antenna autonomous terminals communicating to the LIS where the entire
surface is used as a receiving antenna array. Under the condition that the surface-area is
sufficiently large, the received signal after a matched-filtering (MF) operation can be closely
approximated by a sinc-function-like intersymbol interference (ISI) channel. Secondly, we
analyze the capacity per square meter (m2) deployed surface, Ĉ, that is achievable for a fixed
transmit-power per volume-unit, P̂ ; the volume-unit can be m, m2, and m3 depending on
the scenario under investigation. As terminal-density increases, the limit of Ĉ achieved
when the wavelength λ approaches zero is P̂ /(2N0) [nats/s/Hz/volume-unit], where N0

is the spatial power spectral density (PSD) of the additive white Gaussian noise (AWGN).
Moreover, we also show that the number of independent signal dimensions per m deployed
surface is 2/λ for one-dimensional terminal-deployment, and π/λ2 per m2 for two and
three dimensional terminal-deployments. Thirdly, we consider implementations of the LIS
in the form of a grid of conventional antenna elements and show that, the sampling lat-
tice that minimizes the surface-area of the LIS and simultaneously obtains one signal space
dimension for every spent antenna is the hexagonal lattice. Lastly, we extensively discuss
the design of the state-of-the-art low-complexity channel shortening (CS) demodulator for
data-transmission with the LIS.

Paper viii: Beyond Massive-MIMO:The Potential of Positioning with Large In-
telligent Surfaces

We consider the potential for positioning with the LIS systems as a following work of Paper
VI. In a first step, we derive Fisher-information matrix (FIM) and Cramér-Rao lower bound
(CRLB) in closed-form for positioning a terminal located perpendicular to the center of
the LIS, whose location we refer to as being on the central perpendicular line (CPL) of the
LIS. For a terminal that is not on the CPL, closed-form expressions of the FIM and CRLB
seem out of reach, and we alternatively find approximations which are shown to be accurate.
Under mild conditions, we show that the CRLB for all three Cartesian dimensions (x, y and
z) decreases quadratically in the surface-area of the LIS, except for a terminal exactly on the
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CPL where the CRLB for the z-dimension (distance from the LIS) decreases linearly in the
same. In a second step, we analyze the CRLB for positioning when there is an unknown
phase φ presented in the analog circuits of the LIS. We then show that the CRLBs are
dramatically for all three dimensions but decrease in the third-order of the surface-area.
Moreover, with an infinitely large LIS the CRLB for the z-dimension with an unknown
φ is 6 dB higher than the case without phase uncertainty, and the CRLB for estimating φ
converges to a constant that is independent of the wavelength λ. At last, we extensively
discuss the impact of centralized and distributed deployments of LIS, and show that a
distributed deployment of LIS can enlarge the coverage for positioning and improve the
overall performance.





References 41

References

[1] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge
university press, 2005.

[2] J. Proakis, Digital communications, ser. Elect. and Computer Engi.: Commun. and
Signal Process. McGraw-Hill, 2001.

[3] S. M. Kay, Fundamentals of statistical signal processing, volume I: Estimation theory.
Prentice Hall signal processing series, 1993.

[4] A. V. Oppenheim and R. W. Schafer, Digital signal processing. Englewood Cliffs,
Prentice-Hall, 1989.

[5] S. Hu, H. Kröll, Q. Huang, and F. Rusek, “A low-complexity channel shortening
receiver with diversity support for evolved 2G devices,” in IEEE Int. Conf. Com-
mun.(ICC), May 2016, pp. 1–7.

[6] H. Kobayashi and D. Tang, “Application of partial-response channel coding to mag-
netic recording systems,” IBM J. of Res. and Develop., vol. 14, no. 4, pp. 368–375, Jul.
1970.

[7] L. Xu and T. Xu, Digital underwater acoustic communications. Elsevier Science,
2016.

[8] T. Bouilloc and G. Favier, “Nonlinear channel modeling and identification using
baseband Volterra–Parafac models,” Signal Process., vol. 92, no. 6, pp. 1492–1498,
Jun. 2012.

[9] G. Colavolpe, A. Modenini, and F. Rusek, “Channel shortening for nonlinear satel-
lite channels,” IEEE Commun. Lett., vol. 16, no. 12, pp. 1929–1932, Dec. 2012.

[10] A. F. Molisch, Wireless communications. Wiley-IEEE Press, 2010, vol. the seond
edition.

[11] H. Holma and A. Toskala, WCDMA for UMTS: HSPA evolution and LTE. John
Wiley & sons, 2007.

[12] S. Sesia, M. Baker, and I. Toufik, LTE-the UMTS long term evolution: From theory to
practice. John Wiley & Sons, 2011.

[13] 3GPP TS 36.211, “Evolved universal terrestrial radio access (E-UTRA): Physical chan-
nels and modulation,” Release 14, Dec. 2016.



42 References

[14] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and
F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with very large ar-
rays,” IEEE Signal Process. Mag., vol. 30, no. 100, pp. 40–60, Jan. 2013.

[15] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for
next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195,
Feb. 2014.

[16] T. Marzetta, E. Larsson, H. Yang, and H. Ngo, Fundamentals of massive MIMO.
Cambridge University Press, 2016.

[17] H. Q. Ngo,Massive MIMO: Fundamentals and system designs. Linköping University
Electronic Press, 2015, vol. 1642.

[18] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: Ten myths and
one critical question,” IEEE Commun. Mag., vol. 54, no. 2, pp. 114–123, Feb. 2016.

[19] J. Flordelis, S. Hu, F. Rusek, O. Edfors, G. Dahman, X. Gao, and F. Tufvesson,
“Exploiting antenna correlation in measured massive MIMO channels,” in IEEE
Int. Symp. Personal, Indoor, and Mobile Radio Commun. (PIMRC), 2016, pp. 1–6.

[20] Y. Kishiyama, A. Benjebbour, T. Nakamura, and H. Ishii, “Future steps of LTE-
A: Evolution toward integration of local area and wide area systems,” IEEE Trans.
Wireless Commun., vol. 20, no. 1, pp. 12–18, Mar, 2013.

[21] C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas,
S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G
wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–
130, Feb, 2014.

[22] D. D. Falconer and F. R. Magee, “Adaptive channel memory truncation for max-
imum likelihood sequence estimation,” The Bell Syst. Tech. J., vol. 52, no. 9, pp.
1541–1562, Nov. 1973.

[23] S. Fredricsson, “Joint optimization of transmitter and receiver filters in digital pam
systems with a Viterbi detector,” IEEE Trans. Inf. Theory, vol. 22, no. 2, pp. 200–210,
Mar. 1976.

[24] C. Beare, “The choice of the desired impulse response in combined linear-Viterbi
algorithm equalizers,” IEEE Trans. Commun., vol. 26, no. 8, pp. 1301–1307, Aug.
1978.

[25] N. Sundstrom, O. Edfors, P. Ödling, H. Eriksson, T. Koski, and P. O. Börjesson,
“Combined linear-Viterbi equalizers-a comparative study and a minimax design,” in
Proc. IEEE Veh. Technol. Conf. (VTC), vol. 2, Jun. 1994, pp. 1263–1267.



References 43

[26] N. Al-Dhahir and J. M. Cioffi, “Efficiently computed reduced-parameter input-
aided MMSE equalizers for ML detection: A unified approach,” IEEE Trans. Inf.
Theory, vol. 42, no. 3, pp. 903–915, May 1996.

[27] M. A. Lagunas, A. Perez-Neia, and J. Vidal, “Joint beamforming and Viterbi equal-
izer in wireless communications,” in Conference Record of the 31st Asilomar Conf. Sig-
nals, Syst. and Comput.(ACSSC), vol. 1, Nov. 1997, pp. 915–919.

[28] S. A. Aldosari, S. A. Alshebeili, and A. M. Al-Sanie, “A new MSE approach for
combined linear-Viterbi equalizers,” in Proc. IEEE Veh. Technol. Conf. (VTC), Tokyo,
vol. 3, May 2000, pp. 1707–1711.

[29] S. Badri-Höher and P. A. Höher, “Fast computation of a discrete-time whitened
matched filter based on Kalman filtering,” IEEE Trans. Wireless Commun., vol. 3,
no. 6, pp. 2417–2424, Nov, 2004.

[30] P. A. Höher, S. Badri-Höher, S. Deng, C. Krakowski, and W. Xu, “Joint delayed-
decision feedback sequence estimation with adaptive state allocation,” in IEEE Int.
Symp. Inf. Theory (ISIT), Jun. 2004, p. 132.

[31] S. Badri-Höher, P. A. Höher, C. Krakowski, and W. Xu, “Impulse response shorten-
ing for multiple co-channels,” in IEEE Int. Conf. Commun. (ICC), vol. 3, May 2005,
pp. 1896–1900.

[32] R. Venkataramani and S. Sankaranarayanan, “Optimal channel shortening equaliz-
ation for MIMO ISI channels,” in IEEE Global Telecommun. Conf. (GLOBECOM),
Dec. 2008, pp. 1–5.

[33] U. L. Dang, W. H. Gerstacker, and D. T. Slock, “Maximum SINR prefiltering for
reduced-state trellis-based equalization,” in IEEE Int. Conf. Commun. (ICC), Jun.
2011, pp. 1–6.

[34] G. Forney, “Maximum-likelihood sequence estimation of digital sequences in the
presence of intersymbol interference,” IEEE Trans. Inf. Theory, vol. 18, no. 3, pp.
363–378, May 1972.

[35] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260–269, Apr. 1967.

[36] W. H. Gerstacker, F. Obernosterer, R. Meyer, and J. B. Huber, “On prefilter com-
putation for reduced-state equalization,” IEEE Trans. Wireless Commun., vol. 1, no. 4,
pp. 793–800, Oct. 2002.

[37] J.-W. Liang, J.-T. Chen, and A. J. Paulraj, “A two-stage hybrid approach for CCI/ISI
reduction with space-time processing,” IEEE Commun. Lett., vol. 1, no. 6, pp. 163–
165, Nov. 1997.



44 References

[38] D. Darsena and F. Verde, “Minimum-mean-output-energy blind adaptive channel
shortening for multicarrier SIMO transceivers,” IEEE Trans. Signal Process., vol. 55,
no. 12, pp. 5755–5771, Dec. 2007.

[39] I. Aboy-Faycal and A. Lapidoth, “On the capacity of reduced-complexity receivers
for intersymbol interference channels,” in IEEE Conv. Elect. and Electron. Eng. in
Israel (IEEEI), Apr. 2000, pp. 263–266.

[40] R. Venkataramani and M. F. Erden, “A posteriori equivalence: A new perspective for
design of optimal channel shortening equalizers,” arXiv preprint: 0710.3802, 2007.

[41] F. Rusek and A. Prlja, “Optimal channel shortening for MIMO and ISI channels,”
IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 810–818, Feb. 2012.

[42] N. Merhav, G. Kaplan, A. Lapidoth, and S. S. Shitz, “On information rates for
mismatched decoders,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 1953–1967, Nov.
1994.

[43] A. Ganti, A. Lapidoth, and I. E. Telatar, “Mismatched decoding revisited: General
alphabets, channels with memory, and the wide-band limit,” IEEE Trans. Inf.Theory,
vol. 46, no. 7, pp. 2315–2328, Nov. 2000.

[44] M. R. McKay, I. B. Collings, and A. M. Tulino, “Achievable sum rate of MIMO
MMSE receivers: A general analytic framework,” IEEE Trans. Inf. Theory, vol. 56,
no. 1, pp. 396–410, Jan. 2010.

[45] G. Ungerboeck, “Adaptive maximum-likelihood receiver for carrier-modulated data-
transmission systems,” IEEE Trans. Commun., vol. 22, no. 5, pp. 624–636, May 1974.

[46] G. Colavolpe and A. Barbieri, “On MAP symbol detection for ISI channels using the
Ungerboeck observation model,” IEEE Commun. Lett., vol. 9, no. 8, pp. 720–722,
Aug 2005.

[47] F. Rusek, G. Colavolpe, and C.-E. W. Sundberg, “40 years with the Ungerboeck
model: A look at its potentialities [lecture notes],” IEEE Signal Process. Mag., vol. 32,
no. 3, pp. 156–161, May 2015.

[48] F. Rusek, M. Lončar, and A. Prlja, “A comparison of Ungerboeck and Forney mod-
els for reduced-complexity ISI equalization,” in IEEE Global Telecommun. Conf.
(GLOBECOM), Nov. 2007, pp. 1431–1436.

[49] P. Lettieri and M. B. Srivastava, “Advances in wireless terminals,” IEEE Personal Com-
mun., vol. 6, no. 1, pp. 6–19, Feb. 1999.



References 45

[50] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base
station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Oct.
2010.

[51] T. J. O’Shea and J. Hoydis, “An introduction to machine learning communications
systems,” arXiv preprint: 1702.00832, 2017.

[52] M. Tuchler and A. C. Singer, “Turbo equalization: An overview,” IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 920–952, Feb. 2011.

[53] S.-J. Lee, A. C. Singer, and N. R. Shanbhag, “Linear turbo equalization analysis
via BER transfer and EXIT charts,” IEEE Trans. Signal Process., vol. 53, no. 8, pp.
2883–2897, Jul. 2005.

[54] A. Shaheem, H.-J. Zepernick, and M. Caldera, “Enhanced channel shortened turbo
equalization,” in Int. Conf. Advanced Technol. for Commun. (ATC), Oct. 2008, pp.
8–11.

[55] S. Hu and F. Rusek, “On the design of reduced state demodulators with interference
cancellation for iterative receivers,” in IEEE Int. Symp. Personal, Indoor, and Mobile
Radio Commun. (PIMRC), Aug. 2015, pp. 981–985.

[56] A. Glavieux, C. Laot, and J. Labat, “Turbo equalization over a frequency selective
channel,” in Proc. 1st Symp. Turbo Codes, Sep. 1997, pp. 96–102.

[57] R. R. Lopes and J. R. Barry, “The soft-feedback equalizer for turbo equalization of
highly dispersive channels,” IEEE Trans. Commun., vol. 54, no. 5, pp. 783–788, May
2006.

[58] S. Hu and F. Rusek, “On the design of channel shortening demodulators for iter-
ative receivers in linear vector channels,” submitted to IEEE Trans. Inf. Theory, arXiv
preprint: 1506.07331, May 2015.

[59] S. Hu, H. Kröll, Q. Huang, and F. Rusek, “Optimal channel shortener design for
reduced-state soft-output Viterbi equalizer in single-carrier systems,” IEEE Trans.
Commun., vol. 65, no. 6, pp. 2568–2582, Jun. 2017.

[60] S. Hu and F. Rusek, “A soft-output MIMO detector with achievable information
rate based partial marginalization,” IEEE Trans. Signal Process., vol. 65, no. 6, pp.
1622–1637, Mar. 2017.

[61] ——, “Modulus zero-forcing detection for MIMO channels,” submitted to IEEE
Access, Nov. 2017.

[62] T. K. Moon, Error Correction Coding: Mathematical methods and algorithms. Wiley
Online Library, 2005.



46 References

[63] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20, no. 2, pp. 284–287,
Mar. 1974.

[64] F. A. Monteiro and F. R. Kschischang, “Trellis detection for random lattices,” in IEEE
Int. Symp. Wireless Commun. Syst. (ISWCS), Nov. 2011, pp. 755–759.

[65] U. Grenander and G. Szegő, Toeplitz forms and their applications. Berkeley: Uni-
versity of California Press, 1958.

[66] R. M. Gray et al., “Toeplitz and circulant matrices: A review,” Foundations and Trends
in Commun. and Inf. Theory, vol. 2, no. 3, pp. 155–239, 2006.

[67] J. W. Choi, B. Shim, A. C. Singer, and N. I. Cho, “Low-complexity decoding via
reduced dimension maximum-likelihood search,” IEEE Trans. Signal Process., vol. 58,
no. 3, pp. 1780–1793, Mar. 2010.

[68] M. Čirkić and E. G. Larsson, “SUMIS: Near-optimal soft-in soft-out MIMO detec-
tion with low and fixed complexity,” IEEE Trans. Signal Process., vol. 62, no. 12, pp.
3084–3097, Jun. 2014.

[69] W. Koch and A. Baier, “Optimum and sub-optimum detection of coded data dis-
turbed by time-varying intersymbol interference (applicable to digital mobile radio
receivers),” in IEEE Global Telecommun. Conf. and Exhibition, Dec. 1990, pp. 1679–
1684.

[70] S. Hu, H. Kröll, Q. Huang, and F. Rusek, “Optimal channel shortener design for
reduced-state soft-output Viterbi equalizer in single-carrier systems,” IEEE Trans.
Commun., vol. 65, no. 6, pp. 2568–2582, Jun. 2017.

[71] M. Lončar and F. Rusek, “On reduced-complexity equalization based on Ungerboeck
and Forney observation models,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3784–
3789, Jul. 2008.

[72] E. G. Larsson and J. Jaldén, “Fixed-complexity soft MIMO detection via partial
marginalization,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3397–3407, Aug.
2008.

[73] D. Persson and E. G. Larsson, “Partial marginalization soft MIMO detection with
higher order constellations,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 453–458,
Jan. 2011.

[74] Y. Sun, Y. Yang, A. D. Liveris, V. Stankovic, and Z. Xiong, “Near-capacity dirty-
paper code design: A source-channel coding approach,” IEEE Trans. Inf. Theory,
vol. 55, no. 7, pp. 3013–3031, Jun. 2009.



References 47

[75] B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst, “A vector-perturbation tech-
nique for near-capacity multiantenna multiuser communication-Part II: Perturba-
tion,” IEEE Trans. Commun., vol. 53, no. 3, pp. 537–544, Mar, 2005.

[76] J. Maurer, J. Jaldén, D. Seethaler, and G. Matz, “Vector perturbation precoding
revisited,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 315–328, Jan, 2011.

[77] J. Zhan, B. Nazer, U. Erez, and M. Gastpar, “Integer-forcing linear receivers,” IEEE
Trans. Inf. Theory, vol. 60, no. 12, pp. 7661–7685, Oct. 2014.

[78] S. H. Chae, M. Jang, A. Seok-Ki, J. Park, and C. Jeong, “Multilevel coding scheme
for integer-forcing MIMO receivers with binary codes,” IEEE Trans. Wireless Com-
mun., vol. 16, no. 8, pp. 5428–5441, Aug. 2017.

[79] O. Ordentlich and U. Erez, “Achieving the gains promised by integer-forcing equal-
ization with binary codes,” in IEEE Conv. Elect. and Electron. Eng. in Israel (IEEEI),
2010, pp. 703–707.

[80] S.-N. Hong and G. Caire, “Compute-and-forward strategies for cooperative distrib-
uted antenna systems,” IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5227–5243, Sep.
2013.

[81] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,”
IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201–2214, Aug, 2002.

[82] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, no. 3, pp. 439–
441, May 1983.

[83] S. Hu and F. Rusek, “A generalized zero-forcing precoder with successive dirty-paper
coding in MISO broadcast channels,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3632–3645, Jun. 2017.

[84] S. Hu, X. Gao, and F. Rusek, “Linear precoder design for MIMO-ISI broadcasting
channels under channel shortening detection,” IEEE Signal Process. Lett., vol. 23,
no. 9, pp. 1207–1211, Sep. 2016.

[85] S. Gelfand and M. Pinsker, “Coding for channel with random parameters,” Problems
Cont. and Inf. Theory, vol. 9, no. 1, pp. 19–31, Jan. 1980.

[86] U. Erez, S. Shamai, and R. Zamir, “Capacity and lattice strategies for canceling
known interference,” IEEE Trans. Inf. Theory, vol. 51, no. 11, pp. 3820–3833, Oct.
2005.

[87] U. Erez and S. Ten Brink, “A close-to-capacity dirty paper coding scheme,” IEEE
Trans. Inf. Theory, vol. 51, no. 10, pp. 3417–3432, Oct. 2005.



48 References

[88] W. Yu, D. P. Varodayan, and J. M. Cioffi, “Trellis and convolutional precoding for
transmitter-based interference presubtraction,” IEEE Trans. Commun., vol. 53, no. 7,
pp. 1220–1230, Jul. 2005.

[89] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian
broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691–1706, Jul. 2003.

[90] S. Hu and F. Rusek, “A generalized zero-forcing precoder for multiple antenna Gaus-
sian broadcast channels,” in IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 556–
560.

[91] S. Shi, M. Schubert, and H. Boche, “Downlink MMSE transceiver optimization
for multiuser MIMO systems: Duality and sum-MSE minimization,” IEEE Trans.
Signal Process., vol. 55, no. 11, pp. 5436–5446, Nov. 2007.

[92] R. Hunger, M. Joham, and W. Utschick, “On the MSE-duality of the broadcast
channel and the multiple access channel,” IEEE Trans. Signal Process., vol. 57, no. 2,
pp. 698–713, Feb. 2009.

[93] S. Hu, F. Rusek, and O. Edfors, “Beyond massive-MIMO: The potential of data-
transmission with large intelligent surfaces,” submitted to IEEE Trans. Signal Process.,
arXiv preprint: 1707.02887, Jul. 2017.

[94] ——, “Beyond massive-MIMO: The potential of positioning with large intelligent
surfaces,” accepted in IEEE Trans. Signal Process., arXiv preprint: 1705.06860, Dec.
2017.

[95] L. Atzori, A. Iera, and G. Morabito, “The Internet of things: A survey,” Computer
networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[96] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C.
Zhang, “What will 5G be?” IEEE J. Sel. Areas in Commun., vol. 32, no. 6, pp. 1065–
1082, Jun. 2014.

[97] G. P. Fettweis, “A 5G wireless communications vision,” Microwave J., vol. 55, no. 12,
pp. 24–36, Dec, 2012.

[98] C. E. Shannon and W. Weaver, The mathematical theory of communication. Uni-
versity of Illinois press, 1998.

[99] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Trans. Emerg. Telecom-
mun. Technol., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[100] S. Hu, K. Chitti, F. Rusek, and O. Edfors, “User assignment with distributed Large
Intelligent Surface (LIS) systems,” acccepted in IEEE Wireless Commun. and Netw.
Conf. (WCNC), arXiv preprint: 1709.01696, Apr. 2018.



Part II

Included Papers





Paper i





On the Design of Channel Shortening Demodulators
for Iterative Receivers in Linear Vector Channels

We consider the problem of designing demodulators for linear vector channels with memory
that use reduced-size trellis descriptions for the received signal. We assume an overall iterative
receiver, and use interference cancellation (IC) based on the soft information provided by the
outer decoder, to mitigate the parts of the signal that are not covered by the reduced-size trellis
description. In order to reach a trellis description, a linear filter is applied as front-end to compress
the signal structure into a small trellis. This process requires three parameters to be designed:
(i) the front-end filter, (ii) the feedback filter through which the IC is done, and (iii) a target
response which specifies the trellis. Demodulators of this form have been studied before under
then name channel shortening (CS), but the interplay between CS, IC and the trellis-search process
has not been adequately addressed in the literature. In this paper, we analyze two types of CS
demodulators that are based on the Forney and Ungerboeck detection models, respectively. The
parameters are jointly optimized based on a generalized mutual information (GMI) function. We
also introduce a third type of CS demodulator that is in general suboptimal, but has closed-form
solutions. Moreover, signal to noise ratio (SNR) asymptotic properties are analyzed and we show
that the third CS demodulator asymptotically converges to the optimal CS demodulator in the
sense of GMI-maximization.

Based on: S. Hu and F. Rusek, “On the design of channel shortening demodulators for iterative
receivers in linear vector channels,” submitted to IEEE Trans. Inf. Theory, May 2015.
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1 Introduction

Channel shortening (CS) demodulators have a long and rich history, see [1–12, 61]. For
intersymbol interference (ISI) channels, Forney [13] showed that the Viterbi Algorithm
(VA) [14] implements maximum likelihood (ML) detection. However, the complexity of
the VA is exponential in the memory of the channel which prohibits its use in many cases
of interest. As a remedy, Falconer and Magee proposed in 1973 the concept of CS [1]. The
concept is to filter the received signal with a prefilter so that the effective channel has much
shorter duration than the original channel, and then apply the VA to the shorter effective
channel.

Traditionally, CS demodulators have been optimized from a minimum mean square error
(MMSE) perspective [2–10]. Two exceptions from this are the papers [11] and [12]. In
[11], the authors attempt to minimize the error probability of an uncoded system which
leads to a new notion of posterior equivalence between the target response and the filtered
channel. However, since [11] works with uncoded error probabilities, the analysis in [11]
does not adequately address the case of coded systems and Shannon capacity properties.
The first paper that works with capacity-related cost measures is [12]. In [12] the authors
consider the achievable rate, in the form of generalized mutual information (GMI) [15–19],
that the transceiver system can achieve if a CS demodulator is adopted. However, [12] is
limited to ISI channels only, and the design method in [12] of the CS demodulator is in
fact not always possible to execute. The limitations of [12] were first dealt with in [18],
which extended the CS concept to any linear vector channel and resulted in a closed-form
optimization procedure.

Iterative receivers such as turbo equalization [51–56] followed as a natural extension to turbo
codes as an iterative technique for detection and decoding of forward error correction (FEC)
protected data that is transmitted over dispersive channel. However, when it comes to turbo
equalization, common settings of the equalizer are [51] the maximum a posterior (MAP)
demodulator [23] and its suboptimal variants such as dimension-reduction and subspace
based detections [63, 64], and MMSE based approaches [52, 55, 56, 65] that replace the
MAP demodulator with a linear equalizer or a decision feedback equalizer (DFE) to reduce
the prohibitive complexity of the MAP demodulator. One important open problem in the
area of turbo equalization is the development of other non-trellis-based detection methods
that provide performance between that of MAP and MMSE performance [43, 51]. Instead
of fully removing the trellis-based detection, another possible approach is to reduce the
memory size of the original linear vector channel through an interference cancellation (IC)
based prefiltering. To the best of our knowledge, there is only limited literature [54, 62] on
such a design of demodulator that combines both IC based prefiltering and a memory-size
shortened BCJR in iterative receiver design. A closely related concept is delayed-decision-
feedback-sequence-estimation (DDFSE) [21, 57], which also reduces the number of states
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in the BCJR. However, in DDFSE the IC is done within a single iteration, and not between
the iterations of an iterative receiver.

In this paper, we generalize the idea in [18] of GMI-maximization based CS demodulators
to iterative receivers. With iterative receivers it is reasonable to expect that better perform-
ance can be reached by allowing the parameters of the CS demodulator to change in each
iteration. The CS demodulator in [18] does not take the prior information into account,
rendering its design static in all iterations. We aim at constructing a CS demodulator that
takes soft information provided by the outer decoder into account so that the parameters
of the CS demodulator are designed for a particular level of prior knowledge. This proced-
ure includes an IC mechanism to deal with the signal part that can not be handled by the
trellis-search. Preliminary results for CS demodulators in iterative receivers are available in
[20], but this paper non-trivially advances the state-of-the-art.

Although the trellis-search based detection is still utilized in the CS demodulator, the
memory size ν of the linear vector channel has been reduced which results in significant
complexity reduction compared to the MAP demodulator. Meanwhile, with different val-
ues of ν, the CS demodulator provides trade-off between the performance of MMSE and
MAP. As will become clear later, the CS demodulator is closely related to the concept of lin-
ear MMSE receiver with parallel interference cancellation (LMMSE-PIC)[26–28], which
cooperates the soft information into the filter coefficients and interference cancellation pro-
cess. With setting ν=0, the CS demodulator is identical to the LMMSE-PIC demodulator
whose trellis-search process is trivial since different symbols are assumed to be independent
after the front-end filtering. The CS demodulator can also be viewed as an extension of
the LMMSE-PIC to include a trellis-search, where the parameters of the front-end filter,
IC, and trellis-search are jointly optimized. On the other hand, by setting ν to be equal
to the original memory size of the linear vector channel, the CS demodulator is identical
to MAP. Therefore, the CS demodulator is a generalized framework that includes both the
MAP and LMMSE-PIC in iterative receiver design.

The rest of the paper is organized as follows: The linear vector channel model and the
iterative receiver structure are introduced in Sec. II, while the general form of the CS de-
modulators and the GMI are described in Sec. III. In Sec. IV we analyze three types of CS
demodulators for finite length linear vector channels. In Sec. V we deal with ISI channels
as asymptotic versions of the results established in Sec. IV. The signal to noise ratio (SNR)
asymptotic of the CS demodulators are discussed in Sec. VI. Empirical results are provided
in Sec. VII, and Sec. VIII summarizes the paper. For improved readability, we have deferred
some long proofs and derivations to Appendices A-K.
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Notation

Throughout the paper, a capital bold letter such as A represents a matrix, a lower case bold
letter a represents a vector, and a capital letter A represents a number. The expression
A ≺ 0 means matrix A is negative definite, while A ≻ 0 means A is positive definite.
Matrix I represents the identity matrix and in general the dimension will be omitted; when
it cannot be understood from the context, we let IK represent a K×K identity matrix.
Our superscripts have the following meanings: ( )∗ is complex conjugate, ( )T is matrix
transpose, ( )† denotes the conjugate transpose of a matrix, ( )−1 is matrix inverse. In
addition, ∝ means proportional to, E[ ] is the expectation operator, Tr( ) takes the trace
of a matrix, R{} returns the real part of a variable, ⊗ is the Kronecker multiplication
operator, vec(A) is a column vector containing the columns of matrix A stacked on top
of each other, and [A,B] is the set of integers {k :A≤k≤B}. Furthermore, we say that a
matrix A is banded within diagonals [−ν1, ν2] (ν1, ν2≥0), if the (k, ℓ)th elementA(k, ℓ)
satisfies¹

A(k, ℓ) = 0, ℓ− k > ν1 or k − ℓ > ν2.

Moreover, we define two matrix operators [ ]ν and [ ]\ν such that A=[A]ν+[A]\ν , with
[A]ν banded within diagonals [−ν, ν] where [A]\ν is constrained to zero.

2 System Model

We consider linear vector channels according to

y = Hx+n (1)

where y is an N×1 vector of received signal, x is a K×1 vector comprising unit energy
coded symbols that belong to a constellation X , H is an N×K matrix representing the
communication channel which is perfectly known to the receiver and n is zero-mean com-
plex Gaussian noise vector with covariance matrix N0I . Model (1) may represent many
different communication systems, such as for example multi-input multi-output (MIMO)
or ISI channels. In the MIMO case, the variables N and K are finite while they grow
without bounds in the ISI case. For the former case, a block fading model is assumed,
where the coherence time is infinite. The block fading model allows us to perform an
analysis for a single symbol period.

Denote xk as the kth element of x and hk as the kth column vector of H , (1) can be

¹Note that ν1 refers to the number of upper diagonals of A that are nonzero. We have this convention in
order to subsequently follow standard notation for Toeplitz matrices [41].



58 PAPER i

rewritten as

y =

K−1∑
k=0

hkxk+n. (2)

In an iterative receiver, the feedback from the outer decoder can be utilized in the demodu-
lator to improve the performance. As the outer decoder provides the demodulator with a
posteriori probability (APP) and extrinsic information (in terms of bit log-likelihood ratios
(LLRs)) [22, 60], side information is present about the symbols x and we represent this by
the probability mass function pk(s) = P(xk = s), (0≤ k ≤K−1). Note that the side-
information does not consider the dependency among the symbols, but are symbol-wise
marginal probabilities. This reflects the situation encountered in iterative receivers with
perfect interleaving. In those cases, the prior probabilities provided from previous itera-
tions are assumed independent, i.e., P(x=s)=

∏
pk(s). Due to the perfect interleaving

assumption, the demodulator can compute x̂ = Ep(x)[x] = [ x̂0, x̂1, · · · , x̂K−1 ]T in a
per-entry fashion as

x̂k =
∑
s∈X

spk(s),

where the expectations are computed with respect to the prior distribution pk(s).

With soft information x̂, we define aK×K diagonal matrixP as follows. For finite length
linear vector channels, P equals

P = ET

[
Ep(x)[xx̂

†]
]
= ET[x̂x̂

†], (3)

where the exception “ET” is taken over the transmitted blocks of x under the block fading
assumption. For ISI case, as the whole data block experiences the same channel, we let

P =αI, (4)

where the scalar

α =
1

K

K−1∑
k=0

|x̂k|2. (5)

The variable P in (3) can alternatively be written as

P = ET[x̂x̂
†] = ET

[
Ep(x)[xx

†]
]
− ET

[
cov(x)

]
. (6)

Under the natural assumption of soft information that satisfies

ET

[
Ep(x)[xx

†]
]
= I, (7)



On the Design of Channel Shortening Demodulators for Iterative Receivers in Linear
Vector Channels 59

BCJR Decoder

+

-
So� 

Informa�on 

Genera�on

Interference 

Cancela�on

CS Parameter 

Op�miza�on 

LLR

APP out

Extrinsic out

Extrinsic in

+

-

CS Demodulator  

Figure 1: Iterative receiver structure with CS demodulator and outer decoder. The target of the CS demodulator is to maximize
the GMI through jointly optimizing the parametersV ,R andG, which are referred to as the front-end filter, IC matrix
and trellis representation matrix, respectively.

it follows that 0⪯P ⪯I , and the same also holds for ISI case. The variable P reflects the
accuracy of the side information. That is, when there is no soft information available, we
have P =0, while with perfect feedback we get P =I .

The task of the demodulator is to generate soft information about the symbols in x given
the observable y and the side information {pk(s)}. The optimal demodulator is the MAP
demodulator [23, 24] which evaluates the posterior probabilities P(xk = s|y). However,
the number of leaves of the search tree corresponding to the MAP demodulator is in gen-
eral |X |K which is prohibitive for most practical applications. The purpose of the CS
demodulator is to force the signal model to be an lower triangular matrix with only ν+1
(0≤ν<K−1) nonzero diagonals by means of a linear filter², where ν is referred to as the
memory size of the CS demodulator. Then, a BCJR [25] demodulator can be applied over
a trellis with |X |ν states. Moreover, since there is side information present about x, the
parts of H that are outside the memory of the BCJR can be partly eliminated by means of
IC through the prior mean x̂.

The structure of an iterative receiver utilizing a CS demodulator is depicted in Fig. 1. The
extrinsic information from the outer decoder is used to compute an estimate x̂ and a mat-
rix P that indicates the feedback quality. Based on the updated P in each iteration, the
optimal CS parameters are found by maximizing the GMI. A prefiltering and IC process
are then implemented on y with optimal V and R to obtain the signal ŷ, which is sent to
a memory ν BCJR module specified by an optimal G. Moreover, the extrinsic information
iteratively exchanged between the BCJR and the outer decoder is also used as a priori in-
formation for the transmitted symbols. Note that if we set ν=K−1, the search space of the
CS demodulator is no longer a trellis but corresponds to the original tree and is therefore
equivalent to MAP, and LMMSE-PIC is a special case of the CS demodulation with ν=0.

²For finite length linear vector channels such as MIMO channel, “filtering” means matrix multiplication.
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3 The General Form of the CS Demodulator

We state two lemmas that will be useful later, and Lemma 2 can be verified straightforwardly.

Lemma 1. LetA1 andA2 be twoK×K matrices, whereA1 is invertible and banded within
diagonals [−ν, ν]. If [A−1

1 ]ν=[A2]ν , then

Tr
(
A1A2

)
=Tr

(
I
)
.

Proof. Let A3 =A2−A−1
1 , then [A3]ν = 0 and A3 = [A3]\ν . As A1 = [A1]ν , the ele-

ments along the main diagonal of A1A3 are zero. Therefore Tr
(
A1A2

)
=Tr

(
A1(A

−1
1 +

A3)
)
=Tr(I).

Lemma 2. LetA1 andA2 be twoK×K matrices that are banded within diagonals [−ν1, ν2]
and [−ν3, ν4], respectively. Then the productA1A2 is banded within diagonals [max(−(ν1+
ν3), 1−K),min(ν2+ν4,K − 1)].

3.1 System Model of the CS Demodulator

The CS demodulators that we investigate operate on the basis of the mismatched³ function

p̃(y|x) = exp
(
2R{x†(V y−Rx̂)}−x†Gx

)
(8)

instead of the true conditional probability

p(y|x) = 1

(πN0)N
exp

(
−∥y−Hx∥2

N0

)
. (9)

The matrices V , R and G are the front-end filter, IC matrix, and trellis representation
matrix, respectively. Without loss of generality, we have absorbed N0 into V , R, and G.
Models (8) and (9) are equivalent for demodulation if we set V =H†/N0, R= 0, and
G=H†H/N0, in which case the CS demodulator represents the MAP demodulator.

The detection model (8) has its roots in Falconer and Magee’s paper [1] with adding an IC
step, where the system model of the demodulator is described as

T̃ (y|x) = exp
(
−∥Wy − T x̂− Fx∥2

)
(10)

³By “mismatched” we mean that p̃(y|x) may not be a valid probability distribution function and in gen-
eral differs from the true conditional probability distribution function p(y|x) even with x̂= 0, but such a
“mismatched” property is for the purpose of reducing the size of trellis description in the BCJR.
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By setting T = 0, we obtain the same system model as in [1]. If identifying V =F †W ,
R=F †T , and G=F †F , model (10) is equivalent to (8) since

T̃ (y|x) ∝ exp
(
2R{x†(F †Wy − F †T x̂)}−x†F †Fx

)
= exp

(
2R{x†(V y −Rx̂)} − x†Gx

)
.

The detection model (10) is usually denoted as “Forney” model [1] due to its Euclidean-
distance form, while the more general model (8) is called “Ungerboeck” model [32, 36,
37]. An advantage of the Ungerboeck model over the Forney model is that the parameter
optimization through GMI-maximization is simpler [18]. However, as both models can be
viewed as “natural” CS demodulators, we shall investigate both in CS demodulator design
for iterative receivers.

In order to optimize (V ,R,G), we choose to work with the GMI which is an achievable
rate for a receiver that operates on the basis of a mismatched version of the channel law.
The GMI in nats/channel is defined as

IGMI = −Ep(y) [log p̃(y)]+Ep(y,x) [log p̃(y|x)] (11)

where p̃(y) = (1/πK)
∫
p̃(y|x) exp(−∥x∥2)dx and the expectation is taken over the

true statistics p(y) and p(y,x). Although finite constellations X are almost always used
in practice, they are hard to analyze. In order to obtain a mathematically tractable problem,
here we use a zero-mean, unit variance, complex Gaussian constellation for each entry of x.
With Gaussian inputs, the trellis discussed earlier has no proper meaning as the number of
states is infinite even for finite ν. However, the Gaussian assumption is only made in order
to design the receiver parameters. We first state Theorem 1 which shows the calculation of
the GMI for model (8).

Theorem 1. The GMI for the detection model (8) equals

IGMI(V ,R,G) = log
(
det(I+G)

)
−Tr(G)+2R

{
Tr(V H−RP )

}
−Tr

(
(I+G)−1

(
V (N0I+HH†)V †−2R

{
V HPR†}+RPR†)). (12)

The proof of Theorem 1 is given in Appendix A. Here we make the same assumption as in
[18] that I +G is positive definite, otherwise the GMI is not well defined. With any para-
meters (V ,R,G), the GMI can be calculated in (12), although they may not be optimal
in the sense GMI-maximization. We illustrate Theorem 1 with two examples.

Example 1. Extended Zero-Forcing filter (EZF). We extend the zero-Forcing filter [30] to only
partly invert the channel so that a trellis-search is necessary after the EZF front-end filter. In
view of the CS demodulator, we can select the parameters in (8) as:

V =(I+G)(H†H)−1H†, R=0,
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Figure 2: CS demodulator that maximizes the GMI based on the tuple (ŷ,x).

and then optimize (12) over G. To satisfy the constraint of having a trellis with |X |ν states,
we should have G = [G]ν . The optimal G, in the sense of maximizing (12), will be shown
(Theorem 2) to satisfy

[(I+G)−1]ν=N0[(H
†H)−1]ν .

Utilizing Lemma 1, the GMI in (12) for the optimal G equals

IGMI = log
(
det(I+G)

)
+Tr

(
I−N0(H

†H)−1(I+G)
)
= log

(
det(I+G)

)
.

Example 2. Truncated Matched filter (TMF). As previously mentioned, the MAP demodulator
(9) can be written in the form (8) by setting V =H†/N0, R=0 and G=H†H/N0. The
front-end is in this case a matched filter [31] and the BCJR needs to be implemented over the
Ungerboeck model [32]. To reach a trellis with |X |ν states, we can truncate G to its center
2ν+1 diagonals, i.e., we can use the following parameters in (8):

V =H†/N0, R=0, and G=[H†H/N0]ν .

With these choices, the GMI in (12) equals

IGMI = log
(
det(I+[H†H/N0]ν)

)
−Tr

(
H†H

(
N0I+[H†H]ν

)−1
[H†H]\ν

)
.

3.2 Constraints on the ParameterR for the CS Demodulator

As mentioned earlier, optimization of the demodulator will be made on the basis of GMI
which is evaluated for the statistical model of the tuple (x, ŷ). As illustrated in Fig. 2, our
approach to design a CS demodulator consists of two steps:

• Construction of a signal ŷ = V y−Rx̂ based on the received signal y and prior
mean x̂;

• BCJR demodulation of ŷ operating on a reduced number of states |X |ν .

This procedure is fully analogous to LMMSE-PIC demodulator which first subtracts the
interference, applies a Wiener filter, and concludes by a BCJR that operates with a diagonal
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matrixG. The statistical behavior of (ŷ,x)may be superior to that of the original (y,x) as
the former tuple corresponds to a statistically different channel than the true one. As what
will be shortly shown in Example 3, the GMI obtained with tuple (ŷ,x) based on perfect
feedback x̂ can be infinitely large, which exceeds the channel capacity with the original
tuple (y,x). Therefore, the computed value of GMI may have little relevance for the
performance of the transceiver system. In order for GMI to have bearing on performance,
it is critical to put constraints on R as the next example will show.

Example 3. Let the system model be

y = x+ n

with noise densityN0, and y, x,n areK×1 vectors. Assume perfect feedback information, i.e.,
x̂ = x. The demodulator parameters are taken as V = 0, R = −(1+β)I , and G = βI ,
β an arbitrary positive real value, then the statistical model for ŷ is

ŷ = V y −Rx̂ = (1+β)x.

The GMI in (12) for the tuple (x, ŷ) is

IGMI(V ,R,G) = K
(
1+log(1+β)

)
.

In order to maximize the GMI, the demodulator will choose β→∞ to make IGMI infinite.
This is because, except for using the feedback information for IC, the demodulator uses the
prior mean x̂ as a signal energy via R. A demodulator equipped with these parameters
will have significant error propagation and does not have much operational meaning for an
iterative receiver. Thus, we conclude that unless constraints are put on R, the GMI value
is not relevant.

Three typical shapes of R are specified in Fig. 3. All three have in common that rather
than adding signal energy, the rationale of R should be to remove interference. Therefore
at the very minimum the diagonal elements of R should be constrained to zero, so that
the demodulation of each symbol in x does not rely on its own prior mean x̂. Such a
constraint is perfectly aligned with the operations of LMMSE-PIC, where x̂ℓ is not used
for demodulation of xℓ. Furthermore, the rationale of the constraints we impose on R is
to follow the principle of extrinsic information: The BCJR module should not rely on the
prior information x̂ℓ when demodulating xℓ (this requires more than just the diagonal of
R to be zero).

We point out that the fact that the GMI can exceed the channel capacity is a consequence
of our choice not to include the side information as a prior distribution on x when eval-
uating the GMI. If we did, then the GMI is decaying with increasing quality of the side
information (due to the mutual information I(x,y|x̂) goes to 0 as x̂ becomes perfect).
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Figure 3: Three different types of shape of matrixR, where ν is the memory size of F orG, i.e., the memory size of the BCJR.

Finally, we acknowledge the fact that a permutation of the columns of H can boost the
performance of the CS demodulator whenever 0<ν<K−1 for finite length linear vector
channels. However, minimum-phase conversions of ISI channels are not beneficial as we
will solve for the optimal front-end filter.

4 Parameter Optimization for Finite Length Linear Vector Chan-
nel

In this section, we elaborate the parameter optimization for finite length linear vector chan-
nels. We introduce three different methods, Method I, Method II and Method III. We start
with the classical Forney model (10) based demodulator, i.e., Method I, and then extend
the demodulation model into the Ungerboeck model (8), i.e., Method II. As both Method
I and Method II need gradient-based approach for the optimization of target response, by
carefully examining the properties of the CS demodulator with Ungerboeck model, we pro-
pose a suboptimal Method III which has an explicit construction based on an LMMSE-PIC
and all parameters are in closed-forms.

4.1 Method I

In Method I, the CS demodulator is based on detection model (10) and the following
structures of the CS parameters (W ,T ,F ) are imposed:

• W is a K×N matrix with no constraints.

• F is a K×K lower triangular matrix where only the main diagonal and the first ν
lower diagonals are nonzero, i.e.,F is banded within diagonals [0, ν] (0≤ν<K−1),
where ν is denoted as the memory size of F . Moreover, the main diagonal of F is
constrained to only contain positive real values.
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• T is a K×K matrix that is constrained to be zero wherever F can take nonzero
values.

The constraint of F is to shorten the memory for the trellis-search in BCJR, while the
purpose of the constraint on T is to cancel the signal part that F can not handle. From
Theorem 1, and by identifying V = F †W , R = F †T , and G = F †F , the GMI in (12)
of Method I equals

IGMI(W ,T ,F ) = log
(
det(I+F †F )

)
−Tr(F †F )+2R

{
Tr
(
F †(WH−TP )

)}
−Tr

(
(I+F †F )−1L1

)
(13)

where

L1=F †W (N0I+HH†)W †F−2R
{
F †WHPT †F

}
+F †TPT †F .

With the aforementioned constraints on F and T , the matrix R = F †T has a form of
shape (a) in Fig. 3. That is, all diagonal elements are zero as well as the lower triangular part
of the (ν+1)×(ν+1) small matrix at the right bottom corner.

In order to optimize (13) over (W ,T ,F ), we first introduce an S×K2 indication matrixΩ
only consisting of ones and zeros⁴, having a single 1 in each row, and S equals the number of
elements in T that are allowed to be nonzero. Let I(vec(T )) be a vector that contains the
positions where the vector vec(T ) is allowed to be nonzero. Then the value of the kth entry
in I(vec(T )) gives the column where row k of Ω is 1. That is, the S×1 vector Ωvec(T )
stacks the columns of T on top of each other but with all elements that are constrained to
zero removed.

With such a definition of Ω, and define two K×K matrices as,

M = H†(N0I+HH†)−1H−I, (14)
M̃ = P (I+M)P−P , (15)

the GMI for the optimal W and T is given in Proposition 1 and the proof is in Appendix
B.

Proposition 1. Define anS×K2matrixD = Ω
(
(PM∗)⊗IK

)
, the optimalW maximizing

the GMI in (13) is

W opt = F−†(I+F †F+F †TP )H†(N0I+HH†)−1, (16)

⁴For instance, assuming T =

[
0 1
2 0

]
, then the indication matrix Ω=

[
0 1 0 0
0 0 1 0

]
, and the vector

Ωvec(T )=

[
2
1

]
.
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and when P ̸=0, the optimal T maximizing the GMI is given by

vec(T opt) = −ΩT
(
Ω
(
M̃

∗⊗
(
F (I+F †F )−1F †))ΩT

)−1
Dvec(F ). (17)

With the optimal W and T , the GMI reads,

IGMI(W opt,T opt,F ) =

{
I1(F ), P =0
I1(F ) + δ1(F ), P ̸=0

(18)

where the functions I1(F ) and δ1(F ) are defined as

I1(F ) = K+log
(
det(I+F †F )

)
+Tr

(
M(I+F †F )

)
, (19)

δ1(F ) = −vec(F )†D†
(
Ω
(
M̃

∗⊗
(
F (I+F †F )−1F †))ΩT

)−1
Dvec(F ). (20)

Remark 1. With the definitions in (14) and (15), M is the negative of the MSE matrix and
M̃⪯0 holds. Hence δ1(F )≥0 represents the GMI increments from the soft feedback.

Before discussing the GMI-maximization of (18), we first state Theorem 2 that deals with a
general maximization problem.

Theorem 2. Define a scalar function I with respect to aK×K matrixG as

I(G) = K+log
(
det(I+G)

)
+Tr

(
M(I+G)

)
(21)

where G satisfies G= [G]ν . Then the optimal G maximizing I is the unique solution that
satisfies

[(I+Gopt)
−1]ν = −[M ]ν . (22)

WithGopt, the maximal I equals

I(Gopt) = log
(
det(I+Gopt)

)
. (23)

Proof. Taking the first order differential of I with respect to G and noticing that G is
banded within diagonals [−ν, ν], yields (22) after some manipulations. The existence and
uniqueness of such an optimal solution for (22) is proved in [34, Theorem 2] and also
illustrated in [18, Proposition 2]. By Lemma 1, Tr

(
[I + Gopt]

−1M
)
=−K from (22),

and then (23) follows.

Optimizing overF in (18) whenP ̸=0 is difficult and cannot be carried out in closed-form.
In Appendix C we show by an example that (18) is in general non-concave. Therefore, a
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gradient based numerical optimization procedure is utilized to search for the optimal F .
In the ith iteration, we construct

F (i) = F (i−1)+∇F ∗IGMI

(
W opt,T opt,F

(i−1)
)

where∇F ∗IGMI(W opt,T opt,F ) is the conjugate of the gradient of the GMI with respect
to (the nonzero part of ) F , and is given in Appendix D.

With P = 0, if replacing F †F by G, (19) has the same form as (21), and Gopt is in
closed-form as stated in Theorem 2. If Gopt⪰0, the optimal F then equals the Cholesky
decomposition of Gopt. Whenever it is not, a gradient based numerical optimization pro-
cedure is utilized to optimize (19), andGopt from Theorem 2 is used to initialize the starting
point of F for any P , which has been observed to be highly reliable.

Next we establish a connection between the front-end filterW and IC matrixT in Method
I.

Proposition 2. ForP ̸=0, and with the optimalW andT , the matrixF †(W optH−T opt)
is banded within diagonals [−ν,K−1].

Proof. Noting that ΩTΩvec(T opt) = vec(T opt) and ΩΩT = I , from (17) and (81), it
holds that

Ω
(
M̃

∗⊗
(
F (I+F †F )−1F †))ΩTΩvec(T opt) =Ωvec

(
F (I+F †F )−1F †T optM̃

)
=−Ωvec(FMP ), (24)

which shows that, the elements of the matrix ∆=F (I+F †F )−1F †T optM̃+FMP are
zero wherever T can be nonzero. Hence ∆ is banded within diagonals [0, ν]. On the other
hand, with the optimal W given in (16) and M , M̃ defined in (14) and (15), we have

F †(W optH−T opt)−(I+F †F ) = (I+F †F )F−1∆P−1. (25)

Note that, F−1 is lower triangular, I+F †F is banded within diagonals [−ν, ν], and P
is diagonal. Utilizing Lemma 2, the r.h.s in (25) is banded within diagonals [−ν,K−1].
Therefore F †(W optH − T opt) is also banded within diagonals [−ν,K−1].

Proposition 2 reveals an interesting and somewhat surprising fact that, although the BCJR
only has a memory size ν, the interference outside the memory size ν shall not be perfectly
canceled with the optimal CS demodulator in Method I. As will be shown later, such a
property also holds for the other two designs of CS demodulator, i.e., Method II and III.
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4.2 Method II

Method II origins from Ungerboeck’s 1974 paper [32]. Different from Method I, an Un-
gerboeck detection model (8) instead of the Forney model (10) is applied. The Ungerboeck
model has been extensively discussed in [35–37]. The system model (8) has the following
constraints:

• V is a K×N matrix with no constraints.

• G is a K×K Hermitian matrix satisfying G=[G]ν and I+G≻0, where ν is the
memory size of G.

• R is a K×K matrix where the shape can be specified.

Instead of optimizing (W ,T ,F ), in Method II we optimize (V ,R,G) for (12). The
same definition of the indication matrix Ω is used as in Method I, but now Ω corresponds
to R instead of T . We continue to let S denote the number of elements that are allowed
to be nonzero in R. That is, the S×1 vector Ωvec(R) stacks the columns of R on top of
each other but with all elements that are constrained to zero removed. In Method II, we
have Proposition 3 that shows the GMI calculation with optimal V and R.

Proposition 3. Define an S×1 vector d = Ωvec(MP ), the optimal V for the GMI in (12)
is

V opt = (I +G+RoptP )H†(HH† +N0I)
−1, (26)

and when P ̸=0, the optimal R maximizing the GMI is given by,

vec(Ropt) = −ΩT
(
Ω
(
M̃

∗⊗(I +G)−1
)
ΩT
)−1

d. (27)

With the optimal V and R, the GMI in (12) equals

IGMI(V opt,Ropt,G) =

{
I2(G), P =0
I2(G) + δ2(G), P ̸=0

(28)

where the functions I2(G) and δ2(G) are defined as,

I2(G) = K+log
(
det(I+G)

)
+Tr

(
M(I+G)

)
, (29)

δ2(G) = −d†(Ω(M̃∗⊗(I+G)−1
)
ΩT
)−1

d. (30)

The proof is given in Appendix E. Similar to δ1(F ) in Method I, δ2(G)≥0 represents the
GMI increment from the soft information.
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When P ̸= 0, the optimization over G in (28) also uses a gradient based numerical op-
timization, and the gradient of IGMI(V opt,Ropt,G) with respect to (the nonzero part
of ) G is provided in Appendix F. The closed-from G from Theorem 2 with P =0 is still
used as the starting point for P ̸=0. However, different from Method I, the optimization
procedure is concave and the proof is given in Appendix G.

Although the optimal R is solved for in closed-form as in (27), we shall specify the con-
straint (reflected by Ω) on it. We consider two types of R in Method II. Firstly, as we are
interested in the comparison between Method I and Method II, we also consider the shape
(a) in Fig. 3, which has the same shape as for R=F †T in Method I. Secondly, we consider
a band-shaped R with memory size νR, where shape (b) and (c) in Fig. 3 are typical cases
with νR=0 and νR=ν, respectively. With shape (b), we only limit the diagonal elements
of R to be zero and intend to eliminate the interference as much as possible. With shape
(c), we limit R to have the opposite form of G, that is, the elements of R are constrained
to be zero wherever G is nonzero. The intention is to only cancel the interference that the
BCJR represented by G cannot handle. Shape (c) is based on the same idea as Method I,
but now operates on the Ungerboeck model.

The connection between the optimal front-end filter V and IC matrix R in Method II is
now established in Proposition 4.

Proposition 4. For P ̸=0 and the optimal V and R,

[V optH]\(ν+νR) = [Ropt]\(ν+νR). (31)

That is, the elements of V optH andRopt are equal outside the center 2(ν+νR)+1 diagonals
for any G that is banded within diagonals [−ν, ν], where νR =0 for R with both shape (a)
and (b), while νR=ν for R with shape (c).

Proof. Following similar steps as in the proof of Proposition 2, (27) can be rewritten as,

Ωvec
(
(I +G)−1RoptM̃

)
= −Ωvec(MP ). (32)

It shows that, the elements of the matrix ∆ = (I + G)−1RoptM̃P−1+M are zero
wherever R can be nonzero. On the other hand, with the optimal V in (26) we have

V optH−Ropt−(I+G)=(I+G)∆. (33)

As I+G is banded within diagonals [−ν, ν], utilizing Lemma 2 (Rwith shape (a) is slightly
different, but it can be verified straightforwardly), and with the three shapes of R in Fig. 3,
it can be shown that the r.h.s in (33) is banded within diagonals [−(ν+νR), ν+νR], where
νR=0 for the shape (a) and (b), and νR=ν fot the shape (c). Therefore, V optH−Ropt

on the l.h.s in (33) is banded within diagonals [−(ν + νR), ν + νR].
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The same as Proposition 2 for Method I, Proposition 4 shows that the signal part that is not
considered in G (the BCJR) shall not be perfectly canceled inside the center 2(ν+νR)+1
diagonals for Method II, instead of the center 2ν+1 diagonals where G is constrained to
be nonzero. With LMMSE-PIC, we have ν = νR = 0 and Proposition 4 is natural and
frequently used. However, when νR>0, a more general property is revealed that, V optH
and R are only equal outside the center 2(ν+νR)+1 diagonals.

4.3 Method III

So far we have discussed two types of CS demodulators based on Forney and Ungerboeck
detection models, respectively. One disadvantage of them is that, in general both methods
need an numerical optimization to obtain the optimal target response. Next, we construct
a third method that has closed-form solutions for all CS parameters, although its GMI is
suboptimal in general.

Method III relies on the same operations as Method II for P = 0. By inserting V opt in
(26) into (8) and setting R = 0, the demodulator actually operates on the mismatched
function

p̃(y|x) = exp
(
2R{x†V opty}−x†Gx

)
= exp

(
2R
{
x†(I+G)x̌

}
−x†Gx

)
(34)

where x̌ = H†(HH†+N0I)
−1y is the LMMSE estimate. As can be seen from (34),

the BCJR is based on x̌. With soft feedback, we can therefore replace x̌ by LMMSE-PIC
estimates x̃. That is, instead of (34) we operate on

p̃(y|x, x̃) = exp
(
2R
{
x†(I+G)x̃

}
−x†Gx

)
(35)

where G has the same banded-shape as the first two methods, but optimized according
to x̃. The estimate x̃ is constructed as follows. As we prefer to handle the interference
through the trellis-search process, the IC should not be present within the memory size ν.
In other words, the signal vector after the IC that is used to form the kth symbol of x̃ is
denoted as ỹk and

ỹk=y−
∑
n∈Ak

hnx̂n (36)

where Ak =
{
0≤ n≤K−1 : n /∈ [max(0, k−ν),min(k+ν,K−1)]

}
. Denote pn as

the nth diagonal element of P , the Wiener filtering coefficients [38] for the kth symbol are
calculated through

ŵk = h
†
k(H

†CkH +N0I
)−1 (37)
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where Ck is a diagonal matrix with the nth diagonal element defined as

Ck(n) =

{
1− pn, k ∈ Ak

1, otherwise.
(38)

The estimate x̃ is then obtained through

x̃=
[
ŵ1ỹ1 ŵ2ỹ2 · · · ŵK ỹK

]T
=Ŵy−Ĉx̂ (39)

where the coefficient matrix Ŵ and IC matrix Ĉ defined as

Ŵ = [ ŵT
1 ŵT

2 · · · ŵT
K ]T, (40)

Ĉ = [ŴH]\ν . (41)

Inserting x̃ in (39) back into (35), the detection model we operate on reads

p̃(y|x, x̂) = exp
(
2R
{
x†((I+G)Ŵy−(I+G)Ĉx̂

)}
−x†Gx

)
. (42)

Note that, (42) is a also special case of (8) by identifying

V = (I+G)W̃ ,

R = (I+G)C̃.

The GMI in (12) in this case reads, after some manipulations,

IGMI(G) =K+log
(
det(I+G)

)
+Tr

(
M̂(I+G)

)
(43)

with M̂ (the updated M in Method II) defined as

M̂ = ŴHPĈ
†
+ŴH−PĈ

†
+
(
ŴHPĈ

†
+ŴH−PĈ

†)†
−Ŵ (HH†+N0I)Ŵ

†−ĈP Ĉ
†−I, (44)

which can be shown to be the negative of the MSE matrix since

M̂=−E
[
(x−x̃)(x−x̃)†

]
=−E

[
(x−Ŵy+Ĉx̂)(x−Ŵy+Ĉx̂)†

]
.

The optimal G for (43) is then obtained from Theorem 2, and the optimal GMI reads

IGMI(Gopt) = log
(
det(I+Gopt)

)
.

An graphical overview of Method III for K=4 and ν=1 is illustrated in Fig. 4. For any
G with memory size ν, the IC matrix (I+G)C̃ is zero along the main diagonal, which
guarantees that the extrinsic information will not be used for current symbols in the IC
process. In GMI sense, Method III will not outperform Method II with a shape (b) R, but
it may outperform the GMI of Method II with a shape (c) R, as it can be verified that a
shape (c) R has zeros at the positions where (I+G)Ĉ are also zeros.

Remark 2. As ŴH−Ĉ=[ŴH]ν , by Lemma 2 (I+G)(ŴH − Ĉ) is banded within
diagonals [−2ν, 2ν], which shows that, [(I+G)ŴH]\2ν = [(I+G)Ĉ]\2ν . Therefore,
Proposition 4 also holds for Method III with νR=ν.
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Figure 4: An graphical overview of Method III with K=4 and ν=1.

5 Parameter Optimization for ISI Channel

In this section, we extend the CS demodulators to ISI channels where the matrix P =αI
and the block length K is infinitely large. The formulas for the achievable rates in (12),
(13) and (43) can be directly applied to (1), but as the achievable rate IGMI (as a function of
the specified CS parameters) is then dependent on the block length K, we are interested
in asymptotic rate

Ī = lim
K→∞

1

K
IGMI.

Ideally, in the ISI case the front-end matrix V and IC matrix R correspond to linear filter-
ing operations and the filters are infinitely long, but in practice filters with finite tap lengths
are used. Therefore, we analyze the properties of V , R (and W , T ) with a finite number
of taps and approximate them by band-shaped Toeplitz matrices. Furthermore, the trellis
representation matrix G (and F ), and channel matrix H are also band-shaped Toeplitz
matrices. Therefore, in the ISI case all matrices we consider are assumed to be band-shaped
Toeplitz matrices, and the band size can be arbitrary and sufficiently large so that we can
analyze the asymptotic properties. In [39] a complete theoretic machinery for ISI channels
is derived and a result is that, asK→∞ the linear convolution in (1) can be replaced with
a circular convolution.

In the following, we denote the Fourier series associated to a band-shaped Toeplitz matrix
E with infinitely large dimensions by E(ω), where E is constrained to be zero outside the
middle 2NE+1 diagonals, and NE is referred to as the tap length of E(ω). The series
E(ω) defined as

E(ω)=

NE∑
k=−NE

ek exp(jkω)
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is specified by a vector e= [ e−NE
. . . e−1 e0 e1 . . . eNE

], where e0 is the element on
the main diagonal and ek is the element on kth lower (k > 0) or upper (k < 0) diagonal.
As all quantities are evaluated as the block length K grows large, E(ω) approaches the
eigenvalue distribution of E (see [40, 41] for a precise statement of this result). We first
state Theorem 3, which is an asymptotic version of Theorem 2 for ISI channels.

Theorem 3. Assume that two band-shaped Toeplitz matrices G and M with infinitely large
dimensions satisfying [G]\ν=0, I+G≻0 andM≺0. Define a scalar function

Ī = 1+
1

2π

∫ π

−π

(
log(1+G(ω))+M(ω)(1+G(ω))

)
dω. (45)

Then, the optimal G(ω) that maximizes Ī is

Gopt(ω)= |u0+ûφ(ω)|2−1,

where the 1×ν vector φ(ω)=[ exp(jω) exp(j2ω) . . . exp(jνω) ]T, and

u0 =
1√

τ †
1τ

−1
2 τ 1−τ0

,

û = −u0τ †
1τ

−1
2 . (46)

The real scalar τ0, ν×1 vector τ 1, and ν×ν matrix τ 2 are defined as

τ0 =
1

2π

∫ π

−π
M(ω)dω,

τ 1 =
1

2π

∫ π

−π
M(ω)φ(ω)dω,

τ 2 =
1

2π

∫ π

−π
M(ω)φ(ω)φ(ω)†dω. (47)

Furthermore, with Gopt(ω) the optimal Ī reads

Ī = 2 log(u0). (48)

Proof. As I+G≻0, we assume that 1+G(ω)= |U(ω)|2, with U(ω)=u0+ûφ(ω) and
û=[ u1 u2 . . . uν ]. Then Ī in (45) can be rewritten as

Ī=1+2 log(u0)+
1

2π

∫ π

−π
M(ω)

(
u20+2R{u0ûφ(ω)}+ûφ(ω)φ†(ω)û†)dω. (49)

Taking the first order differentials with respect to u0 and û and optimizing them directly
results in the optimal solution (46). Inserting (46) back into (49) and after some manipu-
lations, the optimal asymptotic rate is then in (48).
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5.1 Method I

The structures of (W ,T ,F ) are the same as in Section 4.1, except that now the matrices
have infinite dimensions. Applying Szegő’s eigenvalue distribution theorem [40] to (13),
the asymptotic rate reads

Ī
(
W (ω), T (ω), F (ω)

)
= lim

K→∞

1

K
IGMI(W ,T ,F )

=
1

2π

∫ π

−π

(
log
(
1+|F (ω)|2

)
−|F (ω)|2− L1(ω)

1+|F (ω)|2

)
dω

+
1

π

∫ π

−π
R
{
F ∗(ω)

(
W (ω)H(ω)−αT (ω)

)}
dω (50)

where

L1(ω) = |F (ω)W (ω)|2
(
N0+|H(ω)|2

)
+α|F (ω)T (ω)|2

−2α|F (ω)|2R{H(ω)W (ω)T ∗(ω)} .

Note that, the Fourier series associated to M and M̃ in (14) and (15) are

M(ω) =
|H(ω)|2

N0+|H(ω)|2
−1, (51)

M̃(ω) = α2(M(ω) + 1)−α. (52)

Further, define a (2NT−ν)×1 vector

ϕ(ω)=
[
exp
(
−jNTω

)
. . . exp

(
−j(ν+1)ω

)
exp
(
j(ν+1)ω

)
. . . exp

(
jNTω

)]T
,
(53)

a (2NT−ν)×1 vector ε1, and a (2NT−ν)×(2NT−ν) Hermitian matrix ε2 as

ε1 =
α

2π

∫ π

−π
M(ω)F ∗(ω)ϕ(ω)dω,

ε2 =
1

2π

∫ π

−π

M̃(ω)|F (ω)|2ϕ(ω)ϕ(ω)†

1+|F (ω)|2
dω, (54)

whereNT is the tap length of T (ω), and ν+1 is the band size where matrix T is constrained
to zero. Then, we have Proposition 5 with the proof⁵ given in Appendix H.

Proposition 5. The optimalW (ω) for the asymptotic rate in (50) is

Wopt(ω) =
H∗(ω)

F ∗(ω)(N0+|H(ω)|2)
(
1+|F (ω)|2+αF ∗(ω)Topt(ω)

)
, (55)

⁵Proposition 5 is the same as [62, Theorem 1] which has been derived for hard feedback symbols. For
completeness, we restate the proof in Appendix H.
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and when 0<α≤1, the optimal T (ω) reads

Topt(ω) = −ε†1ε
−1
2 ϕ(ω). (56)

With the optimalW (ω) and T (ω), the asymptotic rate equals

Ī
(
Wopt(ω), Topt(ω), F (ω)

)
=

{
Ī1(F (ω)), α = 0
Ī1(F (ω)) + δ̄1(F (ω)), 0 < α ≤ 1.

(57)

The functions Ī1(F (ω)) and δ̄1(F (ω)) are defined as⁶,

Ī1(F (ω)) = 1 +
1

2π

∫ π

−π

(
log
(
1+|F (ω)|2

)
+M(ω)

(
1+|F (ω)|2

))
dω, (58)

δ̄1(F (ω)) = −ε†1ε
−1
2 ε1. (59)

In the ISI case, Method I is still not concave an example is also provided in Appendix C,
and a gradient based optimization is used to optimize F (ω) with the optimal solution of
Gopt(ω) from Theorem 3 is used to initialize the starting point.

The connection between the optimal front-end filterW (ω) and the IC filter T (ω) in Pro-
position 2 also holds for ISI channels. An asymptotic version of Proposition 2 is stated in
Proposition 6.

Proposition 6. When 0<α≤1, ak=bk holds for k<−(ν+1), where

ak =
1

2π

∫ π

−π
F ∗(ω)Wopt(ω)H(ω)exp

(
−jkω

)
dω

bk =
1

2π

∫ π

−π
F ∗(ω)Topt(ω)exp

(
−jkω

)
dω.

Proof. In Appendix H, the optimal t̃ in (95) satisfies t̃optε2 = −ε†1. With the definitions
of ε1, ε2 in (54), this is equivalent to

1

2π

∫ π

−π

M̃(ω)|F (ω)|2Topt(ω)ϕ(ω)†

1 + |F (ω)|2
dω = − α

2π

∫ π

−π
F (ω)M(ω)ϕ(ω)†dω. (60)

On the other hand, with Wopt in (55) and M(ω), M̃(ω) defined in (51) and (52), we have

1

2π

∫ π

−π
(F ∗(ω)Wopt(ω)H(ω)−F ∗(ω)Topt−

(
1+|F (ω)|2

))
exp
(
−jkω

)
dω

=
1

2π

∫ π

−π

(M̃(ω)F ∗(ω)Topt(ω)

α
+
(
1+|F (ω)|2

)
M(ω)

)
exp
(
−jkω

)
dω. (61)

⁶Similar to finite length linear vector channels, δ̄1(F (ω)) in (59) is only defined for α ̸=0 which represents
the rate increment with soft information. The same holds for δ̄2(G(ω)) in (69) for Method II.
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Transforming (60) and (61) back into matrix forms, we have that (24) and (25) hold. Fol-
lowing the same arguments as in the proof of Proposition 2,F †(W optH−Ropt) is banded
within diagonals [−ν,K−1]. Therefore we have

1

2π

∫ π

−π

(
F ∗(ω)Wopt(ω)H(ω)−F ∗(ω)Topt(ω)

)
exp
(
−jkω

)
dω=0

whenever k<−(ν+1), which proves Proposition 6.

5.2 Method II

The matrices (V ,R,G) have the same constraints as in Section 4.2 while the dimensions of
these matrices are infinitely large. However, as the shape (a) ofR in Fig. 3 is not meaningful
as N,K→∞, it is not considered for ISI case. Applying Szegő’s eigenvalue distribution
theorem to (12), the asymptotic rate of Method II reads

Ī(V (ω), R(ω), G(ω)) = lim
K→∞

1

K
IGMI(V ,R,G)

=
1

2π

∫ π

−π

(
log
(
1+G(ω)

)
−G(ω)− L2(ω)

1+G(ω)

)
dω

+
1

π

∫ π

−π
R
{(
V (ω)H(ω)−αR(ω)

)}
dω (62)

where

L2(ω) = |V (ω)|2
(
N0+|H(ω)|2

)
+α|R(ω)|2−2αR

{
H(ω)V (ω)R∗(ω)

}
.

Define a 2(NR−νR)×1 vector

ψ(ω)=
[
exp
(
−jNRω

)
. . . exp

(
−j(νR+1)ω

)
exp
(
j(νR+1)ω

)
. . . exp

(
jNRω

)]T
,

(63)
a 2(NR−νR)×1 vector ζ1, and a 2(NR−νR)×2(NR−νR) Hermitian matrix ζ2 as

ζ1 =
α

2π

∫ π

−π
M(ω)ψ(ω)dω,

ζ2 =
1

2π

∫ π

−π

M̃(ω)ψ(ω)ψ(ω)†

1+G(ω)
dω, (64)

whereNR denotes the tap length ofRopt(ω), 2νR+1 is the band size whereR is constrained
to zero, and M(ω) and M̃(ω) are in (51) and (52). Then, we have Proposition 6 with the
proof in Appendix I, where we also show thatR(ω) is real and R has Hermitian symmetry.



On the Design of Channel Shortening Demodulators for Iterative Receivers in Linear
Vector Channels 77

Proposition 7. The optimal V (ω) for (62) is,

Vopt(ω) =
H∗(ω)

N0+|H(ω)|2
(
1+G(ω)+αRopt(ω)

)
, (65)

and when 0<α≤1, the optimal R(ω) reads

Ropt(ω) = −ζ†1ζ
−1
2 ψ(ω). (66)

With the optimal V (ω) and R(ω), the asymptotic rate equals

Ī
(
Vopt(ω), Ropt(ω), G(ω)

)
=

{
Ī2(G(ω)), α = 0
Ī2(G(ω)) + δ̄2(G(ω)), 0 < α ≤ 1.

(67)

The functions Ī1(G(ω)) and δ̄2(G(ω)) are defined as,

Ī2(G(ω)) = 1+
1

2π

∫ π

−π

(
log
(
1+G(ω)

)
+M(ω)

(
1+G(ω)

))
dω, (68)

δ̄2(G(ω)) = −ζ†1ζ
−1
2 ζ1. (69)

For 0<α≤1, it still needs a gradient based optimization to find the optimalG(ω) for (68),
and the closed-form solution in Theorem 3 is utilized as the starting point. The asymptotic
rate Ī(Vopt(ω), Ropt(ω), G(ω)) is also concave with respect to G(ω), which is shown in
Appendix J.

Proposition 8. When 0<α≤1, ak=bk holds for |k|>ν+νR, where

ak =
1

2π

∫ π

−π
Vopt(ω)H(ω)exp

(
−jkω

)
dω, (70)

bk =
1

2π

∫ π

−π
Ropt(ω)exp

(
−jkω

)
dω. (71)

The connection of the optimal V (ω) and R(ω) stated in Proposition 8 is an asymptotic
version of Proposition 4, and the proof follows the similar approach as Proposition 6. We
show an example in Fig. 5 to illustrate Proposition 8 with Method II and ν = νR = 1.
The Proakis-C [42] channel is tested at an SNR of 10 dB and α equals 0.1, 0.4 and 0.8,
respectively. As νR = 1, bk as defined in (71) is constrained to zero for 0 ≤ k ≤ 1. As
can be seen, ak as defined in (70) equals bk only for |k|> 2, and when |k|= 2, ak and
bk are not identical. This shows that with the optimal V (ω) and R(ω), the signal part
along the second upper and lower diagonals that is not considered in G(ω) shall not be
perfectly canceled out. This behavior cannot be seen in [43] which treats LMMSE-PIC for
ISI channels, due to ν=νR=0.
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Figure 5: Comparison between ak and bk for Method II under Proakis-C channel h=[ 0.227 0.46 0.688 0.46 0.227 ].

5.3 Method III

In Method III, from (43) the asymptotic rate reads

Ī(G(ω)) = lim
K→∞

1

K
IGMI(G) = 1+

1

2π

∫ π

−π

(
log
(
1+G(ω)

)
+M̂(ω)(1+G(ω))

)
dω

(72)
where according to (44),

M̂(ω) = 2R
{
αŴ (ω)H(ω)Ĉ∗(ω)+Ŵ (ω)H(ω)

−αĈ∗(ω)
}
− |Ŵ (ω)|2

N0+|H(ω)|2
−α|Ĉ(ω)|2−1.

ReplacingM(ω) by M̂(ω), the optimalG(ω) and asymptotic rate Ī follow from Theorem
3.

Remark 3. Proposition 8 also holds for Method III with νR = ν, due to the fact that [(I+
G)(ŴH − Ĉ)]\2ν=0.

6 SNR Asymptotics

In this section, we analyze asymptotic properties of the CS demodulators, and show that,
as N0 goes to 0 and ∞, Method III and Method II are asymptotically equivalent. As
Method I is inferior to Method II in GMI sense, we limit our investigations to Method
II and Method III, and start the analysis for finite length linear vector channels first. The
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following limits can be verified straightforwardly:

lim
N0→0

M/N0 = −(H†H)−1,

lim
N0→∞

N0(I+M) = H†H. (73)

Moreover, it also holds that

lim
N0→0

M̃ = P 2 − P ,

lim
N0→∞

M̃ = −P . (74)

As M̃ should be invertible from the definition of δ2(G) in (30), we restrict that P ≺I .

Lemma 3. When N0→0 and∞, the optimal G for (28) in Method II satisfies (22), and the
following limits hold,

lim
N0→0

[
(N0(I+Gopt))

−1
]
ν
= [(H†H)−1]ν , (75)

lim
N0→∞

[N0Gopt]ν = [H†H]ν . (76)

Proof. When P = 0, from Theorem 2 the optimal G for (28) satisfies (22). From (73),
when N0→0, M→0 and N0→∞, M→−I . Therefore, by the definition of Ω,

lim
N0→0,∞

d = Ωvec(MP ) = 0.

This implies that the gradient dG(δ2) in (90) (Appendix F) converges to zero. Hence the
differentials of IGMI(V opt,Ropt,G) in (28) with P ̸= 0 converges to the differentials
with P =0. From (22) and (73), the limit (75) follows.

Next, since

lim
N0→∞

[
N0

(
I−(I+Gopt)

−1
)]

ν
= lim

N0→∞
[N0(I+M)]ν = [H†H]ν , (77)

it shows that I− (I + Gopt)
−1 → 0⁷ as N0 → ∞. By the matrix inversion lemma,

I − (I +Gopt)
−1→Gopt as N0 → ∞, and combining this with (77) proves the limit

(76).

Lemma 4. In Method II, with the optimal G, when N0→ 0 the GMI increment δ2(G) in
(30) converges to zero with speed O(1/N0)⁸ and when N0→∞ the GMI increment δ2(G)
converges to zero with speed O(N2

0 ).

⁷A matrix A→B or a vector a→b means the nonzero elements of A−B or a−b converges to zero.
⁸Two scalars A and B as functions of a variable n converging to each other with speed O(n) means that,

there exists a constant C such that lim
n→∞

n|A−B|<C.
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Proof. As N0→0, from (73) we have

lim
N0→0

d/N0 = lim
N0→0

Ωvec(MP /N0) = −Ωvec
(
(H†H)−1P

)
.

Based on (74) and Lemma 3, the below equalities hold,

δ2(Gopt) = N0
d†

N0

(
Ω
(
M̃

∗⊗ (I+Gopt)
−1

N0

)
ΩT
)−1 d

N0
= O(N0).

On the other hand, as N0→∞, and by the definition of Ω, from (73) we also have

lim
N0→∞

N0d = lim
N0→∞

Ωvec(N0MP )= lim
N0→∞

Ωvec
(
N0(I+M)P

)
=Ωvec(H†HP ).

Again utilizing (74) and Lemma 3, the below equalities hold,

δ2(Gopt) =
1

N2
0

(N0d
†)
(
Ω
(
M̃

∗⊗(I+Gopt)
−1)ΩT

)−1
(N0d) = O(1/N2

0 ).

Therefore, Lemma 4 holds.

Lemma 5. When N0→ 0 and∞, the optimal GMI in Method III is independent of P and
converges to the optimal GMI with P =0. Moreover, (75) and (76) hold.

The proof is given in Appendix K. Combining Lemmas 3-5, and using the fact that Method
III and Method II are equivalent with P =0, we have the following Theorem 4.

Theorem 4. Assume that P ≺ I , when N0 → 0 and ∞, the optimal GMI in Method III
converges to the optimal GMI in Method III with P = 0. Moreover, the optimal GMI in
Method II also converges to the optimal GMI in Method III with P =0, with speedO(1/N0)
when SNR increase andO(N2

0 ) when SNR decreases. The optimalG for both methods has the
limits (75) and (76).

From Theorem 4 we know that, except for the case where one of the elements in the diagonal
matrix P is 1, the soft feedback information becomes asymptotically insignificant for the
design of the CS parameters. The reason is that, when N0→ 0, x̂ is overwhelmed by the
noise, while whenN0→∞, the optimal front-end filter will null out x̂ since the filter can
perfectly reconstruct the transmitted symbols without using the side information.

Remark 4. When N0 → 0 and ∞, the optimal CS demodulator is the EZF demodulator
defined in Example 1, and the TMF defined in Example 2, respectively.

With ISI channels, as the same constraint P = αI≺I shall hold, we make the restriction
that α<1. The asymptotic properties for ISI channels are presented in Corollary 1, which
is an asymptotic version of Theorem 4 when the channel matrix H and CS parameters are
band-shaped Toeplitz matrices with infinite dimensions. The detailed proof is following
the same analysis as for the finite linear vector channels and omitted.
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Corollary 1. Assume that 0 ≤ α < 1, when N0→ 0 and ∞, the optimal GMI in Method
III converges to the optimal GMI in Method III with α= 0. Moreover, the optimal GMI in
Method II also converges to the optimal GMI in Method III with α=0, with speed O(1/N0)
when SNR increase andO(N2

0 ) when SNR decreases. The optimalG for both methods has the
following asymptotic properties hold for |k|≤ν:

lim
N0→0

∫ π

−π

1

N0(1 +Gopt(ω))
exp(−jkω)dω =

∫ π

−π

1

|H(ω)|2
exp(−jkω)dω,

lim
N0→∞

∫ π

−π
N0Gopt(ω) exp(−jkω)dω =

∫ π

−π
|H(ω)|2 exp(−jkω)dω.

7 Empirical Results

In this section, we provide empirical results to show the behaviors of CS demodulators in an
iterative detection and decoding receiver designs. With the considered MIMO channels,
all channel elements are assumed to be independent identically distributed (IID) complex
Gaussian with zero-means, and the received signal power at each receive antenna is nor-
malized to unity. For ISI case, we test with the typical Proakis-C channel as in Fig. 5.

7.1 GMI Evaluation

We first evaluate the GMI under 5×5 MIMO channels with memory size ν=1 for all CS
demodulators. We simulate 10000 channel realizations for each SNR point. The GMIs
are compared with that of the static CS demodulator [18], which is equivalent to Method
II with P =0. The channel capacity is also presented for comparison. The results of GMI
are shown in Fig. 6. As the quality of soft information improves beyond P = 0, Method
II with νR=0 performs the best among all CS demodulators, as it has the most degrees of
freedom (DoF) in R. Method II with νR= ν is the worst among Method I and Method
II, while Method I is slightly worse than Method II with R of shape (a) in Fig. 3, which
is because although the IC matrix R is shape (a) in both cases, R in Method II is more
general than in Method I which is constrained to R=F †T . The GMI of Method III is
inferior to Method II as expected.

The results show consistent GMI increments for all CS demodulators when the feedback
quality improves. When P increases from P = 0 to the ideal case P = I , the channel
capacity becomes inferior to the GMI as the pair (x, ŷ) is superior to (x,y) for information
transfer.
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Figure 6: GMI of CS demodulators under 5×5 MIMO IID complex Gaussian channels with ν=1.

7.2 SNR Asymptotic of the GMI

Next, we evaluate the asymptotic properties of the GMI described in Theorem 4 under
5×5 MIMO channels. As shown in Fig. 7, the GMIs of Method II and Method III both
converge to Method III with P =0. Moreover, the GMI of the CS demodulators converge
to the EZF in Example 1 at high SNR, and the TMF in Example 2 at low SNR, respectively,
which are well aligned with Theorem 4.

7.3 EXIT Charts of CS Demodulators

In order to predict the dynamics of iterative receivers, we use the tool of extrinsic informa-
tion transfer (EXIT) charts invented by ten Brink [59, 60] for analysis of iterative receiver
behavior. For EXIT analysis, the CS demodulator and the decoder measure the output
extrinsic information IE based on a sequence of observations y and a priori information
IA into a new sequences.

In Fig. 8, we evaluate the EXIT charts for CS demodulators under 4× 6 MIMO channels
with ν=2 forF andG at an SNR of 10dB. With Method II, we test different values of νR.
As can be seen, when νR>ν, the demodulation performance is inferior to νR≤ ν. This
is because, the interference outside memory size ν and inside memory size νR is neither
considered in the IC process nor in the BCJR module. Moreover, with νR ≤ ν, the CS
demodulators with Method II performs quite close to each other as well as Method I and
III. For Method II with νR < ν, the interference inside memory size ν and outside νR
are considered both in the IC and BCJR processes. However, an interesting observation
is that, with large a priori input IA, Method II with νR = 0 is inferior to νR = 1 and
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Figure 7: SNR asymptotic under 5×5 MIMO IID complex Gaussian channels with ν=1.

νR = 2. Therefore, a conservative approach with Method II is to set νR = ν such that
the interference is either removed in IC process or dealt with in the BCJR module, to
get rid of potential error propagation caused by redundant processings of the same part of
interference.

In Fig. 9, we show the iterative detection and decoding trajectories for CS demodulators
under Proakis-C channel with ν=2 and at an SNR of 10dB. We use an [7, 5] convolutional
code [51] with a coded block-length K = 2004, and a random permutation is applied to
the coded bits. As can be seen, the CS demodulators with Method II and Method III
are superior to the LMMSE-PIC demodulator, and the iterative detection and decoding
trajectories are well aligned with the measured EXIT charts.

7.4 Link Performance

We next turn to link-level simulations with turbo codes [44] where the outer decoder uses
8 internal iterations. A single code-block over all transmit symbols is used. At each SNR
point 20000 data blocks are simulated and the block-error-ratio (BLER) is measured. In
all simulations, at most three global iterations are used between the demodulators, and the
decoder the tap length of the front-end and IC filters are all set to 8L, and νR = ν for
Method II.

In Fig. 10, we evaluate the BLER under Proakis-C channel with QPSK symbols and ν=2
for all CS demodulators. A (1064, 1600) turbo code is used. Note that, at the first iteration
when there is no soft information, Method II and III overlap with each other. With CS
demodulators, the gap to the MAP demodulator is less than 1 dB, while the LMMSE-PIC
has a gap to the MAP that is up to 10 dB. Moreover, Method II performs slightly better
than Method I, and Method III is slightly inferior to both methods. However, Method III
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Figure 8: EXIT charts under 4×6 IID complex Gaussian MIMO channels with ν=2 and different values of νR.
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Figure 9: Iterative detection and decoding trajectories under Proakis-C channel at an SNR of 10 dB. The outer code is an [7, 5]
convolutional code with generator polynomials g0(D)=1+D2 and g1(D)=1+D+D2. A random permutation
of the code block is used and the black curve is the decoding EXIT chart. The dashed lines are the iterative detection
and decoding trajectories for LMMSE-PIC, Method III and II, respectively.

has the advantage of less computational complexity than the others since all parameters are
in closed-forms.

In Fig. 11, we evaluate the BLER under 4×6 MIMO channels with QPSK symbols and
ν = 3 for all CS demodulators. A (1064, 1800) turbo code is used. As N < K, the
LMMSE-PIC fails [46] at the first iteration due to the lack of receive diversity. However,
the CS demodulators with ν=3 significantly improve the performance and with less than
1 dB gap at 10% BLER to the MAP. CS demodulators with ν =1 after three iterations is
less than 2 dB away from the MAP. With less computational cost, Method III still performs
close to Method II.

Finally we remark that, for the sake of complexity savings, both for finite linear vector
channels and ISI channels, the parameters of CS demodulators do not need to be updated
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Figure 10: BLER performance of the LMMSE-PIC, Method I-III, and MAP under Proakis-C channel with QPSK modulation.
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Figure 11: BLER performance of the LMMSE-PIC, Method II, Method III, and MAP under 4×6 MIMO channels with QPSK
modulation.

through all iterations. Once the feedback information quality is good enough and the
parameterP or α are close to ideal, the CS parameters can be kept unchanged in successive
iterations.

8 Summary

In this paper we considered the design of channel shortening (CS) demodulators for linear
vector channels that use a trellis representation of the received signal in combination with
interference cancellation (IC) of the signal part that is not appropriately modeled by the
trellis. In order to reach a trellis representation, a linear filter is applied as front-end. It is
an extension of the well studied CS demodulators to iterative receivers and a generalization
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of the LMMSE-PIC demodulator to cooperate with trellis-search in turbo equalization.

We analyzed the properties of three different approaches for designing such optimal CS
demodulators as all of them may come across as natural “CS” demodulators. In the used
framework, there are three parameters that need to be optimized. Based on a generalized
mutual information (GMI) cost function, two of these are solved for in closed-form, while
the third needs to be numerically optimized except for Method III where we constructed
it explicitly at the cost of a small performance loss. A simple gradient based optimization
is used and turns out to perform well.

Numerical results are provided to illustrate the behavior of the proposed CS demodulators.
In general, Method II based on the Ungerboeck model is superior to Method I that is based
on the Forney model. Method II has the advantage over Method I that the optimization
procedure is concave. The suboptimal Method III performs close to Method I and Method
II, and it has all parameters in closed-forms. An interesting result is that the interference
cancellation of the CS demodulators should not cancel the effective channel perfectly out-
side the memory size ν, a property that cannot be seem in LMMSE-PIC demodulator as
ν=0. Moreover, we have also analyzed asymptotic properties of the CS demodulators and
showed that, Method III converges to Method II asymptotically when the noise density
goes to zero or infinity.

Appendix A: Derivation of the GMI

By making the eigenvalue decomposition QΛQ† = G and letting s = Q†x. As x is
assumed to be zero mean complex Gaussian random vector with covariance matrix I , we
can write p̃(y|x) in (8) as

p̃(y|x) = exp
(
2R
{
s†d
}
−s†Λs

)
, (78)

where d=Q†(V y−Rx̂). We can now evaluate

p̃(y) =

∫
p̃(y|x)p(x)dx

=
1

πK

∫
exp
(
2R
{
s†d
}
−s†Λs

)
exp
(
−s†s)ds

=

K−1∏
k=0

1

1+λk
exp

(
|dk|2

1+λk

)
.

where λk is the kth diagonal element of Λ and dk is the kth entry of d. Taking the
expectation over y gives

−Ep(y)[log(p̃(y))] = log
(
det(I+G)

)
−Tr

(
L(I+G)−1

)
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where the matrix L=Ep(y)[Qdd†Q†] is given by

L = V (N0I+HH†)V †−V HPR†−RPH†V †+RPR†. (79)

On the other hand, we have

−Ep(y,x) [log(p̃(y|x))] = Tr(G)−2R
{
Tr(V H−RP )

}
.

Combining the two expectations, the GMI reads,

IGMI(V ,R,G)=log
(
det(I+G)

)
−Tr

(
L(I+G)−1

)
−Tr(G)+2R

{
Tr(V H−RP )

}
=log

(
det(I+G)

)
−Tr(G)+2R

{
Tr(V H−RP )

}
−Tr

(
(I+G)−1

(
V [HH†+N0I]V

†−2R
{
V HPR†}+RPR†)).

Appendix B: The Proof of Proposition 1

As the formula of GMI in (13) is quadratic in W and no constraints apply to W , taking
the gradient of IGMI(W ,T ,F ) with respect to W and setting it to zero, the optimal W
is given in (16). Inserting W opt into (13) gives, after some manipulations,

IGMI(W opt,T ,F ) = K+log
(
det(I+F †F )

)
+Tr

(
T †F (I+F †F )−1F †TM̃

)
+Tr

(
M(I+F †F )

)
+2R

{
Tr
(
PMF †T

)}
. (80)

where M and M̃ are defined in (14) and (15). If P =0, (80) equals

I1(F ) = K+log
(
det(I+F †F )

)
+Tr

(
M(I+F †F )

)
.

In this case, there is no soft information available and the matrix T is not included in the
formula. When P ̸=0, the terms of IGMI in (80) related to T are

f(T )=Tr
(
T †F (I+F †F )−1F †TM̃

)
+2R

{
Tr
(
PMF †T

)}
.

Let tk denote the kth column of T , but all elements in rows [k,min(k+ν,K−1)] re-
moved, and define the column vector t= [ tT0 tT1 . . . tTK−1 ]

T, then by the definition of
the indication matrix Ω, we have

t = Ωvec(T ).

Similarly, let zk denote the kth column of the matrix FMP but with all elements in rows
[k,min(k+ν,K−1)] removed, and define a row vector z=[ zT

0 zT
1 . . . zT

K−1 ]
T, then

we have

z=Ωvec(FMP )=Ω
(
(PM∗)⊗IK

)
vec(F ).
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Figure 12: Non-concaveness of Method I under 5×5 MIMO channel (left figure) and Proakis-C ISI channel (right figure).

Finally, defining a Hermitian matrix B̂1=Ω
(
M̃

∗⊗
(
F (I+F †F )−1F †))ΩT, and with

that we can rewrite f(T ) as f(T )= t†B̂1t+2R{z†t}. Taking the gradient with respect
to t and setting it to zero yields,

topt = −B̂
−1
1 z. (81)

Transferring topt back into T opt given the optimal T in (81) and inserting this into f(T )
gives

f(T opt) = −z†B̂
−1
1 z.

Thus, with the optimal W and T , when P ̸=0 the GMI equals

IGMI(W opt,T opt,F ) = K+log
(
det(I+F †F )

)
+Tr

(
M(I+F †F )

)
−vec(F )†D†

(
Ω
(
M̃

∗⊗
(
F (I+F †F )−1F †))ΩT

)−1
Dvec(F ).

where D=Ω
(
(PM∗)⊗IK

)
.

Appendix C: Non-Concavity Examples of Method I

We give examples to demonstrate the non-concavity of Method I for MIMO and ISI chan-
nels with assuming that P = I and α= 1, respectively. The memory size ν = 1 and the
noise densityN0 equals 1 in both cases. A 5×5 MIMO channel and the Proakis-C channel
are used.
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Example 4. MIMO case:

H=


2 0 −3 5 4
−5 2 −1 0 2
2 −4 3 3 3
−1 −5 −4 1 2
0 −2 0 5 5

,F 1=


4.94 4.45 0 0 0
0 0.21 3.85 0 0
0 0 5.56 1.76 0
0 0 0 0.61 7.10
0 0 0 0 2.79

,F 2=


2.03 6.17 0 0 0
0 5.22 3.56 0 0
0 0 7.43 0.73 0
0 0 0 4.98 4.32
0 0 0 0 10.11

.

Example 5. ISI case:

h=
[
0.227 0.460 0.688 0.460 0.227

]
,f1=

[
0.1606 0.9009

]
,f2=

[
0.2230 0.2035

]
.

The IGMI(W opt,T opt,F ) given in (18) as a function F is plotted on the left in Fig. 12,
while the Ī(Wopt(ω), Topt(ω), F (ω)) given in (57) as a function of F (ω) is plotted on the
right. If IGMI(W opt,T opt,F ) and Ī(Wopt(ω), Topt(ω), F (ω)) are concave or convex,
the blue curves lie above or below the black curves, which clearly does not hold in our
examples.

Appendix D: The Gradient in Method I for Finite Linear Vector
Channel

In this section we derive the first order differential of the GMI given in (18) with respect to
F . In order to utilize the differential with respect to a matrix, we use the α-differential as
defined in [47]. Assume a matrix Y N,K with dimension N×K and a matrix XM,S with
dimensionM×S, define dXY as the α-differential of Y with respect to X . Furthermore,
defining yℓ and xℓ as [ y1 y2 · · · yNK ] = vec(Y )T and [ x1 x2 · · · xMS ] =
vec(X)T, the α-differential dXY is

dXY =
∂vec(Y )

∂vec(X)T
=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xMS

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xMS

...
...

...
...

∂yNK
∂x1

∂yNK
∂x2

· · · ∂yNK
∂xMS

.

The reason for adopting the α-differential is because it keeps the chain rule and the product
rule. We introduce anNK×NK permutation matrixZN,K , which satisfies the condition
vec(Y T) = ZN,Kvec(Y ). It is easy to verify that Z−1

N,K = ZK,N , and when N = 1

or K = 1, Y is a vector and vec(Y T) = vec(Y ), hence ZN,1 = IN and Z1,K =
IK . Furthermore, by definition we have dF (F ) = dF (vec(F )) = I , and dF (F †) =
dF
(
vec(F †)

)
=0. We start by reviewing a few properties [47, 48] of α-differential below
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that will be used later, where both matricesX andY are functions ofF and the dimensions
are specified by the subscripts associated to them:

dF (X
−1
K,K) = −(X−T

K,K⊗X
−1
K,K)dFXK,K

dF (Y N,KXK,S) = (XT
K,S⊗IN )dFY N,K + (IS⊗Y N,K)dFXK,S

dF (log(det(XK,K))) = vec(X−T
K,K)TdFXK,K

dF (Y N,K⊗XM,S) = (IK⊗ZS,N⊗IM )(INK⊗vec(X)dFY N,K

+(IK⊗ZS,N⊗IM )(vec(Y )⊗IMS)dFXM,S .

The α-differential of I1(F ) with respect to F is

dF (I1) = vec((I+F †F )−T)T(IK⊗F †)+vec(F ∗MT)T

= vec(FM+F (I+F †F )−†)†. (82)

Defining a K×K matrix B=F (I+F †F )−1F † and an S×S matrix Π=
(
Ω(M̃

∗⊗
B)ΩT

)−1, the α-differential of δ1(F ) with respect to F is

dF (δ1) = −vec(F )†D† ((vec(F )TDT)⊗IS

)
dF (Π)−vec(F )†D†ΠD, (83)

where

dF (Π) = −(ΠT⊗Π)dF (Ω(M̃
∗⊗B)ΩT)

= −
(
(ΠTΩ)⊗(ΠΩ)

)
(IK⊗ZK,K⊗IK)(vec(M̃

∗
)⊗IK2)dFB (84)

and

dF (B) = dF
(
I−(I+FF †)−1

)
=
(
(I+FF †)−T

)
⊗
(
(I+FF †)−1

)
(F ∗⊗IK)

=
(
F ∗(I+FF †)−T)⊗(I−B). (85)

Then, defining a K×K matrix F̃ =(I+F †F )−1F † and a K4×K2 matrix

Ψ = (IK⊗ZK,K⊗IK)
(
vec(M̃

∗
)⊗IK2

)
, (86)

and by combing (82)-(86), we finally have when P ̸=0,

dF
(
IGMI(W opt,T opt,F )

)
= dF (I1)+dF (δ1)

= vec
(
FM+F̃

†)†−vec(F )†D†ΠD

+vec(F )†D†((ΩTΠDvec(F ))T⊗
(
ΠΩ)

)
Ψ
(
F̃

T⊗(I−B)
)
.
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Appendix E: The Proof of Proposition 3

As the formula of GMI in (12) is quadratic in V and no constraints apply to V , taking the
gradient of IGMI(V ,R,G) with respect to V and setting it to zero, yields the optimal V
given in (26). Inserting V opt into (12) gives, after some manipulations

IGMI(V opt,R,G) = K+log
(
det(I+G)

)
+2R

{
Tr(PMR)

}
+Tr

(
M(I+G)

)
+Tr

(
(I+G)−1RM̃R†) (87)

where M and M̃ are defined in (14) and (15). If P =0, (87) equals

I2(G) = K+log
(
det(I+G)

)
+Tr

(
M(I+G)

)
.

When P ̸=0, the terms of IGMI(V opt,R,G) in (87) related to R are

g(R)= 2R
{
Tr(PMR)

}
+Tr

(
(I+G)−1RM̃R†).

Let rk denote the kth column ofR, but where all elements in rows [max(0, k−νR),min(k+
νR,K−1)] are removed, and define the column vector r = [ rT0 rT1 . . . rTK−1 ]

T, then
we have r=Ωvec(R). Moreover, let dk denote the kth column of the matrix MP but
with all elements in rows [max(0, k−νR),min(k+νR,K−1)] are removed and define the
vector d = [dT

0 dT
1 . . . dT

K−1 ]
T. From the definition of d, we have d = Ωvec(MP ).

Defining a Hermitian matrix B̂2 as

B̂2 = Ω
(
M̃

∗⊗(I+G)−1
)
ΩT,

we can write f(R) as g(R)=r†B̂2r+2R{d†r}. Therefore, the optimal r is

ropt=−B̂
−1
2 d. (88)

Transferring ropt back into Ropt gives the optimal R in (27) and inserting this into g(R)
gives

g(Ropt)=−d†B̂
−1
2 d.

Thus, with the optimal V and R, when P ̸=0 the GMI equals

IGMI(V opt,Ropt,G) = K+log
(
det(I+G)

)
+Tr

(
M(I+G)

)
−d†(Ω(M̃∗⊗(I+G)−1

)
ΩT
)−1

d.
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Appendix F: The Gradient in Method II for Finite Linear Vector
Channel

Now we calculate the α-differential of IGMI(V opt,Ropt,G) given in (28) with respect to
G when P ̸=0. Taking the α-differential of I2(G) with respect to G yields,

dG(I2) = vec((I+G)−1+M)†. (89)

Define an S×S Hermitian matrix Φ =
(
Ω
(
M̃

∗⊗ (I + G)−1
)
ΩT
)−1 and taking the

α-differential of δ2(G) with respect to G yields,

dG(δ2) = −(dT⊗d†)dG(Φ)

= (dT⊗d†)(ΦT⊗Φ)dG
(
Ω
(
M̃

∗⊗(I +G)−1
)
ΩT
)

=
(
(dTΦT)⊗(d†Φ)

)
(Ω⊗Ω)dG

(
M̃

∗⊗(I+G)−1
)

=
(
(dTΦTΩ)⊗(d†ΦΩ)

)
ΨdG

(
(I+G)−1

)
= −

(
(dTΦTΩ)⊗(d†ΦΩ)

)
Ψ
(
(I+G)−T⊗(I+G)−1

)
(90)

where Ψ is defined in (86). Combining (89) and (90), we can obtain

dG
(
IGMI(V opt,Ropt,G)

)
= dG(I2)+dG(δ2)

= vec
(
(I+G)−1+M

)†
−
(
(dTΦTΩ)⊗(d†ΦΩ)

)
Ψ
(
(I+G)−T⊗(I+G)−1

)
.

Appendix G: The Concavity Proof of Method II with Finite Linear
Vector Channels

When P =0, as log
(
det(I+G)

)
is concave [49] andTr

(
M(I+G)

)
is linear in G, the

function I2(G) in (29) is concave with respect to G whenever I+G is positive definite.

The concavity when P ̸=0 can be deduced from the composition theorem in [49, Chpater
3.6]. For a positive definite matrix X , d†X−1d is convex and non-increasing (with respect
to the generalized inequality for positive definite Hermitian matrices, see [49, 50]) for any
column vector d. Furthermore, since I+G is positive definite, (I+G)−1 is convex. As
M̃ ≺ 0 X = Ω

(
M̃

∗⊗(I+G)−1
)
ΩT is concave in G. By the composition theorem,

d†(Ω(M̃∗⊗ [I+G]−1
)
ΩT
)−1

d is convex, and δ2(G) is then concave. Therefore the
function IGMI(V opt,Ropt,G) in (28) is concave with respect to G whenever I+G is
positive definite.
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Appendix H: The Proof of Proposition 5

The Fourier series associated to the Toeplitz matrix W is

W (ω) =
∞∑

k=−∞
wk exp(jkω) ,

and the differential of Ī(W (ω), T (ω), F (ω)) in (50) with respect to wk (where ω is fixed)
is

∂Ī

∂wk
= − 1

2π

∫ π

−π

|F (ω)|2
(
N0 + |H(ω)|2

)
W ∗(ω)

1 + |F (ω)|2
exp(jkω) dω

+
1

π

∫ π

−π

(
F ∗(ω)H(ω) +

α|F (ω)|2H(ω)T ∗(ω)

1 + |F (ω)|2
)
exp
(
jkω

)
dω. (91)

Since (91) should equal zero for all k, the optimalW (ω) is given in (55). InsertingWopt(ω)
back into (50) yields,

Ī(Wopt(ω), T (ω), F (ω))=1+
α

π

∫ π

−π
R
{
F ∗(ω)T (ω)M(ω)

}
dω

+
1

2π

∫ π

−π

(
log
(
1+|F (ω)|2

)
+
M̃(ω)|T (ω)F (ω)|2

1+|F (ω)|2
+M(ω)

(
1+|F (ω)|2

))
dω. (92)

whereM(ω) and M̃(ω) are defined in (51) and (52). When α=0, the GMI in (92) equals
(58), and when 0<α≤1, the terms related to T (ω) in (92) are

f(T (ω)) =
α

π

∫ π

−π
R
{
F ∗(ω)T (ω)M(ω)

}
dω+

1

2π

∫ π

−π

M̃(ω)|T (ω)F (ω)|2

1+|F (ω)|2
dω. (93)

As the elements of the main diagonal and the first ν lower diagonals of matrix T are con-
strained to zero, we define the vector t̃ that specifies the Toeplitz matrix T as

t̃=[ t−NT
. . . t−1 tν+1 . . . tNT

],

and with ϕ(ω) defined in (53), the Fourier series T (ω) with a finite tap length NT is

T (ω) =
∑

−NT≤k≤NT,k /∈[0,ν]

tk exp
(
jkω

)
= t̃ϕ(ω). (94)

Furthermore, with ε1 and ε2 defined in (54), (93) can be rewritten as

f(T (ω))= t̃ε2t̃
†
+2R

{
t̃ε1
}
.

Therefore, the optimal t̃ is

t̃opt = −ε†1ε
−1
2 . (95)

Putting t̃opt back into (92)-(94), the optimalT (ω) is given in (56) and Ī(W (ω), T (ω), F (ω))
for the optimal W (ω) and T (ω) is given in (57).
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Appendix I: The Proof of Proposition 7

The Fourier series associated to the Toeplitz matrix V is V (ω)=
∞∑

k=−∞
vk exp(jkω) and

the differential of Ī(V (ω), R(ω), G(ω)) in (62) with respect to vk (where ω is fixed) is

∂Ī

∂vk
= − 1

2π

∫ π

−π

(
N0+|H(ω)|2

)
V ∗(ω)

1+G(ω)
exp(jkω) dω

+
1

π

∫ π

−π

(
H(ω)+

αH(ω)R∗(ω)

1+G(ω)

)
exp
(
jkω

)
dω. (96)

Since (96) shall equal zero for all k, the optimal V (ω) is given in (65). Putting Vopt(ω) in
(65) back into (62) yields,

Ī(Vopt(ω), R(ω), G(ω)) = 1+
α

π

∫ π

−π
R
{
M(ω)R(ω)

}
dω+

1

2π

∫ π

−π

(
log
(
1+G(ω)

)
+
M̃(ω)|R(ω)|2

1+G(ω)
+M(ω)

(
1+G(ω)

))
dω, (97)

whereM(ω) and M̃(ω) are defined in (51) and (52). When α=0, the GMI in (97) equals
(68), and when 0<α≤ 1, the terms of Ī(Vopt(ω), R(ω), G(ω)) related to R(ω) in (97)
are

g(R(ω))=
α

π

∫ π

−π
R
{
M(ω)R(ω)

}
dω+

1

2π

∫ π

−π

M̃(ω)|R(ω)|2

1+G(ω)
dω. (98)

Define the vector r̃ that specifies the Toeplitz matrix R as

r̃=[ r−NR
. . . r−νR−1 rνR+1 . . . rNR

],

and with ψ(ω) defined in (63), the Fourier series R(ω) with a finite tap length NR is

R(ω) =
∑

−NR≤k≤NR,k /∈[−νR,νR]

rk exp
(
jkω

)
= r̃ψ(ω) (99)

where 2νR+1 is the band size that R is constrained to zero. With ζ1 and ζ2 defined in
(64), (98) can be written as g(R(ω))= r̃ζ2r̃

†+2R{r̃ζ1}. Therefore, the optimal r̃ is

r̃opt=−ζ†1ζ
−1
2 . (100)

This shows that r̃opt has Hermitian symmetry as G(ω), M(ω) and M̃(ω) are all real
valued, thus Ropt(ω) is real. Putting r̃opt back into (97)-(99), the optimal R(ω) is given
in (66) and Ī(V (ω), R(ω), G(ω)) for the optimal V (ω) and R(ω) is given in (67).
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Appendix J: The Concavity Proof of Method II with ISI Channels

To prove Ī(Vopt(ω), Ropt(ω), G(ω)) in (67) is concave with respect to G(ω), it is suffi-
cient to prove that ζ†1ζ

−1
2 ζ1 is convex with respect to G(ω). For a positive definite matrix

ζ2 , ζ†1ζ
−1
2 ζ1 is convex and non-increasing (with respect to a generalized inequality for

positive definite Hermitian matrices) in G(ω) for any vector ζ1 and with arbitrary finite
tap length NR. As matrix M̃ is negative definite, ζ2 in (64) is concave with respect to
G(ω) under the constraint that I+G is positive definite. Hence ζ†1ζ

−1
2 ζ1 is convex in

G(ω) by the composition theorem [49].

Appendix K: The Proof of Lemma 5

From Theorem 2, the optimal G in Method III satisfies [(I+Gopt)
−1]ν= −[M̂ ]ν . Note

that when P =0, Method III and Method II are equivalent as M̂ =M . Hence, in order
to prove Lemma 4, it is sufficient to show that [M̂ ]ν converges to [M ]ν as N0→ 0 and
∞. When P ≺I , Ck in (38) is positive definite, and as N0 → 0,

H†(HCkH
†+N0I)

−1H = C−1
k (H†H+N0C

−1
k )−1H†H

= C−1
k

(
I −N0C

−1
k (H†H)−1

)
+O(N2

0 ).

Therefore with Ŵ and Ĉ defined in (37)-(41),

ŴH = I −N0(H
†H)−1 +O(N2

0 ),

Ĉ = [ŴH]\ν = −N0[(H
†H)−1]\ν +O(N2

0 ). (101)

With (101) and M̂ in (44), it can be verified that lim
N0→0

[M̂/N0]ν =−[(H†H)−1]ν . On

the other hand, when N0→∞, from (37)-(44) we have

N0Ŵ = H†(HCkH
†/N0+I)−1 = H† +O(1/N0),

N0Ĉ = [ŴH]\ν = [H†H]\ν +O(1/N0), (102)

With (102) and M̂ defined in (44), it can be verified that lim
N0→∞

[N0(I+M̂)]ν = [H†H]ν .

Hence, from (73) [M̂ ]ν converges to [M ]ν asN0→0 and∞, which completes the proof.
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Optimal Channel Shortener Design for Reduced-State
Soft-Output Viterbi Equalizer in Single-Carrier

Systems

We consider optimal channel shortener design for reduced-state soft-output Viterbi equalizer (RS-
SOVE) in single-carrier (SC) systems. To use RS-SOVE, three receiver filters need to be designed:
a prefilter, a target response and a feedback filter. The collection of these three filters are com-
monly referred to as the “channel shortener”. Conventionally, the channel shortener is designed
to transform an intersymbol interference (ISI) channel into an equivalent minimum-phase equi-
valent form. In this paper, we design the channel shortener to maximize a mutual information
lower bound (MILB) based on a mismatched detection model. By taking the decision-feedback
quality in the RS-SOVE into consideration, the prefilter and feedback filter are found in closed
forms, while the target response is optimized via a gradient-ascending approach with the gradient
explicitly derived. The information theoretical properties of the proposed channel shortener are
analyzed. Moreover, we show through numerical results that, the proposed channel shortener
design achieves superior detection performance compared to previous channel shortener designs
at medium and high code-rates.
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1 Introduction

Communication systems based on single carrier (SC) modulation are currently used in 2G
networks [1] which have the largest number of subscribers worldwide. Besides personal mo-
bile communication they play a key role in the latest LTE-Advanced Release 13 [2], where
on the path to 5G Internet of Things (IoT) networks, the standard EC-GSM-IoT was re-
leased together with SC waveforms for high power efficiency requirements [3]. Moreover,
SC modulation is also used in satellite communications and high-speed serial links[4]. The
advantages of a low peak-to-average-power ratio (PAPR), low device complexity, straight-
forward synchronization, and the absence of cyclic-prefix (CP) overhead favor its use in
many low data rate scenarios over multi-carrier (MC) systems[5, 6]. However, SC systems
suffer from intersymbol interference (ISI) caused by delay dispersion along the multi-path
propagation from the transmitter to the receiver.

In order to combat intersymbol interference (ISI) caused by delay dispersion in propaga-
tion channels in SC systems, reduced-state based soft-output equalizers are commonly
deployed, which has a long and rich history [7–14]. In 1972, Forney proposed the Vi-
terbi algorithm (VA) [14] that implements maximum log-likelihood sequence estimation
(MLSE). With error correcting codes such as turbo codes[15] and low-density parity-check
(LDPC) codes[16], it is well-known that soft-decisions generated by the soft output Vi-
terbi algorithm (SOVA)[17], i.e., the reliability information, are superior to hard-decisions.
To reduce the prohibitive detection complexity of the SOVA (or BCJR [18]) algorithm,
reduced-state based ISI equalizers are extensively developed which are based on techniques
such as delayed-decision-feedback[7], state partitioning[11], state-merging[8, 9], and list-
type Viterbi equalizer (LVE)[12, 13].

In [19], Koch and Baier proposed the soft output Viterbi equalizer (SOVE). Rather than
minimizing the sequence error probability in SOVA, the SOVE uses a trellis-based al-
gorithm that minimizes the bit error probability. To further reduce the receiver complexity,
the authors in [19] also proposed the suboptimal reduced-state SOVE (RS-SOVE). Differ-
ent from the SOVE whose trellis spans over all L taps, where L is the tap-length of the
considered channel impulse response (CIR) h, the trellis in RS-SOVE only spans the first
(ν+1) taps, and the signal part corresponding to the remaining (L−ν−1) channel tails
is canceled by a state-dependent decision-feedback along the detection. The RS-SOVE
is simple to implement and performs nearly as good as the full-complexity SOVE. Note
that, the RS-SOVE can also be reviewed as a soft-output extension of the delayed decision-
feedback sequence estimation (DDFSE)[7], which combines VA and the decision-feedback
detection to approximate the MLSE.

To obtain high performance, a minimum-phase CIR is essential for reduced-state ISI equal-
izers, and a discrete-time prefilter, which ideally has an all-pass characteristic, should be
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introduced in front of equalization in order to transform the h into its minimum-phase
equivalent. Therefore, in order to transform h into a new target response, which renders
better performance in conjunction with the RS-SOVE, the channel shorteners are com-
monly utilized prior to the RS-SOVE. Due to its low-complexity, simple-implementation,
and good-performance, the RS-SOVE together with channel shortener is widely used in
the receiver design of devices in SC systems. A typical overview of such systems is depicted
in Fig. 1. Normally, the channel shortener requires three receiver filters to be designed: a
prefilter (the tap-length is up to design), a (ν+1)-tap target response, and a (L−ν−1)-tap
feedback filter.

Traditionally, there are two types of processing schemes for designing the channel shortener,
namely, the Forney detection model[20] which assumes white noise, and the Ungerboeck
detection model[21] which assumes that the noise is colored according to the target response
autocorrelation. A conventional design of the Forney model based channel shortener is to
use an all-phase filter to transform h into the minimum-phase equivalent h̃. Then, the
target response is set to the first (ν+1) taps of h̃, while the feedback filter is set to the re-
maining taps. The all-pass prefilter can be designed based on various criteria [22–25] such as
linear minimum-mean-square-error (LMMSE), linear prediction, and homomorphic filter-
ing. The authors in [25] showed that, the homomorphic filter has lower-complexity, simpler
hardware-implementation, and superior performance than the other prefilter designs. We
refer to such a conventional channel shortener design as the “HOM” shortener.

In [21], the Ungerboeck model based channel shortener design was developed. A prefilter v
and target response g are designed to maximize a mutual information lower bound (MILB)
based on a mismatched detection model. However, the feedback filter is not utilized in the
detection model, which means that the (L−ν−1) channel tails are truncated directly.
We refer to such a state-of-the-art design as the “UBM” shortener. As there is no feedback
filter, with the UBM shortener there is no decision-feedback process in the RS-SOVE. In
[1, 26], the UBM shortener was successfully implemented for GSM/EDGE systems, and
showed superior detection performance, yet with a much lower complexity than the HOM
shortener. However, as shown in [26], in the high signal-to-noise (SNR) regime¹, the UBM
shortener suffers from performance losses and renders a bit-error-rate (BER) error floor.

In this paper, we propose a novel channel shortener design for RS-SOVE aiming to over-
come the performance losses of the UBM shortener. Due to the lack of a probabilistic
meaning of the branch metric definition[27, 28], the UBM shortener cannot be exten-
ded by decision-feedback using the methods introduced in [1, 21, 26] and therefore is not
applicable for the RS-SOVE. Instead we show that we can overcome the performance
losses of the UBM by applying the information theoretical MILB approach to the For-
ney model instead of the Ungerboeck model. Since we derive a Forney model equalizer

¹In relation to higher-order modulations and code-rates, which require high SNRs to decode.
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Table 1: Channel Shortener Designs and Parameter Notations

Name prefilter
target

response

feedback

filter

RS-SOVE cooperates

with feedback?

FOM w f b yes

UBM v g 0 no

HOM whom hf hb yes

that is equipped with MILB-maximization channel shortening filters, we refer to this ap-
proach as the “FOM” shortener. Note that, both the HOM and FOM shorteners adopt
the same the Forney model for channel shortener designs. The difference is that, the HOM
shortener is a conventional design, while the FOM shortener optimizes the receiver filters
to maximize the information rate². Therefore, the FOM shortener always performs better
than the HOM shortener from an information-theoretical perspective. Moreover, as the
UBM shortener is constrained to the case that the feedback filter equals 0, while the FOM
shortener can jointly optimize all three receiver filters, the FOM shortener is superior to
the UBM shortener when the feedback has good quality.

We show that although at low code-rates the UBM shortener performs better than both the
HOM and FOM shorteners, it suffers from significant performance losses at medium and
high code-rates. This phenomenon, however, does not exist for the FOM shortener, which
outperforms the UBM shortener at medium and high code-rates, and is better than the
conventional HOM shortener in all cases. These three different channel shorteners con-
sidered in this paper are listed in Table 1, with FOM shortener being the proposed channel
shortener design and the remaining two are the reference designs. The main contributions
of this paper are as follows.

• Firstly, we propose the FOM shortener for RS-SOVE with the MILB derived in
closed form. The prefilter and feedback filter are optimized through MILB perspect-
ive and found in closed forms, and the target response utilizes a gradient-ascending
optimization.

• Secondly, we analyze the optimal parameter design of the FOM channel shortener
by considering the feedback quality, and show that the FOM shortener can be de-
signed for perfect feedback. We further show that, the FOM shortener outperforms
the UBM shortener at medium and high code-rates, and is superior to the HOM
shortener in all cases.

• Thirdly, we analyze information-theoretic properties and information rates of the
FOM shortener in relation to Shannon capacity C and the previous channel shortener
designs of the HOM and UBM shorteners.

²The information rate is a bound on the rate that can be transmitted, but are not a capacity since there are
constraints on the transmit signals and the decoding operations.
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Souce Bits
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noise
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target response

Encoder
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RS-SOVE �
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Figure 1: Discrete time transmission and receive model with the channel shortener and RS-SOVE. Note that, with the UBM
shortener the feedback filter is not needed and no decision-feedback is performed in the RS-SOVE. The CIR and noise
estimation can be based on, e.g., pilot symbols.

• Lastly, we extend the RS-SOVE to an arbitrary delayD, and show an interesting fact
that, the trellis search process in RS-SOVE is equivalent to a full forward recursion
and D-depth backward recursion.

The rest of the paper is organized as follows. In Sec. II, the received signal model, con-
ventional HOM shortener, and RS-SOVE are introduced. In Sec. III, the proposed FOM
shortener is derived, and the optimal design of the filters (w, f , b) with feedback quality
is elaborated. In Sec. IV, the links of theoretical information rates among all three channel
shorteners are established. Empirical results are provided in Sec. V, and Sec. VI concludes
the paper.

Notations

Throughout this paper, boldface lowercase letters indicate vectors and boldface uppercase
letters designate matrices. Superscripts (·)−1, (·)∗, (·)T and (·)† stand for the inverse,
complex conjugate, transpose, and Hermitian transpose, respectively. Furthermore, E[·] is
the expectation operator, and R{·} takes the real part of the arguments. We reserve ‘⋆’
to denote linear convolution, I to represent an identity matrix, and vec (A) to stack the
columns of A on top of each other.

2 Received Signal Model and the HOM Detector

The considered SC system that applies channel shortening and RS-SOVE is depicted in
Fig. 1. With sufficiently good interleaving, we assume the transmit bits to be independent.
The transmit symbols xk have unit-energy and are drawn from a constellation X , whose
cardinality is |X |. Considering the data transmission over a dispersive channel with additive
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noise, the received sample yk at time epoch k is modeled as

yk =

L−1∑
ℓ=0

hℓxk−ℓ + nk, (1)

where L is the ISI duration, and hℓ is the ℓth tap of the CIR h=(h0 h1 . . . hL−1). The
noise variables nk are identical and independently distributed (IID) zero-mean complex
Gaussian variables with variance N0. For a transmit block comprising K symbols³, we
denote the signal vector y, receive vector x, and noise vector n as

y = (y0 y1 . . . yK+L−1)
T ,

x = (x0 x1 . . . xK−1)
T ,

n = (n0 n1 . . . nK−1)
T ,

respectively. The signal model (1) that comprises (K+L−1) received samples can be written
as

y = h ⋆ x+ n, (2)

or equivalently,

y = Hx+ n, (3)

where the (K+L−1)×K Toeplitz matrix H is generated from h as

H=



h0
h1 h0
... h1

. . .

hL−1
...

. . . h0

hL−1
. . . h1
. . .

...
hL−1


. (4)

2.1 Conventional HOM Channel Shortener

Prior to the RS-SOVE, the HOM shortener utilizes homomorphic filtering to obtain the
minimum-phase equivalent form of the causal response h. With the prefilter whom de-
signed based on the cepstrum of h [23], the target response h̃=whom ⋆ (h/

√
N0), and

³We assume that L−1 zero-symbols are inserted between continuous data blocks (i.e., the guard period)
to prevent inter-block interference.
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-

+
-

+

Figure 2: The decision-feedback process in RS-SOVE. The hard feedback x̂ is associated to each state and updated along the
detection stages.

the filtered samples ỹ=whom ⋆ (y/
√
N0), the detection model after prefiltering reads

ỹk =
ν∑

ℓ=0

h̃ℓxk−ℓ +
L−1∑

ℓ=ν+1

h̃ℓxk−ℓ + ñk, (5)

where ν denotes the memory length considered by the RS-SOVE so that its number of
states becomes |X |ν . Denoting

hf =
(
h̃0, h̃1, · · · , h̃ν

)
, (6)

hb =
(
0, · · · , 0︸ ︷︷ ︸

ν+1

, h̃ν+1, h̃ν+2, · · · , h̃L−1

)
, (7)

the second term in (5) is canceled by the hard feedback x̂ℓ on the surviving path that leads to
each state after filtered by the feedback filter hb. By setting ν=0, the RS-SOVE becomes
the decision-feedback detector, while with ν=L−1, the RS-SOVE is the full-complexity
SOVE.

In contrast to BCJR algorithm [18] or Max-Log-Map (MLM)[29], the backward recursions
are omitted in RS-SOVE [19]. In order to improve the quality of soft-decisions, we extend
the decision-delay in RS-SOVE to an arbitrary valueD, which can set to be larger thanL−1.
As shown next, the RS-SOVE with a delayD can be viewed as the the MLM equalizer with
a full forward recursion and D-step backward recursion at each detection stage. Hence,
whenD is sufficiently large, the RS-SOVE performs as well as MLM. Such a modification

L(xk,n)=log

 ∑
xk,n=1

exp
(
−αi

k+ν−1 − γ
i,j
k+ν − β

j
k+ν

)
− log

 ∑
xk,n=−1

exp
(
−αi

k+ν−1 − γ
i,j
k+ν − β

j
k+ν

)
≈ min

xk,n=−1

(
αi
k+ν−1 + γi,jk+ν + βjk+ν

)
− min

xk,n=1

(
αi
k+ν−1 + γi,jk+ν + βjk+ν

)
. (8)
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only increases the equalization latency from ν to D, and introduces a small overheard by
the D-step backward recursion process in the RS-SOVE. In [30], an improvement of RS-
SOVE is also proposed by introducing an expanded memory, however, the number of states
is exponentially increased and results in higher memory cost.

2.2 RS-SOVE with Arbitrary Decision-Delay D

In Fig. 2, we illustrate the decision-feedback detection in the RS-SOVE with the prefilterw,
the feedback filter hb, and the target response hf . Utilizing Jacobian approximation [29],

log
(
exp(−a) + exp(−b)

)
≈−min(a, b),

the soft-decisions of the nth bit xk,n in xk, i.e., the log-likelihood ratio (LLR), is calculated
according to (8) with delay ν. The forward path metric αj

k corresponding to state j at stage
k is recursively computed through

αj
k = min

i

{
αi
k−1 + γi,jk

}
, (9)

where the branch metric γi,jk in (5) associated to state transition i→j is calculated as

γi,jk =

∣∣∣∣∣ỹk −
ν∑

ℓ=0

h̃ℓxk−ℓ −
L−1∑

ℓ=ν+1

h̃ℓx̂k−ℓ

∣∣∣∣∣
2

. (10)

In (10), the symbol vector (xk, · · · , xk−ν) are determined from state transition i → j,
while (x̂k−ν−1, · · · , x̂k−L+1) are the hard decisions associated to each state i at stage k.
As for each state there is a survival path that leads to it, with decision-feedback determined
from such a path, the feedback varies on different states. In addition, an update of all
survival paths is needed along the detection stages.

In [19], with RS-SOVE the backward recursions are omitted by setting βjk+ν = 0 for all
states, and the LLR in (8) is simplified to

L(xk,n)≈ min
xk,n=−1

(
αi
k+ν−1+γ

i,j
k+ν

)
− min

xk,n=1

(
αi
k+ν−1+γ

i,j
k+ν

)
.

However, a drawback of such an approximation is that, the short decision delay ν in RS-
SOVE limits its performance, especially with higher-order modulations and code-rates[30].
Therefore, we increase the delay ν to an arbitrary value D by initializing βjk+D=0 for all
states at detection stage k+D, and define the backward recursion for state transition j→ i
as

βik−1 = min
j

{
βjk + γi,jk

}
. (11)
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Note that, from detection stage k up to k+ν−1, the state transactions corresponding to
different symbol assumptions xk do not merge with each other at the same state (and on
both directions). This is so, since the state transactions from stage k to k+ν−1 follow the
below pattern

◦××· · · ×︸ ︷︷ ︸
ν−1

−→ ×◦××· · ·×︸ ︷︷ ︸
ν−2

−→ · · · −→××· · ·×︸ ︷︷ ︸
ν−1

◦

︸ ︷︷ ︸
ν stages

,

where “◦” denotes the symbol assumption xk at stage k, and “×” represents all the possible
choices for the other ν−1 symbols on each state. There all in total |X | possible assumptions
for xk, and with each assumption, the sub-trellises formed by the transition pattern above
are non-intersecting within stage k and k+ν−1. Hence, by utilizing (9) and (11), the
minimal path metric of each symbol assumption xk in (8) can be recursively computed as

min
xk

(
αi
k+ν−1 + γi,jk+ν + βjk+ν

)
= min

xk

(
αi
k+ν−1 + βik+ν−1

)
= min

xk

(
αi
k + βik

)
. (12)

Then, for each bit assumption xk,n the minimal path metric is the minimum of all |X |/2
symbols xk ∈ X that the nth bit equals to such an assumption. Therefore, the LLR in (8)
can be equivalently expressed as

L(xk,n) = min
xk,n=−1

(
αj
k + βjk

)
− min

xk,n=1

(
αj
k + βjk

)
. (13)

In Fig. 3, we illustrate the forward and backward recursions in the RS-SOVE at detection
stage k with a binary trellis with ν =2 and D=4. As can be seen, the state transactions
represented by the red lines and blues lines (both solid and dashed lines) do not merge
with each other at stage k and k+1, and the recursion (12) holds. The LLR calculation
in (13) shows that, with an arbitrary delay D and branch metric computation in (10), the
RS-SOVE can be reviewed as an MLM equalizer, but with a full forward recursion and
D-step back recursion at each stage.

Next we introduce the proposed optimal FOM shortener design that cooperates with decision-
feedback in the RS-SOVE which has been introduced in this section.

3 The Optimal FOM Channel Shortener Design for RS-SOVE

As the HOM shortener is a static and heuristic approach, it neither takes the noise power
nor the quality of feedback x̂ into account when designing whom. Consequently, the de-
tection performance is often inferior to the UBM shortener[26]. Moreover, the UBM
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shortener also suffers from performance losses in middle and high SNR regimes. The
reason is that, as mentioned earlier, the channel tails are truncated and the RS-SOVE
does not cooperate with feedback. On the other hand, with high SNR the hard de-
cisions are sufficiently good along the ML path, which can be exploited to cancel the signal
part corresponding to the channel tails, instead of direct truncating which ends up with a
transmission-energy loss.

Since we are dealing with ISI channels, the FOM receiver filters are designed assuming a
largeK, in which case we can letH represent theK×K circular convolution matrix instead
of the normal convolution⁴. Such an approximation has no impact on the information
rate as K→∞, see e.g., [31] for a rigorous information-theoretic treatment. From Szegö’s
eigenvalue distribution theorem[32, 33], the eigenvalues of Toeplitz matrices converge to the
Fourier transforms of the sequences that they induce. This implies that, we can equivalently
work with the Fourier transforms of all involved Toeplitz matrices, or the vectors that specify
them.

Denote the discrete-time Fourier transform (DTFT) of vector h and the inverse operation
(IDTFT) as

H(ω) =

L−1∑
ℓ=0

hℓ exp(jωℓ), (14)

hℓ =
1

2π

∫ π

−π
H(ω) exp(−jωℓ)dω. (15)

respectively. Next, we elaborate the optimal FOM shortener design. Although we adopt
the same approach as MILB-maximization, the FOM shortener is different from the pre-
vious designs[21, 26], which are based on Ungerbeock model and take no feedback into
consideration. In [34], the authors extend the UBM shortener to deal with soft feedback
and with turbo iterations. However, with RS-SOVE, there are no turbo iterations and the
UBM shortener is not applicable.

3.1 The FOM Channel Shortener Design with Feedback

Consider the Forney detection model with feedback,

p̃(y|x, x̂) = exp
(
−∥Wy − Fx−Bx̂∥2

)
, (16)

⁴Another conceptually simple way to interpret this is to replace the firstL−1 symbols inxwith its lastL−1
symbols, i.e., inserting CP. But, here we make such an approximation on H is solely for the sake of designing
optimal parameters of the channel shortener. We do not insert CP in the transmit blocks when evaluating the
detection performance later.
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where W , F and B areK×K convolution matrices generated from w, f and b, respect-
ively, and x̂ is the feedback. There is no constraint on w, and f , b are as below⁵,

f =
(
f0, f1, · · · , fν

)
, (17)

b =
(
0, · · · , 0︸ ︷︷ ︸

ν+1

, b0, b1, · · · , bL−ν−2

)
. (18)

The receiver filters (w,f , b) are optimized through maximizing the MILB, which is defined
as

ILB = lim
K→∞

1

K

(
Ex,y

[
ln p̃(y|x, x̂)

]
− Ey

[
ln p̃(y|x̂)

])
, (19)

where the expectations are taken over the true channel statistics⁶ expression of ILB and
with p̃(y|x, x̂) in (16),

p̃(y|x̂) =
∫
x
p̃(y|x, x̂)p(x)dx.

The quality of feedback x̂, which impacts the rate ILB, is measured by two parameters,

η =
1

K
E[x̂x̂†],

σ =
1

K
E[x̂x†]. (20)

In RS-SOVE, x̂ are hard symbols and we have η=1. With soft symbols feedback, η can
be calculated from the variance of the estimates, i.e., η=1−var(x̂). With optimal (w, f ,
b), and denoting ỹ as the received samples after filtering by w, the branch metric γi,jk in
(10) is calculated as

γi,jk =

∣∣∣∣∣ỹk −
ν∑

ℓ=0

fℓxk−ℓ −
L−ν−2∑
ℓ=0

bℓx̂k−ℓ−ν−1

∣∣∣∣∣
2

. (21)

Before optimizing (w, f , b), we introduce the following notations. Following (14), we
denote the DTFT of w, f , and b as W (ω), F (ω), and B(ω), respectively. Then, we let

M(ω) = − N0

N0 + |H(ω)|2
, (22)

M̃(ω) = σ2 (1 +M(ω))− σ, (23)

⁵Although with arbitrary w, the feedback filter b can be arbitrary long, we make such constraints to align
the complexity of decision-feedback detection in the RS-SOVE corresponding to the HOM shortener.

⁶In order to obtain a tractable problem[21], we make the assumption that x comprises IID complex Gaus-
sian variables when calculating ILB.
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and

ϕ(ω) =
[
exp (jω(ν+1)) exp (jω(ν+2)) . . . exp (jω(L−1))

]T
. (24)

Further, denote (L−ν−1)×1 vector ε1, and (L−ν−1)×(L−ν−1) Hermitian matrix
ε2 as

ε1 =
σ

2π

∫ π

−π
M(ω)F ∗(ω)ϕ(ω)dω, (25)

ε2 =
1

2π

∫ π

−π

M̃(ω)|F (ω)|2ϕ(ω)ϕ(ω)†

1 + |F (ω)|2
dω. (26)

With definitions in (22)-(26), we have the below lemma that states the closed-form MILB.

Lemma 1. The MILB in (19) equals

ILB =
1

2π

∫ π

−π

(
log
(
1+|F (ω)|2

)
−|F (ω)|2− L(ω)

1+|F (ω)|2

)
dω

+
1

π

∫ π

−π
R
{
F ∗(ω)

(
W (ω)H(ω)−σB(ω)

)}
dω, (27)

where

L(ω) = |F (ω)W (ω)|2
(
N0 + |H(ω)|2

)
+ σ|F (ω)B(ω)|2

−2σ|F (ω)|2R{H(ω)W (ω)B∗(ω)} .

Proof. In [20, eq.(5)-(6)], the generalized mutual information IGMI is derived for anyK×K
linear multi-input and multi-output (MIMO) channel. For ISI channels, which can be
viewed as special cases of MIMO channel, it holds that

ILB= lim
K→∞

1

K
IGMI.

By applying Szegö’s theorem [33] and after some manipulations, (27) follows.

With ILB stated in (27), the optimal W (ω) and B(ω) that maximize ILB are in Theorem
1.

Theorem 1. The optimalW (ω) that maximizes ILB equals,

Wopt(ω) =
H∗(ω)

(
1 + |F (ω)|2 + σF (ω)B∗

opt(ω)
)

F ∗(ω)(N0 + |H(ω)|2)
, (28)
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and when σ > 0, the optimal B(ω) reads,

Bopt(ω) = −ε†1ε
−1
2 ϕ(ω). (29)

WithWopt(ω) and Bopt(ω), ILB equals,

ILB =

{
J
(
F (ω)

)
, σ = 0,

J
(
F (ω)

)
− ε†1ε

−1
2 ε1, 0 < σ ≤ 1,

(30)

where J
(
F (ω)

)
reads

J
(
F (ω)

)
= 1 +

1

2π

∫ π

−π

(
log
(
1 + |F (ω)|2

)
+M(ω)

(
1 + |F (ω)|2

))
dω. (31)

Proof. See Appendix A.

In (30), the term−ε†1ε
−1
2 ε1 is the information rate increment due to the feedback x̂. From

Theorem 1, W (ω), B(ω) are in closed forms, and w, b can be obtained through IDTFT
operations. But for F (ω) and f , a closed form solution can not be reached. Hence, we use
a gradient-ascending based optimization, with the updating at each iteration defined as

f i = f i−1 +∇f∗ILB. (32)

As the DTFT of f reads

F (ω) =

ν∑
k=0

fk exp
(
jkω

)
,

the first-order derivatives of J (F (ω)) and ε†1ε
−1
2 ε1 in (30) with respect to fk read

∂J
∂fk

=
1

2π

∫ π

−π

(
M(ω)+

1

1+|F (ω)|2

)
F ∗(ω) exp

(
jkω

)
dω,

∂ε†1ε
−1
2 ε1

∂fk
= −∂ε

†
1

∂fk
ε−12 ε1+ε†1ε

−1
2

∂ε2
∂fk

ε−12 ε1,

respectively, and

∂ε†1
∂fk

=
σ

2π

∫ π

−π
M(ω)ϕ(ω)† exp(jkω)dω,

∂ε2
∂fk

=
1

2π

∫ π

−π

M̃(ω)|F (ω)|2ϕ(ω)ϕ(ω)†(
1+|F (ω)|2

)2 F ∗(ω) exp
(
jkω

)
dω.
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Although due to the non-concaveness of ILB in (30), the optimization may converge to a
local maximum, such an optimization over f is still meaningful, in the sense that the MILB
is increased even with a local maximum attained. We initialize f in (32) with hf obtained
from the HOM shortener. When N0 decreases and with σ = 1, such an initialization is
asymptotically close to the maximum point as the HOM shortener performs close the the
FOM shortener, due to the perfect feedback.

3.2 The UBM Channel Shortener Design without Feedback

Next, we introduce the UBM shortener design. By identifying V =F †W , R=F †B and
G=F †F , the model (16) can be rewritten as

p̃(y|x) = exp
(
2R{x†(V y −Rx̂)} − x†Gx+ ϑ

)
, (33)

where ϑ = −∥Wy − Bx̂∥2. In the design of the UBM shortener, G is an arbitrary
Hermitian matrix and can be non-positive definite[21]. In the RS-SOVE, the term ϑ is
calculated with the survival path on each state. In order to calculate ϑ, we need to decom-
pose G=F †F , which requires G to be positive definite. In such a case, (33) is identical
to (16), that is, the UBM shortener becomes the FOM shortener. This dilemma makes the
Ungerboeck model not suitable for decision-feedback detection. But with turbo iterations,
as x̂ is known before the RS-SOVE, it is the same for all states and ϑ can be removed from
(33). However, as we are designing a channel shortener with no turbo iterations, we assume
no feedback and (33) changes to

p̃(y|x) = exp
(
2R{x†V y} − x†Gx

)
. (34)

The K×K convolution matrix V generated from vector v has the same structure as W ,
while the K×K Toeplitz matrix G is Hermitian and band-shaped, with only the middle
2ν+1 diagonals can take non-zero values. Denote the vector comprising the first (ν+1)
elements in the first column of G as

g =
(
g0, g1, · · · , gν

)
.

With optimal (v, g), and denoting ỹ as the received samples after filtering by v, the branch
metric γi,jk is calculated as

γi,jk = g0|xk|2 − 2R
{
x∗k

(
ỹk −

ν∑
ℓ=1

gℓxk−ℓ

)}
. (35)

The model (34) has been considered in earlier literatures such as [1, 21]. The optimal solu-
tions of (v, g) can be found in [21], which can also be deduced from Theorem 1 directly.
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By setting σ=0, the optimal V (ω) for (34) reads

Vopt(ω) =
H∗(ω)

N0 + |H(ω)|2
(
1 +G(ω)

)
, (36)

and the optimalG(ω) is the unique solution that maximizes ILB in (19), which is evaluated
based on (34) and equals

ILB = 1 +
1

2π

∫ π

−π

(
log
(
1 +G(ω)

)
+M(ω)

(
1 +G(ω)

))
dω. (37)

Comparing (37) to (31), the only difference is that |F (ω)|2 in (31) is replaced by G(ω).
Therefore, the UBM shortener is more general than the FOM shortener under the case
that σ = 0. We point out the fact that, both the FOM and UBM shorteners are invari-
ant under the minimum-phase transforming of the original channel h. This is because,
the homomorphic filter whom is an all-pass filter, which has no impact on the noise stat-
istical properties, and then the convolution matrix generated from the all-pass filter will
be absorbed by the prefilters W and V , respectively. Hence, with the FOM and UBM
shorteners, it is no need to transform h into an minimum-phase equivalent form prior to
prefiltering.

3.3 Design the Optimal σ for the FOM Channel Shortener

In Theorem 1, the optimal W (ω) and F (ω) are related to the feedback quality parameter
σ. However, according to the expectation in (20), σ is hard to find at the design stage.
Moreover, it is not necessarily optimal to use the σ calculated with (20). Therefore, it is a
free optimization parameter. In the next, we analyze the optimal design of σ.

With higher-order modulations, we assume that when a symbol error occurs on the ML
path, the hard decision x̂k and the transmit symbol xk are independent. Then,

σ = (1− Pe) · E[|xk|2] + Pe · E[x̂kx∗k],
≈ 1− Pe, (38)

where Pe is the symbol error rate (SER) of the RS-SOVE. As LMMSE detection is a special
case of MILB detection with ν=0, when ν>0 the FOM shortener with the RS-SOVE is
superior to the LMMSE detector and renders a lower SER [20]. That is, denoting x̂LMMSE

as the LMMSE detector and PLMMSE
e as the corresponding SER, respectively, it holds that

Pe ≤ PLMMSE
e

(a)

≤ E
[(

x− x̂LMMSE
)(

x− x̂LMMSE
)†]/

2

(b)
= δmse/2. (39)
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Hard
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Figure 4: The diagram of evaluating the optimal σ for the FOM shortener. For each input σin, the optimal (w, f , b) are
calculated with Theorem 1, and the detection uses the FOM shortener followed by the RS-SOVE. The output σout =
1−Pe is measured based on the hard decisions output from the RS-SOVE.

where

δmse = −
1

2π

∫ π

−π
M(ω)dω,

which is the MSE of the LMMSE estimate. The inequality (a) is proved in Appendix B,
and the equality (b) is from Szegö’s eigenvalue distribution theorem. Hence, from (38) and
(39),

σ ≥ 1− δmse/2. (40)

The inequality (40) provides some insight about designing σ for the FOM shortener. As
we are expecting that, the RS-SOVE with decision-feedback shall outperform itself without
feedback, i.e., σ=0, the input σ to design (w,f , b) should be set to, at least larger than
1−δmse/2, and we can let σ=1 when δmse is sufficient small.

From Theorem 1, an input σ determines the optimal channel shortening parameters (w,
f , b), which in turn affects the quality of the decision-feedback x̂ in the RS-SOVE. There-
fore, there is a mismatch between the input σ, and the practical output σ measured by
the outputs of the RS-SOVE generated by such a designed σ. We therefore use Monte
Carlo simulation under the EPR-4 and Proakis-C ISI channels to exploit the relationships
between the input and output σ. The test set-up is depicted in Fig. 4 and the results are
depicted in Fig. 5. The output σout is measured with (20), under each input σin which is
utilized to generate the optimal parameters of the FOM shortener.

Under both channels, σin is increased from 0 to 1, and we have two interesting observations.
The first observation is that, with FOM shortener, the RS-SOVE can only benefit from
the hard decisions when the quality of feedback is above a certain threshold, otherwise,
setting σin =0, i.e., utilizing no feedback in the RS-SOVE (such as the UBM shortener)
is close to optimal. The second observation is that, when the RS-SOVE can benefit from
the feedback, setting σin=1 is close to optimal, which is aligned with the analysis leading
to (40). The reason behind this phenomenon is that, when SNR is low, implying that
the quality of x̂ in the RS-SOVE is fairly poor, it is better to truncate the channel tails to
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Figure 5: The optimal σ investigation under EPR-4 [35] channel with h=0.5+0.5−1−0.5z−2−0.5z−3 and 8PSK modulation.
The value σout is measured according to eq. (38). The red line presents the results of σout by setting σin=1−δmse/2

as in eq. (40). The simulation results under Proakis-C[36] channel withh=0.227+0.46z−1+0.668z−2+0.46z−3+
0.227z−4 are similar as those for EPR-4.

prevent error-propagation. However, when SNR is above a certain threshold, the feedback
quality improves and the FOM shortener will benefit from x̂, in which case we can let
σin = 1. Nevertheless, setting σin = 1−δmse/2 according to (40) also provides a good
estimation of the optimal input σ, especially when there is no priori information about the
required SNR in relation to the successful decoding.

As the UBM shortener is a more general and has better performance than the FOM shortener
when σ=0[34], when designing the optimal channel shortener, it is sufficient to consider
either the UBM shortener (34), or the FOM shortener (16) with σin=1. The remaining is-
sue is the criterion for choosing between these two shorteners. Such a criterion is difficult to
find theoretically, but as we show later through numerical results, it can be designed based
on the code-rate of the considered SC systems. This is so, since the decoder at medium
and high code-rates need better quality inputs generate from the detector for successive
decoding, therefore, the Pe is small and the quality of the feedbacks in the RS-SOVE is re-
latively good, in which case the proposed FOM channel shortener is superior to the UBM
shortener.

With the HOM, FOM and UBM channel shorteners introduced in Sec. II-A, Sec. III-A,
and Sec. III-B, respectively, next we analyze the mutual information (MI) characteristics.
We show that the FOM shortener is superior to the HOM shortener in general, and better
than the UBM shortener when the feedback x̂ are fairly good.
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4 Theoretical Information Rates of the Channel Shorteners

For simplicity, we denote the optimal ILB of the FOM and UBM shorteners as IFOM

and IUBM, calculated in (30) and (37), respectively. Further, we denote IFOM computed
with σ=0 and 1 as I0FOM and I1FOM. Similarly, we let IHOM denote the information rate
reached by the HOM shortener. Firstly, we state the below property.

Property 1. DenoteHf(ω) andHb(ω) as the DTFTs ofhf andhb in (6) and (7), respectively.
Then, it holds that

ILHOM ≤ IHOM ≤ IUHOM, (41)

where

ILHOM =
1

2π

∫ π

−π
log

(
1 +

|Hf(ω)|2

1 + |Hb(ω)|2

)
dω, (42)

IUHOM =
1

2π

∫ π

−π
log
(
1 + |Hf(ω)|2

)
dω. (43)

Proof. As h=hf+hb, the received signal model (5) can be rewritten as

ỹ = hf ⋆ x+ hb ⋆ x+ ñ.

The lower bound of IHOM is achieved when feedback x̂ acts as noise, while the upper
bound is achieved when x̂ is perfect. Therefore, the inequality (41) holds.

More discussions about the properties of truncated channel response Hf(ω) can be found
in, e.g., [37]. Here we mention the fact that, the upper bound IUHOM can be higher than
Shannon capacity C, due to the perfect feedback. Secondly, we state Property 2.

Property 2. The below inequalities hold,

IHOM ≤ I0FOM ≤ IUBM ≤ C. (44)

Proof. See Appendix C.

From Property 2, when there is no feedback, the FOM shortener is lower-bounded by
the HOM shortener and upper-bounded by the UBM shortener. Further, all of them are
bounded by C. However, when σ>0, the rate of the FOM shortener can be higher than,
both the UBM shortener and C, due to the presence of feedback.

Lastly, we build the relationship between IUHOM and I1FOM, which is stated in Property 3.
Although with σ=1, the feedback x̂ is perfect, the symbol detection is still utilizing the
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received samples ỹ, which are not perfect. Therefore, such a comparison is meaningful and
shows that, when there are no errors in x̂, the FOM shortener is superior to the HOM
shortener.

Property 3. The below inequality holds,

IUHOM ≤ I1FOM. (45)

Proof. By setting (w,f , b) = (whom,hf ,hb), the FOM shortener is identical to the
HOM shortener. And with σ = 1, ILB in this case equals IUHOM. As I1FOM maximizes
ILB, (45) holds.

We summarize the above discussions in the below theorem.

Theorem 2. The below equalities of theoretical information rates hold with σ=0,

ILHOM ≤ IHOM ≤ I0FOM ≤ IUBM ≤ C, (46)

while with σ=1, the below inequalities hold,

IHOM ≤ IUHOM ≤ I1FOM. (47)

Proof. Combing Properties 1-3 yields Theorem 2.

Theorem 2 shows that, when the quality of feedback is poor, i.e., σ=0, the UBM shortener
has best performance compared to both the FOM and HOM shorteners, while when the
feedback is perfect, the FOM shortener outperforms both the HOM and UBM shorteners.
Moreover, as we showed earlier, the optimal σ for the FOM shortener is either 0 or 1, hence,
one can design a system that switches between the UBM shortener, and the FOM shortener
designed for σ=1, to achieve the best performance under all cases.

Note that with f=hf and the optimal wopt, bopt calculated in (28) and (29), ILB equals

ILB = 1+
1

2π

∫ π

−π

(
log
(
1+|Hf(ω)|2

)
+M(ω)

(
1+|Hf (ω)|2

))
dω−ε†1ε

−1
2 ε1. (48)

By definition, ILB in (48) is no less than ILB computed with (whom,hf ,hb), which equals
IUHOM. From (43) and (48), we have an interesting corollary below that shows the relation
between h and hf for any ISI channels, and reveals the fact that, with the same target
response f but optimized w, b, the FOM shortener outperforms the HOM shortener.
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Corollary 1. For any ISI channel h and the target response hf defined in (6), the inequality

ε†1ε
−1
2 ε1 −

1

2π

∫ π

−π
M(ω)

(
1 + |Hf(ω)|2

)
dω ≤ 1,

holds, where ε1, ε1 are defined in (25) and (26) with F (ω)=Hf(ω), andM(ω), M̃(ω) are
defined in (22) and (23) with σ=1, respectively.

5 Detection Complexity

In this section, we analyze the detection complexity of the HOM, UBM, and FOM de-
tectors. The detection complexity contains three parts: computing the channel shortening
filters that are listed in Table 1, prefiltering and feedback filtering operations, and the trellis-
search in RS-SOVE.

We first discuss the complexity involved in the computation of the channel shortening
filters. It was shown in [26, 38] that, the number of complex multiplications (CM) to
compute the channel shortening filters is O (N log2N) for both the HOM and MILB
detectors, where we assume that one CM is equivalent to 4 real multiplications and N is
the fast Fourier transforms (FFT) size for frequency domain computations (with a typical
value 128). Moreover, although sharing the same complexity order, the MILB detectors are
shown to require only around half the complexity of the HOM detector in [26]. With FOM
detector, the preprocessing complexity is slightly higher as a numerical optimization of f is
needed. However, the complexity increment is neglectable compared to the complexity of
trellis-search in RS-SOVE due to the fast convergence of the optimization. Nevertheless,
the majority part of the detection complexity lies in the the filtering operations and trellis-
search as they are per-symbol based operations, especially with a large block length K and
high-order modulation size |X |.

Next we analyze the complexity involved in prefiltering, feedback filtering, and the trellis-
search, which are summarized in Table 2 in terms of the number of CM per symbol.
Without loss of generality, the filtering operations are in time domain and the lengths
of prefilters are set to the size of FFT. In RS-SOVE, the number of states is |X |ν and the
branching factor equals |X | for all three detectors. Computing the branch metric γi,jk for
each state transition requires

(
ν+ 3

2

)
CM operations (without the feedback filtering). As

can be seen from Table 2, the FOM and HOM have the same complexities, while the UBM
has less complexity due to the fact that there is no feedback filtering operations.
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Table 2: Complexity-Performance Comparison between the Detectors per Symbol-detection.

Detector Prefiltering
Feedback

filtering

Number

of states

Branching

factor

Compute path

metric γi,j
k

The total number of

CM operations per symbol

FOM N L−ν−1 |X |ν |X | ν+ 3
2

N+|
(
L+ 1

2

)
X|ν+1

UBM N n.a. |X |ν |X | ν+ 3
2

N+|
(
ν+ 3

2

)
X|ν+1

HOM N L−ν−1 |X |ν |X | ν+ 3
2

N+|
(
L+ 1

2

)
X|ν+1

6 Empirical Results

In this section, we provide empirical results to show the information rates and detection
performance of the proposed FOM channel shortener with RS-SOVE, which is compared
to the UBM and HOM shorteners. Throughout all tests, without explicitly pointing out we
assume that the memory length ν=1 after channel shortening to achieve a low-complexity
receiver design.

For each transmit symbol vectorx, with different channel shorteners, the bit LLRsL(xk,n)
are calculated in (8) based on different branch metric computations as in (10), (21), and (35),
respectively. As the transmit bits xk,n are independent, the logarithm of the conditional
probability of each symbol x′k ∈X for a given transmit symbol xk, i.e., p(x′k|xk), can be
computed as

log p(x′k|xk) =
log2 |X |−1∑

n=0

log p(x′k,n|xk,n)

=

log2 |X |−1∑
n=0

((1 + x′k,n)L(xk,n)

2
− log

(
1 + exp (L(xk,n))

))
.

Then, the measured MI is calculated as

I(y;x) = log |X | − Exk,x
′
k∈X

[
log p(x′k|xk)

]
.

6.1 The Impact of Decision-Delay D in RS-SOVE

First, we evaluate the normalized MI measured for the EPR-4 channel, and investigate the
impact of decision-delay D for different modulation schemes in RS-SOVE. The HOM
shortener is tested with D set to L−1, L+2 and L+20, respectively. As can be seen in
Fig. 6, with 16QAM modulation, enlargingD from L−1 to L+2 has around an SNR gain
of 0.4 dB in terms of the normalized MI. However, further increasingD up to L+20 only
has marginal SNR gain. Since a larger delay increases process latency in the RS-SOVE, in
the remaining tests we set D=L+2 in the RS-SOVE for all channel shorteners.
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Figure 6: Performance evaluation of the HOM shortener with different delays and modulation schemes. From left to right, the
modulation schemes are quadrature-phase-shift keying (QPSK), 8PSK and 16QAM. The normalized MI is measured
with the output from the RS-SOVE.
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Figure 7: Theoretical information rates under EPR-4 channel (the legend is ordered from the top curve to the bottom curve).

6.2 Theoretical Information Rates

Next, we simulated the theoretical information rates that have been discussed in Sec. IV
under EPR-4 channel (the results for the Proakis-C channel is similar). In comparison,
we also add the rates of IFOM with σ=1−δmse/2. The rates of LMMSE detection and
Shannon capacity C are also presented. As can be seen in Fig. 7, with σ=0 the information
rates of the FOM shortener (I0FOM) and the UBM shortener (IUBM) are quite close. In
the low SNR regime, the UBM shortener is superior, while in the high SNR regime, the
information rates of the FOM shortener with σ=1 (I1FOM) are the best. As SNR increases,
IUHOM asymptotically approaches the rate I1FOM, and both curves almost overlap with the
capacity C.
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Figure 8: Measured MI under Proakis-C channel and with different modulation schemes. The UBM shortener provides the best
performances when the normalized MI is lower than around 1/2, while the FOM shortener with σ = 1 is the best
when the normalized MI is above 1/2. The conventional HOM shortener is in general interior, except in the high SNR
regime where approaches the rates of the FOM.

6.3 Measured MI

To verify the practical performance, we measure the MI achieved by the three shorteners
with different modulation schemes under Proakis-C channel. As can be seen in Fig. 8,
the measured MI results are well aligned with the theoretical analysis illustrated in Fig. 7.
The UBM shortener outperforms both the FOM and HOM shorteners in the low SNR
regime. But as SNR increases, the FOM shortener becomes superior to the other two
shorteners. The HOM shortener is in general inferior to the FOM shortener, and in the
high SNR regime the HOM shortener performs close to the FOM shortener. We also add
the information rates of the FOM shortener with both σ=1−δmse/2 and σ=1−δmse/4,
which are inferior to the rates of the FOM shortener with σ=1 in the high SNR regime.

Most interestingly, the cross points of the FOM shortener with σ = 1 and the UBM
shortener are around 1/2 in terms of the normalized MI, which indicates that, the switch-
ing criterion of the FOM and UBM shorteners can be based on the output MI of the
RS-SOVE, or equivalently, the input MI to the outer-decoder. As for error-correcting
codes, the input MI of the LLRs sent to the decoders shall be no less than the code-rate for
successfully decoding. Hence, we can use the code-rate as a criterion: when the code-rate
is above 1/2, the FOM shortener will provide better performance, otherwise we switch to
the UBM shortener. This is also due to the fact that the FOM shortener is superior to the
UBM only when the feedback quality is fairly good.
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Figure 9: The convergence speed of the FOM shortener. The dashed lines are with σ = 1/2 while the solid lines are with
σ=1. In both cases and from bottom to up, the SNR equals 10dB, 12dB, 14dB, and 16dB, respectively. With larger
σ, the optimization need more steps to converge. However, as can be seen in both figures, the optimization process
converges in 4-8 iterations.

6.4 Parameter Optimization of the FOM Channel Shortener

Next, we evaluate the parameter optimization of the FOM channel shortener. As stated
in Theorem 1, the optimal prefilters w and b are in closed forms, while the optimal f has
to be found through an optimization process. In Fig. 9, we plot the convergence speed
under EPR-4 and Proakis-C channels at different SNR points. We test with σ=1/2 and
σ=1, respectively. As can be seen, the optimization converges very fast in a few number
of iterations.

6.5 Performance Evaluation with Turbo Codes

At last, we evaluate the coded BER performance with turbo codes from LTE standard [39]
and under different code-rates and modulation schemes. The number of information bits
is set to K=1064 for all tests. We make no attempts to optimize σ and directly set σ=1
for testing with EPR-4 and Proakis-C channels.

In Fig. 10, we evaluate the coded BER under EPR-4 channel with 8PSK modulation. As
expected, the UBM shortener performs the best at code-rates 1/3 and 1/2. At higher code-
rates 2/3 and 3/4, the UBM shortener becomes inferior to the proposed FOM shortener.
In all cases, the FOM shortener is superior to the HOM shortener.

In Fig. 11, we evaluate the coded BER under Proakis-C channel with 16QAM modulation.
In this case, the UBM shortener outperforms the other two channel shorteners at code-rate
1/3 only. At higher code-rates, the UBM shortener perform poorly. However, the FOM
shortener is still around 1-2 dB better than the HOM shortener at all code-rates in terms
of SNR. The results are also aligned with Fig. 8 where we show that the UBM shortener
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Figure 11: The coded BER with different code-rates under Proakis-C channel. Truncating the channel tails in the UBM shortener
renders significantly performance losses at code-rates higher than 1/2. The FOM shortener is better than the HOM
shortener for all code-rates.

outperforms the FOM shortener only when the normalized MI is less than 1/2, and with
higher MI the UBM is inferior.

6.6 Performance Evaluation with Statistical Channel

In Fig. 12, we evaluate the coded BER under 8-tap IID Gaussian channels, where each
channel-tap is a real Gaussian variable with zero-mean and variance 1/8, that is, the total
power of the ISI channel is 1. We test with 8PSK modulation and a code-rate 2/3. As the
ISI channel is statistical, we set σ=1−δmse/2 according to (40) for the parameter design
of the FOM shortener. As can be seen from Fig. 12, with ν=1 and 2, the FOM shortener
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Figure 12: The coded BER with a code-rate 2/3 under 8-tap IID Gaussian channels with 8PSK modulation and ν=1 and 2.

outperforms the UBM and HOM shorteners more than one 1 dB and 0.5 dB in terms of
SNR at 0.1/% BER. Further, the UBM shortener has an error-floor at the high SNR with
ν=1 due to the truncation of the channel tails.

Next, we evaluate the coded BER with ISI channels where the power-delay-profile (PDP)
obeys different exponentiation decays. We also test under 8-tap IID Gaussian channels,
but now each channel-tap is a complex Gaussian variable with zero-mean and the power
for the nth (0≤n≤7) tap equals

Pn=exp (−nθ) /
7∑

n=0

exp (−nθ) .

With θ=0, the PDP is uniformly distributed with identical power 1/8 for each channel-
tap, while with setting θ to be sufficiently large, we obtain a single-tap complex Gaussian
channel without ISI. The PDP for different values of θ is depicted in Fig. 13.

In Fig. 14, we evaluate the required SNR for a target coded BER 0.1/% for different setting
of θ as in Fig. 13, and with 8PSK modulation and a code-rate 2/3. As it can been see that,
the UBM shortener has a large SNR gap compared to the other shorteners due to the high
code-rate, while the FOM shortener is superior to the other shorteners in a wide range of
θ. The SNR gain of the FOM shortener compared to the UBM and HOM shorteners
is around 4 dB and 2dB when θ is relatively small, that is, severe ISI are introduced by
the channel. Further, as it can be seen that when θ is smaller than 1, the HOM shortener
becomes even inferior to the LMMSE because of the error propagations in the decision
feedbacks. As θ increases, all shorteners performs close as the channel energy is focused
on the first few channel taps. With the largest values of θ, all shorteners are aligned with
LMMSE since now the channel becomes a single-tap channel.
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7 Summary

In this paper, we consider the mutual information lower bound (MILB) based channel
shortener design that used in conjunction with the reduced-state soft-output Viterbi equal-
izer (RS-SOVE), namely, the FOM shortener. We show that the FOM channel shortener
cooperating with the RS-SOVE has major gains over the Ungerboeck detection model
based channel shortener, namely, the UBM shortener, at medium and high code-rates. Due
to the lack of probabilistic meaning, the UBM shortener truncates the channel tails and
utilizes no decision-feedback detection. Both the FOM and UBM shorteners significantly
outperform the conventional homomorphic filtering based channel shortener, namely, the
HOM shortener. We also analyze the theoretical information rates of the proposed FOM
channel shortener in relation to the Shannon capacity and the previous channel shortener
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designs. In addition, we extend the RS-SOVE to an arbitrary delay that can be larger than
the duration of the intersymbol interference (ISI) channel, and we show that, the trellis
search process is equivalent to a full forward recursion and a backward recursion with a
depth that equals the delay.

Appendix A: The Proof of Theorem 1

The DTFT of w reads

W (ω) =

∞∑
k=−∞

wk exp(jkω) ,

and the differential of ILB in (27) with respect to wk is

∂ILB
∂wk

= − 1

2π

∫ π

−π

|F (ω)|2
(
N0+|H(ω)|2

)
W ∗(ω)

1 + |F (ω)|2
exp(jkω) dω

+
1

π

∫ π

−π

(
F ∗(ω)H(ω) +

σ|F (ω)|2H(ω)B∗(ω)

1+|F (ω)|2
)
exp
(
jkω

)
dω. (49)

As (49) shall equal zero for all k, the optimalW (ω) is in (28). InsertingWopt(ω) back into
(27) yields

ILB =1+
σ

π

∫ π

−π
R
{
F ∗(ω)B(ω)M(ω)

}
dω+

1

2π

∫ π

−π

(
log
(
1+|F (ω)|2

)
+
M̃(ω)|B(ω)F (ω)|2

1+|F (ω)|2
+M(ω)

(
1+|F (ω)|2

))
dω. (50)

Setting σ=0, ILB in (50) is then equal to (31). With 0<σ≤1, the terms related to B(ω)
in (50) are

F(B(ω)) =
σ

π

∫ π

−π
R
{
F ∗(ω)B(ω)M(ω)

}
dω+

1

2π

∫ π

−π

M̃(ω)|B(ω)F (ω)|2

1+|F (ω)|2
dω. (51)

With ε1, ε2 defined in (25) and (26), (51) can be rewritten as

F(B(ω)) = bε2b
†+2R

{
bε1
}
. (52)

Optimizing (52) directly yields bopt = −ε†1ε
−1
2 . Then the optimal Bopt(ω) is given in

(29). InsertingBopt(ω) back into (50) and after some manipulations, ILB with the optimal
Wopt(ω) and Bopt(ω) is then in (30).
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Appendix B: Proof of Inequality (a) in (39)

Let e= x̂LMMSE − x̂, where x̂ is the hard decision corresponding to estimate x̂LMMSE.
Then,

E
[(

x− x̂LMMSE
)(

x− x̂LMMSE
)†]

= E
[
(x− x̂− e) (x− x̂− e)†

]
=
(
1− PLMMSE

e

)
E
[
ee†
]
+ PLMMSE

e

(
E
[
(x− x̂) (x− x̂)†

]
+ E

[
ee†
])

≥ PLMMSE
e E

[
(x− x̂) (x− x̂)†

]
.

Assuming x and x̂ are independent for higher-order modulations, it holds that

E
[
(x− x̂) (x− x̂)†

]
= E

[
xx†

]
+ E

[
x̂x̂†

]
= 2.

Therefore, the below inequality holds,

PLMMSE
e ≤ E

[(
x− x̂LMMSE

)(
x− x̂LMMSE

)†]/
2.

Appendix C: Proof of Property 2

As the HOM shortener is a special case of the FOM shortener, by definition IHOM≤I0FOM

holds. With σ = 0 and from Theorem 1, by identifying G(ω) = |F (ω)|2 , ILB can be
written in the same form as in (37). As the UBM shortener maximizes (37) under constraint
that 1+G(ω) ≥ 0 for all ω, which is also true for stetting G(ω) = |F (ω)|2, therefore,
I0FOM≤IUBM holds.

Next, we prove IUBM≤C. Note that,

G(ω) = 2R

{
g0 +

ν∑
k=1

gk exp
(
jkω

)}
.

Taking the differential of IUBM in (37) with respect to gk and g∗kresults in∫ π

−π

exp
(
jkω

)
1 +G(ω)

dω=−
∫ π

−π
M(ω) exp

(
jkω

)
dω, −ν ≤ k ≤ ν.
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Hence, the below equality holds with the optimal G(ω), which we denote as G0(ω),

1

1 +G0(ω)
+M(ω) = 2R

∑
|k|>ν

τk exp
(
jkω

) , (53)

for some constants τk. On the other hand, as

G0(ω) = 2R

{
ĝ0 +

ν∑
k=1

ĝk exp
(
jkω

)}
, (54)

for some ĝ=(ĝ0, ĝ1, · · · , ĝν), multiplying both sides in (53) with (1 +G0(ω)) results in

1+M(ω)(1+G0(ω))=−2 (1+G0(ω))R

{∑
k>ν

τk exp
(
jkω

)}
. (55)

Integrating (55) over ω in [−π, π) and utilizing (54) lead to

1

2π

∫ π

−π
M(ω) (1 +G0(ω)) dω = −1. (56)

Therefore, with G0(ω), ILB in (37) equals

IUBM =
1

2π

∫ π

−π
log(1 +G0(ω))dω.

As the logarithm function is concave, from the definition of M(ω) in (22) and utilizing
(56),

IUBM − C =
1

2π

∫ π

−π
log(1 +G0(ω))dω −

1

2π

∫ π

−π
log

(
1 +
|H(ω)|2

N0

)
dω

=
1

2π

∫ π

−π
log
(
−M(ω) (1 +G0(ω))

)
dω

≤ log

(
− 1

2π

∫ π

−π
M(ω) (1 +G0(ω)) dω

)
= 0.

Therefore, IUBM ≤ C holds which completes the proof.
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A Soft-Output MIMO Detector with Achievable
Information Rate based Partial Marginalization

In this paper, we propose a soft-output detector for multi-input multi-output (MIMO) channels
that utilizes achievable information rate (AIR) based partial marginalization (PM).The proposed
AIR based PM (AIR-PM) detector has superior performance compared to previously proposed
PM designs and other soft-output detectors such as K-best, while at the same time yielding lower
computational complexity, a detection latency that is independent of the number of transmit lay-
ers, and straightforward inclusion of soft input information. Using a tree representation of the
MIMO signal, the key property of the AIR-PM is that the connections among all child layers are
broken. Therefore, least-square (LS) estimates used for marginalization are obtained independ-
ently and in parallel, which have better quality than the zero-forcing decision feedback (ZF-DF)
estimates used in previous PM designs. Such a property of the AIR-PM detector is designed via a
mismatched detection model that maximizes the AIR. Furthermore, we show that the chain rule
holds for the AIR calculation, which facilitates an information theoretic characterization of the
AIR-PM detector.

©2017 IEEE. Reprinted, with permission, from
S. Hu and F. Rusek,
“Soft-output MIMO detector with achievable information rate based partial marginalization,”
IEEE Trans. Signal Process., vol. 65, no. 6, pp. 1622-1637, Mar. 2017.
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1 Introduction

As specified by 3GPP standardization, user equipment (UE) connected to an LTE/LTE-A
system nowadays needs to support downlink multi-input multi-output (MIMO) trans-
missions with up to 8 transmit antennas. In the foreseeable future, many communication
systems will be based upon full-dimension MIMO or massive MIMO that immerse in 5G
[1], and the number of transmit antennas will increase to 16 or more. Meanwhile, the num-
ber of antennas in the UE has also rapidly increased [2] to facilitate downlink transmissions
with a large number of spatial layers. This requires efficient design of low-complexity and
hardware-friendly MIMO detectors.

A review of state-of-the-art MIMO detection techniques can be found in, e.g., [3]. Al-
though maximum-likelihood (ML) detection [7] provides optimal performance, the com-
plexity, however, increases exponentially in the number of transmit antennasN (for simpli-
city, we assume that the number of transmit layers equals the number of transmit antennas)
and the cardinality of the signal constellation X . Therefore, ML is only applicable for set-
tings with smallN , and low-order modulation such as 4 quadrature amplitude modulation
(4-QAM). For UEs that support MIMO with largeN and 16-QAM or higher modulation
orders, the computational cost of ML is prohibitive. On the other hand, linear detectors
such as zero-forcing (ZF) and linear minimum mean square error (LMMSE), have low com-
putational cost but suffer from rate losses, especially when the MIMO channel is spatially
correlated.

Other detectors, such as sphere decoding (SD) [8, 9] and list decoding [10], usually have
random detection complexities. Fixed-complexity sphere decoding (FCSD) [11], and breadth-
first SD [12] variants such as the QR-decomposition based M-algorithm[13] and the K-best
algorithm[14], have been developed to overcome such an obstacle. However, these detectors
are efficient in finding the ML path in the tree-search which generates the hard decisions,
but not the best competing paths. It can occur that no counter-hypothesis is available in
the set of survival paths for calculating the log-likelihood ratio (LLR) of a certain bit. Then,
approaches such as using the difference between the best and worst metrics among all the
paths as the soft information[15], flipping the desired bit of the ML path[16], and assigning
a predefined-value, are adopted to approximate the LLR. However, such approximations
degrade the quality of LLRs sent to the error-correcting decoder.

Another approach to reduce the detection complexity is through partial marginalization
(PM) [17, 18], which carefully selects ν layers (which we refer to as parent layers) out of
N layers, and marginalizes over the remaining layers (which we refer to as child layers)
using ZF with decision feedback (ZF-DF) estimates. The advantages of PM are that it
has fixed complexity, and that the detection is parallelizable for parent layers. However,
there are also drawbacks. Firstly, as the ZF-DF process based on QR-decomposition is
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needed for each bit assumption of the child layers, the process is heavy for large N and
the quality of the ZF-DF estimates also degrades. Secondly, as ZF-DF utilizes a sequential
detection, it is not parallelizable for child layers, rendering a detection latency that is linear
in the number of child layers. Lastly, when dealing with soft information, such as with
an iterative detection and decoding receiver, the ZF-DF process needs to solve a nonlinear
equation at each iteration [18].

In order to address such issues and further reduce the detection complexity, it is of interest
to improve the ZF-DF process in PM. An intuitive idea is to break the connections among
child layers through a pre-process such that, sub-optimal estimates are easy to find while
all advantages of PM are still preserved. This brings us to design a detection model based
on maximization of the achievable information rate (AIR). The AIR, which is a general-
ized mutual information[19, 20] that the transceiver system can achieve with a mismatched
channel model at the receiver, is first considered in [21] for designing a reduced-state de-
tector in inter-symbol interference channels. In [22] and successively [23–26], the authors
extend the AIR based reduced-state detection to any linear vector channel with a closed
form optimization procedure. The advantages of the framework in [22] are that the detec-
tion model can be chosen at will, and that the parameters are easy to optimize.

In light of [17] and [22], we develop the AIR-PM detector in this paper. After a pre-
process, all connections among child layers are removed in the effective channel and results
in a special structure. This structure, which will be made precise in forthcoming sections,
significantly reduces the computational cost of finding estimates for the child layers. The
AIR-PM detector also provides a simpler and fully parallel hardware structure both for
parent and child layers. Another advantage of the AIR-PM detector is that the order among
the child layers and the parent layers is irrelevant. Hence, finding the optimal ordering with
AIR-PM collapses into the much simpler problem of selecting the best ν parent layers out
of N layers.

The main contribution of the paper is that we propose a two-step soft-output AIR-PM
MIMO detector. The first step is pre-processing. With a user-defined parameter ν, ν
layers that maximize the AIR are selected as parent layers, with the remaining layers being
child layers. The parameters to describe the new detection model are solved in closed forms.
Then, in the second step, a full tree description of the signal space is maintained for parent
layers, and the marginalization over child layers utilizes least-square (LS) estimates. Differ-
ent from the PM detector, as there are no connections among child layers, obtaining the
LS estimates is straightforward, and the marginalization through AIR-maximization guar-
antees that an optimal AIR is attained. Furthermore, we show that the chain rule holds for
the AIR calculation of the AIR-PM detector, and analyze the properties of ergodic AIR in
correlated Rayleigh fading channels.

The rest of the paper is organized as follows. In Sec. II, the MIMO signal model and a
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review of previous related detectors are given. In Sec. III, the proposed AIR-PM detector
is explained in detail. In Sec. IV, the chain rule of the AIR is proved, and the ergodic
AIR in correlated Rayleigh fading channels is analyzed. In Sec. V, we extend the AIR-PM
detector to multiple detection branches, imperfect channel estimation, soft inputs, and
provide Monte-Carlo simulations with finite constellations. In Sec. VI, empirical results
on AIR, ergodic AIR, and frame error rate (FER) are presented for a variety of setups.
Finally, Sec. VII concludes the paper.

Notation

Throughout this paper, boldface letters indicate vectors and boldface uppercase letters des-
ignate matrices. Superscripts (·)−1, (·)1/2, (·)∗, (·)T and (·)† stand for the inverse, matrix
square root, complex conjugate, transpose, and Hermitian transpose, respectively. Fur-
thermore, E[·] is the expectation operator, R{·} takes the real part, and I{·} takes the
imaginary part. The expression A ∝ B means that (A−B) equals some constant, and
A≻B means that (A−B) is positive-definite. The complex normal distribution is de-
noted as h ∼ CN (a,R), with a and R being the mean and covariance matrix of h,
respectively. We also reserve am,n to denote the element at the mth row and nth column
of matrix A, am to denote the mth element of vector a, and I to represent the identity
matrix. In addition, vec (A) stacks the columns of A on top of each other, Adiag denotes
a diagonal matrix whose diagonal elements are identical to A, and |X | is the cardinality of
the symbol constellation X . Furthermore, we define an operator “⊖” such that

(n,N)⊖ ν = max(n,N − ν).

2 Signal Model and review of previous related work

Consider a signal model with N transmit antennas and K receiver antennas. The trans-
mitted signal x∈CN comprises unit average energy information symbols that belong to
a constellation X , with each symbol mapped from M bits. The matrix H ∈CK×N rep-
resents the MIMO communication channel, and the received signal y ∈ CK is modeled
as

y = Hx+ e, (1)

where the noise term e∼CN (0, N0I). Next, we review some state-of-the-art soft-output
MIMO detectors.
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2.1 MAP/ML Detection

The conditional probability p(y|x) according to model (1) reads

p(y|x) = 1

(πN0)
N

exp

(
− 1

N0
∥y −Hx∥2

)
. (2)

Denoting xmn (equals to 1 or -1) as the mth bit of the nth symbol xn in x, and given the
observable y and prior distribution p(x), the maximum a posteriori probability (MAP)
detector generates the LLR of bit xmn as

L(xmn |y) = ln
p(xmn = 1|y)
p(xmn = −1|y)

= ln

∑
x:xm

n =1
p (y|x) p(x)∑

x:xm
n =−1

p (y|x) p(x)

= ln

∑
x:xm

n =1
exp (µ(y|x) + ln p(x))∑

x:xm
n =−1

exp (µ(y|x) + ln p(x))
, (3)

where the metric µ(y|x) is defined as

µ(y|x) = − 1

N0
∥y −Hx∥2. (4)

With sufficiently good interleaving, we can safely assume the transmit bits to be independ-

ent. Therefore, ln p(x)=
N∑

n=1
ln p(xn) and

ln p(xn) =

M∑
m=1

ln p(xmn ) =

M∑
m=1

(
(1 + xmn )L̃m

n

2
− ln

(
1 + exp

(
L̃m
n

)))
, (5)

where L̃m
n is a priori LLR of bit xmn , such as the extrinsic information output from the

outer decoder in an iterative detection and decoding receiver. With no prior information,
i.e., L̃m

n =0, the LLR in (3) equals

L(xmn |y) = ln

∑
x:xm

n =1
exp (µ(y|x))∑

x:xm
n =−1

exp (µ(y|x))
. (6)

The fundamental issue with computing (3) or (6) is that, the sum operation is taken over
O(|X |N ) terms, which makes direct evaluation infeasible for large |X | orN . To reduce the
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computational complexity, the ML with Max-Log approximation (MLM) detector utilizes
the Jacobian approximation [28] ln(ea + ba)≈max(a, b) to approximate the LLR calcu-
lation in (6) as

L(xmn |y) = max
x:xm

n =1
µ(y|x)− max

x:xm
n =−1

µ(y|x). (7)

However, finding the maximum of µ(y|x) over x is an NP-hard optimization problem,
and the MLM still suffers from intensive computations. An alternative approach, is to only
keep a small number of survival paths in (7), such as in the K-best detector.

2.2 K-best Detector

The K-best detector is a variant of the breadth-first SD detector. After an optimal re-
ordering of the columns in H , the QR-decomposition Q†H=R is implemented, where
Q is unitary andR is upper-triangular. Let ỹ=Q†y, the metricµ(y|x) in (4) is computed
as

µ(y|x) = − 1

N0
∥Q†y −Rx∥2

= − 1

N0
|ỹN − rN,NxN |2 −

1∑
n=N−1

1

N0

∣∣∣∣∣ỹn − rn,nxn −
n+1∑
k=N

rn,kx̂k

∣∣∣∣∣
2

︸ ︷︷ ︸
µ(y|xn,xn+1,··· ,xN )

.

For the nth layer, when computing µ(y|xn, xn+1, · · · , xN ), the K best hard decisions
of symbol vector (x̂n+1, x̂n+2, · · · , x̂N ) are used. The advantages of K-best detector over
other SD detectors are that, it has fixed complexity and is easy to implement in hard-
ware.nThe drawback is, without the best counter-hypotheses found to maximize µ(y|x)
for each of the bit assumptions, the LLR values calculated through (7) will not comply with
their true probabilities. At worst cases, the counter-hypotheses may be missing for some
of the bit assumptions and the LLRs have to be saturated to some limit values. As a result,
these large LLRs may become difficult to be corrected by channel decoder and degrade the
decoding performance. Such an issue of ‘LLR overestimating’ is commonly encountered
with suboptimal detectors such as the LMMSE and the soft LMMSE that cooperates a
priori information into the filter [26, 27]. With PM detector, the LLRs might still be over-
estimated (due to the partial marginalization), but the counter-hypotheses for all bits are
evaluated and the corresponding metrics are preserved, which yield better estimates of the
LLRs than those produced by the K-best detector.
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2.3 Partial Marginalization (PM) Detector

With PM detector, x (after re-ordering) is split into two parts (xb,xa), which we denote
as

xa = (xN−ν+1, xN−ν+2, · · · , xN ) ,

xb = (x1, x2, · · · , xN−ν) .

The posterior density is marginalized exactly over signal part xa, while the density is ap-
proximately marginalized over signal part xb using its hard decision. The metric µ(y|x)
in (4) can equivalently be written as

µ(y|xb,xa) = −
1

N0
∥y −Hbxb −Haxa∥2,

where Ha and Hb are the sub-channels corresponding to signals xa and xb,

Ha = (hN−ν+1,hN−ν+2, · · · ,hN ) ,

Hb = (h1,h2, · · · ,hN−ν) .

With partial marginalization over xb, the LLRs corresponding to bit xmn in xa and xb are
approximated [17] as

L(xmn |y) = ln

∑
xa:xm

n =1
exp

(
max
xb

µ(y|xb,xa)

)
∑

xa:xm
n =−1

exp

(
max
xb

µ(y|xb,xa)

) , (8)

and

L(xmn |y) = ln

∑
xa

exp

(
max

xb:xm
n =1

µ(y|xb,xa)

)
∑
xa

exp

(
max

xb:xm
n =−1

µ(y|xb,xa)

) , (9)

respectively. In previous PM designs, maximizing µ(y|xb,xa) under each assumption
of xa utilizes a ZF-DF estimate of xb in (8). However, in (9) the ZF-DF needs to be
implemented for each bit assumption of xb, which requires (N − ν)(M + 1) operations
for each given xa.

To simplify the computational cost and improve the quality of ZF-DE estimates, we pro-
pose the AIR-PM detector, with the target to design a detection model such that, max-
imizing µ(y|xb,xa) is independent over layers in xb, while an optimal AIR is attained
under such a constraint. The LLR computing in AIR-PM detector will still use (8) and (9),
but the computations are simplified. In the next section, we will elaborate on the AIR-PM
detector in detail.
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3 Soft MIMO Detector with AIR-Maximization based PM

The intention of the AIR-PM detector is to prefilter the received signal to: (a) break de-
pendencies among symbols in xb, (b) preserve dependencies among symbols in xa, and
(c) preserve dependencies between symbols in xa and xb. Then, we form a search tree
where we fully exhaust all possibilities for xa as parent layers, and for each assumption,
symbols in xb are detected in parallel with LS estimates, which is optimal for the given
model since there are no connections among them. As xb only connects to xa, the tree
search is significantly simplified with AIR-PM.

3.1 AIR-Maximization Detection Model

The metric µ(y|x) in (4) can be expressed as

µ(y|x) = 1

N0

(
2R{x†H†y} − x†H†Hx− y†y

)
.

As the last term y†y is irrelevant for detection, it can be removed. We generalize µ(y|x)
as

µ(y|x) = 2R{x†H†
ry} − x†Grx, (10)

which corresponds to the detection model

p̃(y|x) = exp
(
2R{x†H†

ry} − x†Grx
)
, (11)

instead of the true conditional probability (2). Without loss of generality, the term N0 is
absorbed into both Hr and Gr. With AIR-PM, we constrain Gr to be Hermitian and
with a shape illustrated in Fig. 1(a). That is, only the elements along the main diagonal, the
last ν rows, and the last ν columns of Gr can be non-zero. With such constraints on Gr,
and by defining

ỹ = H†
ry, (12)

we have the below proposition of the metric decomposition for AIR-PM detector by ex-
panding µ(y|x) in (10) directly.

Proposition 1. With detection model (11), the metric µ(y|x) in (10) can be rewritten as

µ(y|x) =
N−ν∑
n=1

µn1 (ỹn|xn,xa) +
N∑

n=N−ν+1

µn2 (ỹn|xn, xn+1, · · · , xN ) , (13)
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(a) (b) (c)

Figure 1: A general shape ofGr is depicted in (a), and (b) isGr with ν=1. The shape ofU , which satisfies the decomposition
I+Gr=U†U , is depicted in (c).

where µn1 (ỹn|xn,xa) and µn2 (ỹn|xn, xn+1, · · · , xN ) are defined as

µn1 (ỹn|xn,xa)=2R

{(
ỹn−

N∑
k=N−ν+1

gn,kxk

)
x∗n

}
− gn,n|xn|2, (14)

µn2 (ỹn|xn, xn+1, · · · , xN )=2R

{(
ỹn−

N∑
k=n+1

gn,kxk

)
x∗n

}
;−gn,n|xn|2. (15)

Note that, in general the metric µ(y|x) in (10) does not correspond to a Euclidean dis-
tance when Gr is not positive definite, i.e., the Cholesky decomposition of Gr is not
available. However, the path metric can still be computed based on (14)-(15). From (14),
µn1 (ỹn|xn,xa) can be computed in parallel for all symbols xn ∈xb for a given xa. The
detection complexity (measured by the total number of paths that have been visited in the
tree search), in this case, is O(|X |ν). By setting ν=0 and ν=N−1, the model (11) be-
comes identical to LMMSE and ML detection, respectively. This shows trade-off between
detection complexity and performance through parameter ν.

In [29], the authors have proposed a WL-decomposition (WLD) based detection, which
utilizes subspace orthogonalization to decompose the channel as

W †H = L. (16)

The matrix L is a punctured version of the original channel H and the shape can be spe-
cified at will. As a special case, with setting ν = 1, the shape Fig. 1(c) is equivalent to the
shapes depicted in Fig. 1(b)-(e) in [29] after permutations of the columns. However, there
are some substantial differences between the WLD detector and the proposed AIR-PM
detector.

Firstly, with (16) the metric µ(y|x) in (10) becomes

µ(y|x) = − 1

N0
∥W †y −Lx∥2 = 1

N0

(
2R{x†L†W †y} − x†L†Lx− y†y

)
. (17)

Removing the constant term y†y from (17) and comparing it with (10), the WLD detector
is thus a special case of the AIR-PM detector with identifying Hr=WL and Gr=L†L.
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Therefore, from the point of view of maximizing the AIR, the WLD detector is inferior to
the proposed AIR-PM detector.

Secondly, as W is not unitary with the WLD detector, after WL decomposition the noise
will be colored since

E
[
W †ee†W

]
=N0W

†W .

Although with normalizing the column vectors of W to have unit Frobenius norms, the
noise power remains the same, but the colored noise will degrade the detection perform-
ance without taking it into consideration [30]. Especially under the case that H is ill-
conditioned, the WL-decomposition results in significant noise-enhancement which needs
to be taken care of. To overcome such an obstacle, the authors have proposed to recalculate
the metric µ(y|x) based on the original channel H with the obtained survival paths [31].
However, such an approach significantly increases the computational cost for large values
of nt and M . Although with the AIR-PM detector the noise is also colored by utilizing
the model (11), but with the optimization over the parameters Gr and Hr, the AIR-PM
detector guarantees that an optimal AIR is attained with the detection model (11).

Lastly, with AIR-PM detector we calculate the metric for each of the bit assumptions of the
child layers, while the WLD detector utilizes multiple detection branches to calculate the
LLRs alternatively for all layer and fetch the minimal metrics µ(y|x) among all branches.
Although with the same values of ν and E in AIR-PM and WLD detectors, respectively,
the WLD detector has slightly less complexity than the AIR-PM detector with multiple
branches, but the AIR-PM detector with a single detection branch is simpler than the
WLD detector.

Next, we describe the design of the optimal parametersGr andHr based on AIR-maximization.

3.2 Parameter Optimization

With model (11), the AIR is defined as

IAIR (y;x) = Ex,y [ln p̃(y|x)]− Ey [ln p̃(y)] , (18)

where the expectations are taken over the true channel statistics. Following the approach
in [22], and under the assumption that x is complex Gaussian distributed¹, a closed form
for IAIR (y;x) can be reached. Optimizing (18) over K×N prefilter matrix Hr yields

Hr = W † (I +Gr) , (19)

¹The complex Gaussian assumption on x is made to derive a closed form IAIR (y;x), and based on that,
Gr and Hr are optimized. We show later that, the parameters optimized for Gaussian inputs work well for
finite constellations.
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where W is the LMMSE filter

W = H†
(
HH† +N0I

)−1
, (20)

and B is the mean-square-error (MSE) matrix

B = I −WH. (21)

The resulting IAIR (y;x) equals

IAIR (y;x) = N + ln det(I +Gr)− Tr
(
B(I +Gr)

)
, (22)

where Gr is chosen such that (I+Gr)≻0, and obtained through maximizing (22) under
the constraints stated earlier. This optimization is now treated in detail.

First we denote the principle submatrix at the lower right corner of B generated by remov-
ing the first n rows and columns as (B̃n=0 if n=N )

B̃n =


bn+1,n+1 bn+1,n+2 · · · bn+1,N

bn+2,n+1 bn+2,n+2 · · · bn+2,N
...

...
...

...
bN,n+1 bN,n+2 · · · bN,N

. (23)

Make the decomposition I+Gr =U †U ; U is upper-triangular as depicted in Fig. 2(c),
with only elements along the main diagonal and the last ν columns being non-zero. That
is, un,k = 0, for any k ̸= n and k ≤ N − ν. Letting

un =
(
un,(n,N)⊖ν+1, un,(n,N)⊖ν+2, . . . , un,N

)
, (24)

bn =
(
bn,(n,N)⊖ν+1, bn,(n,N)⊖ν+2, . . . , bn,N

)
, (25)

we then have the optimal Gr stated in Proposition 2, whose proof is deferred to Appendix
A.

Proposition 2. The non-zero elements of U that maximize the AIR in (22) are calculated as

un,n =


√(

bn,n − bnB̃
−1
(n,N)⊖νb

†
n

)−1
, 1 ≤ n < N,

1/
√
bN,N , n = N.

(26)

un = −un,nbnB̃
−1
(n,N)⊖ν . (27)

The optimal Gr is then obtained throughGr = U †U−I , and the AIR reads

IAIR (y;x) = 2

N∑
n=1

lnun,n. (28)
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From Proposition 2, the optimal AIR in (28) only depends on the values of un,n, which are
calculated through (26). For the firstN−ν layers, only the connections with the last ν layers
are preserved through bn and B̃(n,N)⊖ν . For instance, if setting ν=1, all the first N−1
layers are only connected to the last layer, and we have bn= bn,N and B̃(n,N)⊖ν = bN,N

for 1≤n<N . Then, un,n (1 ≤ n < N ) equals

un,n =

√(
bn,n −

|bn,N |2
bN,N

)−1

.

Under the two extreme cases ν=0 and ν=N−1, we next show that, the AIR-PM detector
is identical to the LMMSE and ML detectors, respectively.

For the case ν=0, from Proposition 2 it holds that,

Gr =
(
Bdiag

)−1
−I,

Hr = W †
(
Bdiag

)−1
.

Equivalently, we can set Gr=I and

Hr = W †
(
Bdiag

)−1
((

Bdiag
)−1
−I
)−1

= W †
(
(WH)diag

)−1
, (29)

which is the normalized LMMSE filter[27]. Then from (10), maximizing the metricµ(y|x)
is equivalent to LMMSE detection.

On the other hand, with ν=N−1, it can be shown from Proposition 2 (or directly taking
the differential of IAIR in (22) with respect to Gr) that

Gr = B−1−I.

From (19)-(21) and utilizing the matrix inversion lemma [32], it can be shown that

Gr =
1

N0
H†H,

Hr =
1

N0
H, (30)

which shows that the AIR-PM detector is equivalent to the ML detector from (10).

Moreover, with Proposition 2 we can obtain Corollary 1, whose proof is in Appendix B.
However, we point out the fact that, in general, Gr≻0 does not hold.

Corollary 1. For 0 < N0 <∞, the diagonal elements ofGr are positive values.
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3.3 Bit LLR Calculation

The LLR calculation of AIR-PM detector uses (8) and (9), and marginalization over xb

needs to search for an xn in X that maximizes µn1 (ỹn|xn,xa) in (14). Let

µ̂n1 (ỹn|xa) = max
xn

µn1 (ỹn|xn,xa) . (31)

By taking the derivative of µn1 (ỹn|xn,xa) with respect to xn, and noticing that gn,n is
positive as shown in Corollary 1, the LS estimate reads

x̂n =

[
gn,NxN − ỹn

gn,n

]
,

where ‘[ ]’ rounds the estimate to the nearest symbol in X . In a similar way, we can max-
imize µn1 (ỹn|xn,xa) over bit assumption 1 and -1 for xmn , and denote

µ̂n,m1,+ (ỹn|xν) = max
xn:xm

n =1
µn1 (ỹn|xn,xa) ,

µ̂n,m1,− (ỹn|xa) = max
xn:xm

n =−1
µn1 (ỹn|xn,xa) ,

respectively. Then, the exact LLR computation of (6) with detection model (11) is in (32),
and the approximations of (32) for symbols in xa and xb are in (33) and (34), respectively.

4 Characterization of the AIR with AIR-PM Detector

4.1 Chain Rule of the AIR

With the design of AIR-PM detector and the detection process introduced, in this section
we prove that chain rule of AIR holds, and then analyze properties of the ergodic AIR for
different selections of xa. We first introduce the below lemma.

Lemma 1. With un,n defined in Proposition 2, we have the below equalities,

I (y;xn|xa) = 2 lnun,n, 1 ≤ n ≤ N − ν, (35)

I (y;xa) = 2
N∑

n=N−ν+1

lnun,n, N − ν < n ≤ N, (36)

where I (y;xn|xa) and I (y;xa) are the conditional mutual information and mutual in-
formation, respectively.

The proof is in Appendix C. With Lemma 1 and Proposition 2, and also using the chain
rule of mutual information, we have the chain rule of the AIR in Proposition 3.
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Proposition 3. With detection model (11), the following chain rule of the AIR holds,

IAIR (y;x)=I (y;xa)+

N−ν∑
n=1

I (y;xn|xa) (37)

=I(y;xN )+

N−1∑
n=N−ν+1

I(y;xn|xn+1, xn+2, · · · , xN ) +

N−ν∑
n=1

I (y;xn|xa) .

Proposition 3 reveals an interesting property of the AIR-PM detector, that is, the AIR is the
sum of the rate corresponding to signal part xa with the optimal detection, and the rate
corresponding to signal part xb with LMMSE detection and with no interference from xa.
Hence, the AIR with AIR-PM detector for 0<ν<N−1 is lower and upper bounded by
the AIRs of LMMSE and ML, respectively. Thus, we have the following corollary.

Corollary 2. For the case ν=0 and ν=N−1, the AIR reads

IAIR (y;x) =

N∑
n=1

I (y;xn) ,

IAIR (y;x) = ln det

(
I +

H†H

N0

)
,

i.e., the rate with LMMSE detection and channel capacity, respectively.

Note that, the mutual information I (y;xa) can be written as

I (y;xa)=ln det

(
Ia+H†

a

(
HbH

†
b+N0I

)−1
Ha

)
=ln det

(
I+

H†H

N0

)
− ln det

(
I+

H†
bHb

N0

)
. (38)

Similarly, the mutual information I (y;xn|xa) equals

I (y;xn|xa) = ln det

(
I +

H†
bHb

N0

)
− ln det

(
I +

H†
b,nHb,n

N0

)
, (39)

where Hb,n is obtained by removing the nth column of Hb. Utilizing (38), (39) and from
Proposition 3, the AIR can also be written in the equivalent form

IAIR (y;x) = ln det

(
I+

H†H

N0

)
+ (N−ν−1) ln det

(
I+

H†
bHb

N0

)

−
N−ν∑
n=1

ln det

(
I +

H†
b,nHb,n

N0

)
. (40)
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Below we give an example of 3×3 complex MIMO channel to illustrate Proposition 2 and
3.

Example 1. Assume that ν=1, N0=1, i =
√
−1, and

H =

 1 + i 2 + 2i 1 + 3i
3 + 3i 1 + 3i 2 + 2i
2 + 3i 2 + i 2 + 2i

.
With Proposition 2, the optimal U and Gr are given at the bottom of the next page. The
AIR reads IAIR=5.7751 (nats/s/Hz), and Hr is obtained via (19). To verify Proposition
3, we assume that the last column h3 in H corresponds to the single parent layer in xa.
Then,

I (y;x3)=ln

(
1 + h†

3

(
h1h

†
1+h2h

†
2+N0I

)−1
h3

)
=1.1887,

I (y;x2|x3)=ln

(
1+h†

2

(
h1h

†
1+N0I

)−1
h2

)
=2.1191,

I (y;x1|x3)=ln

(
1+h†

1

(
h2h

†
2+N0I

)−1
h1

)
=2.4674,

which shows that the chain rule for the AIR holds since

IAIR (y;x) = I (y;x3)+
2∑

n=1

I (y;xn|x3) .

4.2 Maximizing the Ergodic AIR

With the chain rule for the AIR stated, we next analyze the selections of xa in connection
with the ergodic AIR. We consider a Rayleigh channel with Kronecker correlation model
vec (H)∼CN

(
0, 1

N (Rt ⊗Rr)
)
, where Rt and Rr represent the transmit and receive

U =

 3.4339 0 1.4803− 1.0921i
0 2.8851 1.5292 + 1.2233i
0 0 1.8118

,

Gr =

 10.7917 0 5.0833− 3.7500i
0 7.3235 4.4118 + 3.5294i

5.0833 + 3.7500i 4.4118− 3.5294i 9.5016

.
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correlations, respectively. Assume decompositions Rr = U rΣU †
r and Rt = U t∆U †

t ,
where U t, U r are unitary, and Σ, ∆ are diagonal with the nth diagonal element denoted
as σn and δn, respectively. The correlated Rayleigh channel can then be modeled as

H = U rΣ
1/2H i.i.d.∆

1/2U †
t , (41)

with vec (H i.i.d.)∼CN
(
0, 1

N I
)
. Inserting (41) back into signal model (1), we have

y = U rΣ
1/2H i.i.d.∆

1/2U †
tx+ e,

or equivalently,

U †
ry = Σ1/2H i.i.d.∆

1/2U †
tx+U †

re. (42)

As y, x and e comprise i.i.d. complex Gaussian entries, multiplying them with a unitary
matrix will not change their statistical properties. Therefore, the AIR of signal model (42)
is equivalent to the model

y = Σ1/2H i.i.d.∆
1/2x+ e. (43)

Hence, for the ergodic AIR analysis in correlated Rayleigh fading channels, it is sufficient
to consider the channel model

H = Σ1/2H i.i.d.∆
1/2. (44)

Proposition 4. Consider H modeled in (44), and assume that, the diagonal elements δn are
positive and sorted in ascending order,

0 < δ1 ≤ δ2 ≤ · · · ≤ δN .

Then, selecting the last ν layers for xa will maximize the ergodic AIR

IeAIR (y;x) = EH [IAIR (y;x)] . (45)

The proof is in Appendix D. Proposition 4 shows that, with AIR-PM detector, the layer with
higher transmit power shall be chosen as parent layer, regardless of the receive correlation.
This is somewhat contradictory to the PM detector, where layers with lower SNRs are
chosen as parent layers [17]. Note that, here the selection is on a long-term, and not an
instantaneous, basis. For a given channel realization H , the selection of xa is to maximize
the AIR (28), and the correlation matrices are irrelevant of such a selection.

Next, we analyze the asymptotic property of the ergodic AIR, and consider the caseN=K.
Denote L (H, N0) as the ergodic capacity

L (H, N0) = EH

[
ln det

(
I +

H†H

N0

)]
.
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Then, from (40) the ergodic AIR in (45) can be calculated as

IeAIR (y;x) = L (H, N0) + (N−ν−1)L (Hb, N0)−
N−ν∑
n=1

L (Hb,n, N0) , (46)

which shows the relationship between the ergodic AIR and the ergodic capacity. For general
cases, the ergodic AIR analysis can also be based on (46). However, the discussions of the
ergodic capacity are fairly long, see e.g., [33, 34], therefore, we do not discuss them here.

In the low SNR regime, it is known that LMMSE detection is close to optimal, hence,
the AIR-PM detector will have similar performance as LMMSE, and IeAIR (y;x) will not
depend much on the selection of xa. On the other hand, in the high SNR regime, by
utilizing high SNR expansion [34]

L (H, N0) ≈ N
(
− lnN0 − L∞H (H, N0)

)
, (47)

whereL∞H (H, N0) is the high SNR power-offset, we can also show that, IeAIR (y;x) does
not depend on the selection of xa. These results are summarized in Proposition 5, and the
proof is in Appendix E.

Proposition 5. With signal model (43) andN = K, asN0 goes to infinity or 0, the differences
of the ergodic AIR with different selections of xa asymptotically equal zero.

In the next section, we will discuss some useful extensions of the proposed AIR-PM de-
tector.

5 Extensions

5.1 Parallel Detection with Multiple Branches

The AIR-PM detector can be extended to have multiple detection branches in parallel,
where each individual detection branch is represented by the same detection model (11),
but the parent layers are different from each other. All detection branches share the same
constraint onGr, and as more layers are selected as parent layers, the LLR quality is boosted.
Next, we show that, the overheads introduced by the pre-processing of H is shared for
all branches, including the matrix inverse operation to calculate W which is the most
computationally demanding part of the pre-processing.

Consider a detection branch with xa comprising νℓ arbitrary layers from x. Define a
permutation matrixP ℓ that permutes the νℓ columns inH corresponding to layers inxa to
be the last νℓ columns, regardless of the order of the other columns, and denote the channel
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after permutation as Hℓ =HP ℓ. From (20) and (21), it holds that, W ℓ = PT
ℓ W and

Bℓ =PT
ℓ BP ℓ. That is, W ℓ and Bℓ are just permutations of W and B corresponding

to the original H , respectively. Then, based on Bℓ, Gr is obtained through Proposition 2,
and Hr is calculated in (19).

For the sake of complexity saving, in general we assume that each layer can appear as parent
layer at most once among all detection branches. The LLR calculations of parent layers then
use (33). For a layer xn that never appears as a parent layer in any detection branch, we
choose the branch that has the largest I (y;xn|xa) for LLR calculation of xn based on
(34).

5.2 Detection with A Priori Information

When there is a priori information L̃m
n available, the metric µ(y|x) in (10) changes to

µ(y|x) = 2R{x†ỹ} − x†Grx+ ln p(x),

where ln p(xn) is calculated based on updated L̃m
n as in (5). The priori information L̃m

n is
updated in each iteration and the term ln p(x) is changed accordingly. To cooperate the
priori information, by replacing the metricsµn1 (ỹn|xn,xa) andµn2 (ỹn|xn, xn+1, · · · , xN )
in (14) and (15) with

µn1 (ỹn|xn,xa)← µn1 (ỹn|xn,xa) + ln p(xn), (48)
µn2 (ỹn|xn, xn+1, · · · , xN )← µn2 (ỹn|xn, xn+1, · · · , xN ) + ln p(xn), (49)

respectively, Proposition 2 still holds and the detection process follows Sec. III. The LS
estimate of xb is now obtained through

µ̂n1 (ỹn|xa) = max
xn

(
µn (ỹn|xn,xa) + ln p(xn)

)
, (50)

which is nonlinear in xn and a search over X is needed. However, for the cases that xn can
be written in a linear function² of bit vector sn=(x1n, x

2
n, · · · , xMn ) such that

xn = snγ,

the metric µ̂n1 (yn|xa) in (50) equals the maximum (over variable sn) of

J = 2R

{(
ỹn −

N∑
k=N−ν+1

gn,kxN

)
(snγ)

∗

}
− gn,n|snγ|2

+
M∑

m=1

(
(1 + xmn )L̃m

n

2
− ln

(
1 + exp

(
L̃m
n

)))
.

²Such a property usually holds, for example, for a 4-PAM modulation with [-1,-1], [-1,1], [1,-1], [1,1] mapped
to −3√

10
, −1√

10
, 1√

10
, and 3√

10
, respectively, we have γ= 1√

10
(2, 1)T.
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Since J is quadratic in sn, the maximization can be solved via LS.

The PM detector with soft inputs has also been discussed in [18], where a transform of the
detection model with soft information, into an extended model that shares the same form
of (8) is made. However, as L̃m

n changes over iterations, the QR-decomposition according
to the extended model is required at each iteration. With AIR-PM detector, only a slight
modification of the metrics is needed as in (48) and (49).

5.3 Detection with Imperfect Channel Estimate

In practical systems, the channel estimate is imperfect, and it is beneficial for the detector
to take the estimation error into account. We model the imperfect channel vec(H̃) =
vec(H) + eh, with vec(H) ∼ CN

(
0, 1

N I
)

and the error vector eh ∼ CN (0, βI).
Following a similar discussion in [17], to cope with channel estimation error, we can modify
model (2) to

p(y|H̃,x) =
1(

πÑ0

)N exp

(
− 1

Ñ0

∥y − 1

1 + βN
H̃x∥2

)
, (51)

where the updated noise power

Ñ0 =
1

N
Tr

((
y − 1

1 + βN
H̃x

)(
y − 1

1 + βN
H̃x

)†
)

=
βN

1 + βN
+N0.

The design and process of AIR-PM detector for (51) are the same as for (2), but the per-
formance is decreased as the SNR is decreased from 1/N0 to 1/

(
(1 + βN)2Ñ0

)
.

5.4 AIR Computation with Finite Constellation

To obtain a closed-form expression of the AIR for finite constellations is difficult [22].
Therefore, the parameter optimization over Hr and Gr are based on the assumption that
the input vector x is Gaussian distributed. In order to evaluate the AIR for finite constel-
lations with AIR-PM, we use Monte Carlo simulations. With AIR-PM, the complexity of
the Monte Carlo simulations are also greatly simplified. With p̃(y|x) in (11), the AIR in
(18) can be evaluated based on

Ex,y [ln p̃(y|x)] =
1

|X |N
Ey

[∑
x

ln p̃(y|x)

]
,

Ey [ln p̃(y)] = Ey

[
ln

(∑
x

p̃(y|x)

)]
−N ln |X |.
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Utilizing property (13), the terms inside the expectation operators can be decomposed as in
(52) and (53), respectively, where the number of summations is reduced to O(|X |ν+1).

Later we will show that, although the optimal Hr and Gr are optimized for the Gaussian
constellation, such a design of the AIR-PM detector also work well for finite constellations.

6 Receiver Structure and Complexity Analysis

6.1 Receiver Structure with the AIR-PM Detector

In Fig. 2 we depicted the receiver structure of the AIR-PM detector. The Gr is constructed
based on Proposition 2, and the metric calculation µ(y|x) follows Proposition 1. The
LLRs for xa and xb are calculated based on (33) and (34), respectively. Next we analyze
the complexity of the proposed AIR-PM detector and compare it with the other MIMO
detectors.

6.2 Selection the Best Parent Layers

As the target of AIR-PM is to maximize AIR, the optimal selection ofxa shall maximize the
AIR in (28). As IAIR (y;x) can be rewritten in the equivalent form (40) and only depends
on H and Hb, changing the orders of the layers in xa, i.e., permuting the columns of Ha

will no impact the AIR. On the other hand, permuting the columns of Hb and Hb,n will

not change the determinants det
(
I+

H†
bHb

N0

)
and det

(
I +

H†
b,nHb,n

N0

)
, respectively.

∑
x

ln (p̃(y|x))=
∑
x

(
N−ν∑
n=1

µn1 (ỹn|xn,xa) +
N∑

n=N−ν+1

µn2 (ỹn|xn, xn+1, · · · , xN )

)

= |X |(N−ν)
∑
xa

(
N∑

n=N−ν+1

µn2 (ỹn|xn, xn+1, · · · , xN )+
1

|X |

N−ν∑
n=1

∑
xn

µn1 (ỹn|xn,xa)

)
.

(52)

∑
x

p̃(y|x)=
∑
x

(
N−ν∏
n=1

exp
(
µn1 (ỹn|xn,xa)

)
·

N∏
n=N−ν+1

exp
(
µn2 (ỹn|xn, xn+1, · · · , xN )

))

=
∑
xa

(
N∏

n=N−ν+1

exp
(
µn2 (ỹn|xn, xn+1, · · · , xN )

)
·
N−ν∏
n=1

(∑
xn

exp
(
µn1 (ỹn|xn,xa)

)))
.

(53)
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Computing      

(Proposition 2)

Compute 

LMMSE filter    

(eq. 20)

Compute    

(eq. 19)

Prefitlering

(eq.12)

AIR-PM detection

(Proposition 1, 

eq. 33 and eq. 34)

LLR

Slect the best   

parents layers 

and permute H

Figure 2: The receiver structure of the AIR-PM detector. With multiple branches, each detection branch has the same structure
and the pre-processing can be shared as introduced in Sec. V-A.

Therefore, the ordering of the layers inside xa and xb will not change the AIR with the
AIR-PM detector. Hence, unlike the PM detector, re-ordering of x is not needed in AIR-
PM detector, and the complexity of such selection is less compared to finding the optimal
ordering of x. With ν=1, the task is just to select one single best layer for xa.

6.3 Detection Complexity

With AIR-PM detector, the pre-processing needs to compute Hr which requires a matrix
inversion of size min(K,N), and prefilter the data according to (12). However, with the
other detections except for the ML detection, decompositions (QR, Cholesky and WL)
of H are also needed to convert H into upper-triangular form followed by prefiltering
the received signal. The remaining pre-processing of the AIR-PM detector is to construct
Gr based on Proposition 2, whose complexity is neglectable for a small ν. Therefore, the
complexity of pre-processes among different detectors are similar.

For a large constellation size |X |, the detection complexity is much more heavy compared
to the complexity of the pre-processing. In Table 1, we analyze the detection complex-
ity of AIR-PM detector, and compare it to the state-of-the-art detectors. The detection
complexity is measured in terms of the number of paths that have been visited in the search
process, and the number of complex multiplications to calculate the metric µ (y|x) of each
path (for fair comparisons, the metric calculations are simplified through possible channel
decompositions). We also list the look-up-table (LUT) operation for exponential and log-
arithm operations. With PM and AIR-PM detectors, the number of evaluated paths are
calculated for xa. However, the number of complex multiplications for each path includes
the computations of all the counter-hypotheses of xb based on the ZF-DF and LS estim-
ates, respectively. As can be seen in the table, the AIR-PM detector has lower complexity
than the other detectors, yet with a fixed complexity and fully parallelizable structure for
all layers.
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7 Empirical performance evaluation

In this section, we provide numerical results with slow-fading Rayleigh MIMO channels,
and each channel realization spreads across the entire transmit data block. The Rayleigh
channelH is modeled according to (44) and is perfectly known, since the process of dealing
with the imperfect channel estimate is the same and the latter one only suffers from an
SNR loss. In all tests, except for the ergodic AIR evaluation, H has no correlations, i.e.,
Σ=∆=I .

The FER results are evaluated with a rate-1/2, (1032, 2064) turbo code, which is from LTE
[2] standard and the decoder uses 8 internal iterations. The simulations are executed until
1000 frame errors are encountered. In addition, as the complex-valued model (1) can be
rewritten as

y =

[
R{y}
I{y}

]
, x =

[
R{x}
I{x}

]
, n =

[
R{n}
I{n}

]
, (54)

and

H =

[
R{H} −I{H}
I{H} R{H}

]
, (55)

we use the real-valued signal model (54) and (55) for detection in all FER simulations, which
has a higher degrees of freedom than the complex-valued model.

7.1 AIR with Optimal Selection

In Fig. 3, we consider the instantaneous selection of xa, and compare the AIR with the
optimal selection with the average AIR over all possible selections. We test 4×4 complex
MIMO, and as expected, the AIR with optimal selection outperforms the average AIR. For
ν =1, the SNR gain is more than 0.5 dB. The channel capacity and the rate of LMMSE
detector (which is equivalent to AIR-PM with ν=0) are also presented. As can be seen, the
AIR-PM detector with ν = 1 significantly improves the AIR over LMMSE detector, and
the AIR-PM detector with ν=2 is quite close to the channel capacity (which is equivalent
to AIR-PM with ν=3).

7.2 AIR with Finite Constellation

In Fig. 4, we evaluate the AIR for finite constellations with AIR-PM detector via Monte
Carlo simulation. We test 4×4 complex MIMO and set ν=1, that is, we have 4 different
choices of xa. The AIR with the optimal selection of xa is compared to the averaged AIR
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Figure 3: The AIR of AIR-PM detector with ν = 0, 1, and 2 under 4×4 complex MIMO channels. The AIR with the optimal
selection of xa that maximizes (28) is compared to the averaged AIR of all possible selections.

0 5 10 15 20 25 30
SNR [dB]

0

5

10

15

20

25

A
IR

 [n
at

s/
s/

H
z]

Gaussian

4-QAM

16-QAM

64-QAM

Figure 4: The Monte Carlo simulation of the AIR with 4×4 complex MIMO channels of the AIR-PM detector. The solid lines are
the AIR with the optimal selection of xa, while the dashed lines are the averaged AIR of all possible selections. The
finite constellations 4-QAM, 16-QAM and 64-QAM reuse the optimal index of parent layer chosen from the Gaussian
inputs.

of all 4 possible choices. For finite constellations, not only the parameters Hr, Gr are
designed based on Gaussian inputs, the optimal selections of xa also reuse the schemes for
Gaussian inputs. The results in Fig. 4 show that, although the AIR-PM detection model
(11) is designed for Gaussian inputs, it works well for finite constellations.

7.3 Ergodic AIR with Correlated Channel

In both Fig. 5 and Fig. 6, we simulate the ergodic AIR with AIR-PM detector under 8×8
complex MIMO and ν=1. We alternatively select xa to be one of the 8 different layers,
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Figure 5: The ergodic AIR of AIR-PM detector with ν=1 under 8×8 complex MIMO channels, with only transmit correlation.
The transmit powers are in ascending order from the first layer to the last layer.
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Figure 6: Repeat the test in Fig. 5, but with the equal transmit and receive correlations.

and measure the rate-loss ratio τ of IeAIR compared to ergodic capacity L (H, N0),

τ = 1− IeAIR (y;x) /L (H, N0) .

In Fig. 5, we test with transmit correlation only, and set δn=exp(n)/
∑8

n=1 exp(n). As
can be seen, as δn decreases (from index 8 to 1), the rate losses become larger. Furthermore,
at very low and high SNRs, the rate losses of different selections converge. These results
show that layers corresponding to stronger channels should be chosen as parent layers, and
that in the low and high SNR regimes, IeAIR (y;x) are asymptotically equal for different
selections of xa. These observations are well aligned with Propositions 4 and 5.

In Fig. 6, we repeat the test in Fig. 5, but with both transmit and receive correlations, and
we set σn=δn. The conclusions are the same as drawn from Fig. 5, and due to correlations
at both sides, the rate losses are larger than those in Fig. 5.
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Figure 7: The FER performance of 6×6 real (3×3 complex) MIMO channels with 4-PAM (16-QAM) modulation.
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Figure 8: The FER performance of 8×8 real (4×4 complex) MIMO channels with 2-PAM (4-QAM) modulation.

7.4 Frame Error Rate with Turbo Code

Next, we show FER performance. With the real-valued model, the number of transmit
layers is 2N and the complex QAM symbols are split to real PAM symbols. The LLR
calculation of exact ML and MLM are based on (6)-(7), while the PM detector is based
on (8)-(9), and the AIR-PM detector is based on (33)-(34). The K-best detector is from
[14], and when there is counter-hypothesis missing, we use the difference between the best
and worst metrics among all the paths to approximate the LLR. The WLD detector follows
[29, 31]. We also simulate the AIR-PM detector with N parallel detection branches, with
xa in each branch containing ν=2 non-intersecting layers, and the selections of xa is to
maximize the sum of the AIRs for all branches. We only calculate the LLRs for xa in each
branch, and then combine them from all branches.

In Fig. 7, we compared the FER performance between the proposed AIR-PM detector and
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Figure 9: The FER performance of with 12×12 real (6×6 complex) MIMO channels with 2-PAM (4-QAM) modulation.
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Figure 10: The FER performance of 8×8 real (4×4 complex) MIMO channels with 4-PAM (16-QAM) modulation.

the WLD detector under 6×6 real (3×3 complex) MIMO channels with 16-QAM mod-
ulation. Note that, the WLD detector utilizes N/E parallel detection branches. As can
be seen that, the WLD detector with E=2 (both for L-based and H-based metric com-
putations) is inferior to the AIR-PM detector with ν=2, which utilizes a single detection
branch and performs fairly close to the MLM detector.

In Fig. 8 and Fig. 9, we show the FER under 8×8 real (4×4 complex) and 12×12 real (6×6
complex) MIMO channels with 2-PAM (4-QAM for complex symbols) modulation, re-
spectively. As can be seen, the proposed AIR-PM detector outperforms the other detectors.
With the same setting of ν, the AIR-PM detector is 0.5 dB better than the PM detector in
terms of SNR. Further, the AIR-PM detector with ν=3 is close to MLM. The SNR gains
of the AIR-PM detector over the PM detector becomes larger in Fig. 9 than in Fig. 8. This
is because that, the quality of ZF-DF estimates degrades, due to error propagation when
N increases.
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In Fig. 10, we repeat the tests in Fig. 8 with 4-PAM (16-QAM for complex symbols) mod-
ulation. As can been seen, the FER performance of the AIR-PM detector with ν = 2
outperforms the PM detector around 1dB, due to a higher modulation scheme is used.
With ν = 3, both the AIR-PM and PM detectors perform close to the MLM, while the
AIR-PM detector has less computational cost than the PM detector.

7.5 Cooperating with A Priori Information

In Fig. 11, we test the EXIT chart [36, 37] of the proposed AIR-PM detector and compare
it with the optimal MAP and the linear LMMSE with parallel interference cancellation
(LMMSE-PIC) [26, 27] detectors under 6× 6 complex MIMO channels with 4-QAM
modulation. The AIR-PM detector uses the soft inputs as described in Sec. V-B. As can
be seen, with the input mutual information IA increases, the output extrinsic IE meas-
ured with the LLRs generated from the detectors also increases, and the AIR-PM detector
significantly outperforms the LMMSE-PIC detector when IA is small. As IA increases,
the LMMSE-PIC becomes superior to the AIR-PM and is close to the MAP, due to the
fact that, the priori information based interference cancellation becomes perfect in the
LMMSE-PIC and there is no interference cancellation utilized in AIR-PM. The AIR-PM
detector can also be modified to cooperate with interference cancellation and will outper-
form the LMMSE-PIC [26], however, such an approach needs to introduce an interference
cancellation term in (10) and a gradient-based optimization of the parameters is needed.
Nevertheless, as it can be seen that, with ν=2 the AIR-PM detector is already superior to
LMMSE-PIC detector for input IA less than 0.75, and with ν=3 the AIR-PM performs
close to MAP.

In Fig. 12, we test the AIR-PM detector in an iterative detection and decoding scheme with
ν=3 under 6×6 real (3×3 complex) MIMO channels with 4-PAM (16-QAM) modulation.
With up to 3 global iterations (including the initial iteration), more than 1 dB SNR gain
can be observed at 1 FER both for MAP and the proposed AIR-PM detector. Moreover,
as can be seen, the SNR gain of the AIR-PM detector over iterations is similar to the MAP
detector. That is, with the pre-processing in AIR-PM detector, the iteration gain is not
reduced compare to the generic MIMO detector without pre-processing.

8 Summary

In this paper, we considered soft-output detector design for MIMO channels. We pro-
posed a detector with partial marginalization based on maximizing the achievable inform-
ation rate. The parameters of the AIR-PM detector are optimized in closed forms via AIR-
maximizing for a mismatched detection model. Since the AIR is maximized, the least
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Figure 11: EXIT chart of the proposed AIR-PM detector under 6×6 complex MIMO channels with 4-QAM modulation.
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Figure 12: The FER performance of iterative detection and decoding under 6×6 real (3×3 complex) MIMO channels with
4-PAM (16-QAM) modulation. The metric of the AIR-PM detector with soft outputs is updated according to (48) and
(49).

square estimates are of good quality. We also show that the chain rule holds for the AIR
computation of the AIR-PM detector, and the ergodic AIR with correlated Rayleigh fading
channel is maximized by the layers with higher transmit power. As the AIR-PM detector
has low complexity and the detection process is fully parallelized for all layers, it results
in flexible and efficient hardware design. In addition, numerical simulations show that,
the AIR-PM detector has superior frame error rate performance than the state-of-the-art
detectors.
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Appendix A: Proof of Proposition 2

First, we show that, when 0 < N0 <∞,

bn,n − bnB̃
−1
(n,N)⊖νb

†
n > 0, 1 ≤ n ≤ N. (56)

As B is the MSE matrix, when 0<N0<∞, 0≺B≺I holds. Rewrite B in block form
as

B =

(
B0 B1

B†
1 B2

)
,

where submatrices B0, B1, B2 are of dimensions (N−ν)×(N−ν), (N−ν)×ν, and ν×ν,
respectively. When 1≤ n≤N−ν, B̃(n,N)⊖ν =B2. As B ≻ 0, the Schur complement

of B2, which equals
(
B0−B†

1B
−1
2 B1

)
, is also positive definite. Therefore, the diag-

onal elements of
(
B0−B†

1B
−1
2 B1

)
, with the nth element being

(
bn,n−bnB−1

2 b†n
)
,

are positive.

On the other hand, when N−ν < n ≤ N , B̃(n,N)⊖ν = B̃n. As
(
bn,n bn
b†n B̃n

)
is a

principle submatrix of B, it is positive definite. Hence, the Schur complement of B̃n,
which equals

(
bn,n−bnB̃

−1
n b†n

)
, is also positive. Therefore, (56) holds for all n.

With the decomposition I + Gr = U †U , where U is upper-triangular with only the
elements along the main diagonal and the last ν columns can take non-zero values. Fur-
thermore, we constrain the diagonal elements to satisfy un,n ≥ 0. Similar to B, we also
rewrite U in a block matrix form as

U =

(
U0 U1

0 U2

)
,

where U0, U1, and U2 have the same sizes as B0, B1, and B2, respectively. Then, we
have

Tr
(
BU †U

)
=Tr

(
U0B0U

†
0+U1B

†
1U

†
0+U0B1U

†
1+U1B2U

†
1+U2B2U

†
2

)
. (57)

Taking the derivative ofTr
(
BU †U

)
with respect toU1 and setting it equal to zero results

in

U1 = −U0B1B
−1
2 . (58)

Inserting (58) back into (57), we obtain

Tr
(
BU †U

)
= Tr

(
U0

(
B0 −B1B

−1
2 B†

1

)
U †

0 +U2B2U
†
2

)
. (59)
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With (59), the AIR in (22) can be rewritten as

IAIR = N +

N∑
n=1

ln det
(
U †U

)
− Tr

(
BU †U

)
= I1 + I2, (60)

where

I1=N−ν+2
N−ν∑
n=1

lnun,n−Tr
(
U0

(
B0−B1B

−1
2 B†

1

)
U †

0

)
, (61)

I2=ν+2

N∑
n=N−ν+1

lnun,n−Tr
(
U2B

†
2U

†
2

)
. (62)

Firstly, we consider 1≤n≤N−ν, in which case B̃(n,N)⊖ν=B2 holds. As U0 is diagonal
with un,n being its nth diagonal element, taking the derivative of I1 with respect to un,n
and setting it equal to zero results in the optimal solution

un,n =

√(
bn,n − bnB

−1
2 b†n

)−1
. (63)

And from (58), the optimal un reads

un = −un,nbnB−1
2 . (64)

Secondly, we consider N−ν<n≤N . In this case, B̃(n,N)⊖ν=B̃n. As

Tr
(
U2B

†
2U

†
2

)
=

N∑
n=N−ν+1

(
un,n un

)( bn,n bn
b†n B̃n

)(
un,n un

)†
, (65)

taking the derivative of Tr
(
U2B

†
2U

†
2

)
with respect to un and setting it equal to zero

results in

un = −un,nbnB̃
−1
n . (66)

Inserting (66) back into (65) and (62), I2 can be rewritten as

I2 = ν +
N∑

n=N−ν+1

(
2 lnun,n−

(
bn,n − bnB̃

−1
n b†n

)
u2n,n

)
.

Then, taking the derivative of I2 with respect to un,n and setting it equal to zero results in

un,n =

√(
bn,n−bnB̃

−1
n b†n

)−1
. (67)
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Combining (63)-(64) and (66)-(67) proves the first part in Proposition 2.

Next we prove the second part in Proposition 2. From (63) it holds that,

Tr
(
U0

(
B0−B1B

−1
2 B†

1

)
U †

0

)
=

N−ν∑
n=1

u2n,n

(
bn,n−bnB−1

2 b†n

)
= N − ν.

Hence, from (61) we have

I1 = 2

N−ν∑
n=1

lnun,n. (68)

On the other hand, inserting (66) into (65) results in

Tr
(
U2B

†
2U

†
2

)
=

N∑
n=N−ν+1

u2n,n

(
bn,n − bnB̃

−1
n b†n

)
= ν,

where the last equality is from (67). Hence, from (62) it holds that

I2 = 2
N∑

n=N−ν+1

lnun,n. (69)

Combing (68) and (69) proves (28), which completes the proof.

Appendix B: Proof of Corollary 1

As 0≺B≺I , the diagonal element 0<bn,n<1. From Proposition 2, for 1≤n≤N ,

gn,n ≥ u2n,n − 1 >
1

bn,n
− 1 > 0.

Appendix C: Proof of Lemma 1

By definitions of submatricesB0, B1, B2 as in Appendix A, and utilizing the block matrix
inversion lemma [32], after some manipulations, it holds that

B0 −B†
1B

−1
2 B1 = I −H†

b

(
HbH

†
b +N0I

)−1
Hb, (70)

B2 =

(
I +H†

a

(
HbH

†
b +N0I

)−1
Ha

)−1

. (71)
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By the definition of un,n in Proposition 2 and from (70), when 1≤n≤N−ν,

u−2
n,n = 1− h†

n

(
HbH

†
b +N0I

)−1
hn. (72)

On the other hand, as I (y;xn|xa) equals

I (y;xn|xa) = ln

(
1 + h†

n

(
HbH

†
b − hnh

†
n +N0I

)−1
hn

)
= − ln

(
1− h†

n

(
HbH

†
b +N0I

)−1
hn

)
, (73)

combing (72) and (73), (35) follows. To prove (36), as from (71),

I (y;xa) = ln

(
I +H†

a

(
HbH

†
b +N0I

)−1
Ha

)
= − ln detB2, (74)

utilizing the matrix determinant lemma, it holds that

detB2 = det B̃N−ν+1 = u−2
N−ν+1,N−ν+1 det B̃N−ν+2 =

N∏
n=N−ν+1

u−2
n,n. (75)

Combining (74) and (75) proves (36).

Appendix D: Proof of Proposition 4

Without loss of generality, consider two selections of xa that only differ at the first layer as

x1
a = (xn1 , xN−ν+2, xN−ν+3, · · · , xN ) ,

x2
a = (xn2 , xN−ν+2, xN−ν+3, · · · , xN ) ,

where n1 ̸=n2 and δn1≤δn2 . From Proposition 3,

IiAIR (y;x)=I
(
y;xi

a

)
+

N−ν+1∑
n=1,n̸=n1

I
(
y;xn|xi

a

)
, i = 1, 2, (76)

and from the chain rule of mutual information,

IAIR

(
y;x1

a, xn2

)
= IAIR

(
y;x2

a, xn1

)
= I

(
y;x1

a

)
+ I

(
y;xn2 |x1

a

)
= I

(
y;x2

a

)
+ I

(
y;xn1 |x2

a

)
. (77)
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Combining (76) and (77), it holds that

I1AIR (y;x)−I2AIR (y;x) =

N−ν+1∑
n=1,n̸=n1,n2

(
I
(
y;xn|x1

a

)
− I

(
y;xn|x2

a

) )
. (78)

Hence, to show EH

[
I1AIR (y;x)

]
≤EH

[
I2AIR (y;x)

]
, it is sufficient to prove

EH

[
I
(
y;xn|x1

a

)]
≤EH

[
I
(
y;xn|x2

a

)]
for 1≤n≤(N−ν+1) and n ̸= n1, n2.

On the other hand, as hni can be modeled by hni =
√
δnih, where h∼ CN

(
0, 1

NΣ
)
,

replacing hni with
√
δnih will not change the ergodic AIR, that is,

EH

[
I
(
y;xn|x3−i

a

)]
= EH

ln
1+h†

n

hnih
†
ni
+N0I+

N−ν+1∑
k=1,n̸=n1,n2

hkh
†
k

−1

hn


= EH

ln
1+h†

n

δ2ni
hh†+N0I+

N−ν+1∑
k=1,n̸=n1,n2

hkh
†
k

−1

hn

.
As logarithmic function is monotonically increasing,

EH

[
I
(
y;xn|x1

a

)]
≤EH

[
I
(
y;xn|x2

a

)]
follows from δn1≤δn2 . Hence, replacing a layer in xa with another layer that has larger δn
increases IeAIR (y;x). By induction, the selection ofxa maximizing IeAIR (y;x) comprises
layers with ν largest δn, which are the last ν layers.

Appendix E: Proof of Proposition 5

Let
(
i(1), i(2), · · · , i(N)

)
be an arbitrary permutation of (1, 2, · · · , N). Denote ηn =

σnδn and η̃n=ηi(n), and set

xa =
(
xi(N−ν+1), xi(N−ν+2), · · · , xi(N)

)
,

xb =
(
xi(1), xi(2), · · · , xi(N−ν)

)
.

In the low SNR regime, the ergodic capacity can be approximated as

L (H, N0) = NEλ

[
ln

(
1 +

λ

N0

)]
≈ N

N0
Eλ [λ] , (79)
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where λ is the unordered eigenvalue of H†
i.i.d.H i.i.d., which obeys the complex Wishart

distribution [38]. Therefore, it holds that

Eλ [λ]=
1

N
Tr
{
E
[
H†H

]}
=

1

N
Tr
{
E
[
∆1/2H†

i.i.d.ΣH i.i.d.∆
1/2
]}

=
1

N

N∑
n=1

ηn.

(80)
Inserting (79) and (80) back into (46), it holds that

IeAIR (y;x) =
1

N0

 N∑
n=1

ηn+(N−ν−1)
N−ν∑
n=1

η̃n−
N−ν∑
n=1

N−ν∑
k=1,k ̸=n

η̃k

 =
1

N0

N∑
n=1

ηn,

which shows that, the ergodic AIR is independent of the selection of xa.

In the high SNR regime, as L∞ (H, N0) is the ergodic capacity which is irrelevant of the
selection of xa, form (46) and (47), the optimal selection of xa shall minimize

L̃ = (N − ν − 1)(N − ν)L∞ (Hb, N0)− (N − ν − 1)

N−ν∑
n=1

L∞ (Hb,n, N0) . (81)

From [33, Lemma 2], when N=K, the high SNR power-offset

L∞ (Hb, N0)=− ln

(
N−ν∑
k=2

k−1−γ

)
− 1

N − ν

N−ν∑
k=1

ln η̃k, (82)

L∞ (Hb,n, N0)=− ln

(
N−ν−1∑
k=2

k−1−γ

)
− 1

N−ν−1

N−ν∑
k=1,k ̸=n

ln η̃k, (83)

where γ≈0.5772 is the Euler-Mascheroni constant. Inserting (82) and (83) back into (81)
yields

L̃ ∝ −(N−ν−1)
N−ν∑
k=1

ln η̃k +

N−ν∑
n=1

N−ν∑
k=1,k ̸=n

ln η̃k = 0.

Hence, in the high SNR regime, the ergodic AIR is also independent of the selection of
xa.
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Modulus Zero-Forcing Detection for MIMO Channels

Wepropose amodulus based zero-forcing (MZF) detection formulti-inputmulti-output (MIMO)
channels. Traditionally, a ZF detector nulls out all interferences from other layers when de-
tecting a current layer, which can yield suboptimal detection-performance due to the noise-
enhancement issue. In many communication systems, finite alphabets such as M quadrature-
amplitude-modulation (QAM) arewidely used, which comprises

√
M pulse-amplitude-modulation

(PAM) symbols for the real and imaginary parts. With finite alphabets, one feasible way to im-
prove ZF detection is to allow controllable interferences that can be removed away by modulus
operations.

Based on: S. Hu and F. Rusek, “Modulus zero-forcing detection for MIMO channels,” submitted
to IEEE Access, Nov. 2017.
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1 Introduction

We consider a standard multi-input multi-output (MIMO) channel model with a received
signal ỹ expressed as

ỹ = H̃x̃+ ñ. (1)

where H̃ , x̃ and ñ are the complex-valued MIMO channel, transmitted symbols and
Gaussian noise, respectively.

Given received signal model (1), detecting x̃ is referred to as a MIMO detection problem,
which has a history that can be traced back about half a century and a review on it can
be found in e.g., [1]. In general, maximum likelihood (ML) detection [2] yields optimal
performance but with prohibitive complexity when the MIMO dimension and/or the in-
put alphabet has large cardinality. Effective implementations of ML detection, such as
sphere-decoding (SD) [3] can significantly reduce the complexity, but not overcome an
exponential complexity in the number of symbol layers [4]. On the other hand, linear de-
tectors [2] such as zero-forcing (ZF) and linear minimum-mean-square-error (LMMSE),
have low complexities, but also suboptimal performances. One direction for improving
linear detectors is lattice-aided-reduction (LAR) [5] based approaches, which use lattice-
reduction (LR) algorithms, e.g., Lenstra-Lenstra-Lovász (LLL), to find a short and nearly
orthogonal basis for the lattice induced by the MIMO channel [6].

Other than the existing approaches [1], as the transmitted symbols are drawn from fi-
nite alphabets such as quadrature-amplitude-modulation (QAM) and pulse-amplitude-
modulation (PAM) symbols, the modulus can also be used in MIMO detection for im-
proving the detection-performance. The modulus operation has been used in Tomlinson-
Harashima precoding (THP) [7, 8] as a suboptimal approximation for dirty-paper coding
(DPC) [9], and recently it has also be considered in the designs of integer-forcing (IF)
receivers for MIMO channels [10–12]. The IF scheme in [10] requires the transmitter to
employ the same lattice code [13] for each transmitted layer, which does not apply to most
current communication systems. Besides, when higher-order modulations such as p-PAM
are used, designing lattice codes over Zp is challenging [13]. Simpler IF receivers dealing
with linear binary codes such as turbo and LDPC are proposed in [11, 12], and the designs
follow the same steps as in [10]. One disadvantage of the IF receivers is that, each transmit-
antenna needs a separate encoding/decoding process, which is not the case for practical LTE
systems where one codeword is split among transmit-antennas. Moreover, the IF design
in [11] needs a separate encoding/decoding process per transmit-antenna and per bit-layer
when higher-order modulations are employed. Another disadvantage is that, the receiver
has to detect linear combinations of codewords across all transmit-antennas first, followed
by a matrix inversion (over a finite-field) to recover the codeword at each layer.

To overcome these disadvantages in IF receiver designs, we consider a new approach to im-
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prove linear detection with modulus operation, namely, the proposed modulus ZF (MZF)
detector. Note that, MZF is conceptually different from previous IF receivers, although
they share some similarities. The fundamental difference is that, with MZF, there is no
encoding/decoding over a finite-field, as is the case for IF, to recover the transmit sym-
bols (i.e., the linear combinations of codewords across all transmit-antennas). Altern-
atively, we design the MZF detector such that the transmit symbols on each transmit-
antenna can be recovered directly by modulating away the interferences from the remain-
ing transmit-antennas, and such a process is independent and fully parallel for different
transmit-antennas. Such a design principle simplifies the operations, and can be well co-
operated into practical systems such as LTE. To achieve this, a matrix which we refer to
as the modulus matrix, must be carefully designed and optimized according to the specific
modulation-order.

2 Preliminaries

We start with reviewing the standard ZF detection. Before proceeding, without loss of
generality, the matrix H̃ is always assumed to be a square matrix, obtained by a QR fac-
torization or padding zero rows to the matrix if necessary. With the following definitions,

y =

[
R{ỹ}
I{ỹ}

]
, x =

[
R{x̃}
I{x̃}

]
, n =

[
R{ñ}
I{ñ}

]
, H =

[
R{H̃} −I{H̃}
I{H̃} R{H̃}

]
,

(2)
we can rewrite (1) as a real-valued model

y = Hx+ n (3)

where the K×K channel matrix H is known to the receiver, x=[x1 . . . xK ]T contains
PAM symbols from an alphabet A = {±1, ±3, . . . ,±(

√
M − 1)}, and n is random

Gaussian noise with a covariance matrix (N0/2)I . As the transmit power depends on M ,
the signal-to-noise (SNR) is defined as

SNR = 2E[|xk|2]/N0. (4)

The ZF detector is given by

x̂ = QA
(
H+y

)
, (5)

whereQA(·) denotes entry-wise quantization to the nearest point inA. This can be slightly
rewritten as

x̂k = QA(rk), 1 ≤ k ≤ K
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with
rk = δkH

+y (6)

and
δk = [0 . . . 0︸ ︷︷ ︸

k−1

1 0 . . . 0︸ ︷︷ ︸
K−k

].

For later use, we note that we may just as well replace the “1” in δk with any arbitrary scalar
value and equivalently work with

rk = τxk + wk, (7)

where wk is zero-mean complex Gaussian noise with a variance N0τ
2∥δkH+∥2/2. Ac-

cordingly, the post-processing SNR, which is independent of τ , becomes

γk =
SNR

∥δkH+∥2
, (8)

with the SNR defined in (4).

3 Description of Proposed Method

A main issue with ZF is that, ∥δkH+∥2 in (8) is typically large and results in noise-
enhancement when H is ill-conditioned [14]. To combat that, we make use of the under-
lying idea of THP but apply it to equalization, without any involvement of the transmitter.
We propose to replace (6) with

rk = (τδk + qk)H
+y (9)

where qk=[qk1, qk2, . . . qkK ] and qkℓ∈2Z, i.e., the even integers. With that,

rk = τxk +
K∑
ℓ=1

qkℓxℓ + wk, (10)

and the noise power changes to N0∥(τδk+qk)H
+∥2/2.

Note that, (10) is identical to the received signal per user in vector perturbation (VP) [15, 16].
Therefore, further processing of (10) can follow the same steps as those in VP.

To detect xk from rk, we first state Property 1.

Property 1. Let

y = z + α

M∑
m=1

pmbm,
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where α ≥ 1, |z|<2, and pm, (bm−1)∈2Z. Then,

z =

(y mod 4α)− 2α, if 1
2

M∑
m=1

pm is odd,(
(y + 2α) mod 4α

)
− 2α, otherwise.

(11)

Proof. See Appendix A.

In view of Property 1, we see that qkℓ and xℓ in (10) qualify as pm and bm, with setting
α=1. Further, from Property 1 we have that, τ must be selected such that

τ max
a∈A
|a| = τ(

√
M − 1) < 2. (12)

To finalize the detector, we let

zk =

(rk mod 4)− 2, if 1
2

K∑
ℓ=1

qkℓ is odd,(
(rk + 2) mod 4

)
− 2, otherwise.

(13)

which can be expressed as

zk = τxk + w̃k, (14)

where w̃k has a complicated distribution due to the modulus operation. The detected
symbol x̂k can now be obtained as

x̂k = QτA(zk), (15)

where the quantization is implemented on τA, i.e., a scaled alphabet from A.

We first remark that, the choice τ = 2/(
√
M−1) is not suitable in (12). This is so since

if τxk+wk = 2+ϵ in (10), for some small ϵ > 0, then after modulus operation in (13) it

may happen that zk = ϵ−2 if
K∑
ℓ=1

qkℓ is even. However, provided that τ < 2/(
√
M−1),

at high SNR such wrap seldom happens and w̃k =wk with high probability. Further, for
constellation points xk with small magnitude, w̃k=wk holds with much higher probability
than for constellation points xk of large magnitude. To ensure equal error probability for
all constellation points, we design τ such that:

The distance from 2 to the largest constellation point in τA is half the distance between two
points in τA.

Following this rule results in

τ = 2(1−log2
√
M), (16)
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which satisfies (12), and with out loss of generality we assume that log2
√
M is an integer.

For instance, ifM=4, i.e., x̃ is 4-QAM modulated andx comprises 2-PAM symbols, then
τ equals 1. Similarly, if x̃ is 16-QAM or 64-QAM modulated and x comprises 4-PAM or
8-PAM symbols, τ is set to 1/2 or 1/4, respectively.

With (16), we have that w̃k is “nearly” Gaussian (see [15, 16] for details) at high SNR. To
optimize the receiver, we should solve

qoptk = argmin
qk

∥(τδk + qk)H
+∥2 (17)

where elements of qk are even integers. We rewrite (17) as

qoptk = argmin
qk

∥bk − qkB∥2, (18)

which is an instance of sphere detection with integers [17], where

bk = τδkH
+, (19)

B=−H+. (20)

With the MZF detection introduced and without any extension, the basic MZF algorithm
is given in Algorithm 1. We remind the reader that, the inputsH and y to the algorithm are
assumed to be real-valued, while M denotes the cardinality of the complex-valued QAM
constellation. We give an example of MZF detection in Appendix B to illustrate the detec-
tion process.

With the principle of MZF detection introduced, we have a few important remarks as
follows.

Remark 1. The MZF detection generalizes the ZF, and has the latter one as a special case when∥∥∥qoptk − δk⊙qoptk

∥∥∥2=0, (21)

where⊙ is the Hadamard product. Hence, from a perspective of post-processing SNR, the MZF
is always superior than the ZF.

Remark 2. Following Remark 1, when the condition (21) holds, the modulus operation is un-
necessary and ZF estimate shall be used.

Remark 3. In general, the minimum value achieved by qoptk in (18) increases as τ decreases.
That is, for large constellations, the gain of the MZF decreases.

To resolve the issue in Remark 3 and further improve the detection performance, we develop
some useful extensions of the basic MZF detection.
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Algorithm 1 MZF Algorithm
H is K ×K real-valued
y is K × 1 real-valued
M is cardinality of QAM constellation

1: function x̂ =ModularZF(H,y,M )
2: τ = 2(1−log2

√
M)

3: B = −H+

Preprocessing for each coherence interval

4: for k = 1 toK
5: bk = τδkH

+

6: Solve : qoptk = argmin
qk

∥bk − qkB∥2

7: end for

Executed for every channel observation

8: for k = 1 toK
9: rk = (τδk + qoptk )H+y

10: if
∥∥∥qoptk −δk⊙q

opt
k

∥∥∥2=0 then
11: zk = bky
12: else
13: if 1

2

∑K
ℓ=1 q

opt
kℓ is odd then

14: zk = (rk mod 4)− 2
15: else
16: zk = ((rk + 2) mod 4)− 2
17: end if
18: end if
19: x̂k = QτA(zk)
20: end for
21: end function

4 Extensions

In this section we introduce some extensions to the basic MZF detection. While Exten-
sion 1 and 4 are generalizations of the basic algorithm, Extension 2 is to resolve the issue
mentioned for larger constellations and improves the detection for weak bit-layers, and
Extension 3 is a decision feedback version of Extension 2.
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4.1 Extension 1: A Scaled Modulus

This first extension arises from a slight relaxation of α = 1 in the MZF detector. From
Property 1, we can replace (13) as

zk =

(rk mod 4α)− 2α, if 1
2

K∑
ℓ=1

qkℓ is odd,(
(rk + 2α) mod 4α

)
− 2α, otherwise.

(22)

This requires us to optimize, instead of (17),

(qoptk , αopt) = argmin
α≥1, qk

∥(τδk + αqk)H
+∥2. (23)

Solving (23) is harder than solving (17) since it can be regarded as an instance of non-
coherent sphere detection. Instead, we solve (17) first, and then plug the optimal solution
into (23) and solve for the optimal α. That is, qoptk is obtained with (17), and

αopt = argmin
α≥1
∥(τδk + αqoptk )H+∥2, (24)

where we sligthly abused notation since the pair (qoptk , αopt) is in general not jointly op-
timal in the sense of (23). Although Extension 3 is intuitive, the gain seems marginal ac-
cording to numerical results.

4.2 Extension 2: Bitwise MZF

An underlying assumption of this extension is that the bit-mapping to the symbols in A
follows a natural labeling [11, 12], that is, a PAM symbol xk should have a following form

xk =

log2
√
M∑

b=1

ukb2
b−1, (25)

where ukb ∈ {±1} correspond to information bits. Using Algorithm 1, the bits ukb are
determined by the output x̂k=QτA(zk), with setting τ =2(1−log2

√
M). As M increases,

τ decreases and so are the gains with MZF detection. To resolve this for high-order mod-
ulations, we extend the symbol-based MZF detection in Algorithm 1 to a bitwise MZF
detection.

Note that we can rewrite (10) as

rk = τ

log2
√
M∑

b=1

ukb2
b−1 +

K∑
ℓ=1

qkℓxℓ + wk. (26)
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Supposing that we are interested in the n-th bit ukn, we let

x̃k =
n∑

b=1

ukb2
b−1, (27)

which belongs to a 2n-PAM alphabet. Setting τ(n)=21−n in (26) yields

rk = 21−nx̃k +

log2
√
M∑

b=n+1

ukb2
b−n +

K∑
ℓ=1

qkℓxℓ + wk. (28)

It can be easily seen that 1
2

log2
√
M∑

b=n+1

ukb2
b−n is an odd integer so it qualifies as a valid value

of qkℓ, and ukn can be detected as

ûkn = sign(zk). (29)

Therefore, for each bit-layer, a different value of τ is used and only a sign operation is
needed for detecting bit ukn. Extension 2 has a complexity increment over Algorithm 1
that, an optimization to find an optimal qk is needed for each bit-layer.

Note that, according to Remark 2, when detecting the last bit-layer and if (21) holds, the
ZF estimate shall be used for detection, while for detecting the other layers, modulus op-
erations are still needed to module away the transmitted bits corresponding to higher bit-
layers. With cooperating such a modification, the MZF with Extension 2 is summarized
in Algorithm 2.

4.3 Extension 3: A Decision Feedback Version of Extension 2

An obstacle with Extension 2 is that τ decreases as n grows, and as previously mentioned,
performance deteriorates. Small values of n correspond to weak bit-layers, and large n cor-
respond to strong bit-layers. Thus, with Extension 2, predominantly the weak bit-layers
can gain by the MZF, while the gain could be minuscule for strong bit-layers. A gain for
weak bit-layers is important since it is typically these bit-layers that limit ultimate perform-
ance. However, we can also harvest a gain for strong bit-layers via a decision feedback
mechanism. To prevent error propagation in decision feedback equalization, strong bits
are typically detected first and then canceled. That option is not available for MZF, rather
we detect the weakest bit-layer first and then move on to stronger ones such as in [12].

The method works as follows. First set n=1 and follow the Extension 2 verbatim to obtain
û1=[û11 . . . ûK1]

T. For notational convenience, define y1=y. Now construct

y2 =
1

2
(y1 −Hû1) . (30)
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Algorithm 2 MZF Algorithm with Extension 2
H is K ×K real-valued
y is K × 1 real-valued
M is cardinality of QAM constellation

1: function x̂ =ModularZFExt2(H,y,M )
2: N = log2

√
M

3: B = −H+

4: for n = 1 to N
5: τ(n) = 21−n

6: end for

Preprocessing for each coherence interval

7: for k = 1 toK
8: bk = δkH

+

9: for n = 1 to N
10: bkn = τ(n)bk
11: Solve : qoptk,n = argmin

qk

∥bkn − qkB∥2

12: end for
13: end for

Executed for every channel observation

14: for k = 1 toK
15: for n = 1 to N

16: if n=N and
∥∥∥qoptk −δk⊙q

opt
k

∥∥∥2=0, then
17: zk = bky
18: else
19: rk = (τ(n)δk + qoptk )H+y
20: zk = (rk mod 4)− 2
21: end if
22: ûkn = sign(zk)
23: end for
24: end for
25: end function

Provided that û1 is correct, y2 is described with the same MIMO channel as y1, but with√
M/2-PAM rather than

√
M -PAM inputs. Next, move on to n = 2 and keep τ = 1.

Since nor the value of τ neither the channel H has changed, the optimal vector qk for
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n=2 coincides with that already found for n=1. We then have that for y2

rk = uk2 +

log2
√
M∑

b=3

ukb2
b−2 +

K∑
ℓ=1

qkℓ
1

2
(xℓ − ûk1) + wk, (31)

and ûk2 is obtained by taking the sign of zk as in (29). We proceed by

y3 =
1

2
(y2 −Hû2) , (32)

and continue the process until all bit-layers have been detected.

Similarly, according to Remark 2, when detecting each bit-layer and when (21) holds, the
ZF estimate shall be used. With considering this, the MZF with Extension 3 is summarized
in Algorithm 3.

The Extension 3 is similar to Extension 2 in the sense that, the detection for all bit-layers
only needs to take the signs of zk as in (29), but it has less complexity since only one
optimization of (17) is needed which is shared for all bit-layers. A drawback with Extension
3 is that, as for all decision-feedback based detections, the process of the bit-layers cannot be
parallelized, which is, however, possible with Extension 2. Another drawback is potential
error-propagations at low SNRs.

4.4 Extension 4: Replacing ZF by LMMSE

So far we have introduced the modulus detection using ZF, however, H+ can also be
replaced by other linear detectors¹ such as LMMSE, which sets

H+ ≜ H†
(
HH† +N0I

)−1
. (33)

Casting in vector form and with a modulus matrix T , the received signal after equalization
equals

TH+y = Tx+ T
(
H+H − I

)
x+ TH+n,

where T =τI+Q. The target of optimizing qk in this case, is to minimize the interference
plus noise power (for a given τ ) such that

q̃k = argmin
qk

∥(τδk + qk)E∥
2 , (34)

¹This is also known as regularized perturbation in VP [15].
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Algorithm 3 MZF Algorithm with Extension 3
H is K ×K real-valued
y is K × 1 real-valued
M is cardinality of QAM constellation

1: function x̂ =ModularZFExt3(H,y,M )
2: τ = 1
3: N = log2

√
M

4: B = −H+

Preprocessing for each coherence interval

5: for k = 1 toK
6: bk = τδkH

+

7: Solve : qoptk = argmin
qk

∥bk − qkB∥2

8: end for

Executed for every channel observation

9: ŷ = y
10: for n = 1 to N
11: ûn = 0
12: for k = 1 toK
13: if

∥∥∥qoptk −δk⊙q
opt
k

∥∥∥2=0, then
14: zk = τδkH

+ŷ
15: else
16: rk = (τδk + qoptk )H+ŷ
17: zk = (rk mod 4)− 2
18: end if
19: ûkn = sign(zk)
20: end for
21: ûn=[û1n û2n . . . ûKn]

T

22: ŷ = (ŷ −Hûn)/2
23: end for
24: end function

where

E =
[
H+H − I, N0H

+
]
. (35)

Note that, when H+ equals the pseudo-inverse of H , E degrades to H+, which shows
the generalization of MZF detection. The reason for introducing Extension 4 is that, the
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ZF is suboptimal to LMMSE at low SNRs, in which cases it is beneficial to use LMMSE
instead of ZF in the MZF detection. Since only H+ is replaced by LMMSE equalizer in
Extension 4, all Algorithms 1-3 still apply with such a modification in (33) for the MZF
detection.

There are also many other possible variations of the MZF detection, but we will not pursue
any further. Next, we put an interest on comparing the MZF detector to a traditional LAR
detector. The reason is that, solving (17) involves significant complexity, and we put forth
an approximated solution based on LR with less computational efforts.

5 A Solution Based on, and a Comparison to, Lattice Reduction

Except for approximately solving (17) with LR, another reason for comparing MZF with
LR detection is that, the obtained MZF allows for a direct comparison to LAR detectors. In
LAR as well as the MZF, the most burdening task is to execute the LLL algorithm (or other
similar algorithms), thus the complexities of LAR and MZF become virtually identical. As
we will demonstrate, the detection-performance of MZF is superior in some cases.

5.1 A Quick Review of LAR

Given (3), LAR starts by performing the LLL algorithm onH , so that we obtain H̄ = HT
where T is unimodular and H̄ is nearly orthogonal. With z = T−1x we have

y = H̄z + n. (36)

Performing ZF based on H̄ and quantizing to the nearest integers gives

ẑ = QZ(H̄
−1

y) (37)

from which one can obtain
x̂ = QA(T ẑ).

Clearly, once H̄ has been established, the remaining steps are of minuscule complexity.

At this point, a reasonable question is, what the relation between LAR and MZF is, and
whether they are equivalent? The answers to these questions are that, they are closely related,
but not equivalent. Prior to quantization in (37), we can write

r = H̄
−1

y

= T−1x+w. (38)
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Since T is unimodular, so is T−1. On the other hand, casting in vector form, (9) equals

r = (τI +Q)H−1y

= (τI +Q)x+w. (39)

Comparing (38) and (39) with τ =1, we see that in both cases r equals an integer-valued
matrix multiplied with the data symbols, plus noise. However, the matrix T−1 in (38)
has no particular structure (besides being unimodular) so the modulus operation in (13) is
not available. This makes LAR, i.e., (38) and MZF, i.e., (39) fundamentally different, as
the structure of (38) requires further processing in the form of (37), while (39) allows for
further processing via (13).

5.2 An Approximate Solution to (17) based on LLL

In (18) we have the following problem to solve

qopt = argmin
q
∥b− qB∥2, (40)

where we omit the subscript k. Perform the LLL algorithm to BT so that we have

B̄ = BTT .

Since B=−H+ the LLL algorithm needs, similar to LAR, to be executed only once per
coherence interval. We can now proceed as in the LAR case,

ẑ = QZ(B̄
−1

bT)

followed by

qopt = [Q2Z(T ẑ)]T . (41)

Note that, the optimization (40) itself is also an MIMO detection problem (but only needs
to run once for a coherence-interval of the MIMO channel), therefore, there are also other
low-complexity suboptimal algorithms to solve (40), such as using ZF or partial marginal-
ization [18]. In the simulations, we will focus on the SD based optimal, and the LLL based
suboptimal solutions for (40), respectively.

6 Numerical Results

In this section, we show some numerical results of the proposed MZF detection, as well as
its extensions. In all tests, we test withK×K real-valued MIMO channels (each element is
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an independent and identically distributed (i.i.d.) Gaussian variable with a zero-mean and
unit-variance) with

√
M -PAM modulated symbols that are transfered from K/2×K/2

complex-valued MIMO channels and M -QAM modulated symbols. We simulate 50,000
channel realizations for each of the tests.

6.1 SINR Improvements

In Fig. 1 we show the post-processing SNR improvements with the MZF detector using
Algorithm 1, and compare to a traditional ZF detector with different PAM modulations
(i.e., τ values). As can be seen, the SNRs are greatly improved, especially for low-order
modulations (or the weak bit-layers of high-order modulations with Extension 2). When
τ decreases, the gains become smaller. We also test the MZF with Extension 1, where we
can observe only marginal gains. Therefore, in the remaining tests we set α=1.

6.2 Uncoded Bit-Error-Rate (BER)

Next we show the uncoded BER performance. In Fig. 2 we compare MZF with ZF and
ML under 6×6 MIMO with 4-PAM modulation. The MZF uses SD to find optimal qk.
As can be seen, the MZF without extensions outperforms the ZF more than 2 dB at 0.1
BER. With Extension 2, the BER of the first bit-layer (weaker layer) is greatly improved
by more than 4 dB at 0.1 BER and outperforms the second bit-layer, which justifies the
application of Extension 3. With Extension 3, where feedback of the first bit-layer is used,
the BER of the second bit-layer is also improved by more than 3 dB at 0.1 BER compared
to the MZF with Extension 2. The gaps between ZF and ML are significantly reduced
by the MZF, and the slopes of BER with MZF are also much steeper than the ZF, and
close to those of ML. However, as also can be observed, the MZF has only marginal gains
at low SNRs, and the decision-feedback approach performs even worse due to inaccurate
feedbacks. This issue can be relieved by using LMMSE based approaches, i.e., Extension 4.

In Fig. 3 we repeat the tests in Fig. 2 under 4×4 MIMO with 8-PAM modulation, that is,
three bit-layers are considered. The MZF with Extension 2 using SD is compared to ZF
and ML. As already shown in Fig. 1, setting τ=1/4 for detecting the third-layer (strongest
layer) only has small gains, and the BER performance is also close to ZF and therefore are
not shown in Fig. 3. Nevertheless, the BER of the first and second bit-layers are significantly
boosted by MZF. As can be seen, the MZF performs around 3 dB better than the ZF at
0.1 BER for the second bit-layer, and 7 dB better for the first bit-layer. Since the weakest
bit-layer usually has a stronger impact on the decoding performance, the gains for the first
bit-layer is of importance.
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Figure 1: SNR gains under real-valued 12×12 MIMO with 2-PAM, 4-PAM and 8-PAM modulations, respectively.
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Figure 2: Uncoded BER under real-valued 6×6 MIMO with 4-PAM modulation.

6.3 Comparison with LAR

In Fig. 4 we compare the MZF with the LAR under 8×8 MIMO with 2-PAM modulation.
The MZF uses both SD and LLL based approximations to find optimal qk. As can be seen,
the MZF outperforms the LAR more than 1.5 dB at 0.1 BER, with a similar complexity
for running LLL algorithm for LR.

Moreover, with Extension 4 (the LMMSE based detection), the BER at low SNRs are also
improved with the MZF which is inferior to the original ZF based MZF at high SNRs.
Nevertheless, with Extension 4, the MZF is 4 dB better than a normal ZF, and more than
2dB better than a normal LMMSE detector at 0.1 BER. Another observation is that,
the SD based MZF is more than 2 dB better than the LLL based MZF, which shows that
optimal selection of qk is important.
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Figure 3: Uncoded BER under real-valued 4×4 MIMO with 8-PAM modulation.
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Figure 4: Uncoded BER under real-valued 8×8 MIMO with 2-PAM modulation.

7 Summary

We have proposed a novel modulus base zero-forcing (MZF) detection for multi-input
multi-output (MIMO) channels, with possible extensions of the basic algorithm. The
MZF detection shows significant gains in terms of post-processing signal-to-noise (SNR)
and uncoded bit-error-rate (BER) compared to traditional linear detectors, at medium and
high SNR scenarios and in particular for weak bit-layers. At low SNRs and with large
modulation-orders, we have provided several possible extensions to improve the detection-
performance of the MZF. Finding optimal modulus matrix itself is a complex MIMO de-
tection problem, but it needs to be done only once per a coherence-interval of the MIMO
channel using such as sphere-decoding (SD) and other suboptimal algorithms. In par-
ticular, with a similar complexity, the MZF with lattice-reduction (LR) based approach
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outperforms the traditional lattice-aided-reduction (LAR) detector, which justifies its po-
tential in MIMO detection.

Appendix A: Proof of Property 1

Since pm, (bm−1)∈2Z, we let pm=2p̃m and bm=2b̃m+1, where p̃m, b̃m∈Z. Then,

y = z + α

M∑
m=1

pmbm

= z + 4α
M∑

m=1

p̃mb̃m + 2α
M∑

m=1

p̃m. (42)

Since |z|<2 and α≥1, it holds that z+2α>0. If 1
2

M∑
m=1

pm=
M∑

m=1
p̃m is odd, we have

y mod 4α = z + 2α; (43)

Otherwise, if
M∑

m=1
p̃m is even, it also holds that

(y + 2α) mod 4α = z + 2α. (44)

Combing (43) and (44), z can be obtained as in (11).

Appendix B: A 4×4 example for applying the MZF detection

Below we give a 4×4 real-valued MIMO example with 4-PAM modulation to illustrate
the process of MZF detection, with assuming the channel, transmitted symbol vector and
received signal vector as

H=


−6 0 −1 5
−3 −2 −1 1
1 −5 −6 0
1 −1 −3 −2

, x=


1
−1
−1
1

, y=


3
1

15
11

,
respectively. Then it can be shown that

H+=
1

185


−5 −55 30 −40
35 −59 −25 58
−30 40 −5 −55
25 −58 35 −59

,
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and the ZF estimate of x equals

x̃ZF = H+y =
1

185


−60
309
−730
−107

,
where only the third symbol is correctly detected.

Next we use the basic MZF detection with Algorithm 1. Setting τ = 1 and run SD for
optimization (17) yields an optimal Q as

Q=


−2 0 0 0
0 0 2 0
0 0 −2 0
2 0 0 −2

.
We first see that, the MZF shall reuse the ZF estimates for the first and third layers based
on (21). Then, we see that with Q, the post-processing SNR (assuming the noise power
equals 1) for the second bit-layer (which is identical to the fourth bit-layer) is increased from
1/∥δ2H+∥=185/47 to 1/∥(δ2+q2)H

+∥2=185/27. Next we compute estimates with
the MZF for the these two layers.

For the second layer, according to (13) we have

r2 = (δ2 + q2)x̃ZF =
1

185
[0 1 2 0]


−60
309
−730
−107

= −1151185
,

and

z2 = (r2 mod 4)− 2 =
−7
38
.

Similarly, for the fourth layer we have

r4 = (δ4 + q4)x̃ZF =
1

185
[2 0 0 − 1]


−60
309
−730
−107

= −13185
,

and

z4 = (r4 mod 4)− 2 =
357

185
.

As can be seen, the MZF corrects both detections for the second and the fourth layers where
the ZF fails.
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A Generalized Zero-Forcing Precoder with Successive
Dirty-Paper Coding in MISO Broadcast Channels

In this paper, we consider precoder designs for multiuser multi-input single-output (MISO)
broadcasting channels. Instead of using a traditional linear zero-forcing (ZF) precoder, we pro-
pose a generalized ZF (GZF) precoder in conjunction with successive dirty-paper coding (DPC)
for data-transmissions, namely, the GZF-DP precoder, where the suffix ‘DP’ stands for ‘dirty-
paper’. The GZF-DP precoder is designed to generate a band-shaped and lower-triangular effect-
ive channel F such that only the entries along the main diagonal and the ν first lower-diagonals
can take non-zero values. Utilizing the successive DPC, the known non-causal inter-user interfer-
ences from the other (up to) ν users are canceled through successive encoding. We analyze optimal
GZF-DP precoder designs both for sum-rate and minimum user-rate maximizations. Utilizing
Lagrange multipliers, the optimal precoders for both cases are solved in closed-forms in relation
to optimal power allocations. For the sum-rate maximization, the optimal power allocation can
be found through water-filling, but with modified water-levels depending on the parameter ν.
While for the minimum user-rate maximization that measures the quality of the service (QoS),
the optimal power allocation is directly solved in closed-formwhich also depends on ν. Moreover,
we propose two low-complexity user-ordering algorithms for the GZF-DP precoder designs for
both maximizations, respectively. We show through numerical results that, the proposed GZF-
DP precoder with a small ν (≤ 3) renders significant rate increments compared to the previous
precoder designs such as the linear ZF and user-grouping based DPC (UG-DP) precoders.

©2017 IEEE. Reprinted, with permission, from
S. Hu and F. Rusek,
“A generalized zero-forcing precoder with successive dirty-paper coding in MISO broadcast chan-
nels,”
IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3632-3645, Jun. 2017.
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1 Introduction

In the emerging Internet of things (IoT) [1] and device-to-device (D2D) [2] communication
systems, a transmit node equipped with M transmit antennas may broadcast messages
simultaneously toN low-cost receive nodes that are equipped with a single antenna. Under
the assumption that the number of transmit antennas are much larger than the number of
served users, i.e., M≫N , which is known as massive multi-input multi-output (MIMO)
systems [3], the multi-input single-output (MISO) broadcasting channels corresponding
to different users that link the transmit and receive nodes are approximately orthogonal to
each other. Consequently, the zero-forcing (ZF) precoders applied at the transmit nodes can
efficiently eliminate the inter-user interference, and the MISO channels can be decomposed
into a number of parallel and independent single-input single-output (SISO) channels in
such cases.

In small-antenna systems such as small cells [4] with compact base-stations and WiFi sys-
tems, however, compared to the number of served users the number of transmit antennas
are usually limited. Further, in current 3GPP standard [5], LTE-A systems support only
up to 8 transmit antennas. Although future releases may support massive-MIMO or full-
dimension MIMO (FD-MIMO)[6] and the number of transmit antennas at the eNode-B
may increase to 64 for 2-D antenna array designs, the intended number of served users will
also increase due to the vast connections featured in 5G systems. Consider the case where
N is comparable to M , in order to fully eliminate the inter-user interference, the linear
ZF precoder performs poorly due to the non-orthogonality of the MISO broadcast chan-
nel vectors [7]. Therefore, advanced precoder designs are required to improve the transmit
power-efficiency and increase the rates of data-transmissions.

Some of the typical precoder designs are to preserve parts of the inter-user interference and
mitigate them with the techniques of channel coding with side information (CCSI). CCSI
has generated much research interests due to its applications in data hiding [8], precoding
for interference channels [9], and transmitter cooperation in Ad-hoc networks[10]. Gelfand
and Pinsker in [11] derive the capacity of a single-user memoryless channel with an additive
interference signal s known to the transmitter, but not the receiver. Consider a received
signal

y = x+ s+ z, (1)

where x, y are transmit and receive signals, and z is the unknown Gaussian noise, respect-
ively. The capacity of model (1) is shown to equal

C = max
p(u,x|s)

{I(u;y)− I(u; s)} . (2)

where u is an auxiliary random variable and the maximum is taken over all joint probabil-
ity distributions. Based on the result (2), Costa shows in [12] that with dirty-paper coding
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(DPC), the channel capacity C is the same even if the interference s is not present. Utilizing
the same principle, the DPC scheme can be extended to multi-user Gaussian vector broad-
cast channels[13], and DPC capacity regions have been derived via the uplink-downlink
duality between broadcast channels and multiple-access channels [14, 15]. Practical DPC
designs based on finite-alphabets have been extensively developed such as Tomlinson Har-
ashima precoding [16], lattice precoding [17], and trellis coded quantization and modula-
tion [18, 19].

Caire and Shamai in [9] propose a ZF based DPC (ZF-DP) design for MISO broadcast
channels. They show that with successive DPC utilized at transmitter, the sum-rate of the
ZF-DP precoder is close to the optimal DPC. In [35], the authors propose a successive ZF-
DP (SZF-DP) precoding scheme and show that in the low SNR regime, the SZF-DP has
similar performance as a successive ZF (SZF) precoder, where the SZF-DP and SZF pre-
coders are direct extensions of the ZF-DP and linear ZF precoders in [9] for MIMO broad-
cast channels. In [36, 37] the authors further extend the ZF-DP and SZF-DP precoders
subject to per-antenna power constraint (PAPC) instead of a sum-power constraint (SPC).
Nevertheless, all the successive DPC based precoder designs in [9, 35–37] assume a full suc-
cessive DPC scheme. As the number of users N increases, the successive DPC becomes
prohibitive as it needs to consider the inter-user interference up to N−1 users. Recently,
the authors in [20] propose a user-group based DPC precoder (UG-DP), which splits the
N users into g disjoint groups with each group containing Ng users¹. The inter-group in-
terferences are eliminated by the precoder, while the intra-group interferences are canceled
with successive DPC that is implemented on each user-group independently. With a small
Ng, the DPC has less-complexity and is feasible [16–21]. However, as different user-groups
are orthogonalized to each other, the UG-DP also suffers from rate-losses, especially when
the channel vectors of different user-groups are spatially correlated.

In this work, we propose a generalized ZF precoder (GZF) design in conjunction with
successive DPC, namely, the GZF-DP precoder, which unifies the designs of the UG-DP
and the ZF-DP precoders. Instead of considering N − 1 users in previous designs, we
consider inter-user interference up to ν users, where the parameter ν is up to design and
provides a trade-off between the rates and implementation complexity of the successive
DPC². By setting ν=0, the GZF-DP precoder degrades to the linear ZF precoder, which
has low complexity (no DPC is needed) but also low rates. On the other hand, with setting
ν=N−1, the GZF-DP precoder is identical to the ZF-DP precoder [9], which performs
better than the other settings of ν but also has the highest DPC implementation complexity.

¹For notational convenience, we assume that N is divisible by g and let Ng=N/g. But it can be straight-
forwardly modified to other cases with minor changes.

²Instead of using DPC at transmitter, in cooperative networks [22] the receiver nodes can implement suc-
cessive interference cancellations (SIC) to achieve the same rates as the DPC. However, that requires a cost of
communicating between the receive nodes. In which case, the parameter ν represents a maximal number of
communication channels needed for the receive nodes.
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Moreover, as the UG-DP precoder can be viewed as a special case of the GZF-DP precoder,
it renders lower rates than the GZF-DP precoder with ν=Ng−1.

With the GZF-DP precoder, we consider two optimal designs: sum-rate maximization and
minimum user-rate maximization, that are aiming to maximize the overall throughput and
the quality of service (QoS), respectively. Using Lagrange multipliers, the optimal GZF-
DP precoder designs for both cases are found in closed-form which depend on optimal
power-allocations. For the sum-rate maximization, the optimal power allocation is found
through a water-filling scheme in relation to modified water-levels introduced by preserving
the inter-user interference up to ν users. While for the minimum user-rate maximization,
the optimal power allocation can be solved directly in closed-form which also depends on ν.
Moreover, we provide two low-complexity algorithms for optimal user-orderings for both
maximizations, respectively. We show through numerical results that, the proposed GZF-
DP precoder is superior to the previous ZF and UG-DP precoders, and most interestingly,
with a small value of ν (≤3) the proposed GZF-DP precoder performs close to the ZF-DP
precoder[14], i.e., the GZF-DP precoder with ν=N−1.

Notice that, as the precoder designs in [35–37] follow similar approaches as those in [9], the
proposed GZF-DP precoder can also be extended to MIMO broadcast channels and PAPC
constraint, which is a generalization of the SZF-DP precoder by only performing DPC up
to νmultiple-receive-antenna users. However, as in [35–37] only the sum-rate maximization
with a full DPC is considered, an interesting fact that the sum-rate maximization actually
sacrifices the user-rates of some of the last users (corresponding to the last columns of
channel matrix H) compared to the linear ZF precoder is not shown. With the variable ν
increasing from 0 toN−1, this property is clear shown in this work, which also motivates
us to consider the minimum user-rate maximization for the proposed GZF-DP precoder.

The rest of the paper are organized as follows. In Sec. II, we briefly introduce the MISO
system model and the previous precoder designs. In Sec. III, we elaborate the proposed
GZF-DP precode designs in detail for sum-rate and minimum user-rate maximizations,
respectively. We also analyze the low-complexity ordering algorithms for both maximiza-
tion problems. Empirical results are provided in Sec. IV, and Sec. V summarizes the paper.

Notations:

Throughout this paper, superscripts (·)−1, (·)1/2, (·)∗, (·)T and (·)† stand for the inverse,
matrix square root, complex conjugate, transpose, and Hermitian transpose, respectively.
Boldface letters indicate vectors and boldface uppercase letters designate matrices. We also
reserve am,n to denote the element at the mth row and nth column of matrix A, am to
denote themth element of vector a, and I to represent the identity matrix. The operators
R{·} and Tr(·) take the real part and the trace of the arguments, and [·]+ is the non-
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negative protection. In addition, J1\ J2 returns a set that contains all elements in set J1
that are not in J2, and the expressions A ≻ B and A ⪰ B represent that (A−B) is
positive definite and semi-positive definite, respectively.

2 System Model and Previous Sum-rate Maximization Precoder
Designs

Consider an MISO system with an M -antenna transmitter and N single-antenna users
with assumption M ≥ N . The channel vector from the transmitter to the nth user is
denoted as hn ∈CM×1, and the mth entry hmn of hn is the channel gain from the mth
transmit antenna to the nth user. Denote the N×M channel

H = [h1 h2 . . . hN ]T, (3)

and let the N×1 vectors

y = [y1 y2 . . . yN ]T,

x = [x1 x2 . . . xN ]T,

z = [z1 z2 . . . zN ]T, (4)

where xn is the DPC-encoded symbol of the nth user that cancels the non-causal inter-
ference from the other users, and yn, zn is the received sample and the noise term corres-
ponding to the nth user, respectively. With an M×N precoding matrix P applied at the
transmitter, the received signals at the N autonomous users can be compactly written as

y = HPx+ z, (5)

where the noise term z comprises identical and independently distributed (IID) complex
Gaussian variables with zero mean and a covariance matrixN0I . The transmit symbols xn
are uncorrelated due to DPC encoding and have unit-transmit power, that is, E[xx†]=I .
In addition, the transmit node is subject to a total transmit power constraint PT such that

Tr
(
PP †

)
≤ PT. (6)

2.1 Optimal DPC Precoder

Denote the effective channel F =HP , the interference channel corresponding to each of
the N users from (5) can be written as

yn = fn,nxn +

n−1∑
k=1

fn,kxk +

N∑
k=n+1

fn,kxk + zn. (7)
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With a successive DPC [12] encoding scheme, the interference term
n−1∑
k=1

fn,kxk is non-

causally known and canceled, while the causal interference term
N∑

k=n+1

fn,kxk is regarded

as additive noise. Therefore, the optimal DPC precoder that maximizes the sum-rate is
designed by solving the following problem

maximize
F

N∑
n=1

log

1 +
|fn,n|2

N0 +
N∑

k=n+1

|fn,k|2


subject to (6). (8)

Directly optimizing (8) is computationally complex as it is a non-convex problem. In
[23] the authors propose an iterative water-filling scheme to solve (8) based on the uplink-
downlink duality. Although the optimal DPC precoder achieves the capacity region [24]
of the multi-user MISO broadcast channels, the linear ZF precoder is widely used due to
its simple implementation.

2.2 Linear ZF Precoder

The linear ZF precoder is set to

P = H†
(
HH†

)−1
F , (9)

where F is an N×N diagonal matrix. With (9), the constraint (6) changes to

Tr

(
F †
(
HH†

)−1
F

)
≤ PT. (10)

Denote G=
(
HH†)−1, the sum-rate maximization for linear ZF precoder is then formu-

lated as

maximize
fn,n

R =
N∑

n=1

log

(
1 +
|fn,n|2

N0

)

subject to

N∑
n=1

gn,n|fn,n|2 ≤ PT. (11)

The optimal power allocation is found through the water-filling scheme,

|fn,n|2 = N0

[
1

λgn,n
− 1

]+
, (12)
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where λ≥0 is a constant such that power constraint (10) is satisfied. The optimal sum-rate
reads

Rsum =

N∑
n=1

[
− log (λgn,n)

]+
, (13)

As the linear ZF precoder completely eliminates the inter-user interference, it results in
low transmit power-efficiencies (even with regularizations[25]), especially when H is ill-
conditioned. In [9], the authors propose a ZF-DP precoder that only nulls out the causal
inter-user interference through ZF, and utilize successive DPC to cancel the non-causal
interference.

2.3 ZF-DP Precoder

Assuming the channel decomposition H =RU , where R is an N×N lower-triangular
matrix and U is an N×M unitary matrix, the ZF-DP precoder is set to P =U †B, and
theN×N diagonal matrix B represents the power allocation whose nth diagonal element
is bn. The effective channel with the ZF-DP precoder equals F =RB, and the received
sample yn reads

yn = fn,nxn +

n−1∑
k=1

fn,kxk + zn. (14)

Through successive DPC encoding, the non-casual interference
n−1∑
k=1

fn,kxk is nulled out

for each of the users, and the sum-rate maximization problem can be formulated as

maximize
bn

N∑
n=1

log

(
1 +
|bnrn,n|2

N0

)

subject to
N∑

n=1

b2n ≤ PT. (15)

The optimal power allocation bn can also be found through standard water-filling. Although
the ZF-DP precoder renders promising performance, the implementation of successive
DPC becomes over complex whenN is large. To reduce the DPC complexity, the authors
in [20] propose a low-complexity UG-DP precoder.

2.4 UG-DP Precoder

We next briefly introduce the UG-DP precoder design. Assuming the same channel decom-
position as with ZF-DP precoder, but now we constrain R to be block-diagonal, with each
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blockRk (1≤k≤g) being anNg×Ng lower-triangular matrix. Let theNg×M sub-matrix
Hk comprise the row vectors in H corresponding to the users in the kth group, and the
(N−Ng)×M sub-matrix H̄k comprise the remaining row vectors. With decomposition
U=[U1,U2, · · · ,U g]

†, each M×Ng component Uk can be obtained through

Hk

(
I − H̄

†
k

(
H̄kH̄

†
k

)−1
H̄k

)
=RkU

†
k. (16)

Then, with the matrix Uk calculated via (16), the optimal P equals P = U †B and the
effective channel becomes F =RB, where the diagonal matrix B represents the power
allocation to different users. Then, the remaining processes follow the ZF-DP precoder
design. Although the UG-DP precoder reduces the complexity of DPC by user-grouping,
it also suffers from rate-losses from the orthogonalization of different user-groups. In order
to increase the rates of the UG-DP precoder while keeping a similar complexity, we can
extend the block-diagonal lower-triangular R and F to be band-shaped matrices. That
is, the connections among different user-groups are preserved such that, only the elements
along the main diagonal and the firstNg−1 lower-diagonals of R and F can take non-
zero values. The proposed GZF-DP precoder design is based on such a principle and is
explained in detail next.

3 Optimal Designs of the Proposed GZF-DP Precoder

Instead of assuming F to be diagonal or block-diagonal such as in previous designs, we let
F to be a band-shaped and lower-triangular for the GZF-DP precoder design,

F =



f1,1
f2,1 f2,2
... f3,2

. . .

fν+1,1
...

. . . . . .

fν+2,2
. . . . . . . . .
. . . . . . . . . . . .
fN,N−ν · · · fN,N−1 fN,N


. (17)

The parameter ν denotes the interfering depth of the effective MISO broadcasting channels.
For simpler descriptions, we define two operations as

n⊖ ν = max(n− ν, 0),
n⊞ ν = min(n+ ν,N). (18)
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The GZF-DP precoder generalizes the linear ZF precoder in the sense that ν can be set
larger than 0. Under the case ν = 0, the GZF-DP precoder degrades to the linear ZF
precoder and no DPC is needed. With F defined in (17), the received sample yn of the
nth user reads

yn = fn,nxn +

n−1∑
k=n⊖ν

fn,kxk + zn. (19)

As the interference
n−1∑

k=n⊖ν

fn,kxk is non-causally known at the transmit node, we can apply

the same successive DPC encoding as the ZF-DP precoder[9] to cancel it. That is, we first
encode a first user that suffers no interference from the other users after precoding. Then,
the second user is encoded utilizing DPC scheme with regarding the encoded symbols from
the first user as known interference. The remaining users are successively encoded in the
same manner. For each of the N users, as there are at most ν users to be considered in
the DPC and ν≪N−1, the GZF-DP precoder renders much lower-complexity of the
successive DPC operations than the ZF-DP precoder and has similar complexity as the
UG-DP precoder with ν=Ng−1.

Before deriving the optimal GZF-DP precoder designs, we make some useful notations.
Denote the ν×1 vectors that comprise the non-zero entries on each column ofF excluding
the main diagonal element as

fν
n = [fn+1,n , fn+2,n , · · · , fn⊞ν,n]

T. (20)

Moreover, define the (ν+1)×(ν+1) principle sub-matrix Gν
n obtained from G as

Gν
n=


gn,n gn,n+1 · · · gn,n⊞ν

gn+1,n gn+2,n+1 · · · gn+1,n⊞ν
...

...
...

...
gn⊞ν,n gn⊞ν,n+1 · · · gn⊞ν,n⊞ν

. (21)

and let

gν
n = [gn,n+1 , gn,n+2 , · · · , gn,n⊞ν ]

† . (22)

Then, Gν−1
n+1 is the ν×ν principle sub-matrix obtained by further removing the first row

and column vectors from Gν
n.
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3.1 Sum-rate Maximization

We first consider the GZF-DP precoder design for the sum-rate maximization subject to
the transmit power constraint (10). The problem can be formulated as

maximize
F

N∑
n=1

log

(
1 +
|fn,n|2

N0

)
subject to Tr

(
F †GF

)
= PT. (23)

Note that, we have changed the power constraint in (23) from Tr
(
F †GF

)
≤ PT to

Tr
(
F †GF

)
= PT. The reason is that, for a solution of (23) the equality of the power

constraint always holds. This is so, since if Tr
(
F †GF

)
<PT holds, we can scale up F to

be some F̃ =αF (α> 1) such that Tr
(
F̃

†
GF̃

)
=PT holds, and with F̃ the sum-rate

in (23) is also increased. By constraining fn,n≥0, the optimal solution for (23) is stated in
Theorem 1.

Theorem 1. The optimal band-shaped and low-triangular matrix F as defined in (17) for
sum-rate maximization (23) satisfies the following conditions

fν
n = −fn,n

(
Gν−1

n+1

)−1
gν
n, (24)

fn,n =

√
N0

[
1

λĝνn
− 1

]+
, (25)

where

ĝνn = gn,n − (gνn)
† (Gν−1

n+1

)−1
gν
n, (26)

and λ>0 is a constant such that the transmit power constraint is satisfied.

Proof. Consider the Lagrangian function

L =

N∑
n=1

log

(
1 +
|fn,n|2

N0

)
− λ

(
Tr
(
F †GF

)
− PT

)
, (27)

where λ is the Lagrange multiplier. The necessary conditions [26, 27] for the optimal
solution are

∂L
∂fn,k

= 0, 1 ≤ n, k ≤ N

Tr
(
F †GF

)
− PT = 0

λ ≥ 0

 . (28)
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Note that, with the definitions in (20)-(22), the trace term in (27) can be rewritten as

Tr
(
F †GF

)
=

N∑
n=1

[
fn,n (fν

n)
†
][
gn,n (gν

n)
†

gν
n Gν−1

n+1

][
fn,n
fν
n

]
. (29)

Taking the first-order derivatives of L with respect to fn,n and fν
n, and using (29) results

in

∂L
∂fn,n

=
N0fn,n

N0 + |fn,n|2
− λ

(
fn,ngn,n + (fν

n)
† gν

n

)
, (30)

∇fν
n
L = −λ

(
fn,n (g

ν
n)

† + (fν
n)

†Gν−1
n+1

)T
. (31)

Then, by setting ∇fν
n
L in (31) to zero, the vector fν

n can be solved for, and the result is
given in (24). Inserting (24) back into (30) and setting ∂L/∂fn,n to zero, we obtain

N0

N0 + |fn,n|2
= λ

(
gn,n − (gν

n)
† (Gν−1

n+1

)−1
gν
n

)
. (32)

From (32) it holds that λ>0 asN0>0, since ĝνn>0 which will be shown later in Property
1. Using (26), the optimal fn,n reads

|fn,n|2 = N0

[
1

λĝνn
− 1

]+
. (33)

As we constrain fn,n to be positive, the solution of fn,n is in (25), which completes the
proof.

With the necessary conditions of fν
n and fn,n stated in Theorem 1, the constraint in (23)

can be written as

1

N0
Tr
(
F †GF

)
=

1

N0

N∑
n=1

ĝνn|fn,n|2

=
N∑

n=1

[
1

λ
− ĝνn

]+
=
PT

N0
. (34)

and the sum-rate equals

Rsum =

N∑
n=1

Ruser
n , (35)

where

Ruser
n =

[
− log (λĝνn)

]+
. (36)
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Therefore, to find the optimal solution for (23) is equivalent to find an optimal water-level
1/λ such that (35) is maximized and (34) is satisfied, which can be efficiently solved using
water-filling scheme[28]. Comparing (33) with (12), with the GZF-DP precoder a similar
water-filling scheme still applies, however, the water-level has changed as gn,n is replaced
now by ĝνn, due to the preserved inter-user interference. We state a property below that
shows that ĝνn is positive and non-increasing in ν for all 1≤n≤N .

Property 1. Under the condition that H has full row rank, for 1≤n≤N , it holds that

0<ĝN−1
n ≤ ĝN−2

n ≤· · ·≤ ĝ1n≤gn,n. (37)

Proof. First we show that for 1≤ν≤N−1, 0<ĝνn≤gn,n holds. SinceH has full row rank,
G≻ 0. Consequently, Gν−1

n+1 and Gν
n are also positive-definite as principle sub-matrices

of G. Hence, (gν
n)

† (Gν−1
n+1

)−1
gν
n ≥ 0, and ĝνn ≤ gn,n follows from (26). On the other

hand, from the definition, Gν
n equals

Gν
n =

[
gn,n (gν

n)
†

gν
n Gν−1

n+1

]
. (38)

Hence, ĝνn is the Schur-complement[29] of gn,n, and by utilizing the matrix-inversion
lemma [30], the inverse (Gν

n)
−1≻0 is in (40), which shows that ĝνn>0.

Next we show that, ĝνn≤ ĝν−1
n holds for 1≤n≤N . Firstly, for n>N−ν, by definitions

(22) and (21), the equalities gνn = gν−1
n and Gν−1

n+1 = Gν−2
n+1 hold. Hence, from (26),

ĝνn= ĝ
ν−1
n holds. Secondly, for 1≤n≤N−ν, Gn in (38) can also be rewritten as

Gν
n =

[
Gν−1

n (g̃ν
n)

†

g̃ν
n gn+ν,n+ν

]
, (39)

where g̃ν
n=[gn+ν,n, gn+ν,n+1, · · · , gn+ν,n+ν−1]. By utilizing the matrix-inversion lemma

again, the inverse (Gν
n)

−1 can also be written in (41). From (40) we know that,
(
ĝν−1
n

)−1

is the first diagonal element of
(
Gν−1

n

)−1, while (ĝνn)
−1 is the first diagonal element of

(Gν
n)

−1 and hence, the first diagonal element of
(
Gν−1

n − (g̃ν
n)

†g̃ν
n

gn+ν,n+ν

)−1
from (41). Using

the Woodbury matrix identity[30],
(
Gν−1

n − (g̃ν
n)

†g̃ν
n

gn+ν,n+ν

)−1
⪰
(
Gν−1

n

)−1 holds. Therefore,

(ĝνn)
−1≥

(
ĝν−1
n

)−1 holds, and ĝνn≤ ĝν−1
n follows, which completes the proof.

As ĝνn ≤ gn,n, from (34) in general the water-level 1/λ is actually non-increasing when ν
increases. Therefore, not all the user-rates are increased with a larger ν. For instance, for
the last user, as ĝνN =gN,N for all ν, the user-rateRuser

N is non-increasing as ν increases. In
general, we have the following corollary.
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(G
ν n
)−

1
=

[
(ĝ

ν n
)−

1
−
(ĝ

ν n
)−

1
(g

ν n
)†
( Gν−

1
n
+
1

) −1
−
(ĝ

ν n
)−

1
( Gν−

1
n
+
1

) −1 g
ν n

( Gν−
1

n
+
1

) −1 +
(ĝ

ν n
)−

1
( Gν−

1
n
+
1

) −1 g
ν n
(g

ν n
)†
( Gν−

1
n
+
1

) −1] .
(4

0)

(G
ν n
)−

1
=

  
( G

ν
−
1

n
−

(g̃
ν n
)†
g̃
ν n

g
n
+
ν
,n

+
ν

) −1
−
( G

ν
−
1

n
−

(g̃
ν n
)†
g̃
ν n

g
n
+
ν
,n

+
ν

) −1
(g̃

ν n
)†

g
n
+
ν
,n

+
ν

−
−
g̃
ν n

g
n
+
ν
,n

+
ν

( G
ν
−
1

n
−

(g̃
ν n
)†
g̃
ν n

g
n
+
ν
,n

+
ν

) −1
1

g
n
+
ν
,n

+
ν
+

g̃
ν n

g
2 n
+
ν
,n

+
ν

( G
ν
−
1

n
−

(g̃
ν n
)†
g̃
ν n

g
n
+
ν
,n

+
ν

) −1 (g̃
ν n
)†

  .
(4

1)
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Corollary 1. If ν is increased from ν1 to ν1+1 for the GZF-DP precoder, as for n≥N−ν1,
ĝνn= ĝ

ν−1
n holds, and as a result of the non-increasing water-level, the user-rates of the last ν1+1

users are also non-increasing.

However, the sum-rate never decrease with a larger ν, which is stated in the below property.

Property 2. If ν2>ν1, the sum-rate Rsum obtained with the GZF-DP precoder with ν=ν2
is no less than that obtained with ν=ν1. However, under the case that the channel H itself is
band-shaped with only the elements along the main diagonal and the first ν1 lower-diagonals
can take non-zero values, increasing ν to be larger than ν1 will not further increase Rsum.

Proof. The first statement holds from the fact that the effective channel F with ν=ν1 is a
subset of F with ν=ν2. Next we prove the second statement by showing that ĝνn= ĝν1n for
any n and ν>ν1, under the condition thatH is band-shaped with only the elements along
the main diagonal and the first ν1 lower-diagonals can take non-zero values. Therefore, in
such a case, the sum-rate Rsum obtained with ν>ν1 is equal to Rsum with ν=ν1.

We first show that, for n=1, ĝν1 = ĝ
ν1
1 holds for ν>ν1. We decompose G and HH† into

block forms as

G =

[
Gν

1 G†
2

G2 G3

]
, HH† =

[
B1 B†

2

B2 B3

]
, (42)

where sub-matrix Gν
1 follows the definition in (21) and sub-matrices G2, G3 are deduced

from Gν
1 . Similarly, sub-matrix B1 has the same size as Gν

1 , and sub-matrices B2, B3 are
deduced from B1. As G=

(
HH†)−1, following the matrix inversion lemma we have

(Gν
1)

−1 = B1 −B†
2B

−1
3 B2. (43)

As H is band-shaped, when ν≥ν1, the first row vector in B†
2 comprises all zero elements.

Consequently, from (43) the first diagonal element of (Gν
1)

−1, which is (ĝν1 )
−1, is equal

to the first diagonal element of B1. Hence, we have

ĝν1 = |h1(1)|−2, ν≥ν1, (44)

where h1(1) is the first tap of the channel vector corresponding to the first user,

For n > 1, we can permute the principle sub-matrix Gν
n to the upper-left corner with a

permutation matrix Q such that,

QGQ† =

[
Gν

n G̃
†
2

G̃2 G̃3

]
, (45)
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where G̃2, G̃3 are deduced from Gν
n. We also permute HH† accordingly such that

QHH†Q† =

[
B̃1 B̃

†
2

B̃2 B̃3

]
, (46)

where sub-matrices B̃1, B̃2, B̃3 are defined similarly as before.

As QGQ†=
(
QHH†Q†)−1 holds, following (43) and (44) we have

ĝνn = |hn(n)|−2, ν≥ν1, (47)

where hn(n) is the nth tap of the channel vector corresponding to the nth user, which is
transfered to be the first user after permutation. Therefore, with ĝνn given in (47), it holds
that, ĝνn= ĝν1n for any n and ν>ν1, which completes the proof.

Property 2 reveals that if H is banded, further increasing the band-size of F to be larger
than the band-size of H will not increase the sum-rate. Moreover, for a band-shaped H ,
ĝνn can be easily calculated through (47) for ν ≥ ν1. Next, we show that the GZF-DP
precoder design actually provides a unified framework of the previous ZF based precoder
designs.

Corollary 2. With ν=0, the GZF-DP precoder becomes the linear ZF precoder without DPC;
while with ν=N−1, the GZF-DP precoder is identical to the ZF-DP precoder. In addition,
the UG-DP precoder is inferior to the GZF-DP precoder with ν=Ng−1.

Proof. When ν =0, ĝνn = gn,n for all n, and the GZF-DP precoder is thusly identical to
the linear ZF precoder. On the other hand, when ν =N−1, the maximization (23) can
be formulated as the same problem in (15), which shows the trade-off between the sum-
rate and the complexity of successive DPC. Moreover, as the UG-DP can be reviewed as
a special case of the GZF-DP with ν = Ng−1, the UG-DP precoder is inferior to the
GZF-DP precoder in general.

Although the ZF-DP precoder provides the highest sum-rate, as shown in Corollary 1, it
sacrifices user-rates of some of the last users. As a generalization of the ZF-DP precoder, the
GZF-DP precoder, however, can provide a trade-off between the sum-rate increment and
the user-rate decrement through the parameter ν. Below we illustrate with an example to
show different designs of the linear ZF precoder, the UG-DP precoder, and the proposed
GZF-DP precoder.
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Example 1. Assume N0 = 1, PT = 10 dB, and consider an MISO channel with 4 transmit
antennas and 4 single-antenna users as (i =

√
−1)

H =


1 + 4i 4 + 3i 2 + 3i 3 + 3i
4 + 1i 1 + 4i 1 + 1i 2 + 4i
2 + 3i 1 + 4i 3 + 3i 4 + 3i
4 + 4i 2 + 3i 1 + 4i 2 + 2i

.
The sum-rates (bits/channel use) of the ZF precoder, the UG-DP precoder withNg=2, and the
GZF-DP precoder with ν=1 are equal to

Rsum
ZF = 17.885,

Rsum
UG−DP = 18.206,

Rsum
GZF−DP, ν=1 = 18.514,

respectively. The optimal effective channels F are listed at the bottom of this page.

With Example 1, the user-rates corresponding to different precoders are equal to

Ruser
ZF = [4.333, 4.830, 4.370, 4.352],

Ruser
GZF−DP, ν=1 = [4.650, 5.106, 4.410, 4.348],

Ruser
GZF−DP, ν=2 = [5.394, 6.047, 4.387, 4.324].

As it can been seen, although the sum-rate is increased from ν=0 to 1, the user-rate of the
last user is decreased. Further, from ν=1 to 2, the user-rates of the last two users are also
decreased, which are aligned with Corollary 1. Especially for the last user, the user-rate is
continuously decreasing when ν increases from 0 to 2. Therefore, instead of maximizing

F ZF=


4.376

5.238
4.436

4.407

,

FUG−DP=


4.899 0

−1.140+2.340i −5.217
4.490 0

0.489+0.607i 4.389

,

FGZF−DP, ν=1=


4.910 0

−1.143+2.345i 5.784
2.034+0.416i 4.501 0

0.490+0.609i 4.400

.
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the sum-rate, it is also meaningful to consider maximizations of user-rate, which is usually
used as a measurement for the fairness of the QoS.

Next we discuss the minimum user-rate maximization with the proposed GZF-DP pre-
coder.

3.2 Minimum User-rate Maximization

For minimum user-rate maximization, the design of the GZF-DP precoder is formulated
as

maximize
F , Ruser

Ruser

subject to Ruser ≤ log

(
1 +
|fn,n|2

N0

)
, 1 ≤ n ≤ N

Tr
(
F †GF

)
≤ PT, (48)

where the matrices F and G are the same as defined for the sum-rate maximization and
we constrain fn,n ≥ 0. Following similar arguments as for the sum-rate maximization, it
also holds that the equality in the power constraint always holds for an optimal solution of
(48). Furthermore, we have the below lemma.

Lemma 1. For an optimal solution F of (48), it holds that Ruser=log
(
1 +

|fn,n|2
N0

)
for all

n.

Proof. For an optimal solution F of (48), we denote the maximal and minimal user-rates
as Ruser

n1
and Ruser

n2
, respectively, which equal

Ruser
ni

= log

(
1 +
|fni,ni |2

N0

)
, i = 1, 2. (49)

Then, the minimum user-rate is equal to Ruser
n2

. We further denote the transmit powers of
user n1 and n2 as P1 and P2, respectively. According to (29), it holds that

Pi = gni,ni |fni,ni |2 + 2R
{(

fν
ni

)†
gν
ni
fni,ni

}
+
(
fν
ni

)†
Gν−1

ni+1f
ν
ni
, i = 1, 2. (50)

Now let’s assume Rn1 > Rn2 , that is, the maximal user-rate is strictly larger than the
minimal user-rate. Then, we can scale fni,ni and fν

ni
to be f̃ni,ni = αifni,ni and f̃

ν
ni

=
αif

ν
ni

, respectively, where α2>1>α1 and

α1 =

√
1 +

(1− α2
2)P2

P1
.
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Note that, according to (50), with such a scaling operation, the total transmit power of
user n1 and n2 remains the same, that is, α2

1P1+α
2
2P2 = P1+P2. However, according

to (49), the user-rate with such a scaling increases Ruser
n2

and decreased Ruser
n1

. Hence, the
minimum user-rate can therefore be increased, which contradicts to the assumption that
F is optimal. Therefore, for an optimal F , Ruser

n1
= Ruser

n2
holds, which shows that all

user-rates are equal to each other for an optimal F of (48).

With the above arguments, we can change (48) to the equivalent problem

maximize
F , Ruser

Ruser

subject to Ruser = log

(
1 +
|fn,n|2

N0

)
, 1 ≤ n ≤ N

Tr
(
F †GF

)
= PT. (51)

Then, the necessary conditions for an optimal solution F is stated in Theorem 2.

Theorem 2. The optimal band-shaped and low-triangular matrix F in (17) for user-rate max-
imization (51) shall satisfy the the conditions that, the optimal fν

n is in (24) and fn,n equals

fn,n =

√
N0

[
1

λnĝνn
− 1

]+
, (52)

where λn>0 are a set of constants such that the transmit power constraint is satisfied.

Proof. The Lagrangian function for multiple constraints in this case reads

L = Ruser −
N∑

n=1

µn

(
Ruser − log

(
1 +
|fn,n|2

N0

))
− λ

(
Tr
(
F †GF

)
− PT

)
, (53)

and the necessary conditions are

∂L
∂fn,k

=0, 1 ≤ n, k ≤ N

N∑
n=1

µn=1, µn ≥ 0, 1 ≤ n ≤ N

Ruser = log

(
1 +
|fn,n|2

N0

)
, 1 ≤ n ≤ N

Tr
(
F †GF

)
− PT = 0

λ ≥ 0



. (54)
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The first-order derivatives of L with respect to fn,n is

∂L
∂fn,n

=
µnN0fn,n
N0 + |fn,n|2

− λ
(
fn,ngn,n + (fν

n)
† gνn

)
, (55)

while the gradient of L with respect to fν
n is in (31). Then, from (31) the optimal fν

n is
solved in (24), and by inserting (24) back into (55) and setting the derivative to zero, we
obtain

N0µn
N0 + |fn,n|2

= λ
(
gn,n − (gν

n)
† (Gν−1

n+1

)−1
gν
n

)
. (56)

Hence, as N0>0, from (56) it holds that λ>0 and µn>0 for all n. Otherwise, if either
λ=0 or µn=0 for some n, from (56) it holds that λ=µn=0 for all n, which contradicts
the second necessary condition in (54) (due to ∂L/∂Ruser=0). By setting λn=λ/µn>0
and from (56) the optimal fn,n equals

|fn,n|2 = N0

[
1

λnĝνn
− 1

]+
,

where ĝn,n is defined in (26), and the optimal fn,n is then in (52).

With the necessary conditions of an optimal F in Theorem 2, the user-rate is equal to the
minimum user-rate for all users, that is,

Ruser =
[
− log (λnĝ

ν
n)
]+
, 1 ≤ n ≤ N, (57)

and the power constraint can be written as

N∑
n=1

[
1

λn
− ĝνn

]+
=
PT

N0
. (58)

Note that, different from the sum-rate maximization, now the water-level 1/λn varies for
different users. From (57) and (58), the minimum user-rate can be solved for in closed-form,

Ruser = log

1 +
PT

N0

N∑
n=1

ĝνn

 , (59)

and the optimal fn,n equals

fn,n =
√
N0 (2R

user − 1), 1 ≤ n ≤ N. (60)
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Although with the sum-rate maximization some user-rates may be decreased with a larger
ν as shown in Corollary 1, for minimum user-rate maximization, Ruser will not be de-
creased by a larger ν. Further, as the maximal minimum user-rateRuser in (57) is uniquely
determined by the values of ĝνn, we have the below property.

Property 3. The conclusions drawn for sum-rate Rsum in Property 2 also stand for minimum
user-rate Ruser.

3.3 Optimal User-Orderings

By permuting the order of theN users with anN×N permutation matrix Q, the received
signal model (5) reads

Qy = QHPx+Qz. (61)

Changing the order of the users may impact³ the optimizations in (23) and (51), due to that
the matrix G is updated with G̃=QGQ† and the power constraint changes to,

Tr
(
F †G̃F

)
≤ PT, (62)

Denoting the set that comprises all possible user-orderings as P , and as the size |P|=N !,
it is infeasible to find an optimal ordering in a brute-force manner for large values of N .
Therefore, we next introduce two efficient suboptimal user-ordering algorithms for the
sum-rate and the minimum user-rate maximizations for 0<ν <N that have complexity
orders O

((
N
ν+1

))
and O(N), respectively. We start with the user-ordering for the sum-

rate maximization (23). From (35), the optimal user-ordering U ∈ P shall minimize the
product⁴,

Uopt = argmin
U∈P

λN
N∏

n=1

ĝνn. (63)

Denoting q=
N∏

n=1
ĝνn and since

λ =

(
PT

N0
+

N∑
n=1

ĝνn

)−1

≤
(
PT

N0
+Nq

1
N

)−1

,

³This is true for cases 0<ν<N . For ν=0, i.e., the linear ZF precoder, as the inter-user interferences are
completely nulled out, different user-orderings have no impact on both the sum-rate or minimum user-rate
maximizations.

⁴Without loss of generality, we assume λĝn,n ≥ 1 holds for all users for both sum-rate and minimum
user-rate maximizations.
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it holds that

λNq ≤

(
PT

N0q
1
N

+N

)−N

. (64)

Instead of directly minimizing (63), from (64) we can minimize the product q instead.
On the other hand, from (38) and utilizing the matrix determinant lemma [31], ĝνn can be
rewritten as ĝνn=detGν

n/detG
ν−1
n+1, and q equals

q =
N∏

n=1

detGν
n

detGν−1
n+1

. (65)

By noticing that the sub-matrix Gν
n comprises Gν−1

n+1 and an extra row and column vectors
corresponding to thenth user, we can recursively order the users according to (65) as follows.

At a first stage, to minimize ĝν1 we first find the best ν+1 users that minimize detGν
1 , which

needs to search over in total
(
N
ν+1

)
possible user combinations⁵. We denote the index set

of the obtained ν+1 users as J1. Then, in a second step, we select one single user from
the chosen ν+1 users that maximize detGν−1

2 , where detGν−1
2 is obtained by removing

the corresponding row and column vectors of the selected user in Gν
1 . One such user is

selected to be the first user and set U(1) to its user-index.

At a second stage, we continue to order the remaining N−1 users, with ν users within
the index set J2 = J1 \ U(1). In order to minimize ĝν2 , we first add another user from
the remaining N−ν−1 users to the ν users in J2 and calculate detGν

2 corresponding
to the selected ν+1 users. The user from the remaining N−ν−1 users that minimize
detGν

2 is selected, which needsN−ν−1 operations. We update J1 as J2 plus the selected
user-index. Then, we repeat the second step at the first stage to select one user from J2
(not J1 in order to keep the value of ĝν1 unchanged) to maximize detGν−1

3 , and set U(2)
to the index of that user.

Then, we update J2=J1\U(2), and continue to order the remaining N−2 users in the
same way until we finish the ordering of all users. Notice that, for the last ν users, we only
need to recursively select the best user that maximizes detGν−1

n+1. Such an algorithm is
summarized in Algorithm 1.

Next, we analyze the user-ordering for the minimum user-rate maximization, which renders
a simpler user-ordering algorithm. From (58), it holds that

N∑
n=1

ĝνn
(
2R

user − 1
)
≤ PT

N0
. (66)

⁵Note that, the ordering of the ν+1 users inside each combination is independent with detGν
n since the

determinant is invariant under the operation that permutes the row and column vectors in the same manner.
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Algorithm 1 User-ordering for sum-rate maximization with the GZF-DP precoder.

1: Initialize n=1 and I1=I2=[1, 2, · · · , N ].
2: Search over all

(
N
ν+1

)
possible combinations to find the best ν+1 users that minimizes

the determinant of the principle sub-matrix detGν
1 introduced by their indexes, and

denote the best user-combination as J1, then set J2=J1.
3: Select one single user from all users in J2 to maximize detGν−1

2 , and denote its user-
index as U(n).

4: Update I1=I1\U(n), J2=J1\U(n), I2=I1\J2, and set n=n+1.
5: Replace the index U(n−1) in J1 with another user-index from the N−ν−n users

in I2, such that detGν
n introduced by the updated J1 is minimized, and keep the

updated J1.
6: Repeat Step 3-5 until I2 is empty. Then, recursively order the remaining ν users such

that detGν−1
n+1 is maximized at each stage.

7: Output the user-ordering U .

Algorithm 2 User-ordering for minimum user-rate maximization with the GZF-DP pre-
coder.

1: Order the user according to the descending order of the diagonal element gn,n.

Therefore, the optimal user-ordering that maximizes Ruser shall minimize the sum of ĝνn,

Uopt = argmin
U∈P

N∑
n=1

ĝνn. (67)

As for the last user, ĝνN =gN,N holds, we can select the user that has the smallest diagonal
element gn,n to be the last user U(N). Then, for the second last user, as

ĝνN−1 = gN−1,N−1 −
|gN−1,N |2

gN,N
, (68)

we can choose the user that has the second smallest diagonal element gn,n to be the second
last user U(N−1). Recursively, based on (26), the users can be ordered in a descending
order of gn,n, which is summarized in Algorithm 2.

4 Empirical Results

In this section, simulation results are presented to show the promising performance of the
proposed GZF-DP precoder for both the sum-rate and minimum user-rate maximizations.
The sum-rate of the optimal DPC [14] serve as the upper-bound, while the sum-rate and
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minimum user-rate of the linear ZF precoder serve as lower-bounds. For comparisons, we
also present the rates of the UG-DP precoder in [20] for sum-rate maximizations, which
are inferior to the GZF-DP precoder with ν=Ng−1 and similar DPC complexity. In all
simulations, we set the noise power N0 =1 and test under Rayleigh fading channels that
are based on the Kronecker correlation model

H=R
1/2
R HIIDR

1/2
T , (69)

whereN×M matrices HIID denote IID complex Gaussian channels with zero mean and a
covariance matrix being an identity matrix. TheM×M matrix RT andN×N matrix RR

denote the correlations at the transmit and receive sides, respectively. We use an exponential
correlation model [32] for both RT and RR, which is defined as

R=


1 β · · · · · · βK−1

β 1 β · · · βK−2

...
. . . . . . . . .

...
...

. . . . . . . . . β
βK−1 βK−2 · · · β 1

, (70)

where K=M , β=βT and K=N , β=βR for transmit and receive correlation, respect-
ively.

4.1 Optimal Orderings

In Fig. 1, we evaluate the sum-rate with the channel given in Example 1 for all possible
4!=24 user-ordering schemes in P . As it can be seen that, different user-orderings provide
different sum-rate for 1≤ν≤3.

In Fig. 2, we evaluate the performance of Algorithm 1 for user-ordering for the sum-rate
maximization with M =N =5 and under IID complex Gaussian channels, that is, βT=
βR = 0. The optimal ordering utilizes the brute-force method to select one best user-
ordering over all 5! = 120 possible combinations under each channel realization. The
average sum-rate averages the sum-rate over all 120 user-orderings in P . As can be seen, the
proposed user-ordering performs 0.5 to 1 dB better than the averaged sum-rate in terms of
transmit power PT.

In Fig. 3, we evaluate the performance of Algorithm 2 for user-ordering for the minimum
user-rate maximization with M =N =6 and under IID complex Gaussian channels. As
can be seen, the proposed Algorithm 2 performs around 1 dB better than the averaged
sum-rate in terms of transmit power PT, and quite close to the optimal user-ordering that
is selected over 6!=720 possible schemes in P with brute-force method for each channel
realization.
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Figure 1: The sum-rate of the GZF-DP precoder with different ν evaluated with N0=1 and PT=10 dB.

4.2 Sum-rate Maximization

Next we evaluate the sum-rate maximizations with M = N = 8. In Fig. 4 we simulate
under IID complex Gaussian channels. As can be seen, the GZF-DP precoder with ν=1
renders around 1.5 dB and 4 dB gains compared to the UG-DP precoder and the linear ZF
precoder in terms of transmit power PT, respectively. With ν=3, which means that in the
effective channel we preserve at most interference from 3 other users for each of the users,
the GZF-DP precoder is only less than 1.5 dB away from the optimal DPC, and performs
quite close to the ZF-DP precoder [9], i.e., the GZF-DP precoder with ν=7.

In Fig. 5, we repeat the tests in Fig. 4 under Rayleigh fading channels with correlation factors
βT=0.2 and βR=0.8. As can be seen, the GZF-DP precoder with ν=1 renders around
2 dB and 5 dB gains compared to the UG-DP and ZF precoders in this case, respectively.
The PT gains of the GZF-DP precoder are larger than those gains as in Fig. 4, due to
the fact that the MISO broadcast channels are correlated in this case. Moreover, we also
evaluate the GZF-DP precoder with user-ordering based on Algorithm 1. For the UG-DP
precoder, we use the brute-force method to select the optimal user-ordering under each
channel realization. As it can be seen, with user-orderings both the GZF-DP and UG-DP
precoders renders higher sum-rates. But still, even with the optimal user-ordering, the UG-
DP precoder is 1.5 dB away from the proposed GZF-DP precoder without user-ordering.

4.3 Minimum User-rate Maximization

Next we evaluate the minimum user-rate maximizations with M = N = 8 and repeat
the tests in Fig. 4 and Fig. 5, respectively. As can be seen, in Fig. 6 the proposed GZF-DP
precoder with ν=1 is around 2 dB better than the linear ZF precoder, while in Fig. 7 the
gain is more than 4 dB due to spatial correlated channels. In addition, in both cases, the
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Figure 2: The sum-rate of the proposed Algorithm 1 for user-ordering with the GZF-DP precoder with ν = 1 (the left figure)
and ν=2 (the right figure) for M=N = 5.
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Figure 3: The user-rates of the proposed Algorithm 2 for user-ordering with the GZF-DP precoder with ν =1 (the left figure)
and ν=2 (the right figure) for M=N= 6.

GZF-DP precoder with ν=3 performs close to the GZF-DP precoder with ν=7, i.e., the
ZF-DP precoder.

4.4 Impact of the Number of Users and Correlation Factors

Next we evaluate the impacts of increasing the number of users and the spatial correlation
factors. In all simulations, we set the total transmit power PT=10 dB. In Fig. 8, we set the
number of transmit antennas M =24 and increase the user number N from 4 to 24. As
can be seen, as the number of users increases, the sum-rate first increases and then decreases
both for the linear ZF precoder and the GZF-DP precoder with ν<N−1. This is so, since
as N increases the degrees of freedom (DoF) for the precoder designs also increase and
consequently the sum-rate is getting higher. However, the inter-user interference increased
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Figure 4: The sum-rate maximization with M=N=8 under IID complex Gaussian channels.
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Figure 5: The sum-rate maximization with M=N=8 under Rayleigh-fading channels and βT=0.2 and βR=0.8

with a larger N causes sum-rate degradation for small values of ν. Nevertheless, it can be
seen that the GZF-DP precoder with ν=1 renders the same sum-rate as the ZF precoder
with one user less.

In Fig. 9, we set M =N = 8 and βT = βR = β. We increase β from 0.1 to 0.9. As can
be seen, as β gets higher, the sum-rate decreases for all precoders. At low and medium
correlations, the GZF-DP precoder shows significant gains over the linear ZF precoder.
For instance, the GZF-DP precoder with β=0.5 renders the same sum-rate as the linear
ZF precoder with β = 0. Therefore, the GZF-DP precoder is more robust against the
transmit and receive correlations compared to the linear ZF precoder. In addition, with
the user-ordering proposed in Algorithm 1 the correlation gain is even larger.

In Fig. 10, we repeat the tests in Fig. 8 for minimum user-rate maximizations. As can be
seen, unlike the cases of the sum-rate maximizations, as the number of users increases, the
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Figure 6: Repeat the test in Fig. 4 for minimum user-rate maximization under IID complex Gaussian channels.
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Figure 7: Repeat the test in Fig. 5 for minimum user-rate maximization under Rayleigh-fading channels.

user-rates of all precoder designs decrease. We also present a contour line of the sum-rate,
which shows that the sum-rate also decreases whenN is close toM . For largeN , we can see
that the GZF-DP precoder with ν=1 renders the same user-rate as the linear ZF precoder
with one user less.

In Fig. 11, we repeat the tests in Fig. 9 for minimum user-rate maximizations. As can be seen,
as the correlation factor β gets higher, the user-rates also decrease for all precoders. The
GZF-DP precoder again shows superior performance compared to the linear ZF precoder,
and is more robust against transmit and receive correlations.

4.5 Practical FD-MIMO Scenario

At last, we evaluate the proposed GZF-DP precoder in an FD-MIMO downlink scenario
considering a 3D channel model [38]. The test scenario is depicted in Fig. 12, where we have
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Figure 8: The sum-rate maximization with M = 24 and different number of users N under IID complex Gaussian channels.
Note that the transmit power is constant no matter the number of users N .
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Figure 9: The sum-rate maximization with M =N =8 under Rayleigh-fading channels. The correlation factors βT =βR, and
change from 0.1 to 0.9.

an 8×8 2D antenna-array deployed at an e-NodeB that is 20 meters above the ground. The
spacing between to adjacent antenna elements (both in horizontal and vertical dimensions)
is 1/2 wave-length. The e-NodeB broadcasts at 2.4 GHz to 8 single-antenna users that are
placed along a line which is perpendicular to the 2D antenna-plane. The distance between
two adjacent users is 10 meters and the first user is 20 meters away from the e-NodeB. For
simplicity, we consider an ideal line-of-sight (LOS) situation with channels constructed
from the free-space path loss.

As shown in Fig. 13, the sum-rate of the proposed GZF-DP precoder with ν =1 is much
higher than that of the linear ZF precoder. And with ν =3 the GZF-DP precoder signi-
ficantly outperforms the UG-DP precoder withNg=4. Moreover, the GZF-DP precoder
with ν=3 also performs close to the ZF-DP precoder which requires a full successive DPC
scheme.
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Figure 10: Repeat the tests in Fig. 8 for user-rate maximization.
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Figure 11: Repeat the tests in Fig. 9 for user-rate maximization.

5 Summary

We have proposed a generalized zero-forcing precoder (GZF) in conjunction with suc-
cessive dirty-paper coding (DPC), namely, the GZF-DP precoder, for multi-input-single-
output (MISO) broadcast channels. Utilizing the successive DPC encoding scheme at the
transmitter to cancel the known non-causal interference, the GZF-DP precoder preserves
up to ν interferers for each of the users and results in significant rate-increments. We ana-
lyze optimal designs of the proposed GZF-DP precoder both for sum-rate and minimum
user-rate maximizations. The optimal GZF-DP precoder designs are solved in closed-forms
in relation to optimal power allocations. For the sum-rate maximization, the optimal power
allocation can be efficiently found with modified water-filling schemes introduced by inter-
user interference, while for the minimum user-rate maximization, the optimal power alloc-
ation is solved in closed-from. We have also derived two efficient and low-complexity
user-ordering algorithms for the GZF-DP precoder for the sum-rate and minimum user-
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Figure 12: An FD-MIMO scenario where an e-NodeB equipped with an 8×8 2D antenna-array is broadcasting to 8 lined-up
single-antenna users.
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Figure 13: The sum-rate maximization for the FD-MIMO scenario considered in Fig. 12.

rate maximizations, respectively. We show through numerical results that, the proposed
GZF-DP precoder yields both much higher sum-rate and minimum user-rate compared
to the traditional linear ZF precoder and the previous user-grouping based DPC (UG-DP)
precoder, and is close to the ZF with full complexity DPC (ZF-DP) precoder.
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Linear Precoder Design for MIMO-ISI Broadcasting
Channels under Channel Shortening Detection

We consider optimal precoder design for multi-user multi-input multi-output (MIMO) broad-
casting channels in single-carrier (SC) systems. Instead of linear detection, we assume that ad-
vanced non-linear channel shortening (CS) detectors are utilized at the receivers. Such a scenario
is challenging for precoder design as the uplink-downlink duality is inapplicable. The target of
our linear precoder design is to maximize the sum of the achievable information rate (sum-AIR),
with AIR of each user being explicitly derived. We analyze such a precoder design in general, and
provide an efficient per-user based optimization algorithm for the design of block-diagonalization
precoder.
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“Linear precoder design for MIMO-ISI broadcasting channels under channel shortening detection,”
IEEE Trans. Signal Process. Lett., vol. 23, no. 9, pp. 1207-1211, Sep. 2016.
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1 Introduction

Although multi-carrier (MC) modulation nowadays is the main stream, single-carrier (SC)
modulation has its potential in the emerging Internet-of-Things (IoT) and machine-to-
machine (M2M) type of communications [1]. Compared to MC modulation, SC modula-
tion has advantages of better peak average power ratio (PAPR), stringent adjacent channel
emissions, lower radio frequency integrated circuit cost, and being compatible to vast leg-
acy 2G devices [2]. To combat intersymbol interference (ISI) in SC system introduced
by delay dispersion in propagation channels, advanced non-linear channel shortening (CS)
detectors are widely deployed [3]. This is due to the fact that in most practical scenarios, the
optimal maximum likelihood (ML) detection results in unacceptable computational cost,
while linear detectors, such as zero-forcing (ZF) and linear minimum-mean-squared-error
(LMMSE), render unsatisfying performance.

The concept of CS detection is to filter the received signal with a prefilter so that the tar-
get response has a much shorter duration than the delay dispersion of the ISI channel,
and then applying the Viterbi algorithm [4] to the shorter channel response. CS detect-
ors can be designed via several criteria such as minimum-phase filtering [3], minimum-
mean-squared-error (MMSE) [5, 6], minimum-mean-output-energy (MMOE) [7–9], and
achievable information rate (AIR) maximization. CS based on AIR-maximization was first
introduced in [10], where the AIR has a closed-form expression, under the assumption that
transmit symbols are Gaussian distributed. This enables analytical study of the CS detector,
a feature generally unavailable for other CS detectors. Moreover, in [11] the authors showed
that it is beneficial to take the detection into account when designing a transmit filter for
single-user multi-input multi-output (MIMO) ISI channels. As an extension to [11], this
letter considers the design of AIR maximized precoder for multi-user broadcast SC systems
with non-linear CS detection at the autonomous receivers.

Linear precoder design is a crucial part to increase data rate and improve transmit energy-
efficiency for MIMO-ISI channels. Conventionally, precoder design at the base-station
(BS) assumes that either linear or ML detection is utilized at the receiver. In both cases, the
problem of precoder design can be solved via the uplink-downlink duality [12, 13] between
the multiple access channel and broadcasting channel. However, when designing precoder
for CS detector, the duality does not carry over. The is so since the closed-form expression
of AIR is related to the principle submatrix of the mean squared error (MSE) matrix, not
only its diagonal elements as considered in [13] or the full matrix as for ML detection. As a
consequence, the precoder design under CS detection is challenging. Moreover, optimizing
the precoder for MMSE or ML detection, but then applying CS at the receivers render
unsatisfying performance as the precoder is not taking the receiver into account.

In this letter we consider linear precoder design, explicitly constructed for CS detection, for
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Figure 1: Broadcasting channel in SC system with an M -antenna BS and N single-antenna users that utilize CS detection.

MIMO-ISI broadcasting channels. We consider the general form precoder that maximizes
sum-AIR, and solve the design problem for the block-diagonalization precoder. In the
latter case multi-user crosstalk is eliminated and only ISI remains, which can be dealt with
by CS detector at receivers. Hence, the proposed precoder design is more efficient, with the
freedom of preserving some ISI, than the traditional linear precoder design that assumes
linear detection. As we are dealing with ISI channels, Fourier analysis for Toeplitz matrix is
extensively used, including Szegő’s theorem and discrete-time Fourier transform (DTFT),
see e.g., [10, 14].

Notations

Operators ‘⋆’, ‘⊗’, ‘[·]+’, and ‘⌊·⌋’ denote linear convolution, Kronecker product, non-
negative protection, and floor operation, respectively. Superscripts ‘−1’, ‘∗’, ‘T’, and ‘†’
denote the inverse, complex conjugate, transpose, and Hermitian transpose, respectively.
In addition, Tr{·} takes the trace, andR{·} fetches the real part of the arguments.

2 Multi-user MIMO-ISI Signal Model

Consider a single-carrier MIMO system withM -antennas BS andN single-antenna users.
We denoteK as the transmit data block size¹, L as the longest duration of all ISI channels,
and S as the longest tap length of all precoders. The received signal vector yn at the nth
user can be written as

yn =
M∑

m=1

hn,m⋆

(
N∑
k=1

pk,m⋆dk

)
+wn, (1)

¹Since we are dealing with ISI channels, later we implicitly let K go to infinity in order to apply Szegő’s
theorem.
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where hn,m is the L×1 channel vector linking themth BS antenna and the nth user, pn,m

is the S×1 precoder, and dn is theK×1 transmit signal vector. The noise termwn contains
independent and identically distributed (IID) complex Gaussian variables with zero mean
and covariance matrix N0I .

We let Hn,m and P n,m represent K×K circular convolutions generated from hn,m and
pn,m, respectively. AsK grows large, circular convolutions can represent normal convolu-
tions to any given precision, see [15] for a rigorous information theoretical treatment. De-
note Y =

[
yT
1 yT

2 · · · yT
N

]T, D=
[
dT
1 dT

2 · · · dT
N

]T and W =
[
wT

1 wT
2 · · · wT

N

]T
as the vectors of received signal, transmit signal and noise vectors that comprise all users, re-
spectively. Further, denoteHn=[Hn,1Hn,2 · · ·Hn,M ]T,P n=[P n,1P n,2 · · ·P n,M ]T,
and let H=[H1H2 · · · HN ]T, P =[P 1P 2 · · · PN ]. Then, we can rewrite (1) in the
matrix form as

Y = HPD +W . (2)

The design of precoder P is subject to the power constraint

c =
N∑

n=1

M∑
m=1

S∑
s=1

∣∣pn,m(s)
∣∣2 ≤ 1. (3)

Conventionally, precoders are optimized according to ZF, MMSE, or the ML criteria [13].
These methods assume either ML detection, or linear detection at receivers. In this work,
we extend the state-of-the-art by assuming CS detectors, which operate in between ML
and linear detection, in terms of both performance and complexity. With CS detection
considered, we elaborate our precoder design in the next section.

3 Linear Precoder Design with CS Detection

Denoting the NK×NK effective channel F =HP in (2), the purpose is to design F
with CS detectors at the receivers. WithF found, the precoderP can be obtained through

P = H†
(
HH†

)−1
F . (4)

If F is diagonal, P is ZF precoder that eliminates both multi-user crosstalk and ISI. We
formulate the precoder design under CS detection for a general form of F , and focus on
the case that F is block-diagonal, with ZF precoder being a trivial case.
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3.1 Problem Formulation

Consider the effective channel

F =


F 1,1 F 1,2 · · · F 1,N

F 2,1 F 2,2 · · · F 2,N
...

...
...

...
FN,1 FN,2 · · · FN,N

, (5)

where each block F n,k is aK×K circular convolution matrix generated from an effective
ISI channel after precoding. Based on (2) and (4), the received signal vector of the nth user
reads

yn = F n,ndn +

N∑
k=1,k ̸=n

F n,kdk +wn. (6)

The CS detection on model (6) is to maximize the AIR based on the detection model

T (yn|dn) = exp
(
−2R

{
d†
nV nyn

}
+ d†

nGndn

)
, (7)

which can be carried out over a trellis with |X |ν states, where |X | is the cardinality of
the symbol constellation and ν is the memory length of the CS detector. The K×K
circular convolution matrix V n represents a prefiltering on the received samples, and Gn

is a Hermitian Toeplitz matrix with only the middle (2ν+1) diagonals taking non-zero
values.

In order to optimize (V n,Gn), the AIR corresponding to detection model (7) is adopted
as the objective function. With optimal (V n,Gn) in [10, Proposition 2], the AIR equals

In = − log det (Bν
n), (8)

where the (ν + 1)×(ν + 1) Hermitian matrix Bν
n is the principal submatrix formed by

any contiguous (ν+1) rows and the corresponding columns of the MSE matrix

Bn = I − F †
n,n

(
N∑
k=1

F n,kF
†
n,k +N0I

)−1

F n,n. (9)

Denoting Bn(ω) and Fn,k(ω) as the DTFTs of Bn and F n,k, respectively [14], and from
(9), it holds that

Bn(ω) = 1− |Fn,n(ω)|2

N0 +
∑N

k=1 |Fn,k(ω)|2
. (10)
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Further, as the (t1, t2)th element of Bν
n equals

Bν
n(t1, t2) =

1

2π

∫ π

−π
Bn(ω) exp

(
jω(t1 − t2)

)
dω, (11)

the AIR (8) is a function of Fn,k(ω). Moreover, the power c in (3) can be rewritten as

c =
1

K
Tr
{
P †P

}
=

1

K
Tr

{
F †
(
HH†

)−1
F

}
=

1

2π

∫ π

−π

N∑
n=1

N∑
k=1

(
N∑
i=1

Fn,i(ω)F
∗
k,i(ω)

)
Λk,n(ω)dω, (12)

where Λn,k(ω) is the DTFT of the (n, k)th block entry in (HH†)−1, which can be
obtained by the DTFT of H .

Next we state our main theorem, which shows the stationary condition for the optimal F .

Theorem 1. For the sum-AIR optimization problem

max
{Fn,k(ω)}

N∑
n=1

In

subject to c ≤ 1, (13)

the optimal Fn,k(ω) satisfies, with a set of constants {An
t },

R

{
ν∑

t=0

An
t exp (jωt)

}
ζn,k(ω)F

∗
n,k(ω)(

N0 +
∑N

i=1 |Fn,i(ω)|2
)2 =

N∑
i=1

F ∗
i,k(ω)Λn,i(ω), (14)

where

ζn,k(ω) =

{
−|Fn,n(ω)|2 k ̸= n,

N0 +
∑N

i=1,i ̸=n |Fn,i(ω)|2 k = n.
(15)

Proof. From [11, Theorem 1], the functional derivative of In in (8) with respect to Bn(ω)
equals

δIn
δBn(ω)

= R

{
ν∑

t=0

An
t exp (jωt)

}
, (16)
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where {An
t } are a set of constants independent of ω. Further, with ζn,k(ω) defined in (15),

the derivatives of Bn(ω) in (10) and c in (12) with respect to Fn,k(ω) are

δBn(ω)

δFn,k(ω)
= −

ζn,k(ω)F
∗
n,k(ω)(

N0 +
∑N

i=1 |Fn,i(ω)|2
)2 , (17)

δc

δFn,k(ω)
=

1

2π

N∑
i=1

F ∗
i,k(ω)Λn,i(ω). (18)

Utilizing chain rule and the Euler-Lagrange [16] equation

δIn
δBn(ω)

δBn(ω)

δFn,k(ω)
= −λ δc

δFn,k(ω)
,

and combining (16)-(18), we can reach (14).

As (14) is quintic with respect to Fn,k(ω) at each frequency ω, finding optimal Fn,k(ω) is
challenging. We next turn to the tractable case that F is block diagonal. Later we show
through simulation results that such a block-diagonalization precoder has neglectable rate
loss compared to the full F when the spatial correlation is small, which is a favorable
outcome since optimizing the block diagonal precoder is much simpler.

3.2 Block-Diagonalization Precoder

In this case we assume that F is block diagonal,

F = diag
[
F 1,1 F 2,2 · · · FN,N

]
, (19)

where inter-user interference is completely eliminated and ISI remains for each user. The
received signal model (6) now reads

yn = F n,ndn +wn.

Based on the effective channel F n,n, the nth user applies CS detection as described in
Sec. III-A. The power c in (12) can be rewritten as c =

∑N
n=1 cn, where cn is the power

allocated to the nth user,

cn =
1

2π

∫ π

−π
|Fn,n(ω)|2 Λn,n(ω)dω.

From Theorem 1, the optimal Fn,n(ω) satisfies

R

{
ν∑

t=0

An
t exp (jωt)

}
N0

(N0 + |Fn,n(ω)|2)2
= Λn,n(ω),
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Figure 2: Generalized water-filling scheme with the precoder Pn,n(ω) satisfying |Pn,n(ω)|2 = Λn,n(ω) |Fn,n(ω)|2 from
(4).

which can be solved as

|Fn,n(ω)|2 =

[√
N0R{

∑ν
t=0A

n
t exp (jωt)}

Λn,n(ω)
−N0

]+
. (20)

As illustrated in Fig. 2, (20) can be viewed as a generalized water-filling scheme under CS
detection. Notice that, the AIR calculated via (8) and (11) only depends on the magnitude
|Fn,n(ω)|2 and is irrelevant of the phase of Fn,n(ω). For ν=0, the CS detection degrades
to LMMSE and (20) becomes a standard water-filling as shown in the corollary below.

Corollary 1. When ν=0, the optimal Fn,n(ω) satisfies

|Fn,n(ω)|2 =

[√
N0An

0

Λn,n(ω)
−N0

]+
,

and An
0 is the power allocation that is optimized via (13).

With Theorem 1, the optimization in (13) reduces to the optimization of a set of coefficients
{An

t }0≤t≤ν for allN users. For a largeN , joint optimization of the coefficients over users
can be very complex, and it is more efficient to separate the joint optimization into N
individual optimizations. Such a strategy is summarized in Algorithm 1, which comprises
two major steps. The first step is to optimize {An

t }0≤t≤ν for each user separately with a
allocated power βn,

max
{An

t }0≤t≤ν

In,

subject to (20) and cn ≤ βn. (21)

Then the second step is to adjust the power allocation over iterations to maximize the sum-
AIR.



252 PAPER vi

Algorithm 1 Block-Diagonalization Precoder Optimization.

1: Initialize βn = 1/N for all users, set ϵ, and let ℓ=1.
2: Solve optimization (21) for all N users in parallel..
3: Repeat Step 2 with β̃n=βn+ϵℓ, where ϵℓ=minn(ϵ/ℓ, βn).
4: Find the ⌊N/2⌋ users that have the largest AIR increments and retain β̃n.
5: Find the ⌊N/2⌋ users that have the smallest AIR increments and update β̃n=βn−ϵℓ.

Remove the users with β̃ = 0 and update N accordingly. Repeat Step 2 for the rest
users.

6: If N is odd, the remaining user retain β̃n=βn.
7: After Step 3-6, the total power c is still 1. Update βn= β̃n and ℓ=ℓ+1. Go to Step 3

until sum-AIR converges.

4 Numerical Results

In this section we provide simulation results of the proposed precoder design. In all set-
tings, the ISI duration L=5, and the initial stepsize ϵ=0.1 is used in Algorithm 1. Unless
explicitly pointed out, we simulate with the block-diagonalization precoder (19). The con-
vergence of Algorithm 1 and sum-AIRs in different types of ISI channels are evaluated. The
rates of dirty paper coding (DPC) [17] and orthogonal frequency division multiplexing with
ZF precoder (OFDM-ZF) are also shown. The rate of OFDM-ZF without CP serves as
an upper-bound for SC systems. However, with CP [18], the rate of OFDM-ZF decreases.
Nevertheless, the comparison between OFDM-ZF and SC shows that the proposed pre-
coder design is efficient since it renders significant signal-to-noise (SNR) gains over linear
detection and approaches the rate of OFDM-ZF.

4.1 Convergence Speed

In Fig. 3, the sum-AIRs obtained from Algorithm 1 are normalized by those obtained with
the full-complexity optimization over (13) through an interior-point algorithm[19]. The ISI
channels have uniform power delay profiles (PDP), and all taps are IID complex Gaussian
variables with zero mean. The convergence of Algorithm 1 is evaluated at an SNR of 10 dB.
Note that the complexity of Algorithm 1 grows only linearly in N , and as can be seen in
Fig. 3, Algorithm 1 converges fast in around 5 iterations (each iteration comprises Step 3-7).

4.2 IID Complex Gaussian Channel

Next, we simulate the sum-AIR for the same ISI channels as in Fig. 3. We evaluate the
sum-AIR with different memory length ν for CS detectors. The case ν=0 is equivalent to
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Figure 3: Convergence speed of Algorithm 1.
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Figure 4: 4-antenna BS and 4 users in IID complex Gaussian ISI channel with a uniform PDP.

precoders optimized for LMMSE detection at receivers, which serves as the lower bound.
As shown in Fig. 4, with an 4-antenna BS and 4 users, the sum-AIRs are improved in terms
of SNR gain 0.5 dB with ν=1, and 1 dB with ν=4, both compared to the linear detection
ν=0. We also show the sum-AIR for a mismatched design, where the precoder is designed
for LMMSE detection, but the receivers apply CS detectors with ν=1. As can be seen in
Fig. 4, the sum-AIR of such a mismatched design (blue-dashed curve) is inferior to that of
the proposed precoder aimed for ν = 1. In addition, DPC and OFDM-ZF without CP,
perform better than the proposed precoders as expected. With CP, however, the rates of
OFDM-ZF are inferior to SC systems with CS detection.



254 PAPER vi

12 14 16 18 20 22 24 26 28
SNR [dB]

4

6

8

10

12

14

16

18

20

22

su
m

-A
IR

 [b
it/

ch
an

. u
se

]

DPC
OFDM-ZF, no CP
OFDM-ZF, normal CP
OFDM-ZF, extended CP
Proposed, CS- =4
Proposed, CS- =3
Proposed, CS- =2
Proposed, CS- =1
Proposed, CS- =1(LMMSE)
Proposed, CS- =0

Figure 5: 8-antenna BS and 6 users in Proakis-C channel with a random phase rotation for each ISI link.
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4.3 Proakis-C Channel

In Fig. 5, we test the case where each ISI link is Proakis-C channel [20], and is rotated
independently with a random rotation ejθ, with θ being uniformly distributed over [0, 2π).
As shown in Fig. 5, with 8-antenna BS and 6 users, more than 4 dB SNR gain is obtained by
increasing ν from 0 to 1, and with the proposed precoder design. For ν=4, the sum-AIR
is close to the rates of OFDM-ZF without CP. Also note that, CS detectors with ν=2 have
major gains over ν=0. This is so, since most of the channel power in Proakis-C channel is
concentrated on three taps, and CS detection with ν=2 almost captures the entire power.

In Fig. 6, we show the sum-AIR losses with the block-diagonalization precoder compared
to the fully-optimized general form (5). As can be seen, the rate losses are neglectable
compared to the rate increments by considering CS detection with ν = 1 other than the
linear case ν=0.
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5 Summary

We proposed precoder design for single-carrier systems with multi-user MIMO-ISI broad-
casting channels under channel shortening detection at receivers. Compared to linear de-
tection, significant gains can be observed when utilizing non-linear CS detectors, especially
when the data transmission suffers from severe intersymbol interference. Furthermore, we
provided an efficient per-user based optimization algorithm to solve the design problem
of the block-diagonalization precoder, with a complexity that only grows linearly in the
number of users.
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Beyond Massive-MIMO: The Potential of
Data-Transmission with Large Intelligent Surfaces

In this paper, we consider the potential of data-transmission in a system with a massive number
of radiating and sensing elements, thought of as a contiguous surface of electromagnetically act-
ive material. We refer to this as a Large Intelligent Surface (LIS). The “LIS” is a newly proposed
concept, which conceptually goes beyond contemporary massive MIMO technology, that arises
from our vision of a future where man-made structures are electronically active with integrated
electronics and wireless communication making the entire environment “intelligent”.

Firstly, we consider capacities of single-antenna autonomous terminals communicating to the
LIS where the entire surface is used as a receiving antenna-array in a perfect line-of-sight (LOS)
propagation environment. Under the condition that the surface-area is sufficiently large, the
received signal after a matched-filtering (MF) operation can be closely approximated by a sinc-
function-like intersymbol interference (ISI) channel. Secondly, we analyze a normalized capacity
measured per unit-surface, for a fixed transmit power per volume-unit with different terminal-
deployments. As terminal-density increases, the limit of the normalized capacity [nats/s/Hz/volume-
unit] achieved when wavelength λ approaches zero is equal to half of the transmit power per
volume-unit divided by noise spatial power spectral density (PSD). Thirdly, we show that the
number of independent signal dimensions that can be harvested per meter deployed surface is
2/λ for one-dimensional terminal-deployment, and π/λ2 per square meter for two and three di-
mensional terminal-deployments. Lastly, we consider implementations of the LIS in the form
of a grid of conventional antenna-elements, and show that the sampling lattice that minimizes
the surface-area and simultaneously obtains one independent signal dimension for every spent
antenna is the hexagonal lattice.

Based on: S. Hu, F. Rusek, and O. Edfors, “Beyond massive-MIMO: The potential of data-
transmission with Large Intelligent Surfaces,” submitted to IEEE Trans. Signal Process., Nov. 2017.
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1 Introduction

A Large Intelligent Surface (LIS) is an entirely new concept in wireless communication
[1, 2], where we envision a future where man-made structures become more and more elec-
tronically active, with integrated electronics and wireless communication making the entire
environment intelligent. The LIS concept can be seen as an extension of traditional massive
multi-input multi-output (MIMO)[3–7], scaled up beyond the traditional large antenna-
array concept. As an extension of traditional massive MIMO systems, LIS retains all the
advantages such as allowing for an unprecedented focusing of energy in three-dimensional
space which enables wireless charging, remote sensing with extreme precision and unpre-
cedented data-transmissions. This makes it possible to fulfill the most grand visions for the
next generation of communication systems and the concept of Internet-of-Things (IoT)
[8, 9], where billions of devices are expected to be connected to the Internet. In Fig. 1,
we show an example of three terminals communicating to a LIS in indoor and outdoor
scenarios, respectively.

On the other hand, as a new concept beyond massive MIMO, there are also some sub-
stantial differences between the envisioned LIS and traditional massive MIMO systems.
Firstly, LIS in its fundamental form uses the whole contiguous surface for transmitting
and receiving. A more practical and implementation-friendly version of LIS approximates
transmission and reception across a contiguous surface with an antenna-array spread across
the same surface structure. We will investigate both these in our attempts to establish the
fundamental limits of the LIS concept. Secondly, a traditional massive MIMO system is
essentially thought of as a base-station so that users are in the far-field (the distance to the
antenna-array is well beyond the Fraunhofer distance [10]). With LIS we consider a system
that is so large that users that are reasonably close to it. As an example, one could think of
an airport where the walls in the departure hall are covered with radiating antennas. In such
a situation users are in the near field of the radiating structure, and for analysis purposes it is
convenient to model the antennas as one contiguous surface. However, it is not only con-
venient, it is also: 1) a very close approximation when radiating antennas are packed tightly
enough; 2) powerful since mathematical treatment is tractable; 3) General, since this rep-
resents the limit to what can be achieved with transmission for a given surface-area. Lastly,
in contrast to traditional aperture antennas where the actual physical structure determines
the electromagnetic radiation pattern of transmitted and received signals, with a LIS we
can control the electromagnetic field on the entire surface and adapt signal transmission
and receiving such as implementing a match-filtering (MF) procedure across the surface.

The LIS is also different from a traditional lens antenna arrays design aimed to reduce signal
processing complexity and radio-frequency (RF) chain cost in millimeter wave (mm-Wave)
communications with large MIMO systems [42–45]. The fundamental principle of lens
antenna arrays is to provide variable phase shifting for electromagnetic rays at different
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Figure 1: An example of three terminals communicating to a LIS in indoor and outdoor scenarios, respectively.

points on the lens aperture and steer the incident signals with sufficiently separated angle-
of-arrivals (AoAs) to or angle-of-departures (AoDs) from different antenna subsets. The
substantial difference between LIS and lenses is that, the contiguous surface of the lens is
only used to steer signal, and the receiving device is still a traditional discrete MIMO system
cascade connected with the lens.

The LIS introduces new properties, substantial gains and implementation challenges com-
pared to massive MIMO systems. In this paper, we take a first look at the information-
transfer capabilities of the LIS in the uplink (UL). For analytical tractability we assume an
ideal situation where no scatterers or reflections are present, yielding a perfect line-of-sight
(LOS) propagation environment, and each autonomous terminal is assumed to propag-
ate an isotropic signal. Due to the reciprocity of the effective channel, the analysis can
be straightforwardly applied to downlink (DL) data-transmission as well. Note that, these
information-theoretical analysis do not coincide with those for traditional massive MIMO
systems since with a LIS, users are inherently in the near-field. For scenarios where users
are beyond the Fraunhofer distance of the LIS, our analysis does not extend much beyond
those made for massive MIMO systems due to the fact that, the received signals at the LIS
after MF process is band-limited and thusly the LIS can be sampled and approximated by
a discrete large antenna-array system. Nevertheless, in both cases, the analysis with the LIS
provides ultimate limits for data-transmission with a traditional large antenna-array and for
a given surface-area.

Under the LOS assumption, we first analyze the normalized capacity Ĉ per volume-unit in
space, and show that its limit achieved when wavelength λ approaches zero is P̂ /(2N0)
[nats/s/Hz/volume-unit], where P̂ is the transmit power per volume-unit for different
terminal-deployments, andN0 is the spatial power spectral density (PSD) of additive white
Gaussian noise (AWGN). Then, we also analyze the number of independent signal dimen-
sions, i.e., the spatial degrees of freedom (DoF) [32, 35, 37–39], that can be harvested with a
LIS, which is measured as the pre-log factor of Ĉ when the deployed surface-area is infinitely
large. Specially, we show that for an infinitely large LIS, 2/λ terminals can be spatially mul-
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tiplexed per meter (m) deployed surface¹ for one-dimensional terminal-deployment, while
π/λ2 terminals can be spatially multiplexed per m2 deployed surface-area for two and three
dimensional terminal-deployments, respectively. We also demonstrate through numerical
simulations that, with a fairly small LIS deployed in a medium sized room, around 100
terminals can be accommodated in the UL with only a minuscule per-terminal capacity
loss compared to a case where only one terminal is present, due to effective interference
suppressing of the LIS. Lastly, we also analyze optimal implementation of the LIS based on
sampling theory [11, 12], and show that, the hexagonal lattice [13] minimizes the surface-
area of the LIS while simultaneously obtaining one independent signal dimension for every
spent antenna-element on the LIS. With the same number of independent signal dimen-
sions achieved, the hexagonal lattice yields 23 surface-area saving over a rectangular lattice.

The rest of the paper is organized as follows. In Sec. II we describe the received signal model
for LIS and introduce a sinc-function based approximation of the ISI channel after a match-
filter (MF) procedure for analytical tractability. In Sec. III we analyze the capacities for both
the optimal and MF terminals for one, two and three dimensional terminal-deployments,
and put a special interest on the independent signal dimensions that can be harvest per
unit surface. In Sec. IV we derive the optimal lattice that minimizes the surface-area of a
LIS while achieving one independent signal dimension for every spent antenna. Numerical
results are presented in Sec. V, and Sec. VI summarizes the paper.

Notation

Throughout this paper, superscripts (·)−1, (·)
1
2 , (·)∗, (·)T, and (·)† stand for the inverse,

matrix square root, complex conjugate, transpose, and Hermitian transpose, respectively.
Boldface letters indicate vectors and boldface uppercase letters designate matrices. We also
reserve am,n to denote the element at the mth row and nth column of matrix A, am to
denote themth element of vector a, and I to represent the identity matrix. The operators
‘R{·}’ and ‘Tr(·)’ take the real part and the trace of the arguments, ‘⋆’ denotes linear
convolution, and ‘E[·]’ is the expectation operation.

2 Received Signal Model at LIS for Multiple Terminals

We consider the transmission from K autonomous single-antenna terminals located in a
three-dimensional space to a two-dimensional LIS deployed on the xy-plane as shown in
Fig. 2. Expressed in Cartesian coordinates, the LIS center is located at x = y = z = 0,

¹We here assume a rectangular LIS and measure its size only by its length, while its height is assumed to
extend infinitely.
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while terminals are located at z > 0 and arbitrary x, y coordinates. For analytical tract-
ability, we assume a perfect LOS propagation. The reason for focusing on the LOS case
is four-fold: Firstly, it simplifies calculations to a level where pursuing analytic bounds
on performance is tractable. Secondly, with a dense LIS deployment in an environment,
most terminals will be close to at least one of the sub-surfaces constituting the LIS and
LOS conditions will dominate. Thirdly, if the propagation environment is of the NLOS
type, the additional scattering processes in the environment will enhance the ultimate per-
formance, as compared to the LOS case, due to a higher dimensionality provided by the
multipath propagation. Lastly, if all multi-path components (MPCs) are independent from
each other in an NLOS environment, then each of them can be assumed as an independent
LOS path and the capacity involves a summation over all MPCs [36]. As shown later, after
MF process the effective channel can be modeled with a sinc-like function, and as long as
the distance between two reflections are larger than λ/2 in the direction parallel to the LIS,
the MPCs origin from these two reflections can be assumed orthogonal to each other. For
these reasons, our analysis is analytically tractable, valid for LOS environments and will not
over-estimate achievable performance in NLOS environments.

2.1 Narrow-band Received Signal Model at the LIS

Assuming that the kth terminal located at (xk, yk, zk) transmits data symbols uk[m] with
power Pk (per Hz), and uk[m] are independent Gaussian variables with zero-means and
unit-variances. Denote λ as the wavelength and T as the symbol period, and consider
a narrow-band system where the transmit times from terminals to the LIS are negligible
compared to T which results in no temporal interference. The received baseband signal at
the LIS location (x, y, 0) corresponding to the kth terminal at time t cam be modeled as²

s̃xk, yk, zk(x, y, t) = sxk, yk, zk(x, y)
√
Pk

∞∑
m=−∞

uk[m]sincT (t−mT )+ n(x, y, t),

(1)
where ‘sincT (t)’ is a unit-energy sinc pulse with two-sided bandwidthW =1/T that equals

sincT (t) =
T

πt
sin(πt/T ), (2)

and the noise-termn(x, y, t) is independent over locations (x, y, 0) on the LIS, and modeled
as wide-sense stationary (WSS) Gaussian process with zero-mean and a spatial PSD N0 at
each position on the LIS.

According to Fig. 2, the effective channel sxk, yk, zk(x, y) can be modeled as

sxk, yk, zk(x, y) =
√
εL cosϕ(x, y) exp(−2πjfc∆k(x, y)), (3)

²We omit the z-coordinate for both the received signals at the LIS and the noise terms in (1), since z=0
across the whole LIS as shown in Fig. 2.
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B

A

Figure 2: The radiating model of transmitting signal to the LIS with terminals deployed in front of the LIS. We integrate the
received signal across the entire surface-area spanned by the LIS. Therefore, the received signal model (5) holds for
both near-field and far-field scenarios with respect to the LIS.

where the parameters are defined as follows:

• ηk is the square of distance from the kth terminal to the location (x, y, 0) at the LIS
which equals

ηk = z2k + (y − yk)2 + (x− xk)2. (4)

• εL=1/(4πηk) denotes the free-space attenuation [3].

• ϕ(x, y) is the AoA with cosϕ(x, y)=zk/
√
ηk.

• fc is the carrier-frequency and c is the speed-of-light.

• ∆k(x, y) =
√
ηk/c is the transmit time from the kth terminal to the location

(x, y, 0) at the LIS.

Inserting these parameters back into (3) yields an effective channel of the LIS corresponding
to the kth terminal as

sxk, yk, zk(x, y) =

√
zk

2
√
πη

3/4
k

exp

(
−
2πj
√
ηk

λ

)
. (5)

Signal model (5), which has also been discussed in [2, Proposition 1], is more accurate than
what is usually considered in traditional large antenna-array systems [21], where in the latter
case terminals are assumed to be in the far-field and a planar-wave approximation is used
in (3) such that the term cosϕ(x, y) is approximated by 1 and removed.
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2.2 Received Signal Model for Multiple Terminals with MF Procedure

Based on (1), the received signal at the LIS location (x, y, 0) comprising signals from allK
terminals equals

r(x, y, t) =

K−1∑
k=0

∞∑
m=−∞

sxk,yk,zk(x, y)
√
Pkuk[m]sincT (t−mT ) + n(x, y, t). (6)

Given received signal (6) across the LIS, optimum processing includes applying both a
spatial and a temporal correlator to each transmit signal, a procedure we call “MF”. The
discrete received signal at sampling time mT after the MF process³ is

rk[m] =
√
Pk

∫∫
(x, y)∈S

s∗xk,yk,zk
(x, y)

(
r(x, y, t) ⋆ sincT (t)

∣∣∣
t=mT

)
dxdy

=

K−1∑
ℓ=0

√
PkPℓuℓ[m]

∫∫
(x, y)∈S

sxℓ,yℓ,zℓ(x, y)s
∗
xk,yk,zk

(x, y)dxdy + wk[m]

=

K−1∑
ℓ=0

√
PkPℓϕk,ℓuℓ[m] + wk[m], (7)

where wk[m] is the effective discrete noise after MF, and the coefficient

ϕk,ℓ =

∫∫
(x, y)∈S

sxℓ,yℓ,zℓ(x, y)s
∗
xk,yk,zk

(x, y)dxdy, (8)

where S is the surface-area spanned by the two-dimensional LIS. As the received signal after
MF is identical for all samples and there is no temporal interference, we omit the index m
and assemble the notation in (7) into a matrix formulation as

r = Gu+w, (9)

where the (ℓ, k)th element of matrix G equals

gk,ℓ =
√
PℓPkϕk,ℓ, (10)

which represents the received signal power when k=ℓ and the inter-user interference when
k ̸= ℓ, respectively. Note that, with the MF process the noise variables are still zero-mean
but colored with a covariance matrix

E[wwH] = N0G. (11)

³The MF process can take place either just before the conversion from analog to digital depending on the
specific front-end design, which is out of the scope of this paper. In general, the analog circuit implementation
discussed is more power-efficient for shorter and faster MF process, and conversely, the digital circuit is more
power efficient where the match filters are longer and slower[40].
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In the rest of this paper, we assume equal terminal transmit powers (per Hz) Pk =P and
study the capability of the terminals to communicate with the LIS.

2.3 Independent Signal Dimensions Harvested with the LIS

As the channel capacity grows linearly with the number of spatial DoF for MIMO systems,
it is of particular interest to evaluate the independent signal dimensions, i.e, the spatial DoF
of the LIS systems that can be harvested. With statistical MIMO models, the authors in
[35, 37] show that the number of independent signal dimensions is the minimum of the
number of transmit and receive antennas for a traditional antenna-array. With LIS, how-
ever, for a certain deployed surface-area, the number of transmit antennas at the LIS can be
reviewed as infinitely many. Let’s consider packing single-antenna transmitters in the same
size of deployed surface-area of the LIS, which can be seen as a large 2D transmit antenna-
array that is of the same size. Obviously, the number of independent signal dimensions
cannot go to indefinitely with packing more and more transmitters in a given surface-area,
as the interferences among transmitters also become stronger as the number of transmitters
increases. Therefore, under the condition that a total transmit power per m or m2 is fixed,
we next analyze the limit of the independent signal dimensions that can be obtained by the
LIS as its surface-area goes to∞.

With the received ISI signal model (9), the channel capacity C averaged by the number of
terminals, in nats per channel use, equals[35]

C= 1

K
log det

(
I +

G

N0

)
. (12)

The capacity C is also identical to the capacity in [nats/s/Hz] by noting that C/(TW )=C.
Hence, in the rest of the paper, we always assume that C has the unit [nats/s/Hz], and
pay no attention to the properties of C on time or frequency domains. Bearing this in
mind, we put an emphasis on the number of independent signal dimensions per deployed
area-unit of the LIS that is possible to harvest, which is calculated based on the capacity
normalized with the total deployed surface-area; a quantity we refer to as Ĉ. Therefore, the
capacity Ĉ has the unit [nats/s/Hz/area-unit]. This can be interpreted as the number of
available signal space dimensions per area-unit, in perfect analogy with Shannon’s original
ideas [20]. Reaching this space-normalized capacity Ĉ in practice requires, of course, the
K terminals to be (i) sufficiently many, and (ii) favorably located in space. In the next we
define Ĉ in detail.

For a one-dimensional terminal-deployment such as in Fig. 2, K terminals are uniformly
deployed along a line that is in parallel to the LIS and with a spacing ∆x between two
adjacent terminals. As K→∞, the length of the terminal-deployment K∆x→∞. We
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then consider a rectangular shaped⁴ LIS whose length grows at the same rate⁵. The space-
normalized capacity Ĉ [nats/s/Hz/m] is calculated as

Ĉ = lim
K→∞

KC
K∆x

= lim
K→∞

C
∆x

. (13)

For two or three dimensional terminal-deployments where the spacings between two adja-
cent terminals are ∆x and ∆y for x and y dimensions⁶ such as in Fig. 2, respectively, we
also consider a rectangular LIS whose surface-area grows at the same rate when K→∞.
Denote ∆s=∆x∆y, the space-normalized capacity Ĉ [nats/s/Hz/m2] is calculated as

Ĉ = lim
K→∞

KC
K∆x∆y

= lim
K→∞

C
∆s

. (14)

With Ĉ defined in (13) and (14), respectively, the number of independent signal dimensions
ρ is calculated as the pre-log factor, i.e., the high signal-to-noise ratio (SNR) slope of Ĉ,

ρ = lim
P̂ /N0→∞

Ĉ

log
(
P̂ /N0

) , (15)

where P̂ is the transmit power (per Hz) per volume-unit of the terminal-deployments, i.e.,

P̂ =
P

Λ
, (16)

where Λ=∆x and ∆s for one and two dimensional deployments, respectively. We point
out that, P̂ instead of P shall be used in (15) to calculate ρ. Otherwise, the normalized
capacity Ĉ becomes infinitely large when Λ is small for a given P .

We first point out that, although we use uniformly located terminals to derive the nor-
malized capacity Ĉ and the number of independent signal dimension ρ, these results are
substantial and independent of the uniform-distribution assumption, due to the following
two facts: Firstly, Ĉ and ρ are obtained when the terminal-spacing goes to 0, that is, we
pack as many terminals as possible in a unit-area, in which case the deployments of the
terminals become irrelevant. Secondly, Ĉ is maximized when the terminal-spacing is λ/2

⁴The shape of the LIS becomes irrelevant when the surface-area is infinitely large.
⁵In one-dimensional case, we consider normalizing the capacity C by the length of the LIS, i.e., K∆x, for

analyzing the number of independent signal dimensions ρ. Otherwise, if we normalized C by the surface-area,
the number of independent signal dimensions ρ approaches zero when the width of the LIS also goes to infinity.

⁶For three-dimensional case we omit the spacings between terminals in z-dimension as we can ideally
project all the K terminals to a xy-plane in front of the LIS for the purpose of analyzing the number of
independent signal dimensions ρ, as what will become clear later in Sec. III-C.
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and λ2/π for 1D and 2D terminal deployment, respectively. Further decreasing the spa-
cings will no longer increase Ĉ, due to the limits of independent signal dimensions. Hence,
the uniform-distributions are actually optimal in the sense of reaching maximal normalized
capacities.

Note that, the spatial DoF that can be harvested for a given surface-area limitation with de-
terministic channel has also been consider in [32] by assuming a discrete spherical antenna-
array. However, there are several differences between our analysis and those in [32]. Firstly,
the authors in [32] derive the spatial DoF by considering the solid angles subtended by the
scattering clusters at both the transmit and receive arrays in the angular domain, whereas
we assume a perfect LOS propagation environment without scattering clusters. Secondly,
the analysis in [32] is carried out based on decomposition of the integral kernel function
of the channel response on angular domain, whereas we derive the normalized capacity Ĉ
directly with the MF process and calculate the number of independent signal dimensions
by taking the surface-area into∞. Lastly, the analysis in [32] uses the far-field approxima-
tion, while with LIS the channel model holds both for near and far field, where we are in
particular more interested in near filed properties.

2.4 Array Gain Considerations

Let us first consider the received signal power (per Hz) at the LIS from an omni-directional
antenna with power P that is located at coordinates x = y = 0 and z = z0, that is, z0
meters from the LIS and perpendicular to its center. The received power (per Hz) at the
LIS, according to (8) and (10), equals

gk,k = P

∫∫
(x, y)∈S

|s0,0,z0(x, y)|2dxdy = ζP, (17)

where

ζ =
1

4π

∫∫
(x, y)∈S

z0(
z20 + x2 + y2

) 3
2

dxdy. (18)

Assuming a rectangular LIS with −A≤x≤A and −B≤y≤B, then ζ equals

ζ =
1

π
tan−1

(
AB

z0
√
A2 +B2 + z20

)
. (19)

Moreover, If one dimension of the LIS is much larger than the other dimension, e.g., A≫
B, the received power at the LIS reads

gk,k =
P

π
tan−1

(
B

z0

)
. (20)
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Furthermore, if both dimensions of the LIS are asymptotically large, i.e.,A=B=∞, then
it holds that gk,k=P/2, which makes intuitive sense, since half of the isotropically trans-
mitted power from the terminal reaches the LIS, and the other half propagates away from.
This number should now be compared to the free-space attenuation εL that would result
from a single receive antenna at distance z0, which is typically many orders of magnitudes
smaller than P/2. Thus we obtain, in addition to a possibly large value of independent
signal dimensions, an impressive array gain.

3 Space-Normalized Capacities and Independent Signal dimen-
sions

In this section, we take an information-theoretical analysis on signal model (9) for one,
two and three dimensional deployments of the K terminals, and derive the number of
independent signal dimensions that can be harvested with a LIS for a given transmit power
per volume-unit. As from (8), working with LIS results in solving an integral to calculate
ϕk,ℓ. However, for the cases ℓ ̸=k, closed-form solutions seem out of reach and we seek for
close approximations. We first state the following property that can be used to approximate
ϕℓk.

Property 1. For sufficiently small λ, the integral

g(∆)=

∫ ∞

−∞

(
1+x2

)− 3
4
(
1+(x+∆)2

)− 3
4 exp

(
−2πȷ

λ

[√
1+ x2−

√
1+(x+∆)2

])
dx,

(21)
can be well approximated by a sinc function⁷

g(∆) ≈ 2sinc

(
2∆

λ

)
. (22)

Argumentations leading to Property 1 are in Appendix A. To answer what is meant by
“sufficiently small λ”, we need also to take the distance zk from the terminal to the LIS into
account. From the argumentation in Appendix A, it can be observed that λ/zk ≲ 1. For
wavelengths encountered in radio transmission, and reasonable distances from the surface,
this condition is usually well satisfied. In Fig. 3 we show an example of calculating g(∆)
with the exact integral (21) and the approximation (22) for λ=0.4 m. As can be seen, the
two curves are almost aligned with each other and the approximation errors are relatively
small. With (22), we can then analyze the information-theoretical properties of the LIS in
the next section.

⁷The sinc-function without any subscript denotes a standard sinc-function with unit-energy and a double
bandwidth 1.
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Figure 3: The approximation of integration (21) and the approximation errors for g(∆) with λ=0.4 m. As can be seen, the
errors are relatively small compared to the maximum value g(0), i.e., the received power of the considered terminal.

3.1 Capacity for One-Dimensional Case: Terminals on a Line

We start with the one-dimensional terminal-deployment and consider an infinitely long
LIS with a rectangular shape with −∞≤ x≤∞ and −B ≤ y ≤B, where terminals are
uniformly located along the line with coordinates y=0 and z=z0, with a spacing-distance
∆x between two adjacent terminals⁸ as shown in Fig. 2. For notational convenience, we first
define the ratio between the half wavelength and the terminal-spacing in one-dimensional
deployment as

θ=
λ

2∆x
. (23)

As will be seen later, θ plays a key role in the following analysis.

From (9), the received signal at the LIS for the kth terminal can be expressed as

rk =

K−1∑
ℓ=0

gk,ℓuℓ + wk, (24)

where the noise variables wk are zero-mean Gaussian variables with variances E[w∗
kwℓ] =

N0gk,ℓ.

Property 2. Using Property 1, the effective ISI channel tap gk,ℓ is real and equals

gk,ℓ =
P

π
tan−1

(
B

z0

)
sinc

(
k − ℓ
θ

)
. (25)

⁸Although an infinitely long wall and equi-distant terminal locations are unreasonable in practice, these
assumptions are made for analytical tractability. General capacity results will be obtained, from which the
insights of general capacity behavior can be concluded. Numerical results on LIS with finite sizes and random
terminal positions will be given in Sec. VI, which are shown to be well predicted by the theoretical analysis.
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Proof. See Appendix B.

We point out that, when k = ℓ, (25) is well aligned with (20) and the approximation in
Property 1 is in fact exact.

Now considering applying an optimal receiver⁹ on signal model (24), and the capacity C
[nats/s/Hz] of each terminal can be calculated as [16, 19]

C = 1

θ

∫ θ/2

−θ/2
log

(
1 +

G(f)

N0

)
df, (26)

where G(f) is the frequency response of ISI channel gk,ℓ in (24). Since gk,ℓ are discrete
samples of the sinc-function at a sampling rate θ, and by the Poisson summation formula
[22], G(f) can be expressed as

G(f) = ζPθ

∞∑
k=−∞

G0(f − kθ), (27)

and G0(f) is the standard rectangular function i.e., the Fourier transform of sinc(x).

Defining two useful auxiliary variables

α =
1

θ
− β and β =

⌊
1

θ

⌋
, (28)

and with the definition in (16), the capacity (26) for the one-dimensional terminal-deployment
is stated in Property 3.

Property 3. With an infinitely long LIS in the direction where the terminals are deployed along
a line with equal spacing, the capacity, with an optimal receiver, for each terminal is

C = α log

(
1 +

(β + 1)λζP̂

2N0

)
+ (1− α) log

(
1 +

βλζP̂

2N0

)
. (29)

Proof. See Appendix C.

Whenever α=0, i.e., 1/θ is an integer, from (29) the capacity equals

C = log

(
1 +

ζP

N0

)
(30)

⁹We assume an optimal receiver for analyzing the capacity which implements a maximum a posteriori based
detection, and the complexity is usually prohibitive in practical systems [14, 15]. For data demodulation, a
particularly well suited low-complexity method is channel shortening (CS) [16–18].
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which is the resulting capacity of a terminal if no other terminals are present and with an
SNR equal to ζP/N0. This is so since under such cases, gk,ℓ = 0 for ℓ ̸= k. We remark
that, the analysis and discrete-time model of the one-dimensional case is identical to that
of a faster-than-Nyquist (FTN) signaling system using a sinc-pulse [23, 24].

With the capacity C given in Property 3, we can obtain the space-normalized capacity Ĉ
defined in (13). By directly evaluating the limit as λ→0, we have the below corollary.

Corollary 1. As λ → 0, for any θ (i.e., ∆x) the space-normalized capacity Ĉ converges to
ζP̂ /N0 [nats/s/Hz/m].

Instead of using an optimal receiver, we also consider capacity with MF receiver corres-
ponding to model (24), and we summarize our findings in Property 4.

Property 4. Under the same assumptions in Property 3, the capacity [nats/s/Hz] per-terminal
with only the MF process applied in front is

C = log

(
1 +

ζP

N0 + I

)
, (31)

where the interference power I equals

I = ζP

(
θ2
(
β2 + 2αβ + α

)
− 1

)
. (32)

Proof. See Appendix D.

Note that from (32), under the cases that 1/θ is an integer, the interference power I = 0
and the MF capacity (31) is the same as the capacity for the interference-free case. As seen
from Property 4, the capacity depends on ζ and interference power I . The coefficient ζ is
the power attenuation factor depending on the LIS surface-area and the distance z0 from
the terminals to the LIS, while the interference power I depends on variable θ. This is a
natural result, since the interference power I between two terminals is determined by the
spacing ∆x normalized by the wavelength λ, which is 1/θ.

With the capacity C obtained with the optimal receiver in (29), from (15) it can be shown
that

ρ =

{
2/λ θ ≥ 1
2θ/λ otherwise.

Therefore, the maximal number of independent signal dimensions per m is 2/λ for one-
dimensional terminal deployments. When 1/θ is an integer (or when λ is sufficiently
small), the MF can also achieve the same same asymptotic slope of the normalized capacity
curve Ĉ from (31).
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3.2 The Two-Dimensional Case: Terminals on a Plane

We next move on to the case that, terminals are located on a two-dimensional plane at
z = z0 which is in parallel to the LIS plane such as in Fig. 2. We are interested in the
number of independent signal dimensions per m2 deployed surface-area, and we therefore
let A,B→∞ to avoid edge effects. In this case, ζ=1/2 for all z0 and capacity does not
depend on distance as a direct result from Property 2.

The first step is to study the spatial PSD of received signal r(x, y, t) in the absence of noise.
Technically, we look at the received signal after sinc-based matched-filtering only (i.e., the
convolution in (7)), but not the spatial correlator (i.e. the integrals in (7)). The PSD is
given by the two-dimensional Fourier transform [25] of the autocorrelation

g(∆x,∆y) =

∫ ∞

−∞

∫ ∞

−∞
s0,0,z0(x, y)s

∗
∆x,∆y ,z0(x, y)dxdy. (33)

Note that, as the LIS is infinitely long in both dimensions, only the distance

τ =
√

∆2
x+∆2

y (34)

between two adjacent terminals matters for calculating g(∆x,∆y). Under the approxim-
ation of Property 2, we have

g(τ) ≈ 1

2
sinc

(
2τ

λ

)
. (35)

As this function has radial symmetry, it follows that its Fourier transform is given by the
Hankel transform [26] of degree zero, i.e.,

G(s) = 2πH0 {g(τ)}

= π

∫ ∞

0
τsinc

(
2τ

λ

)
J0(2πsτ)dτ

=

{
λ
4π

(√
1
λ2 − s2

)−1

, 0 ≤ s < 1
λ

0, s > 1
λ

(36)

where J 0(x) is the zeroth-order Bessel function of the first kind [27]. With the transmit
power P̂ per m2 defined in (16), the space-normalized capacity Ĉ [nats/s/Hz/m2] equals

Ĉ =

∫ 2π

0

∫ 1/λ

0
s log

(
1 +

P̂

N0
G(s)

)
dsdθ

= π

(
log(1 + λN)

λ2
+N2 log

(
Nλ

1 +Nλ

)
+
N

λ

)
, (37)
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where

N =
λP̂

4πN0
.

By directly evaluating the limit of (37) as λ→0, we obtain the below corollary.

Corollary 2. Asλ→0, the limit of space-normalized capacity Ĉ equals P̂ /2N0 [nats/s/Hz/m2],
which is the same as the one-dimensional case with B=∞ in Corollary 1.

Then, the number of independent signal dimensions that can be harvested for the two-
dimensional terminal-deployment can be computed by directly evaluating (15) with Ĉ in
(37), which is stated in the below property.

Property 5. The number of independent signal dimensions for the two-dimensional terminal-
deployment is

ρ =
π

λ2
. (38)

Thus, for every λ2 deployed surface-area of the LIS, we obtain π independent signal dimensions.

3.3 TheThree-Dimensional Case: Terminals in a Sphere

From the derivations for two-dimensional case in Sec. 3.2, we have already furnished for a
solution of the dimensionality for the three-dimensional terminal-deployment. Consider
the Fourier transform Sx0,y0,z0(f1, f2) of a signal sx0,y0,z0(x, y). From the convolutional
property of Hankel transforms [26], it follows that G(s) in (36) is given by

G

(√
f21 + f22

)
=
∣∣Sx0,y0,z0(f1, f2)

∣∣2. (39)

SinceG(s) in (36) does not depend on z0, (39) implies that, the domain ofSx0,y0,z0(f1, f2)
is independent of the distance z0 from the wall. Since the number of independent sig-
nal dimensions that can be accommodated is proportional to the area of the domain of
Sx0,y0,z0(f1, f2), it follows that the same number of dimensions is obtained in the three-
dimensional case as in the two-dimensional case.

An alternative way to realize this result is to consider a hyper plane P = {x, y, z : z=z0}
for some small z0. All signals transmitted from terminals at zk>z0 has to pass the planeP .
From the Huygens-Fresnel principle [28] it, however, follows that the signal that reaches the
LIS can be expressed as point sources at the plane P that radiate the signals arrived P from
the terminals. However, the number of signal space dimensions at the plane P is π/λ2

per m2, which means that the number of dimensions in the three-dimensional volume is
unaltered compared to the two-dimensional case.
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4 Implementing the LIS based on Sampling Theory

We have seen in Sec. 3 that, the received signal at the LIS has a two-dimensional Fourier
transform that is band-limited to a disc of radius 1/λ. A direct consequence is that, there
is no loss if the received signal s̃x0, y0, z0(x, y) is sampled sufficiently dense so that no
aliasing occurs. Thus, a LIS can be implemented as a grid of discrete antenna-elements.
In this section we take a look at optimal sampling of the LIS. As we deal with LISs with
unbounded physical dimensions, we make use of lattice theory [11, 12, 29].

Before proceeding to the discussions on the sampling of LIS, it is of importance to em-
phasis the difference between LIS and traditional large antenna-array systems. LIS, in its
fundamental form, uses the whole contiguous surface for transmitting and receiving sig-
nals. Therefore, LIS provides ultimate limits (both physical and theoretical) for a traditional
large antenna-array system that packs as many antenna-elements as possible within a given
surface-area. Moreover, with traditional massive MIMO systems, the users are usually in
the far-field and the received power is assumed to be the same for all antenna-elements (in
perfect LOS case), whereas with LIS, our signal model holds for both near-field and far-
field cases. However, the LIS can also be approximated by a traditional large antenna-array
system from two different aspects. A first and important aspect is that, the received signal
at the LIS is band-limited after MF process and a discrete-sampling can be implemented
according to such a nice property. The other aspect is that, for a massive MIMO systems
equipped with millimeter (mm) or Terahertz-band wave communications [33, 34, 38, 41, 45],
the spacing between two adjacent antenna-element is rather small and the deployment of
antenna-elements are getting denser. The latter one is a natural outcome, and we put an
interest on exploiting the first aspect, that is, analyzing the optimal sampling of the LIS.

With LIS, there are two possible objectives for designing the sampling: (i) One view of
optimal sampling is that the antenna units are costly, while area is available in excess. With
this view, we should constrain ourselves to obtain one signal space dimension for every
spent antenna. Once this constraint is met, we should then find the sampling lattice that
minimizes the area. (ii) An alternative view is that, as established in Sec. 3 a LIS can at most
offer π/λ2 dimensions per m2 deployed surface-area, one can constrain the sampled LIS
to offer the same number of dimensions per m2, and then to ask for the least number of
antenna elements per m2 that meets the constraint. With this view, the physical resource
to be minimized is area, while antenna units are considered cheap. Views (i) and (ii) are
similar, and in this paper we treat (i) in depth. We point out that for (ii), the resulting lattice
problem to be faced is to find the densest lattice whose fundamental cell circumscribes a
circle of given radius [30].

Suppose that sampling of the LIS is made on the basis of the sampling matrix S. With



Beyond Massive-MIMO: The Potential of Data-Transmission with Large Intelligent
Surfaces 277

that, the asymptotic number of placed antennas per m2 is

Ad =
1

|V (S)|
, (40)

where V (S) is the fundamental cell of a lattice generated from S, and |V (S)| is its funda-
mental volume. Let s̃m,n denote the samples of s̃x0, y0, z0(x, y) generated from sampling
at [

x
y

]
= S

[
m
n

]
.

The samples {s̃m,n} have a Fourier transform S̃(f1, f2) that is defined on the fundamental
volume V (S−T ) which is the reciprocal lattice corresponding to V (S). The capacity per
antenna for the sampled LIS is then given by[31, Theorem II.2]

Cant =
1

|V (S−T )|

∫
V (S−T )

log

(
1 +

P̂

N0|V (S)|
|S̃(f1, f2)|2

)
df1df2. (41)

Recalling the band-limited structure of Sx0, y0, z0(f1, f2), the support of S̃(f1, f2) is lim-
ited to

Ṽ (λ,S) = D(λ−1) ∩ V (S−T ), (42)

where D(λ−1) denotes a disc with radius 1/λ. Thus, from (41) we have that

Cant =
1

|V (S−T )|

∫
Ṽ (λ,S)

log

(
1 +

P̂

N0|V (S)|
|S̃(f1, f2)|2

)
df1df2. (43)

Similar to (15), the number of independent signal dimensions that we can harvest per spent
antenna is defined as

ρant = lim
P̂ /N0→∞

Cant

log(P̂ /N0)
. (44)

It can be readily verified (see Appendix E) that this limit is given by

ρant =
|V (S−T )|
|Ṽ (λ,S)|

, (45)

and attains a maximum value ρant=1 whenever Ṽ (λ,S)=V (S−T ), that is, V (S−T )⊆
D(λ−1).

Let us now return to path (i). To satisfy the constraint of a maximum number of harvested
dimensions per spent antenna, we know that we must sample with a lattice generator S
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satisfying V (S−T )⊆D(λ−1). To then minimize area, we should choose the lattice gen-
erator S such that its fundamental volume is minimized, i.e., the problem to be addressed
is

min
S
|V (S)|

such that V (S−T ) ⊆ D(λ−1). (46)

We summarize the solution to this problem in the following property.

Property 6. The lattice generator that solves (46) is the scaled hexagonal lattice generator

S =

[
2λ
3

λ
3

0 λ√
3

]
. (47)

Proof. See Appendix E.

For this generator we have ρant=1 and an antenna density per m2 that equals

Ad =
1

det(S)
=

3
√
3

2λ2
. (48)

Let us now compare the hexagonal lattice in (47) with a LIS sampling according to a rect-
angular lattice generator. The most natural one to choose would be the generator

S=

[
λ
2 0

0 λ
2

]
, (49)

which fails to meet the constraint V (S−T )⊆D(λ−1). In fact, the generator for the densest
rectangular lattice that meets the constraint, and thus results in ρant=1, is

S=

[
λ√
2

0

0 λ√
2

]
. (50)

However, for this lattice generator we have Ad = 2/λ2. Compared to (48), we see that
a hexagonal sampling of the LIS requires only a fraction 4/(3

√
3)≈ 0.77 of the surface-

area required with a rectangular sampling, that is, 23 of the surface-area can be saved.
Note that, the efficiency gain of the hexagonal sampling exceeds the normal packing gain
π/(2
√
3)≈0.91 of the hexagonal lattice, this being a result of our constraint that for each

spent antenna, we should be able to obtain one signal space dimension.
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5 Numerical Results

In this section, we present simulation results to illustrate the information-theoretical prop-
erties for data-transmission with the LIS discussed in previous sections. In what follows,
the mentioned noise PSD and transmit powers are linear values.

5.1 Capacities with LIS for One-Dimensional Terminal-deployments

In Fig. 4, we evaluate the space-normalized capacity Ĉ for one-dimensional terminal-deployment.
We plot Ĉ [nats/s/Hz/m] obtained with the optimal receiver with N0 = 1, ζ = 0.1, and
P̂ =10, and for different values of ∆x and λ. As can be seen, as λ→ 0, Ĉ converges to a
limit 1, which is aligned with Corollary 1.

In Fig. 5, we evaluate the differences of space-normalized capacities Ĉ between the optimal
and the MF receivers for N0 = 0.05, ζ = 0.5, P̃ = 40, and with different values of ∆x

and λ. As can be seen, whenever 1/θ is an integer, terminals do not interfere with each
other and the normalized capacities Ĉ of the optimal and the MF receivers are identical.
Otherwise, the MF receiver is inferior to the optimal receiver as expected.

In Fig. 6 we also depict C̄ obtained with the MF as a function of terminal-distance ∆x,
with peaks attained when 1/θ is an integer.

In Fig. 7, we evaluate the space-normalized capacity Ĉ for randomly allocated terminals
draw from a uniform distribution along a 10 m long line with different values of ∆x, where
1/∆x representing the density of random allocations, i.e., inLmeters, we haveL/∆x users
randomly located. As can be seen, as ∆x decreases to 0, the space-normalized capacity Ĉ
reaches the capacity limit with the optimal receiver and starts to saturate at∆x=λ/2=0.1
m. With the MF receiver, the capacity also converges but is suboptimal.

5.2 Capacities with LIS for Two andThree Dimensional Terminal-deployments

Next, we evaluate the capacities for two and three dimensional terminal-deployments. In
Fig. 8, we evaluate the space-normalized capacity Ĉ for uniformly random located terminals
in a two-dimensional plane with length and width both equal to 20 m. The locations of
terminals are also drawn from a uniform distribution for a given terminal-density 1/∆s. As
can be seen, when ∆s decreases to 0, Ĉ reaches a limit and starts to saturate at ∆s=λ

2/π
with the optimal receiver. With the MF receiver, the capacity also converges but is inferior
to the optimal receiver similar to the conclusions drawn from the one-dimensional case.

In Fig. 9, we evaluate the three-dimensional case, where we consider a room with length,
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Figure 4: The space-normalized capacity Ĉ in relation to θ for optimal receiver with N0= 1,η=0.1, and P̂ =10.
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Figure 5: The space-normalized capacity Ĉ for the optimal and the MF terminals with N0= 0.05,η=0.5, and P̂ =40.

width and height all equal to 4 m. For simplicity, we do not account for any reflections.
On the front wall of the room, we assume a rectangular LIS, with length 2 m and width
1 m, deployed in the middle. For instance, we can use a white-board in a room as the
LIS. Since we have a LIS with finite size, we use numerical computations to calculate the
elements ϕk,ℓ instead of using the sinc-function approximation. We evaluate the space-
normalized capacity Ĉ for randomly located terminals drawn from a uniform distribution
in the room with different terminal-density 1/∆v, and consider two different cases. The
first case is that, we fix the transmit power of each terminal to be P =10 and then measure
the capacity C per terminal. The other case is that, we fix the transmit power per m3

to P̂ = P/∆v = 10 (similar as the definition in (16)) and estimate the space-normalized
capacity Ĉ per m3. As can be seen, when∆v decreases to 0, Ĉ increases both for the optimal
and MF terminals, like in the one and two dimensional cases. The capacity C, however,
is fairly flat when the number of terminals increases from 32 to 320, while the latter one
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Figure 6: The same test as in Fig. 5. The normalized capacity in relation to ∆x. The green-circles correspond to θ = 1 for
different values of λ.
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Figure 7: The space-normalized capacity Ĉ with randomly located terminals along a line with length 10 m. We assume that
A=B=∞, N0=1, P̂ =10 and λ=0.2 m.

results in more interferences among terminals. This clearly shows the potential of the LIS
for interference suppression in data-transmission.

6 Summary

In this paper, we have considered using large intelligent surfaces (LIS) as large antenna-
array systems for data-transmissions with multiple single-antenna autonomous terminals.
We have shown that under the constraint that the transmit power per volume-unit P̂ is
fixed, the limit of a space-normalized capacity Ĉ per volume-unit is P̂ /(2N0) when the
wavelength λ approaches zero. We have also derived that the numbers of independent
signal dimensions can be harvested for different terminal-deployments, which are shown
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to be 2/λ per meter (m) for one-dimensional terminal-deployment, and π/λ2 per m2

for two and three dimensional cases. We have also analyzed the optimal sampling lattice
for designing the LIS in a practical system based on sampling theory and shown that, the
hexagonal lattice is optimal for minimizing the surface-area of a LIS under the constraint
that one independent signal dimension should be obtained per spent antenna. In addition,
we shown through numerical results that the LIS provides robust performances when the
number of terminals increases and is highly effective in interference suppressing, which
makes it a promising direction of research for data-transmission in communication systems
beyond massive-MIMO.
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Appendix A: Argumentations of Property 1

We first define a function φ as

φ(x) =
(
1 + x2

)− 3
4 exp

(
−2πȷ

λ

√
1 + x2

)
. (51)

Then the function g(∆) can be written as

g(∆) =

∫ ∞

−∞
φ(x)φ∗(x+∆)dx = φ(∆) ⋆ φ∗(∆). (52)

To show that g(∆) is close to a sinc-function, we first need to show that the Fourier trans-
form of φ(x) is close to a brick-shape. The Fourier transform Φ(f) is

Φ(f) =

∫ ∞

−∞
φ(x) exp(−2πȷfx) dx

= 2

∫ ∞

0

(
1 + x2

)− 3
4 exp

(
−2πȷ

λ

√
1 + x2

)
cos (2πfx) dx. (53)

Noticing that the following Fourier cosine transforms (FCTs) hold∫ ∞

0

(
1+x2

)− 1
2 exp

(
−2πȷ

λ

√
1+x2

)
cos (2πfx) dx = K0

(
2π
√
f2−λ−2

)
, (54)

4

∫ ∞

0
K0

(
2π
√
f2−λ−2

)
cos (2πfx) df =

(
1+x2

)− 1
2 exp

(
−2πȷ

λ

√
1+x2

)
, (55)

we then have

Φ(f) = 2

∫ ∞

0

(
1 + x2

)− 3
4 exp

(
−2πȷ

λ

√
1 + x2

)
cos (2πfx) dx

= 8

∫ ∞

0

∫ ∞

0

(
1 + x2

)− 1
4 K0

(
2π
√
ξ2−λ−2

)
cos (2πξx) cos (2πfx) dξdx

= 4

∫ ∞

0
K0

(
2π
√
ξ2−λ−2

)(
Φc

(
|f+ξ|

)
+Φc

(
|f−ξ|

))
dξ

= 4
(
K0

(
2π
√
f2−λ−2

)
⋆ Φc

(
|f |
))
, (56)

where Φc(f) is the FCT of
(
1 + x2

)− 1
4 , which is an even functions and for f≥0 equal to

Φc(f) =

∫ ∞

0

(
1 + x2

)− 1
4 cos(2πfx)dx =

(π/f)
1
4

Γ
(
1
4

) K 1
4
(2πf). (57)
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Figure 10: The function values of K0

(
2π

√
f2−λ−2

)
and Φc(f) and the sinc-function approximation of Φ(f) for λ=0.1.

Note that f=0 is a singularity point for Φc(f) and f=± 1
λ are singularity points for K0

(
2π

√
f2−λ−2

)
.

The functionsK0(f)andK 1
4
(f) are the modified Bessel function of the second kind [27].

A closed-from expression of the convolution in (56) seems out of reach and we have to seek
an approximation of it. Firstly, noticing that the amplitude of the modified Bessel function
K0

(
2π
√
f2−λ−2

)
is lower-bounded by a rectangular function as

∣∣∣K0

(
2π
√
f2−λ−2

)∣∣∣ ≈ { √
λ
2 , −

1
λ < f < 1

λ
0, otherwise.

(58)

Secondly, Φc(f) can be approximated with a Dirac delta-function when λ is small¹⁰ as

Φc(f) ≈
1

2
δ(f). (59)

Then, it holds that

Φ(f) ≈ 2

∫ ∞

−∞
K0

(
2π
√
ξ2 − λ−2

)
δ(f + ξ)dξ

= 2K0

(
2π
√
f2 − λ−2

)
. (60)

From (52), the Fourier transform of g(∆), which is denoted as G(f), equals

G(f) = |Φ(f)|2 ≈
{
λ, − 1

λ < f < 1
λ

0, otherwise
(61)

¹⁰In order to approximate Φc(f) by a Dirac delta-function in (59), the bandwidth of K0

(
2π

√
f2−λ−2

)
should be much larger than that of Φc(f), that is to say, λ should not be too small. As shown in the Fig. 11,
the sinc-function approximation of Φ(f) works well with λ up to 1 m.
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Figure 11: The numerical integrals and approximations with the sinc-function of Φ(f) for different values of λ.

which is also a rectangular function and the inverse Fourier transform is

g(∆) ≈ 2sinc

(
2π∆

λ

)
.

In Fig. 11, we plot the numerical computation of Φ(f) and the approximations, where the

capacities given by the PSD of |Φ(f)|2 computed as
∞∫

−∞
log
(
1+|Φ(f)|2

)
df , are equal to

[1.9269, 1.6383, 1.4044, 1.1334] nats/s/Hz for λ=[0.1, 0.5, 1, 2] m, while the capacities

with sinc-function based approximations computed as
∞∫

−∞
log
(
1+|sinc(f)|2

)
df , are equal

to [1.9053, 1.6178, 1.3794, 1.0876] nats/s/Hz, which are close and slightly smaller.

Appendix B: Proof of Property 2

From (10), it holds that

gk,ℓ = P

∫∫
(x, y)∈S

s∗xk,yk,zk
(x, y)sxℓ,yℓ,zℓ(x, y)dxdy

=
z0P

4π

B∫
−B

∞∫
−∞

1

(ηkηℓ)
3
4

exp

(
2πj(
√
ηk −

√
ηℓ

λ

)
dxdy. (62)

where the metrics ηk and ηℓ equal

ηk = z20 + y2 + (x− xk)2, (63)
ηℓ = z20 + y2 + (x− xℓ)2. (64)
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Using Property 1, it can be shown that
∞∫

−∞

1

(ηkηℓ)
3
4

exp

(
2πj(
√
ηk −

√
ηℓ

λ

)
dx =

2

z20 + y2
sinc

(
2(xk − xℓ)

λ

)
. (65)

Inserting (65) back into (62) yields

gk,ℓ=
z0P

2π
sinc

(
2(xk−xℓ)

λ

) B∫
−B

1

z20 + y2
dy =

P

π
tan−1

(
B

z0

)
sinc

(
2(xk − xℓ)

λ

)
,

(66)
which completes the proof.

Appendix C: Proof of Property 3

We first define another auxiliary parameter θ̃=1−βθ=αθ. From the definition of G(f)
in (61), the capacity (26) can be split into two parts. In a first part, G(f) is folded by
β times with amplitude βθζP and the integration interval length being θ − θ̃, and in a
second part,G(f) is folded by β+1 times with amplitude (β+1)θζP and the integration
interval length being θ̃. Hence, the capacity (26) equals

C= 1

θ

(
(θ − θ̃) log

(
1+

βθζP

N0

)
+ θ̃ log

(
1+

(β+1)θζP

N0

))
. (67)

By the definition of α, β in (28) and utilizing (23) yields the capacity stated in Property 3.

Appendix D: Proof of Property 4

With only the MF procedure, the capacity with ISI present is in (31), where the interference
can be expressed as

I =
1

ζP

∞∑
ℓ=−∞,ℓ̸=0

|gℓ|2 =
1

θζP

∫ θ
2

− θ
2

|G(f)|2 df − ζP. (68)

The second equality in (68) is from Parseval’s identity applied to G(f) in (61). Following
the same arguments of G(f) as proving Property 3, the interference power can be written
as

I =
1

θζP

(
(θ − θ̃)(βθζP )2 + θ̃((β + 1)θζP )2

)
− ζP

= θζP
(
θβ2 + 2θ̃β + θ̃

)
− ζP. (69)
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As θ̃=αθ, inserting it back into (69) yields the expression of I in (32).

Appendix E: Proof of Property 6

The proof considers, without loss of generality, λ = 1. A simple scaling gives the result
for arbitrary λ. In two dimensions, the fundamental cell is always a centrally-symmetric
hexagon (possibly degenerating into a rectangle) inscribed in a circle whose radius, is the
circumcenter of a triangle with vertices 0,v,w for some vectors v,w that generate the
lattice. So the volume of the lattice generated from S−T is twice the area of a triangle
inscribed in a unit circle, and this area is maximized when the triangle is equilateral. This
makes the lattice generated from S−T , and thus also from S, hexagonal.
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Beyond Massive-MIMO: The Potential of Positioning
with Large Intelligent Surfaces

We consider the potential for positioning with a system where antenna arrays are deployed as a
large intelligent surface (LIS), which is a newly proposed concept beyond massive multi-input
multi-output (MIMO) where future man-made structures are electronically active with integ-
rated electronics and wireless communication making the entire environment “intelligent”. In
a first step, we derive Fisher-information matrix (FIM) and Cramér-Rao lower bound (CRLB)
in closed-form for positioning a terminal located perpendicular to the center of the LIS, whose
location we refer to as being on the central perpendicular line (CPL) of the LIS. For a terminal
that is not on the CPL, closed-form expressions of the FIM and CRLB seem out of reach, and
we alternatively find approximations which are shown to be accurate. Under mild conditions,
we show that the CRLB for all three Cartesian dimensions (x, y and z) decreases quadratically
in the surface-area of the LIS, except for a terminal exactly on the CPL where the CRLB for the
z-dimension (distance from the LIS) decreases linearly in the same. In a second step, we analyze
the CRLB for positioning when there is an unknown phase φ presented in the analog circuits of
the LIS. We then show that the CRLBs are dramatically degraded for all three dimensions but
decrease in the third-order of the surface-area. Moreover, with an infinitely large LIS the CRLB
for the z-dimension with an unknown φ is 6 dB higher than the case without phase uncertainty,
and the CRLB for estimating φ converges to a constant that is independent of the wavelength λ.
At last, we extensively discuss the impact of centralized and distributed deployments of LIS, and
show that a distributed deployment of LIS can enlarge the coverage for positioning and improve
the overall performance.

©2017 IEEE. Reprinted, with permission, from
S. Hu, F. Rusek, and O. Edfors,
“Beyond massive-MIMO: The potential of positioning with Large Intelligent Surfaces,”
accepted in IEEE Trans. Signal Process., Dec. 2017.
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1 Introduction

A Large Intelligent Surface (LIS) is a newly proposed concept in wireless communication
that is envisioned in [1, 2], where future man-made structures are electronically active with
integrated electronics and wireless communication making the entire environment “intel-
ligent”. We foresee a practical implementation of LIS as a compact integration of a vast
amount of tiny antenna-elements with reconfigurable processing networks. Antennas on
the surface cooperate to transmit and sense signals, both for communication and other
types of functionality. Machine learning [3, 34] can bring intelligence in the systems both
for autonomous operation of the system and for new functionality. One such application
is depicted in [20, Fig.1], where three different terminals are communicating to LIS in an
outdoor and indoor scenarios, respectively.

The LIS concept can be seen as an extension of earlier research in several other fields. One
strong relation is to the massive-MIMO concept [4–6, 9], where large arrays comprising
hundreds of antennas are used to achieve massive gains in spectral and energy efficiencies.
The natural limit of this evolution is that the LISs in an environment act as transmitting
and receiving structures, which allows for an unprecedented focusing of energy in the three-
dimensional space which enables, besides unprecedented data-rates, wireless charging and
remote sensing with extreme precision. This makes it possible to fulfill the most grand
visions in 5G communication [7] and Internet of Things (IoT) [8] systems for providing
connections to billions of devices. However, as LIS scales up beyond the traditional an-
tenna array and implies a clean break with the traditional access-point/base-station concept,
there are substantial differences between the envisioned LIS and traditional massive MIMO
systems: Firstly, LIS in its fundamental form uses the whole contiguous surface for trans-
mitting and receiving; Secondly, in contrast to traditional aperture antennas where the ac-
tual physical structure determines the electromagnetic radiation pattern of transmitted and
received signals, with a LIS we can control the electromagnetic field on the entire surface,
and adapt both transmission and reception across the entire surface.

In [1] we carried out a first analysis on information-transfer capabilities of the LIS, and show
that the number of signal-space dimensions per square-meter (m2) deployed surface-area is
π/λ2, where λ is the wavelength, and the capacity that can be harvested per m2 surface-area
is linear in the average transmit power, rather than logarithmic as in a traditional massive-
MIMO deployment. Following [1], in this paper we take a first look at the potential of
using LIS for terminal-positioning, where we assume that a terminal to be positioned is
equipped with a single-antenna and located in a three-dimensional space in front of the LIS.
For analytical tractability, we assume an ideal situation where no scatterers or reflections are
present, yielding a perfect line-of-sight (LOS) propagation scenario. Although we do not
deal with more complicated geometries, the results are fundamental in understanding the
limits of positioning with the LIS.
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We first derive the Cramér-Rao lower bounds (CRLBs) for positioning a terminal on the
central perpendicular line (CPL) in closed-form, where the CPL is the line perpendicular
to the LIS and crossing the LIS at its center point as shown in Fig. 1. For remaining cases,
as closed-form expressions seem out of reach and we approximate the Fisher-information
matrix (FIM) and CRLB in closed-form, which are shown to be accurate under mild con-
ditions. We also show that, the CRLB in general decreases quadratically in the surface-area
of the LIS, except for a terminal on the CPL where the CRLB for z-dimension decreases
just linearly in the same. Meanwhile, the impact of wavelength is ∼λ2. These scaling laws
play in favor of a LIS when compared to other positioning technologies e.g., optical sys-
tems [12]. A LIS can compensate for its, comparatively, large wavelength by a much larger
aperture.

Besides, we also analyze the CRLB for positioning when there is an unknown phase φ
presented in the analog circuits of the LIS, in which case the CRLBs for all dimensions
are dramatically increased by φ and in general decrease in the third-order of the surface-
area. Therefore, LIS has significant gains over traditional massive MIMO for positioning
as LIS has a much larger surface-area. Furthermore, the CRLB for estimating φ is usually
significantly large and about 4π2/λ2 times of the CRLB for the z-dimension. Moreover,
for an infinitely large LIS, the CRLB for the z-dimension with unknown φ is 6 dB higher
than with known φ, and the CRLB for estimating φ converges to a constant¹.

Then, we also extensively discuss the impact of deployments with a single centralized LIS
and multiple distributed smaller LISs constrained to the same total surface-area. We show
that, a distributed deployment with splitting the single LIS into 4 small LISs can extend
the range of positioning and provide better average CRLB than the centralized deployment
under the case that the terminal has a distance to the CPL larger than

√
6R, whereR is the

radius of the single centralized LIS. Further splitting the 4 small LISs into 16 smaller LISs
improves the CRLB, but may also increase the overheads of cooperating among different
small LISs.

The rest of the paper is organized as follows. In Sec. II, we describe the signal propagation
model for the LIS-terminal link and some common features of FIM computations con-
sidered in the paper. In Sec. III, we derive the FIM and CRLB for a terminal on the CPL.
In Sec. IV, we discuss a terminal not on the CPL and put forth closed-form approxima-
tions of the FIM and CRLB. In Sec. V, we extend the signal model in Sec. II into having
a common unknown phase φ, caused by, e.g., the front-end circuits of the LIS and the
terminal. In Sec. VI, we discuss the impacts on the CRLB of different deployments of the
LIS. Numerical results are provided in Sec. VII and Sec. VIII summarizes the paper.

¹Note that, all CRLBs and their limits considered in this paper can be linearly scaled down by the signal-
to-noise ratio (SNR) as a natural result.
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Notation

Throughout this paper, boldface letters indicate vectors and boldface uppercase letters des-
ignate matrices. Superscripts (·)−1, (·)∗ and (·)T stand for the inverse, complex conjugate,
and transpose, respectively. In addition,R{·} takes the real part.

2 Signal Model with LIS

Expressed in Cartesian coordinates, we assume that the center of the LIS is located at co-
ordinates x=y=z=0 and a terminal is located at positive z-coordinate. The propagation
model of a transmitting terminal at location (x0, y0, z0) to the LIS is depicted in Fig. 1,
where we assume a perfect LOS propagation scenario and each terminal is assumed to radi-
ate isotropically. Denoting the wavelength as λ, and assuming a narrow-band system and
ideal free-space propagation from the terminal to all points at the LIS, the received signal
at the surface at location (x, y, 0) radiated by a terminal at location (x0, y0, z0) is

ŝx0, y0, z0(x, y) = sx0, y0, z0(x, y) + n(x, y), (1)

where n(x, y) is modeled as zero-mean white Gaussian noise with spectral densityN0, and
the noiseless signal sx0, y0, z0(x, y) is stated in Property 1.

Property 1. The noiseless signal sx0, y0, z0(x, y) can be modeled as

sx0, y0, z0(x, y) =

√
z0

2
√
πη

3
4

exp

(
−
2πj
√
η

λ

)
, (2)

where the metric

η=z20+(y−y0)2+(x−x0)2. (3)

Proof. The noiseless signal received at location (x, y, 0) on the LIS and at time t as shown
in Fig. 1 reads

sx0, y0, z0(x, y) =
√
PL cosϕ(x, y)s(t) exp(−2πjfc∆t(x, y)) , (4)

where PL denotes the free-space attenuation, ϕ(x, y) is angle-of-arrival (AoA) of the trans-
mitted baseband signal s(t) at (x, y, 0), and fc is the carrier-frequency. The transmit-time
from the terminal to (x, y, 0) equals ∆t(x, y) =

√
η/c, where c is the speed-of-light.

Since we are considering a narrow-band system, the signal s(t) can be assumed to be the
same at all locations (x, y, 0) of the LIS, hence we can let s(t)=1 and remove it from (4).
Further, as the free-space attenuation PL=1/(4πη) and cosϕ(x, y)= z0/

√
η, inserting

them back into (4) yields (2).
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Figure 1: The radiating model of transmitting signal to the LIS. In contrary to a conventional aperture antenna where the phys-
ical structure of the antenna controls the radiation of signal, with LIS we can control the electromagnetic field over
the entire surface. Therefore, both the near-field (spherical wave-fronts) and far-field (circular wave-fronts) effects
are introduced by the integration across the whole disk-shaped LIS when processing the received signal such as for
calculating the Fisher information in (8) or data detection in [1].

To analyze the CRLB for positioning, we denote the first-order derivatives of sx0, y0, z0(x, y)
with respect to variables x0, y0 and z0 as ∆s1, ∆s2 and ∆s3, respectively, which are equal
to

∆s1 =

√
z0 (x− x0)
2
√
π

(
3

2
η−

7
4 +

2πj

λ
η−

5
4

)
exp

(
−
2πj
√
η

λ

)
, (5)

∆s2 =

√
z0 (y − y0)
2
√
π

(
3

2
η−

7
4 +

2πj

λ
η−

5
4

)
exp

(
−
2πj
√
η

λ

)
, (6)

∆s3 =
z

3
2
0

2
√
π

(
1

2z20
η−

3
4− 3

2
η−

7
4− 2πj

λ
η−

5
4

)
exp

(
−
2πj
√
η

λ

)
. (7)

From [14, Chapter 15], as ŝx0, y0, z0(x, y) is Gaussian with mean sx0, y0, z0(x, y) and vari-
ance N0, the elements of the FIM are given by the following double integrals²

Iij =
2

N0

∫∫
x,y
R{∆sj (∆si)∗}dxdy, (8)

where the integrals are taken over the area of the LIS, which we assume to have a disk-

²The integrals in (8) are due to the additive property of Fisher-information, which can be obtained by
sampling the continuous signal ŝx0, y0, z0(x, y) with Nyquist frequency[14], and the band-limited property
of sx0, y0, z0(x, y) can be seen from [1].
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shape³ with radius R. As CRLB scales down linearly in SNR, we set N0 =2 throughout
the paper to eliminate the scaling factor in (8).

Further, we define three functions g1(n), g2(n) and g3(n) which are necessary to compute
the CRLB based on (5)-(8),

g1(n) =

∫∫
x2+y2≤R2

x2η−
n
2 dxdy, (9)

g2(n) =

∫∫
x2+y2≤R2

y2η−
n
2 dxdy, (10)

g3(n) =

∫∫
x2+y2≤R2

η−
n
2 dxdy. (11)

In general, closed-form expressions of g1(n), g2(n) and g3(n) are out of reach, except for
the case that x0=y0=0, i.e., the terminal is on the CPL, and it holds that

g1(n) = g2(n) =
π

n2 − 6n+ 8

(
2z4−n

0 −
(
R2 + z20

)1−n
2
(
nR2 − 2R2 + 2z20

))
, (12)

g3(n) =
z2−n
0 −

(
R2 + z20

)1−n
2

n− 2
. (13)

For a terminal that is not on the CPL, to analyze the properties of CRLB, we will use
effective approximations for the FIM and CRLB with the results obtained for the CPL
case.

2.1 Related Work

The CRLB for terminal-positioning has been analyzed thoroughly in the literature for tra-
ditional antenna-array systems such as in [21–30], and the positioning performance has
been evaluated based on various metrics such as AoA [23], time-of-arrival (ToA) [27], time-
difference-of-arrival (TDoA) [25], received-signal-strength (RSS) [22], hybrid AoA/ToA
[32], and hybrid AoA/TDoA [33]. These positioning methods, both for LOS and non-line-
of-sight (NLOS) [35–37] environments, can be directly applied in massive MIMO systems
[17–19].

Due to the increased size of measurement in massive MIMO systems, more accurate posi-
tioning can be expected, and advanced positioning techniques such as fingerprinting based

³The assumption of assuming a LIS with a disk-shape is solely for the convenience of derivations. Other
shapes such as rectangular, triangular, or ring shapes can be analyzed in similar ways. Moreover, when the
terminal is in the far-field, i.e., R≪z0, the shape of the LIS is irrelevant and can be regarded as a disk-shape
with equal surface-area.
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positioning using convolutional neural network (CNN) [34] and Gaussian process regres-
sion [17] can be applied. As LIS further extends the antenna-arrays in massive MIMO
systems into contiguous surfaces, such advantages can be expected and strengthened in
LIS systems. One substantial issue with the LIS is the fundamental limits of terminal-
positioning in relation to the LIS surface-area deployed which we are addressing in this
work.

Note that, with LIS we derive the fundamental positioning performances under the as-
sumption of a general λ. Practical and implementation-friendly version of LIS that ap-
proximates transmission and reception across a contiguous surface with an antenna-array
spread across the same surface structure. This is due to the fact that, the integration of
received signal across the LIS can be approximated by a summation over discrete signals re-
ceived by a large antenna-array system. However, such a discrete approximation of LIS with
a large antenna-array system requires sampling the LIS densely enough, which depends on
the spatial spectrum of received baseband signals at the LIS [20] and is beyond a traditional
massive MIMO concept. With such an approximated large antenna-array system origin-
ating from the LIS, CRLBs for terminal-position in relation to the deployed surface-area
are not adequately addressed in literatures. Nevertheless, the CRLBs derived with the LIS
can also be regarded as fundamental limits (lower bounds) for terminal-positioning with a
traditional large antenna-array system that has the same deployed surface-area, due to what
has been mentioned earlier, with LIS the whole contiguous surface is used for transmitting
and receiving and we can control the electromagnetic field on the entire surface.

2.2 Limitations

In this paper, we limit the CRLB analysis with LIS to the perfect LOS case. Under NLOS
environments, the signals reach the LIS comprises multi-path components (MPCs) arising
from reflections and scatterings. A complete analysis of CRLB for NLOS case would clearly
be of major importance, but is out of scope for this paper and should be pursued in future
research.

Some approaches for dealing with NLOS in tradition antenna-array systems can be found
in e.g., [28–30]. Nevertheless, as shown in [28] and [30], under the assumption that no
prior knowledge for the terminal position or NLOS delays is available, the contribution of
NLOS signals ought to be completely ignored. That is, the CRLB for NLOS geolocation
are equivalent to that for the case that only the LOS signals are received by the LIS. On the
other hand, when there is prior information about the geometric relationship of multi-path
propagation, the MPCs from a reflecting object can be regarded as direct paths from the
virtual terminal behind such a reflecting object [31]. Therefore, in both cases, the CRLB ob-
tained for LOS case is substantial for understanding the terminal-positioning performance
with the LIS for NLOS cases.
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3 CRLB of a Terminal on the CPL

In this section, we analyze the CRLB for terminals along the CPL with coordinates (0, 0, z0).
A nice property is that, the CRLB for all dimensions are in closed-form, i.e., the integrals (8)
can be efficiently solved using (12) and (13). We denote the Fisher-information and CRLB
for a terminal with coordinates (x0, y0, z0) and a LIS with radius R as Ii([x0, y0, z0], R)
and Ci([x0, y0, z0], R), where the suffix i = x, y, z represents the x, y, and z dimen-
sion, respectively. When suffix i has multiple variables, we mean that all these dimensions
contained in i are of the same value. For instance, Ix,y([x0, y0, z0], R) denotes the Fisher-
information for both x and y dimensions whenever they are equal.

We denote an useful parameter

τ = (R/z0)
2 , (14)

which measures the relative surface-area normalized by the squared distance of the con-
sidered terminal position to the LIS. For a terminal in the far-field (in relation to the radius
R), the value of τ is small, and for a terminal close to the LIS, τ becomes large.

3.1 CRLB for Three Cartesian Dimensions

Theorem 1. The FIM for a terminal with coordinates (0, 0, z0) is diagonal and the Fisher-
information for each Cartesian dimension is

Ix,y([0, 0, z0], R) =
1

30z20
f1(τ) +

2π2

3λ2
f2(τ), (15)

Iz([0, 0, z0], R) =
1

40z20
f3(τ) +

2π2

3λ2
f4(τ), (16)

where the functions f1(τ), f2(τ), f3(τ), and f4(τ) obtained with (12)-(13) are defined as

f1(τ) = 1− 1 + 2.5τ

(1 + τ)
5
2

, (17)

f2(τ) = 1− 1 + 1.5τ

(1 + τ)
3
2

, (18)

f3(τ) = 13− 13 + 5τ2

(1 + τ)
5
2

, (19)

f4(τ) = 1− 1

(1 + τ)
3
2

. (20)

respectively. Then, the CRLB for each dimension can be computed according to

Ci([0, 0, z0], R) = I−1
i ([0, 0, z0], R), i = x, y, z. (21)
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Proof. See Appendix A.

From Theorem 1, the following conclusions can be derived. Firstly, when the terminal
is close to the LIS, the Fisher-information is infinitely large for all dimensions, and the
CRLB Ci([0, 0, z0], R) becomes 0, while under the caseR≪ z0, the CRLB is∞. These
observations are consistent with the nature of the problem at hand.

Secondly, in order to get a direct view of the CRLB in relation to surface-area of the LIS,
we assume λ≪z0 (which in general holds as λ is the wavelength). Then, the terms of the
Fisher-information comprising f1(τ) and f3(τ) in (15) and (16) can be omitted, and the
CRLBs can be approximated as

Cx,y([0, 0, z0], R) ≈
3λ2

2π2f2(τ)
, (22)

Cz([0, 0, z0], R) ≈
3λ2

2π2f4(τ)
. (23)

respectively. As it can been seen that, the CRLB for all dimensions are uniquely decided
by λ and τ . Hence, when z0 is increased by a factor, the radius R of the LIS also has to
increase by the same factor in order to have unaltered CRLBs. Another interesting fact is
that, the CRLBs for x and y dimensions are higher than that for z-dimension due to

f2(τ)<f4(τ), (24)

which can be seen directly from (18) and (20) using the fact τ >0.

Lastly, when the surface radius R is much larger than the distance z0 from the terminal to
the LIS, it holds that

lim
τ→∞

f2(τ) = lim
τ→∞

f4(τ) = 1. (25)

Therefore, the asymptotic CRLBs in (22) and (23) are identical and equal to

lim
τ→∞

Cx,y,z([0, 0, z0], R) =
3λ2

2π2
, (26)

for all three dimensions and depend solely on the wavelength λ, which represents a funda-
mental lower limit to positioning precision.

In practical scenarios, a more interesting case is R≪ z0, and then we have the following
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approximations by using Taylor expansions [15] at τ=0,

f1(τ) =
15

8
τ2 + o

(
τ2
)
, (27)

f2(τ) =
3

8
τ2 + o

(
τ2
)
, (28)

f3(τ) =
65

2
τ + o(τ) , (29)

f4(τ) =
3

2
τ + o(τ) . (30)

respectively. From Theorem 1, the CRLBs for different dimensions are equal to

Cx,y([0, 0, z0], R) = 16τ−2

(
1

z20
+

4π2

λ2

)−1

+ o
(
τ−2

)
, (31)

Cz([0, 0, z0], R) = 16τ−1

(
13

z20
+

16π2

λ2

)−1

+ o
(
τ−1

)
. (32)

As τ is proportional to R2, for a terminal on the CPL the CRLBs for x and y dimensions
decreases quadratically in the surface-area, while the CRLB for z-dimension decreases lin-
early in the same. Moreover, if we also assume that λ≪z0 (which usually holds as λ is the
wavelength), the CRLBs in (31) and (32) can be effectively approximated as

Cx,y([0, 0, z0], R) ≈
4λ2

π2τ2
, (33)

Cz([0, 0, z0], R) ≈
λ2

π2τ
, (34)

respectively, which only depend on λ and τ . As will be shown in the next section, when
the terminal moves away from the CPL, the CRLBs for all three dimensions degrade dra-
matically compared to (33) and (34), and decreases quadratically in the surface-area.

4 CRLB of a Terminal not on the CPL

In this section, we consider a terminal with arbitrary coordinates (x0, y0, z0). When
x0, y0 ̸=0, closed-form expressions of the CRLB seem out of reach due to the complicated
integrals in (8). Therefore, we seek approximations, tight enough so that insights can still
be drawn, of the CRLBs. Using the closed-form expressions of Fisher-information for a
terminal on the CPL in Sec. III, the CRLBs for general cases can be well approximated as
elaborated next.
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4.1 CRLB Approximations for a Terminal with Coordinates (x0, y0, z0)

We first introduce two mild conditions⁴,

λ ≪ z20√
z20 + x20 + y20 +R2

, (35)

2R ≪ z20√
x20 + y20

+
√
x20 + y20. (36)

As for the cases of interestR is relatively small compared to z0, and λ is much smaller than
z0, these two conditions are usually satisfied. Letting

z1 =
√
x20 + y20 + z20 , (37)

the approximations for FIM and CRLB matrices are stated in Property 2.

Property 2. Under the conditions (35)-(36), the FIM for a terminal with coordinates (x0, y0, z0)
can be approximated as

I ≈


α+

β x2
0

z20

β x0 y0
z20

β x0

z0
β x0 y0

z20
α+

β y20
z20

β y0
z0

β x0

z0
β y0
z0

β

, (38)

where α and β are equal to

α =
z0
z1
Ix,y([0, 0, z1], R), (39)

β =

(
z0
z1

)3
Iz([0, 0, z1], R), (40)

and Ix,y([0, 0, z1], R), Iz([0, 0, z1], R) are the Fisher-information for x, y and z dimensions
for a terminal with coordinates (0, 0, z1) which are stated in Theorem 1. Then, the CRLB
matrix reads

C = I−1 ≈


1
α 0 − x0

αz0
0 1

α − y0
αz0

− x0
a z0

− y0
α z0

1
β +

x2
0+y20
αz20

. (41)

Proof. See Appendix B.

⁴These two conditions are only used to simplify the expressions (5)-(7). That is, only the terms containing
1/λ in (5)-(7) are preserved and the remaining terms are omitted since they are negligible compared to other
terms comprising 1/λ, which simplifies the calculations of Fisher-information as shown later in Appendix B.
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From Property 2, the FIM and CRLBs are approximated in closed-form. As a special case,
when x0=y0=0, i.e., the terminal is on the CPL, the approximation (41) is exact as from
Theorem 1. Further, we have the below corollary.

Corollary 1. Under the conditions (35)-(36), the CRLBs for x and y dimensions are approxim-
ately equal, and depend on (x0, y0, z0) through z0 and

√
x20 + y20 . That is, terminals on the

circle x20+y
2
0=r

2 have the same CRLBs for all dimensions for a given distance z0.

Applying (33)-(34) to approximate Ix,y([0, 0, z1], R) and Iz([0, 0, z1], R) in (39)-(40), we
have the approximated CRLBs for the non-CPL case stated in Property 3.

Property 3. Under the caseR≪z0 and with conditions in (35)-(36), the CRLBs for a terminal
with coordinates (x0, y0, z0) can be approximated as

Cx,y ≈
4λ2z51
π2z0R4

, (42)

Cz ≈
λ2z20
π2R2

+
4λ2(x20 + y20)z

5
1

π2z30R
4

. (43)

Compared to the CPL case, with a small R the CRLB for z-dimension is dramatically
degraded when the terminal is away from the CPL, that is, x20+y20 > 0. Further, when√
x20+y

2
0>z0, the CRLB for z-dimension becomes even larger than the CRLBs for x and

y dimensions. Furthermore, the CRLBs decrease quadratically⁵ in the surface-area of the
LIS for all three dimensions in this case, which is an important motivation to go beyond
the massive MIMO deployment to the LIS, which provides significant gains (quadratical
in the surface-area) of the CRLB for positioning a terminal.

5 CRLB with Phase Uncertainty in Analog Circuits of the LIS

In practical scenarios, the front-end circuitry of the LIS and of the terminal is not ideal and
presents unknown distortions to the signal model. Using off-line calibration of the LIS
[16], the entire LIS can be calibrated up to a common constant which is unknown to the
LIS. The terminal has its own distortion, but what comes into play here is the product of
the two distortions, which is then a single scalar number. In this paper we will model this
distortion as a random phase uncertainty φ since amplitude stability is easier to achieve in
practice, see e.g., [16]. Such a presence of the unknown phase φ degrades the CRLB of
positioning, and in this section we analyze the ensuing CRLB uncertainty thoroughly. To

⁵This is a consequence of the increasing CRLB for a terminal not on the CPL. As the limits of the CRLB
when R is ∞ are the same for a terminal at any position with the same z0, the CRLB for a terminal located
not the CPL must decrease faster than when it is located on the CPL.
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simplify the analysis, we take a special interest for a terminal on the CPL, while for the
other positions we use numerical simulations.

Note that, the received signal power is not impacted by the presence of the unknown phase
φ and there are certain parameter measurement methods that are insensitive to the phase
uncertainty such as in [39]. However, utilizing only the received power and ignoring the
phase differences among received signals across the LIS can significantly degrade the posi-
tion performance. As a direct consequence, if the phases are removed from the signal model
(2), the CRLBs are then independent from λ, whereas in previous obtained results we have
shown that the CRLBs are linearly scaled down by λ2.

With an unknown phase φ, the noiseless signal in (2) is modified to

s̃x0, y0, z0(x, y) =

√
z0

2
√
πη3/4

exp

(
j

(
−
2π
√
η

λ
− φ

))
. (44)

Similarly, we denote the first-order derivatives with respect to variables x0, y0, z0 and φ as
∆s̃1, ∆s̃2, ∆s̃3 and ∆s̃4, respectively, which are

∆s̃i = ∆siexp (−jφ) , 1 ≤ i ≤ 3, (45)
∆s̃4 = −js̃x0, y0, z0(x, y), (46)

where ∆si are given in (5)-(7). As the received signal ŝx0, y0, z0(x, y) is still Gaussian with
mean s̃x0, y0, z0(x, y) and variance N0, the elements of FIM are still given by the double
integrals in (8). However, compared to the case without φ, in this case the FIM is 4-
dimensional and the CRLBs for all three Cartesian dimensions are degraded. We then
state the FIM for the non-CPL case in Theorem 2.

Theorem 2. With an unknown phase φ considered in (44), the FIM equals

I =

[
I0 iT

i I44

]
, (47)

where I0 is the Fisher-information for x, y and z dimensions for the case with known phase φ,
and the vector i comprises the cross-terms of Fisher-information between the x, y, z dimensions
and the phase φ, which equals

i =
[
I14 I24 I34

]
=
z0g3(4)

λ

[
x0 y0 z0

]
. (48)

Further, the Fisher-information for the unknown φ equals

I44 =
z0
4π
g3(3), (49)

where g3(n) is the integral defined in (11).
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Proof. See Appendix C.

From Theorem 2, if we know the CRLB matrix C0 = (I0)
−1 for x, y and z dimensions

for the case with known φ, the CRLB matrix with φ can be computed as

C =
1

I44 − iC0i
T

[
C0

(
I44 − iC0i

T
)
+C0i

TiC0 −C0i
T

−C0i 1

]
. (50)

As can be seen from (50), the CRLB for estimating φ equals

Cφ =
1

I44 − iC0i
T
, (51)

and the CRLB matrix for the three Cartesian dimensions becomes

C̃0 = C0 +C0i
TiC0Cφ. (52)

Hence, from (52) the CRLBs are dramatically degraded due to the presence of φ for the
three Cartesian dimensions with the additional term C0i

TiC0Cφ. However, as φ plays
no role in the FIM in (47), we have the corollary below.

Corollary 2. The Fisher-information and CRLB for all three Cartesian dimensions and the
phase φ are independent of the true value of φ.

Since in general we cannot get g3(n) in closed-from, we start with analyzing the FIM for
a terminal on the CPL, which from Theorem 2 equals

I =


I11 0 0 0
0 I22 0 0
0 0 I33 I34
0 0 I34 I44

. (53)

Hence, the CRLBs for x and y dimensions remain the same with the unknown φ, and the
CRLBs for z-dimension and phase φ are equal to

Cz =
I44

I33I44 − I234
, (54)

Cφ =
I33

I33I44 − I234
. (55)

On the CPL, we can reach expressions for I34 and I44 in closed-from, and with Iii (1≤ i≤
3) computed in Theorem 1, the CRLB for all dimensions are stated in the below property.
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Property 4. With an unknown phase φ, for a terminal on the CPL the CRLBs for x and y
dimensions remain the same as with known φ, while the CRLBs for z-dimension and phase φ
are equal to

Cz =

(
1

10z20
f5(τ) +

π2

6λ2
f6(τ)

)−1

, (56)

Cφ =

(
1

2
f7(τ) +

(
λ2

10π2z20f8(τ)
+

8

3f9(τ)

)−1
)−1

, (57)

where the functions f5(τ), f6(τ), f7(τ), f8(τ) and f9(τ) obtained with (12)-(13) are defined
as

f5(τ) = 1− 1 + 1.25τ2

(1 + τ)
5
2

, (58)

f6(τ) = 1− 4− 3
√
1 + τ + 3τ

(1 + τ)
3
2

, (59)

f7(τ) = 1− 1√
1 + τ

, (60)

f8(τ) =
τ2
√
1 + τ

4 + 5τ2 − 4(1 + τ)
5
2

, (61)

f9(τ) =
τ2√

1 + τ − (1 + τ)2
. (62)

Proof. See Appendix D.

Using Property 4, when τ→∞ it holds that

lim
τ→∞

f5(τ) = lim
τ→∞

f6(τ) = 1, (63)

and the CRLB limit for z-dimension is

lim
τ→∞

Cz =
6λ2

π2
, (64)

which is 4 times of the CRLB for z-dimension with known φ, hence, the unknown phase
causes 6 dB degradation of the positioning precisions for z-dimension for a terminal on
the CPL. Further, as it also holds that

lim
τ→∞

f7(τ) = 1, (65)

lim
τ→∞

f8(τ) = −1

4
, (66)

lim
τ→∞

f9(τ) = −1, (67)
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the CRLB limit for phase φ equals

lim
τ→∞

Cφ =

(
1

2
−
(
8

3
+

λ2

10π2z20

)−1
)−1

, (68)

which becomes a constant when λ≪z0,

lim
τ→∞

Cφ = 8. (69)

Therefore, in order to estimate φ, the SNR should be extremely high regardless of the
wavelength λ and surface-area of the LIS.

To see the trends at small τ , we also use Taylor expansions at τ=0 which results in

f5(τ) =
5

2
τ + o (τ) , (70)

f6(τ) =
1

8
τ3 + o

(
τ3
)
, (71)

f7(τ) =
1

2
τ + o(τ), (72)

f8(τ) = − 1

10
τ + o(τ), (73)

f9(τ) = −2

3
τ + o(τ). (74)

From Property 4 and using (70)-(74), when τ is sufficiently small we have the approxima-
tions

Cz ≈
48λ2

π2τ3

(
1 +

12λ2

π2z20τ
2

)−1

, (75)

Cφ ≈
4

τλ2
(
λ2 + 4π2z20

)
. (76)

An interesting fact is that, unlike the case with known φ where the CRLB for z-dimension
decreases linearly in the surface-area, in the presence of an unknown φ the slope of the
CRLB for z-dimension in relation to the surface-area (both are in logarithmic domain)
varies between 1 and 3. This can be seen from (75) as we have the two cases:

• When 2
√
3λ

πz0
≪τ≪1, it holds that

Cz ≈
48λ2

π2τ3
, (77)

which decreases in the third-order of the surface-area of the LIS.
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• When 0<τ≪ 2
√
3λ

πz0
, it holds that

Cz ≈
4z20
τ
, (78)

which decreases linearly in the surface-area of the LIS.

Remark 1. Note that, the CRLB for z-dimension in (78) is independent of λ, which is different
from the CRLB with known phase as in (34). Therefore, with phase uncertainty, decreasing the
wavelength is not beneficial for improving the CRLB for estimating the distance z0.

Moreover, when τ is sufficiently small and λ≪z0 holds, the CRLB for phase φ is signific-
antly larger than that for z-dimension since

Cφ

Cz
≈ 4π2

λ2
. (79)

In Fig. 2, we depict the CRLBs for all three Cartesian dimensions with and without φ,
derived in Theorem 1 and Property 4 for the LIS, respectively, where we let z0 = 4 m
and λ = 0.1 m. Assuming that the distance between two adjacent antenna-elements is
λ/2, then the total number of antenna-elements deployed in a traditional massive MIMO
system with a surface-area πR2 equals

N=
4πR2

λ2
=
4πτz20
λ2

≈2τ×104. (80)

A typical traditional massive-MIMO array comprises N = 200 antennas and yields τ =
0.01. As seen from Fig. 2, a LIS system with the same surface-area (whose CRLBs are lower
bounds of those that a traditional massive MIMO can achieve with the same surface-area)
falls just short of reaching the cubic slope, whereas a LIS that increases the surface-area
10-20 fold with τ >0.1 reaches the cubic slope. This clearly shows the benefit of increasing
the surface-area from a traditional massive MIMO to a LIS with much larger surface-area
that can fall in the cubic slope for achieving better terminal-positioning performances.

In Fig. 3, we depict the CRLBs for z-dimension with unknown phase φ. As can be seen,
the approximations in (75)-(76) are well aligned with the exact forms obtained in Property
4 when τ <0.02. Moreover, in this case the CRLBs for estimating φ is around 4π2/λ2=
4000 times of the CRLB for z-dimension which is shown in (79).

Following the similar discussion in Sec. IV and utilizing the approximations in Property 2
and (51)-(52), the CRLBs for a terminal not on the CPL can also be approximated. However,
the derivations are relatively long and the conclusions are similar as those drawn for the case
with a terminal on the CPL. Loosely speaking, the Fisher-information terms comprised in
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Figure 2: The exact CRLB for x, y and z dimensions for terminals along the CPL obtained in Theorem 1 and Property 4. As can
be seen, with LIS the CRLB is in the fast-decreasing region compared to a traditional massive-MIMO system whose
surface-area is relatively small, which shows the potential gains of the LIS.
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Figure 3: The exact CRLB in (56)-(57) and approximated CRLB in (75)-(76) for z-dimension and phase φ for terminals on the
CPL, which are well aligned for small values of τ .

vector i increases linearly in the surface-area and C0 decreases quadratically in the surface-
area for all dimensions as explained in Sec. IV. Further, as Cφ decreases linearly in the
surface-area, the CRLBs for x, y and z dimensions then decrease in the third-order of the
surface-area from (52), which is the same as for the CPL case. Furthermore, as τ grows
large, the limits of the CRLBs for x and y dimensions remain the same for the case with
known φ since all positions can be approximated as on the CPL in the far-field, while for
z-dimension the limit of CRLB is 6 dB higher than that with known φ as shown in (64).
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6 Deployment of the LIS

In this section we consider different deployments of the LIS on a large surface with size
W×H where W,H are the width and length, respectively. In particular, we consider the
centralized-deployment (a) and distributed-deployments (b), (c) as depicted in Fig. 4. For
simplicity, we assume R, λ≪z0 and consider the CRLBs for a terminal on the CPL with
coordinates (0, 0, z0) without phase-uncertainty in the received signal, that is, positioning
a terminal in the far-field.

For the centralized deployment (a), the CRLBs for all three dimensions are given in (33)
and (34). With a distributed deployment (b), the LIS is split into four small LISs centered
at (±W/4,±H/4), each with radiusR/2. Using Property 2, the symmetry of the LIS, and
the approximations in (33)-(34), the sum of the FIMs corresponding to the four small LISs
can be shown to be diagonal, and the Fisher-information for the x, y and z dimensions are
equal to

Ix,y ≈
π2z0R

4

16λ2(z20 +D2)5/2
+

π2D2z0R
2

2λ2(z20 +D2)5/2
, (81)

Iz ≈
π2R2z30

λ2(z20 +D2)5/2
, (82)

respectively, where D equals

D=

√
W 2 +H2

4
. (83)

Assuming D≪z0, the Fisher-information can further be approximated as

Ix,y ≈
π2R4

4λ2z40

(
1

4
+

2D2

R2

)
, (84)

Iz ≈
π2R2

λ2z20
. (85)

Comparing (33) to (84), it can be seen that the CRLB for x and y dimensions with the
distributed deployment (b) is lower than that with the centralized deployment (a) only if

1

4
+

2D2

R2
> 1, (86)

or equivalently, √
W 2 +H2 >

√
6R. (87)
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Figure 4: Different deployments of the LIS in a surface with width W and length H. Note that the total surface-area is the
same for different deployments, and each of the small LISs has the same properties of the single large LIS.

That is to say, in the far-field with the distributed deployment (b), the CRLBs for x and y
dimensions are improved if the four small LISs are deployed sufficiently far apart in relation
to radius R. Otherwise, the centralized deployment (a) provides lower CRLBs for x and y
dimensions than that for the distributed deployment. However, the CRLB for z-dimension
remains the same for both deployments. Further, when R≪D, the Fisher-information in
(84) becomes

Ix,y ≈
π2D2R2

2λ2z40
, (88)

which shows that, the CRLBs for x and y dimensions are not only improved, but also
decreases linearly in the surface-area of the LIS with a distributed deployment rather than
quadratically.

Following the same principle, one can split the LIS into more small pieces and obtain an
ultra-densely distributed deployment such as in (c) of Fig. 4. In general, with a distrib-
uted deployment, the overall positioning performance is more robust than a centralized
deployment, and the average positioning performance is improved which we show later
with numerical simulations.

7 Numerical Results

In this section, numerical results are provided to illustrate the theories and conclusions that
we have developed in previous sections. As explained earlier, in all tests we set the noise
spectral-density toN0=2, and without explicitly pointed out, the unit for the coordinates
of the terminal, the wavelength λ and the radius R of the LIS are all in meter, while the
unit for CRLB is m2.
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7.1 Exact-CRLB Evaluations

We first evaluate the CRLB for terminals both on and away from the CPL as discussed
in Sec. III and Sec. IV. As only the radius

√
x20+y

2
0 matters as shown in Corollary 1, we

illustrate with offsets only in x-dimension. In Fig. 5 and Fig. 6, we test withR=1, λ=0.1,
y0=0, x0=2, 4, 8, and z0=4, 6, respectively, and some interesting results can be observed.

Firstly, as shown in Fig. 5, when τ is small the CRLBs for x and y dimensions decrease
quadratically in the surface-area of the LIS, while as shown in Fig. 6, the CRLB for z-
dimension decreases only linearly in that. This is well aligned with the results in (33) and
(34). Secondly, the CRLB for z-dimension increases dramatically when the terminal is away
from the CPL. Furthermore, as long as x0 ̸=0, the CRLB for z-dimension also decreases
quadratically in the surface-area. These phenomenons are well predicted by Property 2.
Lastly, it can been seen that, as R → ∞ the CRLB converges to a limit 3λ2/(2π2) =
1.5×10−3 for all dimensions as shown in (26).

7.2 CRLB-Approximation Accuracies

Next, we evaluate the CRLB approximations for a terminal not on the CPL as discussed in
Sec. IV. We compare the numerical integration results⁶ of CRLB and their approximations
using (42)-(43) in Property 2. We test with R=0.5, λ=0.1, z0=8, and x0=y0 varying
from 1 to 8.

The CRLBs and the normalized approximation errors that are computed as the normalized
CRLB differences between the numerical integrations and the approximations are both
shown in Fig. 7. As can be seen, the approximations given by Property 2 perform well,
with normalized errors less than 0.5 for the x and y dimensions, and close to 1 for
z-dimension.

In Fig. 8, we repeat the tests in Fig. 5 and Fig. 6 with numerical integrations, but setting
x0 = r cosψ and y0 = r sinψ, with r = 4 and ψ changing over [0, 2π]. The CRLBs in
all dimensions are normalized with those obtained at coordinates (4, 0, 8). As can be seen,
the CRLB for the z-dimension is identical for any angle ψ, while the CRLBs for x and y
dimensions are almost identical. These observations corroborate Corollary 1.

⁶For numerical computation of the CRLB, we use the Matlab built-in function ‘integral’ to calculate the
integrals in the CRLB matrix directly, which has an absolute error of 10−10 and relative error of 10−6.
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Figure 5: CRLB for x and y dimensions, and the CRLBs for y-dimension are almost overlapped with those for x-dimension.
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Figure 6: CRLB for z-dimension with the same tests in Fig. 5.

7.3 CRLB with an Unknown Phase φ

Next, we evaluate the CRLB for positioning with an unknown phase φ presented as dis-
cussed in Sec. V. As can be seen in Fig. 9, when the terminal is away from the CPL, the
CRLBs for all dimensions are increased and the curves have similar shapes. For all three
Cartesian dimensions, the CRLB starts to decrease in the third-order of the surface-area
when R is larger than a certain threshold as explained in (115). More interestingly, the
CRLBs for x and y dimensions are lower than that for z-dimension when there is an un-
known phase φ present in the signal model. Furthermore, the behaviors of CRLB for a
terminal not on the CPL is slightly different from the case located on the CPL. As can be
seen, when R is small, the CRLB decreases first quadratically in the surface-area instead of
linearly, which is mainly because that the CRLB converges to the case with known φ, since
the CRLB is so large that the impact of an unknown φ is negligible. The CRLB for phase
φ is much higher than for the other Cartesian dimensions, and is around 4π2

λ2 times of the
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Figure 7: CRLB computed with numerical integrations and their approximations using (42)-(43) in Property 2, and the normalized
approximation errors.
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Figure 8: The CRLB differences for terminals on a circle that is parallel to the LIS with center (0, 0, 4) and radius r=4.

CRLB for z-dimension as shown in (79), which basically means that the estimation of φ is
highly inaccurate unless at a very high SNR.

7.4 CRLB with Centralized and Distributed Deployments of the LIS

Finally, we evaluate the CRLB with the centralized and distributed deployments as dis-
cussed in Sec. VI. We set W =H=4 and z0=8. All curves are obtained with numerical
integrations without any approximations. We compare the CRLB with different deploy-
ments depicted in Fig. 4, that is, a single LIS, 4 small LISs, and 16 smaller LISs, with the
same total surface-area.

As shown in Fig. 10 for a terminal on the CPL, when (87) is fulfilled, i.e.,R≤
√

W 2+H2

6 =

2.31, the distributed deployments with 4 and 16 small LISs render lower CRLBs than the
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Figure 9: The CRLB evaluated with unknown phase φ for a terminal with different locations, both on and away from the CPL.
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Figure 10: The CRLB with different deployments of the LIS for a terminal on the CPL with z0=8 and different radius R.

centralized deployment for x and y dimensions, while the CRLB for z-dimension remains
the same. When R increases beyond the threshold, the distributed deployments become
worse for x and y dimensions, although the CRLB for z-dimension is slightly better.

In order to evaluate the average positioning performance, we draw 1000 terminals with
coordinates of x and y dimensions uniformly distributed in [-2, 2], and z0 = 12 for all
terminals. In Fig. 11 we plot the average CRLB for different dimensions. As can be seen,
the average CRLB for all three dimensions are significantly improved with the distributed
deployments. The average CRLB with 4 small LISs, each small LIS has a radius 0.005,
can achieve the same average CRLB for a single LIS with R=0.2, that is, the surface-area
needed for the distributed deployment is only 0.25 of that for a centralized deployment
whenR is small. AsR increases, different deployments converge to each other as expected.
Further splitting the 4 small LISs into 16 smaller LISs provides marginal gains, but a likely
cost of more stringent hardware requirements to achieve phase calibration and cooperation
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Figure 11: The average CRLB with different deployments of the LIS for 1000 uniformly distributed terminal locations, and with
z0=8 and different radius R.
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Figure 12: The CDF of CRLB with different deployments of the LIS for 1000 uniformly distributed terminals with R=1.39.

among the small LISs.

The cumulative distribution functions (CDF) of the CRLBs are plotted in Fig. 12, where we
can see that the CRLBs for all three Cartesian dimensions with a distributed deployment
comprising 4 small LISs are significantly improved compared to a single centralized LIS. The
CRLBs for x and y dimensions are relatively larger than that for z-dimension, however, the
values of CRLB are also more concentrated than those for z-dimension. With 4 small LISs,
the values of CRLB also become concentrated, which means that the overall positioning
performance is improved with a distributed deployment of the LIS.
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8 Summary

In this paper, we have derived the Fisher-information matrix (FIM) and Cramér-Rao lower
bounds (CRLB) for positioning with large intelligent surfaces (LIS). For a terminal on
the central perpendicular line (CPL), the CRLBs are derived in closed-form. For other
positions we alternatively provide approximations in closed-form to compute the Fisher-
information and CRLB which are shown to be accurate. We have also shown that, under
mild conditions the CRLBs for x and y dimensions decrease quadratically in the surface-
area of the deployed LIS. For z-dimension, the CRLB decreases linearly in the surface-area
for a terminal on the CPL. When the terminal is away from the CPL, the CRLBs for all
Cartesian dimensions increase dramatically and decrease quadratically in the surface-area
of the LIS.

Furthermore, we have analyzed the CRLB for positioning in the presence of a random
unknown phase φ in the received signal model. We have shown that, the CRLBs are
dramatically increased by the unknown phase, and in general the CRLBs for all dimensions
decrease in the third-order of the surface-area, provided that the surface-area exceeds a
certain threshold. We have also shown that, for an infinitely large LIS, the CRLB for z-
dimension with an unknown phase is 6 dB higher than that with a knownφ, and the CRLB
for estimating φ converges to a constant independent of the wavelength λ.

Additionally, we compare centralized and distributed deployments of the LIS and show
that, the distributed deployments have the potential to extend the coverage of terminal-
positioning and can provide better average CRLBs for all dimensions.

Appendix A: Proof of Theorem 1

For a terminal on the CPL, we have x0=y0=0, and then the first-order derivatives with
respect to x and y are equal to

∆s1=

√
z0x

2
√
π

(
3

2
η−

7
4 +

2πj

λ
η−

5
4

)
exp

(
−
2πj
√
η

λ

)
, (89)

∆s2=

√
z0y

2
√
π

(
3

2
η−

7
4 +

2πj

λ
η−

5
4

)
exp

(
−
2πj
√
η

λ

)
, (90)

where η = z20 + y2 + x2, and the first-order derivative with respect to z is in (7). Since η
is an even function with respect to x and y, the cross-terms of different dimensions in the
FIM vanish, and we obtain a diagonal FIM with diagonal elements being

Iii =

∫∫
x2+y2≤R2

|∆si|2dxdy. (91)
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Calculating (91) directly yields

I11 = I22 =
z0
4π

(
9

4
g1(7) +

4π2

λ2
g1(5)

)
, (92)

I33 =
z30
4π

(
1

4z40
g3(3) +

(
4π2

λ2
− 3

2z20

)
g3(5) +

9

4
g3(7)

)
, (93)

Utilizing the results in (12) and (13) and after some manipulations, the Fisher-information
for different dimensions are then in (15) and (16).

Appendix B: Proof of Property 2

Using the condition in (35), the derivatives in (5)-(7) can be approximated as

∆s1 ≈
√
πz0 (x− x0) j

λ
η−

5
4 exp

(
−2πj

λ

√
η

)
, (94)

∆s2 ≈
√
πz0 (y − y0)

λ
η−

5
4 exp

(
−2πj

λ

√
η

)
, (95)

∆s3 ≈ −
√
πz

3
2
0 j

λ
η−

5
4 exp

(
−2πj

λ

√
η

)
, (96)

with approximation errors go to zero if λ
√

z21+R2

z20
goes to zero.

On the other hand, denoting the metric corresponds coordinates (0, 0, z1) as

η1 = z21 + x2 + y2, (97)

then we have

η = z20 + (y − y0)2 + (x− x0)2 = η1(1− ε), (98)

where it holds from (36) that

|ε| =
∣∣∣∣2(xx0 + yy0)

η1

∣∣∣∣ ≤ 2R
√
x20 + y20
z21

≪ 1. (99)

Therefore, we can approximate η by η1.

Now we first consider approximating the Fisher-information for the z-dimension with co-
ordinates (x0, y0, z0) using that obtained with coordinates (0, 0, z1). Based on the de-
rivative for the z-dimension in (96), directly computing ∆s3 (∆s3)

∗ with coordinates
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(x0, y0, z0) yields

∆s3 (∆s3)
∗∣∣

(x0,y0,z0)
≈ πz30

λ2
η−

5
2

≈
(
z0
z1

)3 πz31
λ2

η1
− 5

2

=

(
z0
z1

)3
∆s3 (∆s3)

∗∣∣
(0,0,z1)

. (100)

Therefore, the Fisher-information for the z-dimension with coordinates (x0, y0, z0) can be
approximated as

I33 ≈ β =

(
z0
z1

)3
Iz([0, 0, z1], R). (101)

Similarly, computing ∆s1 (∆s3)∗ based on (94) and (96) yields

∆s1 (∆s3)
∗ ≈

(
−πxz

2
0

λ2
η−

5
2 +

πx0z
2
0

λ2
η−

5
2

)
. (102)

As the first term −πxz2

λ2 η−
5
2 is an odd function in x, the integral over it (with respect to

x and y) is thusly zero. Then, by directly comparing the remaining term in (102) to (100)
and after integrating over x and y, it can be shown that

I13 =
x0
z0
I33 ≈

x0
z0
β. (103)

Next we approximate the Fisher-information for the x-dimension. At first, note that with
approximating η by η1, the noiseless signal (2) can be written as

sx0,y0,z0(x, y) ≈
√
z0
z1
s0,0,z1(x, y). (104)

Then, using (94) we have

∆s1 (∆s1)
∗ ≈ πz0(x

2 − 2xx0 + x20)

λ2
η−

5
2 , (105)

Based on (104), the integrals of the first term πz0x2

λ2 η−
5
2 in (105) can be approximated by

the Fisher-information for the x-dimension with coordinates (0, 0, z1). The second term
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xx0
λ2 η

− 5
2 is an odd function in x and the integral over it is zero. At last, comparing the last

term πz0x2
0

λ2 η−
5
2 to (100) yields

I11 ≈
z0
z1
Ix,y([0, 0, z1], R) +

x20
z20
β

= α+
x20
z20
β. (106)

Utilizing the symmetry between x and y dimensions, from (103) and (106) it can also be
shown that

I23 ≈
y0
z0
β, (107)

I22 ≈ α+
y20
z20
β. (108)

Finally, based on (94) and (95) it holds that

∆s1 (∆s2)
∗ =

πz0(xy − xx0 − yy0 + x0y0)

λ2
η−

5
2 , (109)

and the integrals of the first three terms in (109) vanish as they are odd functions either in
x or y. Then, comparing the last term to (100), it can be shown that

I12 ≈
x0y0
z20

β. (110)

By noting that the FIM is symmetric and assembling all the elements Iij , the FIM is in
(38), which completes the proof.

Appendix C: Proof of Theorem 2

First of all, since the unknown phase φ only appears in the exponential terms of the first-
order derivatives, it does not appear in the FIM, and the Fisher-information for x, y, and z
dimensions remain the same. Next, we compute the cross-terms between φ-dimension and
the other dimensions. Based on the derivatives in (45)-(46) and the definition of Fisher-
information in (8), it can be shown that,

I14 =

∫∫
x2+y2≤R

R{∆s1 (∆s4)∗}dxdy =
x0z0
2λ

g3(4), (111)

I24 =

∫∫
x2+y2≤R

R{∆s1 (∆s4)∗}dxdy =
y0z0
2λ

g3(4), (112)

I34 =

∫∫
x2+y2≤R

R{∆s3 (∆s4)∗}dxdy =
z20
2λ
g3(4), (113)
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and

I44 =

∫∫
x2+y2≤R

|∆s4|2dxdy =
z0
4π
g3(3), (114)

where g3(n) is defined in (11).

Appendix D: Proof of Property 4

Inserting the expressions of I33, I34, I44 given in (101), (113), (114) to (54) and (55), we have
the CRLBs for z-dimension and phase φ equal to

Cz =

(
z30
4π

(
1

4z40
g3(3) +

(
4π2

λ2
− 3

2z20

)
g3(5) +

9

4
g3(7)

)
− πz30

λ2
g23(4)

g3(3)

)−1

, (115)

and

Cφ =

 z0
4π
g3(3)−

πz0
λ2

g23(4)(
1

4z40
g3(3) +

(
4π2

λ2 − 3
2z20

)
g3(5) +

9
4g3(7)

)
−1

, (116)

respectively. For a terminal on the CPL, using the formula of g3(n) in (13) yields

g3(3) =
1

z0
− 1

R2 + z20
, (117)

g3(4) =
1

2

(
1

z20
− 1√

R2 + z20

)
, (118)

g3(5) =
1

3

(
1

z30
− 1

(R2 + z20)
3
2

)
, (119)

g3(7) =
1

5

(
1

z50
− 1

(R2 + z20)
5
2

)
. (120)

Inserting (117)-(120) back into (115) and (116), after some manipulations, the CRLBs for
z-dimension and phase φ are in (56) and (57), respectively.
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