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Abstract 

Correct phenotypic interpretation of variants of unknown significance for cancer-associated 

genes is a diagnostic challenge as genetic screenings gain in popularity in the next-generation 

sequencing era. The Critical Assessment of Genome Interpretation (CAGI) experiment aims 

to test and define the state of the art of genotype–phenotype interpretation. Here, we present 

the assessment of the CAGI p16INK4a challenge. Participants were asked to predict the effect 

on cellular proliferation of 10 variants for the p16INK4a tumor suppressor, a cyclin-

dependent kinase inhibitor encoded by the CDKN2A gene. Twenty-two pathogenicity 

predictors were assessed with a variety of accuracy measures for reliability in a medical 

context. Different assessment measures were combined in an overall ranking to provide more 

robust results. The R scripts used for assessment are publicly available from a GitHub 

repository for future use in similar assessment exercises. Despite a limited test-set size, our 

findings show a variety of results, with some methods performing significantly better. 

Methods combining different strategies frequently outperform simpler approaches. The best 

predictor, Yang&Zhou lab, uses a machine learning method combining an empirical energy 

function measuring protein stability with an evolutionary conservation term. The p16INK4a 

challenge highlights how subtle structural effects can neutralize otherwise deleterious 

variants. 

 

KEYWORDS 

bioinformatics tools, CAGI experiment, cancer, pathogenicity predictors, variant 

interpretation 
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1 INTRODUCTION 

 

As genetic tests become routinely applied to the investigation of disease-associated variants, 

relevant efforts are made by the scientific community to develop computational tools for 

genetic variant evaluation (Niroula & Vihinen, 2016). A number of methods presenting 

different strategies have been presented, and their application is becoming a common routine 

in cancer research (Kannengiesser et al., 2009; Miller et al., 2011). In silico predictors are 

generally designed to provide a fast simplified response when compared with experimental 

screening protocols. However, lack of properly validated benchmarking represents the main 

limiting factor hampering wider application in a clinical scenario (Walsh, Pollastri, & Tosatto, 

2016). Variants affecting tumor-suppressor genes, such as TP53 (Liu & Bodmer, 2006), VHL 

(Leonardi, Martella, Tosatto,&Murgia, 2011), and CDKN2A (Scaini et al., 2014) are actively 

investigated and collected in freely accessible databases (Forbes et al., 2015; Tabaro et al., 

2016; Wang et al., 2015). However, the correct interpretation of their pathogenic significance 

is far from definitively addressed. One relevant issue remains our ability to correctly predict 

disease-causing gene variants among variants of unknown significance (VUS) (Wang & Shen, 

2014). Correct prediction of susceptibility variants can foster the identification of molecular 

pathways causative of human diseases, particularly when variants affect well-understood 

genes previously validated by functional studies (Manolio, 2010). Since 2010, the Critical 

Assessment of Genome Interpretation (CAGI) experiment tries to objectively assess the state 

of the art of computational tools developed for genotype–phenotype determination. Here, we 

present a critical assessment of pathogenicity predictors applied to variants from the 

CDKN2A (MIM# 600160) tumor suppressor, also known as p16. CDKN2A is the major 

susceptibility gene identified in familial malignant melanoma. Approximately 40% of 

melanoma-prone families worldwide have CDKN2A germline variants (Hussussian et al., 

1994). The CDKN2A locus maps to chromosome 9p21 and its regulation is particularly 

complex, involving alternative promoters, splicing, and reading frames of shared coding 

regions. Two structurally unrelated tumor suppressors, p16INK4a and p14ARF, involved in 

cell cycle regulation, are coded by alternative splicing of different first exons (1-𝛼 and 1-𝛽). 

p16INK4a is a cyclin-dependent kinase (CDK4/6) inhibitor and p14ARF acts in TP53 

stabilization, binding, and sequestering the MDM2 proto-oncogene (Serrano, Hannon, & 

Beach, 1993; Zhang, Xiong, & Yarbrough, 1998). Thus, alterations of this single locus 

compromises two important tumor-suppressor pathways at the same time (Andreotti et al., 

2016; Aoude, Wadt, Pritchard, & Hayward, 2015). When associated with D-type cyclins, 

CDK4/6 promotes cell cycle progression through the G1 phase by contributing to the 

phosphorylation and functional inactivation of retinoblastoma-associated protein (Sherr, 

1994; Weinberg, 1995). Structurally, p16INK4a consists of four repeated ankyrin-type motifs, 

composed of two antiparallel helices and a loop forming the CDK4/6-binding interface (Fig. 

1). In the context of pathogenicity prediction, the ankyrin fold is challenging. Ankyrin repeats 

stack against one another to form a unique elongated single domain, with a multistate folding 

pathway conferring high structural plasticity. This highly modular nature confers unique 

characteristics such as a high affinity for protein–protein interactions (Tang, Guralnick, 

Wang, Fersht, & Itzhaki, 1999). However, stack modularity can also be seen as a gradient of 

transiently folded states, where a single amino acid substitution may be able to interrupt 

p16INK4a-specific periodicity, causing a severe perturbation of the entire protein structure 

(Peng, 2004). For this CAGI challenge, participants were asked to predict the effect of 10 

CDKN2A variants in the p16-challenge, previously validated in cell proliferation rate assays. 

Twenty-two predictions using different strategies, for example, scoring functions based on 

sequence conservation, or machine learning predictors, were assessed. The results allow us to 

propose where pathogenicity prediction might be improved, as methods combining 

information from different strategies were found to have the most promising results. 

 

2 METHODS 

2.1 Dataset and classifications 
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The challenge includes 10 nucleotide variants affecting only the CDKN2A gene-coding 

region without interfering with p14ARF. Each variant codes for a single amino acid 

substitution, with no insertions or deletions. The variant nomenclature used in this work refers 

to CDKN2A mRNA isoform1 (GenBank identifier: NM_000077.4). Participants were 

requested to perform predictions of the cellular proliferation rate for each of the 10 mutant 

proteins as a percentage of the proliferation rate relative to pathogenic mutants (Table 1). A 

proliferation rate of 100% is used for pathogenic variants (positive controls), and 50% for 

wild-type-like variants (negative controls). Predictors were also allowed to specify a 

prediction confidence (standard deviation) for each variant, with a maximum of six alternative 

submissions per group. The standard deviation was only reported for 14 submissions, and the 

same confidence value was used for all predictions in five submissions. In a few cases, 

predictions have been manually rescaled during assessment as proliferation levels were 

wrongly reported as a fraction of 1 rather than 100 (where 100 represents the 100% positive 

control proliferation rate). A training set composed of 19CDKN2A variants from 

Kannengiesser et al. (2009) and Miller et al. (2011) was also provided to the participants for 

training (Supp. Table S1). This choice was justified based on the similar use of bioinformatics 

tools to predict CDKN2A variant effects on cell proliferation as verified by experimental 

assays. Bioinformatics predictions were described to be comparable with verified real values 

for most variants (Kannengiesser et al., 2009; Miller et al., 2011). Real proliferation levels 

obtained from the literature were rescaled between 0.5 and 1 (proliferation level of wild-type 

and disease-like phenotypes, respectively). 

2.2 In vitro proliferation assay of CDKN2A variants and data normalization 

The experimental validation of the pathogenic effect of the variants used in CAGI is described 

in detail in Scaini et al. (2014). Briefly, the full-length CDKN2A cDNA was cloned in the 

pcDNATM3.1D/V5-His-TOPO®_expression vector (Invitrogen, Life Technologies 

Corporation, Carlsbad, CA), engineered by site-specific mutagenesis QuikChange® II XL 

Site-Directed Mutagenesis Kit; Stratagene, CA), and finally transfected in U2-OS human 

osteosarcoma cells (p16INK4a and ARF null, p53 and pRb wild type), as previously 

described (Scaini et al., 2009; Scaini et al., 2014). Three controls, no vector (G418 selection 

control), pcDNA3.1–EGFP (positive, variant-like control), and pcDNA3.1–p16INK4a wild 

type (negative control), were included in each experiment. All variants were independently 

tested at least three times. The proliferation rate was calculated as a percentage of the 

proliferation of variant-transfected cells (average of all replicates) at day 8 relative to the 

proliferation of EGFP-transfected cells, which was set as 100%. Transfection with wild-type 

CDKN2A induced a detectable, substantial growth inhibition (proliferation rate 50%), whereas 

various p16INK4a variants had different effects on cell proliferation, from wild-type-like to 

loss-of-function. The proliferation rates used for CAGI are shown in Table 1. 

2.3 Performance assessment 

Evaluating the performance of bioinformatics tools in predicting VUS impact is a non-trivial 

task. The assessment should not be seen as a mere discrimination of winners/losers, but rather 

aim at identifying which tool generated the most reliable prediction. A considerable number 

of performance measures were considered in order to perform a thorough assessment. The 

final goal was to generate a global overview of the strengths and weaknesses of each method. 

Correlation indices were considered first, as predictions are in a continuous range (cell 

proliferation rate). Both the Pearson correlation coefficient (PCC) and Kendall’s Tau 

correlation coefficient (KCC) were calculated. Both range from +1 (perfect positive 

correlation) to −1 (perfect inverse correlation) with 0 representing a random performance. 

Root mean square error (RMSE) was calculated to better estimate the difference between 

predicted and real values. To further assess the prediction reliability in a medical setting, a 

binary classification was used. Proliferation levels were divided in two classes, benign and 

pathogenic, with three different proliferation thresholds suggested by the data provider, that 

is, potentially pathogenic (>65%), probably pathogenic (>75%), and likely pathogenic 
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(>90%). The area under the ROC curve (AUC) for each classification threshold was also 

calculated. The standard deviation of the predicted proliferation rate was used to calculate the 

fraction of predictions within standard deviation (PWSD). To address the issue related to 

missing and very large confidence range, PWSD was calculated assuming a standard 

deviation of 10% for all submissions (PSWD10). The performance indices used in ranking are 

shown in Table 3, and additional performance measures at different thresholds can be found 

in Supp. Table S3. An overall ranking of predictors’ performance was defined as average 

ranking of four quality measures. All measures are defined in more detail in the Supp. 

Material. To assess the statistical significance of each performance index, 10,000 random 

predictions were generated and used to calculate an empirical continuous probability (score s), 

with a P value defining the proportion of random predictions scoring>s. The R scripts used to 

perform the assessment are publicly available from the GitHub repository at URL: 

https://github.com/BioComputingUP/CAGI-p16-assessment. 

3 RESULTS 

3.1 Participation and similarity between predictions 

In the p16INK4a CAGI challenge, participants were requested to predict the effects of 10 

p16INK4a VUS potentially causing malignant proliferation validated with cellular 

proliferation assays (Scaini et al., 2014). This challenge attracted 22 submissions from 10 

participating groups, which were assessed without knowing the identity of the predictors. 

After the assessment was completed, only one group remained anonymous. Table 2 lists the 

participating groups, their submission IDs, and main features used for prediction. The 

majority of methods used evolutionary information derived from multiple-sequence 

alignments for prediction. Several methods also used the available crystal structure of 

p16INK4a bound to CDK6 (see Fig. 1) to calculate folding energies. Combinations of both 

approaches or of different predictors were also submitted. A summary for each method is 

described in the Supp. Material. Of the 10 participating groups, four contributed one 

prediction, one submitted two, four submitted three, and only one group submitted four 

different submissions. 

An analysis of prediction similarity was performed to better highlight the peculiarity of each 

submission (see Suppl. Fig. S1 for the full dataset). Almost all groups performing multiple 

submissions made very similar predictions (see Fig. 2). This is particularly evident for the 

Bromberg group, which were de facto mostly identical for many variants. A similar situation 

can be drawn for the Moult group, where a different fitting of two linear models (submissions 

9, 15) produced identical predictions for most variants. A different rescaling process of 

submission 15 defined the third prediction (submission 20). Submissions 9 and 15 both 

predicted a majority of variants between 0.88 and 1. Predictions from the Gough and BioFolD 

groups are also quite strongly correlated among each other. Interestingly, submissions 5 and 3 

(BioFolD and Casadio lab, respectively) are also highly correlated as both are based on two 

versions of the SNPs&GO method (Calabrese, Capriotti, Fariselli, Martelli, & Casadio, 2009; 

Capriotti et al., 2013). The Vihinen lab (submissions 6, 13) presents a weak anticorrelation 

among its predictions, probably due to predictions for all except one variant being very high (

≥0.85). The four submissions from Yang&Zhou lab (10, 16, 21, 22) present almost no 

correlation, possibly also due to a sign error affecting three submissions. 

3.2 Assessment criteria and performance measures 

The type of insights to be gained from assessing a CAGI challenge depends strongly on the 

criteria used for evaluation. As this is a relatively novel field, extra care was given to this 

point. Ideally, the criteria should reflect the true performance of the methods, highlighting 

submissions that are of practical relevance. The simplest measures, binary classification and 

derived measures such as AUC, suffer from the choice of an arbitrary threshold, which may 

obfuscate interesting results. Correlation measures are good to indicate overall trends, but of 
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little use to guide the selection of pathogenic cases as no threshold is used. At the other 

numerical extreme, RMSE is very clear, but can result in poor performance for all 

submissions. For an inherently continuous prediction challenge such as p16, determining the 

number of predictions within a fixed distance can arguably provide a measure combining 

features of binary classification and correlation. In order to understand better how related the 

assessment criteria are among each other, their correlation was plotted (Fig. 3). The PCC and 

KCC correlation coefficients are highly correlated with each other and with the three AUC 

measures. RMSE and two PWSD variants are less correlated and offer two alternative views 

of the data. 

Using a reduced set of measures for the final ranking is suggested by the high pairwise 

correlation coefficients, suggesting they are measuring very similar features (see Fig. 3). A 

ranking including largely orthogonal measures should prove more robust and informative. For 

this reason, only four measures (one for each group) with low pairwise correlation were 

considered for the final ranking, that is, KCC, RMSE, AUC considering a 75% of 

proliferation threshold (AUC75), and PWSD considering a standard deviation of 10% for all 

submission (PWSD10). In particular, KCC was chosen as it is a rank-based measure 

appropriate when targets are continuous and their relative order is critical. The data provider 

recommended to use AUC75, as the corresponding proliferation level appeared to be the best 

threshold to separate pathogenic and neutral phenotypes. Finally, PSWD10 was preferred over 

PSWD as many predictors did not report standard deviation for their submissions. 

3.3 Performance evaluation 

The assessment of performance achieved by the 22 methods showed many predictions to have 

good results on average. This is particularly true considering AUC75, where most of the 

submissions achieved values between 0.7 and 1. For KCC, the average of the submissions 

shows a moderate to strong correlation with real data (see Table 3). Good results were 

however not sufficient for most predictions to be statistically significant. Very demanding 

thresholds emerged to separate significant results from random for this challenge, with only 

the top ranking methods being significant for most of the four performance indices (see 

below). This is probably due to the limited number of variants present in the test set, where 

wrong prediction of one variant corresponds to 10% of the dataset. Small variations in 

predictions could be reflected in remarkable fluctuation of performance indices due to the 

small number of variants considered. To perform a global assessment of predictor 

performance, we therefore decided to focus more on ranking than on numerical values 

achieved for each measure. Ranking variations not only may better reflect the magnitude of 

performance variation, but can also be considered more intuitive for nonspecialist readers. 

The Yang&Zhou lab (submission 10) performed best, ranking first in all performance indices 

except AUC75, where it is fifth (see Table 4). The Lichtarge lab (submission 4), an 

anonymous prediction (submission 1), and the Moult lab (submissions 15, 20) obtained higher 

AUC75 values. The Lichtarge lab also obtained good results considering KCC, where it 

ranked second. BioFolD (submission 5) also achieved good results, ranking second for both 

PSWD10 and RMSD and third for KCC. Furthermore, the BioFolD lab also performed well 

with submission 12, being second and third for PSWD10 and RMSD, respectively. Among 

the lower ranked predictions, an inverse correlation is found for submission 8 (−0.40), mainly 

resulting from low proliferation levels being predicted when real proliferation levels were 

high. Submissions 16 and 21 rank poorly, achieving an inverse KCC correlation (−0.56, 

−0.6). Notably, while all three submissions perform poorly, they probably followed opposed 

strategies. Submission 8 tends to be very conservative, with most of the predicted values close 

to a wild-type phenotype. Submissions 16 and 21 tend to be more biased toward the 

prediction of malignant phenotypes, with only one predicted value close to a milder 

phenotype. This trend seems to be shared among lower ranking predictions. 

A statistical test of the average ranking over all four performance measures confirmed 

submission 10 (Yang&Zhou lab) as the best performer. No statistically significant difference 
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can be identified between submissions 4 and 5 (Lichtarge, BioFolD; see Fig. 4) ranked second 

and third, respectively. A bootstrap simulation with 10,000 replicas was used to test whether 

the performance achieved by the three best submissions could be achieved by chance. 

Submission 10 performs better than random (P value < 0.05) for three out of four measures, 

the only exception being PSWD10. Submissions 4 and 5 perform better than random only 

considering KCC and AUC75 (see Table 5). 

3.4 Difficult variants 

An analysis of submissions shows prediction reliability to depend on position, with 

p.Gly23Ser, p.Gly35Glu, and p.Gly35Arg being particularly complex to address (see Supp. 

Table S2). p.Gly23Ser and p.Gly35Arg are the most mispredicted variants using PWSD10, 

with only two correct predictions. Both variants affect conserved positions that are known to 

have role in correct p16INK4a folding and CDK inhibition. A previous study (Scaini et al., 

2014) addressing the same genetic changes showed p.Gly23Ser to introduce a weak 

interaction with S56. Although weak, this is thought to stabilize the overall fold, inducing a 

small local rearrangement of the p16-CDK4/6-binding interface. Predictions seem to miss this 

twofold effect. The p.Gly23Ser variant is mainly predicted as damaging, suggesting that 

current methods overpredict a pathogenic effect. A similar scenario can be seen for 

p.Gly35Glu and p.Gly35Arg. The G35 is a solvent-exposed residue, which localizes at the 

end of the first 𝛼-helix in the p16INK4a structure. Substitution of G35 with charged residues 

can be accommodated in the ankyrin fold, likely yielding neutral phenotypes (Scaini et al., 

2014) mispredicted in this case. The only notable exception is submission 20, which shows 

the best accuracy with these difficult variants but misses most of the other variants. The 

p16INK4a challenge shows how different variants on the same residue can have widely 

diverging effects, which are not well predicted by many submissions. 

4 DISCUSSION 

Pathogenicity prediction of VUS is a challenging problem. It can manifest at different levels, 

such as protein function, subcellular localization, and pathways, as well as impairing multiple 

interactions a specific protein can exert with different partners (Hamp & Rost, 2012). 

Pathogenicity predictions are frequently performed through a priori knowledge of the 

biological problem, in most cases from an experimental characterization of disease-associated 

variants. In silico prediction can be considered a realistic benchmark of our understanding of 

these biological problems. Here, we presented results from the critical assessment of 22 

different predictions in the CAGI p16INK4a challenge. Different submissions were compared 

to highlight the strengths and weaknesses of prediction strategies as applied to the human 

tumor-suppressor p16INK4a. The challenge had several peculiar characteristics. p16INK4a is 

a cancer-associated kinase inhibitor whose main function is protein–protein binding. It is also 

an ankyrin repeat protein, characterized by repetitive local short-range interactions (Peng, 

2004; Scaini et al., 2014). In an ideal scenario, a reliable pathogenicity predictor should 

discriminate variations affecting both p16INK4a features. From a computational point of 

view, most predictors use position-specific scoring matrices (PSSM) and machine learning. 

The assessment suggests that our knowledge is sufficient to perform reliable predictions for 

the analyzed variants. However, relevant differences emerged among predictions. These 

differences stem in part from the strategy used for pathogenicity assessment. Others arise 

from expert knowledge, with similar approaches generating discordant predictions. Groups 

combining different strategies seem more robust when predicting CDKN2A variants. 

Predictions supplied from the Yang&Zhou lab are emblematic of this phenomenon. This 

group contributed four different submissions, rescaling PSSM value differences between wild 

type and variants, computing ΔΔG variation with ROSETTA3 (Dimaio, Leaver-Fay, Bradley, 

Baker, & André, 2011), computing ΔΔG with Dmutant (Zhou&Zhou, 2002) or combining 

them in a support vector machine using a linear kernel. Our assessment showed the 

Yang&Zhou lab reliability improving with prediction complexity (see Tables 3 and 4), 

peaking with the most complex submission 10. A similar reliability gradient was observed for 



8 

 

other groups using different strategies, suggesting how a single method may be insufficient 

for pathogenicity prediction. Submission 10 presents the best fit with experimental data. On 

the other hand, a suboptimal AUC75 suggests the submission is less convenient for 

discriminating pathogenic from a wild-type-like phenotype. Conversely, submission 4 

(Lichtarge group) presents the best AUC75 value, which may make it useful in a clinical 

setting. However, submission 4 predicts all variants as pathogenic at this threshold, which 

renders this method unreliable for clinical practice. Prediction performance seems to be also 

influenced by variant type. For example, variants affecting glycine 35 are on average easier to 

predict than glycine 23. The latter is known to be relevant for the correct ankyrin fold (Peng, 

2004), as well as to localize at the p16INK4a/CDK4/6-binding interface (Miller et al., 2011; 

Scaini et al., 2014). For a generic pathogenicity predictor, this may be the worst case scenario. 

Sequence conservation analysis highlights the residue as conserved and relevant for protein 

structure, but may miss the pathogenic effect caused by interference at the protein–protein 

interaction interface. More advanced approaches, such as HMMs and neural networks, turned 

out to be the best strategies for this specific problem. It can be argued that the limited number 

of variants composing the dataset may limit generalization of the results and a larger set of 

variants might produce a different ranking. The dataset was chosen to represent a balanced 

ratio between pathogenic and neutral variants. Despite these intrinsic limitations, we believe 

this challenge may be representative of a clinical setting, where disease-associated genes are 

poorly described when it comes to variants found in patients. It is evident from the assessment 

that no method is able to perform errorless predictions. We expect the CAGI results to 

provide a starting point to improve the available methods and encourage using the scripts 

available on GitHub to help standardize the assessment. 
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TABLE 1. p16INK4a proliferation rate test set 

 

 

Identifiers of variants affecting cell proliferation and relative proliferation level. Variant 

nomenclature refers to CDKN2A mRNA isoform1 (GenBank identifier: NM_000077.4); 

nucleotide numbering starts with the A of the ATG translation initiation site. Proliferation 

levels were rescaled between 0.5 (wild-type-like phenotypes) and 1 (tumor-like phenotypes). 
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TABLE 2 Predictor overview 

 

For each submission, predictor and a summary of features used for prediction are indicated.  
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TABLE 3 Performance indices 

 

Results are shown for the main performance indices considered in the assessment. 

The top performing submission in each category is shown in bold and the second best is 

underlined.  
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TABLE 4 Submission ranking 

 

Ranking of the different prediction methods based on performance indices in Table 1. To 

define the final ranking, average of ranking position for each performance index was used. 

The top performing submission in each category is shown as bold, whereas underlined is for 

the second best performance  
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Table 5. Statistical significance test for top three submissions. 

 

The P value for random predictions scoring better using each assessment metric is shown over 

10,000 simulations. 

P values < 0.05 are shown as bold.  
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FIGURE LEGENDS 

 

 
 

FIGURE 1 Overview of CDK6-P16INK4A tumor-suppressor complex. Cartoon 

representations of the p16INK4a 3D structure (PDB code 1BI7) colored blue, whereas CDK6 

is presented as full surface (light gray). Magenta spheres represent positions of variants 

considered for the challenge mapped on its surface. The ankyrin repeats composing 

p16INK4a structure are presented below with a schematic representation of mutated amino 

acid positions (magenta spots). Variant nomenclature refers to CDKN2A mRNA isoform1 

(GenBank identifier: NM_000077.4); nucleotide numbering starts with the A of the ATG 

translation initiation site. 
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FIGURE 2 Correlation among submissions. Each cell shows the Pearson correlation 

coefficient between two submissions, with a color scale ranging from green (+1, perfect 

correlation) to red (0, no correlation) and black (−1, perfect anticorrelation). Submissions are 

clustered by group. 
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FIGURE 3 Correlation among performance indices. Each cell shows the Kendall correlation 

coefficient between the two corresponding measures, with a color scale ranging from green 

(+1, perfect correlation) to red (−1, perfect anticorrelation). Notice how similar measures tend 

to cluster together. The four selected measures are highlighted in bold face. 
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FIGURE 4 Pairwise difference between submissions. Statistical differences between 

submissions based on the overall ranking achieved by each submission, sorted according to 

the final ranking. White squares are indices of tied predictions (P values > 0.05) meaning that 

performances are similar and the difference between two predictors is not statistically 

significant. 


