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Interacting fermions in one-dimensional disordered lattices: Exploring localization and transport
properties with lattice density-functional theories

V. Vettchinkina, A. Kartsev, D. Karlsson, and C. Verdozzi
Mathematical Physics and European Theoretical Spectroscopy Facility (ETSF), Lund University, 22100 Lund, Sweden

(Received 6 April 2012; published 11 March 2013)

We investigate the static and dynamical behavior of one-dimensional interacting fermions in disordered
Hubbard chains contacted to semi-infinite leads. The chains are described via the repulsive Anderson-Hubbard
Hamiltonian, using static and time-dependent lattice density-functional theory. The dynamical behavior of our
quantum transport system is studied using an integration scheme available in the literature, which we modify via
the recursive Lanczos method to increase its efficiency. To quantify the degree of localization due to disorder and
interactions, we adapt the definition of the inverse participation ratio to obtain an indicator which is suitable for
quantum transport geometries and can be obtained within density-functional theory. Lattice density-functional
theories are reviewed and, for contacted chains, we analyze the merits and limits of the coherent-potential
approximation in describing the spectral properties, with interactions included via lattice density-functional
theory. Our approach appears to be able to capture complex features due to the competition between disorder
and interactions. Specifically, we find a dynamical enhancement of delocalization in the presence of a finite bias
and an increase of the steady-state current induced by interparticle interactions. This behavior is corroborated
by results for the time-dependent densities and for the inverse participation ratio. Using short isolated chains
with interaction and disorder, a brief comparative analysis between time-dependent density-functional theory
and exact results is then given, followed by general concluding remarks.

DOI: 10.1103/PhysRevB.87.115117 PACS number(s): 31.15.ee, 72.15.Rn, 72.10.Bg, 71.10.Fd

I. INTRODUCTION

In many physical phenomena, practical limitations hinder
a complete knowledge of all the degrees of freedom involved.
Nanoscience has adopted such apparent shortcoming as its
central paradigm, by exploiting the notion of a small system
coupled to a macroscopic environment. A case in point is
represented by nanoscale transport phenomena, where two
(or more) macroscopic leads are connected to small central
devices (quantum constriction).1,2

Such devices, whose sizes range from that of few atoms
(as in short nanowires or small molecules) to that of several
repeated large molecular units, attract scientific interest be-
cause they are seen as possible candidates for novel electronic,
spintronic, or quantum computation devices, to mention a few.3

This, in turn, requires a thorough understanding and control of
the decoherence processes which can affect carrier propagation
and manipulation in the device region.

In this work we consider two of such processes, namely
disorder and interparticle interactions (thus leaving out other
important decoherence mechanisms, e.g., lattice vibrations).
How interactions and disorder affect the conduction properties
of materials has been intensively investigated over several
decades,4–16 and significant progress has been made. However,
some issues remain to a considerable extent open, e.g., the
real-time dynamics of samples with disorder and interactions.

Starting with the seminal paper by Anderson,4 lattice
models have had an eminent place in the study of disordered
systems with and without interactions. While a large fraction
of the literature on disordered interacting lattice models
concentrates on the equilibrium regime (for both finite and
extended systems), more recently the time-dependent proper-
ties have also been examined, primarily for finite samples.17,18

In between the finite/infinite-system categories, a third one is

represented by small disordered samples connected to semi-
infinite homogenous reservoirs,19 of relevance to quantum
transport phenomena.

This paper looks into some aspects of the transport
properties of 1D interacting fermions in disordered lattice
systems, using static20 and time-dependent density-functional
theory21 (DFT and TDDFT, respectively) in the lattice
version. Static and time-dependent DFT are, in principle,
exact reformulations of the (time-dependent) many-body
problem,22 where the key variable is the one-particle density
n, and a central ingredient is the exchange-correlation (XC)
potential vxc (recent comprehensive reviews of the subject are
Refs. 23–25). The XC potential embodies the complexities of
the many-body problem. In this contracted description, vxc is a
highly nontrivial functional of the density (in TDDFT, where
time enters explicitly into the formulation, such functional
dependence includes the entire history of the density n, i.e.,
memory effects). In general, the exact vxc is not known,
and approximations are introduced. A simple but not always
adequate prescription is the so-called (adiabatic) local density
approximation, where the XC potential depends only on the
local (time-dependent) density. This amounts to neglecting
nonlocality in space (and memory effects in the TD case) in
vxc. As a result of this oversimplification, in some practical
applications an accurate description of dynamical interparticle
correlations may be lacking.

The application of static density-functional theories to
lattice models started almost 30 years ago,26–29 and in the
last decade this approach has been further developed.30–39

On the other hand, the use of lattice TDDFT to describe
the nonequilibrium dynamics of Hubbard-like models is a
rather new topic40–43; firm conceptual ground was initially
established for approaches based on lattice bond currents,44–46
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while a rigorous formulation using the density as the basic
variable47 has been provided only very recently.

After the above, somewhat lengthy, considerations, we
can now define the motivations behind this work and the
chosen methodology. Our focus is on finite chains contacted to
semi-infinite leads, with short-range interactions and disorder
present only in the chains (the “device”). Even within these nar-
row boundaries, the issues which can potentially be addressed
are many, but we only touch upon a few of them and go into no
great detail. In this respect, our work is somewhat exploratory
in character, since we also describe some methodological
developments that we found necessary when using (TD)DFT
for disordered lattice systems in the quantum transport regime.
Concerning the chosen methodology, we note that, compared
to other lattice approaches, lattice (TD)DFT is well suited
for any dimensionality and is relatively inexpensive from the
computational point of view (since it deals with single-particle
orbitals). These are attractive features when, for example,
one needs to perform configuration averages of time-evolved
quantities in the long-time limit (such as when approaching
the steady-state regime in a quantum transport setup with
disordered samples).

The outline of the paper is as follows. In Sec. II, we
describe the lattice model system that we employ in our
work. In Sec. III, we present the lattice (TD)DFT formalism
and describe how to obtain the XC potential from the exact
solution of the one-dimensional (1D) Hubbard model. This
is accompanied by a review of the inherent literature to
illustrate the developments and applications that have occurred
so far within this approach. In Sec. IV, which deals with
disorder, we first discuss the inverse participation ratio; then
we introduce a formulation for contacted chains based on the
coherent-potential approximation and DFT. In Sec. V we start
by briefly reviewing lattice TDDFT approaches to quantum
transport. Then we present in some detail a method recently
proposed in the literature,48 followed by a description of our
modifications to it, to increase its efficiency. Some technical
details relative to Secs. IV and V are relegated to Appendices
A and B. In Sec. VI, we report and discuss our results for static
and nonequilibrium regimes. Our conclusions are in Sec. VII.

II. THE MODEL

In standard notation, the lattice systems considered in this
paper are described by the following Hamiltonian:

H = −
∑

σ

∞∑
l=−∞

Vl,l+1(a†
lσ al+1,σ + H.c.)

+
∑

σ

L∑
l=1

[
wl(τ ) + U

2
n̂l−σ

]
n̂lσ + bS(τ )

∑
l<1;σ

n̂lσ

+ bD(τ )
∑

l>L;σ

n̂lσ . (1)

Equation (1) describes a central chain of length L (the lattice
sites with 1 � l � L) connected to a left and a right 1D lead
(sites with l < 1 and l > L, respectively). The third and fourth
terms in Eq. (1) represent the time-dependent bias in the leads
(τ is the time variable), which is applied at time τ � 0 [often, in

the literature, the leads are also referred to as the source (S) and
drain (D), hence the subscripts S,D in the bias terms in Eq. (1)].
For the contacted chain, the hopping term Vl,l+1 = V always;
i.e., we employ transparent boundary conditions (hereafter,
V ≡ 1 is taken as the energy unit). The Hamiltonian of the
isolated chain is obtained from the general one by putting
V0,1 = VL,L+1 = 0 in in Eq. (1) and retaining only the sites
labeled by 1 � l � L. Looking more closely to the chain part
of the Hamiltonian, we have Hubbard-like interactions (the
term proportional to U ; we set U > 0) and time-dependent
on-site energies wl(τ ), which is convenient to separate into
static and time-dependent parts: wl(τ ) = εl + vl(τ ). In the
presence of disorder, the εl’s are distributed according to some
disorder probability distribution. In this work, we use primarily
the box disorder distribution, i.e., εl ∈ [−W/2,W/2], but,
we sometimes consider binary disorder, where εl = ±W .
In both cases, W fixes the strength of the disorder. The
chain Hamiltonian is a finite-size realization of the so-called
Anderson-Hubbard model (AHM),10 one of the most used
models to study strongly correlated and disordered systems.16

The AHM generalizes the standard Hubbard Hamiltonian49 to
inhomogeneous (and, in our case, possibly time-dependent)
situations. That is, V̂(τ ) ≡ ∑

lσ vl(τ )n̂lσ describes a local (in
space and time), time-dependent potential in the chain. In
the static case (i.e., before the systems start to time evolve),
all vl(τ ) = 0. Furthermore, the usual Hubbard model for the
chain49 is recovered when wl(τ ) = 0, while, when U = 0 but
εl �= 0, the chain is described the so-called Anderson model of
disorder.4

III. (TD)DFT FOR LATTICE MODELS

A. General aspects of lattice (TD)DFT

A DFT based on the site occupation numbers nR was
introduced more than two decades ago to describe some
ground-state properties of the Hubbard model.26–28 An exact
LDA (based on the Bethe ansatz) for the inhomogeneous
1D Hubbard model was first considered in Ref. 29. Further
significant progress came when an explicit and simple ex-
pression for the XC functional based on the Bethe ansatz
was provided30 and practically used to investigate different
inhomogeneous Hubbard-type models. In subsequent work,
The LDA based on the Bethe ansatz for vxc was scrutinized
against exact results,30–32,50,51 providing energies, particle
densities, and entropies with an accuracy within a few percent
(for alternative DFT-like formulations on the lattice problem,
see, e.g., Refs. 52–54).

Recently, lattice DFT has also been used to determine
the polarizability of the 1D Hubbard model,55 the effect
of surfaces,56 and also to study the entanglement entropy
of the Hubbard model.51 Furthermore, explicit analytical
expressions for the XC potentials in small clusters can be
found in Ref. 57, while the role of the temperature on
vxc has been discussed in Refs. 38,39,58. Lattice (TD)DFT
has also been used to investigate ultracold atoms loaded on
optical lattices.32,39,43,59–62 These systems make it possible
to study different ground-state and nonequilibrium scenarios
for the Hubbard model63 with high accuracy (because a
precise tunability of the lattice parameters is possible) more
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directly and easily than in solid-state experiments. In 2D,
the Hubbard model has been investigated via DFT on the
graphene lattice.64 To date, the simple cubic lattice is the only
3D case considered in the literature,62 with the ground-state
energy of the uniform system computed within dynamical
mean field theory (DMFT).65,66 Differently from the 1D case,
here a discontinuity in vxc appears only for U > UMott

c , a DFT
description of the onset of the Mott-Hubbard metal-insulator
regime at a finite U .

Very recently, lattice TDDFT has been rigorously for-
mulated as a Cauchy problem for a nonlinear Schrödinger
equation,47 and both uniqueness and v0-representability the-
orems have been demonstrated (for early discussions of v0

representability on the lattice, see Refs. 40–42). In this
respect, it may be worth noting that a direct adaptation
of the Runge-Gross formulation21 to the lattice case is not
possible44 (historically, rigorous formulations on the lattice
used at first the bond-current, instead of the density, as the
basic variable44–46). Lattice (TD)DFT has also been considered
for quantum transport geometries: This aspect is examined in
Sec. V below.

B. Formulation

In this paper, we confine ourselves to the 1D case; we review
here the actual formulation for spin-independent (TD)DFT. In
standard DFT notation, we can write for the ground-state total
energy28,29:

E[n,vext] ≡ T0[n] + EH [n] + Exc[n] +
∑

i

vext(i)ni, (2)

where vext(i) ≡ εi is the static external field, and T0[n]
and EH = 1

4

∑
i Uin

2
i are, respectively, the noninteracting

kinetic energy and the Hartree energy, with ni = ∑
σ niσ . To

perform a local density approximation, Exc is obtained from a
homogeneous reference system (Hubbard model):

Exc = E − T0 − EH . (3)

To obtain vxc, one takes the derivative of the XC energy per
site exc ≡ Exc/L with respect to the density (in the general
case, this should be a functional derivative):

vxc = ∂exc(n,U )

∂n
. (4)

For bipartite lattices, exc(n,U ) = exc(2 − n,U ) in the entire
density range [0,2] and thus vxc(n) = −vxc(2 − n). Finally, a
local density approximation is defined:

vxc(i) = vxc(ni). (5)

In ground-state DFT-LDA calculations, the XC potential
obtained in this way is used to solve self-consistently the
Kohn-Sham (KS) equations

(t̂ + v̂KS)ϕκ = εκϕκ, (6)

where t̂ denotes the matrix for the single-particle hop-
pings between nearest-neighboring sites and ϕκ is the κth
single-particle KS orbital, with ni = ∑

κ∈occ |ϕκ (i)|2. The
effective potential matrix is diagonal: (v̂KS)ii = vKS(i) =
vH (i) + vxc(i) + vext(i), with vH (i) = 1

2Uini being the Hartree
potential.

If DFT can be a viable route to describe the ground-
state properties of Hubbard-type models, then the lattice KS
equations could be propagated in time, to get a TDDFT de-
scription of the dynamics of lattice systems. For 1D Hubbard-
type Hamiltonians, work in this direction was performed
in Refs. 67–69 for the linear response regime. A TDDFT
approach to the real-time dynamics of the Hubbard model
out of equilibrium was first considered in Ref. 41, where exact
results for the density and the XC potentials were compared to
those obtained by solving the time-dependent KS equations,

(t̂ + v̂KS(τ ))ϕκ (τ ) = i∂τϕκ (τ ). (7)

In general, vKS(i,τ ) = vH (i,τ ) + vxc(i,τ ) + vext(i,τ ) depends
nonlocally on the density via vxc. The adiabatic local density
approximation (ALDA)70 to the XC potential is then obtained
with the prescription vALDA

xc (i,τ ) ≡ vLDA
xc (ni(τ )), where the

TD density is given by ni(τ ) = ∑occ
κ |ϕκ (i,τ )|2. An ALDA for

the Hubbard model was first introduced in Ref. 41, with the
treatment limited to spin-compensated systems, while the spin-
dependent case was presented in Ref. 43, where TDDFT results
and time-dependent DMRG (tDMRG) results were compared.

For finite systems, a study more focused on the role of non-
local and memory effects beyond the ALDA was performed
in Ref. 71, via the ALDA, exact, and Kadanoff-Baym time
evolution in small cubic Hubbard clusters. The Kadanoff-
Baym equations (KBEs), with a many-body perturbation-
theory approach to the self-energy, make it possible to take
into account nonlocality and memory effects on equal footing.
Such comparisons showed that an ALDA coming from the
appropriate (strongly correlated) reference system can perform
well in many instances, (especially for slow perturbations) but,
quite generally, it will fail for fast perturbations or very strong
interactions.

We conclude this section with a remark about notation:
The one adopted throughout the paper is fully consistent with
the continuum case, i.e., as if the Hubbard interaction was
treated as spin-independent: Û = 1

2

∑
i Ui(n̂2

i − n̂i). However,
when the interaction is rewritten as in Eq. (1) the interaction
is effectively kept among opposite spins (i.e., treated as
spin-dependent)72 and the exchange has been removed at the
Hamiltonian level. Thus, exc and vxc in Eqs. (3) and (4) contain
only correlation, and the Hartree plus exchange potential is
Uni/2. More aptly, our DFT quantities could have been called
ec and vc but, following a common practice in the literature on
lattice (TD)DFT, we still denote them by exc and vxc.

C. Obtaining vxc for the 1D Hubbard model

According to Eq. (3), to construct a LDA in 1D we need
the exact ground-state energy of the infinite homogeneous
1D Hubbard model, where the hopping Vl,l+1 ≡ V and the
interaction is present at all sites. This requires29,30,32,55 to
solve the coupled Bethe ansatz equations for the charge and
spin distribution functions [ρ(x) and σ (x), respectively].73

An ALDA is then easily obtained,41,43 making vxc become a
function of the instantaneous local density. In the nonmagnetic
case considered here (where the spin-up and spin-down
densities are equal, i.e., n↑ = n↓ = n/2), the Bethe ansatz
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equations read (x,y denote wave-vector variables)

ρ(x) = 1

2π
+ cos x

π

∫ +∞

−∞

u/4

(u/4)2 + (y − sinx)2
σ (y)dy,

(8)

σ (y) = 1

π

∫ +Q

−Q

u/4

(u/4)2 + (y − sinx)2
ρ(x)dx

− 1

π

∫ +∞

−∞

u/2

(u/2)2 + (y − y ′)
σ (y ′)dy ′, (9)

with u ≡ U/V . The functions ρ(x) and σ (x) are related to the
charge n = n↑ + n↓ and spin-down n↓ densities via∫ +Q

−Q

ρ(x)dx = n,

∫ +∞

−∞
σ (y)dy = n↓, (10)

from which the integration limit Q is determined. The ground-
state energy density for n↓ = n↑ is given by

e(n↑ = n↓,U ) = −2V

∫ +Q

−Q

ρ(x) cos xdx. (11)

Equations (8)–(11) are the prescription used in this work
to determine exc. The numerical solution of Eqs. (8) and
(9) was obtained via a self-consistent procedure, with Q

adjusted at each iteration via the normalization condition
in Eq. (10). Numerical integrations were performed with
a 128-point Gauss-Legendre quadrature and, for each U ,
exc(n,U ) was obtained at the nodes of a uniform mesh for
the density n. To obtain vxc at each node of the density mesh,
we computed δexc/δn with a 5-point numerical derivative.
To calculate vxc at off-node densities, a linear interpolation
between the the closest nodes was employed. The vxc thus
obtained is discontinuous at half filling, as it should be
for the homogeneous 1D Hubbard model; however, for a
finite interacting system contacted to noninteracting leads, the
discontinuity of the exact vxc becomes slightly smoothed (this
was indicated in Ref. 74, using support from small Anderson
clusters, and fully discussed in Refs. 58,75–77). According to
these considerations, and also for numerical convenience, the
XC potential was slightly smoothed in our actual calculations.

IV. THE ROLE OF DISORDER

Methodologically, the way we numerically deal with
disorder effects in this paper is straightforward, since in most
cases we limit our analysis to the arithmetic (configuration)
average of specific quantities: the inverse participation ratio
(IPR), the density, and the current density. In most cases,
the numerical configuration averages are performed over an
incomplete set of configurations. Sections IV A and IV B
constitute an exception. In these sections, which deal with
ground-state quantities, and for the case of binary disorder,
we also perform complete numerical averaging over all the
configurations to provide benchmark results. For brevity, in
the following, complete numerical averaging is referred to as
“exact averaging.”

A. The inverse participation ratio

A quantity often used as an indicator of localization in a
system is the so-called IPR ζ . The original definition78 of ζ , in-

troduced for noninteracting disordered systems, characterizes
a given one-particle quantum state ψ as follows:

ζ0 =
M∑
i

n2
i

/ (
M∑
i

ni

)2

, (12)

where ni = |ψi |2 is the density at site i and the sums extend
to all the sites M in the system. For completely localized
states (when ψ �= 0 at only one site) we get ζ0 = 1, while
ζ0 is smallest for delocalized states. To deal with interacting
systems, suitable modifications of Eq. (12) are, for example,

ζ1 =
M∑
i

�n2
i

/ (
M∑
i

�ni

)2

, (13)

ζ2(ω) =
M∑
i

n2
i (ω)

/[
M∑
i

ni(ω)

]2

. (14)

The use of ζ1 is convenient when dealing with small systems
with discrete many-body levels.79 In this case, for N particles,
�ni is the difference between the ground-state densities with
N + 1 and N particles, a clear operational prescription for
finite systems. Using ζ2 (Ref. 80) amounts to considering the
density of states as obtained from the one-particle propagator,
since ni(ω) = − ImGii(ω)/π . It should be noted that most
investigations of the IPR are done numerically, for finite
systems. Using ζ2 requires introducing a finite artificial
broadening γ , and employing a finite-size scaling analysis,
to assess the role of γ .81–83

In this work, we study finite disordered systems (short
chains) contacted to semi-infinite homogenous leads. While
the definition of IPR via Eq. (14) is, in principle, suitable, for
our lead-device-lead system we are faced with two issues.
(i) A sum is implied over all the sites M in the system,
including the leads; this considerably increases the difficulty
of the calculation. (ii) More fundamentally, the IPR defined
in this way can reflect the properties of the leads rather than
the actual systems, since the lead contribution can dominate
the sums in Eq. (14). In view of this, we suggest the following
possible alternative definition of the energy-dependent IPR:

ζ3 =
∑
i∈C

n2
i (ω)

/[∑
i∈C

ni(ω)

]2

; (15)

i.e., the sum is confined to the region of the device. This mod-
ified definition of the IPR is further analyzed and compared to
the standard one in Sec. VI A.

B. The coherent potential approximation

Among the possible theoretical approaches to disorder,
an important place is occupied by the coherent-potential
approximation84–86 (CPA), which introduces a simplified,
approximate treatment of disorder averaging.85–88 A major
appeal of CPA in its simplest formulation is the pedagogical
value, a relative analytical simplicity and ease of numerical
implementation, together with the ability to give results for
several quantities (e.g., ground-state energies, transport prop-
erties, phase stability, photoemission), which are generally
in broad agreement with experiment. Furthermore, the CPA
becomes exact in the D = ∞ limit89; in finite dimensions,
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it has been numerically tested against accurate numerical
averaging90 and it has also been used in conjunction with
many-body perturbation theory (see, e.g. Ref. 91). It has also
been shown92 that, when possible, numerical averaging based
on small optimized supercells can give results considerably
superior to the CPA. Furthermore, it should be pointed out
that the CPA shows significant limitations when describing
quantities where spatial correlations among different sites
cannot be neglected. A discussion of the properties of CPA
(its limits of validity, extensions, applications, etc.) is outside
the scope of this work, and here we provide a short derivation
which combines CPA and lattice DFT for quantum transport
geometries. To this end, we must slightly modify the standard
treatment86–88 and adapt it to the case of a finite disordered
sample in the presence of homogeneous semi-infinite contacts
and within a lattice DFT context. We consider the case of
diagonal disorder and specialize to a finite sample (chain of
length L) of a random binary alloy, with species A and B
and concentrations cA = NA/L and cB = 1 − cA, respectively.
In the quantum transport geometry we study, the chains are
connected to noninteracting leads, as in Sec. V. For such
chains, complete disorder averaging for a given concentration
requires ( L

NA
) configurations, and already for L = 14,15 (as

considered in this work) this number is rather large. In fact,
performing time-dependent quantum transport calculations
based on complete numerical averaging is computationally
very demanding, and one is bound to use a much reduced (and
incomplete) numerical sampling. This latter strategy is the one
mainly adopted in the paper. To assess the scope of CPA, we
limit ourselves to the ground state, when no bias is applied.
Numerical results relative to this formulation are presented in
Sec. VI B.

In matrix notation (in the site indexes) and in the absence
of disorder and magnetic effects, the retarded one-body KS
propagator for a chain connected to a left and a right lead can
be written as

ĝKS(ω) = 1

ω1̂ − ĤKS − σ̂L(ω) − σ̂R(ω)
, (16)

where the matrix indexes of gKS label the sites of the chain,
σ̂L(R) is the self-energy operator from the left (right) lead,93

and ĤKS = t̂ + v̂KS accounts for the kinetic and potential
KS operators. In the presence of binary diagonal disorder
Ĥ → ĤKS + V̂ , where V̂ = ∑

i εi n̂i . Here, n̂i = ∑
σ n̂iσ . For

εi , the probability distribution is P (εi) = cAδ(εi − εA) + (1 −
cA)δ(εi − εB). The CPA provides a prescription to determine
the effect of V̂ . In an exact fashion, we can equivalently
write for the propagator 〈GKS〉 averaged over all disorder
configurations (the local dependence on ω is not shown):

〈ĜKS〉 = ĝKS + ĝKS �̂ 〈ĜKS〉, (17)

〈ĜKS〉 = ĝKS + ĝKS 〈T̂V 〉 ĝKS. (18)

(T̂V is the T matrix pertaining to a specific disorder configu-
ration V̂ : T̂V= V̂ + V̂ ĝKS T̂V .) Inserting Eq. (18) in Eq. (17),
and after some simple manipulations, we get

�̂ = 〈T̂V 〉[1 + ĝKS〈T̂V 〉]−1. (19)

In the CPA, the correlations among different scatterers are
taken into account by assuming an effective medium for

which the single site scattering is zero on average. To see
how, we start with a specific disorder configuration V̂ , for
which ĜKS = ĝKS + ĝKSV̂ ĜKS . Then, we subtract from both
sides the quantity �̂ĜKS (with �̂ yet to be specified).
This gives (ĝ−1

KS − �̂) = 1 + (V̂ − �̂)ĜKS and, if we choose
(ĝ−1

KS − �̂) = 〈ĜKS〉−1, i.e., as in Eq. (17), we finally get

ĜKS = 〈ĜKS〉 + 〈ĜKS〉(V̂ − �̂)ĜKS

= 〈ĜKS〉 + 〈ĜKS〉 (T̂V �) 〈ĜKS〉, (20)

where the T matrix T̂V � pertains to the energy- and
configuration-dependent potential V̂ − �̂, i.e., T̂V � = (V̂ −
�̂) + (V̂ − �̂)〈ĜKS〉T̂V � . Performing the average of Eq. (20)
over different configurations, we note that it must be 〈T̂V �〉 =
0, the key exact condition for the T matrix.

The CPA makes two assumptions: (i) �̂ is diagonal in
the site-indexes, �̂CPA

ij = δij�
CPA
i , and so is the perturbation

V̂ − �̂; (ii) instead of 〈T̂V �〉 = 0, one imposes a simpler
approximate constraint, i.e., that the average local T matrix
at the ith site is zero:

〈t(i)〉 = 0 = cA〈tA(i)〉 + cB〈tB(i)〉, (21)

where

tA(B)(i) = εA(B) − �CPA
i

1 − 〈ĜKS〉ii
[
εA(B) − �CPA

i

] . (22)

In contrast to the usual treatments,85–88 here all quantities in
Eq. (22) depend on the site index, since our system exhibits
no disorder in the leads. Very recently, and independently, a
similar formulation has been provided in Ref. 94.

Inserting Eq. (22) in Eq. (21), and performing simple
algebra, we arrive at an equation for �CPA

i :

�CPA
i − εA = (1 − cA)(εB − εA)

1 − 〈ĜKS〉ii
[
εB − �CPA

i

] . (23)

This equation must be solved for each site in the chain
once the local propagator 〈ĜKS〉ii is known. The latter is,
in turn, determined from Eq. (16), after the replacement
ĤKS → ĤKS + �̂CPA is made, and after the dependence of
ĤKS on the densities has been taken into account via

ni = −
∫ μ

−∞
Im〈ĜKS(ω + i0+)〉ii dω

π
, (24)

with μ the chemical potential (here, as in the rest of the paper,
we work at zero temperature). While it is certainly possible
(and often necessary) to improve over the CPA,95 in this work
we aim at qualitative insight, and in Sec. VI B we present
results obtained with the simple local formulation of CPA and
the self-consistent set of equations Eqs. (16), (22), and (24).96

V. TIME-DEPENDENT QUANTUM TRANSPORT (TDQT)
AND TDDFT

Theoretical approaches to quantum transport can be broadly
grouped according to different criteria, e.g., if they are
based on a steady-state or time-dependent formulations,
if they use ab initio or model Hamiltonian methods, or
according to which mathematical technique is employed:
nonequilibrium-propagator, linear-response, wave-function-
scattering, etc. Here we consider time-dependent quantum
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transport (TDQT), which makes it possible to follow the
system during its time evolution after a bias has been applied.
In this way, steady-state, transient, and ac currents can all be
considered on equal footing and, in the presence of dissipation,
history dependence (memory effects) are also accounted for.
A viable strategy to TDQT is to consider large but finite
systems.97 Via an initial spatial imbalance of particles, a
quasi-steady-state current can be established. Recently this
approach has also been used to describe bosonic and fermionic
transport of ultracold atoms in 1D optical lattices.98,99

A different formulation, the one used here, considers a cen-
tral region initially connected to semi-infinite leads.100–102 This
“contacted” approach has been used to introduce a TDDFT
description of TDQT,101,103 and the practical applicability of a
TDDFT scheme has also been shown.48 Furthermore, classical
nuclear degrees of freedom have also been included in the
approach.104

In a TDDFT approach to TDQT,101,103 a key quantity is the
XC potential. In Ref. 105, a combination of DMRG and lattice
DFT was used to gain insight into the exact ground-state XC
functionals for a correlated-electron model system coupled to
external reservoirs. A comparison of lattice DFT and DMRG
in transport has also been provided in Ref. 106, while a study
of the role of spin in the XC potential can be found in Ref. 107
(for treatments based on ground-state current DFT for lattice
models, see Refs. 108,109).

The effect of a discontinuity in vxc in a TDDFT description
of TDQT was examined within lattice TDDFT in the ALDA
approximation.74 Following the time evolution of a single
Anderson impurity attached to two biased leads, a dynamical
notion of the Coulomb blockade was then presented. This
emerges also from a description based on time-dependent,
bond-current DFT.44 In Ref. 74, it was also suggested that
for a single Anderson impurity, the exact vxc is a sharp (at
half filling) but smooth function of the density (the role of
the discontinuity in vxc has further been investigated in Ref.
110). Subsequently, a comparison between ALDA, tDMRG,
and KBE for TDQT in lattice systems was presented in
Ref. 111, showing that the ALDA can give accurate densities
but overestimated currents, due to the neglect of nonlocal
effects in the leads. (A characterization of the time-dependent,
exact XC potential in finite-size quantum transport geometries
was given in Ref. 112.) Finally, we mention that, recently,
different research groups58,75,113 independently pointed out
that suitable XC potentials permit a (TD)DFT description of
the Kondo effect and also examined in detail the broadening
of the derivative discontinuity of the XC potential.58,75–77

A. Time evolution for quantum transport

The time-dependent scheme used in this work is the one
developed in Ref. 48 and, as in Ref. 74, interactions in
the central region are treated via an ALDA from the Bethe
ansatz.41 For disordered systems, where large central regions
and configuration averages may be needed, such an algorithm
may be computationally expensive. As described in Sec. V B,
a convenient way to enhance its numerical efficiency is to
use the Lanczos recursion for time evolution114 (for a quick
introduction to the Lanczos technique, see Appendix A).

We start with a concise description of the original
algorithm,48 as background to our Lanczos-adapted scheme,
and we specialize to 1D geometries. The notation in this and
the next section is closer to the one in Ref. 48 and thus differs
from that in the rest of our paper.

The Hamiltonian we consider is Htot (t) = Hel + �(t),
where �(t) is the external perturbation. In a TDDFT approach,
the initial, ground state is a single Slater determinant |�g〉. It
is useful to divide the (1D) space into three regions. With s the
site label, we have the region L [corresponding to the left lead,
with s � −(M + 2)], the central region C (with |s| � M + 1,
i.e., the device region contains 2M + 3 sites), and the region R

[corresponding to right lead, with s � (M + 2)]. The general
structure of any bound, extended, or resonant one-particle
eigenstate ψ in the Slater determinant |�g〉 can be written
as

ψ(s) =

⎧⎪⎨
⎪⎩

L+e−ikl s + L−eikl s , s � −M − 2,

ψ(s), |s| � M + 1,

R+eikr s + R−e−ikr s , s � M + 2.

(25)

To describe quantum transport, one needs to evolve in time
the ground-state configuration |�g〉, i.e., each one of the
single particle eigenstates ψ above. Introducing the projection
operators PL,C.R (for example, PL = ∑

s∈L |s〉〈s|), we can
write (β = L,C,R), for the generic single-particle state,

|ψ〉 =
∑

β

|ψβ〉, |ψβ〉 = Pβ |ψ〉. (26)

In the same way, we can project the Hamiltonian in the different
regions

H =
∑
ββ ′

Hββ ′ , Hββ ′ ≡ PβHPβ ′ . (27)

Separating the contribution from the leads in �, the set of
one-particle equations becomes

i
d

dt
|ψ(t)〉 = [H(t) + �leads(t)] |ψ(t)〉, (28)

with H(t) = Hel + �CC(t), where Hel is the electron one-
particle Hamiltonian and �CC(t) is the external potential pro-
jected in the central region C. Assuming metallic electrodes,

�leads(t) =

⎧⎪⎨
⎪⎩

δs,s ′�L(t), s � −M − 2,

0, s � |M + 1|,
δs,s ′�R(t), s � M + 2.

(29)

In the numerical time propagation, the time is discretized: tm =
2mδ, where δ is the time step, m is an integer, and the explicit
prefactor 2 is introduced for convenience in the formulas. In
Ref. 48, the one-particle eigenstates are propagated from tm
to tm+1 using a generalized Crank-Nicholson scheme. For the
time evolution of each one of the one-particle states in |�g〉,
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one gets48

(1 + iδH(m))
1 + i δ

2�
(m)
leads

1 − i δ
2�

(m)
leads

|ψ (m+1)〉

= (1 − iδH(m))
1 − i δ

2�
(m)
leads

1 + i δ
2�

(m)
leads

|ψ (m)〉, (30)

where |ψm〉 ≡ |ψ(tm)〉 and

H(m) = Hel + 1
2 [�CC(tm+1) + �CC(tm)] , (31)

�
(m)
leads = 1

2 [�leads(tm+1) + �leads(tm)]. (32)

Using Eqs. (26) and (27), and after some algebra, the closed
equation for the time evolution in the central region is

∣∣ψ (n+1)
C

〉 = 1C − iδH(n)
eff

1C + iδH(n)
eff

∣∣ψ (n)
C

〉

− 2iδ
∑

α=L,R

�(n)
α

w
(n)
α

(∣∣γ (n)
α

〉 + ∣∣ζ (n)
α

〉)
, (33)

where

w(n)
α = 1 − i δ

2�(n)
α

1 + i δ
2�

(n)
α

, (34)

�(n)
α =

n∏
j=0

[
w(j )

α

]2
, (35)

and

H(n)
eff = H(n)

CC − iδ
∑

α=L,R

HCα

1

1α + iδHαα

HαC

= H(n)
CC − iδ

∑
α=L,R

B(0)
α . (36)

The B(0)
α matrices have only one nonzero element,

[
B(0)

α

]
s,s ′ = b(0)

{
δs,−M−1δs ′,−M−1, α = L,

δs,M+1δs,M+1, α = R,
(37)

with b(0) = −1+√
1+4δ2V 2

2δ2 and V the hopping parameter in the
leads. The expressions for the source state |γ (n)

α 〉 and the
memory state |ζ (n)

α 〉 are48:∣∣ζ (n)
α

〉 = Z(n)
α

1

1C + iδH(n)
eff

|uα〉, (38)

∣∣γ (n)
α

〉 = G(n)
α

1

1C + iδH(n)
eff

|uα〉, (39)

where |uα〉 is a unit vector such that

〈s|uα〉 =
{

δs,−M−1, α = L,

δs,M+1, α = R.
(40)

The scalar quantities Z(n)
α and G(n)

α , α = L,R are given by

Z(n)
α = δ

2i

n−1∑
j=0

w
(j )
α

�
(j )
α

(b(n−j ) + b(n−j−1))

× (〈
uα

∣∣ψ (j+1)
C

〉 + 〈
uα

∣∣ψ (j )
C

〉)
, (41)

G(n)
α = (α+eizα (M+2) + α−e−izα (M+2))V

(1 − 2iδ cos(zα))n

(1 − 2iδ cos(zα))n+1

+ (α+eizα (M+1) + α−e−izα (M+1))

×iδ

n∑
j=0

(1 − 2iδ cos(zα))n−j

(1 − 2iδ cos(zα))n+1−j
(b(j ) + b(j+1)) (42)

and zα = kl for α = L, while zα = kr for α = R. For n �
2, the quantities b(n) in Eqs. (41) and (42) are obtained by
recursion,

b(n) = b(1)b(n−1)

b(0)
− δ2 b(0)b(n−2)

1 + 2δ2b(0)

−δ2
n−1∑
j=1

(b(j ) + b(j−1) + b(j−2))b(n−2−j )

1 + 2δ2b(0)
, (43)

and b(n<0) = 0,b(1) = 1−2δ2b(0)

1+2δ2b(0) b
(0) and b(0) the same as in

Eq. (37).

B. Lanczos-adapted algorithm

The basic idea behind the algorithm discussed in the
previous Section is to discretize the time axis via the Crank-
Nicholson algorithm before performing the partitioning in L,
C, and R regions.48 One could think of doing the same using
the Lanczos algorithm for the time propagation114 (the method
is quickly reviewed in Appendix A); however, noncommuting
parts of the Hamiltonian would appear in the exponent this
time, rendering formal manipulations more involved. Here, we
consider a simple shortcut that, while improving the numerical
efficiency of the algorithm of Sec. V A, has the same degree
of accuracy (i.e., it is second order in δ) but avoids working
with the Lanczos scheme before the partitioning.115 Looking
at Eq. (33), we notice that the explicit action of H(n)

eff occurs in
two specific terms:

|χ1〉 = 1C − iδH(n)
eff

1C + iδH(n)
eff

∣∣ψ (n)
C

〉
, (44)

|χ2〉 = 1

1C + iδH(n)
eff

|uα〉, (45)

where |χ1〉 is the contribution to |ψ (n+1)
C 〉 from the central

region and |χ2〉 enters the expressions for the source and
memory states. For |χ1〉, since δ → 0, one can write, up to
order two in δ

|χ1〉 = 1C − iδH(n)
eff

1C + iδH(n)
eff

∣∣ψ (n)
C

〉 ≈ e−2iδH(n)
eff

∣∣ψ (n)
C

〉
. (46)

For the case of |χ2〉, we define the following quantities:

�± = 1 ± √
3

2
δ, (47)

which permit to rewrite |χ2〉 as

|χ2〉 = [ − 1 + e−iH(n)
eff �+ + e−iH(n)

eff �−
]|uα〉 + O(δ3). (48)

If necessary, one can go to higher orders, by imposing
that (1 + δx)−1 = A + ∑

k eakδx and finding the coefficients
A,{ak} by comparison of the two expressions order by order
in δ (in general, the {ak} will be complex). We note that
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the same Lanczos sequence of basis vectors is required for
both exponentials in Eq. (48). All terms which appear in the
propagation scheme of Sec. V A and that involve H(n)

eff , have
been re-expressed in terms of exponentials, so that Lanczos
propagation can be used; finally, since H(n)

eff is complex,
Eq. (36), it is convenient to split the exponentials; for small δ,

e−2iδH(n)
eff ≈ e−δ2 ∑

α B(0)
α e−2iδH(n)

CC e−δ2 ∑
α B(0)

α , (49)

e−i�±H(n)
eff ≈ e− δ

2 �±
∑

α B(0)
α e−i�±H(n)

CC e− δ
2 �±

∑
α B(0)

α . (50)

For the 1D case, the advantage is immediate: The B(0)
α in

Eq. (37) have only one nonvanishing entry and the outer
exponentials in Eqs. (49) and (50) reduce to scalars. We
expect that the splitting will still provide a simplification in
the 3D case. To summarize, on increasing the size of the
central region, our Lanczos adapted scheme becomes highly
convenient, potentially a significant advantage when dealing
with disordered and large samples.

VI. RESULTS

Recently, a nonperturbative study of finite Anderson-
Hubbard chains has been performed in terms of density matrix
renormalization group and a real-space version of DMFT.116

Using different indicators of delocalization, such as the
geometrically averaged LDOS and the IPR, the main outcome
of such nonperturbative calculations was a clear indication
of a tendency to delocalization in a range of U,W values in
the ground state of these chains. Can a similar behavior be
observed in shorter chains contacted to semi-infinite leads? To
address this issue, we present here ground-state and dynamical
results for short, isolated/contacted disordered, and interacting
chains. No spin-effects are considered; i.e., the systems are spin
compensated, and all applied potentials are spin independent.
The quantities we analyze are the on-site particle density,
the bond current, and the IPR. In general, we consider box
disorder, with on-site energies εl uniformly distributed in the
interval [−W/2,W/2]. In this case, configuration averages
will be done over a finite number of configurations. However,
we used binary disorder to discuss the IPR (Sec. VI A) and
the CPA (Sec. VI B), since, for short chains, exact averaging
can be done with a manageable number of configurations.
Further details of each set/type of calculation are provided in
the respective sections.

A. Changing the definition of the IPR

To analyze our definition of IPR, Eq. (15), we find it
convenient to consider binary (rather than uniform) disorder
in a noninteracting chain of L = 14 sites. For binary disorder,
choosing L small and even makes it possible (i) to consider
exactly the A50B50 alloy concentration and (ii) to perform
disorder averages exactly. The chain can be isolated or
contacted to two 1D leads (one at each end of the chain);
the leads can be finite or semi-infinite (their length is denoted
by Nld ). The total number of sites in the system is thus
M = L + 2Nld . We wish at this point to make a short technical
digression on the numerical calculation of the IPR. For the
energy-dependent IPR, we need the local density of states

(LDOS) at site(s) i:

ni(ω) = γ

π

∑
λ

|〈λ|i〉|2
(ω − Eλ)2 + γ 2

, (51)

where λ labels the one-particle eigenstates |λ〉 and eigenvalues
Eλ of the system. For infinite systems, Eq. (51) is not usable
directly, and one resorts to Green’s functions [see Eq. (16) in
Sec. IV B]. For finite systems, one can, e.g., use recursion
techniques,82 or, as done in this section, perform a direct
diagonalization of the disordered Hamiltonian. However, if the
IPR must be determined in a range of energies (i.e., for several
ω values), already for moderate system sizes M , the λ and i

sums in Eqs. (14), (15), and (51) become computationally
expensive. In Appendix B, we present a technique which
makes it possible to perform such nested summations in a
rather efficient way.

Results for the IPR according to the two definitions ζ2,
Eq. (14), and ζ3, Eq. (15), are shown in Fig. 1 (hereafter, ζ2

and ζ3 will be renamed IPRsystem and IPRC , respectively).
Calculations with IPRsystem are reported in panels (a), (c), and
(e). In all three panels, we see that on increasing the size Nld

of the (finite) leads, IPRsystem(ω) gets quickly reduced in the
region |ω| � 2, i.e., for the energy range for the extended states
in the system (results for larger Nld , not shown, confirm this
trend). Outside the band region, the decay of IPRsystem(ω) on
increasing Nld is much slower, and our numerical evidence,
together with arguments based on the large W limit, shows that
for larger Nld , IPRsystem(ω) vanishes everywhere for |ω| � 2
except at the energies of the localized states, where it takes the
corresponding IPR value. Thus, irrespective of the disorder
strength in the finite chain, in the limit of semi-infinite leads,
IPRsystem indicates delocalization for |ω| � 2. However, for
a large disorder, the chain becomes disconnected from the
leads, and this is missed in the vanishing IPRsystem, which
simply reflects almost everywhere the delocalized states in the
disconnected leads (as in most quantum transport treatments,
the leads are assumed to be homogeneous and noninteracting).

In panels (b), (d), and (f) of Fig. 1, we show results for
IPRC(ω); in this case, on increasing Nld , the IPR tends to a
finite value (the asymptotic value for when Nld → ∞), which
better reflects the fact that the localization in some region
of the system affects the system as a whole (we have also
verified that on increasing W , IPRC increases). Being a local
quantity, IPRC obviously depends on the size and the details
of the chain.

When interactions among particles are taken into account,
there is another point that is necessary to examine. This
aspect is specific to our approach to quantum transport, where
interactions are described within lattice (TD)DFT. Since the
KS system is just a fictitious system apt to reproduce the
true interacting density, a frequency-dependent IPR of the KS
system has actually little physical meaning. Thus, our final
proposed definition of IPR is

IPRKS
C =

∑
i∈C

[
nKS

i

]2
/ [∑

i∈C

nKS
i

]2

. (52)

Equation (52), which makes use of the actual particle density,
can also be used in the interacting and time-dependent cases
and thus is both conceptually and operationally well defined
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FIG. 1. (Color online) Disorder-averaged IPR (see main text for
the definitions) for a A50B50, noninteracting binary-alloy chain C with
L = 14 sites, contacted to infinite/finite leads. Complete disorder

averages were performed over ( L
NA

) = 3432 configurations. (a)–(f)
Energy-dependent IPR [Eqs. (14) and (15)]. Top-to-bottom panels
show cases with increasing disorder strength W , while left (right)
panels show results for an IPR evaluated by summing over the
entire system (only over the chain C), as in Eq. (14) [Eq. (15)].
The color/symbol coding in panel (a) [(b)], also applies to panels
(c),(e) [(d),(f)]. In panels (a),(c),(e), IPRsystem(ω) for infinite leads
(Nld → ∞) is not shown. In (a)–(f), all curves were obtained with a
small Lorentzian broadening γ , to have a minimum accuracy of 10−4

for IPRC(ω) when Nld → ∞ [black curves in panels (b),(d),(f)].
Panel (g): IPRKS

C obtained by summing only over the central region
[Eq. (52), solid lines] or over the entire system (circle, square, and
diamond symbols). Results are shown as function of the average
density/spin-channel and for three lead lengths Nld .

within (TD)DFT. IPRKS
C is also sensitive to localization and

tends to a finite value when the size of the leads tend to infinity,
as shown in Fig. 1. In panel (g), we show IPRKS

C for leads
of different lengths, as a function of the average density in
the system (

∑M
i=1 ni)/M (the average density is varied by

changing the number of occupied one-particle eigenstates of
the system with L + 2Nld sites).

We see that, on increasing the lead length, IPRKS
C tends

to a finite value on a progressively large interval of (average)
densities (on the scale of the figure, already for Nld = 100,300,
the corresponding IPRs coincide for n � 0.1). We also show
the density-dependent IPR when extending the sum to the
entire system. In this case, on increasing Nld , the IPR tends to
zero on an increasingly larger density region.

How to establish a rigorous link between localization
and IPRKS

C appears to be a nontrivial task. However, a

heuristic argument can be the following: For uniform density,
IPRKS

C = 1/L while, if the sums in Eq. (52) are extended
to all the M = L + 2Nld sites, then IPR = 1/M , i.e., much
smaller than 1/L. However, IPRKS

C is a measure of the spread
of the density values ni , and when states with (more) localized
character contribute to ni , then the variance of ni within
the chain C makes IPRKS

C > 1/L, which is thus suggestive
of localization. On the other hand, the contribution from C
become less relevant when the sum in Eq. (52) is extended
to all M sites, except for low densities (where states with
lower energy, and thus more localized behavior, are those
mostly contributing). Thus we expect that for a given W ,
IPRKS

C will be considerably larger than 1/L at low density,
will then decrease as the density increases (while still being
larger than 1/L) and will eventually become 1/L when the
density/spin-channel reaches 1 (i.e., the number of particle
equals 2M). When the sum is extended to all M sites, extended
states become relevant already at rather low density, and the
IPR tends tend much faster to 1/M . This behavior persists
when we introduce interactions at the DFT-LDA level, and is
consistent with localization trends as displayed by the behavior
of the currents (see Sec. VI C below).

The results in panels (a)–(g) are in terms of arithmetic
averages over the disorder configurations. For IPRKS

C (which
will be used in the rest of the paper), we have also considered
geometric averages over disorder, with results almost identical
to those in panel (g). This is discussed in detail in Sec. VI D.
Our emphasis in this and the following sections is on the
IPR as an indicator of localization. One could consider other
possibilities as well. For example, the linear conductance
could be examined, since this quantity is expected to decay
exponentially in the localized regime. (In the spirit of this
work, the conductance should be calculated in the KS
framework.)

The topic of KS conductances in lattice models has
been addressed in several works.58,75–77,105,112,113,117–119 These
studies show that for single-channel molecular junctions, and
at zero temperature, the exactness of the KS conductance
is ensured by the Friedel’s sum rule. At the same time,
the same works (see especially Refs. 117,118) point out
that, in general, the connection between KS and exact
conductance is only approximate for multichannel junctions.
Still, even as an approximate quantity, the KS conductance
could be investigated as an indicator for systems dominated
by direct Coulomb interactions, or when conduction is
prevalently due to a single channel (however, in disordered
systems, the latter, limiting situation cannot be easily assessed
beforehand).

Finally, one might also try employing the TDDFT
frequency-dependent density response to extract a frequency-
dependent IPR. This could be an alternative to studying
disorder via nonequilibrium Green’s functions, where ob-
taining a frequency-dependent IPR is straightforward. These
prescriptions, and an analysis of the KS conductance are,
however, deferred to future work.

To summarize, while not arguing that our definition of IPR
is an optimal or unique indicator of localization in quantum
transport geometries,120 in our simulations we used Eq. (52) as
a viable prescription when using TDDFT for time-dependent
quantum transport.
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B. CPA-DFT for short chains attached to leads

For a short disordered chain connected to homogeneous
leads, a treatment based on the single-site CPA amounts
to introducing a complex, energy- and site-dependent self-
energy. Numerically, this CPA procedure is quite convenient,
since it amounts to solving self-consistently a set of equations.
However, how accurate is the CPA for the kind of (quantum-
transport) geometries considered in this paper? To answer
this question, we have considered a disordered chain with
L = 14 sites in the absence of particle-particle interactions
(U = 0). The chain represents a A25B75 and a A50B50 system;
i.e., in the notation of Sec. IV B, cA = 0.5 and cA = 0.25,
with cB = 1 − cA. We considered two disorder strengths,
i.e., W = εA = −εB equal to 0.5 and 1.0. The quantity that
we intend to examine is the KS average LDOS, defined as
〈d(ω)〉ii = −π−1Im〈ĜKS(ω)〉ii (i labels the ith site in the
chain), with 〈ĜKS(ω)〉 obtained as described in Sec. IV B.
Strictly speaking, the LDOS is not accessible to ground-state
DFT; nevertheless, we think it is instructive to look at the KS
LDOS in the framework of DFT, to compare CPA versus exact
disorder averaging when interactions are present.

For numerical convenience, the calculations were per-
formed with an additional small Lorentzian broadening. The
results for U = 0 are presented in Fig. 2 (see the figure
caption for additional details). In each panel, the LDOSs are
obtained with both exact averages, summing over ( 14

7 ) = 3432
configurations, and with the CPA. Furthermore, in each panel,
we show LDOSs at sites adjacent to the leads (labeled as
“edge”) and at a site in the center of the chain (labeled as

“middle”). Irrespective of the strength of the disorder, the
results show that, overall, the CPA (at least in this simple
single-site formulation) provides a fair account of the role of
the disorder, but much of the sharp structures in the exact
curves are washed out. For example, for W = 1, for ω � 1,
we note a significant depression of the exact LDOS, which
is completely missed by the CPA. More in general, the sharp
structures (bound states) outside the continuum are removed
by the CPA. This can have consequences in the long-time
limit of quantum transport: For pure systems, bound states in
the final-state KS Hamiltonian can give rise to steady-state
oscillations,122,123 but, due to disorder as treated in the CPA,
such long-lived oscillations are expected to be damped.124

The situation is less clear for the exactly averaged LDOS:
One can expect a self-averaging of the current and/or density
oscillations when the chain increases in size. However, for
short chains, and for the simple type of binary, on-site disorder
considered here, (small) long-time oscillations could persist.
It can be of interest to see to what extent this behavior is
modified in the presence of interparticle interactions. In Fig. 3,
the LDOSs for U = 0 and U = 3 are plotted for a chain with
and without disorder. In the main panel, results were obtained
in terms of arithmetic averages, while geometrical averages
were used for the curves in the inset panel. We postpone a
discussion of the latter to Sec. VI D and confine the analysis
here to the main panel, i.e., to arithmetic averages. The curves
for U = 3 were obtained with lattice DFT in the LDA. Starting
with the W = 0 case, we note that an important effect of the
interactions comprises resonant structures at the top of the
band (ω � 2, blue curve). The addition of disorder within a
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FIG. 2. (Color online) CPA versus exact averaging for a chain with 14 sites connected to two semi-infinite homogenous leads, with
transparent boundary conditions. The meaning of each curve is given by the color coding in the top-left panel. In the legend, Ex means complete
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FIG. 3. (Color online) LDOS at an edge site for a disordered
(A50B50) and noninteracting/interacting 14-site chain contacted to
two homogenous 1D leads at half filling. The other system parameters
are as in Fig. 2. For both the main and the inset panels, the interactions
are treated within a KS scheme. In the main panel, Ex. Av. means
complete, numerical arithmetical averaging. In the inset, the curves
were obtained via complete numerical geometrical averages.

CPA treatment has an overall effect similar to what observed in
Fig. 2, namely both the KS sharp structures are dramatically
smoothed in the KS + CPA LDOSs (orange curve).125 As
for the noninteracting case [for reference, the CPA result
for U = 0 is also shown (red curve)], the use of the CPA
could considerably affect the long-time behavior of densities
and currents induced by a bias. This is because the sharp
structures due to the interaction in the DFT-LDA (that could
induce long time limit oscillations in an ALDA treatment) are
smoothed by the CPA. For the exactly averaged interacting
LDOS, we equally observe a clear broadening/reduction of
the split-off KS structures, albeit less pronounced than in the
CPA-KS curve. Due to the artificial broadening we introduced
in our calculations, it cannot be excluded that for short chains
the density and current oscillations would stay long lived.
The results shown here were obtained from the initial state
Hamiltonian. However, similar split-off structures are present
in the case of the final-state Hamiltonian, and the actual
oscillations, independently from the presence of disorder,
would likely be absent if memory effects were taken into
consideration.111

C. (TD)DFT results for short chains attached to leads: Static,
transient, and steady-state regimes

In general, for disordered chains attached to semi-infinite
leads, an exact numerical treatment analogous to the one
which we will discuss in Sec. VI E is not available. In this
case, two suitable methods are (TD)DFT and the Green’s
functions technique. These two methods are both exact in
principle but, in practice, the many-body self-energy in a
propagator approach and vxc in TDDFT are not known exactly,
and approximations are in order. Here we consider a TDDFT
description, as presented earlier in the paper. Our only (but
important) approximation will be the use of a local density
approximation (LDA) in the ground state, and its adiabatic

TABLE I. Inverse participation ratio in the ground state. Arith-
metic disorder averages are performed over 50 configurations.

n U = 0 U = 2 U = 4

W = 0 1.0 0.06 0.067 0.067
0.5 0.06 0.067 0.067

W = 1 1.0 0.068 0.067 0.067
0.5 0.072 0.071 0.069

W = 3 1.0 0.078 0.073 0.072
0.5 0.109 0.096 0.09

counterpart (ALDA) during the dynamics. The quality of these
approximations in the present contexts is briefly discussed at
the end of this section.

1. In equilibrium: The inverse participation ratio

We begin studying the system in equilibrium. The central
region is a chain of L = 15 sites. We consider three strengths
of disorder in the chain, W = 0,1,3 and three values of the
interaction, U = 0,2,4. Both U and W are given in units
of the hopping parameter. In Table I, we show the results
for the configuration-averaged IPR for different densities
n = n↑ + n↓ in the leads (quarter- and half-filling cases). The
average was performed over 50 configurations. As discussed
in Sec. IV A, the IPR is calculated in terms of the KS densities
in the central region [Eq. (52)].

For U = W = 0, the system is homogenous, and we have
only fully delocalized states and, since L = 15, we get an
IPRC = L−1 = 0.06. Accordingly, values larger than 0.06
would denote a tendency to localization. This is what we
observe on moving to larger W values, while keeping U = 0:
Localization is maximal for W = 3, both at quarter and half
filling (however, the degree of localization is different for the
two fillings). A similar dependence of the IPR on W is observed
for U = 2 and U = 4. However, a different behavior is noted
when changing U at a fixed W (i.e., moving horizontally
in the table). We see that the IPR stays approximatively
constant at low W but, for larger disorder, the IPR decreases
on increasing U (see especially the case of W = 3). That is,
increasing U decreases localization, a manifestation of the
competing behavior of interactions and disorder. This has
been noted before for finite samples (e.g., in terms of exact
diagonalization121 or DMRG calculations116). When W and U

become both very large, calculations as in Refs. 121 and 116
suggest that localization prevails. From our results, this should
happen at U values larger than those in the table (e.g., for
W = 3, at U > 4). However, for such interaction strengths, the
shortcomings of the Bethe ansatz LDA can become particularly
severe.126 Nevertheless, it is quite interesting that a competing
regime between disorder and interactions is accounted for
within our lattice DFT-LDA approach, and with disorder
occurring only in a subregion of the system.

2. Time-dependent densities

This behavior should also manifest in the dynamical
properties of the chain. To see this, we studied the time
evolution of the system, after the application of a bias in the
leads. Our choice was to apply the bias only in the left lead
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FIG. 4. (Color online) Difference between nonequilibrium and ground-state (initial) densities, in a chain with L = 15,n = 1, and box
disorder W , when a bias bS(t) is applied in one of the two leads, and b0 = 1.5 [see Eq. (53)]. The maximum evolution time is Tmax = 30, in
units of the inverse hopping parameter in the chain. Arithmetical disorder averaging is performed over 50 configurations.

[i.e., at all times, bD(τ ) = 0; see Eq. (1)], with the following
time dependence:

bS(τ ) =
{

b0
[
1 + cos π

(
1 + τ

T

)]
/2, 0 � τ � T ,

b0, τ > T ,
(53)

where T = 3 (all time quantities are expressed in units of
the reciprocal chain hopping). This choice of T is somewhat
arbitrary, but in this way the effect of bS(τ ) is rather gradual,
a situation expected to be favorable to the use of an ALDA
based on the Bethe ansatz for the 1D Hubbard model. Our
time-dependent results were obtained with propagation time
steps of either �τ = 0.0025 or �τ = 0.0050 and, as in the
static case, averaged over 50 configurations.

In Fig. 4, we show the effect of disorder and interactions on
the time-dependent density, when bS(t) has been applied, with
b0 = 1.5. The chemical potential in the system was chosen
to have half filling in the leads (i.e., n = n↑ + n↓ = 1). For
convenience, we show the deviation of the density �ni =
ni(τ ) − ni(0), rather than the density itself, since it illustrates
more directly the changes in the system. The left panel of
Fig. 4 corresponds to when neither disorder nor interactions
are present in the chain. In the transient phase, for sites close
to the biased lead, we observe a quite sharp rise of the density,
while the change in density occurs more smoothly for sites
closer to the unbiased lead. It is also clear that the densities
in the chain attain a steady-state value rather soon, already at
τ � 15, and that there is a quite regular propagation of the
density front across the chain. Disorder modifies in a quite
substantially way the situation just described. In Fig. 4(b),
we note an increased �n for sites close to the biased lead,
but the profile of the density propagation front is now more
irregular and significantly attenuated inside the chain. This
is also observed for weaker disorder (W = 1, not shown),
although the differences from the homogeneous case are
smaller.

An interesting fact occurs when introducing interactions
(U = 4) in the chain [Fig. 4(c)]. Now the time-dependent
density landscape recovers much of the regularity of the
U = W = 0 case, and the propagation of the density wave
is considerably less attenuated [with respect to Fig. 4(a), the

values of �n in the long-time limit are reduced]. So, it appears
that even in the time-dependent case, interactions can reduce
the effect of disorder. We already noted such competition of
effects when discussing the IPR in the ground state, but the
results of Fig. 4, and other cases we have analyzed, not shown
here, confirm the robustness of this behavior with respect to
(i) bias strength (we also considered b0 = 0.5), (ii) particle
density (we also investigated the quarter filling regime), and,
of course, (iii) disorder and/or interaction strength.

3. Time-dependent inverse participation ratio

Also accessible within a KS lattice-TDDFT scheme
is the time-dependent IPR, which we define via
a simple modification of Eq. (52): IPRKS

C (τ ) ≡∑
i∈C[nKS

i ]2(τ )/[
∑

i∈C nKS
i (τ )]2. Results for the

time-dependent IPR are shown in Fig. 5 (see the figure
caption for a definition of all the parameters). From Fig. 5,
we observe that a larger disorder induces a larger IPR, also
in the dynamical regime. This holds for all cases examined
in the figure; at the same time, for a fixed disorder strength,
interactions make the system more delocalized in time
(as before, a complete delocalization corresponds to an
IPR = 1/L = 0.06). At long times, the IPR is reduced
compared to its initial value; such decrease is almost
monotonic for large W , while at smaller disorder strengths the
IPR grows at first and then eventually becomes smaller. The
region of increased IPR corresponds to the transient phase,
where the variance among the different densities in the chain
is largest (we have verified that the position at which the IPR
attains its maximum value depends on the way the bias is
ramped up). Conversely, the small IPR at long times shows
that, on average, the densities have the least mutual variance
in a regime where a steady-state current can be attained.

4. Time-dependent currents and the steady-state regime

A more direct way to look at the competition of disorder and
interactions in the dynamical regime is analyzing the behavior
of the current (in our case, the charge current). In Fig. 6, we
present results for the average current at the leftmost-bond
in the chain. Altogether, the different panels of Fig. 6 show
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FIG. 5. (Color online) Time-dependent IPR for a disordered and

interacting chain with L = 15 sites, contacted to semi-infinite leads.
Results are shown for different values of box disorder (W ), interaction
(U ), bias (b0) strengths and for different lead densities n. Arithmetical
disorder averaging is performed over 50 configurations. Panels with
one (orange) curve refer to the case of W = 3, while those with two
(black and red) curves refer to W = 0 and W = 1, respectively. Panels
in the same column pertain to the same interaction value U , while
panels in a row refer to common values of b0 and n, as specified on the
right of that row. All panels share the same horizontal time interval,
but scales on the vertical axes are different. For W > 0, the inherent
standard deviations in the long-time limit are shown as vertical bars.

the current for several values of disorder/interaction strengths,
of the biases, and the band filling (see the figure caption for
details on how the results are presented). We start with panel
(a), corresponding to U = 0, a bias b0 = 0.5, and a density (in
the leads) n = 0.5 (quarter filling). For W = 0 (black curve),
the current reaches its steady-state value after a relatively
short transient. On adding disorder (W = 1, red curve), the
length of transient increases, but eventually a steady state
is reached. On further increasing W , a steady-state current
is not reached within the simulation window (orange curve).
However, the current in Fig. 6 (orange curve) and the currents at
the other bonds in the chain (not shown) become progressively
close to the same average value (with smooth and decaying
oscillations), suggesting that a steady state is reached outside
our simulation window. The overall trend in panel (a) is that an
increasing disorder reduces the long-time (steady-state) value
of the current. Analogous behavior is seen in panels (a) and (b)
of the U = 0 column, which correspond to different choices of
the bias b0 and the density n in the leads. Moving to the other
two columns (U = 2,4), we see that the changes in each panel
follow the same pattern, namely when disorder increases the
current gets reduced.

A different perspective emerges from Fig. 6 when we
mutually compare panels within the same row [e.g., panels
(a), (d), and (g)]. In this case, for a given value of disorder
strength, bias, and density, the current increases at larger values
of U , an effect of competing disorder and interaction in the
nonequilibrium regime. In the first row of Fig. 6 the current is
always increasing when U becomes larger, independently of
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FIG. 6. (Color online) Time-dependent average currents for a
chain with L = 15 sites, and different interactions strengths (U =
0,2,4). The currents shown are computed at the leftmost bond in the
chain. On the horizontal axis, the time is expressed in units of the
inverse hopping parameter. The bias and the band filling for panels
in the same row are specified on the right, while in each panel,
the current is displayed for three disorder strengths (W = 0,1,3).
Color coding for all panels is specified in the right lowermost panel.
The configuration averages were obtained from 50 instances of box
disorder. For W > 0, the inherent standard deviations in the long-time
limit are shown as vertical bars.

the value of W . Conversely, in the other two rows, depending
on the value of W , the current can have a nonmonotonic
dependence on U . Such nonmonotonic (dynamical) behavior
is consistent with results from ground-state studies (see, e.g.,
Ref. 116), and its dependence on quantities such as the density
n or the disorder strength W is plausible. To have a more
complete picture of this tendency, calculations for larger U

values should be performed; however, as mentioned earlier,
for those U values, the utility of an ALDA-TDDFT approach
would be significantly diminished.

So far, we have not mentioned at all the oscillatory behavior
of the current in some of the panels of Fig. 6. Current and/or
density oscillations in the long-time limit can result from
different factors, such as single-particle bound states122,123

(in our case, due to diagonal disorder), discontinuities in the
XC potential,74 or a sloshing motion of the charge between
different regions of the device and/or the terminal sites of the
leads. This latter mechanism has been pointed out and analyzed
in a study127 of the dynamical effects of image charge in quan-
tum transport. In our system, we have observed that different
and independent sets of oscillations can emerge in different
parts of the chain, due to the inhomogeneities in the energetic
landscape introduced by disorder (current and cumulative
density oscillations are more/less pronounced in different
subregions of the chain). In recent work,71,111,127 Hartree-Fock
and TDDFT-ALDA approaches have been compared to results
from Kadanoff-Baym dynamics. These studies clearly point
out the importance of nonlocal (in space and time) contribution
beyond the instantaneous density and suggest111,112,127 that
current/density oscillations of the kind mentioned above are
likely fragile against the inclusion of memory effects. We wish
to add here that, for disordered systems, another obvious cause
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of dephasing of the oscillations is disorder averaging. This can
be argued already at the noninteracting level. While bound
states can certainly be present in a specific instance of disorder,
the induced oscillations are most probably to be washed out by
configuration averaging, due to destructive interference among
the oscillation from different configurations. This receives
indirect support from observing that already in the ground state
of a device with binary disorder (Fig. 3), split-off structures
are largely reduced or washed out by exact or CPA averaging.
In our time-dependent calculations, as commonly done in the
literature, configuration averages are based on a limited (and
thus incomplete) number of random disorder realization; in this
case the aforementioned cancellation effects of the oscillations
can be incomplete. In any case, the feature emerging from
our calculations, namely a competition between disorder and
interaction, appears to unrelated to current oscillations, since
it present itself also when such oscillations are missing [see,
e.g., in panels (a), (d), and (g) in Fig. 6].

As a final, but important remark, we observe that our results
for the current lack of “reciprocity,” i.e., for a fixed U and the
W s considered, the current is monotonically decreasing as a
function of W , while a competing behavior could be expected
from studies in the ground state.116 This can possibly be due
to a limitation of the ALDA (and not of TDDFT, which is,
in principle, an exact theory). At the same time, we wish to
point out that, out of equilibrium and in the nonlinear regime,
the strength of the bias b0 can also significantly influence
the competition between disorder and interactions [results for
b0 = 1.5,n = 0.5, not shown here, compared to those in panels
(a), (d), and (g), are consistent with this assertion].

D. Arithmetic averages and large fluctuations

In the other sections of this paper, the effect of dis-
order is discussed in terms of arithmetic averages over
an incomplete/complete set of disorder configurations. This
is certainly plausible when the system under investigation
exhibits self-averaging behavior over disorder, i.e., when the
fluctuations around its “average” behavior become negligible.
The contacted, disordered wires considered in this work are
quite small and thus are not expected to exhibit self-averaging
behavior. For longer wires, one can expect that the deviations
will decrease; such systematic studies are, however, beyond
our present scope. Thus, for the wires studied here, if the
fluctuations are large, the use of arithmetic averages could be
questionable.

The standard deviation of IPRs and currents in the long-
time limit was shown in Figs. 5 and 6. The results, which are
well converged with respect to the number of configurations,
indicate that the sample-to-sample fluctuations in the current
are far from negligible and in some cases even comparable to
the average current itself (for the IPR, the relative fluctuations
are considerably smaller, see below). Even if the disorder-
induced current increase is larger than the standard deviations
in some cases, one could argue that the large fluctuations could
cast doubts on our conclusions from Sec. VI C, concerning the
competition between disorder and interactions. However, as
we show next, the trends in our results are robust against the
lack of self-averaging and so are the general conclusions of
our work.

In the absence of self-averaging, the appropriate way to
characterize an observable f in the presence of disorder is to
consider the full probability distribution P (f ) of its outcomes.4

If it is only possible to use a single representative value, one can
then consider the value ftyp, corresponding to the maximum
of P (f ): This is the “typical” value of f , with the highest
probability of occurrence. These arguments play a central
role in describing disorder-induced metal-insulator transitions
(see, e.g., Refs. 116,128,129) where the key quantity (also
in the presence of interactions), i.e., the order parameter, is
the typical LDOS, which vanishes at the transition.128 The
LDOS distribution approximately agrees with a log-normal
distribution,81 with values spread over a wide range and with
a long tail of low-probability outcomes (hence, the standard
deviation from the arithmetically averaged LDOS is large). The
geometrical average 〈f 〉g = e〈ln f 〉a (where 〈· · · 〉a denotes the
arithmetic average) is the median of a log-normal distribution
and is used as a reasonable, approximate estimate to the
typical LDOS81,116,128,129: In particular, if the typical value
of (approximately log-normal) LDOS distribution reduces to
zero (when disorder increases), the geometric average also
vanishes at a critical disorder strength, thus being able to
monitor/characterize the metal-insulator transition.

We now further investigate our system(s) while taking into
account the lack of self-averaging and employing the statistical
notions just introduced. Furthermore, we explicitly focus on
a subset of the cases discussed earlier (those not shown give
similar results and indications). The disorder configurations
we use are the 50 ones already considered for arithmetical
averaging.

Figures 7(a)–7(c) illustrate the frequency distribution of
the steady-state currents for half filling with a bias bS =
0.5, as a function of the interaction- and disorder-strength
[as in Figs. 6(b), 6(e), and 6(h)]. The current distributions
(histograms are used for visual convenience, but simple scatter
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W = 1 is much smaller than for W = 3. Thus, on the scale of the
figure, the IPR for W = 1 fall into a single bin.
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plots exhibit the same behavior) clearly indicate a progressive
increase of the “typical” current when interactions are added
in the presence of disorder.

The same occurs for the IPR, Figs. 7(d)–7(f): For larger
interactions, the IPR becomes smaller, indicative of a lesser
degree of localization. We also note that the spread of the
IPR values tends to be less than for the currents, which
could be because the IPR is an integrated (over the density)
quantity. When the fluctuation becomes small, geometrical
and arithmetic averages assume similar values [as already
noted in relation to Fig. 1(g)], since, for small σ , 〈f 〉g �
〈f 〉ae− 1

2 [σ/〈f 〉a ]2
.

The interplay between interactions and disorder in our con-
tacted chains could also be characterized by other quantities,
such as transmission functions, conductances, and LDOSs. For
transmission functions and conductances, we plan to present a
detailed analysis elsewhere (the relation between many-body
and KS conductances was briefly discussed in Sec. VI A);
here we just mention that preliminary results for these two
quantities also suggest the same kind of interplay between
disorder and interactions. On the other hand, for the LDOS, the
effect of disorder was already considered in connection with
our discussion of the CPA, Sec. VI B. Here, for completeness,
we add the case of the geometric averages. To this end, we
refer back to the inset panel of Fig. 3, where the geometrically
averaged LDOS is shown. It clearly seen that for U = 0 the
LDOS is reduced by disorder but, if present, interactions can
revert the trend (this applies to all the sites in the chain).

To summarize, in this section we have examined the effects
of disorder while taking into account the lack of self-averaging
in our system(s). The discussion was confined to selected
cases and quantities, which, however, are representative of
the situation in general (and of the other results not shown).
The analysis of the current and IPR distribution functions, and
the use of geometrical averages, gave evidence consistent with
that obtained via arithmetic averages, namely that interactions
can dynamically reduce localization induced by disorder.

E. Isolated short chains: TDDFT and exact results

The quantum transport results just discussed are based
on approximate XC potentials, obtained via an (adiabatic)
LDA to vxc. Comparisons between exact and (A)LDA results
have been performed before in different contexts,32,41,62,71,111

but without considering the case of interest here, namely
configuration-averaged quantities in disordered and interacting
samples contacted to semi-infinite leads.

An ideal way of doing this would be to use time-dependent
DMRG results as benchmark to obtain a comprehensive
assessment of lattice (TD)DFT for the transient behavior
of current and densities. From the computational point of
view, these kinds of investigations are expected to be rather
expensive, and we are not aware of any published work on the
subject. Here we take a much simpler view and consider small
isolated disordered and isolated chains with few electrons,
which can be treated via exact diagonalization. An extensive
comparison between exact and lattice (TD)DFT results is
outside the scope of this work, and we briefly discuss just
one example, using a single case to gain some general insight.

FIG. 8. (Color online) Exact (left panels) vs lattice TDDFT (right
panels) averaged density results for an isolated chain with L = 18
sites and U = 2. The chain has a central region of eight sites,
with disorder and interaction, and two finite “leads” of five sites
each (see the schematic rendering). In the chain there are N = 4,
spin-compensated particles and the dynamics is induced with a
time-dependent “bias” which is uniformly applied to the nine leftmost
sites. The time dependence of the bias is the same as that of Eq. (53),
with strength b0 = 0.5. The color coding in the top left panel applies to
all panels in the figure. The disorder averaged densities were obtained
using 100 disorder configurations.

In Fig. 8, we examine the time-dependent densities, for
a short isolated cluster (all the parameters are specified in
the figure caption). We mention that, differently from the
previous sections, the “bias” is applied on the left half of
the cluster, i.e., also in part of the interacting, disordered
region (see the schematic rendering in at the top of Fig. 8).
Also, due to the small size of our system, several reflections
at the cluster boundary occur during the simulation interval
considered in Fig. 8. Without going into any detail, the salient
features emerging from Fig. 8 are that TDDFT performs
better at larger disorder strength, and that, compared to
the exact results, TDDFT enhances the spread among the
time-evolved densities. From this example, it is apparent that
lattice (TD)DFT is able to reproduce the qualitative behavior
of the exact results, but good quantitative agreement is lacking.
More investigations in this direction and an improvement of
the XC potentials are certainly required.

VII. CONCLUSIONS

We have used lattice TDDFT to study the quantum transport
properties of short, disordered, and interacting chains con-
tacted to semi-infinite leads. Our work is largely exploratory
in character, since we have addressed only superficially several
issues connected to the nonequilibrium physics of disordered
interacting systems.

In principle, TDDFT is an exact approach, but (at times
severe) approximations are usually made for the key quantity
of the approach, the XC potential. We have employed one
of them, the ALDA. Disordered systems, with a strongly
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varying local environment, are quite difficult tests for the
ALDA which, however, by comparison to exact benchmarks,
certainly appears appropriate at the qualitative level for not
too-fast varying time-dependent perturbations.

Within these boundaries, we have been able to address
a type of system which is not easily accessible, for one
reason or another (limitations in principle, numerical costs,
dimensionality, etc.) to several of the other methods currently
available. In fact, we are not aware of any existing work for
the quantum transport geometries considered here, where, in
the presence of semi-infinite contacts, currents and densities
in the disordered and correlated sample have been followed
in time from the initial transient phase to the long-time
(possibly steady-state) regime. To perform our study, we have
introduced some modifications to the formalism and modified
the definition of one of the standard indicators of localization,
the IPR. We have also explored the performance of the CPA,
one of the popular schemes for performing disorder averaging.
The sharp spectral features due to disorder in the device are
exceedingly smoothed by the CPA, and this can affect the
behavior of the averaged steady-state currents.

Our time-dependent results show rather evident signatures
of dynamical delocalization due to the dynamical competition
of disorder and interaction in the sample. This is consistent
with the qualitative picture usually adopted for systems in
the ground state, where interactions produce a “screening”
of the disorder; i.e., the “attractive” behavior of low-energy
impurities is compensated by the local repulsive interactions,
thus providing a less corrugated energy landscape. However,
in the present case, an additional role is played by the
(nonweak) electric bias in the lead(s), which significantly (and
dynamically) modifies the ground-state energy landscape and
wave functions.

To what extent our findings remain robust against an
improvement of the XC potentials is at present an open
question. For example, a recent investigation112 has shown
the importance of long-ranged nonequilibrium XC potentials,
extending far away in the leads, which arise after the bias is
applied. This can cast reservations on quantitative results based
on the ALDA. However, with approximate XC potentials,
it should still be possible to address qualitative issues, as
done here, where one is studying the general trends of
the competition between disorder and interactions. More in
general, the current state of affairs certainly calls for better
potentials and future investigations, hopefully combined also
with other methods. In this respect, we are currently carrying
out a study of disorder and correlation effects in quantum
transport using the time-dependent KBEs (where interactions
are treated within many-body approximate schemes, but non-
local, nonadiabatic effects are taken into account). Preliminary
results for very short chains confirm the trends observed in this
work with lattice (TD)DFT.
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APPENDIX A: LANCZOS TIME PROPAGATION

We briefly summarize the Lanczos method, as given in
Ref. 114. A useful comparative study between the Lanczos
method and other integration schemes can be found in Ref. 130.
Consider a system described by a TD Hamiltonian H (t). If,
for example, we use the midpoint approximation for the time
propagator and wish to evolve the system in the time interval
(t + �,t), we obtain

|�t+�〉 = e−iH (t+�/2)�|�t 〉, (A1)

where |�t 〉 is the (known) initial wave function. Consider a
finite Lanczos sequence {|Vk〉}, obtained by starting acting on
the “seed” |�t 〉 ≡ |V0〉. Using {|Vk〉} as a truncated basis, we
get

|�t+�〉 ≈
ML∑
k=0

|Vk〉 〈Vk|e−iHLt |V0〉, (A2)

where HL is the tridiagonal representation for H (t + �/2) in
such a basis. Inserting a complete set of eigenstates for the
truncated space, HL|λ〉 = ελ|λ〉,

|�t+�〉 =
K∑

k=0

|Vk〉
[∑

λ

〈Vk|λ〉e−iελt 〈λ|V0〉
]

, (A3)

where |�t+�〉 is finally expressed in the basis of the origi-
nal many-body Hamiltonian. The method requires a partial
orthogonalization on the fly of the Lanczos basis in order to
preserve accuracy along the trajectory. For a simple estimate of
the truncation error in Eq. (A2), see the discussion in Ref. 114.

APPENDIX B: COMPUTATIONALLY EFFICIENT
LORENTZIAN SUMS

To determine the energy-dependent IPR of a finite system
using the Nλ eigenstates/values of the Hamiltonian, we have to
determine the LDOS n(ω) = ∑

λ cλδ(ω − ελ). This has to be
done for the Nω values of the chosen energy grid. Furthermore,
in some cases (as in our work here) the IPR is also averaged
over ND disorder configurations. Since the system is finite, it
is expedient to introduce a Lorentzian broadening �, and to
define a broadened LDOS,

n�(ω) ≡ n(ω) ∗ L�(ω) =
∑

λ

cλL�(ω − ελ), (B1)

where L�(ω) = (�/π )(ω2 + �2)−1. When Nλ,Nω,ND are
large, to compute n�(ω) directly from Eq. (B1) can be
computationally intensive. Fast Fourier transform (FFT) is
the method of choice in these cases, but it requires uniform
sampling, while the eigenvalues poles ελ are in general
unevenly distributed. This issue can be avoided with the
approach described here, which is fast and accurate, and,
in principle, should be relevant to FFT integration prob-
lems for a large data set from nonuniform, adaptive, or
curvilinear sampling.131 To begin with, it is convenient to
have a smooth function Cγ (ω) that decays rapidly in both
ω and t spaces, minimizes ω sampling, and allows smooth
uniform sampling of nCγ

(ω) = n(ω) ∗ Cγ (ω). Then, the actual
procedure is as follows: (i) we sample nCγ

(ω),L�(ω), Cγ (ω);
(ii) via FFT, we compute nCγ

(t),L�(t),Cγ (t); (iii) we obtain
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n�(t) = [nCγ

(t)/Cγ (t)] × L�(t); (iv) via inverse FFT, we
compute n�(ω).

The softening function Cγ should be positive definite in
both ω,t spaces to ensure easy deconvolution (we discard
band-limited functions such as rectangle, triangle, etc., since
they require careful location of their zeros). We also discard
Cγ = exp(−γω2), since (a) Cγ (t) may decay too fast, with
deconvolution instabilities where L�(t) is still non-negligible;
(b) it is still expensive to determine n(ω) ∗ exp(−γω2) on Nω

sampling points. Based on these considerations, our optimal
choice is

C̃γ (ω) = γ

4

(
1 − γ

∂

∂γ

)
e−γ |ω| ∝ e−γ |ω| ∗ e−γ |ω|. (B2)

The function C̃γ (ω) decays exponentially, i.e., is “practically”
band limited with a small sampling domain; C̃γ (t) ∝ (t2 +

γ 2)−2 is always positive, and it decays slower than L�(t), thus
avoiding deconvolution instabilities. Also, as results from the
self-convolution in the definition of Cγ , the cusp e−γ |ω−ελ|,
when ελ is off grid, is smoothed, reducing sampling errors.
Finally, as a crucial advantage of the method, nCγ

(ω) can be
computed recursively, needing the λ sum just once (instead of
at all the sampling points). In fact, writing nC̃γ

(ω) = ñ+(ω) +
ñ−(ω), with n±(ω) = ∑

λ cλe±γ (ω−ελ)�(±(ελ − ω)), we get
(� is the Heaviside function)

ñ±(ω ∓ �) = e−γ�[ñ±(ω) + γ�n±(ω)]

+
(

1 − γ
∂

∂γ

)
×

∑
λ

cλe±γ (ω−ελ∓�)

× �(±(ω − ελ))�(� ± (ελ − ω)). (B3)
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