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Abstract
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary

epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be

associated with risk of breast cancer in BRCA1mutation carriers. Following on these obser-

vations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional

module and risk of breast cancer in BRCA1 or BRCA2mutation carriers. Forty-one single

nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2
mutation carriers and subsequently analyzed using a retrospective likelihood approach.

The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers
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was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04 –

1.15, p = 1.9 x 10−4 (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, lo-
cated next to AURKA, was also found to be associated with breast cancer risk in BRCA2
mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03 – 1.16, p = 0.005 (FDR-ad-

justed p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted

pinteraction values> 0.05) for deviations from the multiplicative model for rs299290 and

CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2mu-

tation carriers. Following these suggestions, the expression of HMMR and AURKA or

TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients’ sur-

vival. Together, the results of this study support the hypothesis of a causative link between

altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2
mutation carriers.

Introduction
An integrative genomics study generated a breast cancer network model that predicted novel
genetic and molecular relationships for breast cancer tumor suppressors [1]. Among the pre-
dictions, the product of the hyaluronan-mediated motility receptor (HMMR) gene, RHAMM,
was found to be biochemically and functionally linked to the breast cancer gene, early onset 1
gene product (BRCA1) [1]. Analysis of common genetic variation in HMMR suggested an as-
sociation with breast cancer risk in Ashkenazi Jewish women, with a greater increased risk in
younger individuals [1]. However, this association was not observed either in a European case-
control study [2] or in a genome-wide association study in postmenopausal women of Europe-
an ancestry [3].

Following the initial functional evidence, a molecular mechanism involving RHAMM and
BRCA1 was found to regulate mammary epithelial apicobasal polarization and, possibly, differ-
entiation [4]. The results from this study indicated that RHAMM and BRCA1 play a central
role in the cytoskeletal reorganization necessary for epithelial polarization. This functional in-
terplay included interactions with the product of the proto-oncogene aurora kinase A
(AURKA) and its major regulator, targeting protein for Xklp2 (TPX2), in addition to g-tubulin
(TUBG1) [4]. In this scenario, cell proliferation is endorsed by activated AURKA while polari-
zation and differentiation are mediated by activation of BRCA1 and degradation of RHAMM.
Intriguingly, the same HMMR variation as originally detected in the Ashkenazi Jewish popula-
tion was suggested to be associated with breast cancer risk in BRCA1, but not in BRCA2muta-
tion carriers [4]. This observation was endorsed by complementary analyses in breast cancer
tissue; specifically, loss of cell polarity was revealed in in situ breast tissue lesions of BRCA1
mutation carriers and, accordingly, increased staining of phospho-T703-RHAMM (target of
AURKA) was preferentially detected in estrogen receptor α (ERα)-negative and BRCA1-mutat-
ed tumors [4].

While theHMMR association study in BRCA1/2mutation carriers drew on a partial dataset
from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA), the depicted mecha-
nistic model highlighted additional gene candidates for breast cancer risk; i.e., AURKA, TPX2,
and TUBG1 [4]. In a previous CIMBA study, no evidence of association was found between
functional variation in AURKA and breast cancer risk among BRCA1/2mutation carriers [5].
However, these results were based on a more limited CIMBA dataset (4,935 BRCA1 and 2,241
BRCA2mutation carriers) and did not comprehensively assess variation in the AURKA
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genomic region. Furthermore, variation in TUBG1 was found to be associated with breast can-
cer risk in a hospital-based case-control study [6], but has not been assessed in BRCA1/2
mutation carriers.

In addition to multiplicative allele effects, systematic analyses in model organisms have
shown that a given phenotype may be substantially determined by genetic interactions (GxG);
that is, “epistasis” in statistical terms, defined as deviation from additivity for a quantitative
phenotype arising from the effect of genetic variants or mutations in another locus [7]. Impor-
tantly, GxG significantly overlap with other types of gene and/or protein relationships [8–10].
Therefore, the functional interplay between the aforementioned genes/proteins in a key mam-
mary epithelial cell process could support the existence of genetic interactions that influence
cancer risk.

In the present study, given previous evidence of 1) the functional interplay between BRCA1
and AURKA-RHAMM-TPX2-TUBG1 in mammary epithelial polarization [4], and 2) the po-
tential modification of breast cancer risk in BRCA1mutation carriers by common genetic vari-
ation inHMMR [4], we further assessed the association between variants in
AURKA-HMMR-TPX2-TUBG1 and breast cancer risk in BRCA1 and BRCA2mutation carri-
ers. Genotyped variants from the custom Illumina iSelect array of the Collaborative Oncologi-
cal Gene-environment Study (iCOGS) were analyzed in a large series of BRCA1/2mutation
carriers [11,12].

Materials and Methods

Study Subjects and Ethics Statement
BRCA1/2mutation carriers were recruited under the CIMBA initiative following approval of
the corresponding protocol by the institutional review board or ethics committee at each par-
ticipating center, and written informed consent was obtained from the patients when required
[11,12]. Sixty CIMBA study centers recruited 15,252 BRCA1 and 8,211 BRCA2mutation carri-
ers that passed quality control assessment in this study. Most of these individuals were re-
cruited through cancer genetics clinics and enrolled into national or regional studies. The
remaining carriers were identified by population-based sampling or community recruitment.
Eligibility in CIMBA was restricted to female carriers of pathogenic BRCA1 and BRCA2muta-
tions who were� 18 years old at recruitment. Information collected included year of birth,
mutation description, self-reported ethnicity, age at last follow-up, ages at breast or ovarian
cancer diagnosis, and age at bilateral prophylactic mastectomy or oophorectomy. Information
regarding tumor characteristics, including ERα status, was collected for 3,458 BRCA1 and
1,924 BRCA2mutation carriers. Related individuals were identified by a unique family
identifier.

iCOGS Design
The iCOGS array, genotyping and quality controls for the CIMBA BRCA1/2mutation carrier
samples have been described recently [11,12]. The final array design included 211,155 manu-
factured SNPs that were selected on the basis of primary evidence from genome-wide associa-
tion studies (GWASs) of breast, ovarian and prostate cancer, for fine mapping of known
cancer susceptibility loci, and included functional candidate variants of interest [11–15] (also
see http://www.nature.com/icogs/primer/cogs-project-and-design-of-the-icogs-array/ and
http://ccge.medschl.cam.ac.uk/research/consortia/icogs/). Details of the iCOGS array design
have been described elsewhere [11–15]. The genotype data used in this study are available
upon request from the CIMBA Data Access Coordinating Committee (contact A.C.A.).

HMMR Functional Module and Breast Cancer Risk

PLOS ONE | DOI:10.1371/journal.pone.0120020 April 1, 2015 6 / 18

http://www.nature.com�/�icogs�/�primer�/�cogs-project-and-design-of-the-icogs-array/
http://ccge.medschl.cam.ac.uk�/�research�/�consortia�/�icogs/


Association Study
Based on previous GWAS results for BRCA1 [16] and BRCA2 [17] mutation carriers, and on
the selection of gene candidates, the iCOGS array included SNPs in the AURKA (n = 15),
HMMR (n = 14), TPX2 (n = 3) and TUBG1 (n = 4) loci (defined as ± 20 kilobases (kb) from the
genomic structure of each gene), and these were analyzed in the present study (S1 Table). In
addition, we analyzed five SNPs proximal to theHMMR locus that provided some suggestion
of association with breast cancer risk in Ashkenazi Jewish women [1] (S1 Table). In total, these
SNPs represented 32 partially independent variants (pairwise r2 < 0.85). To account for multi-
ple testing, we used a FDR approach for the 41 genotyped SNPs that were evaluated for their
associations with breast cancer risk in BRCA1 and BRCA2mutation carriers; significant results
are reported for FDR< 5%. The main analyses focused on evaluating associations between
each genotype and breast cancer or ovarian cancer risk separately, in a survival analysis frame-
work. In the breast cancer analysis, the phenotype of each individual was defined by age at
breast cancer diagnosis or age at last follow-up. Individuals were followed until the age of the
first breast or ovarian cancer diagnosis or bilateral prophylactic mastectomy, whichever oc-
curred first, or until age at last observation. Mutation carriers censored at ovarian cancer diag-
nosis were considered to be unaffected. For the ovarian cancer analysis, the primary endpoint
was the age at ovarian cancer diagnosis, and mutation carriers were followed until the age of
ovarian cancer diagnosis or risk-reducing salpingo-oophorectomy, or until age at last observa-
tion. In order to maximize the number of ovarian cancer cases, breast cancer was not consid-
ered to be a censoring event in this analysis, and mutation carriers who developed ovarian
cancer after breast cancer diagnosis were considered affected in the ovarian cancer analysis. To
adjust for the non-random sampling of mutation carriers with respect to their disease status,
data were analyzed by modeling the retrospective likelihood of the observed genotypes condi-
tional on the disease phenotypes [18]. The associations were assessed using the 1-degree of
freedom score test statistic based on this retrospective likelihood. To allow for the non-inde-
pendence among related individuals, the correlation between the genotypes was taken into ac-
count using a kinship-adjusted version of the score test statistic [16]. The p values presented
were based on the adjusted score test. To estimate the HRs, the effect of each SNP was modeled
as either a per-allele or genotype on the log-scale by maximizing the retrospective likelihood.
The evidence of heterogeneity in the associations between countries/study-centers was also
evaluated. Associations with breast and ovarian cancer risks were assessed simultaneously
within a competing risk analysis framework [11,18]. The significant FDR-adjusted associations
(for rs299290 inHMMR and for rs2426618 in AURKA/CSTF1) were subsequently explored
using imputed genotypes based on data from the 1,000 Genomes project (March 2012 version
[19]). The IMPUTE2 software [20] was used for imputation of non-genotyped SNPs. Associa-
tions of each marker with cancer risk were assessed using a similar score test to that used for
the genotyped SNPs, but based on the posterior genotype probabilities at each imputed marker
for each individual. In all analyses, only those SNPs with an imputation information/accuracy
of r2 > 0.30 and a minor allele frequency (MAF)> 0.3 were considered. The haplotypes and
their posterior probabilities were estimated using the expectation-maximization algorithm
[21]. Only the four HMMR haplotypes with the highest probabilities were considered; the rest
were grouped into a single rare haplotype. Each carrier was assigned the most likely haplotypes
and the association between haplotypes and age at breast cancer diagnosis was evaluated using
a standard Cox proportional hazards model. All possible pairwise gene interactions including
rs299290 or rs2426618 were evaluated using a standard Cox proportional hazards model that
considered the main effects and the interaction term.
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Expression Analysis
The association between gene expression and survival after breast cancer diagnosis was as-
sessed using the NKI-295 dataset of sporadic primary breast tumors [22,23] and a standard
Cox proportional hazards model. All possible pairwise gene interactions including HMMR or
AURKAmicroarray probes (2 and 1 probes, respectively) were evaluated using this model. The
quantitative analysis of HMMR expression isoforms was carried out using mRNA extracted
from lymphoblastoid cell lines of nine rs299290-TT and six rs299290-CC BRCA2mutation
carriers, and the following TaqMan (Applied Biosystems) probes in real-time PCR assays:
hs01063269 for totalHMMR expression; hs0106328 for the inclusion of exon 4; and
hs00234864 for the inclusion of exon 11.

Genome Analyses
Data for formaldehyde-assisted isolation of regulatory elements (FAIREs) that marked tran-
scriptionally active regions in normal human mammary epithelial cells (HMECs) were down-
loaded from the Gene Expression Omnibus (GEO) reference GSE46074 [24]. Sequence reads
were trimmed for the adaptor, masked for low-complexity and low-quality sequences/reads
and subsequently aligned to the genome version hg19 using TopHat [25] with default parame-
ters. Peaks were called using HOMER [26], applying a triangle-based distribution, a median
length of 150 base pairs, and an α value of 0.01 (99.0% CI). Replicates were analyzed individu-
ally and uniquely merged using BEDTools [27]. Chromatin immunoprecipitation data of ERα
were downloaded from the GEO reference GSE32222 and analyzed with MACS (version 2.0.9;
macs2diff function) [28]. Significance was defined as a false discovery rate< 1%, using default
values for all other parameters. Differentially bound genomic regions were assigned to the clos-
est ENSEMBL (version 62) annotated gene using the R-Bioconductor package ChIPpeakAnno
[29]. Histone modification and chromatin segmentation data in HMECs were obtained from
the UCSC Genome Browser (hg19) and correspond to the GEO references GSE29611 and
GSE38163, respectively, deposited by the ENCODE project [30].

Evolutionary analysis of BRCA1 and RHAMM
The full-length nucleotide and protein sequences from 20 (for BRCA1/BRCA1) and 26 (for
HMMR/RHAMM) mammalian species, which included human and naked mole rat, were
downloaded from the OrthoMaM 2.0 database [31] (S2 Table). For evolutionary analysis, a
multiple sequence alignment (MSA) of the corresponding amino acid sequences was generated
using the algorithm implemented in PRANK v.140110 [32]. To prevent the inclusion of incor-
rectly aligned positions, all MSA positions with low statistical support (posterior
probabilities< 0.99) in the PRANK alignment were excluded. Next, the high-quality protein
MSAs were used as guide in the alignment of the corresponding coding sequences (CDS
MSAs). The level of functional constraints acting on the coding regions of both genes was ana-
lyzed using the maximum likelihood method implemented in the codeml program of PAML
v.4 [33]; this approach allows to estimate the non-synonymous (dN) to synonymous (dS) ratio
(ω) in a particular coding region by using a codon-based evolutionary model under a phyloge-
netic framework, allowing comparison of their fit to the data by the likelihood ratio test (LRT).
In particular, the goodness-of-fit of two nested evolutionary models was compared: the M7
model, which assumes a β distribution of ω across sites between 0 and 1 (0� ω� 1); and the
M8 model, which adds to M7 an extra category of positively selected sites (ω> 1). To reduce
the probability of false positive results from the M7-M8 comparison, we also estimated the like-
lihood of the data under the model M8a [34], in which ω was set to 1. The posterior probabili-
ties for each site of belonging to the positively selected class were computed using the Bayes
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empirical Bayes approach in codeml [35]. In all models, the topology of the mammalian phylo-
genetic tree assumed in OrthoMaM database was used (S2 Table).

Results

HMMR rs299290 Association
The product of the HMMR gene, RHAMM, interacts with BRCA1 in the control of mammary
epithelial polarization and this function may be at the basis of a modification of breast cancer
risk in BRCA1mutation carriers [4]. In this iCOGS BRCA1/2 study, 14 SNPs (11 with pairwise
r2 < 0.85) at theHMMR locus were genotyped in 15,252 BRCA1 and 8,211 BRCA2mutation
carriers from 60 participating centers. Among these variants, the strongest evidence of associa-
tion with breast cancer risk in BRCA1mutation carriers was observed for the originally re-
ported SNP rs299290 [4] (MAF = 0.25): BRCA1 per-allele HR = 1.10, 95% CI 1.04–1.15, p = 1.9
x 10−4 (FDR-adjusted p = 0.043, accounting for 41 genotyped SNPs used in the association
analyses in BRCA1 and BRCA2mutation carriers). In contrast, no evidence of association was
obtained between HMMR variation and breast cancer risk in BRCA2mutation carriers; specifi-
cally, rs299290 per-allele HR = 0.98, 95% CI 0.92–1.05, p = 0.57. The effect among BRCA1mu-
tation carriers was consistent across most participating countries (Fig. 1A) and no
heterogeneity was detected (pheterogeneity � 0.30). Importantly, the BRCA1 association remained
after excluding the centers participating in the original study [4]: n = 5,039, rs299290 per-allele
HR = 1.13, 95% CI 1.04–1.22, p = 0.005.

Although the original Ashkenazi Jewish population study suggested associations involving
SNPs proximal toHMMR (*450 kb proximal) [1], no evidence of association in BRCA1/2mu-
tation carriers was obtained for five correlated variants in this region (S1 Table). With respect
to rs299290 and ovarian cancer risk, no evidence of association was found under the single dis-
ease risk model or the competing risks model (p> 0.65; only breast cancer risk in BRCA1mu-
tation carriers was significant in this model: p = 2.5 x 10−4). Together, these results corroborate
the association between variation at theHMMR locus and breast cancer risk in BRCA1muta-
tion carriers.

Mapping the HMMR locus association
Allelic imputation within*60 kb centered on HMMR (fully including the proximal genes
CCNG1 and NUDCD2) did not detect substantially stronger associations than those identified
for rs299290: a variant located inHMMR intron 7 (rs61292050; Fig. 1B) was found to be simi-
larly associated (p = 2.7 x 10−4), but this was correlated with rs299290 (r2 = 0.95). Haplotype
analyses were then carried out to demarcate theHMMR genomic region potentially harboring
a causative variant or mutation. Using the 14 SNPs genotyped in iCOGS, two haplotypes, both
characterized by the minor allele of rs299290, were found to be associated with breast cancer
risk in BRCA1mutation carriers (S3 Table). Based on these haplotypes, the minimal region
harboring a mutation could be delimited to*28 kb between rs299284 and rs10038157
(S3 Table).

Analysis of the potential causative variant
The rs299290 variant represents a missense amino-acid change in HMMR exon 11 that is pre-
dicted to be benign/neutral/tolerated by several algorithms: Valine 369 to Alanine in accession
number NP_001136028.1; MutationAssessor score = 0; Polyphen score = 0.005; and SIFT
score = 0.73. Subsequent examination of the splicing of exon 11 and of exon 4, the latter of
which is known to be differentially spliced in different conditions and cell types [36], did not
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reveal alterations or differences between mRNA samples with different rs299290 genotypes
(S1 Fig.). Nonetheless, rs299290 is located*14 kb from theHMMR promoter region that is
active in mammary epithelial cells, as detected by the analysis of data from genome occupancy
profiling [24] (Fig. 1B). In addition, analysis of data for ERα binding plasticity [37] revealed
significant binding of this factor at the HMMR promoter in poor-prognosis breast tumors
(Fig. 1B).

Causal alleles for different common diseases have shown evidence of positive selection [38].
Notably, a recent report suggested the action of positive selection on the evolution of BRCA1
and RHAMM orthologs in the naked mole rat, which is an exceptionally cancer-resistant spe-
cies [39]. Following on from this suggestion, we identified footprints of positive selection in the
evolution of some amino acids of both proteins. In both cases, model M8 (selection model) bet-
ter fits the protein alignment data than model M7 (null model): p values = 6.69 x 10−14 and
1.55 x 10−5, for BRCA1 and RHAMM, respectively. Moreover, the likelihood of the data is sig-
nificantly higher under model M8 than under the nested model M8a: p values = 6.22 x 10−10

Fig 1. TheHMMR locus and breast cancer risk in BRCA1mutation carriers. (A) Forest plots showing
rs299290 HRs and 95%CIs (retrospective likelihood trend estimation) for participating countries (relatively
small sample sets are not shown) ordered by sample size. Left and right panels show results for BRCA1 and
BRCA2mutation carriers, respectively. The sizes of the rectangles are proportional to the corresponding
country/study precision. (B) The rs299290-containing region, including the genes, variation and regulatory
evidence mentioned in HMECs. Exons are marked by black-filled rectangles and the direction of transcription
is marked by arrows in the genomic structure. The chromosome 5 positions (base pairs (bp)) and linkage
disequilibrium structure from Caucasian HapMap individuals are also shown.

doi:10.1371/journal.pone.0120020.g001
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and 0.014 for BRCA1 and RHAMM, respectively, confirming the presence of positively select-
ed sites in these alignments. However, Valine 369 RHAMMwas not identified in these analy-
ses; the predicted amino acid sites under selection were only linked to rare variants
(MAFs< 0.01) (S4 Table). Nonetheless, as suggested in the analysis of the naked mole rat se-
quence, Valine 369 is within a region with a potential excess of selected positions (Fig. 2A).
Analysis of BRCA1 also showed multiple potential selection sites (Fig. 2B), but the specific re-
gion or domain mediating the interaction with RHAMM remains unknown [1,4,40].

Evaluation of HMMR association by ERα tumor status and BRCA1
mutation class
The original study suggested an association between the rs299290 risk allele and ERα-negative
breast cancer for BRCA1mutation carriers [4]. In the present study, no difference was found in
the rs299290 effect between ERα-negative and ERα-positive cases: ERα-negative, per-allele
HR = 1.09, 95% CI 1.03–1.15, p = 2.3 x 10−3; ERα-positive, per-allele HR = 1.09, 95% CI 0.98–
1.21, p = 0.13; pdifference = 0.96. Interestingly, there was a suggestion of an rs299290 association
with ERα-negative breast cancer for BRCA2mutation carriers, but in the opposite direction to
that observed for BRCA1mutation carriers: ERα-negative BRCA2mutation carriers n = 434,
per-allele HR = 0.83, 95% CI 0.70–0.97, p = 0.022. In addition, there was no evidence of an
rs299290 association with ERα-positive breast cancer in BRCA2mutation carriers (n = 1,490,
p = 0.40, ERα-negative effect pdifference = 0.019).

Regarding BRCA1mutation classes, the original study [4] suggested a rs299290 association
in carriers of mutations expected to result in a reduced transcript or protein level due to non-
sense-mediated RNA decay (Class 1), but not in carriers of mutations likely to generate stable
proteins with a potential residual or dominant-negative function (Class 2). The current study
indicated a similar association, although the estimations were not significantly different: Class
1, rs299290 per-allele HR = 1.11, 95% CI 1.05–1.18, p = 4.6 x 10−4; Class 2, rs299290 per-allele
HR = 1.03, 95% CI 0.94–1.14, p = 0.51. Regarding Ashkenazi Jewish BRCA1mutation carriers
(n = 1,231), there were no significant associations in this population or with founder mutations
(185delAG HR = 0.94, p = 0.17; and 5382insC HR = 0.85, p = 0.10). Larger sample series may

Fig 2. Candidate amino acid sites under positive selection in RHAMM and BRCA1. (A) Plot showing the
position of potentially selected sites (p (w> 1)) in the amino acid sequence of RHAMM. The relative position
of known protein domains is shown. (B) Plot showing the position of potentially selected sites (p (w> 1)) in
the amino acid sequence of BRCA1. The relative position of known protein domains is shown.

doi:10.1371/journal.pone.0120020.g002
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be required to assess associations in these settings and their consistency with previous observa-
tions in the Ashkenazi Jewish population [1].

AURKA/CSTF1 association with breast cancer risk in BRCA2mutation
carriers
As theHMMR and AURKA-TPX2-TUBG1 gene products are functionally related in the regula-
tion of mammary epithelial polarization [4], the associations between variants at these loci that
were included on the iCOGS array and cancer risk in BRCA1/2mutation carriers were assessed
(S1 Table). No associations were observed for TPX2 and TUBG1, but there was an indication
of an association for a variant relatively close to AURKA; rs2426618 and breast cancer risk in
BRCA2mutation carriers, per-allele HR = 1.10, 95% CI 1.03–1.16, p = 0.005 (FDR-adjusted
p = 0.045; Fig. 3A). There was no evidence of association between this variant and breast can-
cer risk in BRCA1mutation carriers or between the same variant and ovarian cancer risk in

Fig 3. The AURKA/CSTF1 locus and breast cancer risk in BRCA2mutation carriers. (A) Forest plots
showing rs2426618 HRs and 95%CIs (retrospective likelihood trend estimation) for participating countries
(relatively small sample sets are not shown) ordered by sample size. Left and right panels show results for
BRCA1 and BRCA2mutation carriers, respectively. The sizes of the rectangles are proportional to the
corresponding study precision. (B) The rs2426618-containing region, including the genes, variation and
regulatory evidence in HMECs. Exons are marked by black-filled rectangles and the direction of transcription
is marked by arrows in the genomic structure. The chromosome 20 positions (bp) and linkage disequilibrium
structure from Caucasian HapMap individuals are also shown.

doi:10.1371/journal.pone.0120020.g003
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either BRCA1 or BRCA2mutation carriers (p> 0.30). Consistent with the main analysis, the
competing risk model showed an rs2426618 association with breast cancer risk only in BRCA2
mutation carriers (p = 0.002).

The rs2426618 variant is located in intron 5 of a neighboring (distal) gene, CSTF1 (Fig. 3B).
Analogous to theHMMR setting, rs2426618 is relatively close (*30 kb) to the promoter region
of AURKA/CSTF1, which is active in mammary epithelial cells and differentially ERα-regulated
in poor-prognosis breast tumors (Fig. 3B). Association analysis with imputed SNPs within
*50 kb centered on rs2426618 (fully including AURKA and CSTF1) did not reveal stronger
evidence than that of rs2426618: a variant located in AURKA intron 8 (rs187966577, Fig. 3B)
was found to be similarly associated (p = 0.002). However, this variant was rare (MAF = 0.009)
and poorly imputed (r2 = 0.37). Finally, the analysis of rs2426618 by ERα tumor status in
BRCA2mutation carriers did not reveal specific associations: ERα-positive, per-allele
HR = 1.10, 95% CI 1.02–1.17, p = 0.010; ERα-negative, per-allele HR = 1.11,95% CI 0.97–1.26,
p = 0.15, pdifference = 0.89.

Potential genetic interactions in the AURKA-HMMR-TPX2-TUBG1
module
Given the above associations atHMMR and AURKA/CSTF1, the influence of GxG on breast
cancer risk in BRCA1/2mutation carriers was assessed between rs299290 and the genotyped
variants in AURKA/TPX2/TUBG1 (n = 22), and between rs2426618 and the genotyped variants
in TPX2/TUBG1 (n = 7). No GxG was detected for rs2426618-TPX2/TUBG1, but potential in-
teractions (unadjusted pinteraction values< 0.05) between rs299290 and AURKA/CSTF1 or
TUBG1 variants were suggested (Table 1). An interaction between rs299290 and rs6064391 (in
intron 2 of CSTF1, Fig. 3B) could reduce breast cancer risk in both BRCA1 and BRCA2muta-
tion carriers (interaction HRs = 0.87 and 0.73, respectively; Table 1). In the main effect analy-
sis, rs6064391 showed a suggestion of association with reduced breast cancer risk in BRCA2
mutation carriers: HR = 0.87, unadjusted p = 0.036. Conversely, an interaction between
rs299290 and rs11649877 (3’ region of TUBG1) could increase breast cancer risk in both

Table 1. Potential GxG associated with breast cancer risk in BRCA1/2 mutation carriers.

Genotype(s) (gene locus) HR* pinteraction

BRCA1 mutation carriers

rs299290-A/G (HMMR) 1.16

rs6064391-A/A (CSTF1) 1.09

rs299290-A/G—rs6064391-A/A 0.87 0.047

rs299290-A/G (HMMR) 1.07

rs11649877-A/G (TUBG1) 0.94

rs299290-A/G—rs11649877-A/G 1.33 0.014

BRCA2 mutation carriers

rs299290-G/G (HMMR) 1.32

rs6064391-A/C (CSTF1) 0.97

rs299290-A/G—rs6064391-A/C 0.73 0.034

rs299290-A/G (HMMR) 0.95

rs11649877-A/A (TUBG1) 0.87

rs299290-A/G—rs11649877-A/A 1.21 0.041

*Each estimate is derived from the interaction term of a Cox regression model.

doi:10.1371/journal.pone.0120020.t001
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BRCA1 and BRCA2mutation carriers (HRs = 1.33 and 1.21, respectively; Table 1). In the main
effect analysis, there was no evidence of rs11649877 association with breast cancer risk in
BRCA1 or BRCA2mutation carriers (p = 0.49). Genetic interactions frequently represent com-
plex molecular relationships and, thus, can be explained by multiple models of phenotypic dif-
ferences across genetic backgrounds [41], including those identified here. However, additional
studies are required to corroborate the findings.

Integrative studies in model organisms have shown that experimentally identified GxG
overlap with other types of gene and/or protein interactions (e.g., gene co-expression) to a de-
gree that is significantly higher than expected by chance [8]. Thus, we assessed the GxGs sug-
gested above for their equivalence with interactions between gene expression profiles across
breast tumors, considering breast cancer survival as the outcome. There are no large tumor se-
ries from BRCA1/2mutation carriers that allow gene expression interactions in these mutation
backgrounds to be assessed; therefore our analysis was restricted to sporadic cases and aimed
to explore complex relationships between HMMR and AURKA or TUBG1. Using the NKI-295
dataset [22],HMMR expression was found to be significantly associated with overall survival:
two microarray probes gave identical results: HR = 1.78 and p = 0.001. AURKA expression was
also found to be associated with overall survival (single probe HR = 2.07, p = 3.3 x 10−9) but,
notably, the combined model with HMMR indicated a protective interaction: the HRs for both
HMMR and AURKA probe combinations were 0.57 and 0.55, pinteraction values = 0.026, respec-
tively (Fig. 4A). The combined HMMR and TUBG1 expressions also suggested an interaction,
but in this case “aggravating”: the HRs for bothHMMR probe combinations with a TUBG1
probe were 1.84 and 2.16, pinteraction = 0.041 and 0.009, respectively (Fig. 4B). The expression
of TUBG1 alone was not found to be associated with overall survival (p = 0.12). Together, these
results could indicate a functional correspondence for interactions influencing both breast can-
cer development and progression. However, the precise effects of the corresponding risk alleles
remain to be elucidated.

Discussion
The results of this study expand on the previous suggestion that variation in HMMR is specifi-
cally associated with breast cancer risk in BRCA1mutation carriers [4]. By analyzing a much
larger number of carriers—genotyped using the high-quality iCOGS approach [11,12]—we

Fig 4. Gene expression interactions in breast cancer survival. (A) Kaplan–Meier survival curves based
on categorization ofHMMR (probe NM_012484) and AURKA (NM_003600) expression in tertiles (low,
medium or high expression). For simplicity, only the tertiles for “high” AURKA are shown. The tumours with
high expression levels for both genes were not those with the poorest prognosis. (B) Kaplan–Meier survival
curves based on categorization of HMMR (NM_012484) and TUBG1 (NM_016437) expression in tertiles
(low, medium or high expression). For simplicity, only the tertiles for “high” HMMR are shown. The cases with
high expression levels for both genes were those with the poorest prognosis.

doi:10.1371/journal.pone.0120020.g004
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were able to confirm the association of this locus, and to demonstrate that the strongest signal
corresponded to rs299290. No specific effect was revealed when analyzing this association by
ERα tumor status. Larger carrier series may be required to comprehensively evaluate associa-
tions by tumor subtype or, conversely, to establish that variation inHMMR interacts with
Class I BRCA1mutations to give rise to any type of tumor. In this context, mapping of the pro-
tein and/or functional domains interacting between BRCA1 and RHAMMwould be necessary
to decipher the role of rs299290, if any, and of the observed potential positive selection. With
regard to the results obtained for BRCA2mutation carriers, the opposite direction of the poten-
tial association with ERα-negative breast cancer compared with the association observed for
BRCA1mutation carriers is intriguing. Opposite effects between cancer subtypes have been ob-
served for other modifier loci [16] and, thus, potentially inform on opposing functional roles in
biological processes influencing carcinogenesis. In other words, alteration of RHAMM func-
tion in mammary epithelial differentiation may have a differential effect on breast cancer risk
depending on whether it occurs in a BRCA1- or BRCA2-mutated background.

The study of gene loci functionally related to HMMR suggests an association between varia-
tion in AURKA/CSTF1 and risk of breast cancer among BRCA2mutation carriers. While there
were initial conflicting results for AURKA associations with breast cancer risk [5,42], it is inter-
esting to note that a population case-control study [43] identified variants in the AURKA pro-
moter region associated with breast cancer risk in the same direction as detected in our
analysis. The minor allele of rs6064389 was shown to be protective in the general population
[43], and a similar association was observed in the analysis of BRCA2mutation carriers:
HR = 0.93, p = 0.021; not significant in BRCA1mutation carriers, p = 0.25. This variant is par-
tially correlated with rs2426618 (r2 = 0.63), and more strongly correlated with rs6064391 (r2 =
0.86), which might interact with rs299290.

In addition to the main effects, interaction between HMMR and AURKA, and between
HMMR and TUBG1 could influence breast cancer risk in BRCA1 and BRCA2mutation carri-
ers. The interactions did not remain statistically significant after corrections for multiple test-
ing and, therefore, additional studies are warranted to investigate these findings further.
Combined expression of HMMR and AURKA, and HMMR and TUBG1 in sporadic breast tu-
mors appeared to influence patients’ survival differentially. These results could be analogous to
those observed for breast cancer risk, but it remains unknown how the corresponding risk al-
leles may alter gene expression and/or protein function. In this context, over-expression of
HMMR, AURKA or TUBG1 impairs mammary epithelial polarization [4] and the rs299290
risk allele could be associated with relatively higher levels ofHMMR expression [1,4], which
would be consistent with the observed interactions. However, other studies on the potential
regulatory impact of this variant and/or the link to selective constraints are needed. It is also
important to note that the altered gene products may not be those included in the depicted
functional module, but rather other products from the corresponding chromosomal regions.

In summary, centered on the AURKA-HMMR-TPX2-TUBG1 functional module that regu-
lates mammary epithelial polarization, this study confirms previous association results for
HMMR rs299290 and suggests novel associations (for AURKA/CSTF1 and HMMR-rs299290
interactions) with breast cancer risk in BRCA1 and/or BRCA2mutation carriers.
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