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Two-dimensional (2D) spectroscopy has been intensively used to study electronic and vibronic coherences in
biological systems and semiconductors. This technique studies coherent as well as incoherent signals that arise
from the nonlinear interaction of a sequence of laser pulses. In this paper we present a direct evaluation of the 2D
signal based on elementary quantum kinetics in order to compare with the common approximate diagrammatic
approaches. Here we consider incoherent action signals such as fluorescence or photocurrent as the observable,
which is easily accessible in a measurement. These observables are calculated by solving the time evolution of
the density matrix in the Lindblad form, which can take into account all possible decoherence processes. The
phase modulation technique is used to separate the relevant nonlinear signals from the other possible interaction
pathways. The approach can be used to calculate 2D spectra of any quantum system. For our model system we
find a good agreement for the quantum beating between the coupled states.

DOI: 10.1103/PhysRevA.96.053830

I. INTRODUCTION

Over the past years 2D optical spectroscopy has proven to
be an efficient technique to provide an optimal information
for studying the effect of optical fields on quantum systems
[1–10]. Due to its ability to directly observe coherences
between quantum states and to monitor the dynamics of
energy transfer via changes in a 2D map, the technique
has been preferred to study quantum dynamics in many
systems. Among the most studied are the energy transfer
mechanism in photosynthetic light harvesting systems [11,12],
and ultrafast dynamics in semiconductor nanostructures [13–
15]. Particularly, the origin of beating signals in 2D spectra
observed in mixed vibronic systems has been recently debated
in literature [16–20].

Signals for 2D spectroscopy can be obtained via different
techniques. Most commonly three noncollinear pulses are used
in which the pulses interact with the system to generate a
coherent response due to third-order polarization in a specified
wave-vector matched direction [21–25]. The method is often
called photon echo 2D spectroscopy (PE2D). Phase cycling
has also been used to isolate nonlinear signals relevant for
2D spectroscopy [26–29]. In yet another technique, one uses
four collinear pulses with well defined phases and detects
the excited state populations as incoherent action signals,
such as fluorescence or photocurrent. This technique may be
called as action signal detected 2D spectroscopy based on
phase modulation [15,25,30–36]. All the approaches provide
equivalent signals for the different pathways in the nonlinear
light-matter interactions [32].
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One of the advantages of using incoherent action detection
is that the signals from small volumes, such as a single
molecule or a quantum dot, can be used for the spectroscopy.
Generation of the coherent signals in a spatially isolated phase
matched direction, on the other hand, requires the sample size
to be larger than the wavelength of the incident light field
[1,6]. On the computational side, the action signals can be
easily calculated by following the total relaxation from the
associated excited states, and the signals that are relevant
for the 2D spectroscopy can be separated from the other
linear and nonlinear signals by using the technique of phase
modulation, as it is done in the experiments [15,32,34,35,37].
Moreover, unlike in the experiments where only the combined
contributions from the different excited states on the action
signals can be measured, the simulations can be used to
disentangle the contributions from the individual excited states
on the action signals.

In this work we present a method to simulate 2D spectra
of an electronic system resembling an excitonic dimer based
on the phase modulation technique. Previously, simulation of
2D spectra based on the explicit calculations of the nonlinear
coherent response from an ensemble of systems have been
carried out [38,39]. However, such calculations cannot be used
to simulate 2D spectra from a single excitonic system. Others
have used analytical response function of the nonlinear action
signals that result from selected pathways in the Feynman
diagrams [32]. Vela et al. [35] have used a three-level model
to simulate the photocurrent detected 2D spectra by using
the Lindblad master equation. Here we simulate the full
interaction of a sequence of four laser pulses with a model
system containing four energy levels. The model is equivalent
to two excitonically coupled molecules each having two
levels. However, the approach is general and any system with
analogous energy level structure and the corresponding optical
transitions can be modeled. We calculate processes associated
with all different relaxation pathways by solving the time
evolution of the density matrix in the Lindblad form, which
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FIG. 1. Pulse sequences used in the simulation as a function of
time. Interpulse delays and intertrain delays are indicated. The first
two trains of pulses are shown.

takes into account decoherence processes. Compared to the
previous works, we analyze action signals associated with all
the excited states, which also incorporate all the pathways,
namely the ground state bleach (GSB), stimulated emission
(SE), and excited state absorption (ESA), that contribute to
a 2D signal. We investigate in detail the evolution of the
diagonal and the cross peaks in the 2D spectra as a function
of population time, which reveal transfer of population and
coherences between the different states. The spectra also
show coherent beatings of the peaks at the frequency that
matches the energy splitting between the excitons. Moreover,
our methodology allows us to investigate the evolution of the
double quantum coherence (DQC) spectra [40]. Our analysis
shows that the DQC spectra reveal the dephasing dynamics
of the high lying excited state, which could play an important
role in the investigation of thermal relaxation of hot excited
states in metals and semiconductors.

In addition to the four-level system considered, this method
can be used to study more complicated systems, which involve
large number of excitations. One such scenario can be the study
of multiple exciton generation (MEG) in nanocrystal quantum
dots for applications in quantum dot based solar cells.

II. METHOD

A. Action signal detected 2D photocurrent spectroscopy with
phase modulation

After excitation by a sequence of ultrashort laser pulses the
different properties of a quantum system can be studied by
plotting the signal as a function of excitation and detection
frequency in the resulting 2D plot. In this work we employ
2D spectroscopy based on the phase modulation technique. A
detailed description of the method is given in Ref. [32]. In this
technique, a train of four pulses are used, where each train is
separated by an intertrain delay T . Within each train the four
pulses are separated by interpulse time delays T1, T2, and T3,
where all the delay times are positive, as shown in Fig. 1. The
total electric field for the mth pulse train is defined as

Em(t) = Em
1 (t) + Em

2 (t) + Em
3 (t) + Em

4 (t), (1)

where m counts the number of repetition and each pulse within
the pulse train is described as

Em
1 (t) = Em

01 exp

(−4ln2(t − t0 − mT )2

τ 2
1

)

× cos[ω(t − t0 − mT ) + 2π�1mT ],

Em
2 (t) = Em

02 exp

(−4ln2(t − t0 − T1 − mT )2

τ 2
2

)

× cos[ω(t − t0 − T1 − mT ) + 2π�2mT ],

Em
3 (t) = Em

03 exp

(−4ln2(t − t0 − T2 − mT )2

τ 2
3

)

× cos[ω(t − t0 − T2 − mT ) + 2π�3mT ],

Em
4 (t) = Em

04 exp

(−4ln2(t − t0 − T3 − mT )2

τ 2
4

)

× cos[ω(t − t0 − T3 − mT ) + 2π�4mT ], (2)

where τ represents the pulse duration and

T1 = T1, T2 = T1 + T2, T3 = T1 + T2 + T3.

In Eq. (2), t0 is the the center of the first pulse and �1,
�2, �3 and �4 are the modulation frequencies corresponding
to the pulses 1 to 4, respectively. In our simulation we use
a specific set of modulation frequencies: �1 = 51.4 MHz,
�2 = 51.9 MHz, �3 = 54.2 MHz, and �4 = 55 MHz. These
correspond to the radio frequencies used to drive the acousto-
optic modulators in typical experiments [32,33]. In addition, an
intertrain delay T = 14 ns is used, which is a typical repetition
time of the laser pulses generated by an oscillator.

In practice a train of four collinear pulses can be created
by splitting the output of a mode-locked oscillator using two
Mach-Zehnder interferometers. An acousto-optic Bragg cell
placed within each arm of the interferometers can be used to
create a continuously varying phase shift to each of the four
pulses [33].

When exciting a quantum system by a train with relative
phase modulation at frequency (�21 = �2 − �1) the resulting
excited state population contains an interference contribution
with a phase, which is also modulated at �21 [36,37]. The
modulation in the populations manifest in the corresponding
action signals, which can be separated from the rest of the
signal. Usually in the experiments, only the pulses within
a pair (pair 1: pulse 1 and 2, and pair 2: pulse 3 and 4)
are phase locked. Thus, the four pulse train contains two
independently phase-modulated pulse pairs at frequencies �21

and �43 [32,33]. In the simulations, we can easily lock the
phases between all the pulses, thereby producing all the mod-
ulations in the linear signal that arise from the possible linear
combinations of the modulation frequencies �ij = �i − �j .
Nonlinear interference contributions, which arise due to the
optical nonlinearities of the system produce signal components
at all the possible combinations ±�1 ± �2 ± �3 ± �4. Out of
all the modulations that arise from the nonlinear interactions,
two of the modulation frequencies �43 + �21 = 1300 kHz
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FIG. 2. Energy level diagram for the excitonic system considered
in the simulation. The dipole transitions are indicated by solid double
sided arrow while the relaxations are indicated by a dashed one
sided arrow. Relaxation corresponds to the action that has measurable
effects on signals such as light emission, photoelectron emission, or
photocurrent.

and �43 − �21 = 300 kHz, which are also called the sum
and difference frequencies, are important for 2D spectroscopy.
These “sum” and “difference” frequency signals arise from the
rephasing and nonrephasing pathways associated with the third
order polarizations, respectively [32]. One of the advantages of
locking all the modulation frequencies is that other important
signals, such as the signal at �4 + �3 − �2 − �1, which
is related to the DQC [40], is also readily available for
investigation.

III. EVALUATION OF OBSERVABLES

A. Model

As shown in Fig. 2, we use a system with ground state |0〉,
two closely lying excited states |1〉 and |2〉, and a fourth state
|3〉 with energy approximately twice that of the |1〉 and |2〉. In
case of an excitonic dimer, one can think of the two closely
spaced excited states as single excitons and the fourth state as
a double exciton.

The allowed dipole transitions are shown by the solid
double arrows, which are assumed to be the same in this
case. The product of the dipole matrix elements with the
field amplitude is adjusted such that the maximum population
transfer at zero time delay (overlapping pulses) is less than
10%. The following parameters are assumed in all the
simulations. Level energies

E0 = 0, E1 = 1.46 eV,

E2 = 1.55 eV, E3 = E1 + E2. (3)

Furthermore, we use the relaxation processes indicated in
Fig. 2 as well as a pure dephasing rate of 100 fs for all levels.
The pulse parameters used in the simulations are

τ1 = τ2 = τ3 = τ4 = 10 fs, h̄ωpulse = 1.5 eV. (4)

B. Equation of motion for the density matrix

We model the time evolution of the reduced density operator
for the system by the Lindblad equation [41]:

h̄
d

dt
ρ̂S(t) = i[ρ̂S(t),Ĥeff(t)] +

Njump∑
j=1

�j

×
{
L̂j ρ̂S(t)L̂†

j − 1

2
[ρ̂S(t)L̂†

j L̂j + L̂
†
j L̂j ρ̂S(t)]

}
,

(5)

where the Hamiltonian Heff is a sum of the time independent
Hamiltonian H0, and the interaction Hamiltonian HI (t),

Heff = H0 + HI (t), (6)

where

HI (t) = −μEm(t). (7)

In Eq. (7), μ is the electric dipole transition matrix, and
Em(t) is the electric field for the mth train of pulses given
in Eq. (2). Throughout this paper, we use eEm

0nμij = 8 meV
for transitions between the allowed levels {i,j}, as shown in
Fig. 2, due to the individual pulses n,m. The jump operators
L̂j describe different dissipation processes (with rate �j/h̄).
For the model system we consider:

Relaxation from |1〉 → |0〉
L̂rel(1) = â

†
0â1 with strength �10 = 4.13 μeV. (8)

Relaxation from |2〉 → |1〉
L̂rel(2) = â

†
1â2 with strength �21 = 4.13 meV. (9)

Relaxation from |3〉 → |2〉
L̂rel(3) = â

†
2â3 with strength �32 = 13.78 meV. (10)

Dephasing in all the levels, L̂deph = â
†
0â0, L̂deph = â

†
1â1,

L̂deph = â
†
2â2, and L̂deph = â

†
3â3, have the same strength

�Dephasing = 41.3 meV.
The time evolution for the density matrix is solved nu-

merically in the Lindblad form as in Eq. (5) with the initial
condition that at time zero all the population is in the ground
state. The signals for constructing the 2D maps are obtained
by evaluating the time integrated relaxation events given by

Rel(t) = �RelaxationTr{L̂relρ̂S(t)L̂†
rel}. (11)

Here we calculate the integrated relaxation from all the
excited states as our observables. This corresponds to the
action signals from an excited state of interest. The method
can be used to calculate all the possible action signals
by defining appropriate relaxations. Action signals from
three main transitions are calculated in this work. They are
defined as

Rel10 =
∫ tacquisition

0
dt�10Tr{L̂rel(1)ρ̂S(t)L̂†

rel(1)}, (12)

Rel21 =
∫ tacquisition

0
dt�21Tr{L̂rel(2)ρ̂S(t)L̂†

rel(2)}, (13)

Rel32 =
∫ tacquisition

0
dt�32Tr{L̂rel(3)ρ̂S(t)L̂†

rel(3)}, (14)
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FIG. 3. Comparison of phases and amplitudes for the rephasing, nonrephasing, and DQC pathways for the observables Rel10, Rel21, and
Rel32 at T1 = T2 = T3 = 0. For better visibility, only the regions near the rephasing � = (�43 − �21), nonrephasing � = (�43 + �21), and
double quantum coherence (DQC) � = �42 + �31 − �41 + �32 are plotted.

where Rel10 provides the action signal from the first excited
state |1〉. This is the signal that is usually detected in
the experiments as fluorescence. In addition, action signals
from the higher excited states can be obtained from the
other two observables Rel21 and Rel32 which provide signals
from excited states |2〉 and |3〉, respectively. Although it
is difficult to extract the signals from the higher excited
states as fluorescence, their contribution can be important in
experiments that detect photocurrent [33], photoelectrons or
-ions [42,43].

C. Data collection

The integrated relaxation rates from all excited states as
given in Eq. (12) are calculated by solving the density matrix in
the Lindblad form. Here we use tacquisition = 1.73 ps. Together
with t0 = 20 fs, this ensures that all pulses are within the data
acquisition window for all delays Ti chosen in this work. For
each train of pulses the integrated signals are evaluated and
recorded for many repeated excitations as a function of time
(t = mT ). m is varied from 0 to 5000 in order to acquire data
for a time span of 70 μs, which is long enough to resolve all
the relevant modulation components.

The signals oscillate at the linear and nonlinear combination
of the modulation frequencies �1,�2,�3,�4. By Fourier
transforming the action signal with respect to time (t = mT )
at fixed interpulse time delays, the amplitude and the phase of
the rephasing (�43 − �21 = 300 kHz), nonrephasing (�43 +
�21 = 1300 kHz), and DQC at (�42 + �31 = �41 + �32 =
5900 kHz) signals are extracted.

Figure 3 shows the signals associated with the rephasing
(� = 300 kHz), nonrephasing (� = 1300 kHz), and DQC
(� = 5900 kHz) at zero population time, T2 = 0. The re-
spective amplitudes and phases of the peaks are indicated
within each plot. The amplitude for Rel21 is much larger
than the relaxations Rel10 and Rel32. This is a consequence
of the assumed relaxation rates �21 � {�10,�32} and a single
relaxation pathway from |3〉 to |2〉. Here we also note that the
phase of the population modulation in |3〉 is shifted by π with
respect to the populations in |2〉 or |1〉. This will reflect in the
2D spectra obtained from the action signals originating from
the different states as discussed below.

By repeating the above procedure with different time delays
T1 and T3, a 2D signal can be constructed for the different
population times T2. Here we apply 30 steps with a spacing
of 10 fs both for T1 and T3. The data are collected in the
rotating frame with an angular frequency of 2.355 rad/fs.
Two-dimensional Fourier transform of the time domain data
(T1,T3) gives the desired complex valued 2D plot as a function
of the excitation and the detection frequencies, respectively.
Coherent dynamics and population transfer between excited
states can be read off from the 2D maps. Corresponding double
sided Feynman diagram can be constructed for further analyses
of the dynamical processes.

IV. RESULTS

A. 2D spectra at T2 = 0

For the model system shown in Fig. 2, the effect of
excitation by a train of four phase modulated pulses as in
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FIG. 4. The top row shows the real part of the rephasing signal from the different observables: Rel32, Rel21, and Rel10. The bottom row
shows the real part of the nonrephasing signals.

Eq. (1) is studied. The change in the system dynamics is
carefully observed as a function of population time T2 to
study the population and coherence dynamics. The oscillatory
signals due to coherent superpositions can be detected in such
systems.

One of the advantages of our method is the ability
to evaluate the action signals from the different allowed
transitions. In the model considered, the three transitions
|3〉 → |2〉, |2〉 → |1〉, and |1〉 → |0〉 can provide action signals
Rel32, Rel21, and Rel10, respectively. Note that Rel21 and Rel10

implicitly contain the contributions of the population relaxed
from |3〉 to |2〉 and |2〉 to |1〉, respectively. Figure 4 shows the
2D action signals from Rel10, Rel21, and Rel32 at T2 = 0. In
each subplot, the energies for the two excitons with energy
E1 and E2 are indicated by dashed line along the vertical and
horizontal directions. The intersection of these lines give the
diagonal and cross-peak positions visually. The spectra are
grouped as rephasing (first row) and nonrephasing (second
row). Usually, the rephasing and the nonrephasing spectra are
summed in order to obtain the absorptive signal, which is also
known as the total correlation [44–46].

We observe peaks at four positions in the 2D spectra, which
are denoted according to the standard notation given in Fig. 5.
The two peaks on the diagonal correspond to the two excitons
at energy E1 and E2. These peaks are denoted as DP1 and DP2

in Fig. 5. The other two cross-diagonal peaks CP12 and CP21

are due to the correlations between the excitons at energies E1

and E2.

At population time T2 = 0, the peaks in the rephasing
signal in Fig. 4 are elongated along the diagonal while the
nonrephasing peaks are elongated along the antidiagonal. This
agrees well with the characteristic line shapes of the rephasing
and the nonrephasing signals obtained by using perturbative
techniques [2,47].

DP1

DP2CP21

E1 E2

E1

E2

CP12

FIG. 5. Schematic diagram for the 2D spectrum of exciton model.
The diagonal peak DP1 is due to excitation and detection with a pulse
energy E1 and DP2 is due to detection and excitation at energy E2.
Similarly the cross peaks: CP12 is observed by exciting at energy
E1 and detecting at a different energy E2 while CP21 is observed by
exciting at energy E2 and detecting at energy E1.
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FIG. 6. All possible Feynman diagrams for the rephasing pathways.

The positions of the peaks in the different spectra in Fig. 4
can be related to the interaction pathways that contribute to the
particular action signal. We illustrate the different pathways by
using the double-sided Feynman diagrams in Fig. 6 and Fig. 7.
In each figure (Figs. 6, 7, and 11), three different diagrams are
shown for the different physical processes. The double-sided
Feynman diagrams for each interaction pathways are shown
on the top and the position of the peak that correspond to
the pathways are shown in the middle. The action of the
pulses on the system are shown in the bottom, where each
arrow represents interaction with the field (half-transition)
rather than the transfer of population. For the double-sided
Feynman diagram, we use the common convention that an
arrow pointing towards the ket or the bra side of the density
matrix excites the system by acting on the ket or the bra
of the density matrix, respectively [1]. Similarly, an arrow
pointing outward from the ket or the bra of the density matrix
de-excites the system by acting on the ket or the bra of the
density matrix, respectively. In addition, we use the convention
that an arrow pointing towards the left is represented by a
positive phase �j and an arrow pointing towards the right is
represented by a negative phase −�j , where j is an index
for the pulses. Since the double-sided Feynman diagrams are
specific for the rephasing and the nonrephasing pathways, it is
necessary to consider either the rephasing or the nonrephasing

signals when explaining the positions and the amplitudes of
peaks.

We first analyze the rephasing signal resulting from the third
excited state Rel32. As shown in Fig. 6, the signal arises due to
ESA as this is the only process ending in the population of state
|3〉. In order to differentiate it from the other ESA pathways
that populate |2〉 and |1〉, this signal is also traditionally known
as ESAII [48] (ESA pathways that populate |1〉 and |2〉 are
designated as ESAI). There are four interaction pathways that
contribute to ESAII, which generate two off-diagonal peaks
at CP21 and CP12, respectively. There are two minor peaks
at DP1 and DP2 on the diagonal, which cannot be explained
by the Feynman diagrams. These residual peaks result from
the ambiguity in time ordering of the interactions during the
overlap of the pulses, which mixes the rephasing and the
nonrephasing signals. Such mixing of signals during the pulse
overlap cannot be avoided in experiments. Here our method
of direct simulation reveals such features, which can only be
explained using Feynman diagrams for both the rephasing and
the nonrephasing pathways. Generally, a 2D spectrum is the
sum of the GSB, the SE, and the ESA signals. However, by
choosing a proper action signal, such as molecular fragments
from an energetic dissociative potential or photoelectrons, it
would be feasible to isolate only the contributions from the
ESA signal.

053830-6
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FIG. 7. All possible Feynman diagrams for the nonrephasing pathways.

Next, we analyze the 2D spectra obtained from Rel21. There
are six interaction pathways that populate |2〉 (Fig. 6); two each
from the SE, the GSB, and the ESA. As the signals from the
different pathways are additive, one expects peaks at CP12,
DP2, and CP21. However, the 2D spectra from the simulations
show only one dominant peak at DP2, which cannot be
explained based only on the interactions that populate |2〉. In
order to explain the results from the simulations, we also need
to consider the relaxation processes that occur within tacquisition.
tacquisition in our simulations is 1.73 ps, which is significantly
longer than the population relaxation from |3〉. Thus, Rel21

integrated over tacquisition also contains the contributions from
|3〉. However, when summing the contributions from the
different states, one needs to take into account the phases of
the modulations imparted on those states [33,48]. The relative
phases of the modulations can be evaluated from the Feynman
diagrams. We use the convention φmod = {π (−1)nIb−1 − π}/2,
where nIb is the number of interactions on the bra (or the
ket) side of the density matrix. The phase of the modulations
obtained from the simulations agree with the convention we
use (see Fig. 3). A phase difference of π gives opposite sign
to the signal. When the phases are taken into account, the

contributions from |3〉 cancel the peaks at CP12 and CP21,
leaving only the diagonal peak at DP2 in the 2D spectra
obtained from Rel21. Unlike in the rephasing spectra obtained
from Rel32, the mixing of rephasing and nonrephasing signal
due to the ambiguity in time ordering during the pulse overlap
does not generate any residual peaks because the cancellation
of the off-diagonal peaks also occurs in the nonrephasing
spectra (see the middle plot in the second row of Fig. 4). Here
it is important to note that the cancellation of the off-diagonal
peaks is complete only when the entire population in |3〉
relaxes to |2〉. This is not always the case in molecular or
semiconductor excitonic systems in which other relaxation
channels are present [49]. In such cases, it may be feasible to
quantify the fraction of the population in |3〉 that relaxes to |2〉
from the residual off-diagonal peaks at CP12 and CP21.

The rephasing 2D spectra obtained from Rel10 has four
peaks at DP1, DP2, CP21, and CP21, which is similar to
the spectra one expects from coherent signal detected 2D
spectroscopy [4,6]. Nevertheless, it is important to discuss the
origin of the four peaks in order to highlight the differences in
the underlying interaction pathways. As shown in Fig. 6, there
are six pathways that directly populate |1〉 due to the interaction
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FIG. 8. Time evolution of the real part of the total correlation spectra obtained from the different action signals: Rel32 (top), Rel21 (middle),
and Rel10 (bottom). The population time is varied by 5 fs from T2 = 0. In each population time T2 the spectrum is multiplied by the maximum
amplitude of corresponding time domain data.
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FIG. 9. Time evolution of the diagonal and cross peaks for the real value of the total correlation spectra.

of the four pulses, which generate three peaks at DP1, CP12,
and CP21. The fourth peak at DP2 is due the relaxation of the
population to |1〉. Even though all ESAI and ESAII pathways
contribute to the signal detected from level |1〉, they are all
off-diagonal. Furthermore, it is easy to see that because of
the opposite phases, perfect pairwise cancellation of the ESAI
and ESAII pathways takes place. Therefore, no ESA signal is
visible in this detection. Thus, we conclude that the amplitude
of the peak at DP2 is a sensitive measure of the fraction of
population that relax to |1〉 from higher excited states, which
has been discussed previously [33,48].

The nonrephasing spectra at T2 = 0 can be explained
similarly based on the interaction pathways shown in Fig. 7.
Nevertheless, the nonrephasing 2D spectra obtained from the
signal Rel32 has four distinct peaks at CP12, CP21, DP1,
and DP2. The nonrephasing 2D spectra obtained from the
signals Rel21 and Rel10 have features similar to their rephasing
counterparts.

B. Time evolution of the 2D spectra

In order to investigate the evolution with the population time
T2, we use the total correlation spectra. The total correlation
spectra can also be easily measured in a pump-probe geom-
etry [44–46], where the coherent response from the sample
is heterodyned with the probe field. The total correlation
spectra are important in quantifying the homogeneous and the
inhomogeneous broadening. The inhomogeneous broadening
produces line shapes elongated along the diagonal in the total
correlation spectra [2,4,6,47]. The peaks in the calculated spec-
tra are comparatively round mainly because the model does
not include static disorder that leads to the inhomogeneous
broadening.

The real part of the total correlation for the different actions
signals at the various population times are plotted in Fig. 8.
The energy splitting between the two excitons is

	E = E2 − E1 = 1.55 eV − 1.4855 eV = 91.2 meV.

The time steps for varying the population time T2 is set to
5 fs.

We first analyze the evolution of the 2D spectra from the
action signal Rel32. The spectra at T2 = 0 fs shows major cross
peaks at CP12 and CP21, and minor diagonal peaks at DP1 and
DP2, which agree with the number of pathways that contribute
to the peaks. In Figs. 7 and 6 we see that only one pathway

contributes to each of the diagonal peaks while three pathways
contribute to each of the off-diagonal peaks. In the pathways
that generate the diagonal peaks, the system is in coherence
between between |1〉 and |2〉 after the interaction with the first
two pulses, which leads to the oscillation of the amplitudes
of the peaks along T2. Similarly, in two of the pathways that
generate the off-diagonal peaks, the interaction with the first
two pulses populate either |1〉 (peak at CP12) or |2〉 (peak at
CP21), and the system is in coherence in one of the pathways.
In general, one expects all the peaks to oscillate along T2.
In order to better quantify the beatings observed in Fig. 8,
the peak values as a function of population time are plotted
in Fig. 9(a). All the peaks DP1, DP2, CP12, and CP21 in the
total correlation spectra oscillate with similar frequency. The
period of the oscillation is T ≈ 45 fs, which matches the period
2πh̄/(E2 − E1) of the beating frequency of the two excitons.

The 2D spectra from the signal Rel21 do not show clear
oscillations with T2 apart from the slight decrease in the

FIG. 10. Long-time evolution of the diagonal and cross peaks for
the real value of the total correlation spectra.
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FIG. 11. All possible Feynman diagrams for the double quantum coherence (DQC) pathways.

initial times, which is due to the effects of pulse overlap.
On the other hand, all the peaks in the 2D spectra from Rel10

show oscillations with a time period of 45 fs. As expected,
the oscillations are opposite in phase with respect to the
oscillations observed in the spectra obtained from Rel32. The
amplitude of the oscillations in Figs. 9(a) and 9(c) diminish
rapidly mainly because of the short dephasing time of all the
states used in the model (about 16 fs).

The relaxation of population from |2〉 to |1〉 can be observed
in all the spectra. However, the evolution of the spectra are
distinctly different for the different action signals. In the 2D
spectra obtained from Rel32, we observe a decrease in the
amplitude of the signal at CP21 with a concomitant increase in
the amplitude in the signal at DP2. In the 2D spectra obtained
from Rel21 the population relaxation from |2〉 to |1〉 reduces

the amplitude of the signal at DP2, which is the only peak
in the spectra. Thus, when the relaxation is complete all the
signal vanishes (see Fig. 10, middle row). Finally, the change
in the amplitudes in the 2D spectra from Rel10 due to the
relaxation of the population is similar to the ones expected
in the coherent signal detected 2D spectroscopy [50]. The
amplitude at DP2 decreases with a concomitant increase in
the amplitude at CP21 (see Fig. 10, bottom row). Thus, our
calculations show that care should be taken when interpreting
the population dynamics observed in the 2D spectra that are
obtained from different action signals.

Next we analyze the signal from the DQC. Figure 11 shows
all the pathways that contribute to the DQC signal. Note that
in contrast to previous studies [40], we use the same notation
and convention for the excitation axis as above. The DQC
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FIG. 12. Initial time evolution of the real part of the DQC spectra
from the action signals Rel32 (top) and Rel10 (bottom).

spectra shown in Fig. 12 from the signals Rel32 and Rel10 at
T2 = 0 are similar to the corresponding nonrephasing spectra.
Apart from the effects due to the pulse overlap, the signal Rel21

does not generate any DQC signal. This is because the signal
Rel21 results from the sum of eight interaction pathways, out
of which four originate from the population in |3〉 and the
other four from the population in |2〉 (see Fig. 11). However,
as the phase of the signals originating from |3〉 and |2〉 are
opposite the signals cancel each other. The DQC spectra from
Rel32 and Rel10 evolve rapidly with increasing T2. Figure 12
show the evolution of the DQC spectra with a time step of
1 fs. The rapid evolution of the spectra is due to the coherence
generated between the states |0〉 and |3〉 after the interaction of
the system with the second pulse. Apart from the phase shift
of π , the oscillations in both the spectra have a time period

of about 1.4 fs, which matches the difference in the energy
between states |3〉 and |0〉. Figure 13 shows the evolution of
the amplitudes of the peaks at DP1, DP2, CP21, and CP12

obtained from the DQC spectra for both signals Rel32 and
Rel10 over longer population time. As shown in Fig. 13,
the oscillations decay rapidly due to the loss of coherence
between the states, which in the model is set to 16 fs. Thus, the
results show that the DQC spectra, apart from providing the
information about the electronic structure and the couplings
between the excitonic states, also give additional insight into
the dephasing rates of the high lying excited states in the
system.

Actions signals, such as fluorescence and photocurrent,
that have been used in experiments mainly originate from the
population in S1 [15,35]. Our results obtained from the signal
Rel10 is relevant in understanding such experiments. Previous
experiments were done on excitonic systems where the exci-
tonic features were not clearly visible due to large background
signals from the continuum of states in the semiconductors. In
order to obtain distinguishable contributions from the different
excitonic states as we have obtained from our simulations, it is
important to investigate systems where the contribution from
the continuum of the states is negligible. On the other hand,
the simulations can also be extended by increasing the number
of states in order to mimic the continuum of states in the
semiconductors.

V. CONCLUSION

We have developed a method to calculate a 2D signal for an
arbitrary quantum system using phase modulation technique.
Clear signals enabling the study of time evolution for the
different excited populations as a result of interaction with
four laser pulses with distinct phase modulations have been
obtained. We have shown that the method can be used to
simulate the 2D spectra from action signals originating from
different electronic states. In our simulation of a quantum
system with coupled excitons, we observe fast coherent
dynamics as well as slow relaxation processes. Moreover, the
relaxation processes have different contributions to the 2D
spectra obtained from different action signals. It also reveals
extra diagonal peaks due to the overlap between the pulses
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FIG. 13. Time evolution of the diagonal and cross peaks for the real part of the DQC spectra from the action signals Rel32 (left) and Rel10

(right). Note that due to lacking resolution of points the oscillation period appears much longer.
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which are hardly avoidable in experiments. In addition, we
have also shown that the technique can be used to study
the dynamics of high lying excited states by using signals
generated by multiple quantum coherences. In general, the
technique can be used to simulate 2D spectra based on any
action signal, such as fluorescence, photocurrent or photoions,
originating from a quantum system. While we used a common
four-level system here, which allowed for a direct comparison

with a reasonable number of diagrams, the method is fully
applicable to systems with a larger number of levels.
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