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Distributed Control with Low-Rank Coordination
Daria Madjidian and Leonid Mirkin, Member, IEEE

Abstract—A common approach to distributed control design
is to impose sparsity constraints on the controller structure.
Such constraints, however, may greatly complicate the con-
trol design procedure. This paper puts forward an alternative
structure, which is not sparse yet might nevertheless be well
suited for distributed control purposes. The structure appears
as the optimal solution to a class of coordination problems
arising in multi-agent applications. The controller comprises
a diagonal (decentralized) part, complemented by a rank-one
coordination term. Although this term relies on information
about all subsystems, its implementation only requires a simple
averaging operation.

Index Terms—Distributed control, LQR, multi-agent systems,
coordinated control.

I. INTRODUCTION

The ability to cope with complexity is one of the challenges

of control engineering nowadays. Already an established re-

search area by the late 1970s [1]–[3], control of complex

systems reinvigorated during the last decade, impelled by re-

cent technological progress, networking and integration trends,

efficiency demands, etc.

Complexity may be manifested through different attributes,

one of which is the presence of a very large number of sensors

and actuators. In such situations fully centralized, structureless,

information processing becomes infeasible. This motivates the

quest for distributed control methods, with various constraints

on information exchange between subsystems and information

processing in the controller. Such structural constraints are

conventionally expressed in terms of sparsity patterns [3]–[5],

with nonzero elements corresponding to permitted coordina-

tion between subsystems. Sometimes, delay constraints on the

communication between subsystems are considered [5].

Although indeed natural, sparsity (and / or delay) constraints

substantially complicate control system design. Many well

understood problems might turn acutely opaque when sparsity

constraints on the controller are added [6], [7]. Design is

simplified if the plant happens to possess a compatible sparsity

pattern (the quadratic invariance condition [5], [8]) or if

additional constraints are imposed on the closed-loop behavior

(like positivity [9], [10]). But even then the computational

burden grows rapidly with the problem dimension and, more

importantly, structural properties of the resulting controller are

rarely transparent. Revealing such properties proved to be a

challenge even in relatively simple problems, see [11] and the

references therein.
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This paper puts forward an alternative structure. We study

a class of large-scale coordination problems that happens to

admit a solution of a different type: not sparse, but nevertheless

scalable. Specifically, we consider a homogeneous group of

autonomous agents, i.e., a group of systems having identical

dynamics and identical local criteria. Coordination require-

ments are then introduced through a (global) linear constraint

imposed on an “average” agent. This setting is motivated by

certain control tasks arising in the control of wind farms.

The problem admits an analytic solution endowed with two

appealing properties. First, the computational burden in this

setting is independent of the number of agents. Second, the

optimal feedback gain is of the form of a block-diagonal ma-

trix perturbed by a block-rank-one component. The structures

of these components are transparent. The diagonal part merely

comprises the local, uncoordinated, gains. The rank-one part is

then responsible for coordination via fine-tuning the local con-

trollers on the basis of measurements of an “average” agent.

The (weighted) averaging is the only non-sparse, central-

ized, task that has to be performed by the controller. We argue

that this task may be network-friendly as well. The averaging

is a relatively simple numerical operation, which might be

robust to sensor imperfections for large groups. It can be

performed either locally, by each agent [12], or globally, by a

coordinator. The averaging of measured variables of individual

subsystems may be viewed as a spatial counterpart of the

generalized sampling operation [13]. This is in contrast to the

decentralized structure, which may be thought of as a form of

the ideal sampling, which ignores the intersample information.

Considering this analogy, it might even be useful to impose the

control structure in problems where, unlike in our formulation,

it does not appear as a property of the optimal solution. In fact,

one such approach, also in the context of large-scale systems,

was proposed in [14], see Remark 3.5 for more details.

The paper is organized as follows. In Section II we consider

a coordination problem arising in wind farms. This problem

serves a motivation for the theoretical developments in Sec-

tions III (problems with hard coordination constraints) and

IV (soft constraint formulations). Both sections illustrate their

developments by numerical studies of the same wind farm

coordination problem. Section III also contains an extensive

discussion on properties of the resulting controller configura-

tion and the structure of the optimal cost. Concluding remarks

are then provided in Section V.

Notation: The transpose of a matrix M is denoted as M ′.

By ei we understand the ith standard basis of a Euclidean

space and by In—the n × n identity matrix (we drop the

dimension subscript when the context is clear). The notation

⊗ stands for the Kronecker product of matrices [15, §2.5]. The

L2(R+) norm [15, Ch. 4] of a signal ξ is denoted as ‖ξ‖2.
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II. MOTIVATION: COORDINATION IN WIND FARMS

Wind energy is an increasingly active application area for

control [16]. Lately, the focus has been shifting from control

of a stand-alone wind turbine (WT) to coordinated control of

networks of WTs, known as wind power plants (WPP) or wind

farms. Below we consider one such problem, which is used

to motivate the problem studied in this paper.

A. Problem description

We consider the problem discussed in [17], [18], where

a wind farm is required to meet a certain power demand.

To achieve this, the WTs need to coordinate their power

production. Since there are multiple WTs in the farm, certain

freedom exists in distributing the power demand among them.

This freedom can be used to address local objectives of

individual turbines, such as regulating rotor speed, reducing

fatigue loads, preventing excessive pitch action, etc. Thus,

instead of following a fixed portion of the power demand, a

WT can be allowed to continuously adjust its power production

in response to local wind speed fluctuations. Since wind speed

fluctuations are not the same across the WPP, changes in power

production that benefit one WT can be compensated for by

changes at WTs with opposite needs.

For control design purposes, it is common practice to model

a WT as a linear system around an operating point. It may also

be natural to make two additional simplifying assumptions.

1) WTs in a WPP are often identical in their design. By

assuming that they operate around the same mean wind

speed and mean power production, the WTs may be

considered to have equal dynamics.

2) Due to a large distance between individual turbines in

WPPs, it may be assumed that wind speed variations

experienced by them are uncorrelated [19], [20].

With these observations in mind, below we address a

coordination problem among a group of ν WTs. For simplicity,

we use a stripped-down1 version of the individual WT model

and performance index studied in [20]. The model is derived

from [21] and describes an NREL 5-MW wind turbine [22],

operating around a mean wind speed of 10 m/s and a nominal

power production of 2 MW. Each WT is assumed to be

equipped with an internal controller, which manipulates the

blade pitch angle and generator torque in order to track an

external power reference. At the nominal power production,

the WT operates in the derated mode (below maximum power

production) and is able to both increase and decrease its power

production. The turbine models are given by

ẋi = Axi +Bwwi +Buui, i = 1, . . . , ν

where
[

A Bw Bu

]

take the following numerical values:












0 120 −0.92 0 0 0 0
0.0084 −0.032 0 0 0 0.12 −0.021

0 150 −1.6 0 0 0 0
0 0 0 0 1 0 0

0.021 0.054 0 −4 −0.32 0.2 0













.

1We measure the input in MW and use neither the dynamic model of the
effective wind speed (its DC gain is absorbed into the model) nor dynamic
weights on regulated signals (we use approximate static weights instead).

Here the state vector spells out as

xi =













pitch angle

rotor speed

internal controller state

nacelle fore-aft position

nacelle fore-aft speed













and the exogenous disturbance wi is the deviation in wind

speed from its nominal value, modeled as a white noise process

with unit intensity. The control signal ui is the deviation

in the power reference from its nominal value. The model

neglects generator dynamics, which makes ui equal to the

actual deviation in the power production of the WT.

Following [20], we assume that each turbine aims at achiev-

ing a trade-off between regulating the rotor speed, reducing

fatigue loads on the tower, and preventing excessive pitch

activity and power deviations. The performance of the ith
turbine is quantified as the variance of the regulated variable

zi = Czxi +Dzuui, where

[

Cz Dzu

]

=

[

diag
{√

0.1, 100, 0, 100, 0
}

0
0 1

]

.

In other words, for each turbine we consider the state-feedback

H2 problem for the closed-loop system from wi to zi.
The combined power production of the WTs must satisfy a

power demand to the WPP, which is assumed to be the sum

of nominal WT power productions. Since ui is the deviation

from nominal WT power production, this requirement can be

imposed as the constraint

u1 + u2 + · · ·+ uν = 0, (1)

which introduces coordination between individual WTs.

The resulting constrained H2 problem can be converted

to a standard unconstrained one by resolving (1) for any

i, say as u1 = −(u2 + · · · + uν). This results in an H2

problem with ν subsystems and ν − 1 control signals. Yet

the dynamics of subsystems and the cost function in this

problem are coupled. This might, especially if the number

of turbines in the WPP is very large, considerably complicate

both the solution procedure (the curse of dimensionality) and

the implementation of the resulting controllers. Therefore a

scalable solution procedure is of interest.

B. Towards a scalable solution

As discussed in the introduction, the conventional approach

in the field is to impose some kind of sparsity constraints

on the controller and seek a scalable optimization procedure

to solve it. By limiting the information exchange between

subsystems, a sparse structure can ensure that the information

processing at each subsystem remains viable as the number of

subsystems grows. This property is important, so it frequently

preponderates over inevitable losses of performance. The prob-

lem is that imposing sparsity constraints might significantly

complicate the design. Once the constraint (1) is resolved,

our problem only satisfies the quadratic invariance condition

of [8] for a handful of structural constraint options (e.g.,

block triangular). Another choice discussed in the introduction,
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imposing positivity constraints on the closed-loop dynamics

[9], is not engineeringly justified for our problem because we

work in deviations from nominal values. We thus may consider

resorting to non-convex optimization procedures, relying upon

a proper choice of initial values.

To provide a flavor of such an approach, we confine our

attention to static state-feedback controllers, u = Fx, and

add the constraint that Fij = 0 whenever |i − j| > η for a

given η ∈ N (the addition in the spatial variable is performed

modulo-ν, e.g., ν + 1 = 1). We then use an approach, similar

to that proposed in [18], which, in turn, makes use of the

distributed gradient method of [23].
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Fig. 1. Cost of coordination per turbine under different degrees of sparsity.

Fig. 1 shows the normalized difference between the H2

performances attained with and without the coordination con-

straint (1) (the normalized cost of coordination) as a function

of ν for different degrees of sparsity η. We can see that as

the sparsity restriction is relaxed, i.e., as η increases, the

performance improves. Besides, the performance of sparse

controllers improves as ν increases. We can also see that the

improvement is not as fast as in the non-sparse solution (shown

by the solid line). This, however, may be well expected and

is not the main focus of this example.

Rather, we would like to emphasize difficulties encountered

in designing the sparse controllers. Although not visible on

the plot, these difficulties are readily appreciable. The fact

that the problem is not convex (the constraint set is not

quadratically invariant under this plant) renders the whole pro-

cedure sensitive to the choice of initial values for the feedback

gain. We did experience convergence to local minima, so the

solutions presented in Fig. 1 are the result of multiple runs of

the algorithm. And we still cannot guarantee that the results

are globally optimal2. In addition, the optimization procedure

itself is quite demanding, its computational complexity grows

with the increase of ν. Finally, the results of the numerical

procedure are not transparent, with no indication of what effect

small changes of the system parameters might have on it.

To conclude, from the distributed control viewpoint the

problem appears to be a challenge. Nonetheless, in the next

section we show that it has a closed-form solution, which is

computationally scalable and possesses additional appealing

properties from the distributed control perspective.

2In fact, they are not, as attested by the sub-optimality of the resulting cost
in the case of η = 3 and ν = 7, for instance.

III. LQR WITH COORDINATION CONSTRAINTS

Motivated by the problem considered in Section II, in this

section we study an optimization problem for non-interacting

subsystems, having identical dynamics, with coordination con-

straints. To simplify the presentation, we consider an LQR

version of the problem, although the extension to the H2

formulation (external disturbances) is straightforward.

A. Problem statement

Consider ν independent systems

Σi : ẋi(t) = Axi(t) +Bui(t), xi(0) = xi0 (2)

where xi(t) ∈ R
n can be measured, ui(t) ∈ R

m, and

A ∈ R
n×n and B ∈ R

n×m are such that the pair (A,B)
is stabilizable. Associate with each of these systems the

performance index

Ji =

∫

∞

0

(

x′

i(t)Qαxi(t) + u′

i(t)ui(t)
)

dt (3)

for some n × n matrix Qα ≥ 0 such that the pair (Qα, A)
has no unobservable modes on the jω-axis. Minimizing Ji for

Σi would be a set of ν standard uncoupled LQR problems.

We couple these problems by constraining the behavior of the

center of mass of Σi, understood as the system

Σ̄ : ˙̄x(t) = Ax̄(t) +Bū(t), x̄(0) = x̄0 (4)

connecting the signals

ū(t) :=

ν
∑

i=1

µiui(t) and x̄(t) :=

ν
∑

i=1

µixi(t), (5)

where the weights µi 6= 0 may be thought of as the masses

of each subsystem. Coordination is then imposed by requiring

Σ̄ to evolve according to

˙̄x(t) = (A+BF̄ )x̄(t), x̄(0) = x̄0 (6)

for a given gain F̄ ∈ R
m×n. This yields the following problem

formulation:

minimize J :=

ν
∑

i=1

Ji (7a)

subject to Σi, i = 1, . . . , ν (7b)

ū− F̄ x̄ = 0 (7c)

where ū from (7c) substituted into (4) yields (6). In addressing

(7), we implicitly restrict our attention to stabilizing controllers

only. Without loss of generality, we also assume that the

weights are normalized as
∑

i µ
2
i = 1.

Remark 3.1 (connections with the motivating problem): It

is readily seen that the problem considered in Section II is a

particular case of (7) corresponding to F̄ = 0. Constraint (7c)

can thus also be viewed as a constraint imposed on average

trajectories. ▽

Remark 3.2 (minimizing weighted sum of Ji): The weights

µi may be manipulated to assign importance to each subsys-

tem. This can also be attained via replacing J in (7a) with the

weighted sum J =
∑

i λiJi for some λi > 0. The addition

of λi, however, does not enrich the design. It is only a matter
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of scaling each xi and ui by
√
λi and then replacing µi with

µi/
√
λi (with the normalization assumption

∑

i µ
2
i /λi = 1).

In the choice between ‘µ’ and ‘λ’ scalings we picked the

former because it allows negative weights. ▽

B. Problem solution

We start with rewriting (7) in an aggregate form using the

Kronecker product notation. Introduce the unit vector

µ :=
[

µ1 · · · µν

]

′

and the aggregate state and control signals x :=
∑

i ei⊗xi and

u :=
∑

i ei ⊗ ui, respectively. In this notation, the dynamics

of the aggregate systems are

ẋ(t) = (Iν ⊗A)x(t) + (Iν ⊗B)u(t), (8)

the cost function in (7a) is

J =

∫

∞

0

(

x′(t)(Iν ⊗Qα)x(t) + u′(t)u(t)
)

dt, (9)

and the constraint (7c) reads

(µ′ ⊗ Im)u− (µ′ ⊗ F̄ )x = 0, (10)

The key idea behind our solution is to apply coordinate

transformations to the state and input signals that decouple

constraint (7c) on the one hand, while preserving the uncou-

pled structure of the system and cost on the other. This can

be achieved by the coordinate transformations

x̃ := (U ⊗ In)x and ũ := (U ⊗ Im)u (11)

for some unitary matrix U ∈ R
ν×ν . Indeed, using the relation

(M1⊗N1)(M2⊗N2) = (M1M2)⊗(N1N2), it is readily seen

that both (8) and (9) remain the same, modulo the replacement

of x and u with x̃ and ũ, respectively, while the coordination

constraint changes and becomes

(µ′U ′ ⊗ Im)ũ− (µ′U ′ ⊗ F̄ )x̃ = 0.

To achieve decoupling, we may consider the following require-

ments on U :

Uµ = e1. (12)

Because µ is assumed to be a unit vector, there is always a

unitary U satisfying (12). A possible choice is the matrix of

transpose left singular vectors of µ.

Thus, when expressed in terms of x̃ and ũ with U satisfying

(12), problem (7) still has an uncoupled cost function and

uncoupled dynamics. But now the constraint, which reads

(e′1 ⊗ Im)ũ − (e′1 ⊗ F̄ )x̃ = 0, is imposed only upon the first

elements of ũ and x̃, i.e., it reduces to

ũ1 − F̄ x̃1 = 0. (13)

Hence, (7) splits into ν independent problems, with the ith
problem depending only on the variables x̃i and ũi.

For i = 2, . . . , ν, we have identical unconstrained LQR

problems with dynamics of the form (2) and cost functions of

the form (3). Each one of these problems is then solved by

the (stabilizing) control laws ũi(t) = Fαx̃i(t), where Fα :=

−B′Xα and Xα ≥ 0 is the stabilizing solution of the algebraic

Riccati equation (ARE)

A′Xα +XαA+Qα −XαBB′Xα = 0. (14)

These control laws attain the optimal performance x̃′

i0Xαx̃i0.

For i = 1, constraint (13) completely determines ũ1, as

ũ1 = F̄ x̃1, rendering the optimization irrelevant. The plant

dynamics then become

˙̃x1(t) = (A+BF̄ )x̃1(t), x̃1(0) = x̃10

and the cost function
∫

∞

0

x̃′

1(t)(Qα + F̄ ′F̄ )x̃1(t)dt.

The dynamics of x̃1 are stable iff A + BF̄ is Hurwitz and

in this case the value of the cost function is finite and equals

x̃′

10X̄x̃10, where X̄ ≥ 0 verifies the Lyapunov equation

(A+BF̄ )′X̄ + X̄(A+BF̄ ) +Qα + F̄ ′F̄ = 0. (15)

The arguments above solve (7) in terms of the transformed

variables in (11). What is left is to transform this solution back

to x and u. This is done in the following theorem, which is

the main technical result of this section:

Theorem 3.1: Let A+BF̄ be Hurwitz and the pair (Qα, A)
have no unobservable pure imaginary modes. Then the ARE

(14) and the Lyapunov equation (15) are solvable, with X̄ ≥
Xα, and the unique solution of (7) is

ui(t) = Fαxi(t) + µi(F̄ − Fα)x̄(t), (16)

where Fα = −B′Xα is the LQR gain, associated with the

uncoordinated version of the problem, without (7c), and x̄ is

the state vector of the center of mass Σ̄ defined by (5). The

optimal performance attainable by this controller is

Jopt =

ν
∑

i=1

Ji,opt + x̄′

0(X̄ −Xα)x̄0, (17)

where Ji,opt = x′

i0Xαxi0 is the optimal uncoordinated costs

of Σi and x̄0 is the initial condition of the center of mass.

Proof: The solvability of the Riccati equations under the

conditions of the theorem is a standard result [15, Thm. 13.7].

The inequality X̄ ≥ Xα follows by the fact that if ui = F̄ xi,

then Ji = x′

i0X̄xi0 ≥ x′

i0Xαxi0 = Ji,opt for any xi0. Now,

the developments preceding the formulation of the theorem

imply that the optimal control law for the transformed system

is ũ = F̃ x̃, where

F̃ = (Iν − e1e
′

1)⊗ Fα + (e1e
′

1)⊗ F̄ .

Then (11) implies that the optimal control law for the aggre-

gate problem (8)–(10) is u = Fx = (U ′ ⊗ Im)F̃ (U ⊗ In)x,

so, with the help of (12), we end up with the optimal gain

F = Iν ⊗ Fα + (µµ′)⊗ (F̄ − Fα), (18)

which yields (16). Finally,

Jopt = x̃′

0((Iν − e1e
′

1)⊗Xα + (e1e
′

1 ⊗ X̄))x̃0 (19a)

= x′

0(Iν ⊗Xα + (µµ′)⊗ (X̄ −Xα))x0, (19b)

from which (17) follows immediately.
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Remark 3.3 (constraining a part of ū): If F̄ = Fα,

then the Lyapunov equation (15) is solved by X̄ = Xα

and (16) reduces to the decentralized control law solving the

uncoordinated version of (7). In other words, the coordination

constraint becomes void if it attempts to mimic the optimal

unconstrained dynamics. Likewise, we can constrain only a

part of ū by mimicking the optimal, with respect to (3), control

trajectory of the partially constrained problem by its other part.

Namely, let E be a tall matrix such that E′E = I . It can be

shown that the optimization of (7), with (7c) replaced by the

partial constraint E′ū− F̄1x̄ = 0, corresponds to the original

formulation with

F̄ = EF̄1 − (I − EE′)B′X2

where X2 ≥ Xα is the stabilizing solution of the ARE

(A+BEF̄1)
′X2 +X2(A+BEF̄1)

+ (Qα + F̄ ′

1F̄1)−X2B(I − EE′)B′X2 = 0

and the stabilizability of the pair (A + BEF̄1, B(I − EE′))
is required. Equation (15) is solved then by X̄ = X2. ▽

C. Discussion

The remainder of this section is devoted to properties of the

solution presented in Theorem 3.1. In particular, we discuss

the structure of the optimal controller and its suitability for

distributed control applications (§III-C1), interpret the LQR

problems in terms of the transformed variables (11) arising

in the derivation as a technical step (§III-C2), quantify the

effect of the coordination constraint (7c) on the performance

of each subsystem (§III-C3), and explore the possibility of

adding tracking requirements to the behavior of the center of

mass (§III-C4).

1) Control law: computation and structure: An important

property of the solution of Theorem 3.1 is its computational

scalability. To calculate the optimal controller, we only need

to solve ARE (14), which is the Riccati equation associated

with the local, unconstrained, LQR. The computational effort

to obtain the solution is thus independent of the number of

subsystems ν, which is an attractive property in the context of

distributed control.

The low computational burden is not the only property

of controller (16) that is appealing in distributed control

applications. Its structure is even more intriguing. The optimal

control law is a superposition of a local term, Fαxi(t), and a

(scaled) coordination term,

ucoord(t) := (F̄ − Fα)x̄(t). (20)

The former is the optimal uncoordinated control law for Σi

and is fully decentralized. Coordination then adds a “correc-

tion” of the form µiucoord to this local controller. This term

destroys the (sparse) decentralized structure as none of the

elements of the overall feedback gain (18) is zero in general.

Nonetheless, the resulting configuration might suit large-scale

applications well.

The non-sparse coordination term, which may be thought

of as a (block) rank-one correction to the (block) diagonal

local controller (cf. (18)), depends only on the behavior of the

center of mass. Thus, although this term hinges upon infor-

mation about all subsystems, the only operation required in its

construction is averaging. This information clustering may be

thought of as a form of spatial generalized sampling where

the information required to form the correction component,

ucoord, is obtained by aggregating distributed information in a

weighted average.

The information aggregation via x̄ is clearly less demanding,

from both computation and communication viewpoints, than

an individual processing of each xi. Hence, the control law

(16), although centralized, may be feasible for distributed con-

trol. Measurements of the center of mass could, in principle,

be done either globally, by a coordinator, or even locally, by

each subsystem.

Remark 3.4 (an interpretation of the coordination policy):

Constraint (7c) can be satisfied without information exchange

if each subsystem applies ui = F̄ xi. The term (F̄ − Fα)xi

can then be interpreted as a desired violation of this strategy

in order to improve the performance with respect to Ji. By

rewriting the coordination term (20) as

ucoord(t) =
ν
∑

i=1

µi(F̄ − Fα)xi(t),

we see that exchanging information (coordination) allows the

subsystems to compensate for each other’s violations. ▽

Remark 3.5 (earlier appearance): The diagonal-plus-low-

rank configuration has already been used in [14], also in

the context of control of large-scale systems. The motivation

and technical tools used there, however, are quite different

from those studied in this paper. The “low-rank centralized

correction” to block-diagonal controllers is introduced in [14]

to enlarge the design parameter space in the context of robust

control of interconnected systems. The parameters are then

designed via an LMI procedure, which utilizes some of the

degrees of freedom brought about by this addition. In our

setup, the structure results from an optimization problem.

Its low-rank part is responsible for coordinating otherwise

uncoupled subsystems and has a clearly traceable effect on

control performance (see below). ▽

2) LQR problems in terms of x̃i and ũi: The transformation

of state and input coordinates defined by (11) and (12) serves

the purpose of decomposing the problem into one problem

with a prespecified control law and and ν − 1 unconstrained

LQRs. These problems have meaningful interpretations.

First, a comparison of (13) and (7c) suggests that x̃1 =
x̄ and ũ1 = ū. This is indeed true, as can be seen through

x̃1 = (e′1 ⊗ In)x̃ = ((e′1U) ⊗ In)x = (µ′ ⊗ In)x = x̄, for

instance. Thus, the constrained problem is concerned with the

center of mass (4) and its solution results in the dynamics as

in (6), as expected.

The other components of x̃ and ũ do not possess such

interpretations per se, they are not even unique. Nevertheless,

the unconstrained LQR cost built on them,

J̃ :=

ν
∑

i=2

∫

∞

0

(

x̃′

i(t)Qαx̃i(t) + ũ′

i(t)ũi(t)
)

dt
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(this is what the control law (16) actually minimizes), can be

interpreted. To this end, rewrite

ν
∑

i=2

ũ′

iũi = ũ′((I − e1e
′

1)⊗ Im)ũ = u′((Iν − µµ′)⊗ Im)u

(the last equality is obtained by (11) and (12)) and, likewise,
∑ν

i=2
x̃′

iQαx̃i = x′((Iν − µµ′)⊗Qα)x. It can be shown, by

routine regrouping, that

Iν − µµ′ =
ν
∑

i=1

(ei − µiµ)(ei − µiµ)
′ (21a)

=

ν−1
∑

i=1

ν
∑

j=i+1

(µjei − µiej)(µjei − µiej)
′. (21b)

From (21a),

J̃ =

ν
∑

i=1

(

‖Q1/2
α (xi − µix̄)‖22 + ‖ui − µiū‖22

)

.

In other words, J̃ may be thought of as the cost of deviat-

ing from the normalized center of mass. The normalization

becomes particularly transparent if all systems have equal

masses, i.e., if µi = 1/
√
ν. In this case µix̄ = 1

ν

∑

i xi and

µiū = 1

ν

∑

i ui are merely the average state and input signals

and J̃ quantifies the cumulative deviation from the average.

In the same vein, (21b) leads to

J̃ =

ν−1
∑

i=1

ν
∑

j=i+1

(

‖Q1/2
α (µjxi − µixj)‖22 + ‖µjui − µiuj‖22

)

,

which penalizes mutual deviations of each subsystem from the

others (the scaling factors µi and µj just align the subsystems

to render the comparison meaningful), thus encouraging the

achievement of an optimal consensus.

Summarizing, by solving (7) we effectively reach two goals:

impose a required behavior on the center of mass and minimize

discrepancy between subsystems. The optimal J̃ can then be

viewed as a measure of “gregariousness” or, perhaps, as a

“herd instinct index” in the aggregate system (8). It follows

from the proof of Theorem 3.1 (cf. (19a)) that

J̃opt = x̃′

0

(

(Iν − e1e
′

1)⊗Xα

)

x̃0 = x′

0

(

(Iν − µµ′)⊗Xα

)

x0

=

ν
∑

i=1

Ji,opt − x̄′

0Xαx̄0. (22)

Thus, the attainable local uncoordinated costs Ji,opt also

determine the cumulative closeness of systems Σi to each

other. It is worth emphasizing that J̃opt does not depend on

the constraint imposed on the behavior of the center of mass.

This separation is an intriguing property of the solution of (7).
3) Cost of coordination per subsystem: The last term in

the right-hand side of (17) quantifies the deterioration of the

(aggregate) performance J due to the coordination constraint

(7c). Below, we look into the effect of coordination on the

performance of individual subsystems.

We begin with the following result:

Proposition 3.2: The value of the ith performance index Ji

under the control law (16) is

Ji = Ji,opt + µ2
i x̄

′

0(X̄ −Xα)x̄0, (23)

where x̄0 is the initial condition of the center of mass.

Proof: The control law (16) is a superposition of the

locally optimal control law and the signal vi = µi(F̄ −Fα)x̄.

It is known (see the proof of [15, Thm. 14.2]) that Ji =
Ji,opt +‖vi‖22 for any vi. As follows from (6), the last term in

the right-hand side above equals µ2
i x̄

′

0Xvx̄0, where Xv ≥ 0
solves the Lyapunov equation

(A+BF̄ )′Xv +Xv(A+BF̄ ) + (F̄ − Fα)
′(F̄ − Fα) = 0.

Expression (23) then follows by the fact that Xv = X̄ −Xα,

which can be verified by straightforward algebra.

The second term in the right-hand side of (23) is exactly the

cost of coordination for the ith subsystem. It is a function of

the other subsystems through the vector x̄0. The dependence

of x̄0 on an unspecified relation between the initial states

of all subsystems complicates the interpretation of the cost

of coordination. If, for instance, x̄0 = 0, then Ji = Ji,opt

and the coordination in that case comes at no cost. But if

every xi0 = µiχ for some χ ∈ R
n, then x̄0 = χ and we

end up with Ji = x′

i0X̄xi0. This is what we would have if

the control laws ui = F̄ xi were applied to each subsystem,

which would correspond to an attempt to enforce (7c) without

communication between subsystems. To avoid the dependence

on x̄0, we assume through the rest of this subsection that x̄0

is bounded as a function of the number of subsystems ν. In

this case the term x̄′

0(X̄ −Xα)x̄0 is bounded as well and the

cost of coordination becomes quadratically proportional to the

corresponding “mass” µi.

Consider now what happens with the cost of coordination

per subsystem when the number of subsystems ν → ∞. It

follows from the normalization assumption
∑ν

i=1
µ2
i = 1 that

at most a finite number subsystems may have µi 6→ 0 in this

case. If such subsystems do exist, they dominate (5) and we

then effectively have coordination between a finite number of

subsystems. It is then natural that the cost of coordination for

those subsystems does not vanish as ν grows. If, however, all

µi → 0 as ν → ∞, the situation is different. In this case

the coordination constraint (7c) is, in a sense, spread among

all subsystems and the cost of coordination per subsystem

vanishes with the increase of ν. For example, if we assign

equal weights to each subsystem, i.e., if every µi = 1/
√
ν,

then the coordination toll per subsystem decreases inversely

proportional to the number of subsystems. The decrease of

the coordination cost is intuitive, as the addition of more

subsystems brings more opportunities for coordination.

4) Tracking: Constraint (7c) can be modified to incorporate

tracking requirements on the center of mass (4). For example,

we may consider the constraint

ū = F̄ x̄+ r

for an exogenous signal r (e.g., it may be a function of a

reference signal). This would yield the control law

ui(t) = Fαxi(t) + µi(F̄ − Fα)x̄(t) + µir(t),

instead of (16) and the following dynamics of Σ̄:

˙̄x(t) = (A+BF̄ ) x̄(t) +Br(t)



7

in lieu of (6). A group tracking animation illustrating this

possibility can be seen in [24, Fig. 2]. J is then no longer

relevant per se, it might even be unbounded. Still, the “measure

of gregariousness” interpretation of the unconstrained part

of the optimization, as discussed in §III-C2, remains valid.

Moreover, the value of the cost function in (22) is finite and

independent of r, so it can quantify group tracking properties

of the system.

D. Wind farm example (cont’d)

We are now in the position to return to the example studied

in Section II. To render the current LQR problem formulations

compatible with that in §II-A, we assume that xi0 = Bwvi,
where vi are mutually independent random variables of unit

variance. This yields x̄0 = Bwv̄, where v̄ :=
∑

i µivi is of

unit variance as well. We then end up with (7) with B = Bu,

Qα = C ′

zCz , F̄ = 0, and µi = 1/
√
ν for all i.

By Theorem 3.1, the optimal control law is given by

ui = Fαxi − Fαxa,

where xa :=
1

ν

∑

i xi is the average state of wind turbines and

the gain Fα is obtained by solving ARE (14). To calculate the

cost of coordination depicted in Fig. 1 by the solid line, we

use Proposition 3.2 to derive Ji−Ji,opt =
1

νB
′

w(X̄−Xα)Bw,

where X̄ is the observability Gramian of (Cz, A). This cost

tends to zeros as ν → ∞.

With its structural properties revealed, the non-sparse so-

lution to (7) compares favorably with the sparsity-based one

considered in §II-B. Our calculations are scalable, in fact, they

are independent of the number of turbines. The result is always

globally optimal. The effect of the coordination constraint on

the local performance of each turbine is transparent and easy

to calculate as well. The price we pay is that the resulting

controller is centralized. This might not be feasible in some sit-

uations where communication constraints are restrictive. Still,

the only centralized information processing that is required to

execute the control law is the averaging operation to calculate

Fαxa. This does not require an individual processing of the

global state of the whole farm by each turbine. It thus could

be feasible even for a large farm.

IV. ALLEVIATING THE BURDEN OF COORDINATION

In some situations, it might not be necessary to enforce the

coordination requirement as a hard constraint. For instance, in

the example in §II-A some fluctuations in wind farm power

production might be tolerated, at least at higher frequencies.

Constraint (7c) can then be relaxed to improve the local

performance of each subsystem. In this section, we consider

an alternative problem formulation, where we seek a trade-off

between improving the performance of each subsystem and

coordinating their behavior.

A. Soft constraint formulation

Coordination requirements may be taken into account via

soft constraints. Namely, the minimization of (7a) under

constraint (7c) may be substituted with

minimize J =

ν
∑

i=1

Ji +
λ

1− λ
‖ū− F̄ x̄‖22 (24a)

subject to Σi, i = 1, . . . , ν (24b)

for some λ ∈ [0, 1] and no constraints imposed on the behavior

of the center of mass. The case λ = 1 effectively corresponds

to the hard constraint formulation. Picking λ < 1 would

mean that the coordination requirement is displaced with a

coordination incentive. A satisfactory trade-off between local

objectives and coordination can then be reached via tuning λ.

The arguments of §III-B apply to (24) mutatis mutandis3,

splitting the minimization of the coupled J into ν uncoupled

problems. As in the hard constraint case, ν − 1 of them

are unconstrained LQR problems in terms of x̃i and ũi,

i = 2, . . . , ν. The remaining problem, the one formulated in

terms of x̃1 = x̄ and ũ1 = ū, is now the LQR problem for (4)

and the performance index
∫

∞

0

[

x̄′ ū′
]

[

Qα + λ
1−λ F̄

′F̄ − λ
1−λ F̄

′

− λ
1−λ F̄

1

1−λIm

] [

x̄
ū

]

dt.

The resulting control law for the center of mass is:

ū(t) = (λF̄ − (1− λ)B′Xλ) x̄(t), (25)

where Xλ ≥ 0 is the stabilizing solution of the ARE

(A+ λBF̄ )′Xλ +Xλ(A+ λBF̄ )

+Qα + λF̄ ′F̄ − (1− λ)XλBB′Xλ = 0. (26)

The overall controller is then in the same “diagonal plus rank-

one” form (16), modulo replacing F̄ with λF̄ − (1−λ)B′Xλ.

Remark 4.1: The soft constraint formulation could, in

principle, be viewed as a special case of (7). Indeed, the

solution of Theorem 3.1 is recovered via the mere substitution

F̄ → λF̄ − (1 − λ)B′Xλ. Thus, formulation (24) brings no

extra freedom to the design. Rather, we view it as a convenient

means to trade off local and global goals. Moreover, the soft

constraint formulation prompts extensions that are not covered

by (7). One such extension will be considered in §IV-B. ▽

The following proposition quantifies the trade-off between

coordination and the local performance for the ith subsystem.

Proposition 4.1: The stabilizing solution Xλ of (26) satisfies

Xα ≤ Xλ ≤ X̄ and Yλ := d

dλXλ ≥ 0. Furthermore, the

optimal solution of (24) renders

Ji = Ji,opt + µ2
i x̄

′

0(Xλ − λ(1− λ)Yλ −Xα)x̄0,

which never exceeds the quantity in Proposition 3.2, and

σ(λ) := ‖ū− F̄ x̄‖22 = (1− λ)2 x̄′

0Yλx̄0.

Proof: It can be shown, by differentiating (26) and

rearranging terms, that Yλ satisfies the Lyapunov equation

A′

λYλ + YλAλ + (F̄ +B′Xλ)
′(F̄ +B′Xλ) = 0, (27)

where Aλ := A + B(λF̄ − (1 − λ)B′Xλ) is Hurwitz. This

proves that Yλ ≥ 0. The first claim of the proposition then

follows by the facts that Xα = Xλ|λ=0 and X̄ = Xλ|λ=1.

3Theorem 4.2 in §IV-B presents a formal proof of a more general problem.
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The expression for Ji results from Proposition 3.2 by

replacing F̄ → λF̄ −(1−λ)B′Xλ (cf. Remark 4.1) and using

the fact that under this choice X̄ → Xλ−λ(1−λ)Yλ (can be

verified by straightforward, albeit lengthy, algebra).

Finally, the control law (25) violates constraint (7c) by

ū(t)− F̄ x̄(t) = −(1− λ)(F̄ +B′Xλ)x̄(t)

= −(1− λ)(F̄ +B′Xλ)e
Aλtx̄0.

The expression for the norm of the constraint violation then

follows by (27).

Comparing the expressions for Ji given in Propositions 3.2

and 4.1, we can see that by relaxing the coordination constraint

we reduce the cost of coordination for the ith subsystem by

αi(λ) := µ2
i x̄

′

0(X̄ −Xλ + λ(1− λ)Yλ)x̄0 ≥ 0.

In fact, it can be shown that αi(λ) = 0 iff the cost of

coordination in the original formulation µ2
i x̄

′

0(X̄−Xα)x̄0 = 0
as well. In other words, whenever the coordination constraint

(7c) does not come for free, formulation (24) alleviates its

burden. Furthermore, it is readily seen that

α̇i(λ) = µ2
i λ x̄

′

0Zλx̄0 and σ̇(λ) = (1− λ) x̄′

0Zλx̄0,

where Zλ := (1− λ) d

dλYλ − 2Yλ ≤ 0 verifies

A′

λZλ + ZλAλ − 2(F̄ +B′Xλ − (1− λ)B′Yλ)
′

× (F̄ +B′Xλ − (1− λ)B′Yλ) = 0

and is uniformly bounded as a function of λ. Hence, we have

that limλ→1 σ̇(λ) = 0, whereas, in general, limλ→1 α̇i(λ) 6= 0.

Thus, we may expect that a relatively small deviation from

the ideal behavior of the center of mass may result in a

relatively large reduction in the cost of coordination for the

subsystems. As a matter of fact, at the other end of the range,

at λ = 0, the picture is mirrored. Thus, by adding a slight

coordination penalty to the global cost function
∑

i Ji we can

introduce coordination with little effect on local performances.

B. Frequency weighted soft constraints

In many situations, we might not be interested in coordi-

nating the center of mass over all possible situation in local

subsystems. For example, we can persuade coordination only

in a low frequency range. This may be useful in applications

where the required group behavior (e.g., power production of

a wind power plant discussed in Section II) is slower than that

of individual subsystems (e.g., dynamics of a wind turbine).

Such situations can be accommodated by replacing the second

term in the right-hand side of (24a) with the L2 norm of the

signal zσ , satisfying

{

ẋφ(t) = Aφxφ(t) +Bφ(ū(t)− F̄ x̄(t)), xφ(0) = 0

zσ(t) = Cφxφ(t) +Dφ(ū(t)− F̄ x̄(t)).

Thus, zσ is the signal ū− F̄ x̄ filtered by

Wφ(s) = Dφ + Cφ(sI −Aφ)
−1Bφ.

(without loss of generality we may assume that the realization

of Wφ is minimal). This leads to the following problem:

minimize J :=

ν
∑

i=1

Ji + ‖zσ‖22 (28a)

subject to Σi, i = 1, . . . , ν (28b)

The weighing filter Wφ aims at shaping the coordination

penalty over different frequencies. Moreover, by choosing

Wφ(s) with pure imaginary poles we can enforce hard co-

ordination constraints at some frequencies.

To formulate the solution to (28) we need the ARE

A′

σXσ +XσAσ + C ′

σCσ − (XσBσ + C ′

σDσ)

× (D′

σDσ)
−1(B′

σXσ +D′

σCσ) = 0, (29)

where

[

Aσ Bσ

Cσ Dσ

]

:=













Aφ −BφF̄ Bφ

0 A B

Cφ −DφF̄ Dφ

0 Q
1/2
α 0

0 0 I













,

and the associated feedback gain

Fσ =
[

Fσ1 Fσ2

]

:= −(D′

σDσ)
−1(B′

σXσ +D′

σCσ),

partitioned compatibly. The following theorem is the main

result of this subsection:

Theorem 4.2: Let A+BF̄ be Hurwitz and (Qα, A) have no

unobservable pure imaginary modes. Then (29) has a stabiliz-

ing solution Xσ ≥ 0 such that its (2, 2) block, partitioned com-

patibly with the partition of Aσ , satisfies X̄ ≥ Xσ22 ≥ Xα,

and the control law solving (28) is

ui(t) = Fαxi(t) + µi(F̄ − Fα)x̄(t) + µiūφ(t), (30)

where ūφ := Mφ(Fσ2 − F̄ )x̄ and

Mφ(s) := I + Fσ1(sI −Aφ −BφFσ1)
−1Bφ.

Proof: To shorten the exposition, we assume through the

proof that Dφ = 0, the general case follows by similar steps.

Following the arguments of §III-B, we rewrite the problem

in terms of the aggregate variables x and u. The dynamics of

the aggregate system are now coupled,
[

ẋφ

ẋ

]

=

[

Aφ µ′ ⊗ (−BφF̄ )
0 Iν ⊗A

] [

xφ

x

]

+

[

µ′ ⊗Bφ

Iν ⊗B

]

u,

and the cost function is uncoupled (not if Dφ 6= 0):

J =

∫

∞

0

(

x′

φC
′

φCφxφ + x′(In ⊗Qα)x+ u′u
)

dt.

The dynamics of the plant can still be decoupled via transfor-

mation (11) with U satisfying (12). It is readily verifiable that

the transformed dynamics are now
[

ẋφ

˙̃x

]

=

[

Aφ e′1 ⊗ (−BφF̄ )
0 Iν ⊗A

] [

xφ

x̃

]

+

[

e′1 ⊗Bφ

Iν ⊗B

]

ũ

and the weights matrices of the criterion remain unchanged.

Thus, we again end up with ν separate problems. The last

ν − 1 of them are exactly the same problems in terms of x̃i
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and ũi for i = 2, . . . , ν as in the case studied in Section III.

The first one is the LQR problem for the plant

ẋσ = Aσxσ +Bσũ1, where xσ :=

[

xφ

x̃1

]

and the cost function J̃1 = ‖Cσxσ +Dσũ1‖22. This problem

is well defined. Indeed, (i) the pair (Aσ, Bσ) is stabilizable

by the controllability of (Aφ, Bφ) and the first assumption of

the theorem (Aσ+Bσ

[

Fφ F̄
]

is Hurwitz iff Aφ+BφFφ is

Hurwitz); (ii) the observability of (Cσ, Aσ) and the second

assumption guarantee that the realization Dσ + Cσ(sI −
Aσ)

−1Bσ has no imaginary axis invariant zeros. The optimal

solution of the LQR above is then the static state feedback

ũ1 = Fσxσ = Fσ1xφ + Fσ2x̃1,

where Fσ is generated by the stabilizing solution of (29).

Because x̃1 = x̄, ũ1 = ū, and xφ = (sI−Aφ)
−1Bφ(ū− F̄ x̄),

the state feedback above can be expressed as follows:

ũ1 =
(

F̄ +Mφ(s)(Fσ2 − F̄ )
)

x̃1.

The control law (30) in the original coordinates follows then

by repeating the steps of the proof of Theorem 3.1.

Comparing (30) and (16), the effect of replacing the hard

constraint (7c) with filtered soft constraints amounts to adding

the signal ūφ to the control law. Because the zeros of Mφ(s)
are exactly the poles of Wφ(s), the spectrum of ūφ vanishes

at the frequencies where the weight goes to infinity (the

imaginary poles of Wφ(s)), recovering the hard constraint

case. This shows that we can indeed enforce hard coordination

constraints at certain frequencies via weighs with jω poles.

The expressions for the coordination mismatch and the local

costs of coordination are not as transparent as those analyzed

in the previous subsection. Namely,

Ji = Ji,opt + µ2
i x̄

′

0Xv22x̄0,

where Xv22 ≤ X̄ −Xα is the (2, 2)-subblock of Xv solving

(Aσ +BσFσ)
′Xv +Xv(Aσ +BσFσ)

+ (Fσ − FαE
′

2)
′(Fσ − FαE

′

2) = 0.

These formulae can be derived in line with the proof of

Proposition 3.2, see [24] for details.

C. Wind farm example (cont’d)

From a load balancing perspective, it is the slow variations

in power mismatch that are troublesome, whereas the fast

ones are considered relatively benign. To account for this, we

consider an alternative formulation, where the power tracking

requirement is relaxed at high frequencies. This is achieved

via the formulation (28) with B = Bu, Qα = C ′

zCz , F̄ = 0,

µi = 1/
√
ν, and

Wφ(s) =

√

λ/(1− λ)

s
(31)

for λ ∈ [0, 1]. The integrator in Wφ guarantees zero net DC-

power deviation. Indeed, by Theorem 4.2 the solution is

ui = Fαxi − Fαxa + ua,

where xa is the average state (as in §III-D), ua = MφFσ2xa,

and the filter

Mφ(s) =
s

s+ ωσ

where ωσ = −Fσ1. The high-pass form of Mφ ensures that

the spectrum of ua vanishes at the zero frequency. Since ua

corresponds to the contribution of an average WT to the net

power deviation, zero net power deviation is enforced at DC.
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Fig. 2. Trade-off curves for local and coordination performances with

Wφ =
√

λ/(1− λ) (dashed line) and Wφ =
√

λ/(1− λ)/s (solid line).
The dotted blue line shows the cutoff frequency ωσ of the filter Mφ.

The solid line in Fig. 2 shows the trade-off between the

cost of coordination per an individual turbine and ‖ua‖22. The

results show that a small relaxation of the power tracking

requirement results in a relatively large improvement in in-

dividual WT performance. For comparison, we also present

the trade-off curve for the formulation considered in §IV-A

(the dashed line). This formulation corresponds to the static

Wφ =
√

λ/(1− λ) in (28). We can see that the use of the

static Wφ yields better coordination performance ‖ua‖2 for

every level of deterioration of the local performances. This,

however, may be expected, because the weight (31) effectively

imposes hard constraints at the zero frequency for every λ 6= 0.

The dotted blue curve in Fig. 2 presents the cutoff fre-

quency ωσ of Mφ(jω). As the individual turbine performance

improves, ωσ decreases, which implies that less of the slow

variations are removed from the net power deviation.

V. CONCLUDING REMARKS

In this paper we have studied a class of LQR problems,

where autonomous agents with identical dynamics seek to

reduce their own costs while coordinating their center of

mass (average behavior). We have shown that the solution

to these problems has two important scalable properties.

First, the problem decomposes into two independent LQR

problems: one for a single uncoordinated agent and one for

the center of mass, whose dynamics has the same dimension

as those of individual agents. Hence, the computational effort

required to obtain the solution is independent of the num-

ber of agents (since all agents are assumed to be identical,

only one unconstrained LQR problems needs to be solved).

Second, the structure of the resulting controller is transparent,

comprising a (block) diagonal decentralized part and a (block)

rank-one coordination term. The coordination term relies on

information about all subsystems, but only requires a simple
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averaging operation. This renders the structure well suited for

implementation in distributed control applications.

We have also revealed several other properties of the optimal

solution. In particular, the cost of coordination incurred by

each subsystem has been quantified and shown to vanish as

the number of subsystems grows; the coordination problem

has been interpreted in terms of a consensus-like cost function;

the cost of the cumulative deviation of subsystems from the

center of mass has shown to be independent of the behavior

of the center of mass itself. We have also considered imposing

coordination via soft constraints and quantified the trade-off

between local and coordination performances in this case.

Although we have studied only the specific LQR problem,

the diagonal-plus-low-rank structure may show up in a wider

spectrum of applications. Relatively straightforward extensions

include problems with r coordination constraints (would result

in a diagonal-plus-rank-r configuration) and output-feedback

H2 formulations (adding local estimators). Other directions

may be less trivial. For instance, it may be important to

account for additional constraints on the information exchange

between agents, like delays or a sampled-data structure. An-

other possible direction that might require a substantial alter-

nation of the solution procedure is to consider coordination

among heterogeneous agents. Furthermore, it is interesting

to investigate the possibility of reducing information pro-

cessing / complexity by imposing the diagonal-plus-low-rank

structure in problems, where it does not arise as an outcome

of the unconstrained optimization procedue.

Finally, up to this point we managed to discuss distributed

control without mentioning the word “graph.”
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[1] M. D. Mesarović, D. Macko, and Y. Takahara, Theory of Hierarchical,

Multilevel Systems. NY: Academic Press, 1970.
[2] M. G. Singh and A. Titli, Eds., Systems: Decomposition, Optimization

and Control. Oxford, UK: Pergamon Press, 1978.
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