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“The cerebral cortex is a very difficult theme, perhaps the most difficult 
study presented to any anatomist; the supreme dignity of the organ and 

the inextricable complexity of its function would demand a corresponding 
fabric of immense complexity, whose threads the most sagacious 

investigators will be able to disentangle only partially, and in which will 
become constantly entangled and lost, all those who imagine that nature is 
capable of developing multifarious and highly elevated functions by means 

of simple mechanisms and schematic formulae.” 
 

Santiago Ramón y Cajal 
Nuevo concepto de la histologia de los centros nerviosos (1892) 

 
 
 
 

“And everything under the sun is in tune 
but the sun is eclipsed by the moon” 

 
Roger Waters 

Eclipse (1973) 
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Abstract 

This thesis presents studies on how tactile sensory input is represented and 
processed in the neocortex. We used an experimental setup with electrical 
activation of cutaneous receptors for innocuous touch in the second digit of the 
forepaw of anesthetized rats. The activation consisted of a set of eight reproducible 
spatiotemporal patterns. Using cell-attached and whole-cell patch clamp in vivo, 
we measured the response in neocortical neurons. 

The studies provided support for a distributed model of cortical processing, where 
ensembles of neurons in the primary somatosensory cortex (S1) are significantly 
better than single neurons at decoding different types of tactile stimulations, but 
individual neurons are at the same time able to separate between single pulse 
stimulations of adjacent receptive fields. 

We also showed that the intracellular response to identical cutaneous stimulation 
can be classified as one out of a finite set of typical responses for the neuron. Our 
data hence suggested that tactile sensory processing is dependent not only on the 
direct afferent input, but also on its internal state and projections from other parts 
of the nervous system. The cerebellum has connections to the neocortex and is 
therefore an important regulator of internal states. The cerebellar output cells are 
in part driven by tactile input from sensorimotor signals in spinocerebellar systems 
and as part of the dissertation we also studied the synaptic plasticity of those 
inputs. The study showed that the connection between the spinal cord and deep 
cerebellar nuclei (DCN) neurons have a low or non-existent medium-term 
plasticity in the adult nervous system. 

Our analysis suggests that neocortical sensory processing is mediated through 
parallel streams of overlapping network activity, each with its own local state 
variation over time. In order to increase the sensitivity of tactile processing, 
differentiation in neuronal activity is enforced, causing neurons to respond 
differently to the same afferent input.  
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Abbreviations 

AIN anterior interpositus nucleus 

BC basket cell 

CF climbing fiber 

CNS central nervous system 

DCN deep cerebellar nuclei 

DN dentate nucleus 

EPSP excitatory post synaptic potential 

fMRI functional magnetic resonance imaging 

IO inferior olive 

GoC golgi cell 

GrC granule cell 

LTMR low-threshold mechanoreceptor 

M2 secondary motor cortex 

MF mossy fiber 

MRI magnetic resonance imaging 

PC purkinje cell 

PET position emission tomography 

PF parallel fiber 

S1 primary somatosensory cortex 

SC stellate cell 

SpTKDE spike-triggered kernel density estimator  
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Introduction 

The discovery of the neuron in the 19th century, followed by the ambitious 
depiction of different cellular morphologies by Ramón y Cajal, inspired the belief 
that specific functions or parameters of the nervous system could be pinpointed to 
specific neurons (Nicolelis 2011). Two hundred years later, it is still an ongoing 
dispute whether the function of the nervous system can best be understood as a 
distributed network phenomena, or if cerebral functions can be ascribed to 
individual neurons or distinct groups of neurons. The first section of this chapter 
summarizes some of the theories of cortical sensory processing, primarily from a 
historical perspective. The subsequent sections give a more specific context to 
paper I, II, III and IV. 

Models of sensory processing in the neocortex  

When the tip of your finger touches an object, during exploratory search or passive 
sensing, a multitude of cutaneous receptors are activated. Excluding the receptors 
for temperature and noxious stimulation, there are still more than two hundred 
low-threshold mechanoreceptors (LTMRs) for innocuous touch per square 
centimeter of the fingertip (Johansson and Vallbo 1979; Darian-Smith and Kenins 
1980). The evoked receptor responses are propagated as action potentials to the 
neocortex, via relay stations in the dorsal column of the spinal cord, the cuneate 
nucleus and the thalamus1 (Abraira and Ginty 2013). According to the labelled line 
hypothesis of sensory processing, the signals from different receptive fields of the 
skin are separated from each other as they travel along the posterior column-
medial lemniscus pathway, resulting in a somatotopic map of the skin in the 
cerebral cortex (Mountcastle 1997; Guyton and Hall 2006; Pereira and Alves 
2011; Kandel, Schwartz et al. 2013).  

                                                      
1 There is a parallel pathway for innocuous sensory signals to the neocortex, primarily from hairy 

skin areas. This pathway transmits information via the lateral cervical nucleus and the thalamus, 
but it has been omitted from the summary above as it is vestigial in humans (Abraira and Ginty 
2013). 
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Hubel and Wiesel (1961) used a retinotopic map in the visual cortex as a substrate 
to tentatively suggest that cortical sensory processing is a hierarchical process, 
where neurons receiving thalamocortical afferent signals from adjacent receptive 
fields will have a common postsynaptic neuron that integrates the information to 
form a more complex picture of the external source of stimulation. Felleman and 
van Essen (1991) build on this idea to create a detailed model of the 
somatosensory and visual sensory processing faculties of the cortex, including ten 
layers of the visual processing hierarchy and nine layers of the somatosensory 
processing hierarchy. The field of neuroscience has obviously undergone a few 
transformations since Felleman and van Essen published their article more than a 
quarter of a century ago, but the principle of hierarchical sensory processing is still 
widely assumed to be true (Kandel, Schwartz et al. 2013). 

Barlow (1972) uses the principle of hierarchical sensory processing to 
conceptualize a grandmother neuron - a neuron that the sensory signals will 
converge to and activate when the subject perceives his or her older relative. One 
caveat with the grandmother neuron hypothesis is that it heavily constrains the 
realm of possible human perceptions, since there are a finite number of neurons 
assigned to the final stage of perception but at least theoretically an infinite 
number of conceivable perceptions. As a solution to this conundrum, Barlow 
suggests that the neuronal constituents of our real-world phenomena could be 
according to some abstract classification we are unaware of. Each constituent is 
then represented by a canonical neuron. To explain how the activity of several 
canonical neurons is combined to form a comprehensive perception, Barlow uses 
boolean arithmetic as an analogue.2 

In other models of cortical processing, the single neuron as the smallest functional 
unit is replaced by cortical columns (Mountcastle 1997; Buxhoeveden and 
Casanova 2002). The columnar organization model emanates from studies on the 
embryological development of cerebral cortex (Buxhoeveden and Casanova 2002), 
and studies of the barrel cortex of mice and rat (Woolsey and Van der Loos 1970; 
Petersen 2007). Neocortical cells migrating from the ventral zone of the 
telencephalon have been observed to form radial columns in the developing 
neocortical laminae (Rakic 1995; Mountcastle 1997), and the barrel cortex of adult 
rats is believed to contain vertically aligned neurons, neatly organized in rows of 
columns in the transversal plane. Each barrel column receives synaptic input 
primarily from a single principal whisker. If the sensory stimulation from a 
whisker is suppressed during development, the corresponding connections 
                                                      
2 Barlow extends the analogue of boolean arithmetic by acknowledging that the firing frequency of a 

neuron can be graded, so that the state of a neuron is not binary but can assume more than two 
distinct, functionally relevant values. Thus this part of Barlow’s model could be described as 
something akin to fuzzy logic, however he does not use this term himself, possibly since the 
concept was still fairly novel at the time. 
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between principal whisker and corresponding barrel column will be compromised 
in the adult rat (Simons and Land 1987 ). 

According to Buxhoeveden and Casanova (2002), a cortical minicolumn contains 
80 - 100 neurons. Mountcastle (1997) describes how a macrocolumn in turn is 
made up of about 80 minicolumns. Nissl staining and 2-deoxy glucose metabolic 
labelling reveal vertical alignment of neurons in several cortical areas 
(Buxhoeveden and Casanova 2002), but there are several theories regarding which 
organizational unit that is the smallest functional entity (Swindale 1990). 

Neocortex 

The studies included in this dissertation show that while different cells are tuned to 
respond with individual specificity to tactile stimulation, the information content 
in an ensemble of neurons is far superior to that of an isolated neuron, even for the 
type of stimulations to which the individual neuron responds with high specificity 
(paper II). Since neurons from the same study have also been found able to 
differentiate between single pulses delivered to adjacent receptive fields, the 
findings imply that the brain utilizes a distributed strategy for cortical sensory 
processing of tactile information. 

Types of neural coding 

Spanne and Jörntell (2015) make the distinction between local coding, sparse 
coding and dense coding. While local coding allows for only one context per cell, 
the sparse and dense coding allow for overlapping spatiotemporal patterns 
between different contexts at the same time. The fact that there is no 
unambiguously defined boundary between the sparse and dense coding regimes is 
a potential source of misunderstandings to discussions on the subject. 
Qualitatively, the difference is that in the former case the neural signalling is as 
limited as possible, whereas the latter case is characterized by continuous 
activation of large parts of the network. The dense coding regime is more easily 
applicable to a system with a large percentage of inhibitory neurons, some of 
which may have a role in mitigating positive feedback loops that otherwise would 
increase synaptic efficacy out of optimal bounds for the system (Jörntell 2016b). 
Spanne and Jörntell (2015) conclude that the dense coding regime allow for more 
dynamic calibration of synaptic weights and more generalizations in 
spatiotemporal patterns between contexts. Furthermore, a more dense coding 
regime will reduce the impact of the inherent stochasticity in spike firing. 
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Redundancy in the somatosensory system 

Studies on cortical and subcortical sensory systems have shown what appears to be 
a redundancy in the number of cells transmitting a signal (Strehler and Lestienne 
1986; Swindale 1986; Bengtsson, Brasselet et al. 2013). Given the energy cost in 
maintaining a larger network the redundancy should serve a vital purpose, or it 
would have been removed by evolutionary pressure. There are at least three 
reasons to have a perceived redundancy in a system such as the mammalian 
nervous system. The first reason is that it increases robustness in information 
transmission, which can be used to mitigate the adverse effects of damage inflicted 
to single neurons or fibers. Given the relatively low risk of sustaining serious 
damage to the nervous system versus the energy cost of redundancy, increased 
robustness is likely not the main reason for the perceived redundancy. The second 
reason is that a network with more nodes or higher level of interconnectedness 
under some circumstances will have fewer constraints on what it can be 
configured to do. The third reason is that what is perceived to be redundant 
information does in fact contain meaningful deviations from the coarse signal that 
is yielded from averaging the activity of several cells. 

The last hypothesis is supported by studies in this dissertation (paper II), as well as 
previous studies (Jörntell, Bengtsson et al. 2014). This finding does not rule out 
that the apparent redundancy also provides an increased robustness on a more 
coarse level of input processing. In paper II and III we show that neurons in S1 
respond differently depending on the type of tactical stimulation of the skin. 

Intracortical, corticocortical and thalamocortical networks 

The majority of thalamocortical projections relaying afferent somatosensory 
signals terminate in layer IV (Bruno and Sakmann 2006). Sherman (2016) makes 
the distinction between driver neurons and modulatory neurons. The conceptual 
difference is that drivers transmit the main message while modulators assert 
influence over the affinity to driver inputs. More specifically, drivers are 
characterized by paired-pulse depression, all-or-none response profile, strong 
initial excitatory postsynaptic potentials (EPSPs) when there is a response, and an 
absence of a metabotropic glutamatergic receptor component. Modulators in turn 
are characterized by paired-pulse facilitation, graded response profile with small 
initial EPSPs, and the presence of a metabotropic glutamatergic receptor 
component.  

One pervasive message that runs through the work of Sherman is that the thalamus 
is not merely a relay center, but is part of a dynamic recurrent thalamocortical 
network (Sherman 2007). For instance, it has been shown that layer V and layer 
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VI neurons exert modulatory and direct feedback to the thalamus, and that 
thalamic nucleus are also actively involved as relay stations for corticocortical 
networks, for instance between the motor and the somatosensory cortex. Studies in 
mice have shown that the secondary motor cortex (M2) evoke persistent firing in 
layer V neurons of S1, and that there are top-down regulating circuits between M2 
and S1, exemplified by degeneration of sensory perception during optogenetic 
stimulation of M2 to S1 axons (Manita, Suzuki et al. 2015). The motor cortex also 
sends efference copies of motor commands via collaterals to the thalamus 
(Guillery and Sherman 2011).  

There is a lack of consensus regarding the functional classification of neocortical 
neurons, as well as the nature of their cortical and subcortical connections (Jiang, 
Shen et al. 2015). The neocortical neurons can be more broadly classified as 
pyramidal tract neurons and intertelencephalic neurons (Gerfen, Paletzki et al. 
2013; Harris and Shepherd 2015), based on the nature of their cortical and 
subcortical connections. Morphologically, neurons are often classified as spiny 
and non-spiny, based on the appearance of their dendritic branching. The most 
common neocortical cell is the spiny pyramidal cell (DeFelipe and Fariñas 1992). 

Bruno and Sakmann (2006) estimate that 85 % of the neocortical connections in 
layer IV are intracortical, and only 15 % stem from the thalamus. They also note 
that although corticothalamic connections are more numerous than the 
thalamocortical connections, the efficacy of thalamocortical connections is 
stronger, in fact among the strongest that has been found in the central nervous 
system (CNS). They suggest that the strength of this connection is due to 
synchronization of thalamic cells rather than extraordinarily high synaptic strength 
of individual connections, since unitary EPSPs evoked by a single presynaptic 
thalamic neuron is relatively small, with an amplitude of order of magnitude of 1 
mV or lower. 

Cerebellum 

In humans the cerebellum contains somewhere around 80 percent of the brain’s 
neurons, but it comprises only ten percent of its size (Azevedo, Carvalho et al. 
2009). In other words, the neurons of the cerebellum are densely packed. 
Importantly, they are packed according to a regular pattern that repeats itself 
throughout the brain structure (Dean, Porrill et al. 2009). The generic microcircuit 
that connects the cerebellar neurons is summarized in Figure 1. The microcircuit is 
arranged in a way that facilitates parallel processing of massive amounts of 
incoming synaptic information (Jörntell 2016a). It receives extracerebellar 
synaptic input from mossy fibers (MF) and climbing fibers (CF). The mossy fibers 
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connect to deep cerebellar nuclei (DCN) neurons and granule cells (GrC), There 
are up to four mossy fibers per granule cell, often conveying information from the 
same receptive field (Jörntell and Ekerot 2006). A majority of the GrC – PC 
connections are however so-called silent synapses, with close to zero synaptic 
efficacy (Isope and Barbour 2002).  

Figure 1. The cerebellar microcircuit. 
MF mossy fibers; GrC granule cells, PF parellel fibers, GoC golgi cells, BC basket cells, SC stellar cells, PC purkinje 
cells, DCN deep cerebellar neurons, CF climbing fibers, IO inferior olive. Empty triangles represent excitatory input, 
filled triangles represent inhibitory input. 

The climbing fibers originate in the inferior olive (Gibson, Horn et al. 2004), 
making synaptic connections on PCs in the cerebellar cortex and DCN neurons 
(Jörntell 2016b). Their activity is much lower than what can be observed in the 
mossy fibers, with a mean firing frequency below 1 Hz during behavior (Gibson, 
Horn et al. 2004), but the synaptic efficacy of individual CF - PC synapses is high 
(Jörntell 2016b). According to the Marr Albus theory of cerebellar plasticity, the 
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climbing fiber signal works as an error signal to the cerebellar microcircuit. The 
error signal is then used to calibrate the MF signals in order to increase or maintain 
coordination of CNS functionality (Marr 1969). 

There are cerebrocortial connections from both the dentate nucleus (DN) (Dum 
and Strick 2003) and the anterior interpositus nucleus (AIN) (Jörntell and Ekerot 
1999). DN receives afferent sensory information from the spinal neurons of the 
dorsal horn, while AIN receive proprioceptive information via the spinocerebellar 
tract. The latter input contains motor commands for the limb and hand movement, 
but the efferent signals are mixed with afferent signal conveying tactile input 
(Spanne and Jörntell 2013; Bengtsson and Jörntell 2014).  

Since the cerebellum samples information from many cerebral and spinal systems, 
it is well suited to coordinate the activity of cortical and subcortical circuits 
according to what is to be achieved on a global level. Lesion studies support the 
notion that the cerebellum has a general coordinating role in functions performed 
by other parts of the CNS, since damages to the cerebellum will impair the ability 
to perform a broad spectrum of activities (Frank, Schoch et al. 2007). One way of 
performing such extracortical control of the sensory processing is to influence the 
internal state of intracortical circuits. This will be discussed more in detail in the 
discussion. 
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Results 

In paper I we investigate the medium-term (< 60 minutes) plasticity in synaptic 
connections between mossy fibers and neurons of the deep cerebellar nuclei. We 
use three different plasticity inducing protocols in decerebrated adult cats, and 
measure the response to mossy fiber activation using cell-attached neuronal patch 
clamp recordings in vivo. We conclude that if there is any medium-term plasticity 
it is very weak, in particular in comparison to the plasticity that has previously 
been reported in vitro for juvenile mice (Pugh and Raman 2008) but also in 
comparison with the corresponding input to the Purkinje cells of the cerebellar 
cortex in vivo (Jörntell and Ekerot 2002). Figure 2 depicts the results for a protocol 
involving skin bursts and delayed stimulation of the inferior olive. 

Figure 2. Result from plasticity inducing protocol in paper I. 
Result for one of the three protocols that were used to induce plasticity in the synaptic connections between MF and 
DCN. The responses were measured at regular intervals after that the protocol had been applied. Each dashed line 
represent a single DCN cell from a separate experiment. 

In paper II we use a novel stimulation protocol to generate eight different 
spatiotemporal patterns of activation in LTMR cutaneous afferents in the second 
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digit of the forepaw of anaesthetised rats. The spatiotemporal patterns mimic the 
touching of objects with different curvatures, but since it is delivered through 
electrical pulses it is repeatable with a significantly higher resolution than if a real 
physical object would have been used for the stimulation. The neocortical 
response to the stimulation patterns is recorded using in vivo whole-cell patch 
clamp. Using a mathematical classifier on the recorded spike data, we show that 
neuron assemblies are better than single neurons at decoding these spatiotemporal 
input patterns (Fig. 3). Figure 4 shows that while several neurons are better at 
decoding the input patterns, the activity from a single neuron can still be used to 
separate single stim pulses on different stimulation channels from each other, 
which is quite remarkable given the small differences in their spatial location on 
the ventral skin of the distal second digit. We also investigate the correlation 
between cortical depth and decoding ability, and conclude that the decoding ability 
is independent of cortical depth. 

Figure 3. Distributed decoding properties for up to ten neurons (paper II). 
Top: result for from 1 to 10 high-performing neurons, for up to one second after stimulation onset. Bottom: result for 
relatively low-performing neurons 
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Figure 4. Single and double pulse decoding of a single high-performing neuron (supplementary material, 
paper II) 
The diagonal depicts the decoding level for single and double pulses of each channel. Since there are eight patterns, 
the chance decoding rate is 12.5 % 

In paper III we investigate the intracellular response to the stimulation patterns 
used in paper II. In paper II the focus was on spikes (that can be recorded both 
extracellularly and intracellularly), although some analysis was performed on the 
intracellular signals. In paper III we focus only on the intracellular signal, and 
show that the response to an individual stimulation pulse from a spatiotemporal 
stimulation pattern can vary depending on i) the temporal position of the pulse in 
the spatiotemporal pattern (‘the timing’), ii) what pattern the pulse was part of 
(‘the context’), and iii) the internal mode of the brain at the moment (‘the state’). 
We make the analogy of a distributed artificial network with several processes 
running in parallel. The notion of separate states is of course somewhat an abstract 
construct, but Fig. 5 shows that the cell has a number of characteristic responses - 
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the amplitude and shape of the EPSP appear to fall in one out of a finite number of 
distinct response types. 

Figure 5. Intracellular response to the same cutaneous spatiotemporal pattern (paper III). 
Three different intracellular responses to electrical stimulation of the skin in identical spatiotemporal patterns. 

In paper IV we focus on pairs of adjacent S1 neurons that were measured 
simultaneously. We find that the nature of connections between adjacent neurons 
varies to a large extent, and that the variation is not directly correlated to the 
cortical depth (or cortical layer) of the neuron. For many neurons the correlograms 
show a correlation in spike firing, although not primarily stemming from direct 
synaptic connections. A few neurons however do appear to be monosynaptically 
connected. The conclusion is that the neocortical circuits have no simple generic 
formula that is applicable on the level of individual pairs of connected neurons. 
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Methods 

Patch clamp 

Patch clamp gives a high-resolution insight into the ion currents flowing in and out 
of an individual cell. The method was developed by Nobel laureates Neher and 
Sakmann (Hamill, Marty et al. 1981; Zhao, Inayat et al. 2009). To obtain a 
measurement of the cell activity, a glass pipette is carefully attached to the cell 
membrane of a neuron. In the whole-cell recording mode, the aim is to generate a 
hole in the membrane underneath the pipette, which has a diameter of one or a few 
micrometers. Inside the pipette there is a fluid with the same dominant solute 
composition that can be found inside the cell, in order to avoid a net migration of 
solutes in either direction. The pipette is connected to an electric amplifier system, 
so that the flow of electrical charges through the tip of the pipette, or the potential 
difference between the inside and the outside of the pipette, can be measured. 
There are two distinct ways of measuring the cell activity, current clamp and 
voltage clamp. When measuring in current clamp mode, the flow of electrical 
charges through the tip is minimized by continuously adjusting the voltage inside 
the pipette so that it equals the intracellular voltage. Then the membrane potential 
can be measured as the potential between the inside and the outside of the pipette. 
In voltage clamp mode, the voltage in the cell is kept constant by injecting 
currents. Then the flow of current can be used to continuously measure the cell 
membrane conductivity. In our studies, we have employed the current clamp 
method. 

Bionic finger and generation of spatiotemporal patterns 

Since we were interested in looking at the activity of individual cells, it was very 
important that the stimulation applied to the skin could be repeated in the same 
animal with a high reproducibility. Having a real object making contact with the 
research animal’s skin will introduce noise and artefacts to the system. A slight 
change in position or inclination of the contact surface between the object and the 
skin will result in changes in receptor activation. Another factor to be taken into 



18 

account includes the inherent stochasticity in receptor activation. While the global, 
‘macroscopic’ perception of touch could well be identical regardless of these 
disturbances, the variance introduced is a hindrance to repeatable measurements 
on the level of individual neurons.  

Psychophysical studies have shown that the application of electrical pulses to the 
skin of a subject are able to evoke the sensation of touching a real object (Oddo, 
Raspopovic et al. 2016). With an accurate understanding of the activation patterns 
of the different mechanoreceptors of the skin, it is possible to create a model for 
how the cutaneous primary afferents will respond to mechanical indentation.  

Oddo, Raspopovic et al. (2016) have implemented such a model in a prosthetic 
fingertip, with the primary afferents of a real finger replaced by piezoresistive 
sensors. The signals from the sensors are sampled by a microprocessor, where the 
raw data signals are processed and applied to a spiking neuron model (Fig. 6A). 
The neuronal model outputs a biomimicking spike pattern representing the signal 
generated by a population of sensory neurons (Oddo, Mazzoni et al. 2017). 

Figure 6. Bionic fingertip sensor (From paper II, including supplementary material) 
A. Sensor orientation in artificial fingertip. Transfer function from sensor output to cutaneous receptor activation 
patterns. B. Curvature of knob that is touched. C. Scotch-yoke mechanism for generation of spatiotemporal patterns. 

Using a scotch-yoke mechanism, the bionic finger was set to touch knobs of four 
different curvatures (Fig. 6B, C). The signal from each piezoresistive sensor was 
sampled at 380 Hz. The difference in output signal between two adjacent sensors 
were used as input to a neuron spiking model (Izhikevich 2013). Two different 
types of receptors were mimicked (see Fig. 7A) In the first case, the measured 
signal was used directly as input, in the second case the time derivative of the 
signal was used. Using the derivative as input mimics the behavior of fast adapting 
neurons (i.e. neurons that primarily respond to change in indentation). With four 
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different curvatures of the knob, we had a total of eight different spatiotemporal 
input patterns. 

Figure 7. Experimental setup (from paper II) 
A. Spatiotemporal patterns for fast adapting and slow adapting neurons. B. Electrode placement in rat digit. 

The output from a single cycle of the scotch-yoke mechanism will only yield a 
sample of the underlying stochastic distribution. Therefore, the process was 
repeated 100 times for each input pattern, and a representative sample was used as 
the input in all subsequent experiments. Refer to supplementary material in paper 
II for a more detailed description of how the spatiotemporal input patterns were 
generated. 

The eight patterns are delivered in a pseudo-randomized order, with electrodes 
placed as schematically depicted in Fig. 7 B. If the touch stimulation was 
authentic, there would be some disturbances from noise and stochastic variations 
in receptor activation. Adding this disturbance would however ruin the purpose of 
our experimental setup, as we want to create repeatable stimulations, down to a 
level of the timing of activation of individual primary afferents. 

Anesthesia 

The rats are initially anesthetized using isoflurane, followed by ketamine and 
xylazine. The level of anesthesia is continually monitored using an EEG electrode, 
and by checking for withdrawal reflexes of the limb when the paw is being 
pinched. The anesthesia was maintained so that the EEG showed sleep spindles 
and the pinch test did not induce withdrawal reflexes. 
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Post processing of recorded data 

Sampling and filtering 

Nearly all postprocessing was performed in Matlab (Mathworks, 2013 – 2017). 
Some of the template detection and sampling of data for paper I was performed in 
a previous system that was developed in assembler code. 

The sampled patch pipette signal is smoothed using a moving average filter, with a 
width of 5 samples (50 ㎲). The stimulation pulses induce transient artefacts to the 
measured signal. By collecting all post stimulatory transients for each individual 
electrode, the shape of the transient can be estimated and subtracted from the raw 
data signal if necessary. We have used the median height for each post-stimulatory 
sample time point. Normally the transient, if there was one, had disappeared 
within less than 50 ㎲.  

Spike removal 

For some of the studies of intracellular signals (paper II, III), it was necessary to 
remove intracellular or extracellular spikes. Each spike shape (corresponding to a 
unique cell) was detected using template matching, and then the generic shape of 
the spike was estimated. Since the detection time from the template matching can 
wiggle a couple of sample points around the onset of the action potential, a 
recursive fitting algorithm was used. At first, the median spike shape was 
estimated as for the artefacts above. Then the spike time was shifted an integer set 
of sample time steps for each single spike to minimize the residual. To refine the 
fit further, the generic spike shape was approximated with a smoothing spline 
interpolation (Matlab function spaps), and then a least square optimization 
algorithm was applied recursively to find the optimal spike time with a precision 
that exceeded the constraint given using discrete sampling times. It was rare that 
intracellular or extracellular spikes interfered with the analysis of the intracellular 
analysis, but using the recursive filtering approach we were able to determine the 
height and latency of EPSPs also when they were superimposed by spikes. 
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Template matching of spikes 

The cellular spikes and EPSPs were detected from templates that were defined 
using a tailor-made click-and-drag interface, available at 
https://github.com/Neural-basis-of-sensorimotor-control/matlab-analysis 

Parametric versus nonparametric tests 

If there is an option between parametric and nonparametric tests, the former is 
obviously better. When data was sparse or not normally distributed we were 
however confined to perform nonparametric tests, such as Wilcoxon sign rank or 
rank sum. The main test in paper I, for instance, is a nonparametric test.  

The Monte Carlo simulation in paper III is based on the null hypothesis that a 
single stimulation pulse to the skin has the same probability to evoke an EPSP 
response in a neocortical neuron, regardless of time and context of the pulse in a 
spatiotemporal pattern, and the state of the intracortical circuits of the neocortex. 
The P values in Fig. 6 and 7 of paper III, on the other hand, have been determined 
with Wilcoxon rank sum test. 

  

https://github.com/Neural-basis-of-sensorimotor-control/matlab-analysis
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Discussion 

Cerebellar plasticity 

Despite using three different plasticity protocols, we could not detect a 
potentiation of cerebellar MF – DCN synaptic connections. A negative finding 
requires bigger sample sizes to prove than a positive finding, but in comparison 
with previous studies of plasticity in the cerebellar microcircuit it is evident that if 
there is a synaptic medium-term potentiation, it is significantly smaller than what 
has been observed in slice studies of juvenile mice (Pugh and Raman 2008). 

The extensive branching of the PC dendritic tree allows for the integration of a 
large number of inputs. This makes it a likely candidate for being the primary 
mediator of adaptive learning in the adult cerebellum, since the numerous synaptic 
inputs will increase its chances of finding the most appropriate associations. The 
high level of plasticity in MF – DCN synapses in cerebellar slices from juvenile 
mice, reported by Pugh and Raman (2008), can be interpreted from the perspective 
that the juvenile nervous system first establishes some coarse principles for 
cerebellar control. In the adult individual, the short and medium term calibration 
of the cerebellar microcircuit is then primarily carried out by adjustment of 
synaptic PF - PC weights.  

The MF - GrC connections are limited in that there are at most four mossy fibers 
terminating on each granule cell (Jörntell 2016b). If this was the principal site of 
plasticity, the selection of mossy fiber inputs that could be associated with other 
inputs would be heavily constrained compared to if the principal site of plasticity 
was the PF - PC synapses. The inhibitory Go - GrC connections are more likely to 
work as regulators that stop the synaptic efficacy to go out of bounds. When the 
GrC activity goes too high, the inhibitory interneurons will dampen the firing rate. 
Besides regulating the momentary firing rate, inhibitory interneurons also set a 
limit to the induced facilitation of synapses of the network (Jörntell 2016b). 
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Anesthesia 

Patch clamp measurements are not stable enough to perform long lasting neuronal 
recordings (> 30 minutes) in awake animals, but such recordings can be made 
under anesthesia. It is therefore important to elucidate how neocortical neurons in 
the neocortex are affected by the anaesthesia. Luczak, Barthó et al. (2009) have 
shown that the recruitment order for a population of neurons that respond to 
auditory or somatosensory stimulation is similar to the recruitment order for the 
same population of neurons during initiation of spontaneous upstates. The 
recruitment order is also preserved - with some stimuli-specific adjustments - 
between auditory stimulations of different frequencies. This correlation applies 
both under anaesthesia and during quiet wakefulness. I have not found a similar 
study where recruitment order is being compared for the same cortical population 
during anesthesia and during awakeness, but Constantinople and Bruno (2011) 
have shown that the average membrane potential during spontaneous upstates is 
preserved. 

Neocortical organization 

There is no lack of studies of the visual, auditory and somatosensory system where 
the cortex - implicitly or explicitly - is divided into distinct areas according to the 
neuron doctrine or the principle of columnar organization(Swindale 1990; 
Mountcastle 1997; Doetsch 2000; Buxhoeveden and Casanova 2002; Nicolelis 
2011). I will here argue for a more distributed model of cortical processing, by 
providing alternative interpretations to the studies supporting the labelled line or 
functional isolationist view presented in the introductory chapters. 

The neuron doctrine and the labeled line model 

As mentioned in the introduction, the concept of barrel columns in the rat and 
mice somatosensory cortex has spawned a model of cortical organization that is 
frequently being applied to sensory processing in general. Although it is an 
important finding that increased activity in a small area of the barrel cortex can be 
linked to stimulation of a principal whisker, Brecht and Sakmann (2002) have 
shown that deflection of a single whisker activates neurons in several barrels of the 
rat somatosensory cortex. The fact that migrating neurons aggregate in columns as 
the cortex is being developed (Rakic 1995), as well as that staining protocols in the 
mature cortex reveal vertical columnar organization in parts of the cortex 
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(Mountcastle 1997) is also not sufficient to draw conclusion about cortical 
columns being functionally isolated units. Mountcastle (1997) has pioneered the 
functional mapping of cortical columns, by stimulating a small receptive field and 
then measuring the spike response in different parts of the somatosensory cortex. 
By gradually moving the measurement electrode, the size and location of several 
cortical columns is estimated. The measured responses are however tainted with 
other activity going on in the neocortex, both spontaneous activity of neocortical 
neurons and activity originating in other external or internal processes. The 
estimated size of a functional column will therefore depend on experimenter’s 
threshold value for what counts as activation. Neurons whose response activity 
falls under the threshold will drown in the background activity, even when their 
activity is functionally relevant. 

In the introduction I traced the birth of the functional isolationist view of the brain 
to the ambitious work by Cajal in mapping the morphology of different neurons. 
Another reason for the persistency of the isolationist view throughout the centuries 
could be that methodological limitations have resulted in skewed empirical data. 
The easiest way to create reproducible input to the somatosensory system is to 
stimulate an isolated receptor or a small group of receptors with electrical single 
pulses, and then measure the response in the cerebral cortex. However, since this 
minimalistic input is very different from the authentic tactile stimulation the brain 
has evolved to process, the measured response will not necessarily answer relevant 
questions about the authentic sensory processing of the brain. As discussed in 
paper II, our setup with electrical pulse stimulation with constant voltage 
amplitude on four channels is also lacking in authenticity when comparing to the 
afferent signals that would be generated by a physical object indenting the skin. 
The latter experimental setup lack however in reproducibility between single 
repetitions of the same stimulation. In order words, there is a trade-off to be made 
between authenticity and reproducibility of the stimulations. 

The emergence of non-invasive imaging methods such as MRI and PET may also 
have caused a bias towards functional isolationist models. While such methods 
will provide information of the aggregated activity of neuronal populations, they 
do not give enough spatial or temporal resolution to monitor the activity of 
individual neurons. (Logothetis 2008) If, contrary to the labelled line hypothesis, 
the cortical and subcortical sensory processing is indeed a distributed network 
phenomena, its underlying principles cannot be elucidated at the level of neuronal 
populations alone. The use of magnetic resonance imaging techniques to 
understand the function of the brain has - arguably unduly - been compared to 
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using a thermometer to reverse-engineer a computer, by measuring the 
temperature at different locations in its processor (Klingberg 2009). 3 

The hierarchical model of sensory processing is linked to the functional 
isolationist view of the cortex, but deserves a discussion of its own. From a 
theoretical perspective, a hierarchical system for sensory processing will not have 
the same ability to self-assemble or change adaptively as a distributed system. 
Since the neurons at a lower stage of cortical processing will not receive 
continuous information about the activity of neurons at higher processing stages, 
the establishment of synaptic connections from the lowest to the highest level of 
cortical processing requires the existence of a detailed map with à priori 
information about which connections to be made in order to arrive at a functional 
connectome at the end. A more distributed system can change synaptic weights 
incrementally through a bootstrapping process. There has of course to be a coarse 
connectional map for the bootstrapping process to be viable, but once in place a 
distributed system allows for more flexibility from a perspective of an individual 
both most likely also from an evolutionary perspective. It also provides an 
explanation as to how we are able to recover from damages to the nervous system 
or acquire new skills throughout life. 

Distributed coding and internal states 

The plethora of functional classifications of neocortical neurons on the basis of 
dendritic morphology, stimuli specificity or other biophysical properties (Doetsch 
2000) is clear evidence that no single theory of neocortical connectivity and 
function has yet been proven convincingly enough to establish consensus in the 
scientific community. The differentiation in neuronal responses (paper II and III) 
and in firing correlograms of adjacent neurons (paper IV) show that cortical 
circuitry is likely heterogeneous and does not follow a simple generic formula. 
Our comparisons also failed to show a correlation between cortical depth and 
connectional properties. 

Our recordings show that individual neurons have the information from several 
adjacent receptive fields at hand, but it does not explicitly prove that this is how 

                                                      
3 This critique of MRI and fMRI was briefly mentioned in the book ‘Den översvämmade hjärnan’ av 

Torkel Klingberg (Klingberg 2009). Klingberg himself has a prominent career in fMRI research, 
so the quote is likely not representative of his own opinion. Since he was gratuitous enough to 
include this counterargument in a work of his, I can reciprocate by quoting neuroanatomist 
Valentino Braitenberg. Upon being asked how much the spatial and temporal resolution of MRI 
would have to increase before it could be used as a tool to understand brain function, Braitenberg 
allegedly replied that ‘it makes no sense to read a newspaper using a microscope’ (Logothetis 
2008). 
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the information is being used. Luczak’s finding about a preserved recruitment 
order (Luczak, Barthó et al. 2009; Luczak and Barthó 2012) can however be used 
as a model to interpret our results. The stimuli-specific responses appear to be 
variations around a consistent pattern of activation. The fact that the majority of 
connections to cortical neurons are intracortical or corticocortical rather than 
thalamocortical (Bruno and Sakmann 2006) indicates that the recruitment order is 
the result of robust internal circuitry. Since single neurons are at the same time 
able to decode single pulse stimulations from different receptive fields (Fig. 4), the 
preserved recruitment order is not merely caused by hierarchical architecture of 
sensory processing networks. Another indication that the neocortical neurons are 
not only part of feed-forward networks is that the decoding ability increases with 
time. The shortest time for a single pulse to reach the cortex is on the order of a 
few ms for rats, yet the decoding efficiency increases several hundred ms after the 
last stimulation pulse in a pattern (paper II). Some of the delay can be attributed to 
subcortical processing, but the fact that the first synaptic signals reach the cell at 
an early stage is a strong indication that intracortical network dynamics play an 
important role in sensory processing. 

The spike-triggered kernel density estimators (SpTKDE) from paired neuron 
measurements (paper IV) show that adjacent neurons often fire in synchrony, but 
with the same internal order since there is a sharp peak either before or after t = 0 
ms. The number of spikes used to construct the correlograms is large (several 
hundred or thousands of spikes per neuron), so if the recruitment order was not 
consistent for the neuron pairs the SpTKDE would have been bloated out around 0 
ms. The fact that the SpTKDEs look similar independent of whether there are 
ongoing stimulation or not is also in line with the findings of Luczak, Barthó et al. 
(2009). 

The intracellular traces depicted in Fig. 5 gives an indication that the response can 
change between a finite set of states. On a neuronal level, the transition between 
states can be interpreted as that there are some pathways that are shut off, and 
others that are opened for transmitting signals (Fig. 8). Given that the amplitude of 
a unitary EPSP in cortical neurons is of the order of magnitude of 1 mV or less 
(Bruno and Sakmann 2006; Schoonover, Tapia et al. 2014), the EPSPs in Fig. 5 
appears to be generated by tens or hundreds of presynaptic neurons providing 
simultaneous input. The exact mechanisms mediating the change between states 
are a question for future investigations, but cerebellar projections to the cortex is a 
good candidate, as mentioned in the section about the cerebellum above. In a 
preceding chapter I mentioned that the cerebellum works as associative memory, 
with a massive storage capacity provided by the Purkinje cell dendritic trees. Since 
the cerebellum samples information from a large set of spinal, cortical and 
subcortical systems, it is well equipped to coordinate the states of cortical circuits 
in order to increase the global performance of the CNS. 
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Figure 8. Schematic network model for tactical processing. 
The network will allow for different pathways to be activated, depending on the internal state of the circuit. There is 
also room for parallel processing streams to activate the network simultaneously. 

Self-assembly 

When discussing how millions of neocortical neurons can self-organize to form a 
functional model of distributed sensory processing, it helps to bear in mind that the 
biomechanical properties of joints, muscles and tendons will create natural 
constraints for which neurons that fire together. It is likely that an important part 
of the self-assembly process is to strengthen synaptic connections that naturally 
fire together during everyday behavior. Jörntell (2016a) has outlined a model 
where afferent sensory information is used to continuously coordinate the motor 
system, primarily via cerebellar activity. The sensory processing is then not only a 
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distributed phenomenon in itself, but it is also inseparably intertwined with the 
efferent signals of the motor system.  

Returning to the discussion of neural coding in a previous chapter, it is worth 
pointing out that a dense coding regime is much more compatible with the boot-
strapped distributed model of sensory processing than a sparsely or locally coded 
regime. The more sparse the coding is, the less information each neuron will have 
at hand to steer the self-assembly process during development, neural repair or 
acquisition of new skills. The discussion about redundancy in sensory signalling is 
also relevant in this context. As mentioned in a previous section, studies on the 
cuneate nucleus (Jörntell, Bengtsson et al. 2014), shows that the redundancy in 
neural signalling that exists at a coarse level disappears when more refined 
experimental methodologies are employed. From a developmental perspective, it 
makes sense if the signalling is first established at a coarse level, and then the 
information content can be gradually increased by adjusting the synaptic weights 
of individual neurons, without losing the information in the coarse signal. Renart, 
de la Rocha et al. (2010) have presented a theoretical model where neurons 
sharing synaptic input end up having negatively correlated synaptic currents, 
through a feedback process involving the activity excitatory and inhibitory 
neurons in conjunction. In paper IV we conclude that although the firing pattern of 
adjacent cortical neurons is synchronized it is not simultaneous. Since adjacent 
neurons can be assumed to have similar synaptic input at least to some degree, our 
study supports the model of enforced differentiation in neuronal activity. Another 
benefit of the enforced differentiation is that it allows for the information in the 
coarse (averaged) signal to be kept intact, since the increase and decrease in 
individual response patterns can be synchronized so that they cancel each other out 
at the coarse level. 
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Animal research – ethical questions 

If research on animals had not been necessary for the advancement of biomedical 
research, it would have been abolished a long time ago. The costs and 
methodological challenges associated with animal research compared to using 
theoretical models such as computer simulations, or other less invasive research 
methods is vast. In order to study the integrative physiology of the nervous system 
or other bodily functions, laboratory animals cannot be dispensed of. 

Animals bred and raised for research purposes generally get a better treatment than 
animals raised for being consumed as meat, or even some of the animals kept as 
pets. The reason is not only legislature and the private moral considerations of the 
people in the research industry, but also that a stressed, malnourished or diseased 
animal will yield less trustworthy results than an animal that is in a good condition 
physically and mentally. During the experimental procedure the animals are 
anesthetized following rigorously articulated regulations, and it is critical for the 
outcome of the experiment that the animals do not come out of the anesthesia or in 
other ways percept pain or discomfort. At the end of the experiment the animal is 
sacrificed with an injection. In the case of decerebrate preparations (paper I), the 
animal is initially anaesthetized, and then the connections between the cerebrum 
and the brainstem is removed. From a clinical perspective, and our current 
understanding of consciousness and cognition, this is a state in which the cognitive 
functions have ceased to exist. 

The discussion of whether animals at all can be used as means for human ends is 
beyond the scope of this text, refer to Singer (1993) or Scruton (2000) for a more 
comprehensive discussion on the topic. 
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Populärvetenskaplig sammanfattning 
på svenska 

Den här avhandlingen handlar om hur hjärnan behandlar sinnesintryck. Vi har valt 
att titta på hudstimuleringar, men de processer vi studerar rör allmängiltiga frågor 
om hur hjärnan fungerar. 

När vi vidrör något med vårt pekfinger aktiveras hudreceptorer i fingret, som 
skickar en signal till hjärnbarken (den yttersta, skrynkliga delen av hjärnan). 
Signalen går inte direkt till hjärnbarken utan den omkopplas via celler i ryggraden, 
hjärnstammen och talamus. Hjärnstammen sitter som en utväxt på ryggraden, och 
talamus är en rund struktur mitt i hjärnan som tar emot och skickar information 
mellan olika delar av hjärnan. Det finns olika teorier för hur bearbetningen går till, 
både innan signalen når hjärnbarken och efter att den har nått hjärnbarken. En 
förklaringsmodell för hur signalen fortplantas innan den når hjärnbarken som 
förekommer i många textböcker och artiklar kallas för labelled line-hypotesen. 
Enligt labelled line-hypotesen hålls informationen från varje mikroskopiskt 
hudområde separerad från informationen från andra hudområden tills den når 
hjärnbarken. Enligt denna hypotes går det att peka på ett enskilt område i 
hjärnbarken och säga exakt vilket mikroskopiskt hudområde det tar emot 
information från. 

En populär teori för hur informationsbearbetningen går när signalerna nått 
hjärnbarken kallas för grandma neuron hypothesis. Den säger att det finns en 
enskild hjärncell som aktiveras när man ser, hör eller läser om sin mormor. På 
samma sätt finns det en annan hjärncell som aktiveras när man ser, hör eller läser 
om Jennifer Aniston, Halle Barry, Eiffeltornet, operahuset i Sydney etcetera4. För 
att all information som rör ens mormor skall kunna konvergera till en enskild 
hjärncell så måste informationsbearbetningen i hjärnbarken vara hierarkiskt 
organiserad. Mormorsneuronet är givetvis bara ett hypotetiskt exempel för att 
förklara denna mer generella princip. I många fall har hypotesen modifierats 
genom att man ersätter enskilda neuron med grupper av neuron (så kallade 

                                                      
4 Exemplen är tagna från Quiroga, R., L. Reddy, et al. (2005). "Invariant visual representation by 

single neurons in the human brain." Nature 435: 1102-1107. 
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kortikala kolumner) som minsta funktionella enhet. Principen med hierarkisk 
informationsbearbetning är dock kvar. 

Vi har stimulerat huden i pekfingret med elektriska signaler i ett mönster som skall 
efterlikna beröring. En anledning att vi använder oss av elektriska signaler istället 
för riktig beröring är att man då kan upprepa samma ‘beröring’ flera gånger utan 
att det blir för stora skillnader mellan varje gång. Sedan har vi mätt aktiviteten i 
hjärnceller i hjärnbarken. Vi har använt oss av matematiska metoder för att avgöra 
hur mycket information från det stimulerade hudområdet som varje enskild 
hjärncell har tillgång till. Vi har dragit slutsatsen att hjärnceller som arbetar 
tillsammans är mycket bättre på att avgöra skillnaden mellan olika typer av 
beröring än enskilda hjärnceller, samtidigt som enskilda hjärnceller har 
information från flera olika hudreceptorer. Att flera hjärnceller som arbetar 
tillsammans är bättre på att avgöra vilken typ av beröring huden utsätts för talar 
för att informationsbearbetningen är distribuerad snarare än hierarkiskt 
organiserad. Att enskilda hjärnceller har tillgång till information från flera olika 
hudreceptorer tyder på att signalerna inte är separerade från varandra på vägen till 
hjärnbarken, utan att de blandas och att en del av informationsbearbetningen sker 
redan i ryggraden, hjärnstammen och / eller talamus. Sammanfattningsvis innebär 
det att våra resultat strider mot vad som förutsägs av både labelled line-hypotesen 
och grandma neuron hypothesis. 

En annan struktur som är inblandad i behandlingen av sinnesintryck är lillhjärnan. 
Lillhjärnan har kopplingar till många olika delar av nervsystemet, och påverkar 
bland annat koordinationen mellan känselsinnet och rörelseapparaten. 
Känselsinnet är inte bara en passiv funktion i hjärnan, tänk exempelvis på hur 
omöjligt det vore att knäppa en knapp eller knyta sina skor med slutna ögon om 
man inte kunde vägledas av sitt känselsinne. Eftersom man både under uppväxten 
och som vuxen ständigt lär sig nya saker (som att knäppa knappar, spela piano 
eller skriva för hand) är inlärning ett viktigt koncept även när man talar om 
känselsinnet. Studier på människor och andra djur har bekräftat att lillhjärnan har 
en central roll vid inlärning. Den är uppbyggd av enhetliga mikrostrukturer, som 
upprepas i hela den globala strukturen (se figur 1, sidan 10). Den första artikeln i 
denna avhandling handlar om var i lillhjärnans mikrostruktur inlärningen sker. Vi 
kommer fram till att den del av mikrostrukturen vi tittar på (MF - DCN i figur 1) 
är relativt statisk i vuxna individer. Tidigare studier har dock visat att denna 
koppling är mer plastisk vid inlärning i växande än färdigvuxna individer. Det 
talar för att mekanismen för att uppdatera nervsystemet när man lär sig nya 
färdigheter ser olika ut i växande jämfört med vuxna individer. 
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Abstract The existence of input plasticity in the deep cere-
bellar nuclear (DCN) cells of the adult cerebellum could have
profound implications for our understanding of cerebellar
function. Whereas the existence of plastic changes in mossy
fiber (mf) synaptic responses in DCN neurons has been dem-
onstrated in juvenile slices, there has so far been no direct
demonstration of this form of plasticity in the adult cerebellum
in vivo. In the present paper, we recorded from neurons in the
anterior interposed nucleus (AIN) and stimulated the
spinocerebellar tracts (SCT) directly or via the skin to obtain
mf activation and the inferior olive to activate climbing fibers
(cfs) in the nonanesthetized, adult, decerebrated cat. We used
three different types of protocols that theoretically could be
expected to induce plasticity, each of which involved episod-
ically intense afferent activation lasting for 10 min. These
were conjunctive mf-cf activation, which effectively induces
plasticity in cortical neurons; mf and cf activation in a pattern
resembling the protocol for inducing classical conditioning;
and conjunctive activation of two excitatory mf inputs. None
of these protocols had any statistically significant effect on the
evoked responses in the AIN neurons. We conclude that the
input plasticity for excitatory mfs in the AIN cells of the adult
cerebellum in vivo is likely to be less effective than that of
parallel fiber synaptic inputs in cerebellar cortical cells, at least
in the timespan of 1 h.

Keywords Plasticity . Deep cerebellar nuclear neurons .

Mossy fibers . Climbing fibers

Introduction

Plasticity in the neurons of the deep cerebellar nuclei as a
substrate for behavioral learning has been debated for a long
time, and theoretical predictions and circumstantial evidence
have been used to argue that it may be required in some situ-
ations of presumed cerebellar-dependent adaptation [7, 24, 25,
29, 34]. Plasticity of deep cerebellar nuclear (DCN) neuron
intrinsic excitability [1] and mossy fiber (mf) inputs [26, 27]
have been demonstrated in vitro, but in these cases, only for
slice preparations of the juvenile cerebellum. Whereas major
changes in the circuitry structure and physiology may be ex-
pected to occur during development, cerebellar adaptation
works also in adult life and it is important for our understand-
ing of the functioning of the cerebellum to know whether
these changes can occur and consequently contribute to adap-
tation and learning also during adult life. A recent indication
that this may be the case was a study where sprouting of mf
axons in the DCN was observed after a period of intense
training over several days, but this is typically one order of
magnitude slower than the timescale on which the cerebellar
adaption is believed to work [5]. In any case, it remains to be
shown that the effective input to the DCN neurons increases
under these conditions.

From a limb control point of view, an important source of
information to the neurons of the interpositus nuclei comes
from the spinocerebellar and spinoreticulocerebellar systems
(SCTs). These are among the few mf systems that have been
shown to directly innervate DCN neurons through collaterals
of their axons that pass by the nuclei before they form mf
synapses in the cortex [3, 19–23, 33]. These mf systems sam-
ple information about ongoing activity in spinal sensorimotor
circuits, which may be crucial for our capacity to achieve limb
intersegment coordination [31]. Hence, synaptic plasticity in
the mf-DCN connections of these systems could theoretically
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alter the conditions for limb coordination control. A consistent
relationship between the location of the cutaneous climbing
fiber (cf) receptive field and the distribution of skin areas from
which excitatory inputs were evoked in anterior interposed
nucleus (AIN) neurons was recently described [3]. This rela-
tionship suggests the presence of a cf-dependent plasticity
mechanism for regulating the excitatory mf inputs to DCN
neurons. Alternatively, the location of the cf receptive field
reflects the motor control function of the DCN cell [6, 13],
and the synapses of the spinocerebellar tract (SCT) mfs most
frequently associated with that specific motor control function
could be strengthened through activity-dependent mecha-
nisms, possibly NMDA-receptor dependent [27], triggered
by the degree of correlated pre- and postsynaptic activity.

In the present study, we addressed the issue of mf-DCN neu-
ron plasticity using direct electrical activation of the SCTs or skin
stimulation to activate the cutaneously activated components of
the SCTs. These inputs were combined with each other to ad-
dress the possible inductionmechanism described above. To also
explore protocols known to be effective at the cortical level, we
combined the SCT input with conjunctive cf input [14] or, alter-
natively, let the train of SCT stimulation be followed by cf acti-
vation, i.e., a similar temporal relationship as in classical condi-
tioning protocols [11] (Fig. 1). The inputs were repeated at high
intensity for 10 min, and the effects on the mf-AIN input were
tracked for about 1 h. We find that neither of the three protocols
produces any statistically significant change in the AIN cell re-
sponses to inputs from the mf pathways. The contrast with the
previously described dramatic input plasticity effects in the neu-
rons of the cerebellar cortex, using similar protocols, is discussed.

Materials and Methods

Ethics Statement

The experimental procedures were approved in advance by
the Malmö/Lund Animal Research Ethics Committee (permit
number and approval-ID: M32-09 and M05-12). Initial sur-
gery was performed under propofol anesthesia, and all efforts
were made to minimize suffering. Our EEG recordings were
characterized by a background of periodic 1–4 Hz oscillatory
activity, periodically interrupted by large-amplitude 7–14 Hz
spindle oscillations lasting for 0.5 s or more. These forms of
EEG activities are normally associated with deep stages of
sleep. The pattern of EEG activity and the blood pressure
remained stable and did not change with noxious stimulation
throughout experiments.

Preparation

Adult cats (N = 14) were prepared as previously described.
Briefly, following an initial anesthesia with propofol

(Diprivan® Zeneca Ltd., Macclesfield Cheshire, UK), the an-
imals were decerebrated at the intercollicular level and the
anesthesia was discontinued. The animals were artificially
ventilated and the end-expiratory CO2, blood pressure, and
rectal temperature were continuously monitored and main-
tained within physiological limits. Mounting in a stereotaxic
frame, drainage of cerebrospinal fluid, pneumothorax, and
clamping the spinal processes of a few cervical and lumbar
vertebral bodies served to increase the mechanical stability of
the preparation. The dorsal part of the pars intermedia of the
left cerebellum was exposed to allow microelectrode access to
the AIN. An additional exposure was made of the brainstem/
spinal cord junction between the base of the skull and the first
cervical vertebra. All exposed areas were covered in paraffin
oil to prevent tissue drying.

Recordings and Stimulation

Patch clamp pipettes or metal microelectrodes (tungsten-in-
glass microelectrodes, exposed tip 10–20 μm) were advanced
to target the AIN as previously described [3, 4]. All neurons
included in this study were putative glutamatergic projections
neurons, based on the preponderance of short (<25 ms)
interspike intervals and intermediate spike-widths [4]. We re-
corded neurons from both forelimb and hindlimb regions of
this nucleus, as identified using the location of the cf receptive
field of the afferent Purkinje cells (Fig. 1). This location can be
mapped out using electrical stimulation of the skin (0.1 ms
pulses of 1.0 mA applied through percutaneous needle elec-
trodes [16])—if the cfs of the locally afferent Purkinje cells are
activated by the stimulation, characteristic local field poten-
tials [6, 8] and postinhibitory rebound responses of the DCN
neurons can be recorded [4]. In this way, the location of the cf
receptive field can be identified.

In order to s t imula te the spinocerebel lar and
spinoreticulocerebellar tracts, which provide direct mf synap-
tic inputs to the interpositus nuclei, we placed a tungsten-in-
glass microelectrode (exposed tip 50–150 μm) for stimulation
laterally at the border between the spinal cord and brainstem.
Using this stimulation microelectrode, mf field potentials
recorded inside the AIN were routinely evoked at thresh-
old intensities of <20 μA (single stimulus pulse of 0.1 ms
duration), suggesting an effective recruitment of directly
and synaptically activated (via the lateral reticular nucleus)
mf synapses. In addition, we used electrical skin stimula-
tion (pair of percutaneous needle electrodes with 5–10 mm
spacing, stimulated at 1 mA shocks with 0.1 ms duration)
to recruit another putative pool of spinocerebellar mfs.
Cutaneous input is known to activate parts of the
spinocerebellar neuron population, and since the other
pathway mediating cutaneously activated mf input, the
main cuneate nucleus does not terminate in the AIN [9];
potent excitatory responses evoked from the skin [3] are
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likely due to spinocerebellar mfs which should be at least
partly non-overlapping with the population of mfs activat-
ed from the brain stem. The skin stimulation used was
verified to not activate the afferent cfs and evoked a
monophasic excitatory response [3].

In order to activate cfs, a second stimulation electrode was
placed in the inferior olive, where low-threshold cf responses
(evoked at <10 μA) could be evoked in the pars intermedia of
the cerebellar cortex and in the AIN [4, 15].

Protocols

Using the SCTor skin stimulation as test stimulation, we applied
three different stimulation protocols to investigate whether plas-
ticity in the input to the AIN neurons could be recorded. In most
cases, more than one protocol was applied in the same experi-
ment. When this was the case, the recording electrode was
moved to a different location in the AIN, where neurons had
substantially different location of their cf receptive fields (i.e.,
hindlimb versus forelimb, or proximal versus distal parts of the
limb). We also moved the SCT stimulation electrode to recruit a
different set of mfs, and also the skin stimulation used to evoke
mf inputs was moved to a distinctly different location. The three
different protocols that we used were as follows:

1. The combined SCTand skin burst stimulation protocol. The
SCTelectrode was stimulated with 15 pulses at 200 Hz, and
the skin was stimulated 10 times at 333 Hz. With this con-
figuration, the two inputs evoked largely overlapping time
windows of excitation. The SCT stimulation intensity was
typically 30–70 μA, in a couple of cases 100 μA.

2. The skin burst and simultaneous, single inferior olive (IO)
stimulation protocol. The IO was stimulated once, and a
skin burst stimulation of 50 pulses at 333 Hz was started
10 ms in advance in order for the first mf input to arrive at
the same time as the cf input (the mf input evoked from
the periphery needs at in the order of 10 ms to reach the
cerebellar nuclei [3]).

3. The skin burst and delayed single IO stimulation protocol.
A skin burst stimulation of 50 pulses at 333 Hz and at the
time point of the last stimulation pulse, a single-pulse IO
stimulation was applied.

For all three protocols, the bursts were repeated at 0.33 Hz
for 10 min, i.e., for a total of 200 repetitions.

Analysis

We quantified the responses obtained from a single-pulse
stimulation, either to the SCT or to the skin, before and after

Fig. 1 Targeted circuitry structures. Recordings weremade from neurons
of the anterior interposed nucleus (AIN). Direct electrical activation at the
level of the lateral reticular nucleus (LRN) in the brainstem presumably
activated both fibers of passage of the spinocerebellar tracts (SCTs) and
the spinoreticulocerebellar tract or pathway (SRCT), where the latter
represents spinal interneuron information that is forwarded to the
cerebellum after a synapse in the LRN. SCT and SRCT pathways,

which make mossy fiber (MF) synapses with the AIN neurons, were
also activated using electrical stimulation of the skin. Importantly, the
electrical skin stimulation was made from specific receptive fields that
did not overlap the climbing fiber (CF) receptive field of the Purkinje
cells (PCs) that were afferent to the AIN neuron recorded from [4, 6].
Climbing fiber activation was achieved by direct electrical stimulation in
the inferior olive (IO).
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a burst stimulation protocol. For the protocols involving skin
bursts and the simultaneous or delayed IO stimulation, respec-
tively, the responses were quantified using peristimulus histo-
grams of raw spike time data (5 ms bin width). For the display
and analysis of the combined skin burst and SCT stimulation
protocol, we used a kernel density estimation (KDE) plot, i.e.,
each spike was replaced by a Gaussian distribution with stan-
dard deviation of 0.5 ms. The averaged sum of all Gaussian
distributions transforms a discrete spiking pattern into a con-
tinuous function describing the spiking probability on a con-
tinuous time scale. The standard deviation of the kernels was
set so that the total spiking probability function was smooth
across neurons. This was done as the responses to the SCT
stimulation were brief, which reduced the total number of
spikes and made the responses more sensitive to chance dis-
tributions of single spikes. The KDE helped in reducing this
problem. See Hoebeek et al. [10] for a more comprehensive
discussion on KDE.

In all cases, the response was quantified as the mean firing
frequency during the time window of the response, with the
firing frequencies being obtained either from the KDE plots or
the peristimulus histograms. To smooth the signal used in the
analysis, the peristimulus histograms were filtered with a
moving average of width 15 ms. The response onset was
counted from the first occurrence of at least two consecutive
bins with an activity that exceeded the baseline activity by at
least two standard deviations. The end of the response was
defined as the bin where the activity decreased to the thresh-
old. For each cell, the time window for the response was
initially calculated individually for every peristimulus histo-
gram (i.e., control and all the post-protocol time points). Then
the median start and end points of the responses were used to

define the response time window for the cell, in which the
response was quantified. The response was quantified as the
mean net activity during the defined time window. For re-
sponses evoked by SCT, the responses obtained were typically
evoked between 1.5 to 4.0 ms after the onset of the stimula-
tion. The KDE in itself did not allow a rigorous setting of the
time limits, but histograms of the raw data provided a support
for the chosen time limits in a similar fashion as above. For
responses evoked by the skin, the quantified data was typical-
ly evokedwithin a response latency timewindow of 10–30ms
after the onset of the skin stimulation.

Subsequently, the relative response for each set of single-
pulse stimulations was compared to the relative response be-
fore onset of the burst protocol and the change in response
from each cell was analyzed in separate consecutive time
spans of 10 min (time points). The null hypothesis that there
was no net change in the response was tested using Wilcoxon
signed-rank test. The signed-rank test was computed for each
time point by comparing the total number of cells with the
number of cells with a positive response. The probabil-
ity for the outcome is calculated, assuming there is a
50% probability for each cell having a positive change
in response.

Results

DCN neurons were recorded (Fig. 2a) in the left AIN (Fig. 1).
A primary source of mf input to the AIN neurons is the
spinocerebellar and spinoreticulocerebellar tracts (SCTs)
(Fig. 1). Therefore, we located a stimulation electrode laterally
at the level of caudal brainstem/rostral spinal cordwhich could

Fig. 2 Sample AIN neuron
recording and response to single
shock spinocerebellar tract (SCT)
stimulation. a Long raw trace of
loose-patch cell-attached AIN cell
recording. b Ten superimposed
traces to illustrate the spike re-
sponses to a single shock SCT
stimulation. The stimulus shock
artifact was blanked for clarity. c
Peristimulus histogram (bin width
1 ms) of responses evoked by
SCT stimulation (N = 50 repeti-
tions). d Same responses as in c
but in this case, a kernel density
estimation (KDE) curve. KDE
was used to evaluate the re-
sponses for the first set of experi-
ments as the SCT stimulation
evoked fast and brief responses,
for which KDE provided a better
reflection
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stimulate the ascending SCTs on the left side (similar
mediolateral location as in Bengtsson and Jorntell [3] but with
a more caudal location). AIN neurons had relatively robust
responses to single shock SCT stimulation (Fig. 2b), as illus-
trated in peristimulus histograms obtained on repeated stimu-
lation (Fig. 2c). Figure 2d shows the relation between a
peristimulus histogram and a KDE plot, which was used for
the analysis of the responses evoked by SCT stimulation.

Effects of Combined SCT Burst and Skin Burst
Stimulation Protocol

Activation of SCTs can also be obtained using skin stimulation,
as a proportion of the spinal neurons that projects through the
SCTs are activated by skin afferents and the AIN neurons can be
prominently excited by input from the skin [3] (Fig. 1). The
dorsal column nuclei, which is the other source of cutaneous

mf input to the intermediate cerebellum, does not provide syn-
apses to the AIN [9] or at least provides such synapses much
more rarely than spinocerebellar axons [28]. For the first type of
protocol, we wanted to combine the SCT input with another
input that could serve to depolarize the AIN neuron and in this
way increase the activation of NMDA receptors [2]. We found
that electrical stimulation of skin afferents in bursts provided a
maintained excitation of these neurons for the duration of the
burst. This type of burst input was combined with simultaneous
burst activation of the SCTand the combination generated highly
intense spike responses in the AIN neurons (Fig. 3).

After the termination of the burst protocol (Fig. 4a), the
responses evoked by a single shock SCT stimulation was
monitored for up to 80 min and compared to the response to
the same input recorded before the onset of the protocol
(Fig. 4b). The first component of the response evoked by the
SCT, which occurred before the onset of the first wave of

Fig. 3 Stimulation protocol of
combined direct SCT burst
stimulation and skin burst
stimulation. a Five raw traces to
illustrate the intensity of the
response. b For the same neuron,
KDE plot of the full set of
responses (N = 200 stimulations)
in this type of protocol
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inhibition (cf. [3]), was quantified typically for a time window
of 1.5–4.0 ms after the onset of the SCT stimulation. SCT
evoked responses in all N = 11 cells. For each time point
(10, 20, 30, 40, 50, 60, 70, 80, and 90 min after stimulation),
there was experimental data from seven to ten out of N = 11
neurons. As can be seen in Fig. 4c, the inter-cell variance in
firing activity is relatively large, which is the rationale for
using the Wilcoxon signed-rank test as instead of calculating
a mean for all cells in each time bin. The result of the statistical
analysis can be found in Table 1; the raw data is provided in
Fig. 4a to make it possible for the reader to judge the proba-
bility that there were any substantial and reliable changes in-
duced by the protocol across the population of neurons
recorded.

Effect of the Skin Burst and Simultaneous, Single IO
Stimulation Protocol

In the cerebellar cortex, simultaneous burst stimulation of the
excitatory parallel fiber (PF) synapses and a single shock stim-
ulation of the cfs by a stimulation electrode in the IO are
highly effective to induce long-term potentiation of PF inputs
in Purkinje cells and their afferent interneurons [14]. We ap-
plied a similar protocol to AIN neurons, but replaced the PF
stimulation with cutaneous input using localized electrical
skin stimulation to a skin site that provided effective at least
some excitation but was located outside the cf receptive field
of the cell and therefore produced submaximal excitatory in-
put to the cell [3] (Fig. 5a). As previously described [4], we

Fig. 4 Responses evoked by
single shock SCT stimulation
before and after the stimulation
protocol. a Stimulation protocol
of combined direct SCT burst
stimulation and skin burst
stimulation. The intention of the
protocol is to induce a plastic
change in the response amplitude
to single shock SCT stimulation
in the recorded AIN neuron. b
Top, KDE plots for the responses
(N = 200) evoked at three selected
time points. Arrows indicate the
time point of stimulation. The
dashed lines indicate the time
period in which the response was
quantified. Bottom, superimposed
raw traces of the spikes (N = 10
per panel) recorded from at
different time points. Note that the
small drop in spiking activity in
the KDE plot around the
stimulation time point is due to
that some spikes occurring in
conjunction with the stimulus
artifact was hard to identify. This
had no effect on the analysis of
the change in the response, as this
was measured relative to a long
prestimulus time window of
activity. c Individual spiking
frequencies during the response
time window for all neurons
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carefully limited our data set to those AIN neurons in which
the IO stimulation at low stimulation intensities (≤50 μA)
evoked a characteristic and distinct response sequence includ-
ing early excitation-inhibition, representing the direct cf exci-
tation of the DCN neuron followed by cf-driven, powerful,
Purkinje cell inhibition and an ensuing postinhibitory rebound
response (Fig. 5b, often also followed by inhibition after the
rebound). Simultaneous IO stimulation and skin burst stimu-
lation evoked substantial responses in the AIN neuron
(Fig. 5c). However, the response to the single skin stimulation
pulse, which was the test input, appeared to hardly change at
all, neither in magnitude nor in temporal topography, after the
protocol (Fig. 5d). These findings were repeated for up to six
neurons and four time points (Fig. 5e), and in none of the cases
could the null hypothesis that there was no post-protocol po-
tentiation of the response be rejected (Table 1).

Effect of the Skin Burst and Delayed Single IO
Stimulation Protocol

Since some of the theoretical arguments for plasticity in the mf-
DCN synapse come from the field of classical conditioning of
the eyeblink reflex [32], we also tested a protocol which resem-
bles that used for inducing classically conditioned responses.
This protocol was similar to the preceding protocol in that it
used a skin burst stimulation to obtain intense excitation of the
AIN neuron, but the single-pulse IO stimulation was applied

after the termination of the burst rather than at the time of its
onset (delay conditioning protocol) (Fig. 6a, b). As described
above, the AIN neurons were confirmed to have a prominent
and characteristic response to the IO stimulation (Fig. 6c). As
above, the responses obtained before and after the protocol
were compared and were again found to be remarkably similar,
both with respect to response magnitude and temporal topog-
raphy (Fig. 6d). The summarized data, obtained from N = 5
AIN neurons (Fig. 5e), confirmed that no significant changes in
response magnitude occurred (Table 1).

Discussion

In the present study, we tested whether the efficacy of mf input
to DCN neurons could be altered using any out of the three
different types of stimulation protocols in the adult cerebellum
in vivo. Essentially, no effects were obtained over the first 10–
90 min following the termination of any of the stimulation
protocols. This is in contrast to the dramatic effects obtained
in the neurons of the cerebellar cortex over a similar time span
using related stimulation protocols [11, 12, 14, 16]. We con-
clude that at least in terms of efficacy and speed of induction,
plasticity in the mf-DCN neuron synapse appears to be much
less effective than in the parallel fiber synapses in the cortex.
The potential consequences for our understanding of the func-
tion of the cerebellum in learning and adaptation are discussed.

Table 1 Number of cells with
positive changes in response
amplitude versus the total number
of cells shown, respectively, for
each stimulation protocol and
each time point. If there is no
systematic potentiation or
depression, on average, there
should be as many cells with
positive as with negative changes
in response amplitude

Time
(min)

Number of cells with positive response
change

Total number of
cells

Wilcoxon signed-rank
test

Combined SCT and skin burst protocol

15–25 4 8 1

25–35 3 8 1

35–45 5 8 0.54

45–55 7 10 0.28

55–65 3 7 1

65–75 6 9 0.65

75–85 4 8 0.84

85–95 6 7 0.05

Skin burst and simultaneous single IO stimulation protocol

5–15 2 6 0.84

15–25 3 5 0.63

25–35 3 5 0.43

35–45 3 5 0.63

Skin burst and delayed single IO stimulation protocol

5–15 1 5 0.31

15–25 2 5 0.31

25–35 3 4 0.25

Wilcoxon signed-rank test gives the P value (rightmost column) for the null hypothesis that there is no potenti-
ation. Note that in pure chance data, 1 out of the 20 P values is expected to fall within the 5% range, which is also
the case here (1 out of the 15 comparisons made)
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It could of course be argued that the data set was lim-
ited and that other results would have been obtained with
more data. While this is always true for any data, visual
inspection of the time course of net changes in post-
protocol response amplitude in all cells revealed no trend
in the data in either direction, again in contrast to data
from the cerebellar cortex (see above). On basis of the
absence of any trend, we could hence not defend extend-
ing the data acquisition in these very time consuming and
difficult experiments. At the same time, the scientific com-
munity has repeatedly realized that it is important that also
negative findings are published [17, 18], even though it
can be argued that they are less conclusive.

First, it is important to point out that these findings do not
imply that mf-interpositus plasticity does not exist in the adult

cerebellum. It is of course possible that other protocols that we
did not try would have been more effective. Perhaps a more
likely possibility is that more long-term protocols and longer
duration AIN cell recordings could have provided a different
answer. In experiments of classically conditioned eyeblink
responses, for example, effects in the Purkinje cell responses
start to emerge at the same time scale as we were looking at
here but they evolve substantially for hours after [11]. It
should also be noted that we used much shorter intertrial in-
tervals than in the latter paper, so comparisons cannot bemade
directly. The structural changes observed in mf collaterals to
the DCN after repeated training protocols [5] was obtained
only after several days of training, but it was not possible for
us to follow single neurons for a comparable amount of time.
In comparison with mf synaptic plasticity in juvenile slices

Fig. 5 The effects of the
simultaneous IO and skin burst
activation protocol for a sample
AIN neuron. a Stimulation
protocol of simultaneous IO and
skin burst activation. The
intention of the protocol is to
induce plastic changes in the
response amplitudes to single-
pulse electrical skin stimulation. b
Net peristimulus histogram of re-
sponses evoked by IO stimulation
(N = 200 responses, bin width
5 ms). c Net peristimulus histo-
gram of responses evoked during
the protocol (N = 200 repetitions),
which consisted of a single IO
stimulation and a burst stimula-
tion to the skin applied at the same
time point. d Development over
time of the net response to single
shock stimulation to the skin.
Times are given relative to the
start point of the stimulation pro-
tocol (for the control) and relative
to the end point of the stimulation
protocol (for all other histo-
grams), respectively. Each histo-
gram was obtained from 100–200
repetitions of the stimulation. e
Spiking frequencies for each in-
dividual cell during the response
time window
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[26, 27], however, the time scales were comparable but the
results were very different. Notably, apart from age differences
there was also a striking difference between the protocols: an
important component in the slice work was the presence of a
20–25-mV hyperpolarization of the DCN neuron during the
stimulation of the mf synapses, which lasted for at least
150 ms in order to initiate a postinhibitory rebound [26]. In
the in vivo setting, such a hyperpolarization would appear to
translate to a simultaneous activation of all of the afferent
Purkinje cells to firing rates of 200–300 Hz for the duration
of the period of inhibition [4], which appears to be a complete-
ly unlikely scenario in the adult cerebellum. This does not
necessarily exclude that the fundamental plasticity mechanism
described in the slice [26, 27] applies in vivo, but may suggest
that the mechanism could operate on a much slower time
course in the adult cerebellum in vivo, where these extreme
cases of concerted Purkinje cell activity may not appear.

An interesting aspect is the contrast to the effects observed in
cerebellar cortical neurons using similar protocols and, in at
least one case, comparable recording times [14, 16]. This sug-
gests that there is likely to be a difference between the
interpositus cells and the cortical neurons at least in their pro-
pensity for plasticity of excitatory inputs. From a functional
point of view, this may make sense. The limb areas of the

AIN are an integral part of a motor command loop, which via
direct connections to rubrospinal and thalamocortical neurons
innervating the motor cortex can strongly influence the activity
of spinal premotor interneurons [3]. These interneurons are
probably very important for the synergy selection, i.e., which
muscles are to be activated at what time during the execution of
a complex, well-trained movement [30]. Since some of these
interneurons provide feedback to the cerebellum, directly or via
the lateral reticular nucleus, and since this feedback is the infor-
mation that is provided by the spinocerebellar mf-DCN synap-
ses, this synaptic linkage can be important for associating and
linking specific synergy patterns into compound movements.
As they are one of the fundaments of the core motor command
loop, it may be important to let them become stabilized after
development when basic movement patterns/synergy patterns
have been acquired. Fine-tuning of the drive of these synergy
patterns during specific phases/contexts of a movement can be
achieved via the cerebellar cortex and its inhibitory control of
the AIN neurons. This fine-tuning can be minor adaptations
required by changes in muscle strength over time or context-
dependent factors, for example, which do not require a change
in the fundamental movement patterns. Such adaptations must
be allowed to occur more rapidly and could be primarily
brought about by alterations in the cortical network—this

Fig. 6 The effects of the skin burst and delayed single IO stimulation
protocol for a sample AIN neuron. a Stimulation protocol of skin burst
and delayed IO stimulation. The intention of the protocol is to induce
plastic changes in the response amplitudes to single-pulse electrical skin
stimulation. b Net peristimulus histogram of the spike responses to the
protocol (N = 200 repetitions, bin width 5 ms). c Net peristimulus

histogram of the spike responses to IO stimulation alone (N = 50 repeti-
tions). Note the more expanded time base compared to a. d Net
peristimulus histograms of the spike responses evoked to single-shock
skin stimulation before and after the protocol (N = 100–200 repetitions). e
Spiking frequencies for each individual cell during the response time
window

Cerebellum



would be an explanation for the different propensities for input
plasticity in the cortex as compared to the AIN neurons.
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Artificial spatiotemporal touch 
inputs reveal complementary 
decoding in neocortical neurons
Calogero M. Oddo1, Alberto Mazzoni1, Anton Spanne2, Jonas M. D. Enander2, 
Hannes Mogensen2, Fredrik Bengtsson2, Domenico Camboni1, Silvestro Micera1,3 & 
Henrik Jörntell2

Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties 
in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns 
of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic 
sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal 
patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats 
via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from 
neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis 
of the representation of tactile information in the neocortical neuronal circuitry. The results indicate 
high information content in individual neurons and reveal multiple novel neuronal tactile coding 
features such as heterogeneous and complementary spatiotemporal input selectivity also between 
neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support 
a very high decoding capacity in a limited population of neurons. Our results also indicate a potential 
neuroprosthetic approach to communicate with the brain at a very high resolution and provide a 
potential novel solution for evaluating the degree or state of neurological disease in animal models.

Haptic skin-object interactions necessary for touch perception generate spatiotemporal patterns of activation 
across multiple tactile skin sensors. When different kinds of objects interact with the same part of the skin, they 
can be expected to generate different such spatiotemporal patterns1,2, which form part of the brain’s perception 
of the skin-object interaction. Even though the interpretation of the ‘what’ such inputs represent is distributed 
across a large number of neocortical neurons, the information must to some extent be expressed also at the level 
of individual neurons. In other words, at least the bits and pieces of the population-level information should be 
represented in the single neuron. It has commonly been observed that skin-object interactions with different 
kinds of objects and shapes generate different neural responses3–5, but the precision by which neocortical neurons 
can distinguish specific spatiotemporal patterns of tactile afferent input (i.e. identifying the ‘what’ of the input) 
from the same part of the skin has to our knowledge not previously been estimated.

Analysis and quantification of the specific decoding of tactile information in a cortical neuron requires the 
repeated presentation of reproducible spatiotemporal patterns of skin sensor afferent activation. But the mechan-
ical activation of the skin6, the mechanotransduction into an electrical receptor potential and the spike generation 
from that receptor potential in the tactile afferent axon7 are potential sources of noise that could result in vari-
ability in the spatiotemporal pattern from one trial to another2,8,9. In addition, even small shifts in the position 
of a mechanical stimulus would result in that the spatiotemporal pattern of skin sensor activation shifts across 
the recruited population of sensors, which at the level of the decoding in the neuronal circuitry corresponds to 
a different task, even though the perception may be essentially the same. To overcome these difficulties, our aim 
was to by-pass the potentially variable steps that come with the mechanical skin sensor activation, so that the 
decoding capacity of central neurons could be estimated in relative isolation. Using direct electrical interfacing 
with the distal nerve fibers innervating the skin sensors, it becomes possible to investigate the neuronal decoding 
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of a ‘frozen state’ of sensor activation, isolated from the uncertainty in the mechanotransduction step. With this 
approach it becomes possible to repeat multiple spatiotemporal patterns a high number of times in a random 
order even within the lifetime of an intracellular neuronal recording. The findings obtained using direct neural 
stimulation also have potential translational importance for limb neuroprosthetics. The method was first intro-
duced in human studies, using percutaneous electrical microstimulation of tactile afferents using a single channel 
electrode10,11. Using long-term peripheral nerve implants with temporally patterned direct electrical activation of 
different portions of a nerve trunk, diversified and meaningful perceptions of touch can be achieved12–16, which 
indicates that the brain can actively engage in the processing of electrically induced tactile afferent input.

In auditory and visual cortical systems, ‘natural scenes’ of sensory input have been shown to evoke very dif-
ferent cortical responses compared to those evoked by simplified inputs17,18. This may indicate that the circuitry 
structure is adapted to some general features in the spatiotemporal patterns of sensor activation that may occur 
during natural behavior, and that this circuitry structure constrains the way the individual neurons in the network 
are activated. Following these considerations, we wanted as far as possible to achieve naturalistic, rather than 
arbitrarily designed, patterns of electrical skin sensor activation. For this purpose, we employed a biomimetic 
artificial fingertip equipped with an array of neuromorphic tactile sensors that generated spatiotemporal patterns 
of skin sensor output in response to mechanical touch or indentation with probes characterized by different 
curvature. The spatiotemporal patterns of spike output generated from this system during dynamic touch were 
delivered as electrical stimuli to the distal tactile afferents from the volar side of the second digit of the rat fore-
paw. With this approach, we hoped to mimic at least the general envelope of the overall temporal modulation of 
activation in the local population of skin sensors as it may occur in a conceivable natural touch. In this way, the 
spatiotemporal pattern of skin sensor activation that we delivered may be better tuned to the space of possible 
patterns of input that the circuitry of the adult animal may have been adapted to. In order to allow well-controlled, 
repeatable stimulus delivery and long-term in vivo whole cell patch clamp recordings from neocortical neurons 
in the absence of top-down modulations19 we used anesthetized rats. We find that the decoding performance of 
individual neurons can be much higher than previously described and that there is a complementarity in their 
response profiles that provides for a very high decoding capacity even in small groups of neurons.

Results
Our aim was to study the decoding capacity of central neurons in isolation, separated from noise arising from 
mechanical interfacing with the skin and from intrinsic skin sensor noise (even highly controlled repeated acti-
vation of a single mechanical stimulus yields a range of variability in the spiking of the primary sensor afferents 
of 2 ms on average, with up to 8 ms jitter observed in the spike trains and even missing one or two spikes in 
each repeated run of a given touch condition9). For this purpose we used electrical stimulation of four skin sites 
(channels) of the volar side of digit 2 of the rat (a skin surface that through the lifetime of the animal would 
have been activated by a vast array of inputs via touch, locomotion and other motor activities). Using a low 
stimulation intensity of about 2.5 times threshold for primary afferent activation (Methods), such stimulation 
activates a limited number of tactile afferents (and no nociceptive afferents whose recruitment starts at 4 times 
threshold20) with a high temporal precision and reliability21. In order to generate spatiotemporal patterns of skin 
sensor activation with overall similarities with patterns that could be evoked under natural conditions such as 
active touch, we used an artificial fingertip equipped with an array of four separate neuromorphic sensors (Fig. 1A 
and Supplementary Fig. S1). These neuromorphic sensor have activation properties that are similar to biological 
tactile sensors for the type of stimuli we used here (Supplementary Fig. S2) as well as other types of stimuli12. The 
spatiotemporal patterns of electrical skin site stimulation to be used with the animal were first obtained from the 
artificial fingertip by moving it against probes of different shapes (Fig. 1A,B and Supplementary Fig. S1). Out 
of the many spatiotemporal spike output patterns recorded from the neuromorphic sensors, we selected two 
patterns for each of the four indentation probes used, to obtain a total of eight richly resolvable spatiotemporal 
patterns (Supplementary Fig. S1). The comparably high resolvability of the eight patterns used was an important 
component in our subsequent evaluation of the decoding performance of the neocortical neurons. These eight 
spatiotemporal patterns of multi-channel electrical skin site activation were used throughout the experimental 
series (Fig. 1E).

The responses of neocortical neurons to the repeated applications of these spatiotemporal patterns of electrical 
skin site stimulation were recorded in the paw region of the primary somatosensory cortex (Fig. 1C) using the 
whole cell patch clamp (N =  14 neurons) or loose-patch, cell-attached (N =  82 neurons) recording techniques. 
We morphologically recovered 11 neurons recorded in the whole cell mode (Fig. 1D), of which all were pyramidal 
neurons at layers II–V. Of the 82 cell-attached recordings, 12 neurons had a narrower spike width than the others 
and could be classified as putative interneurons according to Luczak, et al.17, but these neurons did not stand out 
from the other neurons in terms of the response patterns described below and are hence not indicated separately.

Analysis of intracellular responses. With the whole cell patch clamp method, we recorded the intra-
cellular membrane potential responses resulting from the synaptic inputs evoked by the spatiotemporal skin 
stimulation patterns (Fig. 1E,F). For each neuron, we first made pairwise comparisons of the responses evoked 
by two different stimulation patterns (Fig. 1F,G). The average intracellular membrane potential responses were 
typically unique for each stimulus pattern (Fig. 1H), so for each neuron we made such pairwise comparisons 
across all pairs of stimulation patterns available (N =  27). For the example cell illustrated in Fig. 1F–H the fraction 
of comparisons yielding statistically significant differences (KS-test) between pre- and poststimulus times was 
93%, which indicates that the synaptic inputs to the cell could be used to separate almost all of the stimulation 
patterns. Across the population of neurons recorded in the whole cell mode (N =  14), 68+ /− 20% of the patterns 
could be separated in these pairwise comparisons, with 4 neurons separating the inputs in more than 90% of the 
comparisons. Hence, the evoked intracellular responses were relatively specific to the precise stimulation pattern 
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used. In addition to these pairwise comparisons, we also performed a principal component analysis (PCA) of the 
intracellular responses, where the decoding accuracy for each stimulation pattern could be analysed in relation 
to the decoding accuracy for all the other patterns. The mean decoding for the sample neuron, according to the 
PCA, was 74% across all of the eight patterns whereas the decoding of the individual stimulation patterns varied 

Figure 1. Synthesis of tactile patterns and intracellular responses in vivo. (A) Shapes with different 
curvatures were moved against an artificial fingertip using a cyclic motion. The artificial fingertip was equipped 
with an array of four neuromorphic sensors that generated spatiotemporal spike output patterns that were 
electrically delivered to the skin of the rat paw (Supplementary Fig. S1). (B) The location of the pairs of 
intracutaneous needle electrodes (channels) delivering the generated spike output patterns. (C) Illustration 
of approximate recording location (in the S1 digit region). (D) Sample morphology of a recorded neuron, 
identified as a layer III pyramid based on morphology and depth. Red staining is parvalbumin immunopositive 
neurons. (E) From left to right: the four types of probe shapes (Supplementary Fig. S1) used; the corresponding 
plots of the spike output patterns, equalling the spatiotemporal patterns of elementary current pulses delivered 
to the skin of the rat, obtained with the receptor model F; corresponding plots of the spike output patterns 
obtained with the receptor model S. (F) Superimposed raw intracellular responses evoked by two different 
stimulation patterns. One neuronal spike (asterisk) is included for display. (G) The Welch student’s t-test 
dissimilarity measure displayed as p-values, comparing the responses evoked by the two stimulation patterns 
illustrated in (F). (H) Average intracellular responses of the neuron in (D) for each stimulation pattern in (E). 
(I) Confusion matrix of the PCA results of the decoding of the different spatiotemporal stimulation patterns for 
the illustrated neuron. ‘M’ indicates the mean decoding, and ‘R’ the range of decoding (max-min). (J,K) Mean 
and range of decoding for all intracellular recordings.
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within a relatively narrow range as indicated in the confusion matrix in Fig. 1I. For the population of neurons, the 
average mean decoding according to the PCA was 69+ /− 18% (Fig. 1J) with a variable range of decoding across 
the different stimulation patterns (Fig. 1K).

Analysis of spike responses in individual neurons. Although the intracellular analysis reveals the input 
information to the neuron, for the network of the brain the more relevant signal is the resulting neuronal spike 
output, which is the signal that is being processed by the neuronal network. As there seems to be no simple, direct 
relationship between the intracellular signal and the resulting pattern of spike output in central neurons22,23, the 
spike output needed to be analyzed as well. To analyse the spike output, we used cell-attached recordings. In 
these recordings, spike responses were in many neurons reliable, precise and input-specific (Fig. 2A) and even 
the responses to single stimulus presentations could at least for some stimulation patterns form relatively reliable 
clusters (Fig. 2B). As for the intracellular signals (Fig. 1I–K), the spike responses of individual neurons (N =  82) 
were also processed via PCA and kNN decoding (Supplementary Fig. S3) to evaluate the precision by which the 
responses to repeated stimulus presentations could be used to decode the identity of the stimulation pattern 
applied (Fig. 2C). In the illustrated example (Fig. 2A–C), the neuron was able to segregate the eight stimulation 

Figure 2. Single neuron decoding for spike output. (A) Raster plots of spike responses of a sample neuron 
to the stimulation patterns as indicated. (B) Cluster analysis of the same spike responses. The response to 
each stimulus presentation is shown color-coded. (C) Confusion matrix of the decoding performance for the 
neuron illustrated in (A,B) (see Supplementary Fig. S3 for illustration of this method). The title indicates the 
mean and the range of the decoding across the eight stimulation patterns. Numbers inside the matrix indicate 
the decoding rates for the individual stimulation patterns. (D) Example confusion matrices for two neurons 
with homogeneous decoding, one with high mean decoding and one with low mean decoding. (E) Example 
confusion matrices for two neurons with heterogeneous decoding. Top, example confusion matrix with ‘drop-
out’ decoding. Bottom, confusion matrix for a ‘get-in’ neuron with selective decoding. (F) Mean and range of 
decoding across the population of neurons. The horizontal dashed line indicates chance level. (G) Distribution, 
over the population of neurons, of the mean decoding (top) and of the range of decoding (bottom).
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patterns with a mean accuracy of 68%. For one of the stimulation patterns, the decoding performance was as high 
as 92% (pattern S∞  in Fig. 2C).

Overall, the top performing neurons had a decoding performance as high as 80–90% (Fig. 2D, top), while 
most neurons had a mean decoding performance of 20–50% (Fig. 2D, bottom). But the PCA analysis also indi-
cated that in the population of neurons, there was heterogeneity with respect to the decoding performance across 
the stimulation patterns. Some neurons showed specificity in the sense that the identification rate of at least 
one stimulation pattern was at least 20% units lower than the mean decoding performance (‘drop-out’, N =  12, 
Fig. 2E top). There were also neurons with highly specific decoding in the sense that the top decoded stimulation 
pattern had identification rate at least 20% units higher than the mean decoding performance (‘get-in’, N =  9, 
Fig. 2E bottom). The mean and range of decoding of the spike output varied across the population (Fig. 2F) 
(Supplementary Fig. S4 reports the corresponding information content for all the neurons). The distributions 
of the mean (Fig. 2G, top) and the range (Fig. 2G, bottom) of the decoding performance were compatible with a 
lognormal fitting (p =  0.46 and p =  0.95, respectively, one-sample KS test)24. Neither the mean nor the range of 
the decoding depended significantly on the depth at which the neuron was recorded (Pearson linear correlation 
test: p >  0.1 both variables; Kruskal Wallis test, p >  0.1) (Fig. 3). Notably, the mean decoding (Fig. 2G, top) was 
substantially lower than for the intracellular signals (Fig. 1I).

The decoding performance of the neurons depended on the interval over which the spike response was inte-
grated, with some neurons allowing very high decoding with short integration windows (Fig. 4). Remarkably, for 
many other neurons the decoding level slightly increased even up to 1000 ms after the onset of the stimulation 
(Fig. 4B). As the longest duration of any of the spatiotemporal input patterns was 340 ms, the stimulation patterns 
hence produced organized activity in the neuronal networks long after the stimulation had ceased.

Responses evoked by stimulation of single channels. As complementary information to the results 
above using complex patterns of input, we also analysed responses evoked by simpler stimuli, specifically stimula-
tion of the separate skin input channels with one or two pulses. Notably, although all of our neurons responded to 

Figure 3. Relationship between neuronal depth and decoding. Lack of relationship between recording depth 
and decoding (left) and between recording depth and decoding heterogeneity (right). Bottom, corresponding 
box plots (median and interquartile range) with recording depths pooled in steps of 200 µ m. Even though 
precise laminar information and neuronal type identity was not a focus of our study, the absence of relationship 
between decoding and recording depth strongly suggested (Pearson linear correlation test and Kruskal Walis 
test, see text) that there was no relationship between decoding performance and laminar location.
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the complex patterns, only 57 out of our 82 neurons had a measurable response to single pulse for every channel. 
In this group of 57 neurons, we first asked if the neurons could decode whether the input was a single pulse or a 
double pulse, where the second pulse occurred 300 ms after the first (analysis time window limited to 450 ms in 
this case). Across each of the 4 stimulation channels (228 comparisons) the decoding was 79.3%, where 7 neurons 
with strong responses to single pulse stimulation could separate single from double pulse stimulation for at least 
one channel with 100% precision. In the next step, we asked whether the neurons could tell which of the 4 chan-
nels that were stimulated, and whether that channel was stimulated once or twice. Most of the neurons performed 
well on this task, with a mean decoding across the population of 43% and information content of 1.66 bits (out of 
3 bits maximum) (Supplementary Fig. S5).

Complementary neuronal response patterns allow for co-operative decoding. Whereas the anal-
ysis above was limited to the decoding provided by individual neurons, we often noted a mismatch in the tempo-
ral response patterns of different neurons to the same stimulation pattern. Together with the tendency of some 
neurons to preferentially decode certain patterns better than others (Fig. 2E), this hinted at the possibility of com-
plementary decoding between neurons. Such complementariness could allow for co-operative decoding within a 
small population of neurons, which together might provide a much higher capacity to segregate spatiotemporal 
patterns of tactile afferent input. To examine the potential for co-operative effects, we first focussed on a subset of 
our recordings, in which the spikes of two different neurons were recorded at the same time with the same patch 
pipette25 (Fig. 5A, N =  5 pairs) or using two separate adjacent patch pipettes (N =  2 pairs). The temporal spike 
response patterns could be widely different between two adjacent neurons (Fig. 5B), a phenomenon previously 
also observed in awake monkeys26,27. Moreover, the mean decoding and the specific input selectivity (Fig. 5C) 
could differ substantially between the two neurons in such paired recordings (the range of the differences in the 
mean decoding was 2–38% units for N =  7 pairs).

A cross-neuron—cross-stimulation analysis of some of the top decoding neurons (Fig. 6A) confirmed that 
the temporal response patterns to the same stimulation pattern could be unique for each neuron. There was also 
a lack of ‘cross-talk’ between neurons in terms of their individual temporal response patterns to different spatio-
temporal stimulation patterns (Fig. 6A). Therefore, we next analysed the potential cooperativity across the entire 
population of recorded neurons. Cluster analysis indicated that the decoding performance increased with the 
number of neurons (Fig. 6B), consistent with that each neuron in a population contributes unique information27. 
To further quantify the potential cooperativity effects, we performed a population level PCA (Fig. 6C). We first 
estimated the optimal population decoding among the entire ensemble of neurons in our dataset as a function of 

Figure 4. Information content in late response components. (A) Dependence of the mean decoding 
performance (accuracy) on the extent of the time window included in the analysis. Note that none of the 
stimulation patterns lasted for more than 340 ms, yet in almost all neurons the information increased all the way 
up to 1000 ms poststimulus time window. Interestingly, neurons also differed widely with respect to the increase 
in decoding accuracy obtained when the time window was expanded. Only neurons with a decoding above 30% 
at 1000 ms (N =  69) are included in the display. (B) Distribution of the mean decoding performance across the 
neurons as a function of the time integration window.
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integrated time and number of neurons included. In this case, the analysis of the potential for neuronal cooper-
ativity indicated that saturation up to perfect decoding (> 99%) within 350 ms was obtainable with just a few (3) 
neurons (Fig. 6C). The rapid attainment of a perfect segregation of the input patterns was not surprising given the 
outstanding performance of each of these neurons individually. However, in this type of analysis, even neurons 
with poorer performance in terms of mean individual decoding could together reach a near perfect segrega-
tion within a short period of time (Fig. 6D). While considering only neurons with individual decoding below 
4 times chance level (i.e. mean decoding below 50%, cf. Fig. 2F,G), a very high population level decoding could 
be obtained within 800 ms provided that there were many (10) neurons contributing to the decoding (Fig. 6D). 

Figure 5. Adjacent neurons could display responses with contrasting temporal patterns. (A) Raw trace 
illustrating the spikes of two neurons recorded in parallel, at two different points in time. Below are shown 10 
superimposed spikes from each neuron. Note the much faster spike of neuron #2, suggesting that it may belong 
to a smaller neuron or interneuron17. The amplitudes of the two spikes increased and decreased independently 
of each other during slight manipulation of the position of the recording electrode (0.3–20 µ m of travel with 
the micromanipulator, not shown), indicating that they were recorded from two separate neurons (see also 
ref. 25). (B) Raster plots for the two neurons for two sample stimulation patterns. Note the large differences 
in the responses to the same patterns, despite that the neurons most likely were located within a few µ m from 
each other. (C) Confusion matrices of the decoding across the stimulation patterns (as in Fig. 2C) for the two 
neurons.
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Figure 6. Potential for co-operative decoding in limited neuronal populations. (A) Confusion matrix for four 
high performing neurons, where the temporal patterns of the spike responses to the different stimulation patterns 
were specific to the neuron. (B) The cluster plots show the results of the curvilinear component analysis of the 
unlabelled spike responses, illustrating the segregation of individual stimulus presentations for the two optimal 
(with respect to co-operative decoding rate) neurons at 50 ms, the 5 optimal neurons at 350 ms, and the 10 optimal 
neurons at 1000 ms. The stimulation pattern is color coded as in Fig. 2B. (C) 3D plot to illustrate the evolution of 
the estimated optimal population decoding rate, as evaluated with PCA and kNN, from the repeated presentations 
of the stimulation patterns and an increasing number of neurons and increasing time. (D) The estimated optimal 
population decoding when the pool of neurons was limited to those with a mean decoding below 5 times chance level.
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Although such effects may not be important for the identification of the limited number of input patterns we 
used, they could still be essential in order to resolve a larger set of stimuli, i.e. when further qualitative details 
about the properties of the object, or finer shape details, need to be resolved.

Temporal resolution of the spike responses. The importance of the temporal evolution of the spike 
responses was further tested by evaluating the decoding obtained assuming a pure rate code (as in the study of 
Luczak, et al.17, for example), i.e. where only the total number of spikes evoked by the stimulation pattern was 
taken into account (Supplementary Fig. S6, a pure rate code corresponds to using Victor Purpura spike dis-
tance, VPd, with cost q =  0). In this case, the decoding performance was lost and did not overcome chance level. 
Across the population, assuming a rate code resulted in significantly worse decoding performance (p =  1.01e-
07, non-parametric Wilcoxon signed rank test). However, the temporal dynamics of the spike responses varied 
substantially between neurons. The optimal cost q was typically between 175 s−1 and 50 s−1, corresponding to a 
temporal scale of 12–40 ms (Supplementary Fig. S6).

Neuronal input segregation depends on the spatiotemporal structure of the input. We also 
tested directly whether the spatiotemporal structure of the stimulation patterns was a decisive factor for the 
decoding performance. First, we shuffled the temporal structure of the stimulation patterns (N =  21 neurons) 
(Fig. 7A). In neurons with high mean decoding, temporal shuffling substantially decreased the performance 
(Fig. 7B). In contrast, in neurons with a low mean decoding the temporal shuffling did not degrade the perfor-
mance and there was a monotonically decreasing correlation between the mean decoding of the neuron and the 
change in performance resulting from the shuffling (Fig. 7C). We next examined the importance of the spatial 
structure of the stimulation patterns by maintaining the temporal patterns and the number of spikes in each 
stimulus channel, but by randomizing the skin site of delivery of the four channels. Although the effects of the 
spatial shuffling was overall weaker, which is attributable to the comparatively smaller disruptive effect on the 
stimulation patterns (Fig. 7C), the results were in principle similar (N =  15 neurons) (Fig. 7D). Also the popula-
tion level decoding was strongly degraded by the temporal shuffling, whereas the effects were weaker but still clear 
for spatial shuffling (Fig. 7E–H).

Discussion
The main aim of the present study was to provide a quantitative estimate of how well neocortical neurons can 
identify the spatiotemporal pattern of skin tactile information, i.e. identifying the ‘what’ component of tactile 
input received28. The decoding accuracy or the information content was in this respect found to be very high 
in at least some individual neurons. A second main finding was that the same tactile afferent input could be 
encoded in different temporal response patterns between neurons, which suggest that the brain can channel 

Figure 7. Effect on the decoding performance of temporal and spatial shuffling of the stimulation patterns. 
(A) Example of the effect of temporal shuffling of the S10 stimulation pattern on the spike responses. Top, 
in the control, the spatiotemporal stimulation pattern was exactly the same from trial to trial. Bottom, with 
time shuffle, the number of stimulations per channel were held constant but their temporal distribution was 
shifted at random. (B) Similar display for the effect of spatial shuffling of the S10 stimulation pattern. (C) Effect 
of temporal shuffling on the mean decoding across the population of neurons. Note the strong relationship 
between the level of mean decoding in the control and the loss of decoding in the shuffled condition. (D) Effect 
of spatial shuffling on the mean decoding in another population of neurons, with a similar relationship as in (C). 
(E,F) Co-operative decoding before shuffling. (G,H) Co-operative decoding after temporal and spatial shuffling, 
respectively. (E–H), similar display as in Fig. 6C, including up to the 10 best co-operative neurons, sorted before 
and after shuffling.
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tactile information through multiple parallel processing networks, possibly focussing on complementary aspects 
of the input information. To our knowledge, this is the first time the decoding performance of neurons of the 
somatosensory cortex are investigated using (i) reproducible spatiotemporal patterns of skin tactile afferent acti-
vation, (ii) that are delivered in multiple, richly resolvable patterns that resemble natural tactile scenes, i.e. touch 
of a range of objects. The reproducibility eliminated the need to restrict the analysis to the rate codes of the 
neuronal responses, as in previous analyses of cortical information17,29,30. Instead, it became possible to focus on 
the details of the temporal evolution of the spike responses, which turned out to be a domain where a substantial 
amount of the neuronal information resided.

High neuronal decoding capacity. Our results indicate very high individual neuronal decoding 
capacity (up to more than 2.8 bits per neuron, out of 3 bits of maximal information with 8 stimuli) (Fig. 2 and 
Supplementary Fig. S4) and reveal multiple features that give novel clues to the organization of the sensory pro-
cessing in neocortical circuitry. We did not find any relationship between decoding performance and recording 
depth (Fig. 3), which, although a crude measure, suggests that many neuron types participated in the decoding. 
The high precision decoding was surprising since the internal states of the brain, as in all neurophysiological 
recordings, were outside our control and varied between trials and undoubtedly represented a major source 
of noise. During active explorative movement, the neural activity resulting from skin-object interactions can 
be expected to be much better in register with the brain state, under which circumstance the higher decoding 
capacity discovered in the intracellular recordings (Fig. 1) is likely to be better reflected also in the spike out-
put. Furthermore, a surprising finding was that the decoding performance of many of the neurons continued to 
improve up to 700 ms after the termination of the tactile stimulation, which suggests that the tactile input itself 
affects the state of the processing circuitry with long aftereffects. In this context it might be asked how the anesthe-
sia could affect the decoding. There would seem to be two possible scenarios that are not mutually exclusive. One 
is a general degradation of network function and therefore decoding. Another one could be that the oscillatory 
tendencies of the circuitry are facilitated which might even improve decoding, in particular at long latencies.

Heterogeneity and complementariness of neuronal responses. The heterogeneity between neurons 
with respect to their selectivity for the different input patterns (Figs 2 and 5) and the complementariness of the 
specific temporal patterns of their responses (Fig. 6A) suggested that individual neurons may be specialized on 
particular aspects of the skin-object interactions, i.e. they may represent specific bits and pieces of the informa-
tion that exist at the population level. These different responsive properties of the individual neurons suggest 
that they may be connected to partly different neuronal networks. Due to the complementariness of the neu-
ronal responses, even single stimulus presentations were readily resolvable using a limited population of neurons 
(Fig. 6B–D). Our analysis further indicated that cooperativity between a limited number of neurons was suffi-
cient for a high resolution decoding with rapid identification of stimulation patterns. Cooperativity of decoding 
amongst neurons have previously been proposed for salamander and macaque retina based on studies of weak 
pairwise spike firing correlations between pairs of neurons31,32, but to our knowledge cooperativity based on com-
plementary response profiles to a set of different inputs has not previously been described for cortical neurons 
processing tactile input. Even though we tested only eight different spatiotemporal patterns of input, in the real 
world the range of possible natural tactile scenes implies that a huge variety of input patterns need to be resolved 
from this one part of the skin alone, a situation where the capacity added by the population of neurons is likely to 
be crucial. Importantly, from this study we naturally cannot say how the integrated information decoding of the 
neocortex normally works. However, although the brain may well use other methods for segregating the informa-
tion than those used here, our analysis at least indicates that the neural information is there for the brain to use–it 
remains to be shown if its neuronal network has the structure and functionality to take advantage of this potential.

The electrical skin interface, its relation to mechanical stimuli and its potential resolution. Our 
approach of using haptic stimuli transduced into spatiotemporal patterns of tactile afferent stimulation by a set 
of neuromorphic artificial sensors was motivated by the aim to eliminate known limitations of mechanical skin 
sensor activation (see Introduction). I.e. by delivering this input electrically to the primary afferents in local skin 
sites we wanted to by-pass the step of potentially variable skin sensor activation that occur even with highly con-
trolled mechanical skin stimulation9, so that the decoding capacity of cortical neurons could be studied in relative 
isolation. Just like natural tactile inputs, the input we provided can be expected to be distributed and processed 
through the neuronal networks in the cuneate nucleus, thalamus and neocortical circuitry before it reached the 
neurons we recorded from. Hence, the measured decoding is bound to reflect at least in part the inherent process-
ing mechanisms of the brain. Accordingly, in humans, electrical nerve stimulation with a much lower resolution 
than in the present set of experiments are known to generate sensory impressions that are in part perceived as 
unnatural but also to generate diversified and meaningful tactile percepts12–16. We expect our higher-resolution 
approach to have much higher potential to generate natural sensations, but how much do we know about the rela-
tionship between our spatiotemporal patterns and information generated by mechanical skin-object interactions? 
For each of the four skin sites used, a limited number of skin sensor afferents would be expected to be activated21. 
As the electrical activation is highly reliable21, every single stimulation pulse can be expected to activate the 
local set of skin sensor afferents in synchrony. However, the fact that different sensors have different conduction 
velocities33 results in that this synchrony is broken up already when the input reaches the cuneate nucleus21. The 
fact that slowly and rapidly adapting skin sensors would be expected to be activated to the same extent by the 
electrical stimuli may first look unnatural, as there are many reviews that tend to stress the different conditions 
of activation of these types of sensors. However, under the type of dynamic indentation movement we used here, 
available evidence indicates that there is in principle little difference in activation between slowly and rapidly 
adaping tactile mechanoreceptors1 (Supplementary Fig. S2).
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Fundamentally, all skin sensors transduce mechanical skin strain patterns into receptor potentials34–under 
non-static touch conditions, such receptor potentials may be relatively congruent between different types of skin 
sensors with the same location. The receptor potentials are then translated into patterns of spike output in the pri-
mary afferent. In central neurons, the spike generation mechanism is subjected to stochasticity22,23 and provided 
that the underlying ion channel mechanisms are related this should apply to skin sensors, too. Indeed, identifi-
cation of fine details of edge stimuli from recorded spike trains in human tactile afferents was found to work well 
when the individual spike times was convolved into Gaussian functions with kernel widths up to 8 ms, suggesting 
this to be a useful upper limit for the temporal precision of the spike generation. Similar findings exist for the rat 
whisker primary afferents35.

The artificial fingertip allowed us to synthesize spatiotemporal patterns of skin sensor activation at 
quasi-natural rates that follow a natural overall temporal modulation, or ‘envelope’36, that the biological skin 
sensors are known to display under dynamic indentation1 (Supplementary Fig. 2). This aspect of our approach 
is probably important because the circuitry of the cortex can be expected to have experienced many events with 
similar envelopes of tactile afferent activity and is therefore likely to have adapted its circuitry structure to effec-
tively process variations of that kind of overall activity modulation (as in the auditory and visual cortices17,18). The 
expected congruence of the receptor potentials under a dynamic indentation would under natural circumstances 
tend to drive the tactile afferents spiking to follow similar overall temporal patterns. Given the presence of skin 
sensor spiking stochasticity, synchronized spiking activity may well occur, as detailed next. For the indentation 
stimuli used here, with up to 10 spikes per sensor generated during the 300 ms that the stimulus lasted and 
assuming that 10 local skin afferents were engaged per channel, the spike timing variability expected from the 
stochasticity implies that a near astronomical number of possible spatiotemporal patterns of primary afferent 
activation could occur even if exactly the same mechanics of the touch condition could be repeated. This can be 
considered the space of possible outcomes for that condition. If the same touch condition occurred, but with a 
slight shift of the mechanical conditions, for example a 0.1 mm change in position across the skin, the space of the 
possible outcomes would be further widened. With the information being distributed across a high number of 
tactile afferents, it is still possible for the brain to recognize the tactile experience as belonging to the same kind of 
object and discriminate it from other experiences. The full space of possible tactile experiences, representing any 
kind of physical interaction with any kind of possible object, would be very large indeed. Our electrical stimuli, 
with near synchronous activation of the local skin afferents, would only be required to fall within that huge space 
of possible outcomes in order to represent a type of input that could theoretically occur under the lifetime of a 
rat–depending on the actual range of spike timing variability that applies for rat skin tactile afferents, this would 
hardly seem unlikely.

However, a main caveat is that all the local sensors were driven to the same level of activity. It is questionable 
whether there exists physically possible skin-object interactions in which all local sensors can be expected to be 
activated within the same spiking frequency range. This probably makes our stimuli falling short of being able to 
produce perfectly normally perceived sensations. Rather, our synthetic spatiotemporal patterns of skin afferent 
activation could produce a sensory experience that would be partly perceived as natural and partly unnatural, 
i.e. a proper indentation sensation mixed with unnatural sensations such as tingling, where at least rough shape 
classification may be possible to achieve.

Naturally, whereas the resolvability of the inputs that we provided was sufficiently high to provide quantitative 
measures of the decoding of the individual neurons, real world mechanical stimuli would be characterized by 
much higher information content in the population of primary afferent activity37,38. The logical explanation for 
this is that as long as the electrical skin interface uses only four channels, and cannot control primary afferents 
individually, it will never be able to compare with the diversity of information that is potentially possible in the 
natural system.

Comparisons with previous related studies. Previous quantitative analyses of the information decoding 
in somatosensory systems of the brain have focussed on the presence or absence of a vibrotactile input (i.e. 50% 
chance level39) and which body part or whisker an input arises from (i.e. the ‘where’ issue rather than the ‘what’ 
issue)40,41. The discrimination of different input patterns in S1 neurons has been explored with sinusoidal stimuli 
in the whisker system of the rat42, where the highest information content was in the order of 0.3 bits over > 5 bits 
of maximum theoretical information, which can be compared with up to 2.86 bits over 3 bits of maximum theo-
retical information in our study (Supplementary Fig. S4). A likely reason for the rather large discrepancy is that 
our ‘frozen’ spatiotemporal patterns of primary afferent activation represented more reproducible, and therefore 
more discriminable, input than mechanical peripheral stimulation, as described in the Introduction.

Electrical primary sensory afferent stimulation has previously also been used to study the responses in the 
brain induced by cochlear and retinal implants. However, so far, such studies have been limited to analyses of field 
potentials and cortical topography43,44, neuronal response latency times45 and firing rate46, whereas the decod-
ing capacity of individual cortical neurons provided with input from epiretinal implants or other audio/visual 
implants has not been tested.

Future developments and applications of the approach. Our findings also have implications for the 
translational application of biomimetic artificial touch technology in neuroprosthetics and bionic limbs, where 
the aim is to impart natural sensations to the users47,48. In a device designed for humans, our approach would 
equal a very high resolution intraneural interface13 accessing multiple terminal nerve fiber branches, innervat-
ing adjacent small patches of skin, for individual electrical activation. The activation across the sensors/nerve 
branches should ideally be delivered in spatiotemporal patterns that respect the realm of possible combinations 
of sensor activation that would occur in the biological system, i.e. at least capturing the envelope of expected 
spatiotemporal activation of skin sensors as we aimed for here. This approach may provide the prosthesis with 
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sufficiently rich and reality-like sensory information to make it tunable to the normal brain circuitry processing 
mode, which combined with brain network plasticity could potentially allow the prosthesis to become a natural 
member of the mind-body relationship.

In addition to revealing novel features of neocortical neuronal decoding of tactile input, and an approach 
to analyze neuroprosthetic functionality, our experimental design also offers a potential tool for the analysis of 
the progression of neurodegenerative disease in animal models of those diseases. The information content of 
single neurons is likely to be a sensitive indicator of the state of the network of neurons that innervates them–any 
deterioration in that network can be expected to result in degraded decoding performance. Hence, models of 
neurological disease, and the effect of drug candidates or training, could be benchmarked with this approach of 
highly reproducible inputs.

Methods
Surgical procedures. For neuronal recordings, adult male Wistar rats (N =  26, weight 300–450 g) were pre-
pared and maintained under anesthesia with a ketamine and xylazine mixture (20:1). This type of anesthesia has 
no disruptive effect on the order of neuronal recruitment of neocortical neurons in spontaneous brain activity 
fluctuations (up states, recordings obtained using multielectrode arrays in the rat) as compared to the awake con-
dition, which suggest that the neocortical network may work close to normal49, even though the global brain state 
regulation does not. Anesthesia was induced via an i.p. injection (40 mg/kg of ketamine) and maintenance was 
administered through an intravenous catheter inserted into the right femoral vein (appx. 5 mg/kg per hour with a 
continuous infusion). The induction of the ketamine-xylazine anesthesia was preceded isofluorane sedation (2% 
for 30–60 s). For recording sessions, the level of anesthesia was monitored with an ECoG electrode placed in the 
vicinity of the recoding area. The ECoG was characterized by the irregular occurrence of sleep spindles, a sign of 
deep sleep50. The level of anesthesia was additionally characterized by an absence of withdrawal reflexes to nox-
ious pinch to the hindpaw. The decision to run the neuronal recording experiments under anesthesia was moti-
vated by that we needed to make sure that the mechanical stability of the brain was consistently high throughout 
the experiments in order to be able to run the long-term in vivo patch clamp recordings necessary to expose the 
neurons to a sufficient number of stimulus presentations (up to 2000 presentations delivered at 0.5 Hz). All animal 
experiment procedures in the present study were in accordance with institutional guidelines and were approved 
in advance by the Local Animal Ethics Committee of Lund, Sweden (permit ID M118–13).

Recordings. All recordings were made in vivo, in the region of the primary somatosensory cortex of the 
forepaw (Fig. 1C), as estimated by the focus of the local field potentials (between layers III and V) evoked by 
electrical stimulation of the forepaw and digit 2. The coordinates of this region were 0.0–1.0 mm rostral to bregma 
and 3.5 and 4.5 mm lateral to –1.0 caudal to bregma and 3.0 and 4.0 mm lateral as defined by a stereotaxic sys-
tem. Individual neurons were recorded with patch clamp pipettes either in the intracellular, whole cell mode 
or extracellularly in the loose patch recording mode. Patch clamp pipettes were pulled from borosilicate glass 
capillaries to 6–15 MOhm using a Sutter Instruments (Novato, CA) P-97 horizontal puller. The composition of 
the electrolyte solution in the patch pipettes was (in mM) potassium-gluconate (135), HEPES (10), KCl (6.0), 
Mg-ATP (2), EGTA (10). The solution was titrated to 7.35–7.40 using 1 M KOH. In some cases, the solution also 
included 1.0% neurobiotin, used for the morphological identification of the neurons. In order to find neurons, 
recorded signals were continuously monitored on a display and via loudspeakers. During slow advancement of 
the recording electrode (approximately 0.3 µ m per second), all the skin stimulation sites were activated with one 
pulse per second, and any neuron thus encountered were typically recorded from. In some experiments we used 
two pipette electrodes to obtain dual recordings, and in some cases dual recordings were obtained from a single 
electrode. All data was digitized at 100 kHz using CED 1401 mk2 hardware and Spike2 software (Cambridge 
Electronics Devices, CED, Cambridge, UK). The recording depth from the surface of the brain was annotated. 
For identification of neuron identity, made in a subset of our recordings, in addition to depth we used direct mor-
phological identification, using post-mortem histological identification in a confocal microscope (Nikon A1R+ 
), as a pyramidal cell or a non-pyramid cell combined with approximate layer identity using anatomically verified 
recording depth (using measurements of the distance from the pial surface) (N =  15) (Fig. 1D), and the nature of 
the firing during spontaneous activity (i.e. if the neuron was fast-spiking, bursting and what duration and inten-
sity of bursts the neuron displayed). After the recording session, the animals were sacrificed and perfused with 4% 
paraformaldehyde. In the post-mortem histological processing, Alexa488 fluourofor conjugated with streptavidin 
(Molecular Probes Inc.) was used to stain the recorded neurons.

Stimulation. Four pairs of intracutaneous needle electrodes (channels 1–4) were inserted percutaneously 
into predetermined sites in the skin on the volar side of the second digit of the forepaw and constituted the elec-
trical interface used for stimulus delivery (Fig. 1B). The interneedle distance in each pair of bipolar electrodes was 
2–3 mm. With this type of approach, the threshold for activating individual primary sensory afferents is in the 
order of 0.2 mA21,51. Here, for each skin site, the elementary stimulation pulse was set to an intensity of 0.50 mA 
and stimulation pulse duration of 0.14 ms (DS3 Isolated Stimulator, Digitimer, UK), which should be well below 
the 4 times the threshold intensity where A-delta fibers start to become recruited (peak activation requires 6–10 
times threshold intensity)20.

Neocortical neuron recording with spatiotemporal patterns of skin activation. The experimen-
tal data was neocortical neuronal responses to eight predefined spatiotemporal patterns of skin site activation, 
patterns that were composed of multiple electrical stimulation pulses to the four skin sites used (see ‘Generation 
of spatiotemporal spike stimulation patterns’ below). The eight spatiotemporal stimulation patterns were delivered 
in a pre-defined random (pseudo-random) order, where the stimulation patterns lasted for less than 340 ms and 
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the consecutive deliveries of the stimulation patterns was separated by 1.8 s in order to allow a relaxation of the 
cortical activity induced by the stimulation. Only neurons that could be recorded for at least 120 trials of stimu-
lation pattern presentations were included in the analysis. However, most neurons could be recorded for at least 
350–800 trials, i.e. up to 100 presentations of each of the eight predefined stimulation patterns.

Generation of spatiotemporal spike stimulation patterns. In order to achieve as realistic spatiotem-
poral patterns of electrical skin stimulation as possible, while preserving the aim of high reproducibility of the 
patterns, we used an artificial fingertip equipped with a set of four neuromorphic sensors to generate the spatio-
temporal patterns of skin activation to be used in the electrical interface with the rat skin. The four electrode pairs 
of the interface were 1-to-1 connected to the four neuromorphic sensors of the artificial fingertip, and the neu-
romorphic sensors generated spiking output that was used as a trigger for the elementary electrical stimulation 
pulses of the interface with the animal. To induce sensor activation patterns that could occur in active touch, a 
scotch-yoke mechanism (Fig. 1A) was used to mechanically indent the sensorized fingertip against probes of four 
different shapes (Supplementary Fig. S1A–C). The core element of the sensorized fingertip was a Micro Electro 
Mechanical System (MEMS) sensor with 4 transducing piezoresistors implanted at the base of a cross-shaped 
structure52 (Supplementary Fig. S1). The MEMS was packaged with polymeric compliant material (Dragon Skin, 
Smooth-On, USA). MEMS data were sampled at 380 Hz per sensor output by a 24-bit Analog to Digital Converter 
(ADS1258, Texas Instruments, USA) integrated in the fingertip, and acquired via SPI by a Field Programmable 
Gate Array (Cyclone II FPGA, Altera, USA). The FPGA streamed the acquired information via Ethernet to a PC 
for implementation of an artificial mechanoreceptor model.

Per each stimulation channel x (with x spanning from channel 1 to channel 4, Fig.1E and 
Supplementary Fig. S1), in our neuromorphic artificial touch system53 we used customized implementations of 
the Izhikevich spiking neuron model54 to emulate 2 artificial mechanoreceptor types, mimicking to some extent 
slowly (labelled S model) and fast (labelled F model) adapting receptors (see Supplementary Fig. S2 for com-
parison with electrophysiological literature under similar experimental conditions). The difference between the 
implementations of the two artificial mechanoreceptor types relied in the input to the model. In the S model, 
opponent sensor channel pairs Sx+  and Sx− (see Supplementary Fig. S1A for labelling) were subtracted to gen-
erate a signal (Sx, see Eq. 1) that was normalized and half-rectified to produce (Eq. 2; for values of parameters, 
see Supplementary Table S1) the external input Ix (Eq. 3). The S model was a multi-channel implementation of a 
previous artificial receptor that had been used to elicit tactile percept in human subjects with single-channel intra-
fascicular neural stimulation12. In addition to the S model, we introduced the F model in which the external input 
was given by the time derivative of Ix (Supplementary Fig. S1A and Eq. 4) to achieve a faster sensitivity to stimulus 
dynamic changes. Note that the F model does not fire under a sustained indentation, however this was not appre-
ciable in the present experimental data since the protocol did not include static post-indentation phases due to 
the continuous motion of the scotch-yoke mechanism (Supplementary Fig. S1C). In both models the adaptation 
variable ux evolution followed Eq. 5 and if the membrane potential vx reached the threshold value of 30 mV one 
spike was released and both the membrane potential and the adaptation variable were reset according to Eq. 6. In 
dimensioning the parameters for the Izhikevich spiking neuron model54, we used the set of coefficients inducing 
regular spiking with weak adaptation53. Whenever the membrane potential vx reached the threshold level (Eq. 6), 
a spike was triggered, vx was set to a reset value c and u was increased of a fixed value d.
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Per each channel x (CH1 to CH4), the computed binary response constituted the output of the neuromorphic 
artificial touch system. Such spike sequences were broadcasted by TCP communication to successive services and 
graphical user interface (Labview, NI, USA), that was responsible to generate the trigger per each channel, via a 
BNC connection to a current stimulator (Digitimer unit, see above) allocated for each electrical channel inter-
faced to the skin (Supplementary Fig. S1A and Fig. 1B).
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Decoding based on sensors outputs and selection of spatiotemporal stimulation patterns. In 
order to evaluate whether the degree of segregation of the spatiotemporal patterns of sensor output was sufficient 
to deliver resolvable information to the somatosensory system, we first implemented a repeated (N =  100 per 
stimulation pattern) delivery of the mechanical stimulation to the biomimetic fingertip. Such stimulation was 
carried out via the 4 different probes and with the 2 different artificial mechanoreceptor models, yielding a total 
set of 8 stimulation patterns (Supplementary Fig. S1).

Neurophysiological considerations55 suggest that the nervous system appreciates the fine temporal differ-
ences between the spike trains arriving from different channels. These differences can be quantified with the 
Victor Purpura (VP) metrics56. VP metrics defines the distance between two spike trains as the minimum cost 
of transforming one into the other by following two operations (see Supplementary Fig. S3): adding/removing 
a spike (cost:1) and shifting a spike by an interval ∆ t (cost =  q*∆ t). Note that the shift cost parameter q iden-
tifies the relevant timescale for the comparison56. In order to introduce a distance between multi-channel spike 
trains, we computed the sum over the four channels of the VP distances measured on a channel by channel basis 
between spike train pairs (i.e., defining a 4-dimensional l1 norm based on VP-distance, which can also be termed 
a 4-dimensional Manhattan VP-distance). We measured this distance across all presentations and all stimuli 
(Supplementary Fig. S1F). To test whether it was possible to segregate the 8 spatiotemporal stimulation patterns 
according to these distances we applied a k nearest neighbors (kNN) clustering decoding procedure57, since spike 
trains with small distances, i.e. neighboring responses, are likely to be elicited by the same stimulation whereas 
spike trains with large distances are likely to be elicited by different stimulations. Specifically the kNN was imple-
mented with k =  20 (out of 100 stimulus presentations) and using half of the trials picked at random as training 
set. We evaluated decoding performance computing the mutual information between presented and predicted 
stimulus at each trial58, as depicted by the confusion matrix that represents (column-wise) the computed decoding 
(correct responses in the diagonal) per each presented stimulus (labelled row by row) (Supplementary Fig. S1G). 
Information was computed with the Information Breakdown Toolbox in MATLAB (MathWorks). We evaluated 
information bias combining quadratic estimation and bootstrap subtraction59.

After the evaluation of the degree to which the sensor output patterns obtained from the repeated (N =  100) 
mechanical stimulation of the biomimetic fingertip could be segregated, we selected (Supplementary Fig. S1D) 
a representative spatiotemporal pattern of sensor spike output for each probe/receptor model condition to be 
systematically delivered in the neurophysiological experiments. Per each stimulus condition, among the spati-
otemporal patterns that were below the threshold level (VPd <  1.5, Supplementary Fig. S1E), the sensor output 
pattern to be used as the representation of that stimulus condition was selected at random.

Decoding based on single neuron spike responses and principal component analysis 
(PCA). The spiking responses of single cortical neurons to the different spatiotemporal input stimuli were 
analysed using PCA. This analysis answered the question by which precision the spiking response could be used 
to distinguish one stimulation pattern from the others. We decoded the stimuli from the spiking patterns of sin-
gle cortical neurons using an improved and simplified version of a method60 based on the decomposition of the 
temporal profiles of the evoked spike responses into Principal Components (PCs):

(i)  We computed the mean firing rate over time in the response to each stimulus presentation.
(ii)    We converted the spike trains evoked by each stimulus presentation into continuous functions by convolv-

ing them with an exponential kernel with a characteristic time of 5 ms.
(iii)    We computed the average of the resulting functions for each stimulation pattern to obtain a template of the 

average temporal evolution of the response to each stimulus.
(iv) To highlight the differences in the temporal profile we z-scored the average responses.
(v)     We extracted the principal components (PCs) of the z-scored average responses evoked by the different 

stimulation patterns and we computed for each individual response the score relative to each PC, that is, the 
scalar product between the response temporal vector and the PC temporal vector.

(vi) The decoding was performed using the mean firing rate and the scores on each of the first 7 PCs for each 
individual response. The average intensity and the temporal profile of the individual response hence deter-
mined the location of that response in this 8-dimensional space;

(vii)   In order to decode the stimuli from the response patterns we used the kNN classification procedure as 
previously described60. As stated in the previous point, the response to each stimulus presentation was rep-
resented as a point in a space with 8 dimensions. Half of these points were selected as random as training set. 
For each trial belonging to the test set we identified the closest 9 trials in the training set with an Euclidean 
distance in the 8-dimensions space. The trial was then classified as elicited by the same stimulus that elicited 
the relative majority of the 9 neighbors. We performed 40 iterations of the decoding, each with a different 
training set, and we averaged the fraction of correctly decoded trials in each iteration to get the decoding 
average of the neuron. We also computed and averaged over all iterations the confusion matrix information 
(see previous subset).

The analysis of the spike responses using PCA always included the first 600 ms of the evoked responses unless 
otherwise indicated.

Relationship between neuron depth and decoding. The relationship between the depth of the 
recorded neurons and the decoding performance was tested using Pearson linear correlation analysis and Kruskal 
Wallis test on 200 micrometer “layers” of the recording depths.
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Analysis of intracellular responses–general. In order to analyse the synaptic inputs to the cortical neu-
rons, intracellular data from whole cell recordings was obtained (Fig. 1E–I). Using a mild hyperpolarizing current 
injection, the neurons were prevented from spiking and the intracellular membrane potential driven by the syn-
aptic inputs could be analysed in isolation. The eight different stimulation patterns were presented repeatedly, in 
random order, to obtain multiple membrane potential responses for each stimulation pattern. As the intracellular 
recordings did not always last for the entire duration of the 50 times 8 stimulus presentations, the number of rep-
etitions varied between the recordings and was 38 ±  10 repetitions per stimulation pattern and neuron.

Analysis of intracellular responses–PCA. The PCA of the intracellular responses was made in the same 
way as the PCA of the spike responses described above, except steps (i) & (ii) as the raw intracellular traces 
already corresponded to the continuous functions. First, to remove high-frequency fluctuations the traces were 
low-pass filtered (with a 2 ms wide moving average) and re-sampled to 1000 Hz. Secondly, to remove slow shifts 
in DC offset, raw traces were high-pass filtered (with a cut-off frequency of 0.5 Hz using a first order Butterworth 
high-pass filter in MATLAB). Then the PCA was performed as described above.

Analysis of intracellular responses–pairwise comparisons. The raw intracellular traces were low-pass 
filtered as described above and divided into 1 ms time bins representing averages over 100 samples (as we used a 
sampling frequency of 100 kHz) each (‘bin averages’). The membrane potential responses obtained on repeated 
presentation of each stimulation pattern provided a distribution of the bin averages for each time bin. 10% of 
the values from this distribution were excluded as outliers in order to minimize the influence from major spon-
taneous changes in membrane potential. The resulting distributions without outliers were subsequently used to 
compare the responses of different stimulation patterns in order to see if there were any discernible differences. 
The Welch student’s t-test was used to evaluate the individual bin averages using the test statistics as a dissimilarity 
measure between the distributions. The dissimilarity measures were in turn divided into two distributions, one 
containing the measures of a 300 ms pre-stimulus interval and one 300 ms interval with the measures from the 
response evoked by the stimulus. These two distributions were used to evaluate whether the difference during the 
stimulation was larger than that during spontaneous activity. As the p-value in this case is dependent on the num-
ber of observations included, this number was kept constant. If the one-sided two-sample Kolmogorov-Smirnov 
test could reject the null hypothesis that the p-values of the evoked activity were similar or larger than those from 
the spontaneous activity, we considered a difference to exist between the responses of the two stimulation pat-
terns. Since there were eight stimulation patterns, for each neuron there were 28 comparisons that could be made.

Estimation of optimal population decoding. In order to analyse the additional decoding capacity that 
could be provided by a population of neurons, we extended the principal component analysis above. The aim of 
this analysis was to find the best possible decoding that could be achieved by taking the combined responses of 
multiple neurons into account. To illustrate how this decoding depended on the duration of the time window 
and the number of neurons taken into account, this analysis aimed at finding the best possible combination of 
neurons for each time window and each neuron added to the decoding. Due to the very high number of permuta-
tions that would have to be investigated in order to find the combination of neurons with the optimal population 
decoding performance, the selection process had to be approximated. For each time window, in order to find the 
combination of N neurons with approximately the best decoding performance, the optimal combination of N-1 
neurons was extended with the neuron that had the largest positive influence upon the decoding performance 
when added to the N-1 neurons. This procedure was repeated for each time window (from 50 ms up to 600 ms in 
50 ms steps) increasing the number of neurons from N =  1 to 10.

Cluster analysis using curvilinear component analysis. The convolved traces (see point (i) under 
‘Decoding based on single neuron spike responses and principal component analysis’) were also used to investigate 
whether the responses could be segregated using unlabeled methods that had only access to the responses but 
not the stimulation pattern that evoked the response. Unlike the kNN classification approach above, where the 
average response evoked by a specific stimulation pattern was used to compute the PCs, in the unlabeled setting 
the PCs were computed from the individual traces without knowledge of the ID of the stimulation patterns. For 
illustration purposes, the PC projections data were embedded into a 2D plane using curvilinear component anal-
ysis61,62 where each individual response was represented by a dot (Fig. 2B).

Time and space shuffling operation and analysis. In order to explore whether the spatiotemporal 
patterns of the inputs was necessary for the neuronal input segregation, we also investigated for a subset of the 
neurons the neural responses to spatial and temporal shuffling, respectively, of the stimulation patterns. For the 
temporal shuffle, the number of stimuli for each channel was the same as in the normal pattern but the temporal 
pattern of the delivery was varied at random from trial to trial. For the spatial shuffle, the temporal pattern of each 
channel was preserved but the output of each channel was delivered to a random skin site.
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Supplementary Figure S1. The artificial fingertip and the stimulation patterns. (A) 

Structure of artificial fingertip and properties of its sensors with spike encoding resulting from 



   
 

implementation of Izhikevich artificial neuron model to four differential output pairs 1. Two 

receptor models were implemented by feeding the artificial neuron with their sensor outputs 

directly or with their time derivative. (B) Diagram illustrating the parameters of the four 

different shapes used for mechanical stimulation. (C) Sequence of fingertip movement 

activating the mechanotransduction of the artificial tactile sensors. (D) Raster plots of the 

artificial sensor output (in the two different skin receptor models) to 100 repetitions of the 

mechanical stimulus delivery of each of the four shape stimuli. The selected patterns of sensor 

activation, which were later delivered electrically to the skin of the second digit of the rat, are 

indicated in stronger color/linethickness. (E) Degree of centrality of the selected stimulation 

patterns with respect to all the 100 repetitions of the mechanical stimulus delivery. (F) 4-

dimensional Manhattan Victor Purpura distances across all presentations and all stimulation 

patterns (see Materials and Methods). (G) Segregation of the stimuli under the eight different 

conditions (four probes and two receptor models) illustrated in a confusion matrix of the 

sensor output decoding over all sessions. ‘M’ indicates the mean decoding, and ‘R’ the range 

of decoding (max-min). All values are obtained as the average over 50 decoding procedures 

with different training sets. 

 

 



   
 

 

Supplementary Figure S2. The sensors of the artificial fingertip have similar activation 

properties as human tactile afferents. (A,B) Firing frequencies of rapidly adapting (A) and 

slowly adapting (B) human tactile afferents to indentation of the fingertip with a set of probes 

with different curvatures. Each line represents the firing frequencies of a single afferent across 

the curvatures. The data displays are modified from Figs 4A,C of Jenmalm, et al. 2 and 

represent the spike data from the dynamic phase of the indentation, lasting 125 ms, for the 

afferents with a positive correlation between their spike responses and curvature, which was 

the most common correlation. (C,D) For the neuromorphic sensors, the corresponding 



   
 

relationships between the sensor spike outputs and probe curvature for the first 125 ms of 

indentation, i.e. similar stimulus conditions as in A and B. Each line represents the output for 

each sensor channel of the artificial fingertip. The data are from the specific sensor spiking 

output patterns selected (Supplementary Fig. S1D,E) to be delivered by electrical stimulation 

to the four skin sites of the second digit of the rat (Fig. 1E). Because of the overall similarities 

in tuning between individual biological and neuromorphic sensors with respect to the different 

kinds of probes used, we conclude that the synthetic patterns we generated by active touch 

with the artificial fingertip are likely to have at least overall similarities with patterns of skin 

sensor activation that could be evoked under the natural condition of active touch.   

 

  



   
 

 

Supplementary Figure S3. Method of PCA illustrated. Smoothed curves (top) are 

convoluted exponential kernels of the spike responses to a stimulus presentation (here 

represented by the average of all stimulus presentations for clarity) illustrated for two 

different stimulation patterns. The binary curve in grey indicates the principal component 

against which the obtained curves are compared. As the black convolved trace is captured by 

the corresponding positive deflections of the principal component, this pattern is given a 

positive scalar value (bottom diagram) for this principal component. In contrast, the red 

convolved trace is negatively correlated with the negative deflection in the principal 

component and is hence given a negative scalar value for this principal component (bottom 

diagram). Same neuron as in Fig. 2A-C. 

  



   
 

 

Supplementary Figure S4. Confusion matrix information for neuronal spike response 

decoding. (A) Similar display as in Fig. 2F but here reporting confusion matrix information 

rather than decoding performance. (B) Histogram of the distribution of the confusion matrix 

information across the population of neurons (similar display as in Fig. 2G, top). 

 

  



   
 

 

Supplementary Figure S5. Sensitivity to single and double pulse stimulation delivered to 

individual skin input channels. (A) Confusion matrix of a highly performing neuron. 

Numbers indicate the specific skin input channel (Fig. 1B). Single or double pulse stimulation 

is also indicated. (B) Distribution of decoding performance across 57 neurons. (C) 

Distribution of confusion matrix information across the same set of neurons. 

 



   
 

 

Supplementary Figure S6. Victor Purpura distance calculations for neuronal spike 

responses. (A,B) Illustration of the method, shown by example for a portion of two sample 

spike trains obtained from the same stimulation pattern (A) and for two spike trains obtained 



   
 

using different stimulation patterns (B). Victor Purpura distance is defined as the optimal 

sequence of operations minimizing the cost of moving spikes (with q cost per unit of time) 

and deleting or adding spikes (with 1 cost per addition or deletion) with the purpose of 

making two spike trains identical 3. (C) Left, VPd plot from a sample neuron illustrating the 

decoding obtained as a function of the cost q and the number of neighboring spikes 

considered. The optimal decoding was obtained at the point indicated by ‘X’. Cost q=0 equals 

analysing the spike trains as rate codes. Same neuron as in Fig. 2A-C. (D) Decoding 

performance across the population plotted as a function of VPd cost for 55 neurons, which 

passed the threshold of 15% of mean decoding for the VPd. For each neuron, performance is 

expressed as the fraction of the performance obtained at the optimal timescale for the neuron. 

Error bars represent standard error of the mean. The difference between the performance of 

the rate code (q=0) and the temporal code (q=25/s, the worst performance of temporal codes) 

is significant with p=1.01e-07 according to the non-parametric Wilcoxon Signed Rank Test. 

(E) Distribution of optimal cost across the same population of neurons. The median value is 

q=100/s (corresponding to a relevant timescale of 2/q=20 ms) and interquartile range goes 

from q=50/s to q=175/s (from 40 to 12 ms). 
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