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This manuscript describes harmonic generation in semiconductor superlattices, starting from a nonequilibrium
Green’s functions input to relaxation rate–type analytical approximations for the Boltzmann equation in which
imperfections in the structure lead to asymmetric current flow and scattering processes under forward and reverse
bias. The resulting current-voltage curves and the predicted consequences on harmonic generation, notably the
development of even harmonics, are in good agreement with experiments. Significant output for frequencies
close to 1 THz (7th harmonic) at room temperature, after excitation by a 141-GHz input signal, demonstrate the
potential of superlattice devices for gigahertz to terahertz applications.
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I. INTRODUCTION

Nonlinearities in semiconductor materials have been widely
investigated and are well understood in the near-infrared and
visible ranges, where powerful laser sources can be used to
generate even strong nonresonant responses [1]. Large pulsed
sources combined with nonlinear crystals have delivered
pulsed, tunable GHz to THz sources [2–4]. In contrast,
the GHz range still needs further progress towards efficient
continuous-wave (CW), compact tunable powerful sources
and predictive simulation tools to design new devices. At
present, the main types of CW GHz and THz sources [5] are:
electron-beam sources, such as gyrotrons, free electron lasers
(FELs), and backward wave oscillators (BWOs); optically
pumped far-infrared gas lasers; solid-state sources; frequency
multipliers; THz quantum cascade lasers (QCLs); parametric
sources; and photomixers. The key compact solid-state sources
that can be designed as oscillators [6] to deliver input radiation
above 300 GHz for mixers and multipliers are Schottky diodes,
heterojunction barrier varactors, heterojunction bipolar tran-
sistors, high-electron-mobility transistors, resonant tunneling
diodes, tunnel-injection transit-time devices, Gunn devices,
and superlattice electron devices (SLEDs) [7], which are
particularly high-performance fundamental sources in the
60–220 GHz range [8]. InP Gunn devices, from which second
and third harmonics can also be extracted, have delivered
85 μW at 480 GHz [9,10]. THz QCLs may deliver the
power and coherence for detection, but their wavelength
tunability is extremely difficult and cryocooling is required.
Furthermore, efficient devices have only been demonstrated
for frequencies between 2 and 4 THz, while the realization

of 1-THz QCL required magnetic fields of tens of teslas
[11]. Recent photomixer concepts can reach this range, but
emitted powers fall drastically with increasing frequency
[12]. Difference frequency generation via resonant optical
nonlinearities pumped by a mid-infrared (MIR) QCL [13]
is a promising approach for on-chip simultaneous emission
from the MIR to the THz range but would require GHz
resonances, which are not easily achievable per design. Optical
combs show strong promise for the MIR range [14], but
their efficient coverage of the GHz to THz ranges is still
to be demonstrated. Semiconductor superlattice (SSLs) can
generate multiple harmonics from a GHz input and are
more effective than Schottky diodes, which are the currently
dominating technology for the GHz range. SSL multipliers
have provided radiation up to 8.1 THz [15] and are the focus
of this paper.

The principle underlying SSL multiplication [15] can be
summarized as follows: perpendicular charge transport in
biased superlattices is dominated by resonances due to the
alignment of energy levels in different wells. These resonances
yield various peaks in the current-voltage (I -V ) characteristics
connected with negative differential conductivity [16,17]. If
the SSL is subjected to an external GHz–THz field, photon-
assisted tunneling is possible and replica of the resonances
are observed at biases which differ from alignment conditions
by integer multiples of the photon energy [18,19], in good
agreement between theory and measurements for weakly
coupled superlattices [20]. Recent simulations, based on a
phenomenological model, treating the SSL as an electronic
circuit further illustrate the high-frequency response of charge
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domains traveling through a strongly coupled semiconductor
superlattice with an applied harmonic electromagnetic signal.
The simple model shows that the SSL alone can amplify signals
with a frequency close to the domain transient frequency and
if the superlattice is connected to a resonator, amplification
becomes possible for much higher frequencies of the external
signal [21]. As a matter of fact, harmonic generation is a
general feature of driven nonlinear systems, and Ref. [4]
reports the observation of high-order harmonic generation
(HHG) in a bulk crystal, together with a very simple model
that shows how nonperturbative HHG could arise in a solid
owing to periodically modulated Bloch oscillations. However,
the model is purely qualitative, not predictive, and can only
describe odd harmonics. In this paper we are not interested
in circuit-equivalent approaches nor in phenomenological
parameter fitting. Instead we focus on microscopic predic-
tions of HHG in semiconductor superlattices, starting from
nonequilibrium Green’s functions (NEGF) methods [22–24].
Among the results presented here, we highlight:

(i) Nonsymmetric current-voltage curves are explained with
a microscopic NEGF approach, which can be adjusted by
a nonsymmetric generalization of the Tsu and Esaki [25]
formula.

(ii) A predictive hybrid approach combining the NEGF
input with a relaxation approximation to the Boltzmann
equation for one miniband, complemented by an Ansatz
solution for the asymmetric problem, describes HHG in good
qualitative agreement with experiments for both odd and even
harmonics.

The paper is organized as follows: We start with our
mathematical model and then compare experiments with
the simulations. A short summary follows. The interface
roughness self-energy, which leads to asymmetric current flow
in our NEGF calculations, is briefly revised in Appendix A.
The figures are complemented by tables with numerical data
in Appendix B.

II. THEORY

The nonlinear current density in a SSL with period d

subjected simultaneously to a static bias Edcd and a field
with amplitude Eac oscillating at frequency ν, i.e., E =
Edc + Eac cos(2πνt), can be cast as [26–28]

j = jdc +
∞∑

l=−∞
jc
l cos(2πνlt) + j s

l sin(2πlνt),

jdc =
∞∑

p=−∞
J 2

p (α) ϒ(U ),

j c
l =

∞∑
p=−∞

Jp(α) (Jp+l(α) + Jp−l(α)) ϒ(U ),

j s
l =

∞∑
p=−∞

Jp(α) (Jp+l(α) − Jp−l(α)) K(U ). (1)

Here, Jl is the Bessel function of the first kind and order l and
U = u + phν, where u = eEdcd is the energy drop per period.

FIG. 1. Comparison of current-voltage curves calculated with the
NEGF approach (black dashed), the fit to the hybrid approach formula
(blue dot-dashed) of Eq. (3), and the experimental data (red solid).
The contact area converting current density into current is 1.26 ×
10−12 m2.

Note that in Fig. 1 the total voltage V = (u × Nper)/e is shown.
A very important parameter appears in Eq. (1), α = eEacd/hν.
The other parameters in the relaxation rate approximation [26–
28] can be combined to express the functions ϒ and K in a
simple and useful format,

ϒ(U ) = 2j0
U/�

1 + (U/�)2
,K(U ) = 2j0

1 + (U/�)2
,

j0 = 2d|T |/h̄
(2π )3

π/d∫
−π/d

dq

∫
d2k cos(qd)nF (k,q), (2)

where nF (k,q) is the Fermi distribution to which the occupa-
tion function reduces to in the relaxation rate approximation,
characterized by the scattering rate �. The expression for j0

above stems from a simple model assuming a tight-binding
dispersion and next-neighbor coupling |T |. Note that in
the static case (ν = 0), the current density reduces exactly
to the Tsu and Esaki expression [25], j = jdc = ϒ(U ),
where we have used

∑∞
p=−∞ J 2

p (α) = 1. However, in real
superlattices, the interface of GaAs over Al1−xGaxAs is worse
than Al1−xGaxAs over GaAs, as repeated well and barrier
regions are grown. The interface roughness self-energy and
the parameters used to describe each interface are explained
in Appendix A. Just this difference in interfaces, which is
included in our NEGF calculations, makes it clear that the
flow from right to left cannot be equal to that from left to right,
as seen in the experiments of Fig. 1, which also shows that the
full NEGF curve can be reproduced in excellent agreement,
modifying the Tsu and Esaki limit,

j0 =
{
j+

0 U > 0
j−

0 U < 0
, � =

{
�+ U > 0
�− U < 0.

(3)

The key to understand our model is the fact that as seen
experimentally [18–20], in a SSL under irradiation, photon-
assisted tunneling generates a replica with peaks determined
by U = u + phν in Eq. (1). Thus, this rectified energy drop
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FIG. 2. Diagram of the experimental setup used to measure the
current-voltage characteristics (a) and the harmonic power (b).

per period is used in the ansatz equation (3). The resulting
hybrid approach is predictive, since j±

0 and �± are obtained
per adjustment to the NEGF calculation.

Experimental teams without access to Boltzmann, NEGF,
or Monte Carlo methods can fit the experimental I -V curve to
extract these parameters, which can then be plugged into the
analytical equations (1) and (2).

III. MEASUREMENTS AND SIMULATIONS

The experimental current-voltage curve, compared with our
simulations in Fig. 1, was measured with an oscilloscope in
XY mode (without time sweep). See the diagram in Fig. 2.
Voltage from a sawtooth generator (frequency about 1 kHz)
was applied to the SSL and load resistor which were connected
in series. The circuit center point (connection of resistor, SSL
diode, and X oscilloscope input) was isolated from the ground
by means of a voltage follower. Thus the voltage from the
SSL diode was displayed in the X axis of the oscilloscope.
Another channel delivering voltage from load resistor R, which
is proportional of current through the SSL, was displayed in
the Y axis of the oscilloscope.

The SSL in the experiments has 18 periods of 6.23 nm each
with 18 monolayers GaAs and four monolayers AlAs and was
homogeneously doped with silicon. A temperature T = 300
K and an electron density of 1.5 × 1018 cm−3 have been used
as input to the NEGF calculations [22,24]. The contact area
used to compare the measured current and NEGF calculated
current density is 1.26 × 10−12 m2. These are similar but
not identical to the values that we see, e.g., in Ref. [29],
which has the same structure but nominally a slightly larger
doping.

The exact NEGF calculations (black-dashed curve) and
the combined Eqs. (1), (2), and (3) (blue-dot-dashed) results
are essentially indistinguishable. Unexpected charge accu-
mulation, traps, and defects make the problem even more
asymmetric, but we do not have enough information about
the sample to add these effects, which we attribute to the
difference between the calculations and the experiments (red
solid). The parameters extracted from the NEGF calculations
and used in the ansatz solution are: �+, �− = 21, 20 meV,

FIG. 3. Ratio of the emitted optical power for the nth harmonic to
the 3rd harmonic nonlinearly generated by a field oscillating 141 GHz.
The black solid line has been calculated using our theory and
assuming an incident power of ∼47 μW, or equivalently, α = 28.3.
From left to right, red circles are the corresponding experimental
data for the third, fourth, fifth, sixth, and seventh harmonic. The
inset shows the normalized transmission function of the waveguide
structure where the superlattice is inserted.

j+
0 , j−

0 = 2.14, 1.94 × 109A/m2. For a comparison, a direct
fit to the experiments yields: �+, �− = 20, 19 meV, j+

0 , j−
0 =

2.14, 2.10 × 109 A/m2.
The SSL was placed in a waveguide chamber with waveg-

uide flange of 2-mm wavelength range input (WR6, WR7
waveguide type, D band, 1.651 × 0.826 mm, UG-387/U input
flange) and output horn antenna. The waveguide transmission
factor T(ν), calculated with MICROWAVE OFFICE [30], is shown
in the inset of Fig. 3. This blocks the input radiation from
the backward wave oscillator (BWO) pump at 141 GHz from
the output. The SSL harmonic power was measured with
a Bruker IFS 125HR Fourier transform spectrometer with
frequency resolution 0.01 cm−1 (300 MHz). A silicon He-
cooled bolometer was used as receiver (with noise-equivalent
power 3 × 10−13 W Hz−0.5). Even though signatures were
measured up to the 10th harmonic, the signal-to-noise ratio was
reliable only up to 10−10 W at the detector for a quantitative
analysis. That is why we only show results up to the 7th
harmonic in Fig. 3. The measured intensity in the third
harmonic P3(ν) has been estimated experimentally to be
of the order of 0.33 μW and all other harmonics powers
are measured relative to this value, see Appendix B. Note
that the cutoff eliminates the second harmonic predicted
by the theory. The average emitted power due to the lth
harmonic is directly obtained from the Poynting vector
Pl(ν) = 〈|Jl(ν)|2〉 T(ν), where 〈|Jl(ν)|2〉 = (j s

l )2 + (jc
l )2 is the

root-mean-square value of the lth component of the expansion
of the induced current density in Eq. (1). There are a number
of geometric factors that limit the power actually detected,
and these cannot be realistically introduced in the theory.
However, they are the same for each harmonic and thus the
most accurate way to compare theory and experiment is to
eliminate these unknown quantities by taking the ratio of
harmonic powers of order (l) to the third harmonic, i.e., the
harmonic power ratio = Pl(ν)/P3(ν), as shown in Fig. 3. Thus
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only the normalized waveguide frequency response, shown in
the inset of Fig. 3, is taken into account to compare and contrast
measured and calculated values of harmonic power. There
was no bias applied and for polarity-independent current,
only odd harmonics would be foreseen theoretically. The even
harmonics detected and predicted evolve from the fact that
j+

0 �= j−
0 and �+ �= �−.

We consistently attribute the differences between detected
and predicted values to the very same imperfections and
possible local fields that lead to differences between theory
and experiment for the I - V curves in Fig. 1. At this point
it is very important to stress that the experimental setup
does not allow us to determine the small fraction of the
4.1 mW delivered by the BWO at 141 GHz that actually
reaches the SSL. We have thus determined α by means of
a nonlinear least-squares curve-fitting algorithm based on the
Levenberg-Marquardt method [31]. This leads to the α = 28.3
value used in Fig. 3. Assuming that the source delivers a plane
wave of amplitude Edc, a vacuum characteristic impedance
of Z0 = 377 �, a spot size determined by the exposed
surface of the SSL, A = 112 nm × 2 μm, and the SSL period
d = 6.23 nm, with input frequency ω in GHz, we obtain
a direct connection between the input power Pin (in mW)
and α = eEacd/hν, Pin(mW) = 2.941 × 10−9ν2α2. Thus, for
α = 28.34 and ν = 141 GHz, Pin ≈ 4.7 μW.

Figure 4 compares the asymmetric full solution with
different j±

0 and �± (solid-black) with a symmetric ver-
sion with j0 ≡ j−

0 = j+
0 = 2.14 × 109A/m2 and � ≡ �− =

�+ = 20 meV. This shows that the full theory is crucial to
explain the even harmonics but plays a small role for the
odd harmonics, which would be the only ones present in
a high-quality superlattice with the same scattering at both
interfaces and no symmetry-breaking defects or internal fields.
Tables I, II, and III in Appendix B complement the analysis.

FIG. 4. Ratio of the emitted optical power for the nth harmonic to
the 3rd harmonic nonlinearly generated by a field oscillating 141 GHz.
Both curves have been calculated using α = 28.3. The solid (black)
curve is identical to the calculation in Fig. 3, except that only odd
harmonics are shown for a direct comparison with the dashed (green)
line, which has been computed with symmetric input parameters.
From left to right, the red circles are the corresponding experimental
data for the third, fourth, fifth, sixth, and seventh harmonic. The even
harmonics are shown as open circles.

IV. CONCLUSION

In summary, the hybrid NEGF–relaxation rate approxi-
mation method presented in this paper leads to predictive
simulations for the output power of semiconductor superlat-
tices, in good qualitative agreement with experiments. The
asymmetry in current-voltage directly reflects on both even
and odd harmonics being predicted and detected. Combining
the multipliers with superlattice electronic devices (SLEDs)
that can deliver rf powers from 58 mW at 66 GHz to 15 mW
at 108 GHz [8] can potentially lead to a new generation of
compact and robust tunable solid-state sources for the GHz to
THz range, covering a range that is not easily accessible for
QCLs and other sources.
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APPENDIX A: INTERFACE ROUGHNESS SELF-ENERGY

In an actual structure, interface j may, instead of the real
position zj , be at zj + ξj (r), i.e., ξj (r) is a thickness fluctuation
with order of magnitude about one monolayer. We assume
〈ξj (r)〉 = 0 and

〈ξi(r) ξj (r′)〉 = δij η2 e− |r−r′ |
λ . (A1)

Here η denotes the root-mean-square of the roughness height
and λ characterizes a typical island size. The interface
roughness potential is

V
rough
αβ (r) =

∑
j

ξj (r) �Ej ψ∗
α (zj ) ψβ(zj ) . (A2)

The corresponding self-energy in the second Born approxima-
tion is [22,24]

�
≷
αβ,k(E) =

∑
α′β ′

∫
d2k′

(2π )2

〈
V

rough
αα′,k−k′ V

rough
β ′β,k′−k

〉
G

≷
α′β ′,k′ (E)

= η2 (�Ej )2
∑
α′β ′,j

∫
d2r ei(k−k′)r e− r

λ G
≷
α′β ′,k′(E)

×ψ∗
α (zj ) ψα′ (zj ) ψ∗

β (zj ) ψβ(zj ), (A3)

where ψα(zj ) is the wave function for Wannier state α at
interface j and �Ej is the intersubband offset. For the AlAs
over the GaAs interface we have used �Ej = −1 eV, η =
0.1 nm, and λ = 5 nm and for the GaAs over AlAs interface
�Ej = 1 eV, η = 0.2 nm, and λ = 5 nm.

APPENDIX B: HARMONIC POWER TABLES

Tables I, II, and III complement Figs. 3 and 4. Table III
summarizes the waveguide effect and explains why the
predicted second harmonic is not detected, due to the waveg-
uide cutoff. It depicts the harmonic powers comparing the
calculated bare emitted power PBare

l (ν) = 〈|Jl(ν)|2〉, the full
calculation, including the transmission through the waveguide
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Pl(ν) = 〈|Jl(ν)|2〉 T(ν), and the experiments. Furthermore
“Experiment” denotes the normalized values El(ν)/E3(ν) and
“Detected” gives the actually detected powers. El(ν) in Watts
is also shown for reference. Even though higher harmonics

TABLE I. Normalized odd harmonic powers, experiment versus
asymmetric full theory and the symmetric approximation.

Harmonic Experiment Full theory Symmetric

3 1.00 1.00 1.00
5 1.6 × 10−2 2.62 × 10−2 2.50 × 10−2

7 4.7 × 10−4 3.35 × 10−4 2.16 × 10−4

were detected, the signal-to-noise ratio below 10−10 W does
not allow for meaningful quantitative comparisons with the
theory. Thus only results up to the 7th harmonic are shown.
The table also shows how the predicted second harmonic is
eliminated by the waveguide cutoff.

TABLE II. Normalized even harmonic powers. Experiment ver-
sus asymmetric full theory and the symmetric approximation.

Harmonic Experiment Full theory Symmetric

4 1.44 × 10−2 6.50 × 10−3 0
6 1.16 × 10−2 1.54 × 10−2 0.00

TABLE III. Waveguide effect.

Harmonic ν (GHz) PBare
l (ν)/PBare

l (ν) T(ν) Pl(ν)/Pl(ν) Experiment Detected (W)

2 282 2.01 × 10−2 0.00 0.00 0.00 0.00
3 423 1.00 0.43 1.00 1.00 3.30 × 10−7

4 564 5.48 × 10−3 0.51 6.50 × 10−3 1.44 × 10−2 4.75 × 10−9

5 705 1.49 × 10−2 0.76 2.62 × 10−2 1.60 × 10−2 5.28 × 10−9

6 846 8.64 × 10−3 0.77 1.54 × 10−2 1.16 × 10−2 3.83 × 10−9

7 987 3.01 × 10−4 0.47 3.35 × 10−4 4.70 × 10−4 1.55 × 10−10
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