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ABSTRACT

Over the last few decades, DNA sequencing has developed from
costing billions of dollars to get the complete sequence of the hu-
man genome, to being a routine procedure performed in labs all
around the world. This has transformed the field of experimental
biology sincemeasurements can be done at a level of detail that was
not possible before. Still, the relationship between genotype and
low-level cellular processes on one hand, and high-level phenotypic
traits on the other, tends to be very complex; measuring does not
equal understanding. In the large data sets that are being gathe-
red, it is often hard to uncover patterns that are truly meaningful,
and not just arising by random chance.

In this work, we present novel methods for representing, explo-
ring and visualizing genotype–phenotype data sets, with a particu-
lar focus on tracking changes driven by evolutionary processes as
they occur. One challenge is to be able to quickly search for spe-
cific patterns in data coming from large genomes. We have adap-
ted algorithms and data structures from the field of Information
Retrieval, relying on inherent genomic structure to make efficient
searches. In Paper I, we showcase these techniques with visualiza-
tion of gene fusions in a study of paediatric B-cell precursor acute
lymphoblastic leukaemia.

The complexity of biological processes, taken together with the
fact that high-throughputmeasurements, such as DNA/RNA sequen-
cing data, measure many different things at once, means that these
data sets will often contain multiple overlaid signals. If data is col-
lected in the field, rather than produced entirely under controlled
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conditions in the lab, it is practically unavoidable. In Paper III, we
present SMSSVD – SubMatrix Selection Singular Value Decomposi-
tion, a parameter-free unsupervised signal decomposition and di-
mension reduction method, particularly useful for data sets with
many variables. By adaptively reducing the noise for each signal,
SMSSVD creates a representation with many desirable properties in-
herited from the ordinary SVD, while being able to discover signals
closer to the limit of detection.

In Paper II and Paper IV we describe models for representing ge-
netically related but still heterogeneous microbial populations and
show how the composition of the population determines the in-
teraction with the host. The DISSEQT pipeline (DIStribution-based
SEQuence space Time dynamics) developed in Paper IV, covers the
entire workflow from read alignment to visualization of results. We
model each population as a positive measure over sequence space
and apply SMSSVD to get a robust representation. Using our model,
we follow and visualize the evolutionary trajectories of the popula-
tions through time, highlighting important minority variants emer-
ging. Finally, we demonstrate the relevance of our population mo-
del by showing that it can accurately predict the population fitness,
whereas a model based on the consensus sequence fails.
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POPULÄRVETENSKAPLIG
SAMMANFATTNING

En av de grundläggande frågorna inom biologi är hur arvsmassan styr och påverkar
biologiska processer. Att kartlägga dessa samband ger oss viktig kunskap och är
ett led i utvecklingen av specifika behandlingar av så vitt skilda sjukdomar som
olika virusinfektioner och cancerformer. Gemensamt för dessa två exempel är dock
att de kännetecknas av evolution i ‘miniformat’. Virus muterar väldigt snabbt,
vilket skapar ett ‘moln’ av närbesläktade virus. I takt med att värdorganismens
immunsystem upptäcker och attackerar virusen, sker så en kapplöpning, där vissa
av virusvarianterna lyckas klara sig bättre och fortsätter att föröka sig. En cancer
startar när en av kroppens egna celler drabbas av en eller flera mutationer som gör
att den ‘bryter sig loss’ från det naturliga samspelet med andra celler och börjar
dela sig i högre takt än normalt. Kroppen har olika skyddsmekanismer för att
stoppa detta, men om mutationerna gör att cellen undviker dem, så växer cancern
och fler och fler celler som delar de skadliga mutationerna skapas. I takt med att
nya mutationer uppstår när cancern växer skapas en konkurrenssituation mellan
de olika cellerna, där de som har egenskaper som gör att de kan föröka sig mer
effektivt, gynnas på bekostnad av de andra.

De senaste decennierna har vi fått helt nya verktyg för att på bred front mäta
vad som sker. Exempelvis kan vi nu med relativ enkelhet läsa av (sekvensera) en
människas hela genom och representera det digitalt. För cancer innebär det att vi
kan sekvensera tumörer för att karakterisera dem genetiskt och förstå cellpopula-
tionens sammansättning. I vissa fall kan denna typ av mätningar vara avgörande
för att ställa en precis diagnos och ge en fungerande behandling. På samma sätt
har sekvenseringstekniken gjort det möjligt för oss att följa hur viruspopulationer
utvecklas och i detalj följa evolutionen medan den sker.
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Den här avhandlingen handlar om att ta fram metoder för att utforska, visu-
alisera och i förlängningen förstå, de stora och komplexa datamängder som det
handlar om. Ett återkommande problem är att det är svårt att se skogen för alla
träd – det är helt enkelt för mycket data för att man ska kunna skapa sig en över-
blick om man försöker gå igenom den manuellt. Till den första artikeln som ligger
till grund för avhandlingen utvecklade vi metoder för att söka efter angivna mön-
ster i datamängder där de olika mätpunkterna motsvarar platser i ett genom. Vi
visar också hur sökningarna kan användas för välja ut relevanta delar av genomet
och visuellt åskådliggöra vad som skett där. Metoderna applicerades på data från
patienter i en studie av fusionsgener (gener som uppstår när två helt olika gener
slagits samman som följd av mutationer) i en viss typ av cancer.

I matematiken motsvarar varje egenskap vi mäter en dimension, och vi mäter
idag ofta tusentals eller miljontals egenskaper, men för varje samband som finns
mellan de olika egenskaperna reduceras den faktiska dimensionen, vilket möjliggör
en rimlig överblick av insamlad data. Principalkomponentanalys är den klassiska
metoden för att hitta sådana samband. Den är en mycket spridd och användbar
metod för att förutsättningslöst leta efter mönster i stora datamängder. Hur den
fungerar kan illustreras med ett exempel. Tänk er att vi håller en pepparkaksgris
i handen och lyser på den med en ficklampa. Om vi håller grisen i rätt vinkel,
kan vi från skuggan tydligt se grisens konturer, men vi kan också snurra på gri-
sen så att skuggan inte blir mer än ett streck. Principalkomponentanalys hittar
kort och gott den vinkel som bäst fångar objektets form. Korrespondensen mel-
lan pepparkaksgrisen och dess skugga är inte perfekt, t.ex. syns inte eventuella
ojämnheter på ytan i skuggan, men de huvudsakliga dragen kan fångas. I detta
exempel har vi gått från ett tredimensionellt objekt till en tvådimensionell avbild,
men matematiken bakom fungerar precis lika bra oavsett vilka dimensioner vi rör
oss mellan. För de biologiska datamängder vi arbetar med är dimensionen väl-
digt mycket högre och principalkomponentanalys eller liknande metoder är ofta
helt nödvändiga. Det går också att kvantifiera hur väl vi fångar objektets form
beroende på hur många dimensioner vi behåller, vilket hjälper oss att förstå hur
nära verkligheten den förenklade datamängden är.

Ett annat problem är att när vi gör många mätningar skapas det många oe-
gentliga samband av ren slump. Om 10 000 personer slår fyra stycken 6-sidiga
tärningar var, så kommer med stor sannolikhet flera av dem att slå fyra stycken
6:or*. Det betyder inte att dessa personer är ovanligt bra på att slå 6:or, utan bara

*I snitt fler än 7 stycken av dem.
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att om vi gör något väldigt många gånger, så sker det osannolika ibland. I den
tredje artikeln i avhandlingen har vi kombinerat denna observation med princi-
palkomponentanalys för att skapa en ny metod som minskar störningarna från
mätbruset. Vår metod är gjord för att hitta flera överlagrade ‘signaler’ i en datam-
ängd och anpassar sig för att på bästa sätt minska bruspåverkan för varje enskild
signal. Den är i första hand utvecklad för användning på biologiska datamängder,
där vi ofta har många brusiga mätningar och olika oberoende effekter.

Att ett ‘moln’ av närbesläktade virus uppstår vid en virusinfektion har flera
konsekvenser. De olika virusvarianterna konkurrerar med varandra, men det finns
även exempel på när samarbete uppstår, vilket kan leda till att infektionen blir mer
framgångsrik. Dessutom styr populationens sammanfattning vilka nya varianter
som kan uppstå om ytterligare mutationer sker. I artikel två jämför vi olika virus
som är fenotypiskt oskiljaktiga (kodar för identiska proteiner), men vars arvsmassa
skiljer sig åt. De påverkas därmed på olika sätt av mutationer, vilket leder till att
‘molnen’ får olika sammansättning. Speciellt ser vi hur ett av virusen begränsas av
sin arvsmassa och ger upphov till ett ‘moln’ med fler dysfunktionella virusvarianter.

Den fjärde artikeln vidareutvecklar grundidéerna från artikel två. Här tar vi
fram allmängiltiga verktyg och metoder för att kunna analysera viruspopulationer-
nas sammansättning och hur de utvecklas över tid. Baserat på sekvenseringsdata
skapar vi en representation av varje viruspopulation och vilka varianter den inne-
håller. En mer robust modell skapas sedan genom användning av metoden från
artikel tre med vilken inverkan av bruset kan minskas, utan att vi för den skull tar
bort viktig information från datamängden. Modellen kan användas för att visuali-
sera skillnader och likheter mellan olika viruspopulationer men också för att förut-
säga egenskaper hos populationerna. Slutligen visar vi hur virusens fitness, deras
förmåga att framgångsrikt fortplanta sig, beror på ‘molnets’ sammansättning.
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INTRODUCTION

1 Genotype–Phenotype Maps

Long before the discoveries of DNA and genes, Gregor Mendel conducted a fa-
mous series of experiments showing how simple units of heredity can explain how
certain traits are transferred from one generation to the next. He started with two
varieties of pea plants that differed in one trait, for example one variant that had
purple flowers and another that had white flowers. If self-pollinated, the offspring
kept the same characteristic as the parent. He then created a new generation, deno-
ted F1, by cross-pollinating the plants such that every plant in F1 had one parent
with purple flowers and one with white flowers. All the pea plants inF1 turned out
to have purple flowers. However, when self-pollinating the plants in F1, creating
a new generation F2, about three quarters of the plants had purple flowers and the
rest had white flowers. Mendel then went on to explain this seemingly counter-
intuitive result with a simple model of inheritance. Consider the variants (called
alleles), B: purple flowers and b: white flowers. If every plant has two alleles, then
the possible combinations (nowadays called the genotype) are BB, Bb and bb. In
this case, B was dominant, meaning that plants with either BB or Bb had purple
flowers while b was recessive, meaning that only plants with bb had white flowers.
The quality of having either purple or white flowers is an example of what is called
a phenotypic trait, or phenotype for short. When offspring is produced from two
parents, then one allele is taken randomly, with equal chance, from each parent.
The situation can thus be explained as follows. The original plants were either
BB or bb, and self-pollination does not change this. However, with one parent
from each group, the F1 plants were all Bb. Hence they had purple flowers, but
with a different genotype than the original plants with purple flowers. Finally, all
genotypes are possible in the F2 plants, whose parents are all Bb. Figure 1 shows
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the possible outcomes. Since it’s equally likely to inherit either allele from each
parent, the likelihood for each genotype in F2 is BB (25%), Bb (50%) and bb
(25%), giving 75% chance of purple flowers and 25% chance of white flowers.

B

b

B b

BB

Bb

Bb

bb

pollen

pistil

Figure 1: Possible genotypes and phenotypes of pea plants when both parents have the
genotype Bb. Illustration by Madeleine Price Ball, CC0 license.

The situation described above is the canonical example of a genotype–phenotype
map1. It highlights one of the most important properties of the map, it is not
one-to-one; multiple genotypes result in the same phenotype. Depending on the
context, the genotype can refer to the entire genetic makeup of an organism, the
alleles present at a single loci, or anything in between. In a very broad definition,
anything that is a consequence of the genotype can be considered a phenotype.
Genotype–phenotype maps are great tools for reasoning about genetic causes for
phenotypic traits, but it’s necessary to understand that the relationship is highly
complex behind the scenes. Epigenetics (heritable traits that are not encoded by
DNA/RNA), gene regulation, environmental factors and randomness can all affect
phenotype and the interactions are very different from case to case. As an extreme
but illustrative example, the sex in Alligator mississippiensis is determined by the
temperature of egg incubation2. Even in the deterministic case, the genotype–
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phenotype mapping can be intricate. For instance, a phenotype might be affected
by alleles at multiple loci (genomic positions), the interaction can take other forms
than dominant/recessive, and different species can have different ploidy (the num-
ber of copies of each chromosome, which determines the number of alleles per
loci in an individual).

A practical view of the genotype–phenotype map is often to consider multiple
levels, or rather a network, of phenotypes. The first levels are directly related to
cell processes. Starting from the genes that are expressed, the initial phenotypes
are the (amounts of ) different kinds of RNA, such as transfer RNA (tRNA) and
messenger RNA (mRNA). mRNAs are in turn translated, creating proteins, which
can also be viewed as phenotypes. The cell machinery consists of a complex net-
work of regulatory systems with feedback loops, where the state and dynamics of
these systems can be considered phenotypes, since they depend on the genotype.
Through inter-cellular interactions, phenotypes form higher level networks, finally
reaching phenotypes that are traits observable by unaided human senses, e.g. the
color of a flower or the shape of limbs. Stable phenotypes are possible through
robustness in the regulatory systems, and is crucial for biological life. (On the
other hand, complete robustness would not result in any phenotypic variability
at all, and thus no differences for selection to act upon.) The robustness makes it
possible to, sometimes, consider the function that maps genotype to phenotype as
a black box, knowing the input is enough to predict the output. In other cases,
measuring both genotypes and lower-level phenotypes will make it easier to accu-
rately predict higher-level phenotypes, since part of the uncertainty of the map
can be removed.

2 Evolution

Evolution is a process that will take place if just a few basic prerequisites are met,
and that can create complexity out of simplicity. It acts upon a population, where
differences between individuals are inherited from one generation to the next and
there is a source for new variations to appear. Furthermore, the differences must
affect the ability for the individuals to reproduce and have successful offspring,
a process called selection. In practice, selection often acts indirectly and requires
survival and competing with the other individuals in the population for common
resources. With these conditions in place, the population will evolve over time,
as traits from individuals that reproduce successfully will spread throughout the
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population. Adaptation occurs when a population becomes better suited for the
current environment by evolving. It is not a necessary consequence of evolution,
for instance, if the environment is harsh enough, the population might perish.
Fitness is the abstract quality of an individual being successful in evolution, that
is, to be able to reproduce and have offspring that is also able to reproduce and so
on. It is often defined relative to the other individuals in a population.

There is nothing in the above description that limits evolution to the realms
of biology. Evolutionary computing3 applies evolutionary processes to problems
as a kind of structured and automated trial and error. In brief, candidate solu-
tions are assigned fitness values according to their ability to solve some kind of
problem. New candidate solutions are created from previous successful ones and
new variation is introduced randomly. Dawkins applied evolutionary theory to
memes (ideas, behavior, etc.)4, giving a framework to explain how some memes
spread and change, while others do not.

In biology, the selective process is referred to as natural selection. When hu-
mans intervene by selecting which individuals in a population will reproduce, and
thus choose the traits that will be passed on to future generations, it is called arti-
ficial selection. Since the beginning of agriculture, humans have adapted plants to
suit our needs in this way. Animal breeding is another example.

Selection acts on the phenotype. Variation, inherited as genotypes (and epige-
netic factors) are passed on, and in many cases recombined, from one generation
to the next. Random mutations introduce new variation and ensures that the
evolutionary process can continue. Even beneficial mutations are not guaranteed
to spread and become common in a population5. At the individual level, rand-
omness has a huge impact on selection, but on the population level, individual
traits are better viewed as factors that affect the probability that an individual will
reproduce.

2.1 Viruses

Viruses are biological entities that may or may not be considered as life, since they
are unable to reproduce without a host cell. Alive or not, they are clearly subjected
to evolution. Viruses are in fact great tools for studying evolution, since they tend
to have short generation times, high mutation frequency and small genomes. Most
of all, this is true for a group of viruses called positive-sense single-stranded RNA,
or (+)ssRNA, viruses. As the name implies, their genomes are single-stranded
RNA molecules. RNA molecules are less stable than their DNA counterparts and
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viruses lack several error-correcting mechanisms that are present in other orga-
nisms, thus increasing mutation rates. Furthermore, their genomes also act as
mRNA, and hence they can be translated directly into proteins by the cell machi-
nery, without any intermediate steps. Taken together, these factors mean that the
viruses can evolve rapidly, and their small genomes simplify data collection.

The quasispecies model6, which is widely used for viruses, describes what hap-
pens in a population with asexual replication and high mutation rates. The key to
the quasispecies model is the balance between selection and mutation. Imagine a
population consisting of identical viruses, with a certain replication rate (fitness).
During replication, mutations might occur, producing viruses that are not iden-
tical, but closely related to, the original. Now assume that these new viruses have
a lower replication rate than the original viruses. What will happen as time pas-
ses? If the relative replication rate of the other viruses is low, and the mutation
rate is low as well, we can expect that the vast majority of the population will be
identical to the original viruses. A few viruses with lower fitness will appear, but
since they replicate slowly, they will never reach any sizeable quantity. If instead
the mutation rate is high, there will be a lot of low fitness viruses at any given
point in time, forming a “cloud” around the central high fitness viruses. In the
extreme, the high fitness viruses will not be produced at a rate high enough to sus-
tain the population, ultimately leading to extinction. Quasispecies theory mainly
deals with the scenario in-between, closely related viruses creating a heterogene-
ous cloud, a common situation with direct biological consequences. For instance,
it allows viruses to adapt quicker to changes in the environment, since genotypic
and phenotypic variety is already present in the cloud7. Another example is how
interaction between viruses with genetic differences can determine pathogenesis8.
Hence, we have every reason to believe that although a high mutation rate is a
necessity of the chemistry of RNA replication, it is also an adaptation in itself, as
the clouds formed can be critical to the survival of the viruses. In some sense, the
size and shape of the quasispecies cloud can be thought of as a phenotype.

2.2 Cancer

In humans and other multicellular organisms that reproduce sexually, the ability
of a single cell to spread its genes is not directly linked to the replication rate of
the cell. Instead, the genes will spread if the individual the cell belongs to is able
to reproduce. In this regime, cooperation between cells has been evolutionary
successful, they are not in competition with each other, but will succeed or fail
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together. One example of the cooperation is apoptosis, programmed cell death; a
single cell sacrifices itself for the benefit of the organism as a whole. Apoptosis is
an important process during embryonic development, and later in life to target
cells that might become cancerous and to combat virus infections, to give two
examples.

Cancer begins with a cell acquiring mutations that make it replicate faster and
avoid mechanisms such as apoptosis9. Through cell division, a population of cells
all sharing the original mutations is created. Diversity within the population is
created as new mutations are introduced during cell division. The cells will com-
pete with each other (and the non-cancerous cells) for resources, and successful
cells will reproduce faster than the others. As we can see, the prerequisites for
evolution are there10. A cancer is not beneficial for the host, and it’s an evoluti-
onary dead end – although technically possible, a cancer is extremely unlikely to
spread outside of its host. That cancers still appear is just a consequence of the
prerequisites for evolution being met.

Understanding cancer as an evolutionary process is one of the keys to a success-
ful treatment. If a cancer patient is subjected to treatment, and a subpopulation of
the cancer cells are more resistant to the treatment, then those cells will be favored
by selection. Certain human genes, that normally have important functions, are
more likely than other genes to cause cancer after a mutation has occurred. Around
140 such genes, called oncogenes, are known and a single tumor often have muta-
tions in several of the oncogenes11, which shows that there is some predictability
to cancer. From similar starting points, the evolutionary processes driving cancer
development can lead the cancers in different patients down similar paths. Kno-
wing the genotype, and phenotypes such as gene expression levels, of a cancer, are
thus critical for characterization and to find the appropriate treatment.

3 Measurements and Data

Analyzing genomic data is challenging. In part, because the data sets tend to be
very large. The major obstacle is however that all genomic data needs to be inter-
preted in context, but figuring out the relevant context can be extremely difficult.
The information carried by a genome is naturally described by one sequence of
nucleotides per chromosome. (This is true for all life on Earth, including viruses,
even though the organization of the genetic material could use other molecules
than chromosomes.) Changes as small as the substitution of a single nucleotide
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with another can have drastically different effects depending on where it happens.
Many times, there are no observable phenotypic effects, but a change resulting in
an amino acid change in a gene will for instance alter the protein coded by the
gene, again with very different effects depending on the specific change and the
role of the protein.

Genome sequencing12 is an intricate process that makes it possible to digitalize
information from DNA (or RNA) molecules and thus represent and store them
in a computer. Due to technical limitations, the DNA molecules are fragmented
into shorter pieces, suitable for the sequencers. The computer representation of a
sequenced piece of DNA is called a read. After sequencing, the best matching loca-
tion in a reference genome is found for each read, a process called alignment. This
works well in general since the differences between individuals of the same species
are few enough to make the problem tractable. The use of a reference genome also
establishes a coordinate system for the genome and thus a basis for comparison
between different samples. If no reference genome exists, de novo assembly can be
used to piece the reads together, but the process is significantly more difficult than
alignment, even more so when the reads are short. It is necessary to cover every
part of the sequence multiple times, for several reasons. Since humans have two
non-identical copies of each chromosome, data is needed from both to completely
characterize the genotype. Sequencing is error-prone; gathering multiple indepen-
dent measurements for each location is required for a statistically sound analysis.
If a population (e.g. of viruses or of cancer cells) is sequenced, subpopulations
can only be discovered and studied if there is enough data to infer the frequencies
of different variants, and distinguish them from noise. Another examples is gene
expression analysis by mRNA sequencing, where the number of reads in each gene
is related to the expression level of the gene.

The human genome has a total length of over 3 billion nucleotides, many or-
ders of magnitude larger than what is feasible to go through manually. The known
structure of the genome, apart from being necessary for interpretation, can help
narrowing down searches for different patterns to relevant regions. Many annota-
tions, such as the location of genes, are publically available. A gene corresponds to
an interval in the reference genome, and the exons (the parts of a gene coding for
proteins) are intervals within the gene. We will now show how to efficiently search
and make basic set-operations on huge collections of intervals. To our knowledge,
this has not been described before.
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4 Information Retrieval

The field of information retrieval deals with searching efficiently in large collections
of data13. Most often, it is used for searching for text and phrases in a collection
of documents (e.g. web pages), but the general principles can also be applied
elsewhere. We will here adapt and expand some of the basic tools of (Boolean) in-
formation retrieval to the setting of searching in genomic data, relying on inherent
genomic structure to make efficient searches.

A typical query in Boolean information retrieval is: find all documents con-
taining both ‘Paris’ and ‘Tourism’. The solution to this problem can be found
by taking the intersection of two sorted lists of integers, given that the data is
stored in a structured way. Assign a unique integer ID to each document, and
assume that we have sorted lists of IDs of all documents containing ‘Paris’ and
‘Tourism’ respectively. The IDs of the documents containing both search terms
are thus found by intersecting the lists. There are multiple algorithms for solving
this problem, but the key insight is that not every element in the two lists must
to be checked. As illustrated in Figure 2, if we can quickly find the first item in
a list that is larger than or equal to a given integer, then we can skip over large
stretches of document indices. In practice, this can be achieved by a binary search
(half-interval search), or by augmenting the document lists with skip pointers that
store information about what lies some steps ahead in the list. If one list is much
shorter than the other, large portions of the longer list can be skipped.

1List A:
List B: 5

Result:

5

5

12 13
17 23 24 28 30 31 ... 109

120
1

2

3

4

7

17
5

17

...

...

...

6

Figure 2: Illustration of a possible search scheme when intersecting two sorted lists of inte-
gers. Searches are performed by alternating between the two lists, looking for the first item
in greater than or equal to the current element, until a match is found. The process is then
repeated. The small circled numbers indicate the order in which the list elements are visited.

Searching in a genome is quite similar, but instead of searching through docu-
ments, we search among the coordinates that are given by the reference genome.
The main difference is the relevance of proximity. Genomic features are often des-
cribed by intervals (e.g. genes, promotor regions and CpG islands) or by unions
of intervals (e.g. all exons in a gene and all genes in a specific pathway). Even
single nucleotide variants that per definition affect a single position, must be in-
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terpreted in the context of the surrounding genomic features. Hence, representing
general features as sorted lists of intervals yields a natural and compact represen-
tation, in comparison to using sorted lists of integers, even if they mathematically
can describe the same sets. To keep notation simple, we are here only considering
genomes consisting of a single sequence (chromosome), but all concepts extend
easily to a collection of sequences. We begin by noting that any subset A of the
interval [1, N ] (the coordinates of a genomic sequence of length N ) can be des-
cribed uniquely by a sorted list of intervals. That is

A =

n∪
i=1

[ai, bi),

where a1 < b1 < a2 < b2 < . . . < an < bn. To adapt the algorithm outlined
above to intervals, we will restate the search for the next item slightly, to give
interval results. Given x, let

k := min{i : x < bi}

then the first interval of A after x is given by

s(A, x) :=

{
[max(ak, x), bk) if k exists
∅ otherwise .

This is an extension of the case described above; if [a, b) = s(A, x), then a is the
first integer in A that is greater than or equal to x.

4.1 Searching in Intersections

Like before, searching in a sorted list of intervals can be performed by a binary
search or using skip pointers. Algorithm 1 and Figure 3 shows how searching
the intersection of A and B can be stated in terms of searches in A and B. The
intersection ofA andB can be computed by iteratively searching until the end has
been reached. Searching in the union of A and B can implemented in a similar
fashion, or be stated in terms of intersections and complements, since A ∪ B =
(A{ ∩B{){ and s(A{, x) is trivial to implement in terms of s(A, x).

There is no need forA orB to be explicitly known in Algorithm 1. Composite
queries, such as (A∪B)∩C can be handled by searching inA∪B and C, where
the former in turn requires searching in A and B. In this example, if C have few
and short intervals, only small parts ofA∪B are actually needed in the evaluation
of (A ∪B) ∩ C.
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a1 b1A:
B:

s(A∩B,x):

x

c1d1 c2 d2 c3 d3

a2 b2

...

...
c4d4 c5 d5

1

2

3

4
c5 b2

Figure 3: Illustration of the algorithm for searching in the intersection of two lists of intervals,
A andB, starting at x and going right. The small circles indicates the order in which intervals
are visited. Note how several intervals in B are skipped.

Algorithm 1 s(A ∩B, x)
Input: A,B ⊂ [1, N ], x ∈ [1, N ]
Output: First interval in A ∩B after x.
[a, b)← s(A, x)
while [a, b) ̸= ∅ do

[c, d)← s(B, a)
if [a, b) ∩ [c, d) ̸= ∅ then
return [a, b) ∩ [c, d)

end if
[a, b)← [c, d)
swap(A,B)

end while
return ∅

4.2 Searching in Functions

The read coverage, the number of aligned reads covering each position in the re-
ference genome, is one important factor to take into account when interpreting
genomic data. In many cases, regions with low coverage are not of interest since
they provide no reliable information. In exome sequencing, a technique for se-
quencing only the protein-coding parts of genes, the vast majority of the genome
will have no or very few reads. Similarly, for mRNA sequencing, reads will also be
aligned to the protein-coding parts of genes, but in this case the read coverage will
be related to the expression level of the gene. A simple criteria for finding relevant
parts of a genome is thus to search for regions where the read coverage is above a
certain threshold.

A sketch of a data structure making efficient searches possible, in terms of
both storage space and computation time, is shown in Figure 4. The underlying
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x

f(x)

y

Figure 4: Sketch of a binary tree representing a function f (blue). The root node represents
the entire function and is split into two child nodes at the vertical line at the center of the
figure. Child nodes are split recursively (only three levels of the binary tree are shown). Since
the minimum and maximum values of the function are stored for each node, entire nodes
can be skipping during a search. Nodes that are visited when searching for the first point
where the function value f(x) if larger than a threshold y (red dashed line), are highlighted
in black. The nodes that are skipped are shown in gray, and corresponding areas in the
function graph are also gray.

assumption is that the read coverage tend to change quite slowly (the difference in
read coverage from one position to the next is generally of low magnitude). The
data is stored hierarchically in a binary tree. In a nodeN , representing the interval
[Na,Nb), we store the minimum valueNm and maximum valueNM of a function
f (e.g. the read coverage) in that interval. The child nodes of N , left(N ) and
right(N ), correspond to the intervals [Na, x) and [x,Nb) respectively, for some
x such that Na < x < Nb. The root node R represents the entire sequence
[1, N ]. Let

g(N , y, x) := min{z ∈ [Na,Nb) : z ≥ x and f(z) > y}

11
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Algorithm 2 g(P, y, x)
Input: P (Parent node), y ∈ Z, x ∈ [1, N ]
Output: First point z ≥ x such that f(z) > y.
C ← left(P)
if x < Cb and y < CM then

if y < Cm then
return max(x, Ca)

end if
z ← g(C, y, x)
if z ̸=∞ then
return z

end if
end if
C ← right(P)
if x < Cb and y < CM then

if y < Cm then
return max(x, Ca)

end if
z ← g(C, y, x)
if z ̸=∞ then
return z

end if
end if
return ∞

or ∞ if the minimum doesn’t exist. That is, g(R, y, x) is the first point z ≥
x where the function value is larger than a threshold y. Algorithm 2 describes
how g can be evaluated, using the binary tree. Similarly, l is defined as the first
point where the function is less than or equal to y and the algorithm is practically
identical. Searching for an interval [a, b) = s({z : f(z) > y}, x) is now done
in two steps. First compute a = g(R, y, x) and then b = l(R, y, a). If a =∞,
there are no more intervals to be found and if b =∞, the interval reaches the end
of the sequence. The algorithmic complexity of searching for the next interval is
logarithmic in the number of nodes in the binary tree. In practice, there is no need
to subdivide nodes all the way until Nm = NM . Instead, leaf nodes can store a
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compact representation of the function on a short interval. Since the majority of
nodes in a binary tree are leaf nodes, this can greatly reduce storage requirements,
while still keeping the benefits of the search structure.

4.3 Searching in Dilated Sets

The search methods described above exploits the fact that neighboring genomic
coordinates are functionally related. The neighborhood can also be explicitly used
when formulating searches, e.g. to find genomic features that are close to each
other and to give context around search results. Dilation (also known as Minkow-
ski addition) is a fundamental operation in mathematical morphology that can be
used to make a set expand into its neighborhood. In general, the dilation ofA and
B is defined as the set {a+ b : a ∈ A, b ∈ B}, but we are only interested in the
case when B = [−d, d], a symmetric interval centered at the origin. The dilation
of A and [−d, d] will be denoted by dilate(A, d) and contains all points that are
at distance less than or equal to d from some point in A, effectively growing A by
d units. In particular, dilation by d units will make any ‘gap’ in A of length 2d or
shorter disappear.

A:
x

a1 b1 ...a7 b7
1 2d d

d+1d

d d

dilated:

Figure 5: Illustration of the algorithm for searching in a dilated set. After finding the interval
[a1, b1) and extending it to [a1 − d, b1 + d) by dilation (shown in blue), a backward search
is performed to find the last interval in A that would connect with the first interval after
dilation. The dilation of [a7, b7) is shown in green and the dilation of A is shown in black at
the bottom. Note how the contents of A between a1 and b7 will not affect the result, and
that this region can thus be skipped when searching. The process is then repeated, a new
forward search is performed (gray arrow), to see if the result should be extended further.

If d is small, such that the number of intervals in dilate(A, d) is the same as in
A, then the algorithmic complexity of computing the dilation cannot be sublinear
in the number of intervals. However, if d is larger, then not every interval of A
must be visited, as shown in Figure 5. Since intervals that are no more than 2d
apart will connect, the first search is followed by a backward search to find the last
such interval, thus skipping any intervals in-between. Both forward and backward
searches are necessary. Forward searches deal efficiently with intervals in A that
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Algorithm 3 s(dilate(A, d), x)

Input: A ⊂ [1, N ], d ∈ N, x ∈ [1, N ]
Output: First interval in dilate(A, d) after x.
[a, b)← dilate(s(A, x− d), d) ∩ [x,∞)
if [a, b) = ∅ then

return ∅
end if
loop
z ← b+ d+ 1
[u, v)← dilate(r(A, z), d)
if v = b then
return [a, b) {Couldn’t extend by backward search.}

end if
b← v
[u, v)← dilate(s(A, z), d)
if [u, v) = ∅ or u > b then
return [a, b) {Couldn’t extend by forward search.}

end if
b← v

end loop

are much longer than d and the backward searches make it possible to skip many
short intervals at a time. A complete implementation is given by Algorithm 3.
In the implementation, note that the dilation of an empty set is empty, and that
dilate([a, b), d) = [a − d, b + d). The algorithm also relies on a reverse search
r(A, x) defined analogously to s(A, x). Let

k := max{i : x > ai}

then the last interval of A before x is given by

r(A, x) :=

{
[ak,min(x, bk)) if k exists
∅ otherwise .
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5. Dimension Reduction

5 Dimension Reduction

High throughput biological measurements are commonplace today in the study
of genotypes and phenotypes. Often, the data can be put in form of a large data
matrixX , where the element xij at row i and column j corresponds to a measure-
ment of variable i for sample j. Examples of data sources include gene expression
measurements using arrays or mRNA sequencing, metagenomics (sequencing of
extremely diverse populations, e.g. gut microbiota and ecological samples)14 and
sequencing of populations of closely related organisms. After applying adequate
normalization methods, such as TMM15 and rlog16 for mRNA sequencing data,
assuming that the transformed variables are normally distributed is generally a re-
asonable assumption.

High throughput techniques make it possible to measure many variables in
parallel. Since sample collection is often difficult and time-consuming, the num-
ber of variables will in general vastly outnumber the number of samples, which
has both benefits and drawbacks. By measuring broadly, there is no need to tailor
the measurements for a specific experiment, standard protocols can be followed. It
also opens up for exploratory analysis, since there is no need to decide beforehand
which variables are important. On the other hand, we can expect that most of the
variables will only contribute to noise, making it easier to find spurious patterns.
Furthermore, it complicates hypothesis testing17.

5.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is an extremely useful tool in the study
of matrices. It aids understanding by decomposing a matrix into three parts, acces-
sible to interpretation and it can be used to create an optimal approximation of a
matrix by a matrix of lower rank (useful for e.g. noise reduction). Using the SVD,
any matrix X can be factorized as X = UΣV T , where UTU = I , V TV = I
and Σ is a diagonal matrix, with positive elements on the diagonal, ordered from
largest to smallest. The diagonal elements of Σ are known as the (nonzero) singu-
lar values ofX . Below, we will give a constructive proof, showing existence of the
SVD, that can help understand the properties of SVD. For an alternative proof,
see Golub and van Loan18.
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Definition 5.1. The induced 2-norm of a matrix X is

∥X∥2 := sup
∥v∥2=1

∥Xv∥2 = sup
v ̸=0

∥Xv∥2
∥v∥2

. (1)

Using that equality in the Cauchy-Schwarz inequality xTy ≤ ∥x∥2∥y∥2
occurs iff x and y are equal (up to multiplication with a nonnegative scalar), we
get the equivalent formulation

∥X∥2 = sup
u,v ̸=0

uTXv

∥u∥2∥v∥2
. (2)

(Consider the case u = Xv.) It follows directly that the definition above is
symmetric, ∥X∥2 = ∥XT ∥2.

Lemma 5.1. If X is nonzero, there exists v that maximizes Equation 1 and any v
that maximizes Equation 1 is orthogonal to the kernel of X .

Proof. ∥Xv∥2 is a continuous function in v and ∥v∥2 = 1 defines a compact set.
Hence, there exists v that maximizes Equation 1. Now assume v is a maximizer
of Equation 1. There exists a unique decomposition v = v′ + v′′ such that v′

is in the row space of X and v′′ is in the kernel of X . It follows that ∥Xv∥2 =
∥Xv′+Xv′′∥2 = ∥Xv′∥2. Furthermore, ∥v′∥2 ≤ ∥v′+v′′∥2 with equality iff
v′′ = 0. Hence Equation 1 can only be maximized if v′′ = 0.

Because of symmetry, it follows immediately that if u,v maximizes Equa-
tion 2, then u is orthogonal to the cokernel of X .

Theorem 5.1. LetX ∈ RP×N be a matrix of rank r. Then there exists U ∈ RP×r,
Σ ∈ Rr×r and V ∈ RN×r such that UTU = Ir = V TV , Σ is a diagonal matrix
with entries σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and

X = UΣV T .

Proof. Start with X1 := X and take any u1,v1 that maximize Equation 2 for
X1. Without restriction, we can assume that ∥u1∥2 = ∥v1∥2 = 1. Let σ1 :=
∥X1∥2 = uT

1X1v1 and form

X2 = X1 − u1σ1v
T
1 .
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We will show that r = rank(X1) = 1+rank(X2), and several orthogonality
properties. Let Z := {zi}N−r

i=1 be a (possible empty) orthonormal basis of the
kernel of X1. For any z ∈ Z ,

X2z = X1z − u1σ1v
T
1 z = 0− 0 = 0,

since v1 is orthogonal to z by Lemma 5.1. From the lemma it also follows that v1
is in the row space ofX1 and hence there exists a setW := {wi}r−1

i=1 that together
with v1 form an orthonormal basis of the row space of X1. For any w ∈ W

X2w = X1w − u1σ1v
T
1 w = X1w − 0 = X1w,

since v1 is orthogonal to w by construction. Finally,

X2v1 = X1v1 − u1σ1v
T
1 v1 = u1σ1 − u1σ1 = 0,

where X1v1 = u1σ1 follows from u1 ∝ X1v1 and σ1 = uT
1X1v1.

That is, the elements of Z are in the kernel of both X1 and X2 and the ele-
ments ofW are in the row space of bothX1 andX2. To complete the orthonormal
bases, we need to add v1 to the basis for the row space of X1 and v1 to the basis
of the kernel ofX2. This shows that r = rank(X1) = 1+rank(X2), since there
is one more element in the basis of the row space for X1.

We now repeat the process, forming u2, σ2,v2 etc., until reachingXr+1 that
has rank 0 and thus is zero. Note that vi is in the kernel of every Xj such that
j > i, showing that the all the vi’s are orthogonal. By symmetry, the ui’s are also
orthogonal.

We have thus shown that

X =
r∑

i=1
uiσiv

T
i = UΣV T ,

where

U :=
(
u1 u2 . . . ur

)
,

Σ :=


σ1

σ2
. . .

σr

 ,

V :=
(
v1 v2 . . . vr

)
,
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and the columns of U and V are orthogonal, i.e. UTU = Ir = V TV .
Finally, assume that σi+1 > σi for some i. Then

∥Xi∥2 ≥ uT
i+1Xivi+1 = uT

i+1
(
Xi+1 + uiσiv

T
i

)
vi+1 = σi+1 > σi

which is a contradiction.

If the singular values are all different from each other, which they will be in
practice if the data matrix has been subjected to noise, then the decomposition
produced in the proof above is unique up to a common change in sign for each
pair ui,vi. Indeed, it can be shown that this is the only possible decomposition
of X into UΣV T , given the conditions on U , Σ and V .

Sometimes, it is convenient to let the columns of U and V form bases for RP

andRN respectively. For V this is achieved by taking a basis of the kernel ofX (cf.
Z in the proof ) and appending one column per element in the basis. By symmetry,
the same is true for U . Finally, Σ is extended to a P ×N matrix, by adding zeros.
The same formula, X = UΣV T , still holds, but now UTU = UUT = IP and
V TV = V V T = IN .

We saw that ∥X∥2 = σ1. Another matrix norm that is tightly connected to
the SVD is the Frobenius norm.

Definition 5.2 (Frobenius norm). The Frobenius norm of a matrix X is

∥X∥F =

√∑
i,j

x2
ij .

Following the definition, we can state the square of the Frobenius norm as
a sum of the squared vector norms of the columns of X , ∥X∥2F =

∑
j ∥X·j∥22.

Since the vector norm ∥·∥2 is invariant under rotation and reflection, it follows that
the Frobenius norm is invariant under multiplication with orthonormal matrices,
from both left and right (by symmetry). Hence

∥X∥F = ∥UΣV T ∥F = ∥UTUΣV TV ∥F = ∥Σ∥F =

√√√√ r∑
i=1

σ2
i ,

where we have used the extended form of the SVD.
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The truncated SVD is formed by keeping only the first k singular values of
matrix X . Let Σk := diag(σ1, σ2, . . . , σk) and let Uk and Vk be the first k
columns of U and V respectively. The Eckart-Young theorem19 states that the
truncated SVD gives the optimal rank-k approximation of a matrix.

Theorem 5.2 (Eckart-Young). With the notation above,

inf
{Y : rankY≤k}

∥X − Y ∥F = ∥X − UkΣkV
T
k ∥F .

Note that ∥UkΣkV
T
k ∥2F =

∑k
i=1 σ

2
i and ∥X−UkΣkV

T
k ∥2F =

∑r
i=k+1 σ

2
i .

5.2 Sparse Principal Components

Sparse Principal Components (SPC) is a special case of the Penalized Matrix De-
composition (PMD) framework by Witten et al20. When the number of variables
is large, it can be hard to interpret the variable representation given by SVD, since
they include all variables. Sparse methods such as SPC can simplify interpreta-
tion, by limiting the number of non-zero variables for each column of U . Witten
et al. introduced additional constraints in the step for finding u,v in the SVD
procedure given above.

In the case of SPC, they solve the optimization problem:

minimize
σ,u,v

∥X − uσvT ∥2F

subject to ∥u∥22 = 1, ∥v∥22 = 1, ∥u∥1 ≤ c, σ ≥ 0

If c ≥
√
P , the solution coincides with the SVD, but if c is smaller, the lasso

(∥·∥1) constraint will enforce sparse solutions, i.e. with many elements of u equal
to 0. The smaller c, the higher degree of sparsity. The matrix updated is done like
above, X ′ := X − uσvT , and a constraint forcing v to be orthogonal to the
previously computed columns is added to the minimization problem, since this is
no longer guaranteed by the construction. For u, no orthogonality constraint is
added, which simplifies computations. As a result, the columns of U will not be
orthogonal in general.

The minimization problem above is biconvex, that is, with u fixed it is convex
in v and vice versa, and no closed form solution exists. Instead, it is solved by
numerical iterations, alternatingly keeping u or v fixed, and solving for the other.
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The objective function is not convex (in general), and the numerical optimi-
zation might get stuck at a local optima. We can expect this to happen more often
when P is large and c is small. A consequence is that σi+1 might be larger than
σi, for some i, an undesirable property, since the goal is to represent the matrix as
well as possible with a low-rank matrix. Witten et al. do not address this problem,
but the following observation shows how the situation can be improved.

Let ui,vi be local optimizers to the i’th optimization problem and suppose
that σi+1 > σi. Then

uT
i+1Xivi+1 = uT

i+1
(
Xi+1 + uiσiv

T
i

)
vi+1

= uT
i+1Xi+1vi+1 + σiu

T
i+1uiv

T
i vi+1

= σi+1,

where the second term disappears due to orthogonality of the vi’s. We see that
ui+1,vi+1 is a better candidate solution to i’th optimization problem thanui,vi.
Rolling back to the previous problem, now with vi+1 as the starting guess, we are
thus guaranteed to reach a solution closer to the global optima. This procedure
will ensure that the σi’s are ordered from largest to smallest, and provide a better
approximation of the matrix X .

6 Visualization

The purpose of measuring biological phenomena is to gain understanding of the
underlying processes. It can be as easy as performing a simple experiment to test a
well-formulated hypothesis, but the complexity of biological processes means that
there is often a long road to travel before that point can be reached. In practice,
we need to test vaguely stated hypotheses, search broadly for causes that could
explain specific effects, or just describe what we see. However, the overwhelming
amounts of data produced by high-throughput measurements are impossible to
go through by hand. Finding suitable representations and developing methods for
exploring and visualizing the data can greatly simplify all these tasks. Visualization
of huge data sets requires a process for selecting what to show, to make it possible
to spot overall patterns rather than get stuck in details. Done right, visualization
can help the viewer get a qualitative understanding of the data, and hypotheses
can be formed based on patterns that stand out. Visualization is about presenting
a faithful view of the data, so that it can be interpreted by the human brain. It
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is important to note that the method used to present the data influences which
patterns can be discovered, and it’s useful to have a basic understanding of the
techniques used, in order to understand what we can see and what is hidden.

Information retrieval techniques can be used for visualization; fast searches
make it possible to interactively explore the genome, find answers to questions
about details and overall patterns, and gradually build an understanding of the
data set. It facilitates working at different scales, and moving quickly between
them. Genomic variants can for instance be viewed one by one, or together with
other variants within the same gene or pathway.

Dimension reduction is a key instrument for visual presentation of complex
data sets. A simple example of a data matrixX with 100 variables and 40 samples
is shown in Figures 6 and 7. When viewing the entire data set (Figure 6), it is
difficult to make out any patterns. Visualizing the complete data set by scatter
plots is highly impractical, since the samples lie in 100-dimensional space. Howe-
ver, by finding a suitable rotation of the samples, an informative view of the data
set can be shown using just a few dimensions. By Eckart-Young (Theorem 5.2),
the best low-rank approximation of a matrix can be stated in terms of the SVD,
X = UΣV T . MultiplyingX with UT from the left corresponds to rotation (and
possibly mirroring) of the samples. It yields UTX = ΣV T , where the k’th co-
lumn of V Σ contains the coordinates of the samples for the k’th dimension in the
new basis. This is most commonly referred to as Principal Component Analysis
(PCA) and can equivalently be described as finding the directions of the data set
that capture the most variance. In Figure 7, we compare four different ways to
view the samples using four dimensions. Selecting a subset of the original varia-
bles, randomly or by choosing variables with large variance, is not enough to give
an informative view. PCA is however able to reconstruct an almost optimal view,
emphasizing that the view of the data set determines what patterns we can find.

Different dimension reduction methods give us different views into a data
set and thus make it possible look for patterns of different kinds. Reducing the
dimension of a data set results (almost surely) in a loss of information – a per-
fect representation using a lower number of dimensions cannot be expected. In
Section 5, we described the loss functions for SVD (PCA) and SPC, showing
how these methods penalize the loss of information in different ways. In both
cases, the low-dimensional representation is constructed by minimization of the
loss function. SPC aims to find a representation using a lower number of variables
by constraining the loss function from SVD. This can increase interpretability and
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Figure 6: Heatmap showing a 100×40 data matrix for an example data set with 100 variables
and 40 samples. Samples are generated from four classes (A–D) described by multivariate
normal distributions with different means and identical covariance matrices σI. It is extre-
mely difficult to discern any differences between the four classes.

can be motivated if we expect that most variables are irrelevant for the patterns we
are looking for.

Multidimensional scaling (MDS)21 is another method with strong similari-
ties to PCA, but with a different starting point. Based on dissimilarity scores
between all pairs of samples, the MDS loss function penalizes the difference bet-
ween the dissimilarities and the distances in the low-dimensional representation.
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Figure 7: Four visualizations of the samples from the data set shown in Figure 6. The classes
A–D are shown in black, red, green and blue respectively. Each of the four visualizations
correspond to a different rotation of the samples, in high-dimensional space, and displaying
the four first dimensions in pairwise plots. Top left: The first four variables (the first four
rows of Figure 6). No apparent differences between the classes are seen. Top right: The four
variables with highest variance are displayed. Some differences between the classes can be
observed, but the distinction is not clear. Bottom left: A PCA (SVD) reconstruction is able
to separate the four classes quite well in the first two dimensions. Bottom right: Ground
truth, the means of the multivariate normal distributions for all four classes are in the plane
spanned by dimension 1 and 2. Dimensions 3 and 4 give no additional information.
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If the dissimilarity scores coincide with sample distances in Euclidean space, MDS
is identical to PCA. The major benefit of visualization using MDS is the flexibility
stemming from the fact that any way of measuring dissimilarities between samples
can be used as input to the algorithm, in particular, no representation in Euclidean
space (no data matrix) is needed. However, variable information is lost, since the
input to MDS is stated entirely in terms of the samples.

Isomap22 assumes that samples are constrained to a nonlinear manifold in
high-dimensional space. In this setting, with some regularity assumptions for the
manifold, the Euclidean distance in high-dimensional space between nearby sam-
ples is approximately equal to the geodesic distance on the manifold, but for far-
apart samples, no such relationship can be assumed. Hence, Isomap constructs a
neighborhood graph connecting nearby samples, with edge lengths equal to the
Euclidean distance between samples such that the shortest distance between two
samples in the graph is an approximation of the geodesic distance on the manifold.
The graph distance are used as dissimilarity scores and a low-dimensional repre-
sentation constructed by MDS. The Isomap model makes it possible to capture
different structures at different scales and is thus in some sense able to fit more in-
formation into fewer dimensions, in comparison to PCA, which is very useful for
visualizing complex data. A drawback is that it is very difficult to attach meaning
to the different dimensions for Isomap, whereas the dimensions of PCA are linear
combinations of the original variables.

7 Overview of Papers

Paper I

Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes
in paediatric B-cell precursor acute lymphoblastic leukaemia

Henrik Lilljebjörn, Rasmus Henningsson, Axel Hyrenius-Wittsten, Linda Olsson,
Christina Orsmark-Pietras, Sofia von Palffy, Maria Askmyr, Marianne Rissler,
Martin Schrappe, Gunnar Cario, Anders Castor, Cornelis J.H. Pronk, Mikael
Behrendtz, Felix Mitelman, Bertil Johansson, Kajsa Paulsson, Anna K. Andersson,
Magnus Fontes and Thoas Fioretos

In this study, we delineate the fusion gene landscape in B-cell precursor acute
lymphoblastic leukaemia (BCP ALL), finding new gene fusions of clinical im-
portance, further stratifying patients. The paper shows how information retrieval
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methods, adapted to a genomic setting, can be used to create informative visuali-
zation of fusion genes and other genomic data. In addition, we create an accurate
subtype classifier based on RNA-seq measurements, by combining gene fusion
detection with gene expression levels.

Author contributions: H.L. and T.F. conceived the project. H.L., A.H.-W.,
L.O., C.O.-P. M.A. and M.R. performed the experiments. H.L., R.H., A.H.-W.,
L.O., C.O.-P., S.v.P., F.M., B.J., K.P., A.K.A., M.F. and T.F. analysed the data.
M.S., G.C., A.C. C.J.H.P. and M.B. provided samples and clinical data. H.L.,
K.P., A.K.A. and T.F. wrote the manuscript, which was reviewed and edited by the
other co-authors.

Paper II

Attenuation of RNA viruses by redirecting their evolution in
sequence space

Gonzalo Moratorio, Rasmus Henningsson, Cyril Barbezange, Lucia Carrau,
Antonio V. Bordería, Hervé Blanc, Stephanie Beaucourt, Enzo Z. Poirier, Thomas
Vallet, Jeremy Boussier, Bryan C. Mounce, Magnus Fontes and Marco Vignuzzi

The paper describes how changing the genomic composition of a virus, without
changing the proteins it is coding for, control the formation of the viral population
as mutations take place and how this affects the evolutionary potential of the virus.
In particular, we show that the virus can be moved to a more detrimental region of
sequence space, where mutations are more likely to cause Stop codons – effectively
inactivating the virus, and that the virus is unable to escape from this region.

Author contributions: G.M., C.B. and M.V. designed the experiments. G.M.,
C.B., L.C., A.V.B., H.B., E.Z.P., S.B., T.V. and B.C.M. performed experiments.
G.M., R.H., J.B., C.B., M.F. and M.V. analysed the data. G.M. and M.V. wrote
the paper.

Paper III

SMSSVD – SubMatrix Selection Singular Value Decomposition

Rasmus Henningsson and Magnus Fontes

In this paper, we develop a method for signal decomposition of data matrices that
is well suited for high-throughput biological data sets. Based on optimally chosen
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variable subsets, we adaptively reduce the noise for each signal, thus improving
the reconstruction accuracy and making it possible to uncover signals closer to the
limit of detection. The method is simple to implement and results in orthogonal
signals that are described using the original set of variables.

Author contributions: R.H. conceived the first version. R.H. and M.F. im-
proved and developed the method. R.H. made the software implementation and
evaluated the method on different data sets. R.H. wrote the paper, which was
reviewed and edited by M.F.

Paper IV

DISSEQT – DIStribution based modeling of SEQuence Space Time
dynamics

Rasmus Henningsson, Gonzalo Moratorio, Antonio V. Bordería, Marco Vignuzzi
and Magnus Fontes

This paper defines a complete pipeline for analyzing, visualizing and predicting
the evolutionary behavior of heterogeneous biological populations. We characte-
rize each population by a positive measure over sequence space, which is inferred
from deep sequencing data. SMSSVD is then used to create a robust and accurate
model where populations can be compared to each other. We apply the pipeline
to several viral population data sets and show that the composition of the popula-
tion is crucial for understanding phenotypic effects – knowing just the consensus
sequence is not enough.

Author contributions: G.M., M.V. and A.V.B. designed the experiments.
G.M. and A.V.B. performed the experiments. R.H. and M.F. developed the pi-
peline and mathematical methods. R.H. made the software implementation and
analyzed the data. R.H. wrote the paper, which was reviewed and edited by M.F.,
M.V. and G.M.
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Abstract

Fusion genes are potent driver mutations in cancer. In this study,
we delineate the fusion gene landscape in a consecutive series of
195 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP
ALL). Using RNA sequencing, we find in-frame fusion genes in 127
(65%) cases, including 27 novel fusions. We describe a subtype cha-
racterized by recurrent IGH-DUX4 or ERG-DUX4 fusions, represen-
ting 4% of cases, leading to overexpression of DUX4 and frequently
co-occurring with intragenic ERG deletions. Furthermore, we iden-
tify a subtype characterized by an ETV6-RUNX1-like gene-expression
profile and coexisting ETV6 and IKZF1 alterations. Thus, this study
provides a detailed overview of fusion genes in paediatric BCP ALL
and adds new pathogenetic insights, which may improve risk strati-
fication and provide therapeutic options for this disease.
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Paediatric B-cell precursor acute lymphoblastic leukaemia (BCP ALL), the
most common childhood malignancy, is stratified into prognostically relevant
genetic subgroups based on the presence of certain gene fusions and aneuploi-
dies1. However, 25% of cases do not have any characteristic genetic aberrati-
ons at diagnosis, and the underlying driver events are unknown. For these ca-
ses, here denoted as ‘B-other’, the identification of pathogenetic changes will not
only increase our understanding of the leukemogenic process, but may also be
important in a clinical context, because such alterations can be used for impro-
ved risk classification and for targeted treatment. Recent genome-wide studies
have provided critical pathogenetic insights into paediatric BCP ALL, including
the identification of a dismal prognosis for cases with IKZF1 deletions2–5 and for
cases with a ‘Ph-like’4–8 gene-expression signature similar to that of Philadelphia
(Ph)-positive ALL. In addition, the mutational landscapes of BCP ALL subtypes
defined by ETV6-RUNX1, TCF3-PBX1, TCF3-HLF, high hyperdiploidy (51–
67 chromosomes), hypodiploidy (< 45 chromosomes) or MLL (also known as
KMT2A) rearrangements have been delineated using high-resolution sequencing
techniques9–13. These studies have almost exclusively been performed at the DNA
level and no large-scale characterization of the gene-fusion landscape in paedia-
tric BCP ALL has been reported to date. To gain a better understanding of the
gene-fusion landscape of BCP ALL, we performed RNA sequencing (RNA-seq)
in a population-based series of 195 paediatric (< 18 years of age) BCP ALL ca-
ses. We report that gene fusions are present in 65% of BCP ALL, and identify
several new fusions and two novel subtypes; one characterized by recurrent IGH-
DUX4 or ERG-DUX4 fusions and one characterized by an ETV6-RUNX1-like
gene-expression profile, and coexisting ETV6 and IKZF1 alterations.

1 Results

1.1 Identified subtypes enable classification of 98% of cases

All 195 cases subjected to RNA-seq had previously been analysed by G-banding,
fluorescent in situ hybridization (FISH) and molecular analyses for the detection
of established genetic BCP ALL alterations as part of routine clinical diagnostics
(Supplementary Fig. 1 and Supplementary Data 1). Using RNA-seq, we identi-
fied an in-frame fusion gene in 127/195 (65%) BCP ALL cases and out-of-frame
fusions in 20/195 (10%) cases (Fig. 1 and Supplementary Data 2–4). Notably,
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of the 68 cases lacking an in-frame fusion gene, the majority (64/68, 94%) were
high-hyperdiploid (n = 56), hypodiploid (n = 2), Ph-like (n = 3), harboured a
dic(9;20) (n = 1) or belonged to novel subtypes further described below (n = 2)
(Fig. 1e and Supplementary Data 3). One subgroup, comprising 16% of B-other
cases (4% of the entire BCP ALL cohort), harboured rearrangements of the dou-
ble homeobox 4 (DUX4) gene and overlapped with a previously described group
of patients with a homogenous gene-expression profile and frequent ERG deleti-
ons6,14,15. In addition, a new subtype, harbouring co-existing rearrangements of
ETV6 and IKZF1 and associated with ETV6-RUNX1-like gene-expression pat-
tern (3% of the cohort; 14% of B-other cases), was identified. Taken altogether,
98% of the BCP ALL cases could be classified into distinct genetic subtypes with
a known underlying driver mutation or, less commonly, with a rare in-frame gene
fusion (Figs 1f, 2, Supplementary Data 3), providing new insights and pathoge-
netic markers in BCP ALL.

1.2 DUX4-rearranged cases constitute a distinct BCP ALL
subtype

Recurrent DUX4 rearrangements were identified in 8/195 (4%) BCP ALL cases
and were confined to B-other cases (8/50 cases, 16%; Figs 1a–c and 2, Supple-
mentary Data 3). The rearrangements were either a fusion between IGH and
DUX4 (7/8 cases) or between ERG and DUX4 (1 case). To confirm this and ot-
her findings within the B-other group, we performed RNA-seq of an independent
validation cohort of 49 paediatric B-other cases that were negative for BCR-ABL1,
ETV6-RUNX1, TCF3-PBX1, MLL rearrangements and high hyperdiploidy (Sup-
plementary Data 5). This analysis revealed an additional 20 cases with DUX4
rearrangements, resulting in a total of 26 cases with IGH-DUX4 and 2 with ERG-
DUX4 across the 2 cohorts.

DUX4 encodes a homeobox-containing protein and is located within a subte-
lomeric D4Z4 repeat region on 4q and 10q. It is present in 11–100 copies on each
allele, and is epigenetically silenced in somatic tissues. Loss of epigenetic silencing
through shortening of the D4Z4 repeats leads to the degradation of muscle cells,
and causes facioscapulohumeral muscular dystrophy17,18.

To confirm the DUX4 rearrangements at the genomic level, we performed
mate-pair whole-genome sequencing (MP-WGS) in all eight cases in the disco-
very cohort, enabling powerful mapping of structural genomic rearrangements
(Supplementary Data 6). These analyses confirmed the DUX4 rearrangements at
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Figure 1: (Continued on the following page.)
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Figure 1: Overview of the gene fusions present in 195 paediatric BCP ALL cases in the dis-
covery cohort. (a) In-frame gene fusions (green) and out-of-frame gene fusions (orange)
are illustrated using Circos 16. Each ribbon has one end attached to the circle, indicating the
5’-partner gene of the fusion. The width of the ribbon is proportional to the number of de-
tected fusions. Genes are arranged according to their genomic position (from chromosome
1–22 followed by X and Y) and chromosomes are marked in different colours. The gene sym-
bol is denoted for genes involved in more than two unique fusions or in recurrent fusions.
(b) In-frame gene fusions and out-of-frame gene fusions present in 50 B-other cases. The
gene symbol for genes involved in more than two unique fusions or in recurrent fusions is
indicated in bold. (c) The frequency of in-frame gene fusions by genetic subtype (indicated
in the right column with the number of affected cases in parenthesis). Novel gene fusions
are indicated in red (n = 27, reciprocal gene-fusion pairs counted as a single fusion) and
previously described fusions are indicated in black (n = 22). (d) The frequency of out-of-
frame gene fusions by genetic subtype (indicated in the right column with the number of
affected cases in parenthesis). (e) Total number of gene fusions per case by genetic subtype
(including both in-frame and out-of-frame fusions; reciprocal gene-fusion pairs counted as
a single fusion). (f) Distribution of 195 BCP ALL cases within genetic subtypes defined by
gene-expression profile and gene fusions detected by RNA-seq.

the DNA level in all cases, and revealed that the IGH-DUX4 fusions resulted from
insertions of a partial copy of DUX4 into the IGH locus, including between 90–
1,200bp upstream of DUX4 and between 939 and 1,272bp of coding sequence
from DUX4 (Fig. 3 and Supplementary Fig. 2). Similarly, ERG-DUX4 in case 75
was the result of an insertion of a partial copy ofDUX4 into intron 3 of ERG, con-
taining 936bp of coding sequence of DUX4 (Fig. 3j). Neither IGH-DUX4 nor
ERG-DUX4 would give rise to a chimeric protein; instead, the rearrangements
and expression pattern suggest that the relocation of DUX4 induces its expression
from regulatory regions of the partner gene (Fig. 3 and Supplementary Fig. 3).
The full-length DUX4 protein consists of 424 amino acids, but 7 of the 8 genomi-
cally characterized cases expressed truncated DUX4 transcripts encoding between
312 and 420 amino acids (Fig. 3). Only case 47 expressed the full coding length of
DUX4. All variants, however, retained both homeobox domains of DUX4, thus
preserving its DNA-binding capacity.

All DUX4-rearranged cases displayed a distinct overexpression of DUX4 as
determined by RNA-seq; in contrast, expression of this gene was significantly lo-
wer or absent in the other investigated 216 BCP ALL cases across the discovery
and validation cohorts (Supplementary Fig. 3). Notably, all cases with DUX4
rearrangements displayed a global gene-expression pattern matching that of a sub-
group of BCP ALL cases previously reported to be associated with ERG deleti-
ons in 38–55% of cases (Supplementary Fig. 4)6. Conversely, all cases with this
gene-expression profile had DUX4 rearrangements and overexpression of DUX4,
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Figure 2: (Continued on the following page.)
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Figure 2: Genetic alterations present in 195 BCP ALL cases in the discovery cohort. The
cases are arranged according to genetic subtypes defined by gene-expression profile and
gene fusions detected by RNA-seq, and were further characterized by SNP array, WGS, WES
and MP-WGS. Genes recurrently altered in BCP ALL are arranged according to functional
categories (kinase signalling, haematopoietic differentiation, histone modifiers and others).
Events comprise induction failure and relapse.
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Figure 3: DUX4 rearrangements in eight BCP ALL cases in the discovery cohort. (a) Arran-
gement of immunoglobulin genes in the IGH locus. (b) Structure of the subtelomeric D4Z4
repeat region on 4q in the hg19 reference genome. This reference representation has se-
ven repeats, each containing a DUX4 gene. Healthy individuals have 11–100 repeats. (c–i)
Structure of the IGH-DUX4 rearrangements in (c) case 35, (d) case 47, (e) case 53, (f) case
67, (g) case 124, (h) case 174 and (i) case 179. (j) Structure of the ERG-DUX4 rearrangement
in case 75. All genomic coordinates are based on the human reference genome hg19. Be-
cause it is impossible to determine which DUX4 repeat is involved in the rearrangement, the
coordinates from the first DUX4 repeat are represented in the figures.

indicating that the DUX4 rearrangement is the founder event for this group (Sup-
plementary Fig. 4). We determined the frequency of ERG deletions in DUX4-
rearranged cases by MP-WGS in the discovery cohort and indirectly by ascertai-
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ning truncated transcripts by RT-PCR14 in the validation cohort. This revealed
ERG deletions in 5/8 (63%) cases in the discovery cohort and in 10/20 (50%)
cases in the validation cohort (Supplementary Fig. 5), supporting that the DUX4-
rearranged subtype reported here is identical to the previously described subtype
with a distinct gene-expression profile and frequent ERG deletions6. This group
has consistently been associated with a favourable prognosis, both when defined
by the distinct gene-expression profile6, and when defined by the characteristic
ERG deletions14,15. In the discovery cohort, we observed no relapses among the
8 DUX4-rearranged cases, while 4 of 20 cases (20%) experienced relapse in the
validation cohort. With the identification of DUX4 rearrangement as a new mar-
ker in BCP ALL, it will be interesting to ascertain its prognostic impact in larger,
uniformly treated, cohorts. To characterize further the mutational landscape of
DUX4-rearranged BCP ALL, whole-exome sequencing (WES) was performed in
five DUX4-rearranged cases with matched constitutional samples available (Sup-
plementary Data 6). These were found to harbour between 4 and 10 non-silent
exome mutations each (Supplementary Data 7). The only recurrently mutated
gene was the transcription factor ZEB2, with mutations in two cases (#75 and
#174).

A borderline significance for cases with DUX4 rearrangements being older
than cases lacking such fusions (Mann-Whitney’s two-sided test, P = 0.051;
median age 6.5 versus 4 years) was seen in the discovery cohort. The median age
at diagnosis of patient with DUX4-rearranged ALL in the combined cohorts was
8.5 years (range 2–15 years). Considering the pronounced age peak at 3–5 years
for childhood BCP ALL in general19, this indicates that DUX4-rearrangements
are associated with older age, although this needs to be confirmed in larger cohorts.
Interestingly, an association with older age has previously been described for cases
with ERG deletions14,15.

The complexity of the genomic region where DUX4 is located is most likely
the reason that DUX4 fusions have not been previously discovered in BCP ALL.
Our standard RNA-seq bioinformatics pipeline could only detect the rearrange-
ment in 7 of 28 cases, whereas a guided analysis that identified RNA-seq reads
that linked any region within 2kb of DUX4 to the reads within the IGH locus
identified the IGH-DUX4 in an additional 19 cases (Supplementary Data 8). In
the remaining two cases with DUX4 overexpression, a fusion between ERG and
DUX4 was discovered by surveying the RNA-seq reads for regions similarly linked
to the region surroundingDUX4. The aberrations were also not expected to be de-
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tectable on the chromosomal level by either G-banding or FISH, due to the small
sizes of the insertions. In line with this, G-banding results from the eight DUX4-
rearranged cases in the discovery cohort showed normal karyotypes in four cases
and unspecific changes in two cases; in two cases, G-banding analyses had failed
(Supplementary Data 1). Taken altogether, RNA-seq followed by guided searches
for DUX4 chimeric transcripts is a reliable way to identify DUX4 rearrangements,
although both WES and MP-WGS allows the detection of the rearrangement at
the genomic level (Supplementary Fig. 2).

1.3 ETV6-RUNX1-like gene expression in cases lacking the
fusion

Gene-expression profiling based on the RNA-seq data showed that 6/50 (12%) B-
other cases in the discovery cohort clustered with theETV6-RUNX1-positive cases,
despite lacking molecular evidence of this fusion by FISH, RT-PCR and RNA-seq
(Fig. 4a–c, and Supplementary Table 1). The gene-expression similarities were
further supported by gene set enrichment analysis (GSEA)20 (Supplementary Figs
6–8). These six cases were thus denoted ‘ETV6-RUNX1-like ALL’. Interestingly,
RNA-seq together with single-nucleotide polymorphism (SNP) array profiling re-
vealed that five of the six ETV6-RUNX1-like cases harboured co-existing ETV6
and IKZF1 aberrations (Figs 2, 5; Supplementary Data 3 and Supplementary Ta-
ble 1).

Specifically, case 64 contained an in-frame fusion between ETV6 (at 12p13)
and PMEL (at 12q13) together with an out-of-frame fusion between IKZF1 (at
7p12) and CDK2 (at 12q13) that lacked functional domains from IKZF1 (Fig.
5a and Supplementary Table 1). Case 68 contained an in-frame fusion between
ETV6 and BORCS5 (12p13) caused by a small deletion in 12p13, together with
a deletion spanning the first exons of IKZF1 (Fig. 5b and Supplementary Table
1). Case 85 contained an intragenic ETV6 deletion and a t(3;7)(p25;p12) gi-
ving rise to in-frame reciprocal SETD5-IKZF1 and IKZF1-SETD5 fusions (Fig.
5c and Supplementary Table 1). Case 111 had interstitial deletions on both 7p
and 12p, resulting in whole-gene deletions of IKZF1 and ETV6 (Fig. 5d and
Supplementary Table 1). Case 176 carried a deletion of the entire 7p, including
IKZF1, together with an in-frame fusion between ETV6 and NID1 (at 1q42) and
an interstitial deletion on 12p removing the second ETV6 allele (Fig. 5e and Sup-
plementary Table 1). Finally, one case (#105) had no lesions affecting ETV6 or
IKZF1 as detected by RNA-seq (analysis by SNP array was precluded due to lack
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Figure 4: Hierarchical clustering and principal component analyses of RNA-seq gene-
expression data. A variance threshold was set at standard deviation 0.285, retaining 638
variables. The colour-coding of BCP ALL subtypes, used throughout the figure, is indicated
in the bottom. (a) Unsupervised hierarchical clustering analysis of 195 BCP ALL cases. Colou-
red boxes below the dendrogram indicate the subtype of each sample. The genetic subtype
of B-other cases, based on the gene-expression and gene-fusion data, is indicated on the lo-
wer line. (b) Principal component analysis (PCA) of gene-expression data from all 195 BCP ALL
cases. (c) PCA based on the data displayed in b, but only showing the 50 B-other cases colour-
coded according to the genetic subtype based on the gene-expression and gene-fusion data.
DS-ALL, Down’s syndrome ALL; iAMP21, intrachromosomal amplification of chromosome 21.
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of DNA). Thus, in total, genetic lesions affecting both ETV6 and IKZF1 were
identified in all five cases where both RNA-seq and SNP array profiling could
be performed (Fig. 5 and Supplementary Table 1). Combined lesions of ETV6
and IKZF1 were otherwise exceedingly rare outside of this group (3/152 (2%) ca-
ses with available SNP array data; P < 0.001, Fisher’s exact test; Fig. 2). To
characterize further ETV6-RUNX1-like ALL, we performed WES on four ETV6-
RUNX1-like cases with available matched constitutional samples (cases 68, 85,
111 and 176; Supplementary Data 6 and 7). These cases carried between 3 and
29 non-silent exome mutations (with an allele frequency above 10%), but no gene
was recurrently mutated.

RNA-seq of the independent validation cohort identified four additional cases
with ETV6-RUNX1-like gene-expression profiles. Three of these harboured out-
of-frame ETV6 fusions (with CREBBP at 16p13, BCL2L14 at 12p13 and MSH6
at 2p16); in the fourth case, no fusion was detected (Supplementary Data 5). Un-
fortunately, no DNA was available for SNP array analyses, precluding a complete
evaluation of deletions affecting ETV6 or IKZF1 in these cases.

We conclude that alterations of ETV6, either by the generation of alternative
gene fusions, or, more rarely, ETV6 deletions, in combination with IKZF1 lesions,
represent an alternative mechanism to elicit the same transcriptional perturbation
as seen in classical ETV6-RUNX1 fusion-positive cases. Interestingly, both IKZF1
and RUNX1 encode transcription factors important for B-cell maturation21,22,
and it is tempting to speculate that loss of IKZF1 may substitute for the altered
function of RUNX1 in the ETV6-RUNX1 fusion protein. In line with this, we
note that IKZF1 deletions are rare in the ETV6-RUNX1-positive cases (∼ 3%) in
this and other cohorts23,24.

While the small number of ETV6-RUNX1-like cases prohibited meaningful
survival analyses, only two relapses were recorded among the ten ETV6-RUNX1-
like cases in the combined discovery and validation cohort, indicating that the fre-
quent IKZF1 aberrations did not confer a dismal prognosis, as otherwise described
for IKZF1 deletions in BCP ALL7,8. However, further studies are warranted to
evaluate the clinical impact of IKZF1 deletions in ETV6-RUNX1-like BCP ALL.

1.4 In-frame gene fusions are present in most B-other cases

An in-frame fusion gene could be detected in 41/50 B-other cases (82%) in the
population-based discovery cohort (Supplementary Data 3). The B-other cases
could be subdivided into five non-overlapping groups: those with Ph-like (n =
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Figure 5: Overview of aberrations in BCP ALL cases with ETV6-RUNX1-like gene-expression
pattern. The fusion genes are illustrated with a schematic overview of the chromosomal
position of the genes involved in the fusion (top) and the retained protein domains together
(bottom). Genomic deletions affecting ETV6 and IKZF1 are depictedwith a red box indicating
the deletion both at the chromosomal level and at the gene level, with ETV6 and IKZF1
in red. Illustrated protein domains: PNT, pointed domain; PKD, polycystic kidney disease
domain; A22B, Peptidase A22B domain; CDK, protein kinase domain; SET, SET domain; ZNF,
zinc-finger domain; FN3, fibronectin type-III domain; TY-1, thyroglobulin type-1 domain; LDL-
B, LDL-receptor class B repeats; and EGF, EGF-like domain. (a) Gene fusions present in case
64. No SNP array data were available for this case. (Continued on the following page.)
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Figure 5: IKZF1-CDK2 is an out-of-frame fusion, with no functional domains from CDK2 being
included in the fusion protein. (b) Gene fusions and deletions present in case 68. The break-
points of the ETV6 deletion are within ETV6 and BORCS5; likely representing the event that
created the ETV6-BORCS5 fusion gene. The breakpoints of the IKZF1 deletion occur within
the C7orf72 and IKZF1 genes, but RNA-seq data did not indicate the presence of a fusion
transcript of these genes. (c) Gene fusions and deletions present in case 85. The P2RY8-
CRLF2 fusion does not contain any coding features from P2RY8 but leads to overexpression
of the entire coding region of CRLF2. (d) Deletions present in case 111. No gene fusions were
detected in this case. (e) Gene fusions and deletions present in case 176.

15; Supplementary Fig. 9a) or ETV6-RUNX1-like (n = 6) gene-expression
profiles, those with DUX4 rearrangements (n = 8), and remaining cases with
(n = 17) or without (n = 4) in-frame gene fusions (‘B-other, with fusion’ and
‘B-other, without fusion’, respectively, Fig. 2).

In agreement with previous descriptions of Ph-like BCP ALL, most ca-
ses (11/15, 73%) harboured gene fusions that deregulate the cytokine receptor
CRLF2 (P2RY8-CRLF2, n = 6; and IGH-CRLF2, n = 3) or activate thera-
peutically targetable kinases (ZC3HAV1-ABL2 in #62 and PAX5-JAK2 in #45)
(refs 7,8; Supplementary Data 3). In addition, RNA-seq data revealed mutations
in the JAK-STAT pathway genes in 2/15 cases, 13% (Fig. 2 and Supplementary
Data 3)7,8.

Among the 17 cases in the ‘B-other, with fusion’ group, 11 cases (65%) har-
boured in-frame gene fusions previously described in BCP ALL25: P2RY8-CRLF2
(n = 4), PAX5-ZNF521 (n = 2), EP300-ZNF384 (ref. 26) (n = 1), IGH-
CEBPE (n = 1), IGH-CRLF2 (n = 1), PAX5-ESRRB (n = 1) and TAF15-
ZNF384 (n = 1); in addition, a NONO-TFE3 fusion gene, until now only
reported in renal cell carcinoma27,28, was found in a single case (#172; Fig. 1c
and Supplementary Data 3). These fusions are likely genetic driver events in BCP
ALL leukemogenesis. The importance of the novel in-frame gene fusions in the
remaining five cases remains to be determined, but it is noteworthy that three had
fusions (DENND1B-ZCCHC7, MEF2D-FOXJ2, IKZF1-NUTM1) involving ge-
nes recurrently rearranged in BCP ALL, namely ZCCHC7, MEF2D, IKZF1 and
NUTM1 (ref. 25).

A high frequency of B-other cases from the validation cohort (36/49, 73%)
also expressed an in-frame gene fusion. Using the same criteria as in the disco-
very cohort, the B-other cases in the validation cohort could be subdivided into
DUX4-rearranged BCP ALL (n = 20), ‘B-other, with fusion’ (n = 14), ‘B-
other, without fusion’ (n = 7), Ph-like (n = 4; Supplementary Fig. 9b) or
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ETV6-RUNX1-like (n = 4; Supplementary Fig. 10). Within the ‘B-other, with
fusion’ group, ten cases harboured in-frame fusions previously described in BCP
ALL: EP300-ZNF384 (n = 3), PAX5-FOXP1 (n = 2), P2RY8-CRLF2 (n = 2,
one of these cases also harboured PAX5-FOXP1), PAX5-DACH1 (n = 1), PAX5-
ETV6 (n = 1), TCF3-HLF (n = 1) and TCF3-ZNF384 (n = 1). Three of
the remaining cases had a novel in-frame MEF2D-HNRNPUL1 gene fusion and
one case expressed a novel MED12-HOXA9. Hence, the majority of cases in the
‘B-other, with fusion’ group express recurrent gene fusions. Further studies are
required to establish if these can be further stratified into biologically and clini-
cally meaningful subtypes. However, we note that cases with fusions affecting
each of the genes ZNF384, and MEF2D formed distinct but separate expression
clusters by unsupervised hierarchical clustering, thus outlining possible subtypes
characterized by similar gene fusions (Supplementary Figs 4, 10).

1.5 Gene fusions in established genetic subgroups

Most of the established genetic BCP ALL subgroups are based on recurrent gene
fusions such as BCR-ABL1, ETV6-RUNX1, TCF3-PBX1, and MLL fusions. In
the discovery cohort, the presence of these fusions had been ascertained by routine
diagnostic analyses. By RNA-seq we could confirm these known gene fusions or
their reciprocal variants in 77/81 (95%) cases (Supplementary Fig. 11). This
implies that the RNA-seq analysis provided a relatively complete overview of the
entire fusion-gene landscape, including also the novel identified fusions. The four
instances of known gene fusions that could not be confirmed by RNA-seq were
presumably caused by low expression of the fusion or rearrangements too complex
for the analysis pipeline to elucidate.

High-hyperdiploid cases showed a notable lack of fusion genes, with only 2/58
cases in the discovery cohort harbouring in-frame fusion genes (3%, P < 0.001,
Fisher’s exact test; an additional three cases carried out-of-frame fusions), in ac-
cordance with our recent findings from WGS11 (Figs 1c,d and 2). It was also
uncommon for cases with BCR-ABL1 (n = 6), TCF3-PBX1 (n = 13) and
MLL fusions (n = 14) to have additional in-frame or out-of-frame gene fusi-
ons, the only examples being the in-frame fusions IGH-CRLF2 (in case 79 with
BCR-ABL1) and ZCCHC7-PAX5 (in case 102 with MLL-GAS7 ; Fig. 1c and Sup-
plementary Data 3). In contrast, among the ETV6-RUNX1-positive cases, 6/48
cases (13%) harboured in-frame fusions besides ETV6-RUNX1 and its reciprocal
variant, and 11/48 cases (23%) had out-of-frame fusions (Fig. 1c–e); the most
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commonly affected genes were ETV6 (n = 3) and RUNX1 (n = 10). Two of
the ETV6 fusions (with CDKN1B at 12p13 in #6 and PTPRO at 12p12 in #131;
Supplementary Data 9) were formed by deletions affecting the ETV6 allele not
taking part in in the ETV6-RUNX1 fusion. All ten RUNX1 fusions had RUNX1
as the 5’-partner gene and occurred in ETV6-RUNX1-positive cases lacking the re-
ciprocal RUNX1-ETV6 transcript (Supplementary Fig. 11), suggesting that they
arose together with the ETV6-RUNX1 fusion through a three-way translocation.

To characterize further the RUNX1 fusions at the genomic level, 5/10 ETV6-
RUNX1-positive cases containing additional RUNX1 fusions were analysed by
MP-WGS. These analyses confirmed the RUNX1 fusions at the DNA level (Sup-
plementary Data 6, 9 and 10) and revealed that the genomic breakpoints were
in close proximity to the RUNX1 breakpoints in the ETV6-RUNX1 fusion, con-
sistent with the presence of complex translocations. Such complex translocati-
ons have previously been detected in the ETV6-RUNX1-positive cases by FISH
and targeted sequencing29,30. Only one RUNX1 fusion contained an undisrup-
ted active domain from the partner gene; thus, the fusions typically resulted in
disruption of the 3’-partner gene (Supplementary Fig. 12).

1.6 Fusion-gene network analysis

To ascertain the pattern of gene fusions in BCP ALL, we performed a fusion-gene
network analysis31 of the 58 unique in-frame gene fusions identified across the
discovery and validation cohorts (Supplementary Fig. 13a). This analysis revea-
led that 15 genes (BCR, CRLF2, DUX4, ETV6, IGH, IKZF1, JAK2, LDLRAD4,
MEF2D, MLL, PAX5, RUNX1, TCF3, ZCCHC7 and ZNF384) were recurrently
involved in chimeras (Supplementary Fig. 13a). A comparison with literature
data25 highlighted that the high frequencies of fusions involving RUNX1, DUX4,
IKZF1 and LDLRAD4 were novel findings (Supplementary Fig. 13a,b). The
RUNX1 fusions were typically found in ETV6-RUNX1-positive cases, most likely
arising through complex translocations as described above, and the DUX4 fusions
were identified in the novel BCP ALL subgroup described in this study.

IKZF1, encoding IKAROS, is known to be perturbed by deletions (15% of
BCP ALL cases) and occasionally sequence mutations (2–6%; refs 5,32,33), but
has previously never been described to fuse with other genes in BCP ALL. In
the discovery cohort, the two in-frame fusions SETD5-IKZF1 (#85 with ETV6-
RUNX1-like gene expression) and IKZF1-NUTM1 (#151, ‘B-other, with fusion’)
retained functional domains from IKZF1 (Supplementary Fig. 12e,f ). IKZF1-
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NUTM1 also contained essentially the entire coding region of NUTM1, akin
to other NUTM1 fusions in midline carcinoma34 and in MLL-negative infant
ALL13. The two out-of-frame fusions (IKZF1-CDK2, #64; and IKZF1-TRPV2,
#9) contained no functional domains from IKZF1 and, hence likely abolished the
function of IKAROS. Thus, IKZF1 fusions represent a novel mechanism for dis-
rupting IKZF1 in BCP ALL.

Aberrations in LDLRAD4, encoding a negative regulator of transforming gro-
wth factor-β signalling, have previously not been described in leukaemia. We iden-
tified two in-frame fusions involving this gene: LDLRAD4-PHACTR3 (#70 with
Ph-like gene expression) and RUNX1-LDLRAD4 (#187 with ETV6-RUNX1).
Both fusions retained the LDL-receptor class-A domain in the N-terminal re-
gion of the LDLRAD4 protein, whereas the SMAD interaction motif required
for the regulation of transforming growth factor-β signalling was only retained in
RUNX1-LDLRAD4 (Supplementary Fig. 12a,d).

1.7 Intragenic splice variants and subtype classification

Somatic intragenic deletions are frequent in BCP ALL and result in the expres-
sion of truncated transcripts predicted to encode internally deleted proteins35. To
investigate if we could identify truncated transcripts associated with the most com-
mon intragenic deletions in BCP ALL (CDNK2A, PAX5, ETV6 and IKZF1)35,
we developed a novel relative splice junction quantification algorithm. This al-
gorithm identified five truncated transcript variants affecting ETV6, PAX5 and
IKZF1, with a total of 25 (13%) BCP ALL cases in the discovery cohort harbou-
ring at least one truncated transcript (Supplementary Fig. 14). Focal deletions
concordant with the truncating transcripts were present in 15/20 cases (75%) with
available SNP array data. In five cases, the truncated transcript occurred without
evidence of a focal deletion, indicating either the presence of subclonal deletions
below the detection level of the SNP array analysis or aberrant splicing caused by
other mutational mechanisms.

Our detailed RNA-seq data also allowed analyses of splicing events occurring
over the fusion breakpoints of the clinically important gene fusions BCR-ABL1,
ETV6-RUNX1, TCF3-PBX1 and MLL fusions, revealing a substantial heteroge-
neity in exon usage around the fusion breakpoints (Fig. 6a–d and Supplementary
Figs 15–18); particularly for ETV6-RUNX1 where the main variant joined exon 5
of ETV6 with exon 2 of RUNX1, whereas alternative forms fused with exon 3 of
RUNX1 or a cryptic exon within intron 1 (Fig. 6b and Supplementary Fig. 16).
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These were either observed together as splice variants or as single forms in indi-
vidual cases; the alternative variants did not affect the runt domain of RUNX1.
An alternative breakpoint joining exon 4 of ETV6 with exon 2 of RUNX1, as has
previously been described36, was identified in 2/48 (4%) ETV6-RUNX1-positive
cases (Supplementary Fig. 16).

Global gene-expression profiling by microarrays can discern between the ge-
netic subtypes of BCP ALL, although with less than perfect accuracy37–40. We
therefore constructed a classifier utilizing both gene-fusion and gene-expression
data from RNA-seq. This classifier showed improved sensitivity (correctly classi-
fying 180/195 cases, 92%) compared with a classifier based on the gene-expression
data alone (correctly classifying 174/195 cases, 89%; Supplementary Fig. 19).

1.8 Mutational analysis

The mutational landscape of single-nucleotide variants in a larger number of ge-
nes has not been studied in an unselected series of BCP ALL. Because RNA-seq
allows for the identification of expressed mutant alleles, we examined hotspot re-
gions of 16 recurrently mutated genes in BCP ALL (representing 70% of all genes
described to be mutated in more than 2 BCP ALL cases), ascertained in previous
studies9,11–13 or COSMIC41 (Supplementary Data 11). This analysis revealed
56 mutations in 47 BCP ALLs, with genes in the RTK-RAS signalling pathway
being the most commonly mutated: NRAS (23/195, 12%), FLT3 (7/195, 4%),
PTPN11 (6/195, 3%) and KRAS (3/195, 2%; Supplementary Data 11). We also
had genomic mutation data from 61 of the cases from WES (n = 22), WGS
(n = 12), both WES and WGS (n = 1), or Sanger sequencing (n = 26; refs
11,42). We observed good concordance between hotspot mutations identified by
RNA-seq and the genomic data, although some mutations in KRAS (n = 5) and
FLT3 (n = 4) observed at the DNA level escaped detection at the transcriptional
level. The mutational spectra differed between subtypes, with NRAS and KRAS
mutations being enriched in high-hyperdiploid cases43, and CRLF2, JAK2 and
IL7R mutations in Ph-like ALL cases7,8 (Fig. 2).

2 Discussion

Gene fusions are strong driver mutations in neoplasia, and have provided fun-
damental insights into the disease mechanisms involved in tumourigenesis. In
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Figure 6: Splice patterns over fusion breakpoints. Illustration of all detected fusion break-
points in BCP ALL cases with (a) BCR-ABL1, (b) ETV6-RUNX1, (c) MLL fusions, and (d) TCF3-
PBX1. Genes are arranged clockwise by genomic position. The outer circle represents the
genomic region encompassing the indicated genes. Yellow indicates untranslated regions,
green indicates coding exons, and red and grey indicate intronic regions (the latter are not
to scale). The inner circle represents one or two overlaid reference transcripts of the indi-
cated gene. Coding exons are indicated by a thick line with white arrows indicating the
direction of the gene, introns are indicated by a thin or dashed line and untranslated re-
gions are indicated by a medium thick line. Connecting lines between transcripts illustrate
fusion breakpoints detected by at least three (for BCR-ABL1, ETV6-RUNX1 and MLL fusions)
or ten reads (for TCF3-PBX1). Fusion breakpoints in individual BCP ALL cases are depicted in
Supplementary Figs 15–18.
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addition, they are increasingly used for diagnostic purposes, risk stratification and
disease follow-up, and several chimeric proteins encoded by gene fusions serve as
specific targets for treatment31.

We here describe the gene-fusion landscape of paediatric BCP ALL, and show
that the majority of cases (65%) express in-frame gene fusions, including most
B-other cases (82%) previously described to lack specific genetic changes. The no-
table exception was high-hyperdiploid cases where only 3% of cases harboured an
in-frame fusion gene. The low number of in-frame fusions in this group, however,
highlights that the background level of gene-fusion generation in BCP ALL is low.
Indeed, the median number of fusion genes per case in this study was 1 for all ma-
jor subtypes (> 3 cases) apart from high-hyperdiploid cases, showing that additio-
nal fusion genes are rarely needed for leukemogenesis. In ETV6-RUNX1-positive
cases, however, additional fusions of unclear pathogenetic importance were pre-
sent in 35% of cases. These typically involved ETV6 or RUNX1. For the latter
gene the fusions were generated through three-way translocations also creating the
ETV6-RUNX1 fusion.

We demonstrate, for the first time, that 16% of B-other cases (4% of BCP
ALL) harboured rearrangements involving the DUX4 gene. The frequency of
such rearrangements differed between the discovery and validation cohorts; so-
mething that could possibly be explained by the higher mean age of the latter
(7.1 versus 6.1 years). However, the true incidence of DUX4 rearrangements in
childhood BCP ALL needs to be further assessed in larger patient cohorts. The
rearrangements resulted in fusions between IGH and DUX4, or less commonly,
ERG and DUX4, causing aberrant DUX4 expression. DUX4 has previously only
been reported to be rearranged in round-cell sarcomas, forming a recurrent CIC-
DUX4 fusion gene. That fusion, however, only includes a small C-terminal part
of DUX4, not including the two homeobox domains44, and is therefore likely to
be functionally different from the fusions described here. Notably, all cases with
DUX4 rearrangements described herein displayed a gene-expression signature ma-
tching that of a subgroup of BCP ALL reported to be associated with frequent ERG
deletions6. DUX4 encodes a transcription factor normally expressed in germ cells
that regulates the expression of genes involved in germline and early stem cell de-
velopment18,45. Hence, it is tempting to speculate that the aberrant expression
of DUX4 in the rearranged cases cause activation of transcriptional programmes
that normally are expressed during early stem cell development. In contrast to the
ERG deletions, DUX4 rearrangements were present in all cases with the characte-
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ristic gene-expression pattern, implying that DUX4 rearrangements constitute the
founder event of this subtype and that ERG deletions are secondary cooperating
events.

Global gene-expression profiling is a powerful tool to identify leukaemias with
similar mutational backgrounds, as exemplified by the Ph-like subtype: such cases
were initially identified as having gene-expression patterns similar to those of Ph-
positive BCP ALL cases4–6 and were only later identified as being characterized by
genetic alterations that activate kinase or cytokine receptor signalling7,8. Within
the B-other group we identified a second novel subtype, consisting of cases with a
gene-expression profile similar to that of ETV6-RUNX1-positive cases but lacking
this fusion gene. Instead, they harboured lesions affecting both ETV6 and IKZF1
in all cases with ascertainable data. We termed this subtype ETV6-RUNX1-like
ALL. In contrast to cases with ETV6-RUNX1-like gene expression that have been
reported in literature, but where cryptic ETV6-RUNX1 were not excluded46, we
performed extensive genetic analyses to rule out a cryptic ETV6-RUNX1 rearran-
gement. Thus, we propose that combined ETV6 and IKZF1 lesions together may
activate similar transcriptional programmes as the ETV6-RUNX1 fusion protein.

The DUX4-rearranged and ETV6-RUNX1-like subtypes together with the
well-established subgroup of Ph-like BCP ALL4–8 accounted for 59 and 71% of
B-other cases in the discovery and validation cohorts, respectively. Of the remai-
ning B-other cases in the two cohorts, 74% expressed rare previously reported, or
novel in-frame gene fusions, many of which contained genes with recurrent altera-
tions in BCP ALL25,41. Again, these findings illustrate that paediatric BCP ALL,
with the exception of the high-hyperdiploid, near-haploid and low-hypodiploid
subgroups11,12, is characterized by the presence of fusion genes. Because many
gene fusions will be rare or even private, our study reinforces that RNA-seq may
be a powerful tool for unbiased screening of fusion genes in a clinical setting with
an unmatched power to detect novel but targetable gene fusions in BCP ALL8,47.

In conclusion, this study provides a detailed view of the fusion gene landscape
in paediatric BCP ALL, identifying several new gene fusions as well as distinct sub-
groups of BCP ALL. Apart from increasing our understanding of the pathogenesis
of paediatric BCP ALL, this may help improve risk stratification and eventually
increase the therapeutic options for this most common form of childhood malig-
nancy.
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3 Methods

3.1 Patients

Between January 1992 and January 2013, 283 paediatric (< 18 years) BCP ALL
cases were analysed as part of clinical routine diagnostics at the Department of Cli-
nical Genetics, University and Regional Laboratories Region Skåne, Lund, Swe-
den. Of these, RNA or material suitable for RNA extraction from bone marrow
(n = 171) or peripheral blood (n = 24) taken at diagnosis was available from
195 (69%) cases, comprising the discovery cohort. The vast majority was tre-
ated according to the Nordic Society of Paediatric Haematology and Oncology
(NOPHO) ALL 1992, 2000 or 2008 protocols48. There were no significant dif-
ferences in gender or age distribution between cases where RNA-seq could or could
not be performed; however, cases analysed by RNA-seq had higher white blood
cell counts (median 9.85 × 109l−1 , range 0.9–802 × 109l−1 versus median
5.5×109l−1, range 0.8–121×109l−1 ; P = 0.003; two-sided Mann-Whitney’s
U -test). The validation cohort consisted of 49 paediatric BCP ALL cases treated
according to the Berlin-Frankfurt-Münster (BFM) 2000 protocol49. All cases in
the validation cohort were tested for BCR-ABL1, ETV6-RUNX1, TCF3-PBX1,
MLL rearrangements, and high hyperdiploidy in accordance with the treatment
protocol, and were found negative for these aberrations. Informed consent was
obtained according to the Declaration of Helsinki and the study was approved by
the Ethics Committee of Lund University.

3.2 RNA sequencing

The cDNA sequencing libraries were prepared from poly-A selected RNA using
the Truseq RNA library preparation kit v2 (Illumina) according to the manufac-
turer’s instructions, but with a modified RNA fragmentation step lowering the
incubation time at 94 °C from 8 min to 10 s to allow for longer RNA fragments.
The cDNA libraries were sequenced using a HiScanSQ (Illumina) or NextSeq 500
(Illumina).

3.3 Gene-fusion detection

Gene fusions were detected by combining three methods. Novel fusions were de-
tected by Chimerascan50 (0.4.5) and TopHat-Fusion-post51 (2.0.7), followed by

53



PAPER I

a custom filter strategy and validation by RT-PCR. Known fusion transcripts of
BCR-ABL1, ETV6-RUNX1, TCF3-PBX1 and MLL fusions were detected by alig-
ning all reads to a reference consisting of the known fusion transcripts and normal
transcript variants of the genes, and counting reads uniquely aligned to the fusion
transcripts. IGH-CRLF2 fusions were detected by identifying cases that had> 50
reads within a 65-kb region surrounding CRLF2 paired to a read within the IGH
locus; these fusions were then validated using FISH. The following filter strategy
was used for selection of validation candidates from Chimerascan and TopHat-
Fusion-post results: all fusions reported by Chimerascan to be supported by ten
or more reads over the fusion junction or> 50 total reads, all fusions reported by
TopHat-Fusion-post to be supported by> 15 reads covering the fusion junction,
and remaining interchromosomal fusions detected by Chimerascan that were also
detected by TopHat-Fusion-post were included for validation, unless: (1) Chime-
rascan annotated the event as ‘Read through’; (2) the affected exons had > 75%
of reads mapped with a quality score below five; (3) reads supporting the same fu-
sion were detected (by either TopHat or Chimerascan) in one of 20 sorted normal
bone marrow samples; (4) the fusion indicated rearrangement within an IG or
TCR locus or involved two HLA genes (the latter were presumed to represent nor-
mal constitutional HLA variants); (5) the fusion involved two non-coding genes;
or (6) the constituent genes were located less than 10kb apart.

In addition, remaining fusions detected by either Chimerascan or TopHat-
Fusion-post were included if the fusion (1) was reciprocal to a fusion passing the
above filters or a previously reported fusion in BCP ALL; or (2) contained one of
the recurrently altered genes ETV6, RUNX1, MLL, PAX5 or IKZF1.

3.4 Gene-expression analysis

The raw unfiltered RNA-seq reads were aligned to human reference genome hg19
using TopHat 2.0.7, with the parameters --fusion-search and --bowtie1 to enable
fusion detection. Gene-expression values were calculated as fragments per kilobase
of transcript per million reads (fpkm) using Cufflinks 2.2.0 (ref. 52). Hierarchi-
cal clustering and principal component analyses were performed using Qlucore
Omics Explorer (v3.1; Qlucore, Lund, Sweden). In brief, the data were norma-
lized to a mean of 0 and a variance of 1. Hierarchical clustering of both samples
and variables was performed using Euclidean distance and average linkage.
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3.5 Genomic sequencing analyses

For 11 cases in the discovery cohort, whole-exome libraries were prepared from
diagnostic and follow-up samples using the Nextera Rapid Capture Exome Kit
(Illumina) according to the manufacturer’s instructions. Paired 2 × 151 bp re-
ads were produced from the exome libraries using a NextSeq 500 (Illumina). The
reads were aligned to human reference genome hg19 using BWA 0.7.9a (ref. 53)
and PCR duplicate reads were filtered out using SAMBLASTER54. Somatic va-
riant calling was performed using Strelka55. For 15 cases in the discovery cohort,
MP-WGS libraries were prepared using the Nextera Mate Pair Library Preparation
Kit (Illumina). Paired 2×76 bp reads were produced from the mate-pair libraries
using a NextSeq 500 (Illumina). The reads were aligned to human reference ge-
nome hg19 using BWA 0.7.9a (ref. 53) and PCR duplicate reads were filtered out
using SAMBLASTER54. For 24 high-hyperdiploid cases in the discovery cohort,
extensive characterization using WES (n = 11), WGS (n = 12) or both (n = 1)
has been previously described11.

3.6 Identification of leukaemia-specific splice variants

Splicing differences between samples were characterized by ascertaining the relative
frequencies of splice junction usage across all observed splice donor and acceptor
sites, from reads aligned by TopHat. All intragenic splice junctions that were sup-
ported by at least 10 reads in at least one sample and that involved at least one
annotated exon were included. For each splice donor or acceptor site, alternative
splicing was quantified by measuring the fraction of reads supporting each obser-
ved splice junction containing that site. If a splice acceptor or donor site was not
covered by any reads within a sample, the corresponding variables were treated
as missing values and reconstructed as the average value of samples that had data
for the site. From these data, all splice variants in CDKN2A, PAX5, ETV6 and
IKZF1 that were not present in a reference transcript and not detected in one of
20 normal bone marrow populations (sorted from four donors) were included in
the analysis.

3.7 Gene set enrichment analysis

GSEA was performed on gene-expression data obtained from the RNA-seq ana-
lysis, using Qlucore Omics Explorer (v3.1). Signal-to-noise ratio was used as ran-
king metrics for analysing curated gene-ontology gene sets (C5) acquired from the
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Molecular Signatures Database (MSigDB). Gene sets with < 15 or > 500 genes
were excluded. Enriched gene sets after 1,000 permutations at an false-discovery
rate of < 0.25 and a nominal P < 0.05 were considered as significant.

3.8 Support vector machine classification

A classifier based on the gene-expression and gene-fusion data was created to ca-
tegorize the samples into the subtypes BCR-ABL1, ETV6-RUNX1, high hyper-
diploidy, MLL, TCF3-PBX1, and ‘B-other + rare subgroups’. The subtypes were
considered to be mutually exclusive. First, one-versus-all support vector machine
classifiers56 with linear kernels were created for all subtypes. They were based on
the log2 transformed gene-expression data after variable selection by removal of
variables with low variance across the samples. The threshold was set to a standard
deviation of 0.29, resulting in 583/23,285 variables (2.5%) being used. Next,
the classifiers were augmented by the detected gene fusions. If a gene fusion cor-
responding to one of the subgroups was found in a sample, it was classified as
belonging to that subgroup regardless of the expression profile. These samples
were treated as having ±∞ distance to the support vector machine classification
hyperplane. Finally, a multiclass classifier was created from all the one-versus-all
classifiers, by selecting the class that had the lowest signed distance between the
sample and the classification hyperplane. The performance of the multiclass and
all binary subgroup classifiers was evaluated by leave-one-out cross-validation.

3.9 RNA-Seq mutation calling

The raw unfiltered reads were aligned to human reference genome hg19 using
STAR 2.4.0j (ref. 57). Putative mutations within hotspot regions of 16 genes
were identified using VarScan 2.3.7 (ref. 58). The variants were annotated using
Annovar59 and known constitutional variants were excluded from the list.

3.10 RT-PCR and Sanger sequencing

For gene-fusion validation, primer3 was used to design primers for amplifying a
region larger than 200bp covering the fusion breakpoint. Reverse transcription
was performed using M-MLV (Thermo Fischer Scientific) and PCR was perfor-
med using Platinum Taq (Thermo Fischer Scientific). The PCR products were
purified using Exosap-it (Affymetrix) or Qiaquick gel extraction kit (Qiagen) and
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then Sanger sequenced by a commercial sequencing service provider. RT-PCR for
detection of truncated ERG transcripts was performed using primers previously
described14. Sanger sequencing of FLT3, NRAS, KRAS and PTPN11 in 26 high-
hyperdiploid cases in the discovery cohort was performed using primers described
in Supplementary Table 2. This data has been published previously42.

3.11 SNP array analysis

SNP array analysis was performed on DNA extracted from bone marrow or pe-
ripheral blood at diagnosis for 156 BCP ALL cases. The analysis was performed
using HumanOmni1-Quad and Human1M-Duo array systems (Illumina) with
data analysis using Genomestudio 2011.1 (Illumina). The SNP array data has
been previously published3.

3.12 Statistical methods

Two-sided P values were calculated using Fisher’s exact test or Mann-Whitney’s
U -test. P -values of < 0.05 were considered statistically significant.

3.13 Data availability

RNA-seq and MP-WGS data have been deposited at the European Genome-
phenome Archive (EGA), under the accession code EGAS00001001795. WES
and WGS data are available for academic purposes by contacting the correspon-
ding author, as the patient consent does not cover depositing data that can be used
for large-scale determination of germline variants.
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Supplementary Figure 1: Distribution of the 195 BCP-ALL cases among thirteen genetic sub-
types. The subtypes “High hyperdiploid” (51-67 chromosomes) and “Hypodiploid” (<45 chro-
mosomes) excludes cases positive for BCR-ABL1, ETV6-RUNX1, MLL, TCF3-PBX1 and iAMP21.
Of the 50 cases classified as B-other, 41 were negative for BCR-ABL1, ETV6-RUNX1,MLL, TCF3-
PBX1 and iAMP21, while nine cases had incomplete testing for one or more of these aber-
rations. Three cases originally classified as B-other were reclassified as ETV6-RUNX1 or MLL,
based on RNA-seq findings.
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Supplementary Figure 2: Identification of IGH-DUX4 breakpoints. Reads from RNA-
sequencing (RNA-seq), whole exome sequencing (WES), and mate pair whole genome se-
quencing (MP-WGS) that support a IGH-DUX4 rearrangements are visualized using IGV 1 for
the cases (a) #35, (b) #47, (c) #53, (d) #67, (e) #124, (f) #174, and (g) #179. Within each IGVwin-
dow, the sequencing reads are illustrated below the chromosomal coordinates and include
RNA-seq (top), WES (middle), andMP-WGS (bottom). WES data for breakpoint detection was
available for the cases #35, #47, #174, and #179. The DUX4 coding region or genes within
IGH are indicated below the sequencing reads. The detected breakpoints are indicated by
a red line. The visualization only contains read pairs consisting of one read within IGH and
one read in the DUX4, and thus supporting a breakpoint involving these regions. Reads in
the RNA-seq andWES libraries will be directed towards the breakpoint they support whereas
reads in the MP-WGS library will be directed away from the breakpoint. The insert sizes were
between 1-8 kb for MP-WGS libraries and between 200-400 for RNA-seq and WES libraries.
The exact 5’ breakpoints for case #35 and the exact 3’ breakpoints for case #67 could not
be conclusively determined from the visualized reads. The exact breakpoints for these cases
were instead detected by guided assembly of all RNA-seq reads mapping to theDUX4 region,
followed by alignment of “overhang” regions. (Continued on the following pages.)

 

 
 
 Supplementary Figure 2: a.
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Supplementary Figure 2: b.

 

 
 

Supplementary Figure 2: c.
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Supplementary Figure 2: d.

 

 
 

Supplementary Figure 2: e.
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Supplementary Figure 2: f.

 

 

Supplementary Figure 2: g.
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 Supplementary Figure 3: DUX4 expression in DUX4-rearranged cases. DUX4 gene expression
in 244 BCP ALL cases with and without DUX4 rearrangement from the combined discovery
and validation cohorts. DUX4 is significantly overexpressed in DUX4-rearranged cases. The
boxes are defined by the first and third quartiles and whiskers extend from the boxes to the
highest and lowest values. Two sided P -value calculated using Mann-Whitney U test.
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Supplementary Figure 4: (Continued on the following page.)
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Supplementary Figure 4: Hierarchical clustering based on the eight “ROSE” gene sets (R1-
R8) described by Harvey et al 2. (a) Hierarchical clustering of the 195 BCP ALL cases in the
discovery cohort. Three BCR-ABL1-positive cases and 11 cases from the B-other group form
a cluster with high expression of genes from the R8 gene set, indicating a Ph-like expression
profile. In addition, all eight cases with DUX4 rearrangement cluster together and exhibit
high expression of the genes from the R6 gene set. (b) Hierarchical clustering of the 244
BCP ALL cases in the combined discovery and validation cohorts. All 28 DUX4 rearranged
cases cluster together and exhibit high expression of the genes from the R6 gene set. In
addition, all six cases with ZNF384 (EP300-ZNF384, n = 4; TAF15-ZNF384, n = 1, TCF3-ZNF384,
n = 1) cluster together and exhibit high expression of the genes of the R5 gene set. All four
cases with fusions involvingMEF2D (MEF2D-HNRNPUL1, n = 3;MEF2D-FOXJ2, n = 1) cluster
together and exhibit high expression of the genes of the R3 gene set.
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 Supplementary Figure 5: ERG deletions in DUX4-rearranged cases. ERG deletions in DUX4-
rearranged cases detected by mate pair whole genome sequencing (MP-WGS) and visualized
using IGV 1. (a) cases #35, #47, #53, and #67, and (b) cases #75, #124, #174, and #179. The
insert sizes for MP-WGSwere 1-8 kb. Read pairs mapped> 20 kb apart, indicating a deletion,
are indicated in red. Read pairs indicating intragenic ERG deletions were detected in cases
#47, #53, #67, #124, and #179. (Continued on the following page.)
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Supplementary Figure 5: c-d. ERG deletions in DUX4-rearranged cases in the validation co-
hort detected indirectly by RT-PCR. (c) RT-PCR of 20 BCP ALL cases with and eight BCP ALL
cases without DUX4 rearrangement. 10/20 cases with DUX4 rearrangement express trunca-
ted ERG transcripts, indicating ERG deletions. (d) RT-PCR for ABL1 verifying integrity of cDNA
for all cases.
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Supplementary Figure 6: Expression of transmembrane receptor protein kinase activity ge-
nes in 195 BCP ALLs. Expression profile of genes involved in transmembrane receptor protein
kinase activity, highlighted by gene set enrichment analysis to be enriched in ETV6-RUNX1-
positive cases.
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 Supplementary Figure 7: Expression of transmembrane receptor protein phosphatase acti-
vity genes in 195 BCP ALLs. Expression profile of genes involved in transmembrane receptor
protein phosphatase activity, highlighted by gene set enrichment analysis to be enriched in
ETV6-RUNX1-positive cases.
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 Supplementary Figure 8: Expression of neurogenesis genes in 195 BCP ALLs. Expression
profile of genes involved in neurogenesis, highlighted by gene set enrichment analysis to be
enriched in ETV6-RUNX1-positive cases.
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Supplementary Figure 9: Identification of caseswith Ph-like gene expression. (a) Hierarchical
clustering of 195 BCP ALL cases from the discovery cohort based on genes with a significantly
(P < 0.00001, two-sided t-test) altered expression in the 11 B-other and three BCR-ABL1-
positive cases from the R8-cluster (Supplementary Fig 4a). This analysis revealed five additi-
onal cases (four B-other and one BCR-ABL1-positive) with a similar gene expression profile.
The 15 B-other cases in this cluster were labeled “Ph-like”. (b) Hierarchical clustering of 244
BCP ALL cases from the combined discovery and validation cohorts based on the same genes
as in (a). Five cases in the validation cohort cluster with the Ph-like cases. Of these, one case
(case val_25) exhibited an ETV6-RUNX1-like gene expression profile and harbored an out of
frame ETV6-BCL2L14 gene fusion. The remaining four cases were labeled ”Ph-like”.
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 Supplementary Figure 10: Unsupervised hierarchical clustering analysis of 244 BCP ALL cases
in the combined discovery and validation cohorts. The clustering is based on 631 genes
that were retained after the variance threshold was set to 0.285. A total of 10 ETV6-RUNX1-
negative cases cluster together with the ETV6-RUNX1-positive cases, 6 from the discovery
cohort and 4 from the validation cohort.
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Supplementary Figure 11: Concordance between fusion gene detection by RNA-seq and di-
rected methods. Concordance between fusion gene detection by RNA-seq and directed met-
hods (RT-PCR, FISH, or Southern blot). ETV6-RUNX1 or RUNX1-ETV6 fusions could be detected
by RNA-seq in 45/46 cases that had been positive by RT-PCR or FISH. In addition, ETV6-RUNX1
fusions were detected in one case that had not been tested and in one case that had been
negative by RT-PCR. The latter fusion had a rare breakpoint that was not detectable by the
RT-PCR assay. MLL fusions were detected by RNA-seq in 10/13 cases that had been positive
by FISH, RT-PCR, or Southern blot. In addition, one case that had been negative for MLL-
rearrangements by FISH harbored an intrachromosomal MLL-USP2 fusion. TCF3-PBX1 could
be detected by RNA-seq in all 13 cases where the fusion had been detected by RT-PCR. BCR-
ABL1 or ABL1-BCR fusions could be detected in all cases that had been positive for BCR-ABL1
by RT-PCR.
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Supplementary Figure 12: Gene positions and protein domains for the 25 novel fusion genes.
Gene positions and protein domains for the 25 novel fusion genes, divided by subtype: (a)
ETV6-RUNX1-positive, (b) High hyperdiploid, (c) iAMP21, (d) Ph-like, (e) ETV6-RUNX1-like,
and (f) B-other, with fusion. (Continued on the following page.)
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Supplementary Figure 13: Gene fusion network analysis. Gene fusion network analysis of
(a) in-frame fusions detected in 244 BCP-ALL cases in the combined discovery and validation
cohorts, and (b) fusions in BCP-ALL cases from literature data 3. Genes with two or more
fusion partners (from different cases) are indicated by their gene symbol. Only gene fusions
discovered using guided methods (i.e. not deep sequencing) were included in the literature
data.
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Supplementary Figure 14: Leukemia specific splice variants in ETV6, PAX5, and IKZF1. Heat-
map illustrating the presence of leukemia specific splice variants in ETV6, PAX5, and IKZF1.
All splice junctions not present in a reference transcript and not detected in 20 sorted bone
marrow populations (from four individual donors) are depicted. CDKN2A was also analy-
zed, but no leukemia specific junctions were identified. Leukemia specific junctions in ETV6,
PAX5, and IKZF1 with a relative fraction above 0.1 was present in 25 cases, indicated by ar-
rows. Black arrows indicate cases with splice junctions concordant with deletions detected
by SNP array, red indicates discordance with SNP array data, and grey indicates cases with no
SNP array data available.

84



Supplementary Information

Case 51 Case 139 Case 154 Case 169

10

20

50

ABL1

BCR

100

20

50

ABL1

BCR

100

20

50

ABL1

BCR

100

20

50

ABL1

BCR

Supplementary Figure 15: Fusion junctions detected in 4 BCR-ABL1-positive cases. Genes
are arranged clockwise by genomic position. The outer circle represents the genomic region
encompassing the indicated genes. Yellow indicates untranslated regions, green indicates
coding exons, and red and grey indicate intronic regions (the latter are not to scale). The
inner circle represents one or two overlaid reference transcripts of the indicated gene. Co-
ding exons are indicated by a thick line with white arrows indicating the direction of the
gene, introns are indicated by a thin or dashed line, and untranslated regions are indicated
by a medium thick line. Connecting lines between transcripts illustrate fusion breakpoints
detected by at least three reads. Green lines indicate fusions breakpoints for BCR-ABL1 and
orange lines indicate fusion breakpoints for ABL1-BCR, as inferred from the position of the
breakpoints.

85



PAPER I

100

200

50

ETV6

RUNX1

100

20

50

ETV6

RUNX1

100

200

50

ETV6

RUNX1

100

200

50

ETV6

RUNX1

Case 2 Case 3 Case 6 Case 13

100

200

50

ETV6

RUNX1

Case 24

100

20

50

ETV6

RUNX1

10
20

50

ETV6

RUNX1

100

200

50

ETV6

RUNX1

Case 30 Case 32 Case 33

10

20

5

ETV6

RUNX1

100

20

50

ETV6

RUNX1

Case 37 Case 41

10

20

5

ETV6

RUNX1

10
20

50

ETV6

RUNX1

Case 50 Case 52

10
20

50

ETV6

RUNX1

100

200

50

ETV6

RUNX1

Case 57 Case 61 Case 65

100

20

50

ETV6

RUNX1

100

20
50

ETV6

RUNX1

Case 71

100

200

50

ETV6

RUNX1

Case 89

100

20
50

ETV6

RUNX1

100

200

50

ETV6

RUNX1

Case 80 Case 87

10
20

50

ETV6

RUNX1

Case 93

Supplementary Figure 16: Fusion junctions detected in 44 ETV6-RUNX1-positive cases. Con-
necting lines between transcripts illustrate fusion breakpoints detected by at least three re-
ads. Green lines indicate fusions breakpoints for ETV6-RUNX1 and orange lines indicate fu-
sion breakpoints for RUNX1-ETV6, as inferred from the position of the breakpoints. Grey
lines indicate fusion breakpoints involving an intron or a gene not depicted, regardless of
the inferred fusion direction. (Continued on the following page.)
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Supplementary Figure 17: Fusion junctions detected in 10 cases positive for MLL-fusions.
Connecting lines between transcripts illustrate fusion breakpoints detected by at least three
reads. Green lines indicate breakpoints where MLL is the 5’ partner and orange lines indi-
cate fusion breakpoints where MLL is the 3’ partner, as inferred from the position of the
breakpoints.
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Supplementary Figure 18: Fusion junctions detected in 13 TCF3-PBX1-positive cases. Con-
necting lines between transcripts illustrate fusion breakpoints detected by at least ten reads.
Green lines indicate fusions breakpoints for TCFR3-PBX1. Grey lines indicate fusion break-
points involving an intron.
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Supplementary Figure 19: Classification of 195 BCP ALL cases from the discovery cohort ba-
sed on gene expression data and gene fusion data. True positive rates versus false positive
rates plotted for classifiers based on 1) both gene fusion and gene expression data (red) and
2) only gene expression data (dashed blue). In total, 180/195 samples (92%) were correctly
classified when utilizing both data sets, compared to 174/195 samples (89%) when only ex-
pression data was used.
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Case
Gene Fusions
(RNA-seq)

Deleted
Genes
(SNP-
array)

Targeted ETV6-RUNX1
analysis Karyotype

FISH RT-PCR

Case 64
ETV6-PMEL
HM13-TSPAN31
IKZF1-CDK2

Not done
Negative for
ETV6-RUNX1
(wcp12)

Negative 46,XY,del(1)(q21),-7,-12,+mar,
inc

Case 68
ETV6-
LOH12CR1

ETV6,
IKZF1,
PAX5

Negative for
ETV6-RUNX1 Negative 46,XX

Case 85
P2RY8-CRLF2
IKZF1-SETD5
SETD5-IKZF1

ETV6,
BTG1 Not done Negative 47,XY,t(3;7)(p25;p12),+21c,inc

Case 105 None Not done Not done Negative 46,XY

Case 111 None ETV6,
IKZF1 Negative 45,XX,dic(7;12)(p11;p11)

Case 176 ETV6-NID1 ETV6,
IKZF1 Negative

45,XY,?der(1)t(1;12)(q44;p13),
dic(7;12)(p11;p11),del(12)(p13),
-14,ins(14;?)(q24;?),+der(?)t(?;12)
(?;p13) (partly based on FISH)

Supplementary Table 1: Summary of genetic aberrations detected in six BCP ALL cases with
ETV6-RUNX1-like gene expression profile.

Analysis Primer sequence

ERG deletion Forward: 5’CTC CTC CAG CGA CTA TGG AC 3’
Reverse: 5’GCG GCT GAG CTT ATC GTA GT 3’

FLT3 internal tandem duplication Forward: 5´GCA ATT TAG GTA TGA AAG CCA GC 3´
Reverse: 5´CTT TCA GCA TTT TGA CGG CAA CC 3´

FLT3 activating mutations Forward: 5´ATC ATC ATG GCC GCT CAC 3´
Reverse: 5´ GCA CTC AAA GGC CCC TAA CT 3´

NRAS exon 2 (codons 12 and 13) Forward: 5’-GTACTGTAGATGTGGCTCGCCA-3’
Reverse: 5’-GCCTCACCTCTATGGTGGGAT-3’

NRAS exon 3 (codon 61) Forward: 5’-ACCCCCAGGATTCTTACAGAA-3’
Reverse: 5’-GCCTGTCCTCATGTATTGGTCT-3’

KRAS exon 2 (codons 12 and 13) Forward: 5’-TGTATTAACCTTATGTGTGACATGTTC-3’
Reverse: 5’-CACCAGTAATATGCATATTAAAACAAG-3’

KRAS exon 3 (codon 61) Forward: 5’-CTGTGTTTCTCCCTTCTCAGGATTC-3’
Reverse: 5’-AAGAAAGCCCTCCCCAGTCCT-3’

PTPN11 exon 3 Forward: 5’-CCGACGTGGAAGATGAGATCTG-3’
Reverse: 5’-CATACACAGACCGTCATGCATTTC-3’

PTPN11 exon 13 Forward: 5’-CTCTGAGTCCACTAAAAGTTGTGCAT-3’
Reverse: 5’-AGCAAGAGAATGAGAATCCGCA-3’

Supplementary Table 2: Primers used for detecting somatic mutations.
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Abstract

RNA viruses pose serious threats to human health. Their success
relies on their capacity to generate genetic variability and, conse-
quently, on their adaptive potential. We describe a strategy to at-
tenuate RNA viruses by altering their evolutionary potential. We ra-
tionally altered the genomes of Coxsackie B3 and influenzaA viruses
to redirect their evolutionary trajectories towards detrimental regi-
ons in sequence space. Specifically, viral genomes were engineered
to harbour more serine and leucine codons with nonsense mutation
targets: codons that could generate Stop mutations after a single
nucleotide substitution. Indeed, these viruses generated more Stop
mutations both in vitro and in vivo, accompanied by significant los-
ses in viral fitness. In vivo, the viruses were attenuated, generated
high levels of neutralizing antibodies and protected against lethal
challenge. Our study demonstrates that cornering viruses in ‘risky’
areas of sequence space may be implemented as a broad-spectrum
vaccine strategy against RNA viruses.
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Vaccines remain the most successful means of controlling morbidity and mor-
tality caused by RNA viruses, yet relatively few viral vaccines exist. In recent ye-
ars, several severe outbreaks have occurred: chikungunya and Zika viruses in the
Americas, coronaviruses in the Middle East, and Ebola virus in West Africa. Con-
sequently, there is a need for rationally designed and broadly applicable vaccine
strategies. Given their high mutation rates, large population sizes and short ge-
neration times, RNA viruses can evolve rapidly, and strategies to control RNA
viruses should take into account this adaptive potential. Due to their mutation
rates, RNA viruses generate networks of closely related genetic variants, linked
through mutation1, that allow them to escape from selective pressures and adapt
to different environments2. Ultradeep characterization of single nucleotide poly-
morphisms of viral populations reveals thousands of variants3 heterogeneously dis-
tributed throughout the genome. This ‘genetic architecture’ suggests that certain
mutations might be more or less accessible depending on the original nucleotide
or codon, thereby defining different mutational neighbourhoods within the same
sequence space4. In evolutionary biology, sequence space refers to every combi-
nation of a given sequence and theoretically is a vast multidimensional hypercube
connecting all possible combinations. The localization of a virus population in
sequence space, defined by its starting sequence, should then determine which
mutational neighbourhoods are accessible. It is thus proposed that access to cer-
tain neighbourhoods will determine the potential of reaching beneficial mutations
to facilitate adaptation4,5.

However, even the best of mutational neighbourhoods is not without risk in
terms of impact of mutation on fitness. Most studies addressing how organisms ex-
plore sequence space are theoretical and tested in silico using digital organisms6,7.
Limited empirical data support the notion that the ‘viable’ sequence space is signi-
ficantly smaller than the theoretical. For RNA viruses, most mutations are delete-
rious8,9, and up to 40% of non-synonymous changes are lethal3,10. This is further
evidenced in lethal mutagenesis, where antiviral treatment with mutagenic com-
pounds leads to extinction11,12. Consequently, viruses have probably established a
balance between generating beneficial mutations and tolerating detrimental ones.
This trait, termed ‘mutational robustness’, is defined as ‘phenotypic conservation
in light of genetic variation’13. Given the biological constraints that limit the vi-
able sequence space occupied by RNA viruses, we asked whether their capacity
to explore sequence space (and, ultimately, their fitness) could be restricted by
placing them closer to detrimental mutational neighbourhoods.
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To address this question, we genetically engineered Coxsackie B3 and in-
fluenza A viruses to present altered synonymous codon architectures that would
change their starting positions in sequence space and therefore limit their access
to mutational neighbourhoods. Specifically, we rewired leucine and serine codons
to constrain the expansion of viral populations towards detrimental mutational
neighbourhoods, where the product of mutation would favour nonsense muta-
tion targets resulting in Stop mutations. These engineered viruses were attenuated
in vivo, with an increased number of Stop mutations in viral progeny. Animals
immunized with these vaccine candidates were protected against lethal infection.
We thus show that RNA viruses can be rationally attenuated by redirecting their
evolutionary trajectories towards detrimental areas of sequence space.

1 Results

1.1 Reprogramming a viral genome to have enhanced pro-
clivity for non-sense mutations

Our goal was to assess the effect of shifting the location of a virus in sequence
space towards less ‘hospitable’ regions that increase its propensity to generate non-
sense mutations. However, altering location in sequence space requires changes in
nucleotide sequence, which can result in confounding factors such as changes in
the amino-acid sequence or RNA structure, or the introduction of nucleotide and
codon biases14,15. To minimize these factors, we introduced only synonymous
changes, so that viral proteins retained the same amino-acid sequence and the
same functions as wild-type virus. Furthermore, we only changed the codons for
two amino acids with the highest codon redundancy (leucine and serine) to limit
the overall change in nucleotide sequence to less than 5% and to focus on codons
on which mutations would have the greatest impact on viability. Among the Leu
and Ser codons, we defined a category termed ‘1-to-Stop’, because point mutati-
ons on these codons could result in Stop mutations (Fig. 1a). We also defined
a ‘NoStop’ category, which in contrast requires two nucleotide changes to reach
Stop mutations. For Coxsackie virus B3 (CVB3), we targeted the P1 structural
protein-coding region (Fig. 1a), which lacks RNA structural elements required for
replication and translation. Because this viral RNA is translated into a single po-
lyprotein that is cleaved into individual viral proteins, a Stop mutation appearing
in this region will inactivate the virus. We thus generated CVB3 in which all 117
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Ser/Leu codons in P1 were synonymously changed to either 1-to-Stop or NoStop
categories. To investigate if this strategy can be applied broadly, we also targeted a
very different RNA virus, the influenza A virus, which has a segmented, negative
sense genome. In this case, two genomic segments were targeted independently:
the PA polymerase subunit protein (111 Ser/Leu codons) or the haemagglutinin
glycoprotein HA (94 Ser/Leu codons) (Fig. 1a).

Large-scale codon reshuffling may attenuate viruses by introducing a bias in
codon pairs that are under-represented in the human genome14, so we verified
that this potentially confounding effect did not occur in our design. We compa-
red our viruses (Fig. 1b) with those used by Coleman et al.14 (PV-Min, PV-Max
and PV-SD) to link codon pair bias and attenuation. These poliovirus (a related
enterovirus) constructs were codon-shuffled in the same P1 region. The change
in codon pair bias in our viruses was significantly less than for the PV-Min vi-
rus, which had 1,000-fold reduced replication14. Even PV-SD, which was not
attenuated in their study, presented more bias than our constructs. The attenua-
tion obtained from codon reshuffling can also result from dinucleotide bias, where
higher CpG content decreases replication15. Compared to the dinucleotide fre-
quency described for the highly attenuated echovirus 7 by Tulloch et al.15 (CpG-
high E7), no significant changes in CpG dinucleotide frequency were introduced
in our 1-to-Stop and NoStop constructs (Fig. 1c). Subsequently, we investigated
the production of infectious particles for these viruses at high (Fig. 1d,e) or low
(Supplementary Fig. 1a,b) multiplicities of infection (MOI). All viruses grew to
comparable final titres, although fewer infectious progeny were produced at some
time points for the CVB3 1-to-Stop construct (Fig. 1d). To test whether this was
due to defects in replication, we quantified RNA genome synthesis. All viruses
generated the same amounts of RNA at every time point (Fig. 1f,g). We further
confirmed these results in an in vitro RNA replication assay using replication com-
plexes purified from infected cells, where yields for wild-type and 1-to-Stop viruses
were equal (Supplementary Fig. 2). Thus, our data showed that, for both CVB3
and influenza A virus, the altered Leu/Ser codons had no discernible impact on
RNA synthesis and replication kinetics. Finally, genetic and phenotypic stabilities
were evaluated after 10 passages. No reversion in Ser/Leu altered positions was
observed, and each virus retained its phenotype (growth titres, relative number of
Stop mutations) (Supplementary Fig. 3).
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Figure 1: (Continued on the following page.)
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Figure 1: Construction of 1-to-Stop and NoStop RNA viruses. a, Schematic representation of
the six Leu and six Ser codons that are similarly represented in wild-type virus genomes, with
codons belonging to the 1-to-Stop (red) and NoStop categories (blue) shown in colour. The
stopmutations that can occur after a single point mutation are indicated. The Coxsackie virus
B3 (CVB3) genome illustrates RNA structures required for replication (5’untranslated region
(UTR), IRES, CRE and 3’UTR) and the single open reading frame encoding structural proteins
(P1 region) and non-structural proteins (P2, P3 regions). The 117 Ser/Leu codons of the P1
region were altered to construct the 1-to-Stop viruses and NoStop viruses. The influenza A
virus genome is composed of eight gene segments. The HA and PA genes were altered at 94
and 111 Ser/Leu codons, respectively, to generate the 1-to-Stop andNoStop viruses. An, polyA
tail. b, Codon pair bias of wild-type, 1-to-Stop and NoStop CVB3 and influenza A viruses
compared to previously published wild-type poliovirus (PV-WT) and constructs engineered
to attenuate viruses through codon pair deoptimization: PV-Max, in which codon pairs over-
represented in the human genome were maximized (no reduction in replication); PV-Min, in
which codon pair bias was maximized by using codon pairs under-represented in the human
genome (1,000-fold reduction in replication); and PV-SD, with randomly shuffled codons (no
reduction in replication). c, CpG dinucleotide frequencies in wild-type, 1-to-Stop and NoStop
CVB3 and influenza A viruses, relative to previously published wild-type Echovirus 7 (E7) and
its high-CpG content construct shown to be attenuated. d, Production of infectious viral
progeny over time of wild-type, 1-to-Stop and NoStop CVB3 viruses in HeLa cells infected
at MOI=1. e, Production of infectious viral progeny over time of wild-type, 1-to-Stop PA
and HA, and NoStop PA influenza A viruses in MDCK cells infected at MOI=1. f, Replication
kinetics of wild-type, 1-to-Stop and NoStop CVB3 viruses in HeLa cells infected at MOI=1. g,
Replication kinetics of wild type, 1-to-Stop PA and HA, and NoStop PA influenza A viruses in
MDCK cells infected at MOI=1. In d–g, graphs show mean and s.e.m.; n = 3 per group. NS,
non-significant; *P < 0.05, **P < 0.01, ***P < 0.001 (two-way analysis of variance with a
Bonferroni post-test, comparing wild type to each mutant).

1.2 1-to-Stop viruses have lower fitness and are highly sen-
sitive to mutation

The relative fitness of wild-type, 1-to-Stop and NoStop viruses was measured un-
der normal and mutagenic conditions against a neutral, genetically marked com-
petitor16,17. For CVB3 (Fig. 2a), five mutagenic conditions were used: three base
analogues (ribavirin, 5-fluorouracil (5-FU) and 5-azacytidine (5-AZC)), amiloride
(which perturbs intracellular Mg2+ and Mn2+ concentrations, essential cofactors
of the viral polymerase18) and Mn2+ itself, which increases the polymerase error
rate. In all cases, the 1-to-Stop virus presented significantly lower fitness than wild-
type CVB3, while the NoStop virus presented the same or higher fitness (Fig. 2a).
Using an alternative method to evaluate viral fitness, we measured mean plaque
size for each viral population treated with the three base analogues. The 1-to-Stop
virus produced significantly smaller plaques, while the NoStop virus produced lar-
ger plaques (Fig. 2b). The progeny viruses obtained during mutagenic treatments
were then deep-sequenced, and sequence data were computationally treated to re-
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duce noise (see Methods) and mathematically modelled to estimate error (see Sup-
plementary Section ‘Mathematical assessment of background noise’). The number
of reads presenting Stop mutations was then calculated. As expected, 1-to-Stop
virus samples contained significantly more reads with Stop mutations than wild-
type virus, whereas NoStop had significantly fewer (Fig. 2c). Finally, to further
support that the 1-to-Stop viruses were sensitive to the increased mutational load
on these codons, we coupled the 1-to-Stop virus with a high-fidelity polymerase19.
This virus would have an intrinsically lower error rate to counter the extrinsically
higher error resulting from mutagen treatment. Indeed, 1-to-Stop high-fidelity
viruses recovered the wild-type virus phenotype (Supplementary Fig. 4).

For influenza A constructs, viruses were treated with three concentrations of
ribavirin, 5-AZC or Mn2+ (Fig. 3a–c, left panels). Under each mutagenic condi-
tion, the 1-to-Stop PA and HA viruses were more sensitive to mutation, presenting
lower titres than the wild type and their NoStop counterparts. In fact, 1-to-Stop
viruses exhibited up to 50-fold reduction in viral titres with ribavirin treatment
(Fig. 3a, left) and a 100-fold decrease after high concentrations of Mn2+ (Fig. 3c,
left). We then quantified the number of Stop mutations in the mutagen-treated
progeny viruses for each replicate and at each concentration. The 1-to-Stop PA
populations presented a dose-dependent and significantly higher increase in the
number of Stop mutations along the PA gene compared to wild-type virus (Fig.
3a–c, middle panels). As a control, the 1-to-Stop HA virus, which has a wild type-
like PA sequence, did not present more Stop mutations in the PA gene. Instead,
the 1-to-Stop HA virus presented more Stop mutations in the HA gene (Fig. 3a–c,
right panels). Together, these data confirm for both viruses that relocalizing the
position of an RNA virus in sequence space to increase its likelihood of generating
non-sense mutations resulted in a higher sensitivity to increased mutational load.

1.3 1-to-Stop viruses are attenuated in vivo

To evaluate this attenuation strategy in vivo, mice were given a sublethal dose
of wild-type, 1-to-Stop or NoStop CVB3, and virus titres were determined over
seven days. Although the 1-to-Stop virus replicated with wild type-like kinetics
during the first five days in most mice, it was no longer detectable in pancreata
(Fig. 4a) and in most hearts (Fig. 4b) by day 7. Importantly, the NoStop CVB3
virus retained the same virulence phenotype as wild-type virus (Fig. 4a,b). By deep
sequencing, we observed threefold more Stop mutations in 1-to-Stop virus in these
tissues (Fig. 4c), as was observed in tissue culture (Fig. 2c,b and Supplementary
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n = 1,000 per group. **P < 0.01, ***P < 0.001 (Mann–Whitney test). c, Frequency of
Stopmutations observed in deep-sequencing reads fromwild type and 1-to-Stop populations
passaged in 50 µM RNA mutagens: ribavirin, 5-FU, 5-AZC and 0.5 mM Mn2+. Boxes show
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of outliers (indicated by dots); n = 10. *P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed
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Fig. 3c). The NoStop virus control, on the other hand, presented significantly
fewer Stop mutations. To further evaluate the effect of mutation on each virus, we
determined each population’s specific infectivity (the ratio of total genomes versus
infectious genomes produced) (Fig. 4d). Although all CVB3 viruses presented
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Figure 3: The 1-to-Stop influenza A viruses are highly sensitive to mutation. a–c, Left: sen-
sitivity of wild-type, 1-to-Stop (PA-S and HA-S) and NoStop (PA-NS and HA-NS) influenza A
viruses to increasing concentrations of ribavirin (a), 5-azacytidine (5-AZC) (b) and Mn2+ (c).
Graphs show mean and s.e.m.; n = 3. **P < 0.01, ***P < 0.001 (two-tailed unpaired t-
test with Bonferroni correction, comparing wild type to each mutant). Middle: frequency
of Stop mutations observed in deep-sequencing reads from wild-type (black) and 1-to-Stop
(PA-S, red and HA-S, blue) progeny in the PA gene. Right: frequency of Stop mutations ob-
served in deep-sequencing reads from wild-type (black) and 1-to-Stop (PA-S in red and HA-S
in blue) progeny in the HA gene. Bars show mean and s.e.m.; n = 3 per group. *P < 0.05,
**P < 0.01, ***P < 0.001 (two-tailed unpaired t-test with Bonferroni correction, comparing
wild type to each mutant).

high infectivity at three days of infection, a significantly larger proportion of 1-to-
Stop genomes were non-infectious at seven days.

For influenza, mice were infected intranasally with 1 × 105 plaque-forming
units (p.f.u.) of wild type, 1-to-Stop PA or HA (PAS and HAS), or NoStop PA, and
virus titres were determined in the lungs. Both 1-to-Stop viruses were attenuated
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Figure 4: The 1-to-Stop viruses are attenuated in vivo. a,b, Virus titres in pancreata (a) and
hearts (b) of mice infected with 1 × 105 TCID50 of wild-type (WT), 1-to-Stop (S) and NoStop
(NoS) CVB3. Bars show mean and s.e.m., and data are representative of three experiments.
*P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed unpaired t-test with Bonferroni cor-
rection). The limit of detection was 101 TCID50 per ml. c, Frequency of Stop mutations in
CVB3 populations from infected tissues (hearts and pancreata combined). Boxes show me-
dian and interquartile range, whiskers show range or 1.5 interquartile range in the case of
outliers (indicated by dots); n = 62. ***P < 0.0001 (two-tailed unpaired t-test with Bonfer-
roni correction, comparing wild type to each mutant). (Continued on the following page.)
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Figure 4: d, Specific infectivity (TCID50 /RNA genomes) of CVB3 viruses from infected tissues.
Bars showmean and s.e.m.; n = 3. ***P < 0.001 (two-tailed unpaired t-test with Bonferroni,
comparingwild type to eachmutant). e, Virus titres in lungs ofmice infectedwith eitherwild-
type, 1-to-Stop (PA-S and HA-S) or NoStop (PA-NoS) influenza A viruses. Bars showmean and
s.e.m.; n = 6, and data are representative of three experiments. ***P < 0.001 (two-tailed
unpaired t-test with Bonferroni correction). f,g, Frequency of Stop mutations in the PA (f) or
HA (g) genes of influenza A viruses from infected lungs. Boxes show median and interquar-
tile range, whiskers show range or 1.5 interquartile range in the case of outliers (indicated
by dots); n = 20. ***P < 0.001 (two-tailed unpaired t-test with Bonferroni correction, com-
paring wild type to each mutant). h, Weight loss in mice infected with 1 × 105 TCID50 of
influenza variants. Graphs show mean and s.e.m.; n = 6. NS, non-significant; ***P < 0.001
(two-way analysis of variance). i,j, Mice were immunized with influenza 1-to-Stop variants
(PA-S and HA-S), wild type or PBS. After 21 days, serum antibody titres were determined
(n = 6) (i), mice were challenged with a lethal dose of virus (1 × 106 TCID50 ) and lung titres
were determined 4 days after challenge (n = 6) (j). Limit of detection < 10 p.f.u. g-1. Bars
show mean and s.e.m. k, Weights of immunized mice were compared before challenge (BC)
and 14 days after challenge (AC) infection; n = 5 per group. NS, non-significant; **P < 0.01
(paired t-test with Bonferroni correction).

(10- to 50-fold reduction in titres), with a larger decrease for the HA construct
(Fig. 4e). Once more, the NoStop virus control was as pathogenic as the wild-type
virus. The number of Stop mutations present in progeny genomes in mouse lungs
was quantified for the PA (Fig. 4f ) and HA (Fig. 4g) genes. In both cases, the
1-to-Stop viruses presented a fourfold increase in Stop mutations compared with
wild-type virus. Attenuation was further evaluated by monitoring daily weight
loss (Fig. 4h). Mice infected with wild-type virus lost a mean of 12.5% of their
weight by day 5, whereas those infected with 1-to-Stop variants lost 6.5% (HAS)
and 7.5% (PAS).

1.4 1-to-Stop influenza viruses are immunogenic and pro-
tect against challenge

To investigate the vaccine potential of 1-to-Stop viruses, mice were immunized
with either the 1-to-Stop viruses (HAS and PAS) or phosphate-buffered saline
(PBS) and, after 21 days, were challenged with wild-type virus. All infected ani-
mals seroconverted, with antibody titres ranging from 320 to 1,280, as determined
by haemagglutination inhibition assays (Fig. 4i). Similar titres were obtained from
animals infected with wild-type virus. Following challenge infection, no virus was
detected in the lungs of HAS- and PAS-immunized mice, compared to high titres
in PBS-immunized mice (Fig. 4j). By 14 days after challenge, mice immunized
with 1-to-Stop variants returned to normal weight, whereas PBS-immunized mice
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only recovered 50% of the weight loss (Fig. 4k), a profile similar to naive mice
infected with wild-type virus (Fig. 4h).

1.5 1-to-Stop virus coupled with a low-fidelity polymerase
is optimally attenuated

Our results demonstrate that relocalizing a virus in an unfavourable region of se-
quence space, where a copy error has a higher likelihood of generating non-sense
mutations, can attenuate viruses. Moreover, the treatment of these viruses with
mutagens to extrinsically increase error rates resulted in even greater loss of infecti-
vity. Previously, we have described CVB3 polymerase variants with intrinsically
increased error rates that resemble mutagenic treatment17. We therefore enginee-
red the low-fidelity viral polymerase I230F into the 1-to-Stop virus to generate
a ‘SpeedyStop’ virus. We infected mice with wild-type, 1-to-Stop or SpeedyStop
viruses and quantified virus titres in pancreata (Fig. 5a) and hearts (Fig. 5b).
The degree of attenuation significantly increased for SpeedyStop virus compared
to its normal-fidelity counterpart. Virus was undetectable in some mouse organs
as early as three days after infection, and no longer detectable in any organ by
day 7. Accordingly, a survival curve of mice receiving a lethal dose of wild type
and equivalent doses of 1-to-Stop and SpeedyStop viruses revealed the latter to
be completely attenuated (Fig. 5c). Finally, we deep-sequenced virus from in-
fected tissues and confirmed that SpeedyStop presented a higher number of Stop
mutations in sequencing reads than the other viruses (Fig. 5d).

1.6 1-to-Stop and SpeedyStop viruses induce high levels of
neutralizing antibodies and protect against lethal chal-
lenge

To evaluate the immunogenicity and protective efficacy of the 1-to-Stop viruses,
mice were immunized with 1× 105 p.f.u. of each virus, or with PBS, and blood
was collected after three weeks. Mice immunized with 1-to-Stop or SpeedyStop
viruses produced high levels of antibody able to neutralize 1,000 p.f.u. of wild-
type CVB3 (Fig. 5e). These same mice were challenged with a lethal dose (10
LD50, that is, 10 times the dose lethal to 50% of animals tested) of wild-type
CVB3. Most control mice succumbed to infection after eight days, whereas all of
the 1-to-Stop or SpeedyStop immunized mice were protected (Fig. 5f ).
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Figure 5: Attenuation of ‘SpeedyStop’ virus, 1-to-Stop CVB3 coupled with a mutator poly-
merase. a,b, Virus titres (TCID50 per g) in pancreata (a) and hearts (b) of mice infected with
1× 105 TCID50 of wild type (WT), 1-to-Stop (S) or 1-to-Stop coupled with the low-fidelity po-
lymerase mutation I230F, SpeedyStop (SpS) viruses. Bars show mean and s.e.m., and data are
representative of three experiments. Day 7 values are set at the limit of detection. *P < 0.05,
***P < 0.001 (two-tailed unpaired t-test with Bonferroni correction) c, Survival curve ofmice
infected with either 1 × 106 TCID50 of wild-type (WT, solid line), 1-to-Stop (S, long dashes)
or SpeedyStop (SpS, short dashes) viruses; n = 17. ***P < 0.001 (Mantel–Cox test). d, Fre-
quency of Stop mutations observed in deep-sequencing reads fromwild-type (WT), 1-to-Stop
(S) and SpeedyStop (SpS) CVB3 populations from infected tissues (hearts and pancreata com-
bined). Boxes show median and interquartile range, whiskers show range or 1.5 interquar-
tile range in the case of outliers, and individual dots indicate outliers; n = 27. ***P < 0.001
(two-tailed unpaired t-test with Bonferroni correction, comparing wild type to each mutant).
e, Neutralizing antibody titres (inverse dilution of sera able to neutralize 1,000 p.f.u. of wild
type CVB3) in mice immunized with PBS, or 105 p.f.u. of 1-to-Stop (S) or SpeedyStop (SpS)
viruses; n = 6. NS, non-significant (two-tailed unpaired t-test). f, Protection of mice in e
immunized with PBS, 1-to-Stop (S, long dashes) or SpeedyStop (SpS, short dashes) and chal-
lenged with 10 LD50 of wild-type CVB3; n = 6. ***P < 0.001 (Mantel–Cox test).

1.7 Empirical fitness distributions and landscape model

To further investigate how 1-to-Stop populations may be constrained in their ex-
ploration of sequence space and the fitness landscape, we measured the relative
fitness of wild-type and 1-to-Stop CVB3 in tissue culture in biological triplicates
under five mutagenic conditions, as well as under normal conditions. A range of
low to high mutagenic conditions was used to accelerate evolution in sequence
space and to increase the mutational load. Under normal conditions, both viruses
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presented mostly positive fitness values (Fig. 6a). Under mutagenic conditions, a
greater proportion of wild-type samples presented positive fitness compared to 1-
to-Stop virus (Fig. 6a), and the relative decrease in fitness for 1-to-Stop virus was
significant under every growth condition. In fact, only 3 populations out of 45
presented positive fitness values with respect to wild-type (Fig. 6b). We then cha-
racterized the mutant spectra of each sample by whole-genome deep sequencing
to calculate the mean entropy of each population, as a general measure of sequence
space exploration. For illustrative purposes, we generated a fitness landscape-like
model based on the entropy values coupled with their empirical fitness values (Fig.
6c). The landscape reveals that for similar mean entropy values, 1-to-Stop popu-
lations consistently present a lower fitness and are unable to ‘climb back up’ to the
fitness landscape occupied by wild-type virus.

2 Discussion

In this work, we present a strategy to attenuate viruses based on evolutionary prin-
ciples, by restricting their evolutionary potential. Our experimental design is ba-
sed on the rational relocalization of viral populations in sequence space to redi-
rect them towards detrimental regions of the fitness landscape. Sequence space is
a conceptual framework that can help monitor adaptive walks and evolutionary
trajectories. For RNA viruses rapidly expanding in sequence space, emerging mi-
nority mutations can foretell the directionality of evolution well before the entire
population shifts2,20. In theory, however, sequence space is immensely larger than
the subregions occupied by biologically viable genotypes. For RNA viruses, these
constraints derive from the compact nature of their genomes, and the likelihood
that a mutation will hit an essential function is high. Indeed, the majority of muta-
tions are deleterious, as evidenced in many studies that intrinsically or extrinsically
increase mutation rates3,10,21–23. Despite this, viruses retain high mutation rates
to facilitate adaptation. Consequently, mutational robustness has been suggested
as an important counter-mechanism24. Although better characterized in theoreti-
cal and in silico work25–27, some of the best experimental data have been obtained
with non-coding RNA structures that assessed the retention of folding capacity or
ribozyme activity in light of mutation28. Some evidence for mutational robustness
has also been observed in RNA viruses29–31. A more recent study that analysed the
large-scale codon reshuffling of poliovirus reported the impact of altering mutati-
onal robustness4. However, the extent of codon changes was such that robustness
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Figure 6: Re-localizing viruses to an inhospitable area of the fitness landscape. a, Distri-
bution of fitness values. The proportion (y axis, number of samples) of individual fitness
values (x axis, log 10 fitness) of wild-type and 1-to-Stop populations derived from mock or
mutagenic conditions. b, Relative change in fitness of 1-to-Stop compared to wild type un-
der each growth condition. The differences between wild type and 1-to-Stop are significant
(P = 9.66 × 10−8, two-tailed t-test, n = 45). c, Illustrative fitness landscape model based
on empirical data. Wild-type (black) and 1-to-Stop (red) samples are shown as circles. Fit-
ness values (log 10 fitness) are shown on the y axis and assigned colour according to the
colour scale on the right, mutagenic conditions on the x axis and mean entropy calculations
from whole-genome deep sequencing data on the z axis. Smoothed curves show trends in
how mean entropy affects fitness for each construct and drug treatment. Lines connecting
samples to the smoothed curves show deviations from the model. The smoothed curves are
connected by linear interpolation to create sequence and fitness landscape surfaces, separa-
tely, for wild-type and 1-to-stop viruses.

could not be decoupled from other effects, such as CpG dinucleotide bias15,32 or
codon pair bias14,33.

Redesigning the genomic architecture of an RNA virus, as performed here,
relies on using its evolutionary potential to its own detriment. Other studies have
recoded all amino acids to achieve viral attenuation, but we focused on two amino
acids — leucine and serine — for two main reasons. The first was to minimize the
confounding effects of manipulating the genome. In contrast to previous strate-
gies14,34, we targeted less than 5% of the genome. These viruses were designed to
minimize or exclude the effects of codon deoptimization35–38, codon pair deopti-
mization14,33,34 and CpG/UpA dinucleotide bias15,32,39. We thus modified a mi-
nimum number and class of codons to retain as much as possible of the wild-type
identity. However, it should be noted that although the aforementioned effects
were minimized, we cannot be certain that some of these factors cannot, at least
partially, account for some of the observed attenuation. The second reason for fo-
cusing only on leucine and serine was to take advantage of the unique properties of
the Leu and Ser codons. These codons are the most redundant, with the greatest
range of exploration of sequence space. This feature was addressed in the mat-
hematical framework designed by Archetti40 and based on McLachlan’s chemical
similarity matrix41, which predicts the potential effect of point mutations over
synonymous codons. These codons could be clustered into three groups, among
which two were of particular interest for our design. The 1-to-Stop group presen-
ted the highest likelihood of changes into non-sense mutational targets (NSMTs).
The other set contained the NoStop Ser/Leu codons, which are two mutations
away from becoming a Stop codon, and made ideal controls with the same num-
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ber of modifications.
By placing 1-to-Stop populations closer to detrimental mutational neighbour-

hoods, we conferred to them a lower mutational robustness that would be prone to
the most detrimental type of mutation, the Stop mutation. Consequently, prox-
imity to ‘hostile’ regions in sequence space may drive viruses to regions of lower
fitness than a normal, more evolvable population42. It should be noted that, in
addition to affecting mutational robustness, changes in adaptability and evolvabi-
lity may also play into the attenuated phenotypes observed here. In addition, our
findings experimentally support the notion that viruses may avoid volatile codons
that neighbour Stop codons, as was proposed by Plotkin and Dushoff for influ-
enza HA genes43. Moreover, deep sequencing supported the proposed mechanism
of attenuation: an increase of three- to sixfold in Stop mutation frequencies. It
should be noted that the absolute number of Stop mutations made during in-
fection is probably higher than that captured at the moment of sampling, because
such genomes cannot replicate and would thus be degraded and cleared.

Regarding in vivo studies, the 1-to-Stop viruses exhibited clear, attenuated
phenotypes. We have demonstrated that a 1-to-Stop vaccine stock could be re-
adily produced in cell culture with genetic and phenotypic stability, is both im-
munogenic and protective against lethal infection, and that coupling a mutator
polymerase to this construct enhances attenuation without compromising immu-
nogenicity. In vivo attenuation was also associated with higher frequencies of Stop
mutations in target organs and a higher loss of infectivity. Additionally, transla-
tion of RNAs containing Stop codons would result in truncated proteins that may
contribute to a better activation of the immune system44,45. Moreover, although
non-viable genomes do not replicate, their presence could have further impact
through defective interference46,47 or through an adjuvant effect, as observed for
defective interfering genomes48,49.

It is important to emphasize that our measure of Stop mutations relies on deep
sequencing technology that presents background noise. We took several measu-
res to reduce this concern. From a mathematical standpoint, we modelled the
noise in our samples and confirmed that our data were unlikely to be affected (see
Supplementary Information). In addition, the background noise was further re-
duced by the maximum likelihood estimation of the frequencies, which takes base
Phred quality scores into account. From an experimental and biological stand-
point, we implemented many controls, such as the NoStop viral genomes that are
as genetically modified as the 1-to-Stop genomes. We also increased sample sizes
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and biological replicates, performed work in two different RNA viruses, intrinsi-
cally (fidelity variants) and extrinsically (mutagenic treatment) altered mutation
pressure, and performed work in different cell types and animals. In total, 25 in-
dependent experiments, in vitro and in vivo, produced 420 sequencing samples to
determine Stop mutations. In all cases, 1-to-Stop generated more Stop mutations
than wild-type virus and NoStop controls. Nevertheless, one must consider the
noise within the data and must not rely on the absolute values of the measures, but
rather their relative values within each experiment with respect to the controls.

We developed this approach in two viral families, the Picornaviridae and Ort-
homyxoviridae, to cover the broad range of RNA virus biology. CVB3 is a non-
enveloped, positive-sense, non-segmented, single-stranded RNA virus, whereas
influenza A is an enveloped, negative-sense, segmented, single-stranded RNA vi-
rus. Finally, by modelling empirical data into an illustrative fitness landscape, we
demonstrated that 1-to-Stop populations cannot escape the detrimental regions of
sequence space associated with lower fitness. Our data suggest that this strategy
could be broadly applied to potentially any RNA virus. In summary, our results
are a proof of concept that viral genomes can be re-engineered to change their star-
ting position in sequence space and redirect them towards detrimental mutational
neighbourhoods, to generate ‘suicidal’, self-limiting vaccine strains.

3 Methods

3.1 Cells and viruses

HeLa and MDCK cells were obtained from the American Type Culture Collection
without further authentication by our laboratory, but were confirmed to be myco-
plasma-free. HeLa cells were maintained in DMEM medium with 10% new born
calf serum (NBCS), and MDCK cells were maintained in MEM medium with
5% fetal calf serum (FCS). Wild-type Coxsackie virus B3 (Nancy strain), 1-to-
Stop and No-Stop variants were generated from a pCB3-Nancy infectious cDNA
plasmid. Wild-type influenza A virus (A/Paris/2590/2009 (H1N1pdm09)), 1-
to-Stop and No-Stop variants were generated from bidirectional reverse genetics
plasmids (provided by S. van der Werf at the Institut Pasteur). We generated 1-to-
Stop and No-Stop viruses of Coxsackie and influenza A that bear 117 and 111/94
different synonymous codons, respectively, by de novo synthetic gene technology
(Eurogentec). All newly generated DNA plasmids were Sanger sequenced in full
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(GATC Biotech) to confirm each of the 117/111/94 positions. A detailed list of all
codon changes introduced is provided in Supplementary Table 1. The low-fidelity
1-to-Stop virus, named SpeedyStop, was generated in CVB3 by insertion of the
I230F mutation in the viral polymerase three-dimensional gene by site-directed
mutagenesis of the 1-to-Stop CVB3 infectious clone.

3.2 Generation of Coxsackie virus stocks by in vitro transcrip-
tion and transfection

CVB3 cDNA plasmids were linearized with Sal I. Linearized plasmids were pu-
rified with the Macherey-Nagel PCR purification kit. Linearized plasmid (5 µg)
was in vitro transcribed using T7 RNA polymerase (Fermentas). Transcript (10
µg) was electroporated into HeLa cells, which were washed twice in PBS (w/o
Ca2+ and Mg2+) and resuspended in PBS (w/o Ca2+ and Mg2+) at 1 × 107

cells per ml. Electroporation conditions were as follows: 0.4 mm cuvette, 25 mF,
700 V, maximum resistance, exponential decay in a Biorad GenePulser XCell elec-
troporator. Cells were recovered in DMEM. A 500 µl volume of p0 virus stocks
was used to infect fresh HeLa cell monolayers for three more passages. For each
passage, virus was collected by three freeze-thaw cycles and clarified by spinning
at 10,000 r.p.m. for 10 min. Three independent stocks were generated for each
virus. Consensus sequencing of virus stocks used in downstream experiments con-
firmed the stability of the engineered mutations and did not detect any additional
mutations across the genome.

3.3 Generation of influenza A virus stocks by reverse gene-
tics

Using 35 mm plates and DMEM supplemented with 10% FCS, co-cultures of
293T (4 × 105 per well) and MDCK (3 × 105 per well) cells were transfected
with the eight bidirectional plasmids both driving protein expression and directing
vRNA template synthesis, using 0.5 µg of each plasmid and 18 µl of FUGENE
HD (Roche). DNA and transfection reagents were first mixed, then incubated at
room temperature for 15 min and finally added to cells, which were then incuba-
ted at 35 °C. Sixteen hours later, the DNA-transfection reagent mix was removed,
cells were washed twice in DMEM, and 2 ml of DMEM containing 1 µg ml-1

of L-1-tosylamido-2-phenyl chloromethyl ketone treated trypsin (TPCK-trypsin,
Sigma-Aldrich) was added. Cells were incubated at 35 °C for two more days, su-
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pernatants were collected and clarified, and virus was titrated by median tissue
culture infectious doses (TCID50) as described below. Three independent stocks
were generated for each virus. Consensus sequencing of virus stocks used in down-
stream experiments confirmed the stability of the engineered mutations and did
not detect any additional mutations across the genome.

3.4 Genetic stability of viruses

To evaluate its genetic stability, all generated viruses were passaged ten times in
HeLa cells (CVB3) or in MDCK cells (influenza A) at low MOI (0.01), and pas-
sages 1, 3, 5, 7 and 10 were sequenced.

3.5 Viral titres by TCID50

Tenfold serial dilutions of virus were prepared in serum-free DMEM media. Di-
lutions were performed in 12 replicates, and 100 µl of dilution was transferred to
1 × 104 Vero-E6 (Coxsackie virus) or MDCK (influenza A virus) cells plated in
100 µl DMEM. After five days, living cell monolayers were fixed and stained with
crystal violet 0.2%.

3.6 Viral titres by plaque assay

Vero-E6 (Coxsackie virus) or MDCK-SIAT (influenza A virus) cells were seeded
into six-well plates and virus preparations were serially diluted (tenfold) in DMEM
serum-free medium. Cells were washed twice with PBS and infected with 250
µl dilution for 30 min at 37 °C, after which a solid overlay comprising DMEM
medium and 1% wt/vol agarose (Invitrogen) was added. Two days after infection,
cells were fixed and stained with crystal violet 0.2%, and plaques were enumerated.

3.7 Replication kinetics and quantification of viral genomes

For growth kinetics, HeLa (Coxsackie virus) or MDCK (influenza A virus) cells
were infected at an MOI of 1 or 0.1, frozen at different time points after in-
fection, and later titred. Coxsackie viruses were collected by three freeze-thaw
cycles, and influenza A viruses were collected in clarified supernatant. For real-
time reverse transcription polymerase chain reaction (qRT-PCR) analysis of Cox-
sackie virus, total RNA was extracted by TRIzol reagent (Invitrogen) and purified.
The TaqMan RNA-to-Ct one-step RT-PCR kit (Applied Biosystems) was used
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to quantify viral RNA. Each 25 µl reaction contained 5 µl RNA, 100 µM each
primer (forward 5’-GCATATGGTGATGATGTGATCGCTAGC-3’ and reverse
5’-GGGGTACTGTTCATCTGCTCTAAA-3’) and 25 pmol probe 5’-[6-Fam]
GGTTACGGGCTGATCATG-3’ in an ABI 7000 machine. Reverse transcrip-
tion was performed at 50 °C for 30 min and 95 °C for 10 min, and was fol-
lowed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. A standard curve
(y = −0.2837x+12,611,R2 = 0.99912) was generated using in vitro transcri-
bed genomic RNA. For influenza A virus, a similar Taqman methodology was used
based on the WHO-recommended M-segment detection method. The qRT-PCR
protocol consisted of an initial reverse transcription step (45 °C for 15 min), fol-
lowed by an activation step of 3 min at 95 °C, 50 amplification cycles with 10 s
at 95 °C, 10 s at 55 °C and 20 s at 72 °C and a final cooling step of 30 s at 40 °C.
The primers used were forward: 5’ CTT CTA ACC GAG GTC GAA ACG TA
3’ and reverse: 5’ GGT GAC AGG ATT GGT CTT GTC TTT A 3’. The probe
was (HEX): 5’ TCA GGC CCC CTC AAA GCC GAG 3’. The Ct values were
converted into numbers of vRNA copies using a standard curve obtained with a
serial dilution of a quantified synthetic M-segment RNA transcript.

3.8 Viral passages under mutagenic conditions

The mutagenic compounds (Sigma Aldrich) used were:

Ribavirin IUPAC 1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxy-methyl)oxolan-2-
yl]-1H -1,2,4-triazole-3-carboxamide): 50, 100 and 200 µM for Coxsackie viruses
and 5 and 20 µM for influenza A viruses; 5-Fluorouracil IUPAC 5-fluoro-1H -
pyrimidine-2,4-dione: 50, 100 and 200 µM for Coxsackie viruses and 5 and 30
µM for influenza A viruses; 5-Azacitidine IUPAC 4-amino-1-b-D-ribofuranosyl-
1,3,5-tria-zin-2(1H )-one: 50, 100 and 200 µM for Coxsackie viruses and 5 and 15
µM for influenza A viruses; Amiloride IUPAC 3,5-diamino-6-chloro-N -(diamino-
methylene) pyrazine-2-carboxamide: 100 and 200 µM for Coxsackie viruses; Man-
ganese (Mn2+), 0.5 mM and 1 mM for Coxsackie viruses.

HeLa (Coxsackie virus B3) or MDCK (influenza A virus) cell monolayers in six-
well plates were pretreated for 4 h with ribavirin, AZC, 5-FU, MnCl2 or amiloride
compounds at different concentrations. Cells were then infected at an MOI of
0.1 for Coxsackie and 0.001 for influenza A virus with passage 2 viruses. At 48
h post-infection, Coxsackie viruses were collected by three freeze-thaw cycles, and
influenza A viruses were collected in clarified supernatant. Virus titres (TCID50 or
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plaque assay) were determined. The same procedure was repeated for five passages
under each different mutagenic condition in three biological replicates, except for
influenza A viruses, which were passaged only in low mutagenic conditions in
ribavirin, 5-FU and 5-AZC.

3.9 Measurement of plaque size

Coxsackie virus plaque measurements were performed on subconfluent monolay-
ers of 1× 107 Vero-E6 cells in 10 cm dishes. To ensure non-overlapping plaques
the amount of virus was determined empirically (40–70 per dish for Coxsackie).
Each plate was scanned individually after 30 h post-infection at 300 d.p.i. Sixteen-
bit image files were analysed using ImageJ. The same protocol was used to measure
the plaque phenotype of mutagen pre-treated viral populations. Wild-type and 1-
to-Stop viruses were submitted to high concentrations of ribavirin, 5-FU and AZC
and time post-infection was increased to 40 h to better recover viral viability to
perform plaque measures.

3.10 Highly quantitative direct competition assay for empi-
rical fitness measures

For Coxsackie virus, relative fitness values were obtained by competing wild-type,
NoStop and 1-to-Stop virus, obtained from different passages under each mut-
agen/compound, with a marked reference virus that contained four adjacent si-
lent mutations in the polymerase region introduced by direct mutagenesis. Co-
infections were performed in triplicate at an MOI of 0.01 using a 1:1 mixture of
each variant with the reference virus. After 24 h, supernatants were collected and
one volume of TRIzol reagent (Invitrogen) was added to extract the viral RNA.
The proportion of each virus was determined by qRT-PCR on extracted RNA
using a mixture of Taqman probes labelled with two different fluorescent repor-
ter dyes. MGB_CVB3_WT detects wild-type and 1-to-Stop viruses with the se-
quence CGCATCGTACCCATGG, and was labelled at the 5’ end with a 6FAM
dye; MGB_CVB3_Ref contains the four silent mutations, CGCTAGCTACCC-
ATGG, and was labelled with a 5’ VIC dye. Each 25 µl reaction contained 5 µl
RNA, 900 nM of each primer (forward primer, 5’-GATCGCATATGGTGAT-
GATGTGA-3’; reverse primer, 5’-AGCTTCAGCGAGTAAAGATGCA-3’) and
150 nM of each probe. Using a known standard for the wild-type and reference
virus during the qRT-PCR, we were able to calculate the RNA concentration for
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each viral variant with high sensitivity. The relative fitness was determined by the
method described in the work by Carrasco et al.16,17, using the RNA determina-
tions for each virus. Briefly, the formula W = (R(t)/R(0))1/t represents the
fitness W of each mutant genotype relative to the common competitor reference
sequence, where R(0) and R(t) represent the ratio of mutant to reference virus
densities in the inoculation mixture and at t days post-inoculation (1 day in this
case), respectively. The fitness of the normal wild type to reference virus was 1.019,
indicating no significant differences in fitness caused by the silent mutations en-
gineered in the reference virus (competitor).

3.11 In vitro replication assays in crude membranes

Three confluent T25 flasks of HeLa cells were infected at an MOI of 3 with wild-
type or 1-to-Stop CVB3 viruses. After 16 h of infection, cells were trypsinized,
collected and washed with ice-cold PBS, then resuspended in 1 ml swelling buffer
made of 10 mM Tris-HCl pH 7.4, 10 mM NaCl, 1.5 mM MgCl, one tablet of
protease inhibitor (Complete Mini EDTA-free, Roche) diluted in autoclaved wa-
ter. Cells were stored for 15 min on ice, then Dounce-homogenized with 30–40
strokes using a 7 ml Dounce All-Glass tissue grinder (Kimble-Chase). The un-
broken cells and nuclei were removed by centrifugation at 500g for 5 min and the
supernatant fraction was centrifuged at 12,000g for 10 min at 4 °C. The pellet was
suspended in 1 ml of buffer (10 mM Tris hydrochloride pH 8.0, 10 mM NaCl,
15% glycerol). This wash step was repeated three times and the pellet was resus-
pended in 200 µl of storage buffer made of 250 mM sucrose, 10 mM Tris-HCl
pH 7.4, 10 mM NaCl, and one tablet of protease inhibitor diluted in autoclaved
water. Protein quantity was estimated by Bradford assay. Pellets were diluted at 10
mg ml-1, aliquoted, and stored at -80 °C. To perform the in vitro replication assay,
25 µl of membrane extract were mixed with 25 µl replication solution made of
1× in vitro transcription buffer (SP6 mMESSAGE mMACHINE kit, Ambion),
10 mM dithiothreitol (Invitrogen), 10 µg ml-1 actinomycin D, 5 mM creatine
phosphate, 25 µg ml-1 creatine phosphokinase, 1 mM ATP, 1 mM GTP, 1 mM
CTP, 50 µM UTP, 1 µl RNAse out recombinant ribonuclease inhibitor (Invitro-
gen) in autoclaved water, 2 µg in vitro transcribed viral RNA and 20 µCi UTP
[α-32P] (PerkinElmer). Samples were incubated for 2 h at 37 °C. RNA extraction
was performed using phenolchlorophorm, then samples were purified on Illustra
MicroSpin S200 HR columns. Samples were run on a 1% agarose gel, dried in a
gel-drier machine, and imaged using a Typhoon FLA9500 (GE Healthcare).
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3.12 Mouse husbandry and ethics

Mice were kept in the Pasteur Institute animal facilities under Biosafety Level2
conditions, with water and food supplied ad libitum, and they were handled in
accordance with the Animal Committee regulations of the Institut Pasteur in Pa-
ris, France, in accordance with the 2010/63 EU directive adopted on 22 Septem-
ber 2010 by the European Parliament and the European Union Council. Mouse
protocols 2013-0101 and 2013-0021 were evaluated and approved by the Ethics
Committee on Animal Experimentation CETEA no. 89 (Institut Pasteur), wor-
king under the French national Ministère de l’Enseignement supérieur et de la
Recherche (MESR). All studies were carried out in BALB/c male mice (between
five and six weeks old) from Charles River.

3.13 Coxsackie virus infections in vivo

Mice were infected intraperitoneally with 1×105 TCID50 wild-type or 1-to-Stop
viruses in 0.20 ml volumes. For tissue tropism studies, we collected whole organs
(pancreas and heart) at 3, 5 and 7 days post-infection, and these were homogenized
in PBS using a Precellys 24 tissue homogenizer (Bertin Technologies). Viral RNA
was extracted using TRIzol reagent (Invitrogen). Full genome PCR, viral titres
by TCID50 and qRT-PCR were performed as described above. Survival curves
were generated by injecting four-week-old mice (n = 8 mice per virus) with 5×
106 TCID50 of virus and monitoring morbidity and mortality for 10 days after
infection. For protection studies, mice were immunized with PBS or 5 × 105

TCID50 of 1-to-Stop or SpeedyStop virus. At 21 days after immunization, serum
was collected to quantify the production of neutralizing antibodies. Mice were
then challenged with 1 × 106 of wild-type virus (hyper-virulent strain 372V of
Coxsackie virus B3) and survival was monitored over the following 10 days.

3.14 Neutralization assay

At 3 weeks after immunization, serum was collected, heat-inactivated at 56 °C
for 30 min, and serially diluted in DMEM, and the CVB3 stock was diluted to
a working concentration of 3 × 103 TCID50 . Neutralizing antibody titres were
determined by TCID50 reduction assay in Vero-E6 cells, and 50 µl of each diluted
serum sample was mixed with 50 µl of CVB3 at a working concentration and ad-
ded to 96-well plates for incubation at 37 °C for 2 h. Following incubation, eight
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replicates of each dilution were used to infect 1 × 104 Vero-E6 cells seeded in a
96-well plate. At 6 days post-infection, the cells were observed under a microscope
for the presence of cytopathic effect (CPE). Neutralization titres were determined
as the highest serum dilution that could prevent CPE in more than 50% of cells.

3.15 Influenza virus infection in vivo

Mice were infected intra-nasally with 1 × 105 TCID50 wild-type, 1-to-Stop or
NoStop viruses as a 20 µl volume (diluted in PBS). Lungs were collected at three
and five days post-infection and were homogenized in PBS using a Precellys 24
tissue homogenizer (Bertin Technologies). Infectious virus within homogenized
tissues was titrated by plaque assay, and titres were expressed as p.f.u. per g organ
(p.f.u. g-1). Viral RNA was extracted using TRIzol reagent (Invitrogen). Virus
genomic variability was evaluated by deep sequencing, as described in the follo-
wing.

3.16 Serum antibody titre by haemagglutination inhibition
assay

Mice were infected intra-nasally with 1 × 104 p.f.u. of wild-type, 1-to-Stop or
NoStop viruses and bled for serum on day 21 post-infection. Antibody titres cor-
respond to the maximum dilution able to inhibit agglutination of red blood cells
in the presence of influenza virus under standardised conditions, as previously des-
cribed50.

3.17 Full genome analysis by deep sequencing

To estimate the population diversity of variants by deep sequencing, Coxsackie
virus cDNA libraries were performed using the kit Maxima H Minus First Strand
cDNA Synthesis (Thermofisher) and oligo dT as a primer from RNA extracted
from virus generated in HeLa cells or different mouse organs. The viral genome
was amplified using a high-fidelity polymerase (Phusion) to generate 1 amplicon
of 7.2 kb in length (full-length genome). The primers and PCR were designed
and optimized in the laboratory (5’ GAAAACGCGGGGAGGGTCAAA 3’ and
5’ ACCCCCTCCCCCAACTGTAA 3’). For influenza A virus, the viral RNA
genome was extracted from infected-cell supernatants (Macherey-Nagel), reverse-
transcribed with an Accuscript High Fidelity 1st strand cDNA Synthesis kit (Agi-
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lent) using 5’-AGCRAAAGCAGG-3’ primer and amplified by PCR using a high-
fidelity polymerase (Phusion). Eight PCRs were designed to cover the coding
regions of the eight genomic segments (primer sequences are available upon re-
quest). For mouse organs, RNA was extracted with TRIzol reagent (Invitrogen)
and PA and HA segments were targeted by PCR. The PCR products were puri-
fied and fragmented (Fragmentase), multiplexed, clustered on cBot for sequencing
in GAIIX, or clustered and sequenced on NextSeq500, Illumina technology and
analysed with established deep-sequencing data analysis tools and in-house scripts.

3.18 Codon frequencies

The sequenced reads for each sample were aligned to their respective reference ge-
nomes using BWA. Per-site codon frequencies were estimated for each sample by
considering the reads covering the given site. Only nucleotides with Phred base
quality scores ≥ 30 were used. The observed codon frequencies were modelled
by a multinomial distribution, observed under noise. The noise model is given
directly by the Phred base quality scores, which describe the probability of a read
error at each nucleotide in each read. Finally, the ML (maximum likelihood) es-
timates of the codon frequencies were computed numerically using this model.
Under perfect quality scores, the model would simplify to a multinomial model
and each estimated codon frequency would correspond to the proportion of reads
with that codon. However, with actual quality scores, the impact of read errors
is reduced, because the model corrects for the read error rate. The mathematical
model for background error is further described in the Supplementary Informa-
tion.

3.19 Stop codons

Per-sample Stop codon frequencies were computed by summing the Stop codon
frequencies over all modified codon sites, giving a number approximately equal to
the frequency of viral genomes that have been rendered unviable by incorporating
a Stop codon at one of the modified sites. The computations were done for all
samples, and next-generation sequencing batch effects were avoided by only com-
paring samples obtained on the same sequencing runs. Box plots and linear re-
gression plots were used to visualize the frequency distributions for relevant groups
and covariates.
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3.20 Fitness distribution graphs

Histograms were generated showing empirical fitness values with the samples grou-
ped by construct and mutagenic conditions. The difference in fitness (ΔFitness)
between pairs of wild-type and 1-to-Stop codons from the same experimental con-
ditions were also computed and shown in histograms, again grouped by mutagen.

3.21 Entropy calculation from deep sequencing data

The entropy −
∑64

i=1 P(xi) log(P(xi)), at a given codon site in a given sample,
was computed directly from the ML estimates of the codon frequencies. Then,
for each sample, the mean entropy was computed over all codon sites in the entire
genome. Smoothed curves, capturing trends for the mapping of mean entropy
to empirical fitness, were created for each construct and mutagen. The curves
were then linearly interpolated between mutagens (roughly ordered by mutagen
characteristics) to create an illustrative landscape surface.

3.22 Statistical methods

No statistical methods were used to predetermine the sample size. All experi-
ments were performed three times and n values represent biological replicates.
Equal variance was assumed. P values ≥ 0.05 were considered non-significant.
For deep-sequencing analysis, when outliers were identified they were indicated
in the figures and legends. For animal studies, mice were randomly allocated to
different cages before experiments, and no mice were excluded from analyses. The
investigator was blinded to group allocation when virus was titred from collected
tissues.

3.23 Data availability

The data that support the findings of this study are available from the correspon-
ding author upon request. In-house codes are also available at any time upon
request to the authors.
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Supplementary Figure 1. (a) Replication kinetics of wild type, 1-to-Stop and NoStop Coxsackie virus B3 

in HeLa cells infected at MOI 0.1. (b) Replication kinetics of wild type, 1-to-Stop PA and HA, and NoStop 

PA influenza A viruses in MDCK cells infected at MOI 0.1. Bars show mean and SEM; n = 3 per group. 

ns, non-significant (two-tailed unpaired t-test with Bonferroni correction comparing wild type to each 

mutant). 
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Supplementary Figure 2. In vitro RNA replication assay. Membranes containing replication complexes 

from HeLa cells infected with wild type or 1-to-Stop CVB3 viruses were purified and used for in vitro 

replication assays, by adding in vitro transcribed RNA, corresponding to wild type (3 samples) or 1-to Stop 

(3 samples) CVB3 viruses, and radiolabeled UTP. The Replicative Form (RF) and single stranded RNA 

(ssRNA) are visualized. Density of each band was determined by ImageJ. Bars show mean and SEM; n = 3 

per group. ns, non-significant (two-tailed unpaired t-test). 

 

Supplementary Figure 2: In vitro RNA replication assay. Membranes containing replication
complexes from HeLa cells infected with wild type or 1-to-Stop CVB3 viruses were purified
and used for in vitro replication assays, by adding in vitro transcribed RNA, corresponding
to wild type (3 samples) or 1-to Stop (3 samples) CVB3 viruses, and radiolabeled UTP. The
Replicative Form (RF) and single stranded RNA (ssRNA) are visualized. Density of each band
was determined by ImageJ. Bars show mean and SEM; n = 3 per group. ns, non-significant
(two-tailed unpaired t-test).
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Supplementary Figure 3. Genetic and phenotypic stability of 1-to-Stop and NoStop viruses after serial 

passage in tissue culture. (a, b) Virus titres over 10 serial passages. HeLa (a) or MDCK (b) cells were 

infected with CVB3 (a) or influenza A (b) variants at MOI 0.1. Virus titres were determined for each 

passage. Mean and SEM are shown; n = 3. ns, non-significant (two-way analysis of variance) (c,d) 

Frequency of Stop mutations observed in deep sequencing reads from wild type, 1-to-Stop, and NoStop 

variants from passage number 10 for CVB3 variants (c) or influenza A variants (d). Boxes show median 

and interquartile range, whiskers range or 1.5 interquartile range in case of outlier, individual dots indicate 

outliers; n = 6 per group. ***P < 0.001 (two-tailed unpaired t-test with Bonferroni correction, comparing 

wild type to each mutant). 
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after serial passage in tissue culture. (a, b) Virus titres over 10 serial passages. HeLa (a) or
MDCK (b) cells were infected with CVB3 (a) or influenza A (b) variants at MOI 0.1. Virus titres
were determined for each passage. Mean and SEM are shown; n = 3. ns, non-significant
(two-way analysis of variance) (c,d) Frequency of Stop mutations observed in deep sequen-
cing reads from wild type, 1-to-Stop, and NoStop variants from passage number 10 for CVB3
variants (c) or influenza A variants (d). Boxes show median and interquartile range, whiskers
range or 1.5 interquartile range in case of outlier, individual dots indicate outliers; n = 6
per group. ***P < 0.001 (two-tailed unpaired t-test with Bonferroni correction, comparing
wild type to each mutant).
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Supplementary Figure 4. 1-to-Stop high-fidelity CVB3 recovers wild type phenotype in presence of 

mutagens. 

Sensitivity of wild type (wt), wild type high-fidelity (wt HiFi), NoStop, 1-to-Stop and 1-to-Stop HiFi CVB3 

viruses to increasing concentrations of (a) ribavirin, (b) 5-azacytidine (5-AZC) and (c) 5-fluorouracil (5-

FU). Graphs show mean and SEM; n = 3 per group. **P < 0.01, ***P < 0.001 (two-way analysis of variance 

with Bonferroni post test). 

 

Supplementary Figure 4: 1-to-Stop high-fidelity CVB3 recovers wild type phenotype in pre-
sence of mutagens. Sensitivity of wild type (wt), wild type high-fidelity (wt HiFi), NoStop,
1-to-Stop and 1-to-Stop HiFi CVB3 viruses to increasing concentrations of (a) ribavirin, (b)
5-azacytidine (5-AZC) and (c) 5-fluorouracil (5-FU). Graphs show mean and SEM; n = 3 per
group. **P < 0.01, ***P < 0.001 (two-way analysis of variance with Bonferroni post test).

B Supplementary Methods

B.1 Mathematical assessment of stop codon background
noise

The overall NGS error frequency in the context of our work, is not of interest per
se; rather, only the fraction of errors that cause stop codons, since only those errors
could affect our results. The question we ask here is whether more of fewer Stop
mutations are observed at all of the altered Ser/Leu sites combined, rather than
at individual sites. This increases our sample size by approximately 100-fold, the-
reby further increasing our statistical power. To model the frequency of ‘false’ stop
codons due to sequencing error, we use a Poisson background noise model (a stan-
dard for estimating independent rare errors under minimal additional structural
assumptions, which has already been used to model NGS error rates in the context
of minority variant discovery)1,2. Since sequencing errors are nucleotide-context
dependent3, and the number of stop codons that can be reached by a single mu-
tation is different for different 1-to-stop codons, we model yij , the number of
observed stop codons for sample i at site j, as an observation of the random vari-
able:

Yij ∼ Po (Nij(λC + µij)) ,

where Nij is the total number of reads for the same sample and site, λC is the
probability of observing an erroneous stop codon given the nucleotide context C,
µij is the true stop codon frequency for sample i at site j; and the sequencing errors
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in different reads are assumed to be independent. The Poisson approximation is
very good sinceNij is large and λC+µij is small. Both the influence of nucleotide
context and the number of different stop codons reachable within one mutation
are captured in the λC parameter.

Let νij := Nij(λC + µij) and Pν(x), the probability mass function of the
Poisson distribution with rate ν. The log-likelihood is

l(ν;y) =
∑
i,j

logPνij (yij).

Hence, maximizing l is equivalent to maximizing each term separately, and the
ML estimate for the Poisson distribution is given by ν̂ij = yij . Reparamete-
rizing in λC and µ, it follows that the ML estimate is achieved for any λ̂C ∈
[0,minij yij/Nij ], with µ̂ij = yij/Nij − λ̂C , since λC ≥ 0 and µij ≥ 0 for all
i, j.

The log likelihood test statistic

D(λ0
C) = 2

(
max
λC ,µ

l(λC ,µ)−max
µ

l(λ0
C ,µ)

)
,

measures the drop in log likelihood between the full model and a reduced model
with λC fixed at λ0

C . By profile likelihood, a 95% confidence interval for λC
consists of all λ0

C such thatD(λ0
C) ≤ χ2

1(0.95), whereχ2
1 is the quantile function

for the χ2 distribution with one degree of freedom, since the change in model
order is one. Now, since D(0) = 0 and D is a decreasing function, the upper
endpoint of the profile likelihood confidence interval for λC can be found by a
binary search. Note how the ML estimate of each µij in the reduced model is still
given by yij/Nij − λ̂C , but constrained such that µij ≥ 0.

The model was thus applied to 5 (96-well plates each) sequencing runs, for a
total of 420 samples. Only samples from the same run are compared, to ignore
noise due to batch effect. Each codon site that had a 1-to-Stop codon in the wild
type genome (and thus the identical codon, in the identical context, in the 1-
to-Stop construct) was considered. The nucleotide contexts coincide with the 1-
to-Stop codons (UUA, UUG, UCA and UCG), since a mutation that produces a
stop codon must change the middle nucleotide in the codon. To produce a single
confidence interval for the stop codon error rate λ for each sequencing run, the
confidence intervals for the different nucleotide contexts, λUUA, λUUG, λUCA
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and λUCG, were averaged with weights proportional to the number of codon sites
for each context.

Sequencing Run Weighted 95% confidence interval for λ
CVB3 invitro [0, 1.062 · 10−6]

CVB3 invivo [0, 2.098 · 10−6]

Flu HA invitro [0, 2.237 · 10−6]
Flu PA invitro [0, 1.135 · 10−7]

Flu HA invivo [0, 5.631 · 10−6]
Flu PA invivo [0, 2.031 · 10−7]

Thus, considering the 1-to-Stop codon sites, if the sequencing error rates were
at the upper endpoints of the 95% confidence intervals, the contribution of se-
quencing errors to the stop codon frequency as it was computed (sum over all
Leu/Ser) would be ∼ 10−6 × 100 = 10−4 for the 1-to-Stop virus, which is still
more than 10 times below the observed frequencies.
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C Supplementary Tables

List of codon changes introduced in Coxsackie virus B3 and influenza A viruses.
The table indicates the starting nucleotide position and identity of each codon in
the Coxsackie virus B3 P1 region and the influenza A virus PA and HA genes, for
wild type (WT), No-Stop (NS) and 1-to-Stop (S) viruses for both Serine (S) and
Leucine (L).

Coxsackie virus B3 Influenza A virus HA gene Influenza A virus PA gene
Pos. WT NS S AA Pos. WT NS S AA Pos. WT NS S AA
789 TCA TCT TCA S 45 CTA CTA TTA L 70 CTT CTA TTA L
822 CTG CTG TTG L 54 CTG CTG TTG L 148 TTG CTG TTG L
831 AGC TCC TCG S 57 CTA CTA TTA L 169 TCG TCC TCG S
840 TCC TCC TCG S 90 TTA CTA TTA L 202 TCA TCT TCA S
885 TCC TCC TCG S 117 TCA TCT TCA S 217 TCT TCT TCA S
891 TCA TCT TCA S 141 CTA CTA TTA L 235 CTA CTA TTA L
963 TCA TCT TCA S 168 TCT TCT TCG S 238 TTG CTG TTG L
966 CTA CTA TTA L 177 CTT CTA TTA L 301 AGT TCT TCA S
975 CTC CTG TTG L 180 CTA CTA TTA L 340 CTT CTA TTA L
981 TCC TCC TCG S 204 CTA CTA TTA L 349 TTG CTG TTG L

1008 AGT TCT TCA S 213 CTA CTA TTA L 418 CTA CTA TTA L
1023 TCA TCT TCA S 231 TTG CTG TTG L 442 TCT TCT TCA S
1032 TTA CTA TTA L 237 TTG CTG TTG L 469 TCA TCT TCA S
1041 TCC TCC TCG S 267 CTG CTG TTG L 511 CTT CTA TTA L
1104 CTA CTA TTA L 288 TCA TCT TCA S 523 AGC TCC TCG S
1113 AGT TCT TCA S 291 CTC CTG TTG L 547 CTT CTA TTA L
1176 CTT CTA TTA L 294 TCC TCC TCG S 574 AGT TCT TCA S
1182 TCT TCT TCA S 303 AGC TCC TCG S 580 AGT TCT TCA S
1203 TCA TCT TCA S 306 TCA TCT TCA S 583 CTA CTA TTA L
1224 CTG CTG TTG L 312 TCC TCC TCG S 592 TCC TCC TCG S
1236 TTG CTG TTG L 330 TCT TCT TCA S 604 TCC TCC TCG S
1239 TCG TCC TCG S 333 AGT TCT TCA S 664 CTT CTA TTA L
1245 TTA CTA TTA L 336 TCA TCT TCA S 676 AGT TCT TCA S
1251 CTG CTG TTG L 384 CTA CTA TTA L 679 CTC CTG TTG L
1281 TTA CTA TTA L 396 TTG CTG TTG L 694 TCC TCC TCG S
1323 TCT TCT TCA S 399 AGC TCC TCG S 697 AGC TCC TCG S
1344 TTG CTG TTG L 402 TCA TCT TCA S 700 CTT CTA TTA L
1347 CTA CTA TTA L 408 TCA TCT TCA S 760 CTT CTA TTA L
1389 CTA CTA TTA L 411 TCA TCT TCA S 763 TCC TCC TCG S
1404 TCC TCC TCG S 444 AGT TCT TCA S 772 TCA TCT TCA S
1407 AGT TCT TCA S 447 TCA TCT TCA S 805 TTG CTG TTG L
1416 TTG CTG TTG L 465 TCG TCC TCG S 826 CTC CTG TTG L
1419 CTG CTG TTG L 510 AGC TCC TCG S 832 TTG CTG TTG L
1464 TCC TCC TCG S 525 TTA CTA TTA L 847 CTT CTA TTA L
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Coxsackie virus B3 Influenza A virus HA gene Influenza A virus PA gene
Pos. WT NS S AA Pos. WT NS S AA Pos. WT NS S AA

1470 TCC TCC TCG S 534 CTA CTA TTA L 862 TCA TCT TCA S
1479 TTG CTG TTG L 552 TCA TCT TCA S 871 CTG CTG TTG L
1530 CTC CTG TTG L 564 CTC CTG TTG L 874 CTG CTG TTG L
1560 CTA CTA TTA L 567 AGC TCC TCG S 886 CTG CTG TTG L
1575 AGT TCT TCA S 573 TCC TCC TCG S 892 TTA CTA TTA L
1605 AGT TCT TCA S 603 CTC CTG TTG L 895 AGT TCT TCA S
1647 CTA CTA TTA L 609 CTA CTA TTA L 910 AGT TCT TCA S
1671 CTA CTA TTA L 630 TCT TCT TCA S 934 CTA CTA TTA L
1689 TCC TCC TCA S 636 AGT TCT TCA S 1027 CTC CTG TTG L
1749 TTA CTA TTA L 651 AGT TCT TCA S 1048 CTA CTA TTA L
1755 TTA CTA TTA L 654 CTC CTG TTG L 1057 CTA CTA TTA L
1773 TTA CTA TTA L 690 TCA TCT TCA S 1114 AGC TCC TCG S
1797 AGC TCC TCG S 693 TCA TCT TCA S 1120 TTG CTG TTG L
1809 CTG CTG TTG L 702 AGC TCC TCG S 1132 CTC CTG TTG L
1815 TCA TCT TCA S 780 CTA CTA TTA L 1192 CTT CTA TTA L
1830 TCA TCT TCA S 825 CTA CTA TTA L 1207 AGT TCT TCA S
1836 TCC TCC TCG S 870 TCT TCT TCA S 1228 TCT TCT TCA S
1896 TTG CTG TTG L 885 TCA TCT TCA S 1231 CTA CTA TTA L
1920 TCA TCT TCA S 948 AGC TCC TCG S 1237 AGC TCC TCG S
1959 TCT TCT TCA S 951 CTC CTG TTG L 1273 TTG CTG TTG L
1989 TCC TCC TCG S 1008 AGC TCC TCG S 1282 TCA TCT TCA S
2001 TCT TCT TCA S 1017 TTG CTG TTG L 1285 AGC TCC TCG S
2028 CTG CTG TTG L 1023 CTG CTG TTG L 1297 CTT CTA TTA L
2043 TCG TCC TCG S 1035 TTG CTG TTG L 1342 AGC TCC TCG S
2046 AGT TCT TCA S 1050 TCT TCT TCA S 1375 TCC TCC TCG S
2055 AGT TCT TCA S 1059 TCT TCT TCA S 1429 TTG CTG TTG L
2064 CTC CTG TTG L 1068 CTA CTA TTA L 1432 CTC CTG TTG L
2067 CTA CTA TTA L 1158 TCA TCT TCA S 1441 TCC TCC TCG S
2079 TTG CTG TTG L 1176 CTG CTG TTG L 1468 CTG CTG TTG L
2100 TCA TCT TCA S 1182 AGC TCC TCG S 1483 AGC TCC TCG S
2106 AGC TCC TCG S 1224 TCT TCT TCA S 1522 CTG CTG TTG L
2115 CTT CTA TTA L 1281 CTG CTG TTG L 1549 TCT TCT TCA S
2136 TCG TCC TCG S 1302 TTA CTA TTA L 1555 TTG CTG TTG L
2160 CTT CTA TTA L 1329 CTG CTG TTG L 1588 AGT TCT TCA S
2163 TTG CTG TTG L 1356 CTG CTG TTG L 1600 TCA TCT TCA S
2172 TCA TCT TCA S 1359 TTG CTG TTG L 1603 CTC CTG TTG L
2217 CTT CTA TTA L 1365 CTA CTA TTA L 1618 CTG CTG TTG L
2247 CTA CTA TTA L 1368 TTG CTG TTG L 1651 CTT CTA TTA L
2253 TCA TCT TCA S 1386 TTG CTG TTG L 1669 CTC CTG TTG L
2256 AGT TCT TCA S 1401 TCA TCT TCA S 1672 TTG CTG TTG L
2265 CTG CTG TTG L 1416 TTA CTA TTA L 1696 TCG TCC TCG S
2283 AGC TCC TCG S 1434 AGC TCC TCG S 1711 CTA CTA TTA L
2310 TCA TCT TCA S 1440 CTA CTA TTA L 1735 TCC TCC TCG S
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Coxsackie virus B3 Influenza A virus HA gene Influenza A virus PA gene
Pos. WT NS S AA Pos. WT NS S AA Pos. WT NS S AA

2385 AGC TCC TCG S 1515 AGT TCT TCA S 1777 CTT CTA TTA L
2388 TCC TCC TCG S 1551 TCA TCT TCA S 1780 CTT CTA TTA L
2412 TCA TCT TCA S 1566 TTA CTA TTA L 1786 TCT TCT TCA S
2430 TCT TCT TCA S 1596 CTG CTG TTG L 1789 CTT CTA TTA L
2439 CTA CTA TTA L 1602 TCA TCT TCA S 1804 AGC TCC TCG S
2442 TTG CTG TTG L 1623 TTG CTG TTG L 1822 TCT TCT TCA S
2463 TCG TCC TCG S 1635 TCA TCT TCA S 1825 TCT TCT TCA S
2556 TCA TCT TCA S 1647 AGT TCT TCA S 1870 TCG TCC TCG S
2574 CTC CTG TTG L 1650 TCA TCT TCA S 1894 TCA TCT TCA S
2601 TCA TCT TCA S 1653 TTG CTG TTG L 1918 TCT TCT TCA S
2655 TCA TCT TCA S 1659 CTG CTG TTG L 1942 TTA CTA TTA L
2661 TCC TCC TCG S 1668 TCC TCC TCG S 1945 CTG CTG TTG L
2667 TCA TCT TCA S 1671 CTG CTG TTG L 1954 TCT TCT TCA S
2685 CTA CTA TTA L 1683 AGT TCT TCA S 1966 AGT TCT TCA S
2694 TCA TCT TCA S 1698 TCT TCT TCA S 1969 CTA CTA TTA L
2727 TCA TCT TCA S 1707 TCT TCT TCA S 1978 TCT TCC TCA S
2757 TTA CTA TTA L 1710 CTA CTA TTA L 1987 CTT CTA TTA L
2781 CTT CTA TTA L 1999 TCG TCC TCG S
2793 CTA CTA TTA L 2008 TCG TCC TCG S
2823 CTG CTG TTG L 2017 TTG CTG TTG L
2829 CTG CTG TTG L 2020 CTT CTA TTA L
2847 AGT TCT TCA S 2023 CTC CTG TTG L
2862 TCA TCT TCA S 2038 CTT CTA TTA L
2892 CTA CTA TTA L 2050 CTG CTG TTG L
2949 TCA TCT TCA S 2071 CTT CTA TTA L
2967 TCT TCT TCA S 2080 CTA CTA TTA L
2979 AGT TCT TCA S 2104 CTG CTG TTG L
3018 TCC TCC TCG S 2125 TTG CTG TTG L
3030 TTG CTG TTG L 2128 CTT CTA TTA L
3033 AGC TCC TCG S 2137 TCT TCT TCA S
3051 TCA TCT TCA S 2149 TCC TCC TCG S
3072 TCT TCT TCA S 2155 CTC CTG TTG L
3081 TCC TCC TCG S 2167 CTG CTG TTG L
3111 CTA CTA TTA L
3129 CTA CTA TTA L
3156 AGC TCC TCG S
3174 AGC TCC TCG S
3237 CTC CTG TTG L
3279 AGC TCC TCG S
3303 AGC TCC TCG S
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SMSSVD – SubMatrix Selection
Singular Value Decomposition

Rasmus Henningsson and Magnus Fontes

Abstract

High throughput biomedical measurements normally capture mul-
tiple overlaid biologically relevant signals and often also signals re-
presenting different types of technical artefacts like e.g. batch ef-
fects. Signal identification and decomposition are accordingly main
objectives in statistical biomedical modeling and data analysis. Exis-
ting methods, aimed at signal reconstruction and deconvolution, in
general, are either supervised, contain parameters that need to be
estimated or present other types of ad hoc features. We here intro-
duce SubMatrix Selection SingularValue Decomposition (SMSSVD),
a parameter-free unsupervised signal decomposition and dimen-
sion reduction method, designed to reduce noise, adaptively for
each low-rank-signal in a given data matrix, and represent the sig-
nals in the data in a way that enable unbiased exploratory analy-
sis and reconstruction of multiple overlaid signals, including identi-
fying groups of variables that drive different signals.

The Submatrix Selection Singular Value Decomposition
(SMSSVD) method produces a denoised signal decomposition
from a given data matrix. The SMSSVD method guarantees ortho-
gonality between signal components in a straightforward manner
and it is designed to make automation possible. We illustrate
SMSSVD by applying it to several real and synthetic datasets and
compare its performance to golden standard methods like PCA
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(Principal Component Analysis) and SPC (Sparse Principal Compo-
nents, using Lasso constraints). The SMSSVD is computationally
efficient and despite being a parameter-free method, in general,
outperforms existing statistical learning methods.

A Julia implementation of SMSSVD is openly available on GitHub
(https://github.com/rasmushenningsson/SMSSVD.jl).

1 Introduction

High throughput biomedical measurements, by design, normally capture multiple
overlaid biologically relevant signals, but often also signals representing different
types of biological and technical artefacts like e.g. batch effects. There exist dif-
ferent methods aimed at signal reconstruction and deconvolution of the resulting
high dimensional and complex datasets, but these methods almost always contain
parameters that need to be estimated or present other types of ad hoc features. De-
veloped specifically for Omics data and more particularly gene expression data such
methods include the gene shaving method1, tree harvesting2, supervised principal
components3 and amplified marginal eigenvector regression4. They employ wi-
dely different strategies do deal with the ubiquitous P ≫ N (many more variables
than samples) problem in omics data. Gene Shaving uses the first principal com-
ponent to iteratively guide variable selection towards progressively smaller nested
subsets of correlated genes with large variances. An optimal subset size is then cho-
sen using the ‘gap statistic’, a measure of how much better the subset is than what
is expected by random chance. To find additional subsets (signals), each gene is
first projected onto the orthogonal complement of the average gene in the current
subset, and the whole process is repeated.

We here introduce SubMatrix Selection Singular Value Decomposition (SMS-
SVD), a parameter-free unsupervised dimension reduction technique primarily
designed to reduce noise, adaptively for each low-rank-signal in a data matrix, and
represent the data in a way that enable unbiased exploratory analysis and recon-
struction of the multiple overlaid signals, including finding the variables that drive
the different signals.

Our first observation for the theoretical foundation of SMSSVD is that the
SVD of a linear map restricted to a hyperplane (linear subspace) share many pro-
perties with the SVD of the corresponding unrestricted linear map. Using this we
show that, by iteratively choosing orthogonal hyperplanes based on criteria for op-
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timal variable selection and concatenating the decompositions, we can construct
a denoised decomposition of the data matrix. The SMSSVD method guaran-
tees orthogonality between components in a straightforward manner and coincide
with the SVD if no variable selection is applied. We illustrate the SMSSVD by
applying it to several real and synthetic datasets and compare its performance to
golden standard methods for unsupervised exploratory analysis: Classical PCA
(Principal Component Analysis)5 and the lasso or elastic net based methods like
SPC (Sparse Principal Components)6. Just like PCA and SPC, SMSSVD is in-
tended for use in wide range of situations, and no assumptions specific to gene
expression analysis are made in the derivation of the method. The SMSSVD is
computationally efficient and despite being a parameter-free method, in general,
it outperforms or equals the performance of the golden standard methods. A Julia
implementation of SMSSVD is openly available on GitHub.

2 Methods

Theorem 2.1. LetX
∣∣
Π
: Π→ X(Π) be the restriction of a linear mapX : RN →

RP to a d-dimensional subspace Π ⊂ RN such that Π ⊥ kerX . Furthermore, let
UΣV T =

∑d
i=1 σiU·iV

T
·i be the singular value decomposition of X

∣∣
Π
. Then

1. V·i ⊥ kerX, ∀i.

2. U·i ⊥ cokerX, ∀i.

3. XV = UΣ.

4. UTX = ΣV T + UTX(I − V V T ).

5. (I − UUT )X(I − V V T ) = (I − UUT )X .

6. rank (X) = d+ rank
(
(I − UUT )X

)
.

Remark. In the statement of the theorem and in the proof below, we consider all
vectors to belong to the full-dimensional spaces. In particular, we extend all vectors in
subspaces of the full spaces with zero in the orthogonal complements.

Proof. 1. The columns of V are an orthonormal basis of Π and thus orthogonal
to kerX . 2. The columns of U are an orthonormal basis of X(Π) and X(Π) ⊥
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cokerX . 3. XV = X
∣∣
Π
V = UΣV TV = UΣ. 4. Using 3 we get

UTX = UTXV V T + UTX(I − V V T )

= ΣV T + UTX(I − V V T ).

5. The statement follows from (I − UUT )XV = (I − UUT )UΣ = 0, where
we have used that UTU = I . 6. Let Y := X(Π) and Z := imX/X(Π) be the
parts of the decomposition imX = Y ⊕ Z, which is possible since Y ⊂ imX .
The linear map (I −UUT ) is orthogonal projection ontoX(Π)⊥ and thus maps
Y → 0 and Z → Z. Since rankA = dim (imA), it follows immediately
that rank(I − UUT )X = dimZ and that rankX = dimY + dimZ =
d+ dimZ.

Note that V TV is the orthogonal projection onΠ andUTU is the orthogonal
projection on X(Π). If Π is spanned by the right singular vectors corresponding
to the d largest singular values of X , then UΣV T is the truncated SVD which
by the Eckhart-Young Theorem is the closest rank d matrix to X in Frobenius and
Spectral norms. Furthermore, if Π = (kerX)⊥, then d = rankX and UΣV T

is the SVD of X (without expanding U and V to orthonormal matrices). Also
note that for these two cases, property 4 takes a simpler form, UTX = ΣV T

(symmetric to property 3), but the residualUTX(I−V V T ) is nonzero in general.
Theorem 2.1 concerns the relationship between X and UΣV T and shows

that many important properties that hold for the (truncated) SVD are retained
regardless how the subspace Π is chosen. The results from Theorem 2.1 are put
into practice in this iterative algorithm. Let X1 := X and repeat the following
steps for k = 1, 2, . . .

1. Choose Πk.

2. Compute UkΣkV
T
k from Xk

∣∣
Πk

.

3. Let Xk+1 := (I − UkU
T
k )Xk.

The iterations can continue as long asXk is nonzero or until some other stopping
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criteria is met. Finally, the results are concatenated:

UΣV T :=
(
U1 U2 . . . Un

)

Σ1

Σ2
. . .

Σn



V T

1
V T

2
...
V T
n


=

n∑
k=1

UkΣkV
T
k .

Orthogonality between columns within each Uk and Vk respectively follow im-
mediately from the definition. Step 3 above, together with Theorem 2.1, property
2, guarantees orthogonality between the columns of different Uk’s, since the co-
lumns of Uk are in cokerXl, for all l > k. Similarly, properties 5 and 1 of
Theorem 2.1 imply orthogonality between the columns of different Vk’s. That is,
UTU = V TV = I . The diagonal entries of each Σk are decreasing, but the
algorithm above does not ensure any structure between the blocks. In practice
however, with each Πk chosen to capture a strong signal inXk, we can expect the
SMS singular values to be decreasing, or at least close to decreasing.

The rank decreases by dk in each iteration, that is rankXk = dk+rankXk+1,
which follows from property 6 in Theorem 2.1. This implies that rankUΣV T =
rankX if the iterations are run all the way until Xk = 0. In general, UΣV T ̸=
X , with equality iff the residualUT

k Xk(I−VkV T
k ) = 0 for all k. Indeed, if equa-

lity holds, then UTX − ΣV T = 0. Step 3 of the algorithm above now implies
that UT

k X = UT
k Xk and Theorem 2.1, property 4, yields

UTX − ΣV T =


UT

1 X1(I − V1V
T
1 )

UT
2 X2(I − V2V

T
2 )

...
UT
nXn(I − VnV T

n )

 .

To adaptively reduce noise, Π must depend on X . Our motivating example
is to use Π for selecting a subset of the variables that are likely to be less influenced
by noise. This is a special case of choosing Π after performing a linear transform
of the variables, which is described in the following theorem:

Theorem 2.2. Take a linear map S : RL → RP and an integer d such that
rankSTX ≥ d and let Ũ Σ̃Ṽ T be the rank d truncated SVD of STX . Furt-
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hermore let Π be the subspace spanned by the columns of Ṽ and let UΣV T be the
SVD of X

∣∣
Π
. Then

1. Π ⊥ kerX .

2. STUΣV T = Ũ Σ̃Ṽ T .

3. {V·1, V·2, . . . , V·d} and {Ṽ·1, Ṽ·2, . . . , Ṽ·d} are orthonormal bases of Π.

4. {STU·1, S
TU·2, . . . , S

TU·d} and {Ũ·1, Ũ·2, . . . , Ũ·d} are bases of
STX(Π).

5. ∥Σ∥F ≥ ∥Σ̃∥F
∥S∥2

.

6. UTX = ΣV T + UT (I − SST )X(I − V V T ).

Proof. 1. The columns of Ṽ are orthogonal to kerSTX ⊃ kerX . 2. STUΣV T

= STX
∣∣
Π
= (STX)

∣∣
Π
= Ũ Σ̃Ṽ T . 3. Follows immediately from the definiti-

ons. 4. {Ũ·i}di=1 is a basis of STX(Π). By property 2, Ũ = STUΣV T Ṽ Σ̃−1,
showing that {STU·i}di=1 span {Ũ·i}di=1. Finally, since U and Ũ have the same
rank, {U·i}di=1 is also a basis of STX(Π). 5. For general matrices A and B,
consider A acting on each column of B. We get

∥AB∥2F =
∑
i

∥AB·i∥22 ≤
∑
i

∥A∥22∥B·i∥22 = ∥A∥22∥B∥2F .

The result now follows from property 2, with A = ST and B = UΣV T , since
∥AB∥F = ∥Ũ Σ̃Ṽ T ∥F = ∥Σ̃∥F and ∥B∥F = ∥Σ∥F . 6. From Theorem 2.1,
property 4, we get UTX = ΣV T + UTX(I − V V T ). It remains to show that
UTSSTX(I − V V T ) = 0. By property 4, there exists a matrix Z such that
STU = ŨZ and

UTSSTX(I − V V T ) = ZT ŨTSTX(I − V V T )

= ZT Σ̃Ṽ T (I − Ṽ Ṽ T ) = 0,

where V V T = Ṽ Ṽ T because of property 3.

Corollary 2.1. If STS = I , then ∥Σ∥F ≥ ∥Σ̃∥F .
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Another way to interpret S is that SST defines a (possibly degenerate) in-
ner product on the sample space, which is used to find Π. To see this, let d =
rankSTX so that Ũ Σ̃Ṽ T = STX and K := XTSSTX = Ṽ Σ̃2Ṽ T , sho-
wing the well-known result that Ṽ Σ̃2Ṽ T is an eigendecomposition of K, where
Kij = ⟨xi, xj⟩ := XT

·i SS
TX·j is the inner product of sample i and j. This

naturally extends to kernel PCA, whereK is defined by taking scalar products af-
ter an (implicit) mapping to a higher-dimensional space. Any method that results
in a low-dimensional sample space representation can indeed be used, since Π is
spanned by the columns of V by definition. We will not pursue these extensions
here.

The Projection Score7 provides a natural optimality criterion for S and d (and
thusΠ) needed in each iteration of the SMSSVD algorithm. It is a measure of how
informative a specific variable subset is, when constructing a rank d approximation
of a data matrix. A common application is to maximize the Projection Score over
a sequence of variable subsets, where each subset consists of those variables that
have a variance above a specific threshold. Using the notation from Theorem 2.2,
the optimal variable subset describes a matrix S and the optimal low-rank approx-
imation is Ũ Σ̃Ṽ T . Here S has exactly one element in each column equal to 1,
at most one element in each row equal to 1 and all other elements equal to zero.
Hence STX corresponds to selecting a subset of the variables of a data matrix
X and STS = I . In iteration k of the SMSSVD algorithm, we optimize the
Projection Score jointly over the variance filtering threshold and the dimension,
which gives both an optimal variable subset Sk and a simple dimension estimate
dk of the signal that was captured.

3 Results

The performance of SMSSVD is evaluated in comparison to SVD and SPC (Sparse
Principal Components), a method similar to SVD, but with an additional lasso
(L1) constraint to achieve sparsity6. The methods are evaluated both for real data
using three Gene Expression data sets and for synthetic data where the ground
truth is known.
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3.1 Gene Expression Data

Three Gene Expression data sets, two openly available with microarray data and
one based on RNA-Seq available upon request from the original authors, were
analyzed. Gene expression microarray profiles from a study of breast cancer8 was
previously used to evaluate SPC6, but in contrast to their analysis, we use all 118
samples and all 22215 genes. Each sample was labeled as one of five breast cancer
subtypes: ‘basal-like’, ‘luminal A’, ‘luminal B’, ‘ERBB2’, and ‘normal breast-like’.
In a study of pediatric Acute Lymphoblastic Leukemia (ALL), gene expression
profiles were measured for 132 diagnostic samples9. The samples were labeled by
prognostic leukemia subtype (‘TEL-AML1’, ‘BCR-ABL’, ‘MLL’, ‘Hyperdiploid
(>50)’, ‘E2A-PBX1’, ‘T-ALL’ and ‘Other’). Our final data set is from another
pediatric ALL study, where gene expression profiling was done from RNA-Seq data
for 195 samples10. The samples were aligned with Tophat211 and gene expression
levels were normalized by TMM12. Only genes with a support of at least 10 reads
in at least 2 samples were kept. The annotated subtypes in this data set were ‘BCR-
ABL1’, ‘ETV6-RUNX1’, ‘High hyperdiploid’, ‘MLL’, ‘TCF3-PBX1’ and ‘Other’.
Here, ‘Other’ is a very diverse group containing everything that did not fit in first
five categories. We thus present results both with and without this group included.

The ability to extract relevant information from the gene expression data sets
was evaluated for each model by how well they could explain the subtypes, using
the Akaike Information Criterion (AIC) for model scoring. Given the low-dimen-
sional sample representations from SMSSVD, SVD or SPC (for different values
of the sparsity parameter, c), a Gaussian Mixture Model was constructed by fitting
one Multivariate Gaussian per subtype. The class priors were chosen proportional
to the size of each subtype. The loglikelihood l := logP(x|θ,M), where x are
the subtype labels, M is the model and θ a vector of k fitted model parameters
is used to compute the AIC = 2k − 2l. Figure 1 displays the AIC scores for
the different models as a function of the model dimension. SMSSVD generally
performs better than SVD, by a margin. Comparison with SPC is trickier, since
the performance of SPC is determined by the sparsity parameter c and there is no
simple objective way to choose c. However, SMSSVD compares well with SPC
regardless of the value of the parameter.
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Figure 1: Evaluation of SMSSVD on different data sets, based on AIC scores when fitting
a Gaussian Mixture Model to the subtypes. From top to bottom: A. Breast Cancer, B. Acute
Lymphoblastic Leukemia (Microarray), C. Acute Lymphoblastic Leukemia (RNA-Seq), D. Acute
Lymphoblastic Leukemia (RNA-Seq) with subtype ‘Other’ removed.

3.2 Synthetic Data

SMSSVD decomposes a matrix observed in noisy conditions as a series of ortho-
gonal low-rank signals. The aim is to get a stable representation of the samples and
then recover as much as possible of the variables, even for signals that are heavily
corrupted by noise. To evaluate SMSSVD, we synthetically create a series of low-
rank signals Yk that are orthogonal (i.e. Y T

i Yj = 0 and YiY T
j = 0 for i ̸= j)

and that has a chosen level of sparsity on the variable side and try to recover the
individual Yk’s from the observed matrix X :=

∑
k Yk + ε where ε is a matrix

and εij ∼ N (0, σij). To measure how well SMSSVD recovers the signals from
the data, we look at each signal separately, considering only variables where the
signal has support. Let err(k) be the reconstruction error of signal k,

err(k) := ∥RT
k (Yk − Ŷk)∥F ,

where Ŷk is the reconstructed signal and Rk is defined such that multiplying with
RT

k from the left selects the variables (rows) where Yk is nonzero.
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While SMSSVD is designed to find d-dimensional signals (Ŷk := UkΣkV
T
k ),

the same is not true for SVD and SPC. To test the ability to find the signals, rather
than the ability to find them in the right order, the components are reordered using
a algorithm that tries to minimize the total error by greedily matching the rank
1 matrices from the decomposition to signals Yk, always picking the match that
lowers the total error the most. The number of rank 1 matrices matched to each
signal Yk is equal to rankYk. Note that with no noise present, SVD is guaranteed
to always find the optimal decomposition.

The biplots in Figure 2 illustrate how SMSSVD works and how the signal re-
constructions compares to other methods. If there is no noise, perfect decompo-
sitions are achieved by all methods apart from SPC with a high degree of sparsity.
An artificial example where the noise is only added to the non-signal variables
highlights that SMSSVD can still perfectly reconstruct both samples and signal
variables, whereas the other methods display significant defects. Finally, when all
variables are affected by noise, SMSSVD still get the best results.

Next, we created several data sets for a variety of conditions based on the pa-
rameters N = 100: Number of samples, P : Number of variables, L: Number
of variables in the support of each signal, K = 8: number of signals and d: the
rank of each signal. For each signal, we randomize matrices Uk and Vk, choose
a diagonal matrix Σk and let Yk := UkΣkV

T
k . For both Vk and Uk, each new

column is created by sampling a vector of i.i.d. Gaussian random variables and
projecting onto the orthogonal complement of the subspace spanned by previous
columns (in current and previous signals). For Uk, we only consider the subspace
spanned by L randomly selected variables. The result is then expanded by in-
serting zeros for the other P − L variables. To complete the signal, let the i’th
diagonal element of Σk, (Σk)ii := 0.6k−10.9i−1, such that there is a decline in
the power between signals and within components of each signal. Finally, i.i.d.
Gaussian noise is added to the data matrix. Figures 3, 4 and 5 show test results
for data sets randomized in this way for different sets of parameters. SMSSVD is
the only method that performs well over the whole set of parameters. The only
situation where SMSSVD is consistently outperformed is by SVD for large L,
and it is by a narrow margin. SMSSVD performs particularly well, in comparison
to the other methods, in the difficult cases when the signal to noise ratio is low.
SPC performance clearly depends on the regularization parameter which must be
chosen differently in different situations. However, despite being a parameter-free
method, SMSSVD outperforms SPC in most cases.
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Figure 3: The reconstruction error, err(k), is shown for different conditions. The signal
strength ∥Yk∥F (black) is shown for scale. The methods are: SVD (blue), SMSSVD (red) and
SPC (green, magenta, cyan) with decreasing degree of sparsity (regularization parameters
c = 0.04

√
P , c = 0.12

√
P and c = 0.36

√
P respectively). No errors larger than the signal

strength are displayed as that indicates that a different signal has been found.
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Figure 4: The reconstruction error, err(k), is shown for different conditions. The signal
strength ∥Yk∥F (black) is shown for scale. The methods are: SVD (blue), SMSSVD (red) and
SPC (green, magenta, cyan) with decreasing degree of sparsity (regularization parameters
c = 0.04

√
P , c = 0.12

√
P and c = 0.36

√
P respectively). No errors larger than the signal

strength are displayed as that indicates that a different signal has been found.
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Figure 5: The reconstruction error, err(k), is shown for different conditions. The signal
strength ∥Yk∥F (black) is shown for scale. The methods are: SVD (blue), SMSSVD (red) and
SPC (green, magenta, cyan) with decreasing degree of sparsity (regularization parameters
c = 0.04

√
P , c = 0.12

√
P and c = 0.36

√
P respectively). No errors larger than the signal

strength are displayed as that indicates that a different signal has been found.
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4 Discussion

We have presented SMSSVD, a dimension reduction technique designed for com-
plex data sets with multiple overlaid signals observed in noisy conditions. When
compared to other methods, over a wide range of conditions, SMSSVD performs
equally well or better. SMSSVD excels in situations where P ≫ N (many more
variables than samples) but most of the variables just contribute with noise, a very
common situation for high throughput biological data. As a parameter-free met-
hod, SMSSVD requires no assumptions to be made of the level of sparsity. Indeed,
SMSSVD can handle different signals within the same data set that exhibit very
different levels of sparsity. Being parameter-free also makes SMSSVD suitable for
automated pipelines, where few assumptions can be made about the data.

A common strategy when analyzing high dimensional data is to first apply
PCA (SVD) to reduce the dimension to an intermediate number, high enough
to give an accurate representation of the data set, but low enough to get rid of
some noise and to speed up downstream computations (see e.g. van der Maaten
et al.13). We argue that since SMSSVD can recover multiple overlaid signals and
adaptively reduce the noise affecting each signal so that even signals with a lower
signal to noise ratio can be found, it is very useful in this situation.

Our unique contribution is that we first solve a more suitable dimension re-
duction problem for robustly finding signals in a data set corrupted by noise and
then map the result back to the original variables. We also show how this com-
bination of steps gives SMSSVD many desirable properties, related to the SVD
of both the full data matrix and of the smaller matrix from the variable selection
step. Orthogonality between components is one of the cornerstones of SVD, but
it is often difficult to satisfy the orthogonality conditions when other factors are
taken into account. SPC does for instance give orthogonality for samples, but not
for variables and the average genes of each subset in gene shaving are ‘reasonable’
uncorrelated. For SMSSVD, orthogonality follows immediately from the con-
struction, simplifying interpretation and subsequent analysis steps. Theorem 2.2,
property 2 highlights that the variables retained in the variable selection step are
unaffected when the solution is expanded to the full set of variables. Hence, we
can naturally view each signal from the point of view of the selected variables, or
using all variables.

The variable selection step in the SMSSVD algorithm can be chosen freely. For
exploratory analysis, optimizing the Projection Score based on variance filtering
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is a natural and unbiased choice. Another option is to use Projection Score for
response related filtering, e.g. ranking the variables by the absolute value of the
t-statistic when performing a t-test between two groups of samples. The algorithm
also has verbatim support for variable weighting, by choosing the S matrix as a
diagonal matrix with a weight for each variable. Clearly this is a generalization of
variable selection.

Kernel PCA, SPC, and other methods that give low-dimensional sample re-
presentations, but where the variable information is (partially) lost, can also be
extended by SMSSVD (relying on Theorem 2.1 only), as long as a linear represen-
tation in the original variables can be considered meaningful. Apart from retrie-
ving a variable-side representation, the SMSSVD algorithm also makes it possible
to find multiple overlapping signals, by applying the dimension reduction method
of interest as the first step of each SMSSVD iteration.
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DISSEQT – DIStribution based
modeling of SEQuence Space Time

dynamics

Rasmus Henningsson, Gonzalo Moratorio, Antonio V. Bordería,
Marco Vignuzzi and Magnus Fontes

Abstract

Rapidly evolving microbes are a challenge to model because of the
volatile, complex and dynamic nature of their populations. We de-
veloped the DISSEQT pipeline (DIStribution-based SEQuence space
Time dynamics) for analyzing, visualizing and predicting the evolu-
tion of heterogeneous biological populations in multidimensional
genetic space, suited for population-based modeling of deep se-
quencing and high-throughput data. DISSEQT is openly available
on GitHub* and Synapse†, covering the entire workflow from read
alignment to visualization of results. DISSEQT is centered around
robust dimension and model reduction algorithms for analysis of
genotypic data with additional capabilities for including phenoty-
pic features to explore dynamic genotype–phenotype maps. We il-
lustrate its utility and capacity with examples from evolving RNA
virus populations, which present on of the highest degrees of po-
pulation heterogeneity found in nature, making it natural to at-
tempt a distribution-based model. Using DISSEQT, we empirically
reconstruct the evolutionary trajectories of evolving populations in

*https://github.com/rasmushenningsson/DISSEQT.jl
†http://dx.doi.org/10.7303/syn11425758
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sequence space and genotype–phenotype fitness landscapes. We
show that while sequence space is vastly multidimensional, the re-
levant genetic space of evolving microbial populations is of intrinsi-
cally low dimension and we are able to recover robust characteris-
tics of the population distribution driving evolution. Faithfully mo-
nitoring the evolutionary trajectories, we can identify the key mi-
nority genotypes contributing most to the population characteris-
tics. Finally, we show that empirical fitness landscapes, when recon-
structed to include minority variants, can predict phenotype from
genotype with high accuracy.

1 Introduction

Microbial infections, by viruses and bacteria, initially colonize their host as small,
quite homogeneous populations, but short generation times and relatively high
mutation rates quickly lead to large populations of high genetic diversity. It is well
accepted that this diversity facilitates adaptation to the host is through selection of
variants from this pool of mutants, in response to environmental change. With the
advent of DNA sequencing, viruses and bacteria were the first organisms to be fully
sequenced (phage MS2 in 19751; H.influenzae2 and M.genitalium3 in 1995) and
the study of microbial evolution by phylogenetics has benefited from the hundreds
to tens of thousands of consensus sequence genomes available for many microor-
ganisms. More recently, High-Throughput Sequencing (HTS) technologies have
added new depth to sequence data, capable of quantifying minority variants within
the population that differ from the consensus sequence. For example, HTS stu-
dies of RNA viruses indicate that both experimental and clinical samples present
hundreds to tens of thousands of low-frequency variants, constituting single nu-
cleotide polymorphisms at nearly every nucleotide site along the genome4,5. Even
before HTS, phenotypic differences between populations with the same consen-
sus sequence have been observed and attributed to suspected differences in variant
composition. However, characterization of these mutant ’swarms’ has generally
been limited to mean measures of overall diversity (e.g. Shannon entropy, mean
variance, etc.). In a few cases, examples of mixed populations of single nucleotide
variations were shown to contribute significantly to virus pathogenesis6, fitness
and phenotype4,7, but focused on only a few variants. Since a mixed population
can constitute an evolutionary stable strategy (ESS)8,9, the population might aim
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for an equilibrium where multiple variants coexist.

The rapidly expanding field of single-cell sequencing illustrates how the role
of heterogeneity in general can be studied in more and more detail. The data is
however complex and noisy, which presents new challenges in the development of
algorithms and techniques for analysis, representation and visualization10–14. Alt-
hough phylogenetic tools are well suited for understanding the evolutionary his-
tory of lineages and the relationships between lineages/individuals based on whole
genome consensus sequence data, they cannot take into account the variant com-
position hidden by the consensus. Higgins15 circumvents these issues by applying
multidimensional scaling (MDS) for exploratory analysis, keeping distances bet-
ween samples more in line with the measured quantities. PhyloMap16 superimpo-
ses phylogenetic trees on the MDS representation, trying to get the best from both
worlds. Relying on consensus sequences only, these models are, however, not well
suited for comparison of populations that might be identical at the consensus level
but with key differences in the minority variant composition. Other tools are thus
needed to adequately represent and visualize a microbial population in sequence
space, focusing on where something is, rather than how it got there. Theoretical
fitness landscape models, including Wright’s17 and the NK landscapes18 of Kauff-
man using two parameters to model the landscape ruggedness paved the way for
more recent advances where landscape models are (partially) based on empirical
data. One approach is to study the impact of mutations at a few loci only19,20,
thus artificially enforcing a low dimension of sequence space. To expand the fit-
ness landscape analysis to a higher dimensional setting, Kouyos et al.21 utilized
predictive models for in-vitro fitness based on the amino acid sequence. For RNA
viruses, the mathematical framework provided by the quasispecies theory has been
used to describe the population dynamics of these pathogens22. Seifert et al.23 as-
sumed that viral populations reached mutation-selection equilibrium and applied
the quasispecies equation to infer fitness values for the haplotypes in a swarm.
However, it is generally accepted that mutation-selection balance is not reached
throughout most stages of infection and under most experimental conditions.

Nevertheless, it is tempting to think a proper analysis of an evolving popula-
tion and its variants composition may foretell whether and where the population
will move in genotypic space24, by looking at the dynamics of the population
rather than a more static analysis at consensus level. Understanding how the po-
pulation is developing in sequence space may help predict which directions it can
go from there. Viruses, the fastest mutators with small genomes, make ideal model
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organisms for studying short-term evolutionary processes and will thus be used to
showcase the methods developed in this work.

Here, we present DISSEQT (DIStribution based SEQuence space Time dyna-
mics) – a pipeline for analyzing evolution of microbial populations. At the core is a
distribution-based model designed to capture the heterogeneity of the populations
which makes it possible to describe similarities and differences between popula-
tions down to the minority level, and to couple sequence space composition to
phenotypic effects. We demonstrate the DISSEQT pipeline with examples from
RNA virus and bacterial evolution. First, we show how the DISSEQT sequence
space model can uncover biologically relevant features. Second, we followed the
evolutionary trajectories of longitudinal samples of experimentally evolved viral
populations. Finally, by developing a fitness landscape model based on empirical
fitness measurements, we demonstrate how phenotypic effects can be predicted
from the population composition. Specifically, we show that the sequence space
in which microbial populations evolve are of relatively low dimension, and that
biologically relevant signals can be readily captured and used to identify the key
variants contributing most to phenotype. We confirm that minority variants con-
tribute significantly to phenotype and must be taken into account for accuracy of
genotype–phenotype prediction.

2 Results

2.1 Overview of the DISSEQT Pipeline

The DISSEQT pipeline (Figure 1, top panel) is designed for reproducibility and
openness, from the ground up, using modern software solutions. The source code
is openly available in GitHub and all software dependencies are open source. The
software can either be installed locally or run directly from Docker images with all
required software preinstalled. Running from Docker images simplifies setup and
improves reproducibility since differences between local runtime environments are
eliminated.

The overview described here is detailed in the Methods Section. The DIS-
SEQT pipeline has three steps, serving different purposes. 1. Establishing a model
for sequence space. 2. Reducing noise to make the model robust. 3. Visualization
and phenotype prediction.

First, the raw reads for each sample were aligned iteratively until the consensus
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Figure 1: Top: The DISSEQT pipeline. The yellow boxes represent algorithms and data mana-
gement. The blue boxes represent plots and other output. The analysis history of all results
and plots can be traced back all the way to the raw input data. Steps that are only used in
some analyses are displayed in gray text. Sequence Space Representation: Per sample raw
sequencing data is passed through automatic quality control and aligned to a reference ge-
nome. Codon frequencies are inferred using quality scores in the aligned data and the limit
of detection is estimated for each codon at each site. These are combined to form the se-
quence space representation. Consensus change reports and read coverage plots aid manual
quality inspection. Noise Reduction: Median filtering along the time axis is used for time
series data. Talus plots are used for dimension estimation and SMSSVD reduces the dimen-
sion robustly. Visualization and Prediction: Variable selection can be used for finding a small
subset of explanatory variables. Nonlinear dimension reduction captures important features
for low-dimensional visualization of sequence space. Evolutionary trajectories are described
in both sample and variable space. Fitness landscape models are used for visualization and
prediction. Bottom left: Talus plot for the SynSyn data set. After 13 dimensions, the Talus
plot shows small variations around a low mean. Bottom right: Projection Score Plot for the
SynSyn data set. SMSSVD finds 3 signals of dimensions 3, 5 and 5, with different optima for
variance filtering. Each curve displays the projection score of the current signal as a function
of the variance filtering threshold, as dimensions are progressively added to the model.

sequence converged and both automatic and manual quality controls were perfor-
med. Maximum likelihood estimation was used to infer the codon frequencies
for each position, using all reads overlapping that position, based on a multino-
mial model with noisy observations. An initial sequence space representation was
then constructed using the codon frequencies and a limit of detection estimated
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for each possible variant at each site. In this article, we focus on coding regions,
which makes codons the natural basis for sequence space modeling, since they are
closely connected to biological function and this choice does not impose any as-
sumptions about the relative importance of synonymous versus nonsynonymous
changes. All methods presented here are also applicable to non-coding regions, by
basing the sequence space model on nucleotides rather than codons.

Second, a dimension estimate of the data was obtained by generating a Talus
plot (Figure 1, bottom left panel, and Supplementary Methods), after which noise
reduction was performed by SubMatrix Selection Singular Value Decomposition
(SMSSVD)25. SMSSVD is ideal for situations where complex data containing
a very large number of variables have signals spread out over different (possibly
overlapping) subsets of variables, with the goal of recovering all signals that can be
detected, rather than only the strongest one.

Finally, the resulting sequence space representation was used for visualization
and phenotype prediction. The evolutionary trajectories of viral populations were
followed through time, using sparse methods to find low-frequency variants arising
and driving the movement in sequence space. Empirical fitness values were used
to create fitness landscapes for prediction, using the representation from step 2,
and for visualization, after an additional nonlinear dimension reduction step vital
for getting a useful representation in 2d. The sequence space model created by the
DISSEQT pipeline is also intended to be used as input to other software packages,
e.g. for clustering and regression.

2.2 Generation of synthetic synonymous viral lineages with
altered localization in sequence space and different mi-
nority variant compositions

Our goal was to develop and evaluate a pipeline that can capture the discrete signals
within the swarms of variants in clinical or experimental samples – essentially, to
monitor and analyze evolving populations before significant changes to consensus
sequences occur. To do so, we generated a collection of samples that would be re-
presentative of such populations, bearing differences in minority variants. We used
four genetically trackable virus populations that derived from the same infectious
clone wild type Coxsackie virus B3. Within the capsid-coding region of wild type
virus, 117 Serine and Leucine codons are represented by all six codons for each
amino acid. We generated three additional synthetic synonymous (SynSyn) virus
lineages (Figure 2), some of which were previously published26, in which these
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Figure 2: Right: Clusters of Leu/Ser codons according to different viral lineages. Color co-
ding corresponds to synonymous codons used to genetic engineered each viral lineage ‘Blue
Lineage’ (blue), ‘Green Lineage’ (green) or ‘Red Lineage’ (red). Left: Schematic of the Cox-
sackie virus genome indicating RNA structures required for replication (5’UTR, IRES, CRE and
3’UTR) and the single open reading frame encoding capsid structural proteins (P1 region)
and non-structural proteins (P2, P3 regions). The P1 region, in expanded view, shows 117
Ser/Leu codons for the wildtype (WT), Blue, Green and Red viral lineages.

117 codons were changed to belong exclusively to only one of three codon catego-
ries. These lineages were designed to retain the initial functional neutrality (that is,
same protein sequence), while occupying different starting points and potentially
different trajectories in sequence space. Indeed, the differences in fitness values
and phenotypes are small in comparison to the differences we observe within the
lineages in the experiments described below (see Extended Figure 1). However,
the lineages should behave differently as mutations accumulate at these codons,
by accessing different mutational neighborhoods with differing impacts of virus
fitness.

Next, to introduce changes in minority variant composition without signifi-
cantly altering their consensus sequences, we evolved these virus populations in
different conditions. Wild type and SynSyn viruses were serially passaged five
times in triplicate in normal conditions, as well as in five different mutagenic con-
ditions that are known to increase this virus’s mutation rate27 three base analogues
(ribavirin, 5-fluorouracil and 5-azacytidine), amiloride, andMn2+. Low to mode-
rate concentrations were used to accelerate evolution, while higher concentrations
were employed to exacerbate fitness effects. We thus obtained 411 mutant swarms
(301 passing strict quality controls) from these varied growth conditions, which
were deep sequenced to obtain their entire variant compositions. Importantly,
passaged samples in each lineage did not have significant consensus changes (in
total across the samples, 144 substitutions at 4 different receptor binding sites and
35 substitutions at 12 other sites).
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2.3 DISSEQT reveals that the sequence space occupied by
evolving microbial populations is of intrinsically low di-
mensionality

Theoretical sequence space is incredibly large, even for a small genome of length
n = 10000, the number of possible sequences are 4n ≈ 4 · 106020, so large that
the number of atoms in the universe is miniscule in comparison. The number of
sequences reachable within just K = 10 mutations,

∑K
k=1

(
n
k

)
k3 ≈ 1.6 · 1038

is still vast, and it is unknown much of sequence space is occupied by an evolving
microbial population. We generated Talus and Projection Score28 plots from the
sequence data, which provide a visualization of how the contents of a data set
spread out across different dimensions. These plots provide a qualitative estimate
of the number of dimensions needed to capture all biologically relevant signals that
stand out above the background noise. As shown in Figure 1, bottom left panel,
the Talus plot settles after 13 dimensions, with small variations around a low mean,
giving a dimension estimate of 13. In the Projection Score plot (Figure 1, bottom
right panel), SMSSVD has detected three signals, of dimensions 3, 5 and 5, where
the variance filtering threshold for automatic noise reduction has been optimized
for each signal.

Next, we examined which biological signals were captured in each dimension
and whether analysis of minority variants could better monitor the evolving po-
pulations compared to consensus sequence analysis. To do this, sequence space
representations of the mutant swarms were generated after noise reduction, where
the final SMSSVD step decomposed the samples by principal components. Since
almost no consensus changes occurred during the experiment, the principal com-
ponents found patterns essentially related to differences in minority variants bet-
ween mutant swarms. As shown in Figure 3, the strongest signal, described by the
first three principal components, clearly separates the samples in sequence space
according to lineage (see rows 1–3, above the diagonal, in Figure 3). Importantly,
further analysis of lower dimensions identified all biological treatments that were
imposed on the viral populations. A complete separation in sequence space was
observed for mutagenic treatment by 5-fluorouracil, ribavirin, and 5-azacytidine
(see rows 4, 5, and 7 below the diagonal, in Figure 3), known to introduce speci-
fic nucleotide substitution biases. Even for treatment with Mn2+ and amiloride,
which increase natural mutation rates without introducing nucleotide bias, a bi-
ological signal could be identified in most of the mutant swarms separating from
other samples in rows 9 and 11 (Figure 3). Furthermore, these signals are detected
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despite the background noise and error introduced by the sample preparation and
sequencing technology, which lies in even lower components. Finally, if the same
analysis is performed using only each sample’s consensus sequence, barely any bi-
ologically relevant signals are detected and no patterns related to the mutagens are
found (Extended Figure 2). These results reveal an important feature of evolving
microbial swarms: despite sequence space being of theoretically ultra-high dimen-
sion, we showed here that evolving microbial populations such as RNA viruses,
which present the highest mutation frequencies, are of intrinsically low dimensio-
nality. Indeed, all five of the biological pressures placed on these viral populations
could be captured within the first 13 components.

2.4 DISSEQT canmonitor evolutionary trajectories and iden-
tify the minority variants involved in adaptation

Recently, we studied the adaptation of Coxsackie virus to a new cell line. Long
term passages of experimentally evolved populations (120 generations per virus)
were analyzed by deep sequencing. Lacking suitable computational tools, the ori-
ginal study focused on identifying variants in the structural protein-coding region
of a wild type lineage that showed signs of positive selection in the final passages
of adaptation (mutations appearing at> 2% in more than one replicate, and only
in the structural proteins known to be involved in adaptation to cell culture)4.
In that study, we identified one consensus sequence change that occurred in all
lineages during the first 10 passages, followed by a cluster of minority variants
that reached above 5% in the last passage in each series. The data set however,
contained whole-genome sequencing for three lineages of this virus: wild type, a
higher replication fidelity lineage and a lower fidelity lineage. Using DISSEQT,
we could obtain a more complete picture by monitoring the evolutionary trajec-
tories of three biological replicates per lineage (Figure 4), without biasing towards
non-synonymous mutations in the structural protein region. The top panel gives
an overview based on nonlinear dimension reduction, showing how the evolutio-
nary trajectories of the replicates relate to each other. For each pair of replicates,
the time of bifurcation was computed and this was extended to sample clusters
using average linking hierarchical clustering. Before the time of bifurcation, the
replicates are close in sequence space and follow the same evolutionary trajectory.
The splits in the panel show when the bifurcations occur. All replicates shared the
same starting point. Around passage 4, the low fidelity replicates (yellow-orange)
split from the others and shortly thereafter (around passage 5) the wildtype repli-
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Figure 3: Pairwise scatter plots showing the first 13 principal components in the analysis of
the SynSyn data set plotted against each other. Plots above and below the diagonal are
mirror images of each other. Each dot represents one viral population. (Continued on the
following page.)
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Figure 3: Above the diagonal, samples are colored by lineage (Black: 1, Blue: 2, Green: 3,
Red: 4) and below the diagonal, samples are colored by mutagen (Red: 5-fluorouracil, Light
green: amiloride, Blue: 5-azacytidine, Yellow: Mn2+, Cyan: ribavirin, Magenta: mock). All
axes are rescaled to fill the plot area.

169



PAPER IV

x

-2 -1 0 1 2
-2

-1

0

1

2

y

Figure 4: Above: Overview of the evolutionary trajectories of the 9 replicates in the adap-
tability data set4, shown after nonlinear dimension reduction. WT replicates are shown in
magenta-purple colors, replicates from the high fidelity lineage in green-cyan colors and re-
plicates from the low fidelity lineage in yellow-orange colors. The starting point in sequence
space is very close for all replicates. The splits indicate when the evolutionary trajectories
bifurcate, i.e. when the replicates start to deviate from each other. Left column: Principal
components for replicates as a function of arc length. Right column: Variable contributions
as a function of arc length. Both columns: The dotted black line shows the total contribution
to σk at s. (Continued on the following page.)

cates (magenta-purple) split from the higher fidelity replicates (green-cyan). These
observations reflect what was expected, but could not be detected using classical
approaches that monitored only a few positively selected alleles: that low-fidelity,
mutator strains generated more minority variants more rapidly compared to wild-
type, and to high fidelity strains. The replicates within each lineage then followed
similar trajectories until further bifurcating between passages 7–19. As with the
previous examples where lineages clustered together, these results also support the
notion that although sequence space is theoretically huge, similar lineages will
tend to travel along the same evolutionary trajectories during the initial periods of
evolution.
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Figure 4: (Continued from the previous page.)
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While the above analysis gave information on rate and direction of evolution,
it did not identify what minority variant component of each population was re-
sponsible for adaptation and the observed evolutionary signals. Thus, we broke
the analysis down by component over time after variable selection, where princi-
pal components determined by SMSSVD followed by SPC maps the trajectories
of each replicate (left panels), and identifies which variants contributed most to
the signal in each component (right panels). The strongest signal in the first prin-
cipal component captured time dynamics shared between all replicates regardless
of lineage, which consisted of the amino acid residues in the structural proteins
responsible for adaptation to receptor usage4. The remaining components, howe-
ver, identified several other mutations at sites that were missed by using the classic
cut-off of 1–2% minority variant frequency and that could explain differences sub-
tler phenotypic differences between lineages and between replicates. For wildtype,
for example, two additional amino acid changes in the VP1 and VP4 structural
proteins contributed most to these lineages’ departure from others (principal com-
ponent 2). Finally, the lower components (4 and onward) revealed variants that
explain each replicate’s divergence from others, including many variants in non-
structural proteins such as the 2C (helicase) and 3C (protease) (Extended Figure
3). Together, the results show that while low-frequency variants were identified
at nearly every nucleotide site, the common biologically relevant signals arising
during longer-term evolution can be captured in relatively low dimension.

2.5 Visualization of evolution along an empirical fitness
landscape

In RNA virus evolution, adaptation to new environments can often be attributed
to single or few new mutations that become fixed in the population. Experimental
evolution in the lab and convergent evolution in the field suggest that short term
evolution may be of relatively low dimension, as supported by our findings. If
so, then these initial movements in sequence space may be inherently predictable,
provided a robust genotype–phenotype map could be generated. This connection
between sequence space and fitness is most naturally illustrated as a fitness lands-
cape, where fitness is shown as a function of location in sequence space. However,
reconstructing such landscapes from empirical data has been challenging. To eva-
luate the ability of DISSEQT to correctly generate and visualize fitness landscapes,
we first empirically measured the relative fitness of the wild type and SynSyn vi-
rus populations described above in a direct competition assay against a neutral,
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genetically marked competitor26,29 (data available in Synapse). The visualization
(Figure 5, top panel) builds upon a 2d representation of sequence space, but using
only the first two components from the SMSSVD representation is not sufficient
since it ignores all other relevant signals in the data. Nonlinear dimension re-
duction by Isomap was used to distort sequence space such that the notion of clo-
seness is respected, taking all signals into account. Fitness was then added as the
third dimension, interpolated by the Gaussian Kernel Smoother predictor (per-
formance measured in Figure 6, top panel). The figure shows the dynamics of
viral clouds corresponding to each viral lineage evolving over time. The wild type
lineage (black) occupied the centermost area of the landscape, surrounded by the
other lineages. In general, wild type populations occupied high fitness regions of
the landscape, with some variability. This observation confirmed that wild type
virus is well adapted to the growth conditions used in these experiments, and
should tolerate perturbations in the system, such as increases in mutational load.
The green SynSyn lineage displayed the most dramatic fitness differences, reaching
both very high and very low areas, whereas the blue SynSyn lineage showed a sta-
ble, plateau-like behavior without any significant drops in fitness. Finally, the red
SynSyn lineage was stuck in an area of the fitness landscape with-out any fitness
peaks. Indeed, the red lineage was shown to be attenuated in vivo, and unable
to reach pathogenic outcomes available to wild type virus; while the blue lineage
was shown to be more mutationally robust26. Extended Figure 4 shows the same
fitness landscape, but with samples colored by mutagen. Importantly, the data
show that 2d reconstruction of sequence space by nonlinear dimension reduction
can adequately reconstruct a fitness landscape that captures the expected biological
behavior of similar, yet different viral lineages.

2.6 Prediction of phenotype from genotype requires the in-
put of minority variants

A prime goal in developing faithful representations of sequence space is the poten-
tial to assign phenotypes to known genotypes, and ultimately predict the phenoty-
pes of new genotypes. For rapidly evolving populations, the presence of minority
variants has been shown to contribute to phenotype, but this is not normally taken
into account in genotype–phenotype mapping. Indeed, when the fitness lands-
cape described above was reconstructed using only consensus sequence data, the
landscape is considerably collapsed (Figure 5, bottom panel).

We thus evaluated the relevance of our sequence space reconstructions (after
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Figure 5: Top: Fitness landscape visualization of the SynSyn data set. Bottom: The same
fitness landscape, constructed from consensus data only. Samples are colored by lineage
(Black: 1, Blue: 2, Green: 3, Red: 4).
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Figure 6: Comparison between different fitness predictors. Gaussian Kernel Smoother Predic-
tors: Isomap 2d (Blue), SMSSVD 13d (Yellow), Consensus Isomap 2d (Pink) and Consensus 13d
(Green). Nearest Neighbor Predictors: SMSSVD 13d (Purple) and Consensus (Red). Group Pre-
dictors: Lineage/Mutagen (Gray), Lineage/Dose (Light green), Lineage/Mutagen/Dose (Tur-
quoise).

noise reduction) in their ability predict virus fitness, a quantitative parameter of-
ten used to describe phenotype. The performance of different fitness models was
compared (Figure 6). Predicting fitness is inherently difficult. Thus, to get a ba-
seline for the optimal performance that could be achieved, we used group-based
predictors that rely on sample conditions, rather than deep sequencing data. The
fine-grained group predictor using Lineage, Mutagen and Dosage accurately des-
cribed the sample conditions (Figure 6, turquoise bar). In other words, when
these three groupings are known for a sample, the prediction is over 69% accu-
rate. When only lineage and dose were considered, prediction was 36% accurate,
and if only lineage and mutagen were known, accuracy dropped to 11%. For
the landscape predictors based on the 2d Isomap, accuracy was 44%. SMSSVD,
on the other hand, which uses 13d reaches predictability of 62% and 61% from
landscape or nearest neighbor predictors. The data revealed that while 2d Isomap
performs well for visualization, prediction is best achieved when more components
are incorporated. Importantly, when either Isomap or PCA is performed solely on
consensus sequences, prediction fails (2% and 14%, respectively). Furthermore,
the performance of the SMSSVD predictors compared well to the predictor ba-
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sed on experimental conditions (Lineage, Mutagen and Dose), the closest we have
to a gold standard. In summary, the predictors based on our proposed sequence
space representation vastly outperformed the consensus-based predictor. The data
thus confirm that consensus sequencing of a viral population is not enough to
understand its properties and cannot accurately predict its phenotype.

3 Discussion

High-throughput sequencing is replacing more classic sequencing methods in mi-
crobiology, especially in studying RNA viruses, where every nucleotide can be
easily covered with extreme depth. This has increased and renewed interest in bet-
ter characterizing RNA virus populations to take into account their variability,
particularly when trying to identify differences between clinical or experimental
samples that have no significant differences in consensus sequence, yet present
different phenotypes. Recent works show that indeed, most sites along a genome
generate mutants at very low frequency. Following passage of poliovirus in cell
culture, Acevedo et al.5 identified an average of 16,500 variants, the equivalent of
∼ 74% of all possible variant alleles in each passaged sample. Similarly, the pre-
vious analysis of the Coxsackie virus B3 wildtype populations described in more
detail here, identified variant alleles in 65–80% of the sequenced regions4.

Despite the increasing accessibility of sequencing technology, we still lack the
computational tools to use this data to its full potential. For instance, while an
exhaustive list of variants can be generated per sample, to differentiate between
similar, yet different, populations most studies have had to settle with using very
basic mean measures such as Shannon entropy or mean variance. At best, these
were followed up by a more targeted (and biased) focus on the few alleles suspected
or known to be involved in the biological question being addressed.

A pre-existing obstacle to developing these tools was the uncertainty as to the
size and dimensionality of sequence space actually occupied by evolving microbial
populations. Mathematical sequence space is vast, even for the small genomes of
RNA viruses. Theoretically, the high mutation rates of RNA viruses could reach
a large amount of this space, questioning whether the evolution of these microbes
could be inherently predictable. However, it is clear that biological constraints
prohibit this from occurring, as most mutations will affect form or function and
will not accumulate under strong purifying selection. In vivo and in vitro expe-
rimental evolution studies performed in independent replicates reveal that under
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a constant environment, the same set of mutations tend to emerge. This suggests
that the sequence space available to a virus is indeed more limited, determined by
its current genome sequence, raising the possibility that evolutionary trajectories
may therefore be predicted at least in the very short term (the next one or few mu-
tational steps). Fitness landscapes help understand what neighboring populations
might represent distributions of genotypes of equal or increasing fitness and which
regions define populations of lower fitness. Knowledge of fitness in the vicinity of
a current population may help determine the most likely paths that will be taken
during the evolution of the population. While this goal may seem lofty for large
genomes, the small and highly constrained genomes of RNA viruses may be more
amenable to such an exercise.

We have shown how the DISSEQT pipeline, using distribution-based mo-
deling of complex, evolving microbial populations, can uncover many different
genotypic and phenotypic patterns without needing a priori hypotheses of which
genetic alleles are to be studied. Importantly, the robust dimension reduction
methods performed here have successfully separated biologically relevant signals
from sequencing-related error and other noise, identifying key characteristics of
the quasispecies cloud that drive evolution. This accentuates that global proper-
ties, like the shape of the quasi-species cloud, are significant when trying to predict
viral evolution. Sequencing error has long been an issue with characterizing mi-
crobial diversity and identifying true SNVs. Despite the presence of sequencing
error, DISSEQT succeeded in finding structure in sequence space, made clear by
the co-localization of populations subjected to similar environmental conditions
and by accurate fitness predictions and fitness landscapes constructed on top of
the sequence space representation.

Applied here, DISSEQT analysis has provided two key pieces of information
regarding evolving RNA virus populations. First, that the biologically ‘relevant’
sequence space occupied by such populations is of intrinsically low dimension. In
both data sets presented here, the SynSyn viruses that were manipulated to present
discrete biological signals and the High-, Low- and Wildtype fidelity viruses evol-
ving naturally to generate discrete differences in variant composition, the genetic
signatures of biological interest were segregated and identified within an intrinsic
space of very low dimension (10–20). Second and most importantly, we show that
reliable prediction of phenotype from genotype requires the input of minority va-
riants, underscoring the importance of studying RNA viruses, and perhaps other
microbial organisms, as a population rather than as a single reference sequence.
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At the core of our model is the representation of a population as a measure
over a suitable genetic space. Using traditional bulk experimental techniques,
averaging is performed already in the sampling and measuring steps of the ma-
nagement and analysis protocol; often resulting in relatively robust and normally
(or log-normally) distributed data, well adapted for well-established statistical and
machine learning analysis and visualization techniques.

We have shown that by directly modeling and representing the distribution at
each genetic loci of all measurable minority variants, followed by model reduction,
we get low dimensional and robust models that capture the interaction between
minority variants and, by coupling it with phenotypic measurements, make it
possible to follow and predict trajectories in genotype–phenotype space. It opens
up for extending the sequence space models presented in this work to situations
where heterogeneity of populations can be hypothesized to be an important aspect
that can be measured in a direct manner. In particular, data coming from single cell
sequencing have more variability, more artifacts and often complex distributions13

and distribution-based modeling can be envisioned to be viable and provide a
natural and biologically accurate representation of the data.

Cancer growth, fundamentally different in origin from viruses and bacteria,
may still be usefully described in terms of similar evolutionary processes30. Larger
genomes and frequent structural variation, such as chromosomal aberrations31

and fused genes32 does, however, make the situation more complex and further
work is needed to adapt the sequence space modeling for these circumstances. The
challenges lie in incorporating structural variants into to the underlying space in
a way that preserves biological similarity and is feasible to infer from the data. A
possible starting point for cancer data is to restrict the analysis to a chosen set of
interesting genes that do not exhibit any structural variation, thus simplifying the
collection of deep sequencing data and providing an easy fit to the sequence space
models we propose.

4 Methods

4.1 Reproducible and Traceable Analysis

Traceability in the DISSEQT pipeline is provided by integration with the collabo-
rative science platform Synapse. Every result produced by DISSEQT can be tra-
ced back all the way to the original data files using the Synapse provenance graph,
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which describes the actions taken for every analysis step and connects input to
output data. Sharing settings in Synapse makes it possible to open up the entire
analysis to the public, but keeping sensitive data and unfinished analyses private if
necessary. The analysis steps are self-contained in the sense that all data required to
produce the output is downloaded from Synapse as needed. Hence, every analysis
step can be reproduced locally by anyone executing the same actions. By changing
parameters or making other changes, the impact of performing the analysis in a
different manner can be investigated by others. Rerunning the entire analysis is
also possible in this way. Furthermore, the analysis can be adapted to new data
sets, such that the results can reproduced from new biological data.

4.2 Iterative Alignment

Alignment of sequenced reads to a reference genome was done with BWA-MEM33.
The choice of alignment tool is not critical, but the same one should be used for
all samples to get a consistent analysis. After alignment, the consensus sequence
of the aligned sample is computed. If the consensus differs from the reference
genome, the alignment starts over, now using the consensus as the new reference
genome. This process is repeated until the consensus has converged. Iterative
alignment combats an inherent problem that occurs when aligning to a reference
genome – there will be a bias since reads that match the reference genome are easier
to align, while reads that differ might be mapped incorrectly or cut off such that
the variant is not included in the alignment. For variants at the majority level,
iterative alignment thus ensures that more reads are mapped correctly, allowing
for a better frequency estimate. Even more important is that the ability to detect
minority variants in the vicinity of majority level variants is greatly improved, as
the number of differences between reads containing the minority variant and the
consensus will tend to be lower.

4.3 Quality Control

Generating deep sequencing data is a complex procedure with many steps perfor-
med, both for the experiment itself and to prepare the data for sequencing. The
DISSEQT pipeline provides several ways to evaluate the data to make sure that it
is of high quality. Before alignment, adapters and poor quality bases are trimmed
from the ends of reads using fastq-mcf34. At the end of the iterative alignment
procedure, consensus sequences are automatically generated for all samples. It is
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expected that the consensus sequence will be more similar to the reference used
for the initial alignment iteration, than to any other reference used in the same
sequencing run. If this is not the case, the sample is flagged as being mislabeled.
Indels are also reported. Graphs showing the read coverage as a function of ge-
nome position are created. All samples in the same sequencing run (and using
the same reference genome) are put in the same graph, making it possible to iden-
tify problems with low read coverage for certain samples or genomic regions at a
glance. Samples with a low mean read coverage can be removed automatically from
downstream analysis. What threshold to use depends on the experimental setup,
but we recommend keeping only samples with a mean read coverage above 1000
for deep sequencing data. There are also tools in DISSEQT to remove samples
that are suspected of being contaminated by other samples, identified by having
a mixture of reads that are likely to originate from different reference genomes.
The purpose of quality control is to validate that we are indeed studying what we
set out to study. If a sample is showing unexpected patterns, in particular during
quality control, we recommend that the aligned reads, the consensus sequence and
any other measurements are inspected manually ensure that conclusions are not
drawn from faulty data.

4.4 Haplotypes

Recovering the haplotype mix from a collection of short reads is a difficult, of-
ten ill-conditioned, and computationally intensive problem, but several software
tools35,36 are available, also see37,38 for overviews. The dominant haplotypes and
their frequencies do not, however, completely characterize the viral population,
another important aspect is how dispersed the individual viruses are around these
central haplotypes. V-Phaser39, V-Phaser 240 and ShoRAH35 find phased vari-
ants, pushing down the detection limit by assuming that real variants (at nearby
loci) tend to co-vary, while errors do not. Unfortunately, V-Phaser and ShoRAH
does not scale well for large data sets and V-Phaser 2 requires paired-end reads.
For the reasons above, we chose the simpler and more robust path of making max-
imum likelihood (ML) estimates of the variant frequencies at each position, based
on base quality data.

180



4. Methods

4.5 Sequence Space Representation

The genomic composition of microbial populations can be represented by a po-
sitive measure over a suitable space. Let Σ be an alphabet set, e.g. the set of
nucleotides Σ = N := {A,C,G,T}, the set of codons Σ = N ×N ×N or the
set of amino acids Σ = A := {A,R,N, . . .}. For the rest of this article, the set
of codons will be used as the alphabet set, since the codons are closely connected
to biological function and this choice doesn’t impose any assumptions about the
relative importance of synonymous versus nonsynonymous changes. The set of
codons is the natural choice for coding regions, to analyze non-coding regions,
the set of nucleotides could be used instead. Now define sequence space Σn as the
set of ordered sequences of length n over the alphabet Σ. Assuming that indivi-
dual genomes in the population only differ by a finite number of point mutations
(i.e. substitutions), the composition of the population is characterized by a posi-
tive measure over sequence space. The space of positive measures over sequence
space will be denoted by P(Σn).

Inference of the population composition can be intractable from sequencing
data due to short reads and/or high error rates. Let P,Q ∈ P(Σn) and define an
equivalence relation such that P ∼ Q iff

P (Ci[x]) = αQ(Ci[x]), ∀x ∈ Σ, i ∈ {1, 2, . . . , n},

for some constant α ∈ R+, where

Ci[x] := {s ∈ Σn; si = x}

are the basic cylinder sets of Σn. Hence, P relates toQ if they have the same allele
frequencies at all positions. Inference for the equivalence class [P ] from sequence
data is possible even when P cannot be inferred since allele frequencies at diffe-
rent position can be estimated separately. The drawback is that minority variant
linkage is lost. Each equivalence class [P ] is naturally represented by the frequency
matrix p ∈ Rn×|Σ| with pi,x = P (Ci[x])/P (Σ

n). Finally, the frequencies are
transformed by p→ log2(p+α), where α denotes the limit of detection, to give
minority variants higher impact in the model. The log transformation emphasizes
relative differences in frequencies between variants instead of absolute differences
in frequencies between variants.
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4.6 Sequence Space Inference

Maximum likelihood estimation was used to infer the codon frequencies at any
given position, using all reads overlapping that position, based on a multinomial
model with noisy observations. At a given locus, let θ =

(
θ1, θ2, . . . , θ64

)
be the

frequencies in the population for the 64 different codons, with θi ≥ 0 for all i and∑
i θi = 1. Consider a read and the fragment the read is sequenced from. Now

let x be the observed codon in the read and z the unknown codon in the original
fragment, then

P(x|θ) =
64∑
z=1

P(x|z,θ)P(z|θ)

=

64∑
z=1

P(x|z)θz.

We model P(x|z) using the quality scores of the bases in the codon. If ϵ1, ϵ2, ϵ3
are the probabilities of a read error at bases 1, 2 and 3 in the codon and yk is the
base at position k in a codon y, then

P(x|z) =
3∏

k=1

(
δx

k

zk (1− ϵk) +
(
1− δxk

zk

) ϵk
3

)
,

where δba is the Kroenecker delta, the errors are thus assumed to be independent
between bases in the codon and read errors are assumed to be equally likely to
result in any of the other 3 bases. Assuming independent reads, the probability of
the observations is

P(x|θ) =
N∏
i

( 64∑
z=1

P(xi|z)θz

)
with observed codons x =

(
x1, x2, . . . , xN

)
from reads 1 to N . The log-

likelihood is thus

l(θ;x) =
N∑
i

log

( 64∑
z=1

P(xi|z)θz

)

which is maximized numerically.
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We noted that in our high read coverage data, bases with low-quality Phred
scores tended to be biased toward certain nucleotide errors. Thus, we chose to
not trust bases with a Phred score below 30. This was done by setting the ϵk of
such nucleotides to 0.75, giving them no influence. Reads were excluded from
the analysis if they caused the ML optimization problem to be underdetermined
(e.g. when observing two reads with codons AAA and xAT respectively, where x
means that the nucleotide is unknown, xAT is dropped since only the sum of the
frequencies for AAT, CAT, GAT and TAT can be determined).

4.7 Limit of Detection

True minority variants can be hard to separate from sequencing errors. And in both
cases, we expect the frequencies to be different depending on the nucleotide neig-
hborhood and other factors41. A key difference is however that there are two sets of
observations of the sequencing errors since the reads originating from the forward
and reverse strands have different nucleotide neighborhoods for any given codon
site. Indeed, for each sample, the codon frequencies from the two strands are ex-
pected to be approximately equal for true minority variants, something which is
much less likely for sequencing errors. The differences in sequencing error beha-
vior depending on the context thus leads us to estimate the limit of detection α
separately for each locus and codon. For a given locus, the samples are grouped
by run and consensus codon, to get similar sequencing errors across the samples
in each group. Fix a codon and let f and r be two vectors where fi and ri are the
inferred codon frequencies using reads from only the forward and reverse strands
respectively, for sample i in the group. To limit the impact of sequencing errors
on the downstream analysis, the transformed frequencies should be approximately
equal, i.e. give a low value of the norm

ψ(α) = ∥ log2(f + α1)− log2(r + α1)∥RMS

where log2 acts elementwise and 1 is a vector of all ones. Now define the limit of
detection

α := inf{t ≥ 0; ψ(t) ≤ log2(1.5)}.

The infimum exists sinceψ is continuous andψ(t)→ 0 as t→∞. The threshold
log2(1.5) is chosen such that if we have a single sample with f1 = x and r1 = 0,
then α = 2x. Furthermore, ψ is a strictly decreasing function and α can thus be
found by the bisection method or other root-finding methods. Finally we choose
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a conservative estimate of the limit of detection αc,x, for codon c at locus x, by
taking the highest limit of detection estimated from the different sample groups
1, 2, . . . , G,

αc,x := max
{
10−3, α(1)

c,x, α
(2)
c,x, . . . , α

(G)
c,x

}
,

with upper indices denoting the sample group and where 10−3 is a commonly
accepted lower limit of detection for sequencing data42.

4.8 Dimension Estimation using Talus Plots

The Talus Plot provides a visualization of how the contents of a data set spread out
across different dimensions and is designed to make it as easy as possible to make a
qualitative estimate of the number of dimensions needed to capture all signals that
stand out above the background noise. In Supplementary Methods, we show how
predictable aspects of the background noise can be used to discern signals from
noise. In brief, when the Talus Plot has “settled”, with small variations around a
low mean, then the noise can be expected to be dominant.

4.9 SMSSVD

SubMatrix Selection Singular Value Decomposition (SMSSVD)25 is a parameter-
free dimension reduction technique designed for the reconstruction of multiple
overlaid low-rank signals from a data matrix, corrupted by noise. It is ideal for
exploratory analysis of complex data, where different signals are spread out over
different (possibly overlapping) subsets of variables, by limiting the influence of
noise in variables that are not contributing to the signal. One of the major be-
nefits of SMSSVD is its ability to detect signals with a low signal-to-noise ratio.
SMSSVD shares many relevant properties with SVD, in particular orthogonality
between components and the ability to extract variable loadings. The DISSEQT
pipeline uses SMSSVD for noise reduction of the sequence space representation,
since the number of variables is very large and we are trying to recover all signals
that can be detected, not only the strongest one. Before applying SMSSVD, the
data matrix is centered.

4.10 Fitness Landscapes

Fitness landscapes, an important kind of genotype–phenotype map, are used to
illustrate the connection between sequence composition and fitness of organisms.
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Here we show how a fitness landscape can be generated entirely from empirical
data. Given a d-dimensional representation of sequence space, i.e. a set of sample
points x(i) ∈ Rd, i = 1, . . . , N with corresponding fitness values y(i) ∈ R, we
want to reconstruct a surface f : Rd → R such that

f(x(i)) = y(i).

In practice however, we cannot expect a perfect fit of the surface. Differences in
fitness between sample points that are close in the low dimensional representation
will be difficult to capture. Furthermore, measurement noise will impact the re-
producibility of the surface. To get a robust fitness landscape, we use a Gaussian
Kernel Smoother43 and select the kernel width σ by cross-validation (repeated
random subsampling). That is, we numerically find

argmin
σ

N∑
i=1

M∑
j=1

(
f
(i)
train

(
x
(i,j)
test , σ

)
− y(i,j)test

)2
,

where the data is randomly divided into a train and a test data set for each iteration
i and

f
(i)
train (z, σ) :=

∑M
j=1w

(i,j)
z,σ y

(i,j)
train∑M

j=1w
(i,j)
z,σ

, with w(i,j)
z,σ = e

−
∥z−x

(i,j)
train ∥2

2
2σ2 .

4.11 Fitness Evaluation

The Gaussian Kernel Smoother (fitness landscape) predictors are evaluated in com-
parison to other fitness predictors. Nearest Neighbor predictors uses the fitness of
the closest sample in sequence space as the prediction and can be used for diffe-
rent sequence space models. In case of ties, the prediction is taken as the average
over the tied samples. Group-based predictors use a predetermined grouping of
the samples, predicting fitness as the average fitness among samples in the same
group, and do not use sequence data at all.

Model accuracy for a predictor f is measured by fraction of variance explained,

1−
∑

i

(
f(x(i))− y(i)

)2∑
i

(
y(i) − ȳ

)2 ,
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where x(i) is the representation of sample i used by the predictor, y(i) is the fitness
of sample i, ȳ the mean fitness over all samples and the second term in the expres-
sion is the variance of the residuals divided by the total variance. The models are
evaluated by leave-one-out cross validation. The kernel widths for the Gaussian
Kernel Smoother predictors are estimated separately for each problem instance to
avoid influence from the left-out sample.

4.12 Variable Selection

We use SPC (Sparse Principal Components)44 for variable selection, after noise
reduction by SMSSVD. SPC adds a variable-side L1 (lasso) constraint to a formu-
lation of SVD as an optimization problem, forcing sparsity by ensuring that many
variables are 0 at the optima. The optimization problem is then solved for one
component at a time, using an iterative algorithm. However, since the optimiza-
tion problem is not necessarily convex, the algorithm might converge to a local
optima. To reduce the impact of this problem, and to ensure that the singular
values are declining, we suggest an extension of the algorithm. It can be shown
that if a component has a larger singular value than a previous one, then this so-
lution is guaranteed to be a better starting guess for the optimization problem for
the previous component. By rolling back and restarting the optimization at the
previous component, we get closer to the globally optimal solution and make sure
that the singular values are declining.

4.13 Nonlinear Dimension Reduction

By dimension reduction, we aim to identify the parts of sequence space that are
explored by the samples. Linear dimension reduction techniques, like SMSSVD,
are useful because they make very few assumptions about the structure of the data.
Although there is no reason to believe that the underlying manifold is linear, the
complexity that is necessary for biological systems is indeed often caused by non-
linearities, linear methods can still capture nonlinear patterns if the dimension is
sufficiently high45. However, to get an informative visualization in just two or
three dimensions, nonlinear dimension reduction is needed for complex data sets.

We apply Isomap46 to the data set after the noise reduction by SMSSVD
(and the optional variable selection). Nonmetric multidimensional scaling using
Kruskal’s stress criterion47 was used rather than classical multidimensional scaling
in the final step of the Isomap algorithm. This distorts the underlying space by
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expanding local structure that would otherwise be too small to notice, giving some
importance to weaker signals in the data.

4.14 Time Series

The evolution of a population over time is described by a curve p(t) in sequence
space. In practice, we can only measure the values of a curve p(t) at discrete
time points, and the measurements are subjected to noise. As the first step of
noise reduction, a 3-point median filter over time is applied to the sequence space
representation, to robustly reduce the impact of noise spikes. Following the noise-
reduction, the curve p(t) is reconstructed in the d-dimensional representation
of sequence space, as a piecewise linear curve connecting the data points. Then,
each curve is reparameterized by arc length s, starting at s = 0 for t = 0, since
differences in mutation rates can cause the population to move at different speeds
through sequence space.

The sequence space representation in terms of variables (variants) is time-
invariant, but it is nevertheless important to see how different parts of sequence
space are explored as the replicates move. Let σ be the first singular value, with
corresponding left and right singular vectors u and v, after dimension reduction
of a matrix X by SMSSVD, SVD or SPC, then σ can be decomposed as a sum
over variables and samples,

σ = uTXv =
∑
i,j

uiXijvj =
∑
i,j

σij ,

where σij := uiXijvj quantifies the importance of variable i and sample j for
this component. By linear interpolation, this can be extended to σ(r)j (s), for
intermediate values of the curve parameter s for replicate r. The contribution
of variable j at s is measured by σj(s) :=

∑
r σ

(r)
j (s) and σ(s) :=

∑
j σj(s)

describes the importance of the first principal component at s. Plotting σ(s) and
σj(s) along with the replicates, thus aid understanding of the dynamics. The
definitions naturally extend to multiple components.

4.15 Bifurcations

We define the time of bifurcation β(p, q), between two curves p(t) and q(t) as
the similarity measure

β(p, q) = inf {t : ∥p(t)− q(t)∥2 ≥ Bm} ,
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that is, the first point in time at which the distance between p(t) and q is above a
threshold. Here, B is a chosen threshold and m a normalization constant chosen
to make the expression scale-invariant. If p(i)(t) is defined for t ∈ [0, Ti] and
Tij := min(Ti, Tj), then the mean distance over time between curves i and j is

mij =
1
Tij

∫ Tij

0
∥p(i)(t)− p(j)(t)∥2 dt

and we let m := 1
N(N−1)

∑
i ̸=j mij , the mean over all pairs of the N curves.

Average linking hierarchical clustering, based on the time of bifurcation similarity
scores, naturally extends the concept to clusters of samples, giving recursive cluster
splits and a cluster similarity score equal to the time of bifurcation at each split.
For piecewise linear curves, m and β(p(i),p(j)) can be computed analytically.
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Supplementary Figure 1: Relative fitness by direct competition assay. Wild type (WT), Blue Li-
neage (Blue-L), Green Lineage (Green-L) and Red Lineage (Red-L). Mean and SEM are shown,
n = 6, two-tailed unpaired t-test with Bonferroni correction. ns, not significant, p = 0.334;
* p = 0.013; *** p = 0.0008.
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Supplementary Figure 2: Pairwise scatter plots showing the first 13 principal components in
the analysis of the SynSyn data set plotted against each other, using consensus information
only for the sequence space model. Plots above and below the diagonal are mirror images
of each other. Each dot represents one viral population. (Continued on the following page.)
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Supplementary Figure 2: Above the diagonal, samples are colored by lineage (Black: 1,
Blue: 2, Green: 3, Red: 4) and below the diagonal, samples are colored by mutagen (Red:
5-fluorouracil, Light green: amiloride, Blue: 5-azacytidine, Yellow: Mn2+, Cyan: ribavirin,
Magenta: mock). All axes are rescaled to fill the plot area.
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Supplementary Figure 3: A. Components 5–8. Left column: Principal components for repli-
cates as a function of arc length. Right column: Variable contributions as a function of arc
length. Both columns: The dotted black line shows the total contribution to σk at s.
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Supplementary Figure 3: B. Components 9–12. Left column: Principal components for repli-
cates as a function of arc length. Right column: Variable contributions as a function of arc
length. Both columns: The dotted black line shows the total contribution to σk at s.
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Supplementary Figure 3: C. Components 13–16. Left column: Principal components for re-
plicates as a function of arc length. Right column: Variable contributions as a function of arc
length. Both columns: The dotted black line shows the total contribution to σk at s.
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Supplementary Figure 3: D. Components 17–20. Left column: Principal components for re-
plicates as a function of arc length. Right column: Variable contributions as a function of arc
length. Both columns: The dotted black line shows the total contribution to σk at s.
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Supplementary Figure 3: E. Components 21–22. Left column: Principal components for repli-
cates as a function of arc length. Right column: Variable contributions as a function of arc
length. Both columns: The dotted black line shows the total contribution to σk at s.

202



Supplementary Information

Supplementary Figure 4: Fitness Landscape visualization of the SynSyn data set. Samples are
colored bymutagen (Red: 5-fluorouracil, Light green: amiloride, Blue: 5-azacytidine, Yellow:
Mn2+, Cyan: ribavirin, Magenta: mock).
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B Supplementary Methods

B.1 The Talus Plot

We will introduce the Talus Plot, a simple qualitative method for estimating the
intrinsic dimension of a data set observed in noisy conditions. There already exists
a plethora of methods for estimating the intrinsic dimension and one reason is
that the problem is often inherently ill-posed. First, since the data set might be
stretched out more along certain dimensions than others, the intrinsic dimension
depends on the scale we are interested in. A narrow cylinder will for instance look
like a line when zoomed out. Second, dimensions containing finer details of the
data set might be masked or heavily corrupted by noise, making it impossible to
make a clear-cut decision. The Talus Plot is designed to make it as easy as possible
to find a dimension estimate that includes all dimensions that are detectable above
the background noise. In particular, if the Talus plot gives a dimension estimate
d, and the r (r ≤ d) leading dimensions are removed, the new estimate will be
d− r.
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Figure 1: Talus Plot for a matrix X. The data matrix X ∈ R1000×1000 is a rank 8 matrix with
declining singular values with i.i.d. Gaussian noise added to each element. After k = 8, the
Talus Plot shows small variation around a lowmean, which is the expected behavior of a data
matrix containing only noise.

In the Talus Plot, log(σk)− log(σk+1) is plotted as a function of the dimen-
sion k, where σk is the k’th singular value of the data matrix. An example is shown
in Figure 1. Clearly, the Talus Plot is a close relative to the Scree plot that displays

204



Supplementary Information

σ2
k as a function of k. Taking the logarithm puts the singular values at a more rea-

sonable scale where the background noise can be examined. As we will see, when
noise dominates, the values in the Talus Plot will show small variations around a
low mean. Thus, we find a dimension estimate using the Talus Plot by finding the
breaking point at which the values start to exhibit this predictable behavior. To
further understand the properties of the Talus Plot, we need some random matrix
theory.
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Figure 2: Cumulative distribution function of the Marchenko-Pastur distribution, for a few
different values of c. Linear scale (left) and logarithmic scale (right) of the eigenvalues. Note
that in the logarithmic scale, the CDF is well approximated by a linear function from the
median (y = 0.5) and up, regardless of c.

Let G(P,N) be the distribution of P × N random matrices with indepen-
dent N (0, 1) elements. The distribution of the singular values of A ∼ G(P,N)
(or equivalently, the eigenvalues of ATA since the k’th eigenvalue λk = σ2

k) have
been extensively studied in the literature1. The marginal distribution of unordered
eigenvalues of 1

PA
TA converges asymptotically to the Marchenko-Pastur distri-

bution2 when N,P → ∞ such that N
P → c ∈ [0, 1]. The probability density

function of the Marchenko-Pastur distribution is

fMP(x) =

√
(c+ − x)(x− c−)

2πcx ,

where c± = (1±
√
c)2, the domain of fMP(x) is [c−, c+] and we have assumed
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that N ≤ P . The corresponding cumulative distribution function is

FMP(x) =
1
2 + xfMP(x)

+
(1 + c) arcsin

(
x−1−c
2
√
c

)
− (1− c) arcsin

(
(1+c)x−(1−c)2

2x
√
c

)
2πc ,

which is shown in Figure 2 for some different values of c. Notice how taking the
logarithm of the eigenvalues makes it possible to find a good approximation ofFMP
using a simple linear model, at least for the upper half of the eigenvalues/singular
values. The behavior of the rest of the eigenvalues will clearly not be of interest
when detecting where the background noise starts to dominate. A few realizations
are shown in Figure 3, exemplifying the linear trend.
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Figure 3: The singular values of A (scaled by P−1/2), for a few different values of c. Each
graph is a random realization. A ∼ G(P,N), N = 99 and c = N/P . The first 50 singular
values are shown.

The effects of the linear decline are clearly visible in the Talus Plots (see Fi-
gure 1), as the base level around which the values deviate. To understand the de-
viations, we will look at the random variables κk := FMP(λk) that take values in
[0, 1]. Note that if one λ is randomly selected with equal probability from the set
of random variables {λk; k = 1, . . . , N}, then FMP(λ) is by definition (asymp-
totically) uniformly distributed on [0, 1]. The transformation has the effect of
removing trends (linear or other), but keeping the dependence structure between
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the variables. The frequency contents of κk − κk+1 is shown in Figure 4, where
the amplitude has been computed as the average over many realizations. Curiously
close to a semi-circle, the amplitude peaks for the highest frequencies. Looking
back at Figure 1, this corresponds well with the high-frequency oscillations that
are visible in the singular values generated by the background noise.
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Figure 4: The absolute value of the coefficients in the discrete Fourier transform of κk−κk+1,
computed as the average over 10000 random matrices. P = 10000 variables and N = 1000
samples. The shape is close to a semi-circle (red).
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