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Abstract

The main topic of this PhD thesis is complexity reduction of linear time-
invariant models. The complexity in such systems is measured by the num-
ber of differential equations forming the dynamical system. This number
is called the order of the system. Order reduction is typically used as a
tool to model complex systems, the simulation of which takes considerable
time and/or has overwhelming memory requirements. Any model reflects
an approximation of a real world system. Therefore, it is reasonable to sac-
rifice some model accuracy in order to obtain a simpler representation.
Once a low-order model is obtained, the simulation becomes computation-
ally cheaper, which saves time and resources. A low-order model still has
to be “similar” to the full order one in some sense. There are many ways of
measuring “similarity” and, typically, such a measure is chosen depending
on the application.
Three different settings of model order reduction were investigated in

the thesis. The first one is H∞ model order reduction, i.e., the distance
between two models is measured by the H∞ norm. Although, the problem
has been tackled by many researchers, all the optimal solutions are yet to
be found. However, there are a large number of methods, which solve sub-
optimal problems and deliver accurate approximations. Recently, research
community has devoted more attention to large-scale systems and com-
putationally scalable extensions of existing model reduction techniques.
The algorithm developed in the thesis is based on the frequency response
samples matching. For a large class of systems the computation of the
frequency response samples can be done very efficiently. Therefore, the
developed algorithm is relatively computationally cheap. The proposed al-
gorithm can be seen as a computationally scalable extension to the well-
known Hankel model reduction, which is known to deliver very accurate
solutions. One of the reasons for such an assessment is that the relax-
ation employed in the proposed algorithm is tightly related to the one
used in Hankel model reduction. Numerical simulations also show that
the accuracy of the method is comparable to the Hankel model reduction
one.
The second part of the thesis is devoted to parameterized model or-

der reduction. A parameterized model is essentially a family of models
which depend on certain design parameters. The model reduction goal in
this setting is to approximate the whole family of models for all values
of parameters. The main motivation for such a model reduction setting
is design of a model with an appropriate set of parameters. In order to
make a good choice of parameters, the models need to be simulated for a
large set of parameters. After inspecting the simulation results a model
can be picked with suitable frequency or step responses. Parameterized

5



model reduction significantly simplifies this procedure. The proposed al-
gorithm for parameterized model reduction is a straightforward extension
of the one described above. The proposed algorithm is applicable to linear
parameter-varying systems modeling as well.
Finally, the third topic is modeling interconnections of systems. In this

thesis an interconnection is a collection of systems (or subsystems) con-
nected in a typical block-diagram. In order to avoid confusion, throughout
the thesis the entire model is called a supersystem, as opposed to sub-
systems, which a supersystem consists of. One of the specific cases of
structured model reduction is controller reduction. In this problem there
are two subsystems: the plant and the controller. Two directions of model
reduction of interconnected systems are considered: model reduction in
the nu-gap metric and structured model reduction. To some extent, using
the nu-gap metric makes it possible to model subsystems without consid-
ering the supersystem at all. This property can be exploited for extremely
large supersystems for which some forms of analysis (evaluating stability,
computing step response, etc.) are intractable. However, a more systematic
way of modeling is structured model reduction. There, the objective is to
approximate certain subsystems in such a way that crucial characteristics
of the given supersystem, such as stability, structure of interconnections,
frequency response, are preserved. In structured model reduction all sub-
systems are taken into account, not only the approximated ones. In order
to address structured model reduction, the supersystem is represented in
a coprime factor form, where its structure also appears in coprime factors.
Using this representation the problem is reduced to H∞ model reduction,
which is addressed by the presented framework.
All the presented methods are validated on academic or known bench-

mark problems. Since all the methods are based on semidefinite program-
ming, adding new constraints is a matter of formulating a constraint
as a semidefinite one. A number of extensions are presented, which il-
lustrate the power of the approach. Properties of the methods are dis-
cussed throughout the thesis while some remaining problems conclude
the manuscript.
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Preface

Coming with a quite theoretical background to an engineering depart-
ment was a big challenge. Therefore, I thought of doing more theoretical
research and was somewhat hesitant to take on a more applied project.
At the same time, I wanted to try something totally new. My PhD super-
visor, Anders Rantzer, found the perfect trade-off project for us to work
on: model order reduction. While the topic can be very theoretical, there
are always applications to pick from. In my research project, I met with
a vast variety of practical issues, which did not make sense at first, but
later proved to be very important. Finding new questions to ask in model
reduction was quite exciting, which will hopefully translate to the readers.

Outline

The outline of the thesis is as follows: the list of notations and frequently
used acronyms is provided on pages 15 and 16. Chapter 1 is dedicated
to introduction to this thesis. This chapter also provides the background
essential for reading the thesis. In Chapter 2 the H∞ model reduction is
investigated and two algorithms are presented. These algorithms are the
basis of the entire work, therefore the reader is recommended to familiar-
ize with the contents of Chapter 2. Chapter 3 is devoted to parameterized
model order reduction. Chapters 4 and 5 both deal with the approxima-
tion of interconnected models. In Chapter 4, ν -gap model reduction is
presented, while in Chapter 5, the so called structured model reduction
is investigated. The conclusion and future work directions are outlined in
Chapter 6.
The contributions of the thesis are listed below with a technical de-

scription and publication references.

Chapter 2

This chapter is dedicated to model order reduction of linear time-invariant
systems. Specifically, H∞ model order reduction is investigated. One of the
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Preface

early goals of this PhD project was to develop a scalable algorithm, which
can efficiently compute a stable reduced order model of a reasonable qual-
ity in the H∞ norm. Therefore, the main contribution of this chapter is
a derivation of two scalable model reduction algorithms. Both algorithms
provide a stable reduced order model. The algorithms perform a curve fit-
ting procedure in the frequency domain using semidefinite programming
methods. The input data to the algorithms are samples of the frequency
response of a model, computation of which can be done efficiently even
for large scale models. Both algorithms are obtained from a reformulation
of the model reduction problem. One proposes a semidefinite relaxation,
while the other is an iterative semidefinite approach. The relaxation ap-
proach is similar to the Hankel model reduction, which is a well-known
and established method in the control literature. Due to this resemblance,
the accuracy of approximation is also similar to the one of the Hankel
model reduction.
An appealing quality of the proposed algorithms is ability to easily

perform extensions, e.g., frequency-weighted, positive-real, bounded-real
model reduction methods, which are also sketched in this chapter. Advan-
tages of the approach are also illustrated on numerical examples.

Relevant publications are:

Aivar Sootla (2010): “Hankel-type Model Reduction Based on Frequency
Response Matching” In Proceedings of the Conference on Decision and
Control. Atlanta, GA, USA, pp. 5372–5377, Dec. 2010.

Aivar Sootla (2011): “Semidefinite Hankel-type Model Reduction Based
on Frequency Response Matching” accepted for publication in IEEE
Transactions on Automatic Control.

Chapter 3

In this chapter, a parameterized model order reduction framework is inves-
tigated. A parameterized model describes a linear time invariant system
which also depends on a constant design parameter in addition to the
frequency variable. This parameter defines a family of models. The model
reduction goal in this setting is to approximate the whole family of models.
The presented reduction framework is an extension of the methods devel-
oped in Chapter 2 to parameterized models. Therefore, it is also based on
frequency response matching with a reasonable performance both in com-
putational time and accuracy. Stability in this setting is guaranteed for
every value of a parameter. Further investigation allowed the application
of the framework to related problems, such as linear-parameter varying
(LPV) system modeling. The theoretical result regarding the quality of
approximation (a relaxation gap) is also obtained.
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Relevant publications are:

with K. Sou (2010): “Frequency Domain Model Reduction Method for
Parameter-Dependent Systems.” In Proceedings of the American Con-
trol Conference, Baltimore, MD, USA, pp. 3082–3087, July 2010.

with K. Sou and A. Rantzer (2011): “Parameterized Model Order Reduc-
tion Based on the Semidefinite Programming.” submitted to Automat-
ica

Chapter 4

This chapter is concerned with a model reduction algorithm in the nu-
gap metric. The metric was originally developed to evaluate robustness
of a controller for a given plant. Actually, the nu-gap metric induces the
weakest topology in the space of controllers, in which stability is a ro-
bust property. All in all, the nu-gap metric is perhaps the best metric
to evaluate the distance between two systems in an arbitrary closed loop
setup. In distributed control, if the approximation of subsystems is con-
sidered, such a metric can be vital for modeling purposes. The presented
algorithm of the nu-gap model reduction is based on semidefinite pro-
gramming methods and exploits the frequency domain representation of
systems. Therefore, it may be easily extended to incorporate constraints
on a frequency region of interest or the closed loop performance bound.
The method is an application of the framework developed in Chapter 2 to
the nu-gap model reduction problem.

Relevant publications are:

Aivar Sootla (2011): “Nu-gap Model Reduction in the Frequency Domain.”
In Proceedings of the American Control Conference. San Francisco,
CA, USA, pp. 5025–5030, June 2011.

Aivar Sootla (2011): “Nu-gap Model Reduction in the Frequency Domain.”
submitted to IEEE Transactions on Automatic Control

Chapter 5

This chapter deals with modeling of structured systems. A structured sys-
tem in this thesis refers to an interconnection of subsystems in a typical
block-diagram. To deal with this problem, a structured model is rewritten
in terms of coprime factors of subsystems, while introducing auxiliary in-
puts and outputs. These signals ensure that the obtained representation
has a meaning of coprime factorization of the structured system. After
the representation is obtained, the reduction problem is recast as an H∞
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model reduction one, which is addressed using the framework developed
in Chapter 2.

Relevant publications are:

with A. Rantzer (2011): “Model Reduction of Spatially Distributed Sys-
tems Using Coprime Factors and Semidefinite Programming.” In Pro-
ceedings of the IFAC Wold Congress. Milan, Italy, pp. 6663–6668, Aug.
2011.

with A. Rantzer (2012): “Convenient Representations of Structured Sys-
tems for Model Order Reduction.” submitted to American Control Con-
ference 2012. Montreal, Canada.

Other Publications:

with A. Rantzer and G. Kotsalis (2009): “Multivariable Optimization-
Based Model Reduction ” IEEE Transactions on Automatic Control,
54:10, pp. 2477–2480, Oct. 2009.

with A. Rantzer (2009): “Extensions to an Optimization-Based Multivari-
able Reduction Method” In Proceedings of the European Control Con-
ference, Budapest, Hungary, pp. 1023–1028, Aug. 2009.

Aivar Sootla (2009): “Model Reduction Using Semidefinite Programming”
Licentiate Thesis ISRN LUTFD2/TFRT–3247–SE, Department of Au-
tomatic Control, Lund University, Sweden, Nov. 2009.
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Nomenclature

Notation Description

Vector spaces

� complex identity

X T transpose of a matrix X

X ∗ Hermitian transpose of a complex-valued matrix X

σ (X ) maximum singular value of a matrix X

Rn real vector space

C space of complex numbers

D unit disc {z
∣∣∣pzp < 1} for z ∈ C

�D unit circle {z
∣∣∣pzp = 1} for z ∈ C

L2(A) space of square integrable functions on a set A

L∞(A) space of essentially bounded, measurable functions on A

H2 subspace of L2(�D) analytic outside the unit disc D

functions

H∞ subspace of L∞(�D) analytic outside the unit disc D (for
the discrete time) functions

or subspace of L∞(Re (s) ≥ 0) analytic in the right half
plane Re (s) > 0 (for the continuous time) functions

H
m1$m2
∞ space of stable m1 bym2 matrix valued transfer functions

Rm1$m2 subspace of rational transfer matrices of the space
Hm1$m2∞
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Nomenclature

Notation Description

Transfer functions

η(G) number of poles of G outside the unit circle

G∼ G∼(z) = GT (1/z) for discrete time functions

or G∼(s) = GT (−s) for continuous time functions

[G, K ] [G, K ] =
(
G

I

)
(I − KG)−1 (−K I )

F l (N,G) Lower fractional transformation between systems N and
G

Norms

q ⋅ q∞ L∞ norm of a function (see, Section 1.1 on page 19)

q ⋅ qH∞ H∞ norm of a function (see, Section 1.1 on page 19)

q ⋅ qH Hankel norm of a function (see, page 23)

q ⋅ qF Frobenius norm qX q2F =
n∑
i, j=1

pxi j p
2, where xi j are the el-

ements of the matrix X

q ⋅ q2 Euclidean norm of a vector

Acronyms

LTI linear time-invariant (system)

LPV linear parameter-varying (system)

LMI linear matrix inequality

KYP Kalman-Yakubovitch-Popov lemma (see, Lemma 1.3 on
page 34)

SISO single-input-single-output (transfer function)

MIMO multiple-inputs-multiple-outputs (transfer function)

LFT lower fractional transformation

NCF normalized coprime factorization (see, Section 1.3)

MOR model order reduction

PMOR parameterized model order reduction

QCO quasi-convex optimization (approach) to model reduction

Algorithm 4 on page 37

SHMR Semidefinite Hankel-type model reduction (method)

Algorithm 5 on page 44
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1

Introduction and

Background

Typically, the physical models account for various settings and modes,
even those which can be hardly seen in experiments. Therefore, the phys-
ical models posses some degree of redundancy. The complexity reduction of
a model can facilitate analysis and simulation, while preserving accuracy
of a model. This thesis deals with linear-time invariant (LTI) models.
These have an explicit complexity measure - the number of differential
equations in the model or the order of the model. The accuracy can be
measured by the H∞ norm, which is one of the typical measures used in
model order reduction. Therefore, the model reduction in this setting is
called H∞ model order reduction, which is one of the main topics of this
thesis. All the discussed problems can be reduced to or generalized from
the H∞ reduction problem.
Most of the existing H∞ model order reduction methods fall into two

categories: singular value decomposition (SVD) based and Krylov based
methods. The SVD based methods include balanced truncation and Han-
kel model reduction. Balanced truncation ([Moore, 1981]) proposes a sim-
ple, yet, very powerful algorithm with a stability guarantee for the re-
duced model and the approximation error bounds. Hankel model reduc-
tion ([Glover, 1984]) is more complicated than balanced truncation, but
it has tighter error bounds. Both methods rely on solutions to Lyapunov
equations to calculate the approximation, which makes them numerically
heavy and thus non-applicable to large-scale models. The Krylov-based
methods ([Antoulas et al., 2001; Freund, 2003; Antoulas, 2009]) rely on
moment matching techniques. These methods match the derivatives of the
transfer functions at pre-defined frequencies, without their explicit com-
putation. They provide much cheaper solutions, however, without explicit
error bounds. Both SVD and Krylov methods compute the approximation
from state-space representations of full order models. As an alternative,
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Chapter 1. Introduction and Background

one can use the frequency domain data, i.e., the frequency response sam-
ples, to obtain an approximation. Computing the frequency response for
particular applications (e.g., modeling of electro-magnetic structures) can
be even cheaper, than inverting the state-space matrix A, as shown in [Ka-
mon et al., 1997; Zhu et al., 2003; Moselhy et al., 2007]. One of the main
tools for such an approximation is the interpolation techniques in Hardy
spaces ([Anderson and Antoulas, 1986; Fulcheri and Olivi, 1998; Karlsson
and Lindquist, 2008; Lefteriu and Antoulas, 2010]).
A different approach based on frequency response matching was intro-

duced in [Sou et al., 2008] and was called the Quasi-Convex Optimization
(QCO) approach. It is not an interpolation technique and the frequency
sampled data does not necessarily match, however, the objective is to min-
imize the distance between the frequency response samples of the full and
reduced order models. Therefore, there is a bigger degree of flexibility in
comparison to interpolation techniques. The method has many advantages
in comparison to existing approaches namely:

1. The stability is preserved for a reasonably low computational cost.

2. The method exploits a Hankel type relaxation, for which the relax-
ation gap (ratio between upper and lower bounds on the solution) is
estimated in [Megretski, 2006].

3. The method is based on semidefinite programing, which makes the
extensions straightforward as long as new constraints can be ex-
pressed in a convex manner. Such extensions, as passive, bounded-
real model reduction, are achieved without adding extra computa-
tional cost.

This chapter is organized as follows. In Section 1.1 system theory back-
ground is covered, which is relevant to the model reduction problems.
Main topics such as energy functions, Gramians, Hankel operators are
required to motivate the SVD methods. In Section 1.2 the SVD based
methods, such as balanced truncation and Hankel model reduction, are
described. A description of balanced truncation is given for a better under-
standing of generic mechanisms behind the model reduction algorithms.
On the other hand, Hankel model reduction is tightly related to the frame-
work presented in the thesis. The results described in Sections 1.3 and 1.4
will be used throughout the thesis. In Section 1.3 solutions to coprime and
spectral factorization problems are presented, while the most common con-
vex optimization techniques are sketched in Section 1.4. The algorithms
in Chapter 2 are modifications of the quasi-convex optimization approach.
Therefore, this approach is outlined in Section 1.5.
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1.1 Systems Theory Background

1.1 Systems Theory Background

Only the most relevant system theory concepts are sketched in this sec-
tion. Most of the concepts are presented in the continuous time setting to
simplify the presentation. Nevertheless, the same concepts are valid for
the discrete time setting. If a statement or a definition is different in any
way in the discrete time, it will be explicitly stated. For further reading
see [Zhou et al., 1996] and [Khalil, 2002].
A model in engineering is commonly represented by a system of differ-

ential equations. In this thesis, a simple but an important class of models
is considered, which can be expressed by a system of linear differential
equations with constant coefficients. In control engineering, besides the
variables of the equations x (which are called the state-space variables)
two additional ones are considered input (control) signals u and output
(measurement) signals y. A linear time-invariant (LTI) dynamical system
admits a following mathematical model

ẋ = Ax + Bu

y = Cx + Du

where x ∈ Rn, u ∈ Rm, y ∈ Rm1 , A ∈ Rn$n, B ∈ Rn$m, C ∈ Rm1$n, D ∈
Rm1$m. The matrices A, B, C and D are called a state-space representation
of a model. In control engineering, signals u are typically designed based
on the measurements y. Therefore, from the control theory perspective
this dynamical system represents a mapping Gt from the space of control
signals u into the space of output signals y and y(t) = Gtu(t). The Laplace
transformation of Gt with a complex variable s can be computed as:

G(s) = C(sI − A)−1B + D

To shorten the notation, we write G = (A, B,C, D), if the matrix D is
equal to zero it is omitted in this notation. Sometimes the following nota-
tion will be also used:

G =

[
A B

C D

]

Typically, the function G is evaluated on the imaginary axis, i.e., s ∈ �R
or simply by replacing s with �ω where ω ∈ R . The variable ω is called a
frequency and the function G(s) - the frequency domain representation of a
model. For every frequency domain representation G there exist infinitely
many state-space representations. These representations can be obtained
by a state-space transformation x = Tx. The McMillan degree (or the
order) of the function G is the minimal dimension of the state-space vector

19



Chapter 1. Introduction and Background

x of all state-space realizations (A, B,C, D) of the transfer function G.
The McMillan degree is denoted as deg(G) and a realization (A, B,C, D)
with the dimension of the state-space vector x equal to deg(G) is called
minimal.
In order reduction, the model is usually assumed to be asymptotically

stable. For linear time-invariant systems, asymptotic stability is its ability
to converge to the origin with a zero input from any point x0 at zero time.
An equivalent definition of asymptotic stability involves evaluating the
eigenvalues of the Amatrix. A system is called asymptotically stable if the
eigenvalues of A lie in the left half of the complex plane, i.e., Re (λ i(A)) < 0
for all i. In the frequency domain, a corresponding stability criterion is
that “the poles of G lie in the left half-plane”. A system is called anti-
stable if all the poles of G (or the eigenvalues of A) lie in the right half
of the complex plane, i.e., all the poles are unstable.
For LTI systems, an important property is positive realness. A square

transfer matrix G will be called strictly positive real if it is stable and
G + G∼ is positive definite on the imaginary axis. The notation G∼ is
defined as G∼(s) = GT (−s). Note if G is asymptotically stable, then G∼

is anti-stable. A positive real function has an interpretation of a passive
system, that is, a system which does not generate energy (see [Khalil,
2002]).
In order to compare dynamical systems a metric or a norm should be

introduced. One such norm comes from the frequency domain interpreta-
tion, which is called the H∞ norm:

qGqH∞ = sup
ω∈[0,+∞],G is stable

σ (G(�ω ))

where σ denotes a maximum singular value of a matrix. Note that ω does
not take negative values, since for linear systems σ (G(�ω )) = σ (G(−�ω ))
and arg(G(�ω )) = − arg(G(−�ω )). Therefore, the norm is computed only
for non-negative frequencies ω . The H∞ norm also has a time-domain
interpretation, it is an induced L2 norm

qGqH∞ = sup
u(⋅)

{
qy(t)qL2(−∞,+∞)

qu(t)qL2(−∞,+∞)

∣∣∣ y(t) = Gtu(t)
}

The value qu(t)qL2(−∞,+∞) measures the amount of energy received by the
system G, and the value qy(t)qL2(−∞,+∞) measures the amount of energy
produced by G, given the received energy qu(t)qL2(−∞,+∞). This norm pro-
vides an estimate of how much energy can be produced by a system for
an arbitrary input signal u. Note if G is unstable then the maximum pro-
duced energy is infinite and, therefore, the H∞ norm is equal to infinity.
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1.1 Systems Theory Background

In order to compare unstable systems as well, the L∞ norm is introduced.

qGq∞ = sup
ω∈[0,+∞]

σ (G(�ω ))

To define dynamics in the discrete time instead of differential equations,
difference equations are used. A dynamical system admits a similar rep-
resentation:

x(t+ ∆t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where x ∈ R
n, u ∈ R

m2 , y ∈ R
m1 , A ∈ R

n$n, B ∈ R
n$m2 , C ∈ R

m1$n,
D ∈ Rm1$m2 . A discrete-time dynamical system can be obtained from the
continuous-time one by approximating the derivative as

dx

dt
=
x(t+ ∆t) − x(t)

∆t

and computing the corresponding matrices A, B, C and D.
The transfer function G now is obtained using the Z-transformation

G(z) = C(zI − A)−1B + D. In the frequency domain discretization is
performed as

s = µ
z− 1
z+ 1

where µ depends on the sampling ∆t. Such a mapping is one-to-one and

it acts from the left half-plane onto the unit disc D = {z
∣∣∣pzp < 1}. The

frequencies are now computed on the unit circle, i.e., for z = e�ω . The
frequency ω is confined to an interval [0,π ], since a similar argument
about negative frequencies can be applied as in the continuous time case.
A very common object in the discrete time analysis is a finite impulse

response (FIR) filter, which is defined as:

F(z) = F0 + F1z
−1 + ⋅ ⋅ ⋅+ Fkz

−k

The stability criterion is changed to pλ i(A)p < 1 for all i. The condition
in the frequency domain is changed as well, now all the poles of a asymp-
totically stable G lie inside the unit disc D. The definition of the positive
real functions and the H∞ norm are introduced by replacing G(�ω ) with
G(e�ω ). That is

qGqH∞ = sup
ω∈[0,π ],G is stable

σ (G(e�ω ))

and the function is strictly positive real if it is asymptotically stable and
G(e�ω ) + GT(e−�ω ) is positive definite for all the frequencies ω in [0,π ].
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Chapter 1. Introduction and Background

Energy Functions, Gramians and Hankel operator

A central concept in balanced truncation and Hankel model reduction is
a Gramian. It is tightly related to the observability and controllability
energy functions defined below.

Lo =

∫ ∞

0
y(t)T y(t)dt x(0) = x0, u(⋅) = 0

Lc = min
u(⋅)

∫ 0

−∞

u(t)Tu(t)dt x(−∞) = 0, x(0) = x0

Lo describes the energy induced only by an initial state x0 to the output
signal y and Lc describes the minimal energy required to reach a state x0
at the zero time. The energy functions can be computed as:

Lo = 〈x0,Qx0〉Rn Lc = 〈x0, P−1x0〉Rn ,

where

Q =

∫ ∞

0
eA
T tCTCeAtdt P =

∫ ∞

0
eAtBBT eA

T tdt

The matrices P and Q also satisfy the equations:

ATQ + QA+ CTC = 0 AP+ PAT + BBT = 0

The matrices P and Q are called the controllability and the observability
Gramians respectively. The described equations are called the Lyapunov
equations. If all the eigenvalues of A have negative real parts then P, Q
are positive semidefinite.
A related object to the energy functions is the Hankel operator ΓG ,

which is defined as follows.

ΓG : L(−∞, 0) → L(0,∞)

ΓGu(t) =

∫ 0

−∞

CeA(t−τ )Bu(τ )dτ , for t ≥ 0

and ΓGu has an interpretation of an output:

y(t) = ΓGu(t) t ≥ 0

The operator maps past inputs into future outputs. Consider the oper-
ator Γ∗

GΓG . It can be verified that its non-zero eigenvalues are equal to the
singular values of PQ. These are called the Hankel singular values. The
Hankel norm of a transfer function is defined as the norm of its Hankel
operator and computed as

qGqH = qΓGq =
√
maxλ(PQ)

The relationship between the Hankel and the L∞ norms is described by
the well-known Nehari’s theorem:

22



1.1 Systems Theory Background

THEOREM 1.1—NEHARI
Suppose G ∈ H∞, then

inf
∆−∈H∞

qG − ∆∼−q∞ = qΓGq = qGqH

and the infimum is achieved.

The famous Adamyam-Arov-Krein (AAK) theorem may be considered as
a generalization of Nehari’s theorem. Only a simplified formulation is
presented here.

THEOREM 1.2—ADAMYAN-AROV-KREIN
Let G(s) be an asymptotically stable, matrix-valued function bounded on
the imaginary axis. Let σ 1 ≥ ⋅ ⋅ ⋅ ≥ σm ≥ 0 be m largest singular values
of ΓG . Then σm is the minimum of qG − ĜqH over the set of all stable
systems Ĝ of order less than m.

As a consequence of the AAK theorem one can rewrite the transfer func-
tion G as:

G(s) = D +σ 1E1(s) + ⋅ ⋅ ⋅+σ nEn(s)

where Ei(s) are all-pass dilations, i.e., for all i the functions Ei(�ω )Ei
∼(�ω )

are equal to the identity matrix. This representation gives a bound on the
H∞ norm through the Hankel singular values:

qGqH∞ ≤ 2(σ 1 + ⋅ ⋅ ⋅+σ n)

A tighter bound is given by the next lemma:

LEMMA 1.1
Suppose G ∈ H∞, and σ 1 ≥ ⋅ ⋅ ⋅ ≥ σ n are the Hankel singular values of G,
then there exists a constant real-valued matrix D0 such that:

qG − D0qH∞ ≤ σ 1 + ⋅ ⋅ ⋅+σ n ≤ nσ 1 = nqGqH

In the discrete time setting, a natural replacement for an integral is a
sum, providing the definition of the energy functions.

Lo =
∞∑

t=0

y(t)T y(t) x(0) = x0, u(⋅) = 0

Lc = min
u(⋅)

0∑

t=−∞

u(t)Tu(t) x(−∞) = 0, x(0) = x0
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Chapter 1. Introduction and Background

The functions can be computed in a similar manner, i.e.,

Lo = 〈x0,Qx0〉Rn Lc = 〈x0, P−1x0〉Rn

where positive definite P and Q satisfy the Lyapunov equations:

ATQA− Q + CTC = 0 APAT − P+ BBT = 0

The unique solutions to these equations exist if the eigenvalues of A lie
inside the unit disc D.
The Nehari and AAK theorems, as well as Lemma 1.1, are also valid

for the discrete-time case.

1.2 Basic Model Order Reduction Techniques

Basic model reduction techniques, that is, Hankel model reduction and
balanced truncation, are presented only in continuous time. However, the
methods were also developed for discrete-time systems. Since they use
similar ideas, they are skipped. The main goal of this section is providing
a general insight into model reduction mechanisms and not reviewing the
existing methods. An interested reader may find a detailed review of the
model reduction methods in [Antoulas, 2005] or [Obinata and Anderson,
2001].
The order reduction problem is set to find a low-order approximation

Ĝ = (Â, B̂, Ĉ, D̂) of the full order one G. The matrix Â ∈ Rk$k and the
dimensions of the rest of the matrices are changed, correspondingly. It
means that the order for the reduced order model is less or equal to k, i.e.,
deg(Ĝ) ≤ k. Suppose deg(G) = n and n is much larger than k. Formally,
one may write the problem as a minimization one:

min
deg(Ĝ)≤k

qG − ĜqH∞

Balanced Truncation [Moore, 1981]

The intuition behind H∞ model reduction is quite simple: reduce the
states, which induce a small amount energy into the output, and at the
same time the states, which require a large amount of energy to con-
trol. Another interpretation of this intuition is reduction of near pole-zero
cancellations. In order to explore the energy intuition, recall the energy
interpretation of the H∞ norm:

qGqH∞ = sup
u(⋅)

{
qy(t)qL2(−∞,+∞)

qu(t)qL2(−∞,+∞)

∣∣∣ y(t) = Gtu(t)
}

24



1.2 Basic Model Order Reduction Techniques

To some extent the amount of received and induced energy can be mea-
sured by the energy functions Lc and Lo. These functions can be computed
using the Gramians:

Lc = 〈x, P−1x〉 Lo = 〈x,Qx〉

Let P and Q be equal diagonal matrices, where Pii = Qii = σ i, then

Lc =

n∑

i=1

σ−1
i x

2
i Lo =

n∑

i=1

σ ix
2
i

where xi is the i-th entry of x. If σ−1
i is large, then a state xi requires a

large amount of energy to control. Similarly, small σ i correspond to a small
amount of energy induced into the output. In summary, if σ i is small, then
by sending a large amount of energy to the state xi, the amount of energy
induced into the output will be very small. This way, the Gramians may
be used to determine which states to truncate, if the matrices P and Q
are diagonal. Simultaneous diagonalization may be performed as:

Q̃ = T−TQT−1 = Σ P̃ = TPTT = Σ where

T = Σ1/2U ∗P−1/2 and P1/2QP1/2 = UΣ2U ∗

The state-space representation (TAT−1,TB,CT−1) is called a balanced
realization of G which gave the name to the method. Since a similarity
transformation does not effect G, the input-output relationship is still the
same. The Hankel singular values σ 1 ≥ ⋅ ⋅ ⋅ ≥ σ n appear on the diagonal
of balanced Gramians:

P̃ = Q̃ = Σ =




σ 1 0
. . .

0 σ n




Algorithm 1 concludes the derivation. Properties of the reduced model are
formulated in, for example, [Antoulas, 2005]:

THEOREM 1.3
Assume Ĝ is obtained by balanced truncation of an asymptotically stable
G. Then Ĝ is asymptotically stable and

qG − ĜqH∞ ≤ 2
n∑

i=k+1

σ i

where {σ i}ni=k+1 are the truncated Hankel singular values of G.
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Chapter 1. Introduction and Background

Algorithm 1 Balanced Truncation

• Let G = (A, B,C) be an asymptotically stable system with A ∈ Rn$n,
and B and C have corresponding sizes

• Solve Lyapunov equations for P and Q:

ATQ + QA+ CTC = 0 AP+ PAT + BBT = 0

• Calculate an invertible matrix T ∈ Rn$n which is a state-space
transformation, such that

TPTT = T−TQT−1 = Σ = diag {σ 1, . . . ,σ n}

• Let W = T−T ( Ik 0k$n−k ) V = T ( Ik 0k$n−k ) and obtain the
reduced model (Â, B̂, Ĉ) = (WTAV ,WTB,CV ), where Â ∈ Rk$k and
B̂ and Ĉ have corresponding sizes

Hankel Model Reduction [Glover, 1984]

Even though balanced truncation provided an excellent intuition for re-
ducing the states, Hankel model reduction provides an approximation with
tighter error bounds. The model reduction problem here is formulated in
the Hankel norm:

min
deg(Ĝ)≤k, Ĝ∈H∞

qG − ĜqH

Using Nehari theorem it can be shown that this optimization problem is
equivalent to:

min
deg(Ĝ)≤k, Ĝ,∆−∈H∞

qG − Ĝ − ∆∼−q∞ (1.1)

Note ∆∼− is an anti-stable transfer matrix (all the poles are unstable). As
the reader may recall, any transfer function can be written as:

Ĝ(s) = D +σ 1E1(s) + ⋅ ⋅ ⋅+σ nEn(s)

using all-pass dilations Ei(s), for which EiEi
∼ = I on the imaginary axis,

and Hankel singular values σ i. The idea of the Hankel model reduction
boils down to calculating Ei(s) and D0 such that:

Ĝ(s) = D + D0 +σ 1E1(s) + ⋅ ⋅ ⋅+σ kEk(s)

D0 is required for a tighter error bound, obtained using Lemma 1.1. A
detailed description of the algorithm is omitted, due to its technicality
and insignificant relevancy to this thesis.
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1.2 Basic Model Order Reduction Techniques

Algorithm 2 Hankel model reduction coupled with optimization

• Solve the optimal Hankel model reduction problem and obtain Ĝ =
(Â, B̂, Ĉ, D̂)

• Fix Â, B̂ and solve the following optimization problem:

min
C,D

qG − C(sI − Â)−1 B̂ − DqH∞

The properties of the reduced model obtained by Hankel norm mini-
mization are formalized in a statement:

THEOREM 1.4
Suppose G is an asymptotically stable transfer function, Ĝ is obtained by
Hankel norm minimization. Then Ĝ is asymptotically stable and

σ k+1 = qG − ĜqH ≤ qG − ĜqH∞ ≤
n∑

i=k+1

σ i

where {σ i}ni=k+1 are the truncated Hankel singular values of G.

Assume that the obtained Ĝ with a state-space representation (Â, B̂, Ĉ, D̂)
is an optimal solution in the Hankel norm. However, in the H∞ norm a
better one can be found using the already obtained data. Consider Algo-
rithm 2, the constraint on matrices C, D is convex and the minimization
can be solved using semidefinite or second order cone programming. A
similar technique is used to obtain the reduced model in this thesis. Note
that one can also fix the matrix Ĉ instead of B̂ and optimize then over B
and D.

Numerical Complexity

The balanced truncation algorithm typically requires O(n3) floating point
operations (flops) to compute the reduced order models. Here, n is the
order of the full order model. There are methods that can significantly
lower the cost of Lyapunov equation solution under certain assumptions
([Reis and Stykel, 2010]). In this case, the cost of the balanced truncation
is lowered to O(n2).
The Hankel model reduction involves solving Lyapunov equations as

well, therefore, the cost is also O(n3). Although it is important to remark,
that the cost is higher than in balanced truncation.
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Chapter 1. Introduction and Background

1.3 Transfer Function Factorizations

There are many ways of factorizing a transfer function. Only two are used
in this thesis: coprime and spectral factorizations. In this section, all the
definitions are introduced for the discrete time case. The principles behind
coprime and spectral factorization are described in [Zhou et al., 1996].
However, the presented algorithms were found more convenient to use for
the problems arising in the thesis.

Coprime Factorization (e.g., [Bongers and Heuberger, 1990])

Consider a system G with a minimal state-space representation

x(t+ ∆t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

In order to investigate unstable G for controller design, it is factorized
into stable transfer matrices M and N. If such matrices can be found,
then the transfer matrix G is equal to M−1N. The transfer matrices M
and N should not have common zeros, which can be cancelled out while
computing G. This concept is formalized as left coprimeness. A pair of
transfer matrices M and N is called left coprime over H∞ if there exist
rational transfer matrices X l and Yl in H∞ such that

[M N ]

[
X l

Yl

]
= I

In this case, a state-space representation of coprime factorization can be
computed as:

[M N ] =

[
A+ LC L B + LD

C I D

]

where L is used to stabilize A. Such a factorization exists if there exists L,
which can stabilize A. Note also if M and N is a left coprime factorization
of G, then so is RM and RN for an invertible, real matrix R.
The norm of the coprime factors may significantly vary depending on

the matrix L. Therefore, a normalized coprime factorization is introduced,
i.e., such left coprime factors M and N that

M∼M + N∼N = I

With such a constraint, a state-space representation of normalized co-
prime factors is computed as:

[M N ] =

[
A+ LC L B + LD

RC R RD

]
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1.3 Transfer Function Factorizations

where R is the upper triangular Cholesky factor of (I+ DDT +CPCT)−1,
L = −(APCT + BDT)RRT and the positive semidefinite P is the solution
of the Riccati equation:

APAT − P− (APCT + BDT)RRT (APCT + BDT)T + BBT = 0

Similarly, a right coprime factorization G = Ñ M̃−1 can be introduced,
by repeating the derivations for GT . Then G = NTM−T , M̃ = MT and
Ñ = NT .

Symmetric Spectral Factorization (e.g., [Kučera, 1991])

Consider a square transfer matrix:

Q(z) = Qkz
−k + Qk−1z

−k+1 + ⋅ ⋅ ⋅+ Q1z
−1 + Q0

for a fixed k. Assume G = Q + Q∼ is positive definite on the unit cir-
cle. It implies that the spectrum (the zeros) of the transfer matrix G is
symmetrically divided with respect to the unit circle. This means that for
every zero p inside the unit circle �D, there exist a zero 1/p outside the
unit circle. The goal of the spectral factorization is to find such a transfer
matrix

M(z) = Mkz
−k + ⋅ ⋅ ⋅+ M1z

−1 + M0

that all the zeros of M lie inside the unit circle and G = Q+Q∼ = MM∼.
Let Q have the state-space representation:

Q =

[
A B

C D

]

Then the spectral factor M is computed as:

M =

[
A B

F R

]

where R = (BTPB+D+DT)1/2, F = R−1(BTPA+C) and P is the positive
semidefinite solution to the Riccati equation

ATPA− X − ATPB(BTPB + D + DT)−1(ATPB)T = 0

A factorization G = N∼N may be also computed, where N has zeros
inside the unit circle. In this case, a function GT can be factorized using
the algorithm above and the stable spectral factor is N = MT .
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Chapter 1. Introduction and Background

Non-Symmetric Spectral Factorization ([Fairman et al., 1992])

If a square matrix-valued polynomial is not positive semidefinite on the
unit circle, but there is no zeros on the unit circle and the number of zeros
inside is equal to the number of zeros outside the unit circle, this matrix
can be still factorized. In the non-symmetric case, a Riccati equation is
solved as well. Consider a transfer matrix:

G(z) =

i=k∑
i=−k

Qiz
i+k

d(z)

where d(z) is a scalar valued polynomial of degree 2k with no zeros on
the unit circle, Qi are square real matrices and Qk is invertible. Since
the pseudo-polynomial Q has the same number of stable and unstable
zeros, d(z) should also have the same property. In the thesis, the choice
d(z) = zk(z− 2)k provided satisfactory results.
The goal is to find Ms and Mu such that G = MsMu, where poles

and zeros of Ms lie inside the unit circle, while poles and zeros of Mu lie
outside the unit circle. First, the transfer function is decoupled into stable
and anti-stable parts:

G(z) = Qs(z) + Qu(s) =

[
As Bs

Cs Ds

]
+

[
Au Bu

Cu Du

]

where Qs contains only stable modes (all the eigenvalues of As are smaller
than 1) and Qu only unstable ones (all the eigenvalues of Au are bigger
than 1). Then the following Riccati equation is solved:

(As − BsD
−1Cs)P− P(Au − BuD

−1Cu) + P(BuD
−1Cs)P− BsD

−1Cu = 0

where D = Ds + Du. Note that the solution P will not be symmetric.
Finally, introduce Js and Ju such that JsJu = Ds+Du and spectral factors
are computed as:

Ms =

[
As (Bs − PBu)J

−1
u

Cs Js

]
Mu =

[
Au Bu

J−1s (CsP+ Cu) Ju

]

The factorization G = NuNs, where Ns has only stable poles and zeros,
and Nu has only unstable ones, can be performed similarly to the previous
cases. That is, factorize GT into MsMu, and define Ns = MTs , Nu = M

T
u .
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1.4 Convex Optimization

1.4 Convex Optimization

Only the main concepts are sketched here. For further reading, see [Boyd
and Vandenberghe, 2004].
One of the central concepts in optimization theory is convexity. A set

A is called convex if

∀x, y ∈ A, ∀θ ∈ [0, 1] : θ x + (1− θ)y ∈ A

Convex sets are extremely convenient, since it is easy to perform a line
search over them. If a point belongs to the border of a convex set, then
there is no need to extend the line farther. The points beyond the border
will not belong to the set, otherwise the set is not convex. The line search
is the easiest form of optimization. Consider a more general optimization
program - minimization:

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,N1
fi(x) = 0 i = N1 + 1, . . . ,N2 + N1

The minimization problem is called convex if for all i = 0, . . . ,N1+N2 the
functions fi are convex, which means that they satisfy the inequality:

fi(α x + β y) ≤ α fi(x) + β fi(y) ∀i = 0, . . . ,N1 + N2
∀α , β ∈ R

+ : α + β = 1

and x, y lie in the domain of fi. If the functions fi are convex then the
decision variables x are confined to an intersection of convex sets. Mini-
mization over convex functions with convex constraints is guaranteed to
have a unique global minimum.
An important concept in optimization theory is a relaxation. A relax-

ation is removing some constraints from the problem, which creates an
easier problem to solve. Typically, the removed constraints are non-convex.
Consider a simple example:

γ n = minimizex,y cT x

subject to bT x + aT y≤ 0

xi = 0 or xi = 1

The binary constraint on x (the entries xi are equal to 0 or 1) is not
convex. It can be relaxed by replacing it with the constraint “x lies in
the closed interval [0, 1]”. Such a replacement can be seen as removing
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Chapter 1. Introduction and Background

the constraint xi does not belong to the open interval (0, 1). The convex
minimization problem is now as follows.

γ r = minimizex,y cT x

subject to bT x + aT y≤ 0

xi ∈ [0, 1]

Note that γ r ≤ γ n, since the relaxed problem has fewer constraints. It is
typically required to estimate an upper bound on γ n based on γ r, i.e., esti-
mate κ such that γ n ≤ κγ r. The constant κ is usually called a relaxation
gap. If κ is infinite, then this relaxation is not meaningful, since the pro-
grams are essentially different and the solutions are not close at all. In
order to have solutions close as well, κ should be as close to 1 as possible.

Quasi-Convex and Solvability Programming

Some functions are not convex, yet, it is possible to include them into
a convex program. These functions are called quasi-convex. Their main
property is convexity of sub-level sets. A sub-level set of f0 for a scalar γ
is defined as

Aγ = {x p f0(x) ≤ γ }

Let the function f0 be quasi-convex and the other functions fi be convex.
A convex program may be obtained by introducing an extra constraint
f0(x) ≤ γ and minimizing γ instead. Specifically, if f0 is a rational function
f0 = �0/h0. If h0 is positive for all x, the following program is obtained:

minimize γ

subject to �0(x) ≤ γ h0(x)

fi(x) ≤ 0 i = 1, . . . ,N1
fi(x) = 0 i = 1+ N1, . . . ,N2 + N1

One of the ways of solving the quasi-convex program is bisection, which
is outlined in Algorithm 3. The program (1.2) can be replaced with a
solvability one, i.e., set s = 0 and the objective is to find x satisfying the
same constraints. However, in the optimization problems occurring in this
thesis, solving a minimization problem is more numerically robust.

Semidefinite Programming and Relaxations

A semidefinite program is formulated as follows:

minimize bT x

subject to x1A1 + ⋅ ⋅ ⋅+ xnAn + C ≤ 0

Ax = b
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1.4 Convex Optimization

Algorithm 3 Bisection algorithm applied to a quasi-convex program
Specify an upper bound γ u, a lower bound γ l and a tolerance level ε
repeat

Set γ = (γ u − γ l)/2 and solve the following convex problem:

minimize s (1.2)

subject to �0(x) ≤ γ h0(x) + s

fi(x) ≤ 0 i = 1, . . . ,N1
fi(x) = 0 i = 1+ N1, . . . ,N2 + N1

if s > 0 then
Set γ l = γ

else

Set γ u = γ
end if

until γ u − γ l ≤ ε

where A1, . . . , An,C, b - constant matrices of suitable sizes. Any matrix
inequality with matrix variable X constitutes a semidefinite program as
well. A semidefinite program has a unique minimum and the solution can
be obtained in polynomial time. Moreover, there are commercial and open-
source solvers to compute the solution such as SPDT3 ([Tütüncü et al.,
1999]) and SEDUMI ([Sturm, 1999]).
A useful result used in semidefinite programming is the following

lemma. It is commonly used to obtain a semidefinite program from what
appears to be a non-convex constraint.

LEMMA 1.2—SCHUR’S COMPLEMENT

Given a complex-valued matrix
(
A B

C D

)
with positive definite D, the

matrix A− BD−1C is positive (semi)definite if and only if and
(
A B

C D

)

is positive (semi)definite.

Positivity and Sum-of-Squares Constraints

Some constraints used in this thesis require a special treatment. These
are concerned with the positive polynomials over specific domains. From
the systems theory perspective, it is a positivity of transfer functions for
all the frequencies ω in the interval [0,π ]. The major result in this area is
the Kalman-Yakubovitch-Popov (KYP) lemma (e.g. [Khalil, 2002; Willems,
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1971]). This lemma allows to express the positivity as an algebraic condi-
tion instead of the frequency-dependent one. The following formulation is
going to be used in the thesis:

LEMMA 1.3
Given A, B, M with det(e�ω I − A) ,= 0 for ω ∈ [0,π ] and (A, B) control-
lable, the following two statements are equivalent:

(i) [
(e�ω I − A)−1B

I

]∼
M

[
(e�ω I − A)−1B

I

]
≤ 0 ∀ω ∈ [0,π ]

(ii) There exist a symmetric matrix P such that

M +

[
ATPA− P ATPB

BTPA BTPB

]
≤ 0

The corresponding equivalence for strict inequalities holds even if (A, B)
is not controllable.

Unfortunately, a corresponding result for parameter-dependent transfer
functions G(e�ω ,θ) is not available in such a general formulation. There-
fore, another approach is needed. Consider a trigonometric polynomial,
which depends on two variables, i.e.:

a(ω ,θ) =
n0∑

i=−n0

n1∑

k=−n1

aike
−i�ω e−k�θ

Both variables ω and θ are in [0,π ]. Instead of expressing the constraint
a ≥ 0, it is replaced with a is a sum-of-squares. It is common technique
in such problems and is called a sum-of-squares relaxation.

THEOREM 1.5
This theorem is based on the results from [Dumitrescu, 2007].
The condition a is a sum-of-squares can be replaced by the following al-
gebraic conditions

Q is a positive semidefinite matrix

aik = trace ((Θ
n0
i ⊗ Θn1k )Q) ∀(i, k) ∈ I

where Θni is an n by n elementary Toeplitz matrix, with ones on the i-th
diagonal and Θni = (Θ

n
−i)
T . The index set I describes an asymmetric half-

plane. It means that if i > 0, then k is arbitrary, and if i = 0, then k ≥ 0.
Moreover, a can be expressed as:
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1.5 Quasi-Convex Optimization Approach to Model Reduction

a =
n0∑
i=−n0

n1∑
k=−n1

trace ((Θn0i ⊗ Θn1
k
)Q)e−i�ω e−k�ω

The result is extended to a larger number of parameters and matrix-
valued pseudo-polynomials in [Dumitrescu, 2007]. Note that for non-para-
meterized problems, this approach is similar to the KYP lemma above.

1.5 Quasi-Convex Optimization Approach to Model
Reduction

In [Sou et al., 2005], it was suggested by Sou, Megretski and Daniel to
solve directly the frequency domain problem

min
deg(Ĝ)≤k

qG − ĜqH∞

where k is lower than deg(G) of the full order model G. The method
was proposed for discrete-time SISO models, i.e., G(z) is a scalar-valued,
asymptotically stable, transfer function. An optimal solution of this non-
smooth optimization is not practically computable. However, authors pro-
posed a great suboptimal solution. Introduce a notation:

Ĝ =
p

q
where p(z) =

k∑

i=0

piz
−i q(z) =

k∑

i=0

qiz
−i

and all the zeros of q are inside the unit circle �D, i.e., it is a stability
constraint on Ĝ. Matching is performed on the unit circle z = e�ω , with pi,
qi being the decision variables. Consider now only the norm constraint,
later it will be shown that using the proposed technique it is possible to
reconstruct a stable reduced order model. The infinity norm is reformu-
lated as a minimization with an infinite number of constraints (for every
frequency ω in [0,π ]):

min
γ>0, pi, qi

γ subject to
∣∣∣∣G(e

�ω ) −
p(e�ω )

q(e�ω )

∣∣∣∣ < γ ∀ω ∈ [0,π ]

Multiplication of both sides of the inequality with pq(e�ω )p2 = q(e�ω )q∼(e�ω )
yields:

min
γ>0, pi, qi

γ subject to
∣∣G(e�ω )pq(e�ω )p2 − p(e�ω )q∼(e�ω )

∣∣ < γ pq(e�ω )p2 ∀ω ∈ [0,π ]
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These inequalities can be rewritten in a matrix form as follows:

min
γ>0, pi, qi

γ subject to for all ω in [0,π ]:
(

γ pq(e�ω )p2 G(e�ω )pq(e�ω )p2 − p(e�ω )q∼(e�ω )

∗ γ pq(e�ω )p2

)
> 0

where the asterisk stands for (G(e�ω )pq(e�ω )p2− p(e�ω )q∼(e�ω ))∼. This pro-
gram is still not convex in variables pi and qi. However, here a relaxation
can be successfully applied. Let a = pqp2 and b = pq∼, which yields a
program:

min
γ>0, pi, qi,a,b

γ subject to: (1.3)
(

γ a(e�ω ) G(e�ω )a(e�ω ) − b(e�ω )

(G(e�ω )a(e�ω ) − b(e�ω ))∼ γ a(e�ω )

)
> 0 ∀ω ∈ [0,π ]

b(z) = p(z)q∼(z) ∀z ∈ C

a(e�ω ) > 0 ∀ω ∈ [0,π ]

The positivity condition a > 0 guarantees that a stable reduced order
model can be reconstructed. If a is positive on the unit circle, then a can
be always factorized into qq∼, where q has only stable zeros and poles. It
means that the stable part of b/a can be taken as reduced order model.
Note that the condition a > 0 is implied by the matrix inequality and,
therefore, can be removed.
Removing the constraint b = pq∼ constitutes a relaxation. Therefore,

b will not depend on q and p. The coefficients of the pseudo-polynomials
a(z) =

∑k
i=−k aiz

−i and b(z) =
∑k
i=−k biz

−i are the new decision variables.
The positivity of a on the unit circle also implies that a(z) = a(1/z),
which is equivalent to a−i = ai for all i. The resulting program is quasi-
convex and can be solved using standard methods. The denominator is
obtained by spectral factorization of a. To obtain an asymptotically stable
reduced order model (1.4) is solved. This program does not significantly
affect numerical complexity and provides an optimal numerator given a
denominator q. The method is summarized in Algorithm 4. The error
bounds for the algorithm were shown in [Megretski, 2006].

THEOREM 1.6—[MEGRETSKI, 2006]
If γ ∗, p∗, q∗ are obtained from (1.3, 1.4) then:

σ k+1(G) ≤ γ ∗ ≤ min
p,q

∥∥∥∥G −
p

q

∥∥∥∥
H∞

≤

∥∥∥∥G −
p∗

q∗

∥∥∥∥
H∞

≤ (k+ 1)γ ∗
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1.5 Quasi-Convex Optimization Approach to Model Reduction

Algorithm 4 Quasi-Convex Optimization (QCO) Approach to Model Re-
duction

• Introduce new variables a =
k∑
i=−k

aiz
−i b =

k∑
i=−k

biz
−i

• Solve the quasi-convex program

min
γ>0,ai, bi

γ subject to for all ω in [0,π ]:
(

γ a(e�ω ) G(e�ω )a(e�ω ) − b(e�ω )

(G(e�ω )a(e�ω ) − b(e�ω ))∼ γ a(e�ω )

)
> 0

• Given a solution a∗, solve the spectral factorization problem a∗ =
q∗q

∼
∗

• Then given q∗, the numerator p∗ is computed as:

min
p

∥∥∥∥G −
p

q∗

∥∥∥∥
∞

(1.4)

• The reduced order model is computed as Ĝ = p∗/q∗

Here min
p,q

∥∥∥G − p
q

∥∥∥
H∞

is the optimal error of reduction, and σ k+1(G) is

the k+ 1-th largest Hankel singular value of G.

To obtain a numerically efficient program, the norm constraints are en-
forced only on a finite frequency grid. To ensure stability the constraint
a > 0 should be enforced for all the frequencies ω in [0,π ]. This can be done
efficiently using the Kalman-Yakubovitch-Popov lemma (see, Lemma 1.3).
The approach was also extended to the parameterized model reduction

([Sou et al., 2005]) and frequency-weighted model reduction([Sandberg
and Murray, 2007]).
The approach presented in Chapter 2 is a relaxation of the QCO algo-

rithm. Therefore, a more detailed discussion on properties and interpre-
tations of the method is presented not here, but in the upcoming chapters.
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2

Semidefinite Hankel-type

Model Order Reduction

This chapter deals with a problem of scalable model reduction in the H∞
norm. Two algorithms are proposed to address the problem. The algo-
rithms perform matching of frequency response samples of a transfer func-
tion. They result from a reformulation of the single-input-single-output
model reduction problem, which will be called a Hankel-type formulation.
This formulation is obtained by introducing an auxiliary variable into the
objective function. In this formulation, two variables parameterize the
denominator of the reduced order model to some extent. One of these
variables has only unstable modes. This is similar to Hankel model re-
duction, in which a stable and an anti-stable functions are the decision
variables (see, page 26 for the definition). Having this auxiliary variable
allows two possibilities to obtain a convex problem: a relaxation and an
iterative approach.
The employed relaxation is related to both quasi-convex optimization

approach (QCO, in [Sou et al., 2008]) and Hankel model reduction ([Glover,
1984]). The QCO is discussed in detail in this thesis (Algorithm 4 on
page 37) and Hankel model reduction is sketched in Section 1.2. In these
algorithms, optimization is performed over stable and anti-stable transfer
functions. The stable one can be taken as a reduced order model. It can
be also shown that Hankel model reduction and the presented approach
are relaxations themselves of the QCO algorithm.
The proposed iterative algorithm solves a semidefinite program on ev-

ery iteration. It also converges given any feasible starting point. How-
ever, given two different starting points, the converged solutions can be
different. A starting point can be computed from an asymptotically sta-
ble low-order approximation of the full order model. Hence, the method
is able to potentially improve the quality of any model order reduction
method. Given such initial point the stability constraint is expressed as
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a positive real constraint, i.e., a non-convex constraint is replaced by a
semidefinite one. Similar idea to express stability is employed in [Rantzer
and Megretski, 1994] and [Henrion et al., 2003].
It can not be claimed that the proposed relaxation always provides a

better model match than QCO Algorithm 4. Nevertheless, the proposed
framework has a number of advantages:

• The quality of approximations obtained with QCO or the presented
relaxation is comparable to the one of Hankel model reduction, which
is known to deliver very accurate solutions. However, the computa-
tional cost of approximation may be significantly lower in comparison
to the one of Hankel model reduction.

• The proposed approach is a relaxation of the QCO algorithm, which
results in a few advantages in comparison to the QCO algorithm.
Firstly, a better numerical robustness, which is illustrated in de-
tail in Example 2.1. Secondly, results of the parameterized model
reduction extension show a considerable improvement in the qual-
ity of approximation. The parameterized model order reduction is
investigated in Chapter 3.

• The presented iterative approach is a powerful tool when systems
with a structure are considered, i.e., decentralized structure, plant-
controller systems, etc. The method is extended to such problems in
Chapters 4 and 5.

• For particular models, it is possible that the actual approximation
error of the proposed method is larger than the one of the QCO
algorithm. Nonetheless, the presented iterative approach is able to
significantly reduce the loss of approximation quality, if it occurs
due to the looser relaxation.

A direct generalization of the Hankel-type formulation to the multi-
input-multi-output (MIMO) model reduction appears to be impossible.
Therefore, the MIMO extensions of the proposed approaches are, in fact,
slightly different algorithms. These are obtained using optimization tech-
niques employed in [Sootla and Sou, 2010] and [Tobenkin et al., 2010].
The chapter is organized as follows: the Hankel-type formulation of

model order reduction problem is presented in Section 2.1. Section 2.2
describes the proposed relaxation for the single-input-single-output case.
Different subsections are devoted to a system theoretic interpretation,
a discussion on relationship to the QCO algorithm, implementation de-
tails and different properties of the method. The iterative approach is
briefly discussed in Section 2.3. Section 2.4 describes a MIMO, frequency-
weighted, positive real extensions to model order reduction. Numerical
examples are found in Section 2.5.
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Chapter 2. Semidefinite Hankel-type Model Reduction

2.1 Hankel-type Formulation of Model Reduction Problem

The main focus of this chapter is reduction of discrete time models. Nev-
ertheless, the algorithms can be extended to the continuous time case,
as discussed in Section 2.5. Throughout the chapter, the assumptions are
standard, i.e., the full order model G is an asymptotically stable, causal,
rational transfer function. In this section, it is also assumed that G is a
scalar-valued transfer function. The reduction problem for such models is
formulated as:

min
p, q

qG − p/qq
H∞

where p and q are FIR filters (i.e., p(z) =
∑k
i=0 piz

−i, q(z) =
∑k
i=0 qiz

−i)
q has a stable inverse and p/q is a sought-for approximation. It is also
assumed that the order of the full order model G is much larger than k.
Minimizing the H∞ norm is usually rewritten as a minimization of an

approximation level γ subject to the norm constraints enforced only on

the unit circle �D =
{
z

∣∣∣pzp = 1
}
and the stability constraint. Therefore, z

often will be substituted by e�ω . The resulting program reads as:

γmor = min
p,q

γ subject to (2.1)

pG(e�ω )q(e�ω ) − p(e�ω )p < γ pq(e�ω )p ∀ω ∈ [0,π ]

q(z) has a stable inverse

The goal of this section is to show that the following formulation is equiv-
alent to (2.1):

γ htf = min
γ>0, p, q,ϕ

γ subject to (2.2)

pG(e�ω )q(e�ω )ϕ∼(e�ω ) − p(e�ω )ϕ∼(e�ω )p < γ Re (q(e�ω )ϕ∼(e�ω )) ∀ω ∈ [0,π ]

ϕ(z) has a stable inverse

where ϕ∼(z) is equal to ϕT (1/z). The program (2.2) is called a Hankel-
type formulation of model order reduction. The name of the formulation is
explained in detail in Section 2.2. The main benefit of this formulation is
the absence of the absolute value function on the right hand side, which
gives two possibilities to obtain convex programs: a relaxation and an
iterative approach, where ϕ is iterated over.
The Hankel-type formulation is derived in a few simple steps. First,

consider a new variable ϕ , which is also an FIR filter of order k and
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2.1 Hankel-type Formulation of Model Reduction Problem

it is non-zero on the unit circle. Introduce ϕ in (2.1) by replacing the
constraints

pG(e�ω )q(e�ω ) − p(e�ω )p < γ pq(e�ω )p ∀ω ∈ [0,π ]

with the equivalent ones:

pG(e�ω )q(e�ω )ϕ∼(e�ω ) − p(e�ω )ϕ∼(e�ω )p < γ pq(e�ω )ϕ∼(e�ω )p ∀ω ∈ [0,π ]

The resulting minimum will not change since ϕ can be always canceled
out. Now replace pqϕ∼p with Re (qϕ∼).

min
γ>0, p, q,ϕ

γ subject to (2.3)

pG(e�ω )q(e�ω )ϕ∼(e�ω ) − p(e�ω )ϕ∼(e�ω )p < γ Re (q(e�ω )ϕ∼(e�ω )) ∀ω ∈ [0,π ]

q(z) has a stable inverse and ϕ ,= 0 on [0,π ]

Note that the left-hand side of the inequality is non-negative and, there-
fore, Re (qϕ∼) ≥ 0. Since ϕ and q are not equal to zero, as an artifact
a positivity constraint Re (qϕ∼) > 0 for all the frequencies ω in [0,π ] is
obtained. For further use, a simple lemma is required.

LEMMA 2.1
Suppose q and ϕ are FIR filters of the same order. Assume also that
Re (qϕ∼) is positive for all the frequencies ω in [0,π ]. Then q has a stable
inverse if and only if ϕ has a stable inverse.

Proof. It is straightforward to show that the inequality Re (qϕ∼) > 0
implies that Re (qϕ−1) > 0 and Re (ϕq−1) > 0. If q−1 is stable, then the
transfer function ϕq−1 is positive real and, therefore, it has a stable in-
verse. Hence, ϕ has a stable inverse. Similarly, the converse is shown.

LEMMA 2.2
The optimal values γmor and γ htf are equal.

Proof. Due to Lemma 2.1 the program (2.3) is equivalent to (2.2). Since
Re (qϕ∼) ≤ pqϕ∼p for all q, ϕ and the frequencies ω in [0,π ], we have:

γ htf ≥ min
γ>0, p, q,ϕ

γ subject to

pG(e�ω )q(e�ω )ϕ∼(e�ω ) − p(e�ω )ϕ∼(e�ω )p < γ pq(e�ω )ϕ∼(e�ω )p ∀ω ∈ [0,π ]

q(z) has a stable inverse and ϕ ,= 0 on [0,π ]

Now, we can divide both sides of the norm constraint with ϕ , and the
minimization program reduces to (2.1). Therefore we have γmor ≤ γ htf.
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Chapter 2. Semidefinite Hankel-type Model Reduction

To prove the converse, assume p∗q
−1
∗ is an optimal solution to the model

reduction problem (2.1) with the optimal approximation level γ ∗ = γmor.
If we choose ϕ∗ = q∗, it is easy to verify that p∗, q∗, γ ∗, ϕ∗ satisfy the
constraints of (2.2). Thus γmor ≥ γ htf.
Lemma 2.2 also provides an optimal choice of the auxiliary variable ϕ ,

which is simply equal to q. On the other hand, the variable pqp is replaced
with

Re
(
q ⋅

ϕ∼

pϕ p

)

This fact implies that the complex vector q is rotated in a way such that
Re (qϕ∼) becomes positive. The value ϕ∼/pϕ p defines the angle of such a
rotation. In the optimality, this angle is equal to − arg(q), which leaves
only a positive part in expression qϕ∼.

2.2 Semidefinite Hankel-type Model Reduction

First, a more systematic approach to convexification of the Hankel-type for-
mulation (2.2) is employed, that is a relaxation. Introduce new variables
a :, qϕ∼ and b :, pϕ∼. Since p, q, and ϕ are FIR filter of order k, the new
variables are parameterized as a =

∑k
i=−k aie

−i�ω and b =
∑k
i=−k bie

−i�ω .
It is a standard technique in semidefinite programming and it yields a
quasi-convex program:

γ cshmr = min
γ>0, a,b

γ subject to (2.4)

pG(e�ω )a(e�ω ) − b(e�ω )p < γ Re (a(e�ω )) ∀ω ∈ [0,π ]

The non-convex conditions q and ϕ have only stable zeros, which corre-
sponds to a (or qϕ∼) has exactly k stable zeros, is very hard to parame-
terize in a convex manner in a and b. However, this constraint is actually
implied by positivity of the function Re (a).

LEMMA 2.3

Consider a function a =
k∑

i=−k

aiz
−i, the unit disc D and the unit circle �D.

If Re (a(�D)) > 0 then the pseudo-polynomial a has at most k zeros in D

and no zeros on �D.

Proof. The function a(z) does not have zeros or poles on the unit circle
(since Re (a(�D)) > 0). It is also analytic in D except for a set of isolated
points. Thus by Cauchy’s argument principle Nz − Np = No where Nz is
the number of zeros in D, Np is the number of poles in D and No is a
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2.2 Semidefinite Hankel-type Model Reduction

winding number of a(�D) (number of times a(�D) encircles the origin).
Since Re (a(�D)) > 0 for all the frequencies ω in [0,π ], the curve a(�D)
lies only in the right half plane and thus No = 0 and Nz = Np. Since Np
is at most k, so is Nz.

REMARK 2.1
If a is obtained using semidefinite programming, then the number of zeros
in D is equal to k almost surely. The pseudo-polynomials with ak = 0
(which would correspond to the case with Np ≤ k − 1 and Nz ≤ k − 1)
constitute a measure zero subspace of the pseudo-polynomials with ak ,= 0.
Therefore solutions of a semidefinite optimization procedure will have
ak ,= 0 almost surely.

After solving (2.4), the denominator q is obtained by solving the equation:

a = qϕ∼ (2.5)

where ϕ , q have only stable zeroes and are the solutions to the non-
symmetric spectral factorization problem (see, Section 1.3). Thus, the de-
nominator q∗ is computed. The numerator is obtained from:

p∗ = argmin
p

qG − p/q∗qH∞ (2.6)

and the reduced order model is simply p∗/q∗. Finally, the semidefinite
Hankel-type model reduction reads as solving (2.4,2.5,2.6) consecutively.

Tractable Algorithm and its Computational Complexity

The programs (2.4) and (2.6) have an infinite number of constraints, one
for each frequency ω in [0,π ]. Therefore, these are not tractable problems.
However, given that G is a rational transfer function, the frequency re-
sponse can not change too fast. It means that it may be sufficient to impose
some of the constraints of a finite number of frequencies {ω i}Ni=1 ∈ [0,π ].
The norm constraints (2.8) clearly can be relaxed this way. This is out-
lined in SHMR Algorithm 5. The frequency griding is also a relaxation. If
{ω i}Ni=1 is an N element subset of some countable set {ω i}

∞
i=1, then by con-

struction γ Nshmr ≤ γ ∞shmr for any positive integer N. Moreover, if {ω i}
∞
i=1 is

dense in [0,π ] then γ ∞shmr = γ cshmr (γ
c
shmr is the solution to (2.4)). In essence,

with a large enough N the theoretical value γ cshmr can be approximated
by γ Nshmr.
To avoid over-fit, the number of points in the grid N should be at

least O(k2), where k is the order of the reduced model. This griding
approach may create unstable approximations, therefore the positivity
constraint (2.9) is enforced for all the frequencies ω in [0,π ] using the

43



Chapter 2. Semidefinite Hankel-type Model Reduction

Algorithm 5 SHMR. Single-Input-Single-Output Case

1. Compute G(e�ω ) for all ω in a given set Ω = {ω i}Ni=1 ∈ [0,π ]. Define

a =
k∑

i=−k

aie
−i�ω and b =

k∑

i=−k

bie
−i�ω

2. Solve the following quasi-convex program

γ Nshmr = min
γ>0,a,b

γ subject to (2.7)

pG(e�ω )a(e�ω ) − b(e�ω )p < γ Re (a(e�ω )) ∀ω ∈ Ω (2.8)

Re (a) > 0 ∀ ω ∈ [0,π ] (2.9)

3. Given a solution a∗, perform the spectral factorization a∗ = q∗ϕ
∼
∗ ,

where ϕ∗, q∗ have only stable zeros and poles

4. Solve the following semidefinite program

p∗ = argmin
p

max
ω∈Ω

pG(e�ω ) − p(e�ω )/q∗(e
�ω )p (2.10)

5. Construct the reduced order model as p∗/q∗

Kalman-Yakubovitch-Popov lemma (Lemma 1.3). Note that this lemma
will add an LMI constraint with the size proportional to k and it will not
depend on the order of G. The number of decision variables in this LMI
constraint is proportional to k2.
There are two main contributors to complexity of the algorithm. The

first one is the computation of frequency response samples and the sec-
ond is the solution of the quasi-convex program. Note that spectral fac-
torization is performed over the variables describing the reduced order
model, therefore, the cost is not substantial (it is equal to O(k3)). Com-
puting the frequency samples costs in general O(l3) and can be lowered to
O(l log(l)) in certain relevant cases (e.g., [Kamon et al., 1997; Zhu et al.,
2003; Moselhy et al., 2007]), where l is the order of the full order sys-
tem G. The cost of one iteration when optimization problems are solved
with SEDUMI does not exceed O(N21N

2.5
2 + N3.51 ) floating point operations

(e.g., [Peaucelle et al., 2002]). Here N1 is the number of decision variables
and N2 is the number of rows in the LMIs. In our case N1 = O(k2) and
N2 = O(N + k), where k is the order of the approximation and N is the
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2.2 Semidefinite Hankel-type Model Reduction

number of computed frequency samples. The overall cost is computed as

O(Nl log(l)) + O(k4N2.5 + N3.5)

Based on numerical simulations, the computationally heaviest part for
large-scale systems (l > 10000) is the computation of frequency response
samples of G.

Error Bounds and System Theory Interpretation of the Relaxation

SHMR Algorithm 5 is interesting due to its connection to Hankel model
reduction, which will be discussed in detail here. Rewriting the constraints
in (2.4) with a norm constraint yields:

min
Re (a)>0, b

∥∥∥∥
(
G −

b

a

)
a

Re (a)

∥∥∥∥
∞

where a and b are pseudo-polynomials in z with degrees spanning from
−k to k. Note that the weight a/Re (a) has the infinity norm bigger or
equal to 1 since pap ≥ pRe (a)p for all the frequencies ω and thus:

min
Re (a)>0, b

∥∥∥∥
(
G −

b

a

)
a

Re (a)

∥∥∥∥
∞

≥ min
Re (a)>0, b

∥∥∥∥G −
b

a

∥∥∥∥
∞

Any pseudo-polynomial a with a positive real part can be decomposed into
q and ϕ as a = qϕ∼ using the spectral factorization. The FIR filters q and
ϕ have stable inverse, therefore q and ϕ∼ are coprime. It implies that
the pseudo-polynomial b can be also decomposed using the Diophantine
equation for some p and r:

b(z) = p(z)ϕ∼(z) + zk−1q(z)r(z)

where p, q, ϕ are FIR filters of order k, and r is an FIR filter of order
k − 1. Such a factorization has a unique solution in variables p and r.
Hence, a following decomposition is available

b

a
=
p

q
+
zk−1r

ϕ∼

Going back to the optimization problems, the following inequality can be
obtained by removing the positive real constraint.

min
Re (a)>0, b

∥∥∥∥G −
b

a

∥∥∥∥
∞

≥ min
q−1 , ϕ−1∈H∞

∥∥∥∥G −
p

q
−
zk−1r

ϕ∼

∥∥∥∥
∞
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Chapter 2. Semidefinite Hankel-type Model Reduction

Since the optimization problem on the right hand side of the inequality is
the definition of Hankel model order reduction we have:

min
Re (a)>0, b

∥∥∥∥
(
G −

b

a

)
a

Re (a)

∥∥∥∥
∞

≥ min
p

q
∈H∞

∥∥∥∥G −
p

q

∥∥∥∥
H

Thus, SHMR is Hankel model reduction with an extra weight in the ob-
jective function (a/Re (a)) and an extra constraint on the denominator
(Re (a) is positive for all the frequencies ω in [0,π ]). However, the distinc-
tive part of the Hankel norm optimization, i.e., optimization over an extra
anti-stable transfer function, is preserved in SHMR. Now we are ready to
formulate the main theorem of the section.

THEOREM 2.1
Assume (2.4), (2.5), (2.6) were consecutively solved providing as a solution
γ cshmr, a∗, b∗, p∗, q∗. Let γmor also be the optimal approximation level from
(2.1). Then the following error bounds hold:

σ k+1(G) ≤ γ cshmr ≤ γmor ≤ qG − p∗/q∗q∞ (2.11)

qG − p∗/q∗q∞ ≤ (k+ 1)γ
c
shmr (2.12)

where σ k+1(G) is k+ 1-st Hankel singular value of G.

Proof. The idea of the proof is taken from [Megretski, 2006].
First, consider the lower bounds (2.11). The inequality γmor ≤ qG −

p∗/q∗q∞ follows from the fact that γmor is a solution of (2.1) and therefore
γmor is a minimum value for all possible p and q.
The inequality γ cshmr ≤ γmor is satisfied by construction. Recall that (2.1)

is general and (2.2) is Hankel-type formulations of model reduction. The
Hankel-type formulation (2.2) has the optimal approximation level γ htf.
Furthermore, γmor = γ htf by Lemma 2.2. Since the proposed method (2.4)
is a relaxation of the Hankel-type formulation (2.2), then γ cshmr ≤ γ htf and
the inequality follows.
Finally, the inequality σ k+1(G) ≤ γ cshmr follows from the fact that

σ k+1(G) is a lower bound on Hankel model reduction and as discussed
above is a lower bound on SHMR.
Now, prove the upper bound (2.12). Note that

qG − b∗/a∗q∞ ≤ γ cshmr

a∗ and b∗ can be uniquely decomposed as mentioned above:

b∗

a∗

=
p

q∗

+
zk−1r

ϕ∼
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2.2 Semidefinite Hankel-type Model Reduction

where p and r are FIR filters of order k and k − 1 respectively. The in-
equality ∥∥G − p/q∗ − z

k−1r/ϕ∼
∥∥
∞
≤ γ cshmr

implies that ∥∥zk−1r/ϕ∼
∥∥
H
≤ γ cshmr

by the famous Adamian-Arov-Krein theorem (see, for example [Zhou et al.,
1996]). A consequence to the theorem states that there exist such D that

∥∥zk−1r/ϕ∼ + D
∥∥
∞
≤ kγ cshmr

Combining this bound with the triangle inequality yields:
∥∥∥∥G −

p+ Dq∗

q∗

∥∥∥∥
∞

≤ (k+ 1)γ cshmr

Since the numerator p∗ is obtained by means of optimization (2.6), the
upper bound follows.

REMARK 2.2
The obtained upper bounds are conservative, since no information about
the full order model G is used. However, an upper bound is required as
a guarantee, that the employed relaxation will not create unreasonable
approximations. The quality of a relaxation is estimated on numerical
examples.

The difference between QCO Algorithm 4 and SHMR is a symmetry con-
straint a(z) = a(1/z). It is straightforward to show that if a(z) = a(1/z),
then the imaginary part of a(z) on the unit circle is equal to zero. There-
fore the real part of a on the unit circle is equal a. Therefore, if this
symmetry constraint is added to the SHMR algorithm, the QCO algo-
rithm will be obtained. Therefore, the following chain of inequalities is
available:

γmor ≥ γ cqco = min
a>0,b

∥∥∥∥G −
b

a

∥∥∥∥
∞

≥ γ cshmr = min
Re (a)>0,b

∥∥∥∥
(
G −

b

a

)
a

Re (a)

∥∥∥∥
∞

≥

≥ σ k+1(G) = min
p/q∈H∞

∥∥∥∥G −
p

q

∥∥∥∥
H

It is also possible to compare the upper bounds, given a specific way to
compute the reduced order model. For example, if the reduced order mod-
els are obtained as in (2.6) then:

(k+ 1)γ cqco ≥ (k+ 1)γ
c
shmr ≥ γmor ≥ γ cqco ≥ γ cshmr
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Chapter 2. Semidefinite Hankel-type Model Reduction

2.3 Iterative Approach to Hankel-type Formulation

The iterative algorithm is obtained from (2.2) simply by choosing an FIR
filter ψ with a stable inverse in advance and solving (2.2) with a fixed
ϕ =ψ :

min
γ>0,p,q

γ subject to (2.13)

p(Gq− p)ψ p < γ Re (q∼ψ ) ∀ω ∈ [0,π ]

The program slightly differs from (2.2). However, p(Gq− p)ψ p = p(Gq −
p)ψ ∼p and Re (q∼ψ ) = Re (qψ ∼). This form is taken to simplify the nota-
tion. Note that the stability constraint on q is satisfied by construction.
It is possible to iterate this program by setting ψ = q on the next step.
The proposed approach is concluded in Algorithm 6. Its implementation
is similar to the one of SHMR Algorithm 5. The same remarks about the
number of samples and computational complexity of the algorithm are
valid for Algorithm 6 as well. Using this algorithm is convenient since
there is always an improvement in terms of γ j on every step.

LEMMA 2.4
If the constraints are enforced for all the frequencies ω in the interval
[0,π ], then {γ j}∞j=1 is a bounded, non-increasing sequence and there exist
such a γ ∞ that lim

j→∞
γ j = γ ∞.

Algorithm 6 Iterative Approach to Model Reduction. Single-Input-Single-
Output Case

Compute G(e�ω ) for all ω in Ω = {ω i}Ni=1 and and FIR filter ψ 0 with a
stable inverse
Let j = 1, ψ j =ψ 0, q= 1+

∑k
i=1 qie

−i�ω and p =
∑k
i=0 pie

−i�ω

repeat

Given ψ j , solve

min
γ>0,p,q

γ subject to Re (q∼(e�ω )ψ j(e�ω )) > 0 ∀ω ∈ [0,π ]
∣∣(G(e�ω )q(e�ω ) − p(e�ω ))ψ j(e�ω )

∣∣ < γ Re
(
q∼(e�ω )ψ j(e�ω )

)
∀ω ∈ Ω

Denote by qj and pj the solution of the program and by ψ j
c the coef-

ficients of ψ j stacked in a vector. Set ψ j+1 = qj and j = j + 1.
until qψ j

c −ψ j−1
c q2 ≤ ε for all i

Construct the reduced order model as pj/qj
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Proof. First, prove that {γ j}∞j=1 is a bounded and non-increasing sequence
of real numbers. It is actually sufficient to prove for an arbitrary j that
γ j ≥ γ j+1. Let ψ j+1 = qj , choose qj+1 = qj and pj+1 = pj , then

p(Gqj − pj)qj p ≤ γ j+1Re ((qj)∼qj) = γ j+1pqj p2 ∀ω ∈ [0,π ]

are the constraints of the program at ( j + 1)-th step. By construction of
the j-th step:

pGqj − pj p ≤ γ j pqj p

we can always choose γ j+1 such that γ j ≥ γ j+1. Since any γ j is a positive
number, the sequence {γ j}∞j=1 is bounded.
Finally since {γ j}∞j=1 is bounded and non-increasing, then there exist

a limit point γ ∞.
The choice of the stopping criterion is guided by the following argu-

ment. If ψ j = ψ j−1 for some j, then it means that γ j = γ j+1 due to the
definition of ψ j . It also implies, that γ j = γ ∞. On the other hand, if con-
vergence is checked only with respect to γ j , that is, checking if γ j = γ j+1,
then it can not be guaranteed that γ j = γ ∞.
The properties of the limit function p∞/q∞ is an intriguing topic, how-

ever, such analysis is difficult since the behaviour of the limit is highly
dependent on the initial point. If minimized over ψ as well, the pro-
gram (2.13) is non-convex, non-smooth optimization and can have nu-
merous local minima. Any iterative approach to solve the problem does
not, generally, converge to globally optimal solution. Therefore, in order
to evaluate if a solution is globally optimal, it is required to evaluate the
properties of the H∞ optimal solution. These are unknown, to the au-
thor’s best knowledge. It can be only claimed that p∞/q∞ is an order k
stable transfer function. Due to these reasons, the approach is coupled
with SHMR Algorithm 5, where a starting point is located close in H∞ to
a decent suboptimal solution.

2.4 Model Reduction Extensions

Many details are simply sketched in this section due to resemblance to the
other cases. The derivation of the iterative algorithms for positive-real and
frequency-weighted extension is not presented for the same reason.

Multi-Variable Extensions

As mentioned above, the multi-input-multi-output (MIMO) extension is
different in some aspects from its SISO counterpart. However, the main
attribute is preserved: optimization over anti-stable transfer functions.
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Chapter 2. Semidefinite Hankel-type Model Reduction

Assume G ∈ Hv$m∞ , where v is the number of outputs and m is the number
of inputs, and the problem is formulated as:

min
P,Q

∥∥G − PQ−1
∥∥
H∞

where P =
∑k
i=0 Piz

−i ∈ Hv$m∞ , Q =
∑k
i=0 Qiz

−i ∈ Hm$m∞ , and Q−1 is
a stable transfer function. In this case, the degree of the reduced order
transfer function PQ−1 can not be set freely. It may be shown that the
order of PQ−1 is generally equal to the degree of det(Q), which is equal to
km ([Kailath, 1980]). Therefore, the order can be set only to a multiple of
m. Moreover, the parameterization PQ−1 does not describe all the stable
models of order km, and it can happen that the “best” reduced order
models can not be parameterized in this manner.
We start similarly to the SISO case and introduce into the program a

new frequency dependent function Φ =
∑k
i=0 Φiz

−i ∈ Hm$m∞ , which has a
stable inverse, as:

min
γ>0, P,Q,Φ

γ subject to

Φ(GQ − P)∼(GQ − P)Φ∼ < γ 2ΦQ∼QΦ∼ ∀ω ∈ [0,π ]

Q−1, Φ−1 are stable

This program is equivalent to the original one, since it is possible to cancel
out Φ from both sides of inequalities and eliminate Φ from the program.
In the SISO case the next step was replacing pqϕ∼p with Re (qϕ∼). This
replacement had an interpretation of a rotation of the vector q such that
the phase of qwould be cancelled byϕ . The concept of phase is not uniquely
defined for the MIMO case and such replacement appears to be impossible.
Therefore, first, the relaxation is performed and after that a tractable
program is obtained. Introduce new variables A :, QΦ∼ and B :, PΦ∼

and obtain:

γmr = min
γ>0, A, B

γ subject to

(GA− B)∼(GA− B) < γ 2A∼A ∀ω ∈ [0,π ]

A has km stable and km unstable zeros

To address the quadratic constraint the following relation is used (e.g.,
[Sootla and Sou, 2010], [Tobenkin et al., 2010]), which is valid for arbitrary
matrices X and Y:

X ∼Y + Y∼X − Y∼Y ≤ X ∼X (2.14)
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2.4 Model Reduction Extensions

It is obtained from (X − Y)∼(X − Y) ≥ 0. Using this inequality means
that yet another variable R is introduced, which is an initial guess on A:

γmb = min
γ>0, A, B,R

γ subject to

(GA− B)∼(GA− B) < γ 2 (R∼A+ A∼R − R∼R) ∀ω ∈ [0,π ]

A have km stable and km unstable zeros

The relaxed programs are equivalent, i.e., γmb = γmr. It is also comforting,
that if G, A, B are all scalar valued and R = (A + A∼)/2 then γmb is
equal to γ cshmr from (2.4). Unlike the SISO case, the MIMO programs are
non-convex, and finding the global minimum is not guaranteed. In order
to obtain a tractable program, let R = rI, where r is a positive, scalar-
valued function. In this case, the program is quasi-convex and the LMI
formulation can be obtained using the Schur complement as follows.

γmimo = min
γ>0, A, B, r

γ subject to (2.15)
(

γ 2rI GA− B

(GA− B)∼ A+ A∼ − rI

)
> 0 ∀ω ∈ [0,π ]

where the constraint r > 0 is now implied in the LMI. The program (2.15)
is the MIMO version of (2.4). To guarantee the condition on zeros of A,
a general version of Lemma 2.3 can be formulated, where Cauchy’s argu-
ment principle is applied to the determinant of A.

LEMMA 2.5

Consider an m by m transfer function A =
k∑
i=−k

aiz
i, a unit disc D and a

unit circle �D. If Re (det(A(�D))) > 0 then the pseudo-polynomial A has
at most km zeros in D and no zeros on �D.

A setting with matrix-valued R can be tackled in the same manner. In this
case, the condition R∼A+ A∼R > 0 implies that A has km stable zeros, if
R has km stable zeros. An iterative procedure can be also applied to the
relaxed problem by setting R = A on the next iteration step. However, it
seems more reasonable to iterate not in the space of the relaxed variables,
but in the space of the actual variables using the iterative approach. The
MIMO approach is summarized in Algorithm 7.
Regarding the error bound the results for the MIMO case are not as

impressive as for the SISO case. Since a restriction is applied to obtain
a quasi-convex program, it can not be stated that the obtained approxi-
mation level γmimo is equal to γmb and it is a lower bound on the model
reduction problem.
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Chapter 2. Semidefinite Hankel-type Model Reduction

THEOREM 2.2
Consider a reduced order model P∗Q

−1
∗ is obtained from Algorithm 7 with

Ω = [0,π ], i.e., all the constraints enforced for all the frequencies in [0,π ].
Then the following error bounds hold

σ km+1(G) ≤ γmimo ≤ qG − P∗Q
−1
∗ q∞ ≤ (km + 1)γmimo

where σ i(G) is the i-th largest Hankel singular value of G.

Similar frequency griding remarks are valid for the MIMO version of
SHMR. The computational cost is somewhat similar to the SISO case:

O(k4N2.5m6.5 +m3.5N3.5)

However, the cost grows not only with the order, but also with the number
of inputs. Numerical examples show, that if the number of inputs is large,
it can affect significantly the cost of the program. Note that the reduced

Algorithm 7 SHMR. Multiple-Input-Multiple-Output Case

1. Compute G(e�ω ) for given all ω in Ω = {ω i}Ni=1 ∈ [0,π ]. Define

A =
k∑

i=−k

Aie
−i�ω and B =

k∑

i=−k

Bie
−i�ω

2. Solve the following quasi-convex program

γmimo = min
γ>0, A,B, r

γ subject to: A+ A∼ > 0 ∀ω ∈ [0,π ]
(

γ 2ri I G(e�ω )A(e�ω ) − B(e�ω )

∗ A(e�ω ) + A∼(e�ω ) − ri I

)
> 0 ∀ω ∈ Ω

where asterisk stands for (G(e�ω )A(e�ω ) − B(e�ω ))∼.

3. Given a solution A∗, perform the spectral factorization A∗ = Q∗Φ∼
∗ ,

where Φ∗, Q∗ have only stable zeros and poles

4. Solve the following semidefinite program

P∗ = argmin
P

max
ω∈Ω

σ (G(e�ω ) − P(e�ω )Q−1∗ (e
�ω )) (2.16)

5. Construct the reduced order model as P∗Q
−1
∗
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model can be parameterized as Ĝ = Q−1P and a similar algorithm may be
derived as well. In this case, m is the number of outputs in the complexity
estimate.
To derive the iterative algorithm for multi-variable models similar to

Algorithm 6, it is required to approach the problem from a different side
as well. The general formulation of model reduction problem reads as:

min
γ>0,P,Q

γ subject to: Q−1 is stable

(GQ − P)∼(GQ − P) < γ 2Q∼Q ∀ω ∈ [0,π ]

And it is required only to tackle the quadratic constraint, which is done
again using (2.14), i.e., using the inequality

R∼Q + Q∼R − R∼R ≤ Q∼Q

The MIMO version of the iterative Algorithm 6 is obtained by pre-com-
puting R and fixing it in the optimization program as in Algorithm 8.
The condition Q∼R + (Q∼R)∼ > 0 is equivalent to QR−1 + (QR−1)∼ > 0.
Therefore, if R−1 is fixed and it is stable, then QR−1 is strictly positive
real and Q−1 is stable. Similar convergence analysis may be applied to
MIMO models as in SISO iterative Algorithm 6.

REMARK 2.3
The presented algorithms may be applied to the SISO models as well.

Algorithm 8 Iterative Approach to Model Reduction. Multiple-Input-
Multiple-Output Case

Compute G(e�ω ) for all ω in Ω = {ω i}Ni=1 and R
0 with a stable inverse

Let j = 1, R j = R0, Q =
∑k
i=0 Qie

−i�ω and P =
∑k
i=0 Pie

−i�ω

repeat

Given R j , solve

min
γ>0,P,Q

γ subject to: Q∼R j + (Q∼R j)∼ > 0 ∀ω ∈ [0,π ]

(GQ − P)∼(GQ − P) < γ 2
(
(R j)∼Q + Q∼R j − (R j)∼R j

)
∀ω ∈ Ω

Denote by Q j and P j the solution of the program and by R jc the
coefficients of R j stacked in matrix. Set R j+1 = Q j and j = j + 1

until qR jc − R
j−1
c qF ≤ ε for all i

Construct the reduced order model as P j(Q j)−1
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Indeed, in the case when Algorithm 8 applied to a SISO model:

min
γ>0,q,p

γ subject to:

pGq− pp2 < γ 2 (2Re (ψ ∼q) −ψ ∼ψ ) ∀ω ∈ [0,π ]

In order to make the notation consistent, R is replaced withψ . To compare
the right-hand side to the SISO program (2.13), it is required to multiply
with pψ p2 from both sides. Now, it becomes straightforward to verify that

pψ p2(2Re (ψ ∼q) −ψ ∼ψ ) ≤ (Re (ψ ∼q))2

for any ψ . The last inequality is equivalent to

(Re (ψ ∼q))2 − 2Re (ψ ∼q)pψ p2 + pψ p4 = (Re (ψ ∼q) − pψ p2)2 ≥ 0

The MIMO techniques are more restrictive than the SISO ones. However,
a generalization of the SISO method directly to the MIMO case appears
to be impossible.

Frequency-Weighted Model Order Reduction

The frequency-weighted model reduction is formulated as:

min
p,q

∥∥∥∥w
(
G −

p

q

)∥∥∥∥
H∞

where p =
∑k
i=0 piz

−i, q =
∑k
i=0 qiz

−i and q and w are stable with stable
inverses. The conditions on the weight w are not restrictive. If a transfer
function y−1 has an unstable pole, then the required w can be obtained
by the spectral factorization yy∼, which does not affect the H∞ norm. The
derivation of the algorithm in the SISO case is very similar to the original
one and results in a program:

min
γ>0,a,b

γ subject to (2.17)

pw(e�ω ) (G(e�ω )a(e�ω ) − b(e�ω ))p ≤ γ Re (a(e�ω )) ∀ω ∈ [0,π ]

In the multiple-input-multiple-output case, one sided weights are handled
the same way. Therefore, consider the two sided case:

min
p,q

∥∥Wo
(
G − PQ−1

)
Wi

∥∥
H∞
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The weights Wi and Wo are asymptotically stable with asymptotically sta-
ble inverses W−1

i and W
−1
o . First, rewrite the constraints in a more useful

form using a series of equivalent transformations:

(Wo(GQ − P)Q
−1Wi)

∼Wo(GQ − P)Q
−1Wi ≤ γ 2 I

(Wo(GQ − P))
∼Wo(GQ − P) ≤ γ 2Q∼W−∼

i W
−1
i Q

multiply from the right with Φ∼ and from the left with Φ both sides of
the inequality:

(Wo(GQ − P)Φ
∼)∼Wo(GQ − P)Φ

∼ ≤ γ 2ΦQ∼W−∼
i W

−1
i QΦ∼

Now employing the relaxation yields:

(Wo(GA− B))
∼Wo(GA− B) ≤ γ 2A∼W−∼

i W
−1
i A

Apply a similar series of inequalities as in the unweighted MIMO case,
namely:

(X − Y)∼Z(X − Y) ≥ 0\ X ∼ZX ≥ Y∼ZX + X ∼ZY − Y∼ZY

In our case Z is equal to WiW∼
i , and X is equal to A. Let Y be a positive

scalar-valued frequency dependent variable r, and obtain a program:

min
γ>0,A,B,r

γ subject to for all ω in [0,π ]:

(Wo(GA− B)Wi)
∼Wo(GA− B)Wi ≤ γ 2(r(W−1

i AWi +W
∼
i A

∼W−∼
i ) − r2 I)

The quasi-convex program is obtained using the Schur’s complement. The
iterative approach can be obtained using the same techniques. Theoreti-
cal results similar to ones proposed in [Sandberg and Murray, 2007] and
[Sootla and Rantzer, 2009], where the frequency-weighted versions of the
QCO algorithms were reported, can be shown in the same manner.

Positive Real Constraint

In order to enforce positive-realness, a well-known relationship will be
used, i.e., a transfer function G is strictly positive real if and only if (G −
I)(I+G)−1 has the H∞ norm less than one. Substituting p/q for G yields:

Re
(
p(e�ω )

q(e�ω )

)
> 0 ∀ω ∈ [0,π ] Z[

∥∥∥∥
p− q

p+ q

∥∥∥∥
H∞

< 1
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In the presented framework, the second condition is easier to model
by introducing an FIR filter ϕ with a stable inverse as follows:

∣∣∣∣
(p− q)ϕ∼

(p+ q)ϕ∼

∣∣∣∣ < 1 ∀ω ∈ [0,π ]

For any such ϕ , such that Re ((p + q)ϕ∼) is positive for all the fre-
quencies in [0,π ], the constraint presented below will ensure the positive
realness of p/q :

p(p− q)ϕ∼p < Re ((p+ q)ϕ∼) ∀ω ∈ [0,π ]

Using the relaxation as in the previous sections yields a positive-real im-
posing condition:

pa− bp < Re (a+ b) ∀ω ∈ [0,π ] (2.18)

In the multiple-input-multiple-output case similar ideas are used. An-
other scalar frequency-dependent variable r is introduced as:

(
rI A− B

∗ A+ B + (A+ B)∼ − rI

)
> 0 ∀ω ∈ [0,π ]

2.5 Examples

These examples are set to estimate the actual relaxation gap in the Hankel-
type approximation and a possible improvement by the iterative approach
to any reduction procedure. The Hankel model reduction is implemented
by a MATLABTM routine HANKELMR. The SISO version of SHMR Algorithm 5
and QCO Algorithm 4 are implemented using a cutting plane algorithm
(for more details, see [Sou, 2008]), the MIMO and positive-real versions of
SHMR are implemented using the interior point solver SEDUMI [Sturm,
1999] and the parser YALMIP [Löfberg, 2004].

Data Pre-Processing and Frequency Griding

If a continuous-time model is approximated, it should be first discretized
in order to apply the proposed approaches (as well as the QCO method).
The discretization is performed, while warping around a particular fre-
quency ω 0 in the process, using the formula:

s = µ
z− 1
z+ 1

, where µ =
ω 0

tan(ω 0Ts/2)
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and Ts is the Nyquist sampling time and parameter ω 0 is a tuning param-
eter for numerical conditioning. For example, if the biggest resonant peak
occurs around a frequency ω 0, then pre-warping around this frequency
will create a better numerically conditioned problem.
Choosing a frequency grid is a crucial part of the method. For some

models, a uniform on [0,π ] grid with a large number of sample is suf-
ficient. For others (e.g., transmission line Example 2.2), a uniform grid
provides bad results. This is because, the semidefinite program tries to
compensate for the quality resulting in over-fit. Over-fit is more likely to
take place around peaks in magnitude, since there are poles near the unit
circle. A slight change in the pole location can provide a better fit to data,
however, a worse H∞ approximation error, i.e., over-fit between the chosen
frequency points. Therefore, the grid must be denser, around such peaks.
In this chapter, a grid is manually adjusted to give the desired result -
a small H∞ norm. In practice, one can use randomized methods to ad-
just the grid, e.g., by assigning a higher probability to generate a sample
to a frequency with a large transfer function magnitude. However, these
methods are beyond the scope of this thesis.

EXAMPLE 2.1—RECONSTRUCTION OF AN ALL-PASS SYSTEM
This toy example is created to show a better numerical robustness of the
proposed Hankel-type approximation approach (Algorithm 5) in compar-
ison with the QCO method (Algorithm 4). Specify two all-pass models
as:

Hi =

12∏

j=1

1− zξ∼j
z− ξ j

, where pξ j p = 0.96 ∀i, j

and the arguments for the complex conjugate poles are chosen as:

H1 : arg (ξ j) = ±[0.11, 0.13, 0.14, 3.1, 3.11, 3.14]

H2 : arg (ξ j) = ±[0.11, 0.13, 0.14, 1.57, 1.57, 1.57]

Our goal here is to reconstruct the models H1 and H2 from the frequency
response data using the QCO and SHMR algorithms. Theoretically both
methods are able to do this with approximation error 0. The SHMR al-
gorithm provided reduced order models with approximation error of less
than 1%. Where 100% is the norm of Hi. However, the QCO method failed
in both cases providing approximation error around 10%. One of the rea-
sons is a fast phase variation of the models. Indeed, QCO can affect the
phase of the reduced order model only through b pseudo-polynomial, since
a has to be positive and thus the phase of a is equal to zero. The objective
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of a variable is to match the magnitude of b, since Hi are all-pass, i.e.,
qHiq∞ " 1. It results in ratio between maximal and minimal coefficients
of a larger than 104. The SHMR approach does not restrict a to be positive
and phase can be affected both from b and a variables.
Another way to see how SHMR can avoid numerical problems is the

ability to choose ϕ freely in relationship a = qϕ∼, the QCO approach is
obliged to preserve the symmetry of a. Therefore in case of large ratio of
coefficients of q, the SHMR method does not necessarily square this ratio
in comparison to the QCO.

EXAMPLE 2.2—TRANSMISSION LINE MODELING
This example is described in [Chahlaoui and Dooren, 2002] and the refer-
ences therein. A transmission line is a 2-input-2-output model, which is
described by the following system of differential equations:

Eẋ = Ax + Bu

y = Cx

where matrix E is invertible, but badly conditioned. The order of the
original model is 256. The comparison is performed in percent relative to
the H∞ norm of the full order model G.
Scalar-valued Model Reduction. In this example, only the {2, 2}-entry

of the transfer function is being reduced. The H∞ norms of the approxima-
tion errors are given in Table 2.1. Here, HMR stands for Hankel model re-
duction. The quality of Hankel approximations is generally worse than the
quality of optimization approaches. However, applying Algorithms 2 and 6
reduces this conservatism. Recall, that in Algorithm 2 the denominator
is fixed and is obtained from the Hankel approximation, in Algorithm 6,

Table 2.1 Approximation errors in percent in Example 2.2

Reduction order k 8 13 16 18

σ k+1(G) 10.83% 3.16% 0.43% 0.31%

lower bound of QCO Alg. 4 10.87% 3.32% 0.90% 0.41%

HMR 21.70% 6.35% 0.95% 0.65%

HMR+Algorithm 2 15.70% 4.02% 0.71% 0.47%

HMR+Algorithm 6 13.70% 3.95% 0.69% 0.43%

QCO Algorithm 4 11.61% 3.92% 1.16% 0.43%

SHMR Algorithm 5 11.27% 3.47% 0.55% 0.42%
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Figure 2.1 Frequency responses for transmission line modeling. Thin black line -
the full order model, red dash-dotted - SHMR approximation of order 18, thick black
line - SHMR approximation of order 8, blue dashed - HMR approximation of order
8.

on the other hand, both the numerator and denominator are the decision
variables. The QCO and SHMR algorithms usually deliver approximation
quality very close to the lower bounds. For the order 16 the QCO algorithm
provided conservative results due to numerical reasons. The frequency re-
sponses of the approximations are depicted in Figure 2.1. The 8-th order
SHMR approximation looks like a horizontal line with peaks reflecting
the peaks of the full order model. This is a typical behaviour of the H∞

approximation, since the error spreads among all the frequencies equally.
The Hankel 8-th order approximation on the other hand admits larger
errors for higher frequencies.
Positive Real Model Order Reduction. The influence of the positive

real restriction is studied as well. In this example for every order the
positive real preserving SHMR showed almost identical behaviour to the
original SHMR (see Table 2.2). Here, PR SHMR stands for Algorithm 5
with a positive real constraint. Table 2.2 also shows that both algorithms
provide approximations, which are very close to the lower error bound on
the Hankel model reduction σ k+1(G).
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Chapter 2. Semidefinite Hankel-type Model Reduction

Table 2.2 Approximation errors in percent in Example 2.2. Positive Real Model
Reduction

Reduction order k 1 2 3 4 5

σ k+1(G) 51.19% 33.50% 33.50% 21.16% 21.16%

SHMR Alg. 5 51.20% 33.51% 33.51% 21.18% 21.18%

PR SHMR 51.20% 33.51% 33.52% 21.18% 22.02%

Table 2.3 Approximation errors in percent in Example 2.2. Multi-Variable Model
Reduction

Reduction order km 2 4 6 8 10

σ km+1(G) 33.50% 21.17% 16.78% 10.84% 7.29%

MIMO SHMR Alg. 7 51.19% 33.50% 33.50% 21.16% 21.16%

MIMO SHMR+Alg. 8 51.17% 33.50% 21.17% 16.91% 14.55%

HMR 65.45% 41.35% 32.80% 21.18% 14.65%

Multi-Variable Model Reduction. Here, the entire two-input-two-output
model of transmission lines is considered. The numerical computations
show that the iterative approach considerably improves the quality of the
initial SHMR methods quality (see Table 2.3). Here, HMR stands for Han-
kel model reduction. In this example, at most 15 iterations of Algorithm 8
were used. MIMO SHMR Algorithm 7 presents conservatism for orders 6
to 10. Algorithm 8 is able to reduce this conservatism for higher orders.
The quality of the iterative Algorithm 8 applied to the SHMR method is
more consistent with Hankel model reduction quality. However, none of
the methods are able to reach the lower bound σ km+1(G).

2.6 Conclusion and Discussion

In this chapter, an approach to model reduction of linear time invariant
systems has been presented. The method requires only the frequency re-
sponse samples to obtain an approximation and guarantees stability in
the H∞ sense. The minimization is performed in a Hankel-type norm and
the accuracy of the algorithm is expected to be close to the optimal Hankel
one. The computational complexity of the algorithm is lower than the one
of optimal Hankel approximation method for certain applications. There-
fore, by sacrificing some quality, efficiency is gained.
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2.6 Conclusion and Discussion

Although the presented method is different from its predecessor, QCO,
and provides a better guarantee on approximation quality (the upper
bound on the error), there is no guarantee that the actual approxima-
tion quality is better. In fact, in many examples considered in preparation
of this manuscript the approximation errors match or there is only an
epsilon improvement. Nevertheless, aforementioned advantages outweigh
possible drawbacks.
Although the lack of symmetry in the denominator seems to be a minor

advantage, it provides a better numerical robustness. Moreover, in para-
meterized extension, this relaxation delivers significant improvement. A
detailed discussion about the parameterized model reduction is available
in Chapter 3.
The convergence properties of the iterative approach have to be eval-

uated as well. The method does not generally converge to the global min-
imum, since the model reduction is a non-convex problem. Therefore, an
estimate of approximation quality improvement would be a decent result,
especially given SHMR as an initial point. These qualities are also im-
portant since the iterative approach can be easily extended to the models
with a structure as shown in Chapter 5.
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3

Parameterized Model Order

Reduction

Parameterized model reduction is arguably a more important tool in mod-
eling and design than H∞ model reduction. Parameterized model reduc-
tion deals with linear time-invariant models, which depend on certain
design parameters. Since parameters of the models are subject to change
or fine-tuning over time, it is often required to obtain a family of mod-
els which describe a particular system in various settings. The models in
this family should preferably have the same orders, therefore, parameter-
ized model reduction is used to model such families in a more convenient
way. Extensive research using the Krylov techniques was performed for
various applications, such as micro-electro-mechanical systems or MEMS
([Rudnyi et al., 2006]), radio-frequency (RF) inductors ([Daniel and White,
2003]), interconnects ([Daniel et al., 2002; Daniel et al., 2004; Li et al.,
2005b; Li et al., 2005a]), general linear systems ([Farle et al., 2008; Feng
et al., 2009; Li et al., 2007]) and non-linear systems ([Bond and Daniel,
2005]). Another interesting approach is being developed in [Lefteriu et al.,
2010; Lefteriu and Mohring, 2010]. In this approach, reduced models are
obtained by interpolating the frequency response, which is calculated (or
identified from a real system) for a finite number of frequencies.
The main focus of this chapter is extension to parameterized LTI sys-

tems of the algorithms from Chapter 2. Therein, the original model reduc-
tion problem was reformulated by adding an extra frequency-dependent
variable ϕ . Performing a semidefinite relaxation to the problem yielded
the semidefinite Hankel-type model reduction (SHMR Algorithm 5 on
page 44). Whereas, applying an iterative approach to the new formula-
tion formed Algorithm 6 on page 48. Note that when an extra constraint
to SHMR Algorithm 5 is added, then a method from [Sou et al., 2008] is
obtained. The approach from [Sou et al., 2008] is sketched in the thesis
as QCO Algorithm 4 on page 37.

62



3.1 Preliminaries and Problem Formulation

The extension to parameterized model order reduction itself is not the
only result of this chapter. A theoretical statement regarding the approx-
imation quality of reduced order models with respect to parameters is
also derived. The error bounds are also valid for the parameterized QCO
method, although such bounds were not shown in the original work [Sou
et al., 2008].
Numerical simulations show that the restriction, which separates the

SHMR and QCO algorithms, results in a worse approximation quality of
the parameterized QCO method. Performance improvement of such mag-
nitude was not expected since non-parameterized LTI model reduction did
not exhibit similar results.
Each of the methods in the framework has its benefits and drawbacks.

For example, both parameterized QCO and parameterized SHMR deliver
bounds on approximation quality, but can not provide explicit parameter-
dependent models. Whereas, the parameterized extension of iterative Al-
gorithm 6 can provide such models. However, the quality of approximation
may be worse than SHMR and QCO have.
The chapter is organized as follows: the problem is formulated and the

non-parameterized method from Chapter 2 is revised in Section 3.1. The
parameterized extension is described in Section 3.2, where the main the-
oretical result shown as well. In Section 3.3 the problem of reconstructing
explicit parameter dependent models is discussed. The most promising ap-
proach in this direction is the iterative approach to parameterized model
reduction, which is also presented. The relationship between QCO, SHMR
and the iterative approach is outlined therein, which explains why a cer-
tain method can provide a better match for certain models. The framework
is illustrated on numerical examples in Section 3.4.

3.1 Preliminaries and Problem Formulation

Given a family of linear time-invariant (LTI) models G(z,θ), which are
associated with a parameter θ , the following assumptions are made:

• The parameter θ is constant over time

• The parameter θ is a real scalar and belongs to the interval [0,π ]

• The coefficients of the transfer function G depend smoothly on θ

• For every fixed θ the model G(z,θ) is an asymptotically stable ra-
tional transfer function with a frequency variable z

• The transfer function G is scalar-valued
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The framework is still valid for a vector-valued θ . The restriction to the
interval [0,π ] can always be achieved by a linear variable change if θ
belongs to any other bounded interval. The extension to matrix-valued
functions in the parameterized case is achieved in the same way as in
Chapter 2 once the framework for the scalar-valued functions is obtained.
The conservatism of the matrix-valued extension in Chapter 2 manifests
itself in the same way for the parameterized case.
Given a family of models G(z,θ), our main goal is to find another

family Ĝ(z,θ) that is close to G for all possible θ . Such a family can be
found using a min-max criterion:

min
Ĝ is stable

max
θ∈[0,π ]

qG(z,θ) − Ĝ(z,θ)q∞

The L∞ norm is a maximization itself with respect to the frequency ω
in the interval [0,π ]. Therefore, this formulation is similar to the non-
parameterized case.

γ pmor = min
pi j ,qi j

max
ω ,θ∈[0,π ]

pG(e�ω ,θ) − p(ω ,θ)/q(ω ,θ)p (3.1)

where p/q is stable

For parameterized models, stability is defined as stability for every pa-
rameter θ . The functions p and q are expressed as follows:

p(ω ,θ) =
k0∑

i=0

k1∑

j=0

pi jFi(ω )H j(θ)

q(ω ,θ) =
k0∑

i=0

k1∑

j=0

qi jFi(ω )H j(θ)

The basis functions Fn describe the dependence on the frequency variable
ω . Therefore it is reasonable to choose Fn = e−n�ω . Still, if required, it is
possible to choose a different basis. If extra information about a system is
known, then a few possibilities are described in [Heuberger et al., 2005].
The basis functions Hn describe the dependence on the parameter θ . In
the thesis Hn = cos(nθ) was chosen to use. However, in this case as well,
different choices are possible. For example, one can set Hn = θ n.
To avoid any confusion in terminology in the various fields of engineer-

ing, the term “multi-variate pseudo-polynomial” will refer to a pseudo-
polynomial of two or more variables (i.e. ω 1, ω 2 and so forth). The term
“multi-variable” will be used for matrix-valued transfer functions G(⋅).
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3.2 Parameterized SHMR

Hankel-type Model Reduction

The methods from Chapter 2 are the foundation of the entire framework.
Therefore, to simplify the presentation of the parameterized extension,
they are revised. A non-parameterized formulation of (3.1) is as follows:

γmor = min
γ>0,p,q

γ subject to (3.2)

pG(e�ω )q(e�ω ) − p(e�ω )p < γ pq(e�ω )p ∀ω ∈ [0,π ]

p(e�ω ) =

k∑

i=0

pie
−i�ω q(e�ω ) =

k∑

i=0

qie
−i�ω

where q(z) has a stable inverse. In Chapter 2 it was shown that the latter
program is equivalent to:

γ htf = min
p,q,ϕ

γ subject to (3.3)

pG(e�ω )q(e�ω )ϕ∼(e�ω ) − p(e�ω )ϕ∼(e�ω )p < γ Re (q(e�ω )ϕ∼(e�ω )) ∀ω ∈ [0,π ]

where ϕ−1(z) is a stable transfer function, ϕ∼(z) = ϕ(1/z) and

ϕ =
k∑

i=0

ϕ ie
−i�ω p =

k∑

i=0

pie
−i�ω q =

k∑

i=0

qie
−i�ω

The equivalence is understood as γmor = γ htf. Moreover, for every solu-
tion (pmor, qmor, γmor) of the problem (3.2), there exists ϕ such that the
quadruple (pmor, qmor, γmor, ϕ) satisfies the conditions of (3.3). And if the
quadruple (γ htf, phtf, qhtf, ϕhtf) is an optimal solution to (3.3), then the
triple (γ htf, phtf, qhtf) is an optimal solution to (3.2). And finally, it may be
shown that if ϕ has a stable inverse then so does q due to the positivity
of Re (qϕ∼) for all the frequencies in [0,π ].
The iterative approach is obtained by setting the variable ϕ equal to

1 in the optimization. On the next iteration ϕ is set equal to the solution
on the current iteration q until the solution q becomes equal to ϕ . The
relaxation (the SHMR algorithm) is obtained by introducing new vari-
ables a :, qϕ∼ and b :, pϕ∼. The SHMR approach is summarized in
Algorithm 9.

3.2 Parameterized Semidefinite Hankel-type Model
Reduction

Introduce the notation ω = {ω ,θ} ∈ [0,π ]2, where θ is a parameter, ω is
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Algorithm 9 Semidefinite Hankel-type Model Reduction

1. Compute the frequency response G(e�ω ) for every ω in Ω = {ω i}Ni=1

2. Solve the relaxed problem:

min
a,b

γ subject to Re (a) > 0 ∀ω ∈ [0,π ] (3.4)

pG(e�ω )a(e�ω ) − b(e�ω )p < γ Re (a(e�ω )) ∀ω ∈ Ω

3. Compute the denominator q from the spectral factorization a = qϕ∼

4. For a given q, solve

min
p
max
ω∈Ω

pG(e�ω ) − p(e�ω )/q(e�ω )p

5. Set the reduced order model Ĝ = p/q

a frequency domain variable. Introduce the pseudo-polynomials

a(ω ) =

k0∑

i=−k0

k1∑

j=0

ai j e
−i�ω cos( jθ) b(ω ) =

k0∑

i=−k0

k1∑

j=0

bi j e
−i�ω cos( jθ)

and substitute them into (3.4) which results in:

min
a,b

γ subject to Re (a) ≥ µ ∀ω ∈ [0,π ]2 (3.5)

pG(ω )a(ω ) − b(ω )p < γ Re (a(ω )) ∀ω ∈ Ω (3.6)

where µ is a positive pre-defined scalar and needed as a technical re-
quirement, Ω = {ω i}

N
i=1 is a pre-defined finite grid and with a slight

abuse of notation G(ω ) stands for G(e�ω ,θ). The non-negative constraint
Re (a)−µ ≥ 0 is convex, but not tractable for a multi-variate a. Therefore,
a semidefinite Sum-Of-Squares (SOS) constraint will be used instead, i.e.,
Re (a) − µ is an SOS. It is a standard way to approach the problem and
is called an “SOS relaxation” (see, Theorem 1.5 for the actual algebraic
constraints). As before, the positivity constraint Re (a) > 0 has the in-
terpretation of a stability ensuring constraint. It can be shown that if
Re (a) > 0, then for every fixed θ the pseudo-polynomial a has k stable
zeros and k unstable ones. Given a, a stable model can be reconstructed.
In the non-parameterized case, the next step after solving (3.5-3.6)

would be the non-symmetric spectral factorization of a. However, if there
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3.2 Parameterized SHMR

Algorithm 10 Parameterized SHMR

1. Compute the frequency response G(ω ) for every ω = {ω ,θ} in Ω =
{ω i}

N
i=1

2. Solve
γ Npshmr = min

a,b
γ subject to

Re (a) ≥ µ ∀ω ∈ [0,π ]2

pG(ω )a(ω ) − b(ω )p < γ Re (a(ω )) ∀ω ∈ Ω

3. For a particular θ , compute the denominator qθ from aθ = qθϕ∼θ
(e.g., [Fairman et al., 1992])

4. For a particular θ , compute the numerator pθ from

pθ = argmin
p

max
ω∈Ω

pbθa
−1
θ − pq−1θ p

where p is parameterized as p = p0 + p1e−�ω + ⋅ ⋅ ⋅+ pke
−k0�ω

are two or more variables, even the symmetric spectral factorization has
much stricter conditions. For a general case, such conditions are described
in [Dritschel and Woerdeman, 2005] and for the two dimensional case
(one parameter in our notation), refer to [Geronimo and Lai, 2006]. The
conditions are not convex in the chosen variables (the coefficients of a) and
are equivalent to a rank constraint. Given such a complexity, obtaining
a reasonable relaxation seems to impossible. An approximate solution to
the multi-variate symmetric spectral factorization may be found in, for
example, [Ekstrom and Woods, 1976]. In this section, the multi-variate
spectral factorization problem is avoided. For a fixed θ , let aθ = a(⋅,θ)
and bθ = b(⋅,θ) and the method can be summarized in Algorithm 10.
As the output of the algorithm, two mappings are obtained. In realiza-

tion mappings pθ , qθ can be stored as look-up tables for required values of
θ . Or one can store pseudo-polynomials a and b, and obtain the required
pθ , qθ when needed. The latter approach is tractable, since a and b have
low order and the factorization can be done cheaply. The final optimiza-
tion problem is a second order cone program and is also much cheaper
than the relaxed program.

Error Bounds

If in Algorithm 10 all the constraints are enforced for all the frequencies
ω ∈ [0,π ]2, then γ Npshmr is denoted as γ cpshmr. The main theoretical result
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of this chapter is outlined in the next statement:

THEOREM 3.1
Consider Algorithm 10 with the full sampling (the constraints are enforced
for all the frequencies ω ∈ [0,π ]2) with the solution γ cpshmr, bθ , aθ and pθ ,
qθ . The following inequalities hold:

1. max
θ∈[0,π ]

σ k0+1(G(⋅,θ)) ≤ γ cpshmr

2. γ cpshmr ≤ max
θ∈[0,π ]

qG − pθ/qθq∞

3. max
θ∈[0,π ]

qG − pθ/qθq∞ ≤ (k0 + 1)γ cpshmr

where σ k0+1(G(⋅,θ)) is the (k0 + 1)-th largest Hankel singular value of
G(⋅,θ), k0 is the order of pseudo-polynomials pθ , qθ with respect to z.

Proof.

1. For every θ , Algorithm 10 is essentially Hankel model reduction with
extra restrictions, as it was shown for the non-parameterized case in Chap-
ter 2. Therefore, for every θ , the inequality σ k0+1(G(⋅,θ)) ≤ γ cpshmr is sat-
isfied. By taking the maximum over all θ , the result is achieved.

2. Consider two optimization programs:

min
b
max

θ∈[0,π ]
qG − b/aθq∞ min

p
max

θ∈[0,π ]
qG − p/qθq∞

where qθ and aθ are defined as above. Since aθ = qθϕ∼θ the variable b
can be chosen such that, the stable part of b/aθ is equal to p/qθ and the
anti-stable part equal to zero. Clearly, the left-most problem has more
freedom and its solution is equal to γ cpshmr. The right-most program has
the solution equal to max

θ∈[0,π ]
qG− pθ/qθq∞. Thus the inequality is obtained.

3. Let the anti-stable part of bθ/aθ be Ĝ−. Since qG(⋅,θ) − bθ/aθq∞ ≤
γ cpshmr, by the celebrated AAK theorem, there exists a matrix K (θ) such
that the following bound is satisfied.

qĜ−qH ≤ γ cpshmr [ qĜ− + Kq∞ ≤ k0γ
c
pshmr

By the triangular inequality we have:

qG(⋅,θ) − pθ/qθq∞ ≤ qG(⋅,θ) − bθ/aθq∞+

+ qbθ/aθ − pθ/qθq∞ ≤ (k0 + 1)γ cpshmr

68



3.3 Computation of Explicit Parameter Dependent Models

and since it is always possible to pick pθ such that

qbθ/aθ − pθ/qθq∞ ≤ qĜ− + Kq∞ ≤ k0γ
c
pshmr

After taking the maximum over θ the result follows.
It is a direct generalization of the non-parameterized error bounds.

However, in the parameterized case, it is not clear if γ cpshmr is smaller
than γ pmor from (3.1). An SOS relaxation is employed, i.e., Re (a)−µ is an
SOS and rather than Re (a) − µ is non-negative. Despite the name, the
SOS relaxation is actually a restriction on decision variables compared to
the non-negative condition. Hence, as opposed to Algorithm 9, it can not
be guaranteed that γ cpshmr is a lower error bound on the parameterized
model reduction program (3.1).

REMARK 3.1
The extension to the multi-variable (MIMO) systems is done by employing
the techniques from Chapter 2 to obtain a tractable algorithm. The error
bounds are essentially the same

1. max
θ∈[0,π ]

σ k+1(G(⋅,θ)) ≤ γ cpshmr

2. γ cpshmr ≤ max
θ∈[0,π ]

qG − pθ q
−1
θ q∞

3. max
θ∈[0,π ]

qG − pθ q
−1
θ q∞ ≤ (k+ 1)γ

c
pshmr

However, now pθ and qθ are matrix valued functions and k is the order of
pθ q

−1
θ , not the order of pθ and qθ with respect to z. If the order of pθ and

qθ with respect to z is set to k0 and qi j ∈ Rm$m, then the order k of pθ q
−1
θ

is generally equal to k0m.

REMARK 3.2
The Quasi-Convex Optimization (QCO) approach by [Sou et al., 2008] is a
specific case of the algorithm described in the this section. It requires an
additional constraint on a, namely a∼(z) = a(z), or aT(1/z) = a(z), then
Im (a) = 0, and Re (a) = a. All the theoretical results of SHMR approach
are still valid for the QCO method.

3.3 Computation of Explicit Parameter Dependent Models

The output of SHMR Algorithm 10 is a model b/a, where a and b are
pseudo-polynomials. For every value of the parameter θ , the model b/a
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Algorithm 11 Dominant part heuristic

1. For every parameter θ compute the dominant part of G(⋅,θ)

2. Build a transfer function Gd(z,θ) by interpolation of dominant part
with respect to θ

3. Solve the following approximation problem using one of the pre-
sented algorithms:

min
p,q
qG − Gdp/qq∞

REMARK. At the final step, one can solve instead:

min
p,q
qGG−1d − p/qq∞

The choice of the program is left to the designer

contains stable and unstable poles. The actual approximations p/q are, in
fact, obtained for every given θ , which is not the desired output. The de-
sired output would be a model p/q, where p and q are pseudo-polynomials
in both ω and θ . Such models significantly simplify the analysis and speed
up the simulations as well. Moreover, in some applications it may be re-
quired to compute such models. In this section, a few techniques are
presented, which can produce parameter dependent models with explicit
dependence on the parameter.

Dominant Part Heuristics

Extraction of the dominant poles is a simple, but an important heuristic
in the parameterized reduction. By itself, it does not provide an explicit
parameter-dependent model, however, coupled with the iterative approach
presented in the sequel it delivers very competitive solutions. This ap-
proach can considerably speed up the computation of SHMR solutions as
well. The dominant poles are usually defined as the poles near the unit
circle which contribute to the Bode magnitude plot in the form of peaks.
The dominant part is a collection of such poles. The approach is outlined
in Algorithm 11.
An argument can be made that after computation of the dominant

part most of the work (if not all of it) has been done. However, in the
parameterized case the dependence of the rest of the model (without the
dominant part) may be complicated as well due to the parameter vari-
ations. Therefore, a simple interpolation may not give a good result in
terms of accuracy on the validation stage.
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3.3 Computation of Explicit Parameter Dependent Models

Algorithm 12 Parameterized Iterative Approach to Model Reduction
Compute the frequency response samples G(ω ) for every ω = {ω ,θ} in
Ω = {ω i}

N
i=1

Given an initial point ϕ 0, set j = 1, ϕ j = ϕ 0

repeat

Solve

γ Nprd = min
p,q

γ subject to

Re (q∼ϕ j) ≥ µ ∀ω ∈ [0,π ]2

p(G(ω )q(ω ) − p(ω ))ϕ j(ω )p < γ Re (q∼(ω )ϕ j(ω )) ∀ω ∈ Ω

Denote ϕ jc all the coefficients of ϕ j stacked in a vector. Set j = j + 1
and ϕ j = q

until qϕ jc −ϕ j−1c q2 ≤ ε
Construct the reduced order model as p/q

Iterative Approach to Parameterized Model Reduction

In the non-parameterized framework, the iterative approach is obtained
by fixing ϕ in (3.3). Similarly, Algorithm 12 is derived. If it is possible to
estimate ϕ(ω ) in advance, then an explicit parameter-dependent model
p/q can be computed.
In order to enforce the condition Re (qϕ∼) ≥ µ for all the frequencies

in [0,π ]2, an explicit parameter dependence of ϕ is also required. In the
parameterized case, the SHMR algorithm can not be used for these pur-
poses, since it does not provide this type of solution. The obvious choice
is iterating, while starting with ϕ equal to one. However, it can be very
costly if the number of iterations is large.
The main conservatism of setting ϕ " 1 is inability of tracking the

dominant poles, which corresponds to fast phase variations (this case is
discussed in [Sootla and Sou, 2010]). If Re (q) is positive, then the phase
is confined to the interval between [−π/2,π/2]. Note, by extracting the
dominant part, the phase variations are reduced. Therefore, the dominant
part heuristic described above can be used to significantly reduce such
conservatism, and thus reduce the number of iterations.
Besides delivering explicit parameter-dependent functions, there is an-

other advantage of the iterative approach in comparison to QCO. It is a
more efficient parameterization, which may result in a lower computa-
tional cost. Indeed, consider a transfer function G, the numerator and the
denominator of which depend as (trigonometric) polynomials of order r on
a parameter. To approximate it with the QCO approach, it is required to
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Chapter 3. Parameterized Model Order Reduction

create pseudo-polynomials a and b of order 2r in parameter dependence,
since a = qq∼. The iterative approach, on the other hand, requires polyno-
mials of order r to parameterize the reduced order model. If ϕ " 1, then
the SOS constraints for the iterative method will be much smaller than
the ones for QCO method. Then again, there is no extra advantage, in
terms of accuracy, of the iterative method in comparison to the SHMR. It
occurs due to the fact that SHMR is a relaxation of the iterative approach.
Therefore, the SHMR algorithm will always deliver the most accurate ap-
proximation among all the methods in the framework.

Interpolation of an SHMR solution

After SHMR Algorithm 10 is solved, transfer functions pθ (z,θ i)/qθ (z,θ i)
for some i are obtained. If a transfer function with an explicit depen-
dence on θ is required, it can be obtained by interpolation of coefficients
of pθ (z,θ i)/qθ (z,θ i). However, in this case, stability for every value of θ i
can not be guaranteed. Such an approach is less accurate than the dom-
inant part heuristic. In the dominant part heuristic only the dominant
part is interpolated. The rest of the model is computed with stability and
norm constraints. It can be done with iterative Algorithm 12, which also
counteracts possibly occurring interpolation errors. Although, the inter-
polation of the SHMR solution is still a valid approach, it is not considered
in the current thesis due to stability problems.

3.4 Implementation and Examples

The methods were implemented using YALMIP ([Löfberg, 2004]) and SE-
DUMI ([Sturm, 1999]). Recall that the described method addresses the
reduction of discrete-time systems, therefore in order to reduce a contin-
uous time model it is discretized using a bi-linear transformation (as in
Chapter 2). Regarding the positivity constraint a few options are described
in [Dumitrescu, 2007, Chapter 3].

Computational Complexity

There are two main contributors to the complexity of the methods. The
first one is computing the frequency samples which is O(l3) for each fre-
quency point, with l being the order of the original model. In many cases,
it can be lowered to O(l log(l)) even for dense models (for example, us-
ing [Kamon et al., 1997; Moselhy et al., 2007; Zhu et al., 2003]). The
second one is the cost of the optimization algorithm. It does not exceed
O(N21N

2.5
2 + N3.52 ) with N1 being the number of decision variables and

N2 the number of rows in the LMI constraints, when the method is im-
plemented with SEDUMI (see [Peaucelle et al., 2002]). In parameterized
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reduction, N1 will be O((k0 + 1) ⋅ ⋅ ⋅ (kn + 1))2, if the parameter θ is in Rn

and N2 = O(N + (k0 + 1) ⋅ ⋅ ⋅ (kn + 1)). The reduced model orders ki ≪ l
and N is the number of points in the grid. Note that number of frequency
samples N generally does not depend on the order of the system. Typi-
cally, the larger number N is required, when some poles are close to the
unit circle. The total cost will be

O(l log(l)N) + O(((k0 + 1) ⋅ ⋅ ⋅ (kn + 1))4N2.52 + N3.52 )

Based on the numerical simulations, the semidefinite program now is
much more costly than in the non-parameterized case. The main reason
for such a cost is the positivity constraint, which can create intractable
programs for a large number of the parameters and large orders of the
pseudo-polynomials. The quadratic term ((k0+1) ⋅ ⋅ ⋅ (kn+1))2 comes from
the positivity constraint enforced for all the frequencies in [0,π ]2. If an-
other strategy is used, for example enforcing the positivity constraint on
a parameter grid, then N1 = O((k0 + 1) ⋅ ⋅ ⋅ (kn + 1) + (k0 + 1)2) and
N2 = O(N + k0). Which significantly reduces the cost, however, for some
parameter values an unstable model can be obtained.

Possible Applications

Consider a linear parameter-varying (LPV) model, which depends on a
parameter θ . For these models it is typically assumed that θ is a time
dependent function. A very simple example of a linear parameter-varying
model is a time-varying one, with time t as a parameter. Modeling of
such systems can be approached by assuming the parameter is constant.
After that, the proposed model reduction framework can be used. This
approach is typically called a local approach to linear parameter-varying
system modeling (see, [Petersson and Löfberg, 2009; Tóth et al., 2009] and
the references therein for other approaches). The positivity condition in
the method is equivalent to stability of the function G(⋅,θ) ∈ H∞ for any
fixed θ , which is a necessary condition for the global LPV stability.
It is also quite tempting to apply the presented approach to n-D sys-

tem modeling (see [Beck et al., 1995; Wu and Lam, 2008] for existing
approaches). In this case, the basis functions should be modified. Now
both variables are varying on the unit circle

Fs = e
−s�ω Hs = e

−s�θ

The basis can be analytically extended to the complex plane (z1, z2), where
z1 corresponds to e�ω and z2 corresponds to e�θ . At the same time, the
positivity constraint Re (a) > 0 guarantees that the zeros of a lie in

D = {(z1, z2)
∣∣pz1p ≤ 1, pz2p = 1} ∪ {(z1, z2)

∣∣ z1 = 0, pz2p ≤ 1}
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which is a stability domain for the 2-D transfer functions ([Jury, 1978]).
Using the iterative approach, it is possible to obtain explicit dependence
on variables ω and θ , and thus z1 and z2. In the case, for 2-D transfer
functions the order of a state-space realization of the system may be higher
than r1 + r2, where r1 is the number of basis functions Fs and r2 is the
number of basis function Hs. Furthermore, obtaining a general minimal
realization is still an open question in the theory. However, it is shown
that there are systems that do not have a real valued realization of order
r1 + r2. A counter example may be found in [Kung et al., 1977]. Where an
algorithm to obtain a state-space realization of order min(2r1+r2, r1+2r2)
is described.
Both applications are merely possibilities of the further developments

of the framework. In both cases, there are some difficulties, which are
unavoidable at the moment.

EXAMPLE 3.1—EFFICIENCY OF PARAMETERIZATION
To illustrate the parameterization issues, consider this toy example. Con-
sider a transfer function:

G(z,θ) =
ω 21

s2 + 2ζ 1ω 1s+ω 21

ω 22
s2 + 2ζ 2ω 2s+ω 22

where ω 1 = 1, ω 2 = 3, ζ 1 = 0.1+0.9θ , ζ 1 = 0.1+0.9(1−θ) and θ ∈ [0, 1].
If a state-space modeling approach is used, for example [Petersson and
Löfberg, 2009], then the required parameterization is a linear one with
A(θ) = A0 + A1θ and B,C, D matrices constant. Using the described
framework, the required parameterization is of order 2 for iterative Algo-
rithm 12 and SHMR Algorithm 10, while the QCO method requires pa-
rameterization of order 4. However, [Petersson and Löfberg, 2009] is not
a semidefinite approach, which means that the computational efficiency
is lower than in the presented framework. The approximation errors are
given in Table 3.1. The notation (4, 1) means that the frequency compo-
nent e−�ω has the order 4 and parameter θ has a basis of order 1.

EXAMPLE 3.2—DEFORMABLE MIRROR MODELING
The following model was studied in [Giselsson, 2006] and obtained by
means of a finite element modeling approach that resulted in a system of
second-order differential equations:

I ẍ +α Λ2 ẋ + Λ = Fu

y = FT x

where a model has 420 sensors and actuators, 2000 states, and the friction
coefficient α is chosen as a modeling parameter. The comparison of the
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Figure 3.1 Frequency response of models in Example 3.1 for different values of
parameters. The curves are solid blue for θ < 0.5 and dotted green for θ > 0.5

approximation error is performed in percent, where 100% is the maximum
H∞ norm of the models on the training grid.
A single entry of the corresponding transfer matrix is considered. The

objective is to obtain a family of low-order models that depend on α which
belongs to the interval [0.01, 0.06]. The models are trained (computed) on
the parameter α = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 (the training grid).
The validation is performed on another grid α = 0.015, 0.025, 0.035, 0.045,
0.055. For every value of the parameter, 300 frequency response samples
are computed. For iterative Algorithm 12, only one iteration is computed
with ϕ " 1.
The results of reduction for different orders is found in Tables 3.2

and 3.3. The QCO reduced order models had almost the same approxi-
mation quality for orders (10, 1), (13, 1) and (16, 1). At the same time,
significantly improving if the order of the parameter is raised to 2. This
behaviour signals that the order equal 1 for the parameter is not suf-
ficiently large in this example. On the other hand, using Algorithm 12

Table 3.1 Approximation errors in Example 3.1

Identification orders (4, 1) (4, 2) (4, 4)

[Petersson and Löfberg, 2009] (error in H2) ( 0 ( 0 ( 0

QCO (error in H∞) 0.441 0.025 ( 0

Iter. Alg. 12 (error in H∞) 0.0557 ( 0 ( 0

SHMR Alg. 10 (error in H∞) 0.0337 ( 0 ( 0
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Figure 3.2 Frequency responses for α = 0.025, 0.045 (values belong to the val-
idation grid) of the SHMR reduced order (thick green lines), the reduced order
model obtained with iterative Algorithm 12 (blue solid lines), the QCO reduced
order (dashed thin blue lines) and the full order (black crosses) models. Order of
reduction is set to (16,1).

(with ϕ " 1) it is possible to achieve a decent quality if the order is set
to (16, 1), but the approximations are very conservative with lower orders
of frequency variable z. The SHMR method is consistently better than
iterative Algorithm 12 and the QCO, both on the training and the vali-
dation grids. Except for the order (10, 2) where the approximation error
of SHMR is larger than the one of QCO on the validation grid. In fact,
even (10, 1) SHMR approximation is better than (10, 2) SHMR approxi-
mation. It means that over-fit has occurred and there is not sufficiently
many constraints for this order. Over-fit can be cured in this case by set-

Table 3.2 Approximation errors on the training grid (in %) in Example 3.2.

Orders (10, 1) (10, 2) (13, 1) (13, 2) (16, 1) (16, 2)

SHMR Alg. 10 0.99 1.24 1.11 0.93 0.99 1.03

QCO 11.19 3.81 8.46 1.23 9.75 1.11

Iter. Alg. 12 14.74 14.70 12.41 12.39 1.42 1.07
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Table 3.3 Approximation errors on the validation grid (in %) in Example 3.2.

Orders (10, 1) (10, 2) (13, 1) (13, 2) (16, 1) (16, 2)

SHMR Alg. 10 1.52 5.69 1.37 1.83 1.19 1.19

QCO 9.25 5.09 7.64 2.42 7.77 2.58

Iter. Alg. 12 13.42 11.08 10.36 9.25 1.58 1.53

ting tolerance of bisection higher. Then the semidefinite program will not
try to compensate for the better fit on the validation grid. This example
validates that the iterative approach may be conservative with respect to
the order of the frequency variable and the QCO method is conservative
with respect to the order of parameters.
Note also that quality of reduced order model on the validation grid

is sometimes better than the quality on the training grid. One of the
possible reasons for this is that the tolerance for bisection is too high and
the approximations are not close enough to the optimal value. Therefore
the program does not compensate by over-fitting on the validation grid.
The frequency responses of the full order model and the approximations
for particular parameters are depicted in Figure 3.2.
Dominant Part Heuristic. For the dominant part heuristic three pairs

of poles and zeros were identified forming a dominant part Gd. The sys-
tem gain, every zero and pole were identified separately with first or-
der trigonometric polynomials. Iterative Algorithm 12 was applied to this
problem with orders (4, 1), giving a resulting approximation of with the
order of frequency variable 10. The approximation error on both training
and validation grids is around 4.5%, which gives improvement by a factor
of 3 in comparison to non-modified iterative Algorithm 12. The frequency
responses for chosen parameters is depicted in Figure 3.3. Recall that the
iterative approach also delivers an explicit dependence on the parameter
α . Therefore, iterative Algorithm 12 coupled with the extraction of the
dominant part is a very powerful heuristics.

3.5 Conclusion and Discussion

The main contribution of this chapter is a framework for modeling para-
meterized LTI systems. It is based on the semidefinite programming ap-
proach and matching of frequency response samples. Two methods have
been presented, which extend the ones proposed in Chapter 2. One method
delivers more accurate solutions than the predecessor, while the other de-
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Figure 3.3 Frequency responses for α = 0.015, 0.025, 0.035 and 0.045 (values
belong to the validation grid) of the full order (thick green lines) and the reduced
order models obtained using Algorithm 12 (blue solid lines). Order of reduction is
set to (4,1) with a dominant part which had three pairs of poles and zeros.

livers explicit parameter-dependent models.
A few applications of the framework can be proposed. The most in-

triguing one is linear parameter-varying system modeling. In order to
apply the framework, it is required to assume that parameters are con-
stant with respect to time. The question, which should be asked is: ”is
it possible to relax this assumption?”. If it is possible, for example with
frequency and parameter dependent weights, then what are the mecha-
nisms to determine such weights? The stability condition at the moment is
necessary, but not sufficient. To ensure sufficiency, the parameter depen-
dence on time should be taken into account. If the parameter variations
are known, how does one incorporate such information into the semidefi-
nite program? At the moment, the author does not see a straightforward
answer to these questions, making them are topics of future research.
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4

Model Order Reduction in

the ν-gap metric

All the standard model reduction methods measure the approximation
error in H∞ or H2 spaces, meaning that the models are open loop stable.
These norms are measures on the distance in the open loop setting. An
open loop stable model can create instabilities in a closed loop settings.
Therefore in the closed loop setting, these norms do not, generally, reflect
the distance adequately. An early attempt to create a more reliable metric
in the closed loop setup was the introduction of the gap metric in [Zames
and El Sakkary, 1980], followed by many papers including [Vidyasagar,
1984] and [Vinnicombe, 1993b; Vinnicombe, 1993a]. In the last reference
the ν -gap metric was introduced and it is the only metric for which “...
any plant at a distance less than β from the nominal will be stabilized
by any compensator stabilizing the nominal with a stability margin β .
Furthermore, any plant at a distance greater than β from the nominal will
be destabilized by some compensator that stabilizes the nominal with a

stability margin of at least β ” ([Vinnicombe, 1993a]). Therein the stability
margin is defined. Moreover, the ν -gap induces the weakest topology in
the space of controllers in which closed loop stability is a robust property.
To some extent, the stability of a closed loop can be evaluated without
considering the other plants in this loop. Therefore, the ν -gap metric may
be a crucial tool in distributed system modeling, where the evaluation of
the entire system can be computationally overwhelming.
Early work in ν -gap model reduction includes [Cantoni, 2001] and

[Buskes and Cantoni, 2007]. However, only in [Buskes and Cantoni, 2008]
was a tractable algorithm obtained, which uses a state-space representa-
tion of a system. The solution is computed step-wise in their algorithm. If
the order of the full order model is n, then, first, an optimal in the ν -gap
metric n − 1-st order approximation is obtained. After that an optimal
n−2-nd order approximation to n−1-st order model is calculated, and so
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on down to the required reduction order.
As opposed to [Buskes and Cantoni, 2008], the algorithm presented in

this chapter uses the frequency domain data to obtain a reduced model.
The method employs semidefinite programming as a tool and coprime
factors of the original system. The algorithm was also extended to account
for the overall performance in controller-plant loops, which is presented
in Section 4.3. Although the algorithm was initially derived for scalar
valued transfer functions, with extra restrictions, it is extended to matrix
valued transfer functions using the techniques described in [Sootla and
Sou, 2010; Tobenkin et al., 2010].

4.1 Preliminaries

First, it may be useful to illustrate why and in which situations the ν -gap
metric is employable. Consider the following toy example:

EXAMPLE 4.1—[ÅSTRÖM AND MURRAY, 2008, PP. 349-350]
Given the systems below, their step responses are investigated in Fig-
ure 4.1.

P1 =
100
s+ 1

P2 =
100

(s+ 1)(0.0025s+ 1)2
P3 =

100
s− 1

Two settings are considered: open loop and closed loop. The last one is
a simple negative feedback with the closed loop transfer functions Pi(1−
Pi)

−1.
The distance in the open loop setting (the H∞ norm) between the plants

P1 and P2 is small. Since the plant P3 is open loop unstable, its open loop
distance (in the H∞ norm) to P1 and P3 is infinite. The upper plots in
Figure 4.1 confirm this discussion.
On the other hand, the ν -gap metric between the plants P1 and P3 is

small. The step responses of P1(1 − P1)−1 and P3(1 − P3)−1 are similar
as well. Since the function P2(1− P2)−1 is unstable, the distance in ν -gap
between P2 and P3, P2 and P1 is very large.
To summarize, the step responses in Figure 4.1 confirm that ν -gap is

a better measure on the distance in this particular closed loop setting,
than the H∞ norm.

There are several equivalent definitions of the metric, but the chosen one
is more convenient for our goal. Let b, a be a left normalized coprime
factorization (NCF) of G1, that is, G1 = a−1b. Let also p, q be a right
coprime factorization, not necessarily normalized, of G2 = pq−1.
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Figure 4.1 Open and closed loop step responses of the plants. The figures in (a)
depict the situation, when the H∞ norm between the plants P1 and P2 is small,
however the ν -gap is large. The figures in (b) depict the opposite situation, when
the ν -gap metric between the plants P1 and P3 is small, but the H∞ norm is infinite.

DEFINITION 4.1—ν -GAP METRIC
Define a function δν (⋅, ⋅) : Rm1$m2 $Rm1$m2 → R as follows

δν (G1,G2) =

{
δL2(G1,G2) if η ([G2,−G∼1 ]) = η ([G1,−G∼1 ])

1 otherwise

where

δL2(G1,G2) =

√
1−

∥∥∥∥
(
p

q

)
(a∼q+ b∼p)−1

∥∥∥∥
−2

∞

In this definition, symbol ⋅∼, means G∼(z) = GT(1/z). The constraint
η ([G2,−G∼1 ]) = η ([G1,−G∼1 ]) is usually called a “winding number condi-
tion” in the control literature. This is a necessary condition to preserve
stability in a closed loop, if G1 is replaced with G2. If the condition is
satisfied, there is a certain robustness guarantee on a closed loop trans-
fer function as well. Throughout the paper, if not stated otherwise, it is
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assumed that G1 and G2 are scalar, not necessarily stable, transfer func-
tions. Therefore, a, b, p and q are scalar transfer functions as well.
Finally, we are ready to formulate the ν -gap model reduction problem

as an optimization one. Given asymptotically stable a and b, such that
b∼b+ a∼a = 1 and b/a is not necessarily stable, solve

γ opt = min
γ>0, p, q

γ (4.1)

∥∥∥∥
(
p

q

)
(a∼q+ b∼p)−1

∥∥∥∥
∞

≤ γ (4.2)

η

([
p

q
,−
b∼

a∼

])
= η

([
b

a
,−
b∼

a∼

])
(4.3)

deg(p/q) = k

Note that δν (b/a, p/q) ≤
√
1− 1/γ 2opt by construction. In this formulation,

b/a is a full order model, and p/q parameterizes its k-th order approxi-
mation. However, the obtained program is not generally convex even for
the scalar-valued functions due to the winding number condition and the
computation of L∞ norm. Therefore, a convexification is required.

4.2 Model Reduction in the ν -gap Metric

The program is addressed only for the discrete-time transfer functions.
The continuous-time transfer functions can be discretized as in Chapter 2.
There are two contributors of non-convexity in the presented formula-

tion. The first one is the L∞ norm optimization with a degree constraint,
which creates a non-smooth optimization problem. Nevertheless, an effi-
cient and accurate suboptimal solution may be derived using a method
from Chapter 2, i.e., iterative Algorithm 6 (page 48). The second one is
the winding number condition, which is much harder to address. Luckily,
the techniques from Chapter 2 address the stability condition in a man-
ner that can be exploited here. Therefore, only the norm constraint will
be addressed first. Then it will be shown that all the solutions of such a
problem satisfy the winding number condition.
The usual approach to L∞ minimization is rewriting the constraint

(4.2) as infinite number of constraints for every frequency ω in [0,π ]:

γ 1 = min
γ>0, pi, qi

γ (4.4)

∀ ω ∈ [0,π ] :

∥∥∥∥
(
p

q

)∥∥∥∥
2

< γ pqa∼ + pb∼p
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where p=
k∑
i=0
pie

−i⋅�ω , q=
k∑
i=0
qie

−i⋅�ω , and qi, pi are the actual decision vari-

ables. Introduce a new variable φ into the program as:

γ 2 = min
γ>0, pi, qi,φ

γ (4.5)

∀ ω ∈ [0,π ] :

∥∥∥∥
(
p

q

)
φ∼

∥∥∥∥
2

< γ Re ((qa∼ + pb∼)φ∼)

The programs (4.4) and (4.5) are equivalent, meaning that γ 1 = γ 2. The
proof of this fact is identical to the one of Lemma 2.2. It can be also shown
that an optimal choice of φ is qa∼ + pb∼. Introducing an extra variable φ
does not solve all the problems. However, by computing φ in advance and
fixing it in the minimization, the program becomes quasi-convex. Given an
initial point p0 and q0, the algorithm can be iterated, with φ = q0a∼+p0b∼.
The choice of the initial point is described in the sequel.
Is the described set big enough to provide any improvement at all?

This question was studied in [Henrion et al., 2003] and [Yang et al., 2007],
besides this thesis. The results for low orders as 2 and 3 are colorfully il-
lustrated in [Henrion et al., 2003]. Given two polynomials θ and ξ this
condition describes all positive real transfer functions with a fixed de-
nominator θ . The set of all possible ξ is shown in numerical examples to
be significantly big in comparison to the set of all stable ξ . However, no
theoretical results were provided in any work.
By convexifying (4.2) the constraint (4.3) was incorporated into the

program. A proof of this fact is summarized in the following lemma.

LEMMA 4.1
Assume that p0 and q0 are FIR filters of the same order, and b and a
are asymptotically stable functions with identical poles. Assume also that
p0/q0 satisfies the winding number condition for b/a. Suppose p and q are
coprime FIR filters of the same order as p0 and q0. Let φ = q0a∼+p0b∼. If
Re ((qa∼+ pb∼)φ∼) > 0 for all the frequencies ω in [0,π ] then the winding
number condition η ([p/q,−b∼/a∼]) = η ([b/a,−b∼/a∼]) is satisfied.

Proof. The proof is based on the proof of Lemma 2.3.
Since p0/q0 satisfies the winding number condition, it is only required
to show that η

([
p0/q0,−b∼/a∼

])
= η ([p/q,−b∼/a∼]). This is shown in a

straightforward manner from the condition Re ((qa∼ + pb∼)φ∼) > 0. Let
c = qa∼+ pb∼, the inequality Re (cφ∼) > 0 on the unit circle is equivalent
to Re (c/φ) > 0 on the unit circle. Note that the number of zeros of c
and φ is equal (since the order of p, q, p0 and q0 is the same), and the
poles of c and φ are identical. Furthermore, if Re (c/φ) is positive on the
unit circle, then the function c(e�ω )/φ(e�ω ) does not encircle the origin.
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Therefore, by Cauchy’s argument principle, the number of zeros and poles
of c/φ inside the unit circle is equal. Since the number of zeros of c and
φ is the same, it also implies that c has the same number of unstable
zeros as φ . Therefore, qa∼ + pb∼ has the same number of unstable poles
as q0a∼ + p0b∼, and thus η

([
p0/q0,−b∼/a∼

])
= η ([p/q,−b∼/a∼]) can be

verified. Finally, η ([p/q,−b∼/a∼]) = η ([b/a,−b∼/a∼]).

REMARK 4.1
It is assumed that the order of q, p, q0 and p0 is the same and it is equal
to k in (4.5). It is theoretically possible that the order of the obtained p
and q is less than k. On the other hand in semidefinite programming,
obtaining coefficients qk and pk equal to zero (which corresponds to order
k − 1) is equivalent to obtaining a matrix which is rank-deficient. The
set of rank-deficient matrices is a null measure subset of the space of
full rank matrices. Therefore, it is almost improbable to obtain a rank-
deficient matrix in semidefinite programming. With a similar reasoning,
it can be stated that p and q are, in fact, coprime.

Finally, a quasi-convex semidefinite program for a given φ may be deduced:

γ cν = min
pi, qi

γ subject to (4.6)

∀ ω ∈ [0,π ] :
∥∥∥∥
(
p(e�ω )

q(e�ω )

)
φ∼(e�ω )

∥∥∥∥
2

< γ Re ((q(e�ω )a∼(e�ω ) + p(e�ω )b∼(e�ω ))φ∼(e�ω ))

THEOREM 4.1
Consider the program (4.6) with a full sampling, i.e., the constraints are
enforced for all the frequencies ω in [0,π ], where γ cν , p, and q is the output
of the algorithm. Then δν(G, p/q) ≤

√
1− (1/γ cν )2.

Proof. Shown by construction using Lemma 4.1.

Tractable Algorithm and Implementation

The choice of the starting point is the most important part of the al-
gorithm. A reasonable guideline to choose the initial point is to use an
approximation of the right NCF stacked in a vector (or the normalized
right graph symbol). A known result is used to justify such an action:

LEMMA 4.2— [VINNICOMBE, 2000]
Given a plant P0 of order n

σ k ≤ inf
P1∈P(k)

δν (P0, P1)
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Algorithm 13 Initial point computation

1. Compute an approximation ( n/θ m/θ ) of ( b a ), which is a nor-
malized right graph symbol of the full order model G. Note that m,
n and θ are FIR filters

2. Set φ = nb∼ +ma∼

where P(k) denotes the transfer functions P1, which have a minimal real-
ization of order k. σ k is a k-th largest Hankel singular value of the right
normalized graph symbol.

Using Hankel-type reduction Algorithm 5 of the normalized right graph
symbol, it is possible to approach the optimal level of approximation. This
provides a reasonable way of choosing φ , which is outlined in Algorithm 13.
There are a number of other ways to choose φ (e.g., the choice φ = θ
also provided excellent numerical results). Although a rigorous proof, that
this particular choice of φ will always deliver results, was not provided,
the intuition behind the choice described above, is reasonable and pro-
vides reasonable results in numerical experiments. The program (4.6) is
quasi-convex and can be solved using standard tools as in Algorithm 14.

Algorithm 14 ν -gap model reduction

Compute the normalized coprime factors a and b of G, where G = ba−1

Compute the function φ1 using Algorithm 13. Set j = 1 and

p(e�ω ) =

k∑

i=0

pie
−i�ω q(e�ω ) =

k∑

i=0

qie
−i�ω

repeat

Solve the following quasi-convex program:

γ Nν = min
pi, qi

γ subject to for all ω in [0,π ] :
∥∥∥∥
(
p

q

)
φ j

∥∥∥∥
2

< γ Re ((qa∼ + pb∼)∼φ j)

Compute an NCF m/θ , n/θ of p/q. Set φ j+1 = nb∼ +ma∼, j = j + 1.
until qφ j − φ j−1q∞ ≤ ε

The reduced order plant Ĝ is computed as p/q
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Chapter 4. ν -gap Model Reduction

The second order cone constraint can be easily transformed into a lin-
ear matrix inequality (LMI) using the Schur complement, providing a
semidefinite constraint instead. A frequency dependent semidefinite con-
straint may be imposed for all the frequencies in [0,π ] at ones using the
Kalman-Yakubovitch-Popov lemma (see, Lemma 1.3). To provide a compu-
tationally cheaper program the constraints may be enforced on a frequency
grid {ω i}Ni=1, where N is big enough to avoid over-fit. The algorithm is
implemented using the interior-point solvers SEDUMI ([Sturm, 1999]) and
SDPT3 ([Tütüncü et al., 1999]) and the parser YALMIP ([Löfberg, 2004])

Computational Complexity

There are two main contributors to computational complexity: computa-
tion of normalized coprime factors and the optimization problem. Compu-
tation of NCFs is done using Riccati equations and, therefore, complexity
is O(l3) floating point operations (flops), where l is the order of the equa-
tion (of the full order model G).
The optimization cost of a semidefinite program differs depending on

the tolerance level, the number of decision variables and if the constraints
are enforced for all the frequencies or just on a grid. The total cost when
solved with SEDUMI does not exceed O(N21N

2.5
2 + N3.52 ) flops, where N1

is the number of decision variables and N2 the number of rows in the
LMI constraints ([Peaucelle et al., 2002]). If constraints are enforced on a
frequency grid {ω i}Ni=1, then N1 = O(k) and N2 = N. Here, k is the order
of the approximation. In general, computing the frequency samples costs
O(l3) and can be lowered to O(l log(l)) in certain cases ([Moselhy et al.,
2007; Zhu et al., 2003]). If constraints are enforced using the KYP lemma
for all the frequencies in [0,π ], then N1 = O(l2) and N2 = O(l).
Since the program is quasi-convex, it is solved using bisection. The tol-

erance of bisection should be higher than in the similar model reduction
methods. Low values of δν correspond to values of γ very close to 1, for
instance if δν = 0.05 then γ = 1.00125. Therefore, the tolerance of ap-
proximation has to be modified accordingly depending on an application.

Multi-input-multi-output (MIMO) case

In the SISO case, a second order cone program was used, which sim-
ply does not exist for matrix constraints. Therefore, another technique
is employed. Suppose a plant with left NCF G = A−1B ∈ Rm1$m2 with
A ∈ Rm1$m1 and B ∈ Rm1$m2 . Assume P, Q are the decision variables
and matrix-valued FIR filters of degree k, such that Q ∈ Rm2$m2 and
P ∈ Rm1$m2 . Again, G is a full order model, and PQ−1 is a reduced order
one.

γ opt = min
γ>0, Pi,Qi

γ (4.7)
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4.2 Model Reduction in the ν -gap Metric

∥∥∥∥
(
P

Q

)
(A∼Q + B∼P)−1

∥∥∥∥
∞

≤ γ (4.8)

η
([
PQ−1,−A−∼B∼

])
= η

([
A−1B,−A−∼B∼

])
(4.9)

Similarly, the condition (4.9) comes essentially for free. However, the LMI,
which is obtained by enforcing the constraint for all the frequencies in
[0,π ], is now more involved

P∼P+ Q∼Q ≤ γ 2(A∼Q + B∼P)∼(A∼Q + B∼P)

To address the problem, a technique introduced in [Sootla and Sou, 2010;
Tobenkin et al., 2010] is used. Consider a matrix inequality (X −Y)∼(X −
Y) ≥ 0, where X and Y are complex valued matrices. From this inequality
it is easy to obtain

X ∼Y + Y∼X − Y∼Y ≤ X ∼X

which is valid for arbitrary X and Y. By introducing Y - an estimate on X
- the quadratic function is bounded from below and linearized. Applying
this inequality yields the constraint

P∼P+ Q∼Q ≤ γ 2((A∼Q + B∼P)∼R+ R∼(A∼Q + B∼P) − R∼R)

which is convex and a semidefinite one is obtained using the Schur’s com-
plement. In our notation, a variable R is an estimate on A∼Q + B∼P,
which allows a similar iteration as in the SISO case.
The winding number condition is satisfied by the same argument.

Given an appropriate frequency dependent R we have:

γ 2((A∼Q + B∼P)∼R + R∼(A∼Q + B∼P) − R∼R) ≥ P∼P+ Q∼Q ≥ 0

and thus (A∼Q + B∼P)∼R + R∼(A∼Q + B∼P) ≥ 0 for all the frequencies
ω in [0,π ]. Now, a similar statement to Lemma 4.1 can be formulated and
proved for Re (det(A∼Q + B∼P)∼R).
To compute the initial point R0 in the MIMO case, it is required to

factorize the initial approximation G0 = P0Q−10 , where P0 and Q0 are
matrix-valued FIR filters of the required order and dimensions. However,
such a factorization is not always possible, to the author’s best knowl-
edge. As a remedy, one can use directly the method from Chapter 2 to
approximate the normalized left graph symbol, and P0 and Q0 will be
parameterized as required by default.

87



Chapter 4. ν -gap Model Reduction

4.3 Examples

The continuous-time models in the examples are discretized as in Chap-
ter 2. Therein other implementation details are also described. Through-
out the section METHOD 1 will denote approximation in the ν -gap metric.
METHOD 2 will denote approximation in the ν -gap with a fixed closed loop
performance degradation level, which will be introduced shortly.

EXAMPLE 4.2—APPROXIMATION OF A FLEXIBLE BEAM MODEL.
A continuous time model of a flexible beam is described in [Chahlaoui
and Dooren, 2002]. The full order model has 398 states. As shown in
Table 4.1, METHOD 1 always provides a better ν -gap match than Hankel
approximations (including the one of a graph symbol). For orders 2 and 4 a
considerable improvement was not achieved, since any method can match
the peaks in the frequency response (every peak corresponds to a pair of
complex conjugate poles). For orders 1 and 3 there is extra freedom in the
choice of poles of the system, which is exploited by METHOD 1. A similar
behavior is exhibited by method [Buskes and Cantoni, 2008], however,
it was not employed directly due to computational constraints. First, the
model was reduced to order 50 in order to apply the method. The accuracy
loss during such an approximation was negligible, however, significantly
improved the speed of the method. For orders 2 and 4 the accuracy of
[Buskes and Cantoni, 2008] is slightly lower than the accuracy of Hankel
reduction of the left graph symbol. This loss happens since [Buskes and
Cantoni, 2008] is a step-wise procedure and we do not have an explicit
control over the resulting ν -gap distance. The parameter Γ for [Buskes
and Cantoni, 2008] was chosen as identity.

Application. Controller Reduction

The controller reduction is a very complicated problem since a designer
must keep in mind both robustness and performance criteria to obtain

Table 4.1 Approximation errors in δν ⋅ 10−2 of various methods in Example 4.2

Reduction Orders 1 2 3 4

Lower bound 36.0 6.0 5.8 0.98

HMR 67.2 11.4 11.5 1.88

HMR of NCFs 60.7 11.3 11.5 1.88

[Buskes and Cantoni, 2008] 39.7 11.8 6.2 2.01

METHOD 1 37.9 11.2 6.2 1.87
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a reasonable controller. Good surveys of methods using coprime factor-
ization and frequency weighted approaches, which tackle both criteria
are given in [Zhou et al., 1996] and [Obinata and Anderson, 2001]. Even
though the performance is a robust property in the ν -gap, the metric does
not account explicitly for the performance of the closed loop system. There-
fore, it may be desirable to include the constraints on the performance
level into the optimization problem. Using the semidefinite program as a
tool makes it possible. As a basis the same idea as for the ν -gap metric
optimization is employed. As an example, consider a closed loop transfer
function H(G, K ) where G is a plant and K is a controller and H is a so
called gang-of-four:

H(G, K ) =




G

1+ GK
−KG

1+ GK
1

1+ GK
−K

1+ GK




Let b/a be an NCF of K and c/d be an NCF of G.

min
γ r>0, pi, qi

γ r subject to for all ω in [0,π ]:

σ

((
H(qd+ pc) −

(
qc −pc

qd −pd

))
ψ ∼

)
< γ pRe ((qd + pc)ψ ∼)

∥∥∥∥
(
p

q

)
φ∼

∥∥∥∥
2

< γ rRe ((qa∼ + pb∼)φ∼)

where γ p is a pre-determined performance degradation level and φ is an
initial guess on qa∼ + pb∼, and ψ is an initial guess on qd+ pc. Alterna-
tively, one can include a constraint on the ν -gap metric while minimizing
the performance level in the same manner.

EXAMPLE 4.3—APPROXIMATING A YOULA CONTROLLER.
Consider gang-of-four H(G, K ), where the plant G is controlled in a robust
manner by a controller K . The 152-nd order controller K was obtained
in [Garpinger, 2009] using Youla parameterization. The controller itself is
stable and so is the third order plant G. For every order, the level γ p will
be fixed to 75% of the performance obtained by METHOD 1. The results are
presented in Table 4.3. The parameter Γ for [Buskes and Cantoni, 2008]
was chosen as identity. The method from [Buskes and Cantoni, 2008] per-
forms slightly better than METHOD 1 for some orders and worse for others.
However, a further extension of the approach is not easily obtainable. But
using the presented approach it is simply a matter of adding a correspond-
ing constraint.
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Chapter 4. ν -gap Model Reduction

Table 4.2 Approximation errors of various methods in the ν -gap metric and effect
on the closed loop performance in Example 4.3

Distance between K and K̂ in the ν -gap metric (⋅10−2)

Reduction Orders 2 3 4 5 6

HMR 72.9 83.14 24.58 18.88 12.67

HMR of NCF 67.01 70.48 13.47 4.96 6.29

Lower bound 33.80 6.82 2.99 2.95 1.15

[Buskes and Cantoni, 2008] 36.68 11.54 4.69 3.25 1.70

METHOD 1 37.93 7.49 3.35 3.23 3.20

METHOD 2 44.56 7.84 4.63 4.05 4.27

Distance between H(G, K ) and H(G, K̂ ) in H∞

Reduction Orders 2 3 4 5 6

HMR 3.64 26.02 1.09 0.84 0.35

HMR of NCF 2.37 2.34 0.92 0.34 0.38

[Buskes and Cantoni, 2008] 6.94 1.31 0.48 0.26 0.08

METHOD 1 1.92 0.58 0.27 0.26 0.26

METHOD 2 1.53 0.43 0.21 0.19 0.19

4.4 Conclusion and Discussion

A linear system approximation method in the ν -gap metric was presented
in this chapter. Such a method may be very useful for modeling of struc-
tured or multi-agent systems. Approximation is obtained using semidefi-
nite programming and a normalized coprime factorization of the original
model. This method can be applied to controller reduction by taking into
account the performance of a closed loop.
The current algorithm has some advantages in comparison to [Buskes

and Cantoni, 2008]. Incorporating extra constraints, adding frequency-
depended weights and/or restricting the objective to a specific frequency
interval is straightforward using the frequency domain representation.
However, using [Buskes and Cantoni, 2008] such extensions are not easy
to obtain.
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5

Structured Model Order

Reduction

One of the first steps to incorporate a structure into the model reduction
problem was made by [Enns, 1984]. The method extended the established
balanced truncation algorithm ([Moore, 1981]) to a frequency-weighted
problem. Essentially, a cascade interconnection of three systems was ap-
proximated. A number of approaches to address this problem have been
proposed (e.g., [Zhou, 1995], [Sandberg and Murray, 2007]). A method re-
ported by [Sandberg and Murray, 2008] can be also seen as a generalized
version of frequency-weighted model reduction problems. An important
subclass of systems with a structure is a controller-plant interconnection.
A number of methods address the controller reduction problem includ-
ing those described in [Zhou et al., 1996; Li and Paganini, 2005; Yang
et al., 2007; Burke et al., 2006] and recently proposed by [Sou and Rantzer,
2010b; Sou and Rantzer, 2010a].
In this chapter, the focus is on an interconnection of “subsystems” in

a typical block diagram. In order to avoid any confusion the intercon-
nected system will be named a “supersystem”, as opposed to subsystems.
Interactions of subsystems define a certain topology of interconnections
or a “structure” in a supersystem. Clearly, a modeling procedure should
account for such a structure. Therefore, the goal of model order reduc-
tion in this setting is to reduce certain subsystems, while preserving the
overall structure of the supersystem. This concept can be formalized in
a concrete example. Consider two subsystems N and G interacting in a
linear fractional transformation (or LFT) loop (see, [Zhou et al., 1996]).
The supersystem F l (N,G) is depicted in Figure 5.1. Assume N should
be preserved in the reduction procedure and G should be approximated
by some Ĝ. It is also required that the resulting LFT is similar to the
original one, which entails that the error qF l (N,G) −F l (N, Ĝ)qH∞ has
to be minimized. However, to author’s best knowledge, there is no such
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Chapter 5. Structured Model Order Reduction

Figure 5.1 An LFT loop with two subsystems G and N.

method, that can guarantee finding a solution for an arbitrary order of
Ĝ. Therefore, in order to simplify this problem, auxiliary input and out-
put signals are introduced. By adding these signals, the transfer function
F l (N,G) will be replaced by an extended one Se(N,G), which will be, in
fact, reduced in the optimization problem. The extended supersystem Se
depicts the input-output mapping in Figure 5.2. Finally, the structured
model reduction problem is cast as a minimization one.

min
low-order Ĝ

qSe(N,G) − Se(N, Ĝ)qH∞ (5.1)

This minimization problem is approached by rewriting the system Se(N, Ĝ)
in a coprime factor form. These coprime factors will also represent the
structure of interconnections. The optimization is addressed using a two-
step procedure employed in different fixed order controller design methods
(see, [Apkarian and Noll, 2006; Arzelier et al., 2010] and the references
therein). In such a procedure, first a stabilizing plant is obtained and
then the performance is minimized. The LFT case is discussed in detail
in Section 5.1.
In Section 5.2, the reduction of multiple subsystems is discussed. An

LFT loop is replaced by an arbitrary block diagram, with multiple sub-
systems interacting with each other. Finally, numerical examples are pre-
sented in Section 5.3.



y

z1

z2


 = Se(N,G)



u

w1

w2




Figure 5.2 An extended supersystem Se with two subsystems G and N.
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5.1 Model Reduction in an LFT loop

5.1 Model Reduction in an LFT loop

Consider an LFT loop in Figure 5.2 and the minimization criterion (5.1).
The biggest advantage of introducing the auxiliary signals wi and zi is
the ability to create a convenient coprime factor representation. This rep-
resentation is computed by a direct calculation using the coprime factor-
ization of N and G. Indeed, the extended system Se can be described by
the following set of equations:

[
y

z1

]
=

[
N11 N12

N21 N22

] [
u

z2 +w1

]

z2 = G(w2 + z1)

Factorize N and G using a left coprime factorization, i.e.:
[
N11 N12

N21 N22

]
=

[
QN11 QN12

QN21 QN22

]−1 [
PN11 PN12

PN21 PN22

]

G = Q−1G PG

and substitute them into the equations above:
[
QN11 QN12

QN21 QN22

] [
y

z1

]
=

[
PN11 PN12

PN21 PN22

] [
u

z2 +w1

]

QG z2 = PG(w2 + z1)

Since z1 and z2 are treated as outputs, they are moved to the left hand
side of the equations

[
QN11 QN12 −PN12

QN21 QN22 −PN22

]


y

z1

z2


 =

[
PN11 PN12

PN21 PN22

] [
u

w1

]

−PG z1 + QG z2 = PGw2

Both equations can be united into the following matrix equation


QN11 QN12 −PN12

QN21 QN22 −PN22

0 −PG QG






y

z1

z2


 =



PN11 PN12 0

PN21 PN22 0

0 0 PG






u

w1

w2




Finally, define the transfer matrices P and Q as follows.

P =



PN11 PN12 0

PN21 PN22 0

0 0 PG


 Q =



QN11 QN12 −PN12

QN21 QN22 −PN22

0 −PG QG



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LEMMA 5.1
The transfer matrices P and Q are left coprime over H∞.

Proof. To show coprimeness, the definition from [Zhou et al., 1996] is
used: transfer matrices P and Q are left coprime in H∞ if there exist
rational transfer matrices X and Y in H∞ such that

P ⋅ X +Q ⋅ Y = I

Due to coprimeness of PN and QN , there exist such XNii and YNii that

(
PN11 PN12

PN21 PN22

)(
XN11 XN12

XN21 XN22

)
+

(
QN11 QN12

QN21 QN22

)(
YN11 YN12

YN21 YN22

)
= I

similarly XG and YG are defined trough PG and QG

PGXG + QGYG = I

To prove coprimeness of P and Q , the transfer matrices X and Y can be
chosen as

X =



XN11 XN12 0

XN21 XN22 YG

YN21 YN22 XG


 Y =



YN11 YN12 0

YN21 YN22 0

0 0 YG




Finally, the relation PX +QY = I is verified by direct computation.
Now examine the transfer matrices P andQ closely. Every block-row of

each transfer matrix depends either on a coprime factor of N, either on a
coprime factor of G. It can not be called a “sparsity structure”, since some
entries are repeated in P and Q , however, this kind of structure can be
exploited by iterative Algorithm 6 on page 48. Note also that Se is stable
if and only if Q has a stable inverse.

REMARK 5.1
The state-space representation also manifests the structure in a conve-
nient manner. Assume the space-space representations of N and G are
given as follows.

N =



AN BN1 BN2

CN1 DN11 DN21

CN2 DN21 DN22


 G =

[
AG BG

CG DG

]
(5.2)
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where DG is set to 0, which is a common assumption in control theory. To
shorten the notation, additionally define

BN = [ BN1 BN2 ] DN =

[
DN11 DN12

DN21 DN22

]
CN =

[
CN1

CN2

]

A state space representation can be derived for P and Q

[P Q ] =




AN + LNCN 0 BN + LNDN 0 LN −BN2

0 AG + LGCG 0 BG [ 0 −BG ] LG

CN 0 DN 0 I 0

0 CG 0 0 0 I




where LN and LG are free parameters, which are used to stabilize the
coprime factors. The dynamics of the subsystems N and G are completely
decoupled. The structure manifests itself only in the input and output ma-
trices. If model reduction in the time domain is considered, the transfer
function [P Q ] can be approximated using a structured Gramian frame-
work from [Sandberg and Murray, 2008]. However, stability of Se(N, Ĝ)
is achieved if the reduced order Q has a stable inverse. This property
is generally hard to accommodate. Also in the presented examples, this
approach reduces to known coprime factor reduction techniques. Due to
these reasons, this approach is not currently investigated.

Analysis of the Problem Formulation

Above, instead of solving

argmin
low-order Ĝ

qF l (N,G) −F l (N, Ĝ)qH∞ (5.3)

it is proposed to address the following optimization problem

argmin
low-order Ĝ

qSe(N,G) − Se(N, Ĝ)qH∞ (5.4)

The major feature in (5.4) is the ability of tracking signals wi and zi. It
means that not only the behaviour of F l is approximated as in (5.3), but
also the interaction between N and G.
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Now let us try to understand what kind of problem is being addressed.
The transfer function Se reads as

Se =



F l (N,G) N12Ξ N12ΞG

ΘN21 N22Ξ N22ΞG

GΘN21 GΘN22 GΘ




where Θ = (I − N22G)
−1 and Ξ = (I − GN22)

−1. Due to the structure of
Se, it can be shown that the program (5.4) is equivalent to:

min
low-order Ĝ

∥∥∥∥∥∥∥



N12

N22

I


 ((I − GN22)−1G − (I − ĜN22)−1Ĝ) [ N21 N22 I ]

∥∥∥∥∥∥∥
H∞

where the LFT loop F l (N,G) is approximated at the block entry {1, 1}.
Therefore (5.4) provides an estimate on (5.3).
If only the transfer matrix generated by signals w1,w2, z1 and z2 is

considered (the lower two by two block of Se), it can be shown, that the
loop depicted in Figure 5.3 is approximated. It is a so called “gang-of-
four” applied to G and N22. It is also known that this loop admits a
very convenient coprime factorization parametrization, which is exploited
in H∞ loop shaping (see, [Glover and McFarlane, 1989]). Adding these
transfer functions into the objective takes also care of robust stability of
the LFT loop.
Given these insights, the problem (5.4) can be modified as follows:

argmin
low-order Ĝ

qWo(Se(N,G) − Se(N, Ĝ))WiqH∞

where the weights Wo and Wi regulate the trade-off between performance
(block-entry {1, 1}) and robustness of the loop (block-entries {2, 2}–{3, 3}).

Structured Model Reduction

Assume Se(N,G) is an asymptotically stable discrete-time transfer func-

Figure 5.3 Gang of Four Loop
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tion. The H∞ optimization problem being addressed reads as

min
P ,Q

qSe(N,G) −Q−1PqH∞

subject to: Q has a stable inverse
(5.5)

where Q and P correspond to the left coprime factorization of Se(N, Ĝ) =
Q−1P and Ĝ is a low order approximation of G. The reduction procedure
will be decoupled into two problems: finding a stability preserving low-
order approximation of G by some Ĝ0 without considering the quality of
the loop Se(N, Ĝ0). There are quite a few reduction techniques of struc-
tured models which guarantee stability under certain conditions. However,
none of those can guarantee finding a solution, if one exists. Given this
initial point Ĝ0, the approximation quality of (5.5) is minimized.
Let us return to the problem at hand: (5.5). The transfer matrices Q

and P admit the following structure:

P =



PN11 PN12 0

PN21 PN22 0

0 0 Y


 Q =



QN11 QN12 −PN12

QN21 QN22 −PN22

0 −Y X




where

N =

[
N11 N12

N21 N22

]
=

[
QN11 QN12

QN21 QN22

]−1 [
PN11 PN12

PN21 PN22

]

and unknown functions are parameterized as

X =

r∑

i=0

X iz
−i Y =

r∑

i=0

Yiz
−i

with the real matrices X i,Yi being the decision variables. The transfer
matrices X and Y constitute a left coprime factorization of Ĝ = X −1Y.
To address this problem, rewrite it with an infinite number of con-

straints as in Chapter 2. For brevity, let Se = Se(N,G), and assume that
Q and P are our decision variables.

min
Q,P ,γ

γ 2 subject to: Q has a stable inverse

(Se −Q
−1P)(Se −Q

−1P)∼ ≤ γ 2 I ∀ω ∈ [0,π ]

where Q∼(z) = QT(1/z). For the moment, consider only the norm con-
straint, which using algebraic manipulations yields:

(QSe −P)(QSe −P)
∼ ≤ γ 2QQ∼ ∀ω ∈ [0,π ]
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This non-convex quadratic constraint is dealt with by replacing it with
more restrictive inequalities

(QSe −P)(QSe −P)
∼ ≤ γ 2(QQ∼0 +Q 0Q

∼ −Q 0Q
∼
0) ∀ω ∈ [0,π ] (5.6)

Note that QQ∼0 +Q 0Q
∼ −Q 0Q∼0 ≤ QQ

∼ for all Q 0 (see, Section 2.4). For
every fixed Q 0 the constraint (5.6) is convex, which allows to solve the
problem with respect to Q and P . The semidefinite constraint is obtained
using the Schur complement.
The transfer matrix Q 0 is computed based on the initial point Ĝ0. It

is reasonable to assume that Q 0 should have the same structure as Q ,
therefore:

Q =



QN11 QN12 −PN12

QN21 QN22 −PN22

0 −Y0 X 0




where X 0,Y0 are FIR filters of order r, and Ĝ0 = (X 0)−1Y0. Since,
Se(N, Ĝ0) is stable, Q 0 has a stable inverse, and so does Q (as shown in
Section 2.4). Now, given an initial point Q 0, it is possible to find another

Algorithm 15 Structured Model Reduction
Compute PN , QN as described above. Obtain Q 0, e.g., using a stability
preserving heuristics from [Zhou et al., 1996]. Set Q j =Q 0 and j = 1

Introduce X =
r∑
i=0
X iz

−i, Y =
r∑
i=0
Yiz

−i and

P =



PN11 PN12 0

PN21 PN22 0

0 0 Y


 Q =



QN11 QN12 −PN12

QN21 QN22 −PN22

0 −Y X




repeat

Solve a semidefinite problem

min
X i,Yi,γ

γ 2 subject to
[
Q jQ∼ +QQ∼j −Q jQ

∼
j QG −P

(QG −P)∼ γ 2 I

]
≥ 0 ∀ω ∈ [0,π ]

Set Q j+1 = Q and j = j + 1
until qQ j+1 −Q jq∞ ≤ ε

Compute the reduced model as Ĝ = X −1Y
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feasible point Q with an improved approximation quality. The procedure
is concluded in Algorithm 15. Convergence of the algorithm can be treated
as in Chapter 2.

5.2 Generalization to Multiple Subsystems

Let us start with an example, to see what kind of problems can occur, if
a generalization is not performed carefully.
Consider a block diagram with three subsystems G1, G2 and G3 in

Figure 5.4. In order to obtain a coprime factorization as before, excite every
subsystem Gi by an additional signal wi and measure its output by an
additional signal zi. Note that three signals u, w1 and w3 are exciting only
two subsystems G1 and G3. Additionally, the output of the supersystem y
is a sum of z1 and z3. This way some degree of redundancy appears in the
extended supersystem. These simple observations raise a question: how
the is model reduction problem affected? Assume the extended transfer
function is introduced as follows:




y

z1

z2

z3


 = Se




u

w1

w2

w3




Note that the sum of last two rows of Se will be equal to the first one,
since y = z1 + z3. The sum of the second and fourth columns of Se will be
equal to the first one, since u excites the supersystem in the same manner

Figure 5.4 A block diagram with three subsystems
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Chapter 5. Structured Model Order Reduction

as the sum of w1 and w3. Thus, the transfer matrix Se will have at least
one zero singular value for all the frequencies ω in [0,π ]. Solving a model
reduction problem in this setting is problematic, since a rank-deficient
matrix is approximated. On the other hand, all zero singular values can
be eliminated while designing the extended supersystem. Therefore, some
signals should be eliminated to provide a full rank Se for all the frequen-
cies. Here, signals z1 and w3 were chosen to be eliminated, providing the
equations:

y = z3 + G1(u+ y+w1 + z2)

z2 = G2(w2 + y− z3)

z3 = G3(u+ y)

Factorize the subsystems Gi using left coprime factorizations Q−1i Pi. Sub-
stitute them into the equations above, while multiplying both sides with
Qi. Also, separate the outputs and inputs on the different sides of the
equations:

(Q1 − P1)y+ P1z2 − Q1z3 = P1(u+w1)

−P2y+ Q2z2 + P2z3 = P2w2

−P3y+ Q3z3 = P3u

The relationship between the signals can be computed as:



Q1 − P1 P1 −Q1

−P2 Q2 P2

−P3 0 Q3






y

z2

z3


 =



P1 0 P1

0 P2 0

0 0 P3






w1

w2

u




This representation is left coprime, to show this let:

P =



P1 0 P1

0 P2 0

0 0 P3


 Q =



Q1 − P1 −P2 −Q1

−P2 Q2 P2

−P3 0 Q3




PG =



P1 0 0

0 P2 0

0 0 P3


 Q G =



Q1 0 0

0 Q2 0

0 0 Q3




Given the notations, it can be computed that

[P Q ] = [PG Q G ]T

where the transformation T is invertible. Note that PG and Q G are left
coprime, since they are block diagonal with left coprime factors of the
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5.2 Generalization to Multiple Subsystems

Algorithm 16 Coprime factorization of an arbitrary block diagram

• Given a block diagram with interconnected subsystems G1, G2, . . . ,
Gn, introduce signals wi, zi. Every wi excites the subsystem Gi, and
every zi measures its output

• If u excites the system Se the same way as a linear combination of
wj , then one of the signals wj is set to zero

• If a signal zj is a linear combination of other output signals it is
eliminated by zj = y−

∑n
j ,=i γ j zj , where γ j are zeros or ones

• Write down the equations describing dependence of zi on the signals
wj , u, y and zj , while replacing Gi by its left coprime factorization
Q−1i Pi

• Compute the left coprime factors P and Q

block diagonal and there exist XG and YG such that:

[PG Q G ]

[
XG

YG

]
= I

Thus, there exist stable X and Y such that:

[P Q ]

[
X

Y

]
= I where

[
X

Y

]
= T−1

[
XG

YG

]

This proves that P and Q are left coprime if and only if PG and Q G are
left coprime.
Inspired by this simple example, Algorithm 16 is formulated. The algo-

rithm is constructive, however, it has to be shown that it always produces
a left coprime factorization.

LEMMA 5.2
The transfer matrices P and Q obtained in Algorithm 16 are left coprime.

Proof. The proof is a generalization of the technique described for the
block diagram investigated above. Introduce PG and Q G :

PG =



P1 0

. . .

0 Pn


 QG =




Q1 0
. . .

0 Qn



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where Qi and Pi are left coprime and Gi = Q−1i Pi. The equations describ-
ing the relationships between the signals read as:

Qizi = Pi(α
i
0u +α iwi + β i0y+

n∑

j=1

β ij zj) or

Qi(y−

n∑

j ,=i

γ j zj) = Pi(α
i
0u+α iwi + β i0y+

n∑

j=1

β ij zj)

where α i0,α i, β ij and γ j are equal to zero or one, depending on a particular
block diagram. The lower case appears when a signal zi is a linear combi-
nation of other outputs, i.e., zi = y−

∑n
j ,=i γ j zj , and it is eliminated. Note

that P will not depend onQ G since none of the signals u, wi are multiplied
with Qi. The static transformation between the transfer matrices PG , Q G
and P , Q are given as follows.

[P Q ] = [PG Q G ]

[
T11 T12

0 T22

]

Since the transformation is block triangular, it remains to show that T11
and T22 are invertible. For most of the signals, we have

Qizi = Pi(α
i
0u +α iwi + β i0y+

n∑

j=1

β ij zj)

The transfer matrix Q GT22 will be affected only by the summands con-
taining multiplication of Qi and the outputs y or zi. Therefore, most of
the block rows of Q GT22 will have only one non-zero entry Qi and it will
appear on the block diagonal. For a single equation we have:

Qi(y−

n∑

j ,=i

γ j zj) = Pi(α
i
0u+α iwi + β i0y+

n∑

j=2i

β ij zj)

and therefore one block row ofQ GT22 consists of multiple Qi with different
signs. Without loss of generality, we can assume that zi with i = 1 is
eliminated, therefore T22 is a block-triangular matrix with the identity
matrices on the block diagonal. Only the first block row has non-zero off
diagonal entries. Given these facts T22 is invertible.
It can be similarly shown that T11 is an invertible block-triangular

matrix, where only one block-column has non-zero entries except for the
block-diagonal elements. Since T11 and T22 are invertible so is the whole
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transformation. Due to coprimeness of PG and Q G , there exist XG and
YG such that:

[PG Q G ]

[
XG

YG

]
= I

Finally, there exist stable X and Y such that

[P Q ]

[
X

Y

]
= I where

[
X

Y

]
=

[
T11 T12

0 T22

]−1 [
XG

YG

]

Therefore P and Q are left coprime if and only if PG and Q G are left
coprime, which is satisfied by construction.
The statement of this lemma is not unexpected. If there is just one

subsystem with one input and one output, then the coprime factors P ,
Q should have one input and one output. It stands to reason that the
extended supersystem Se should have n inputs and n outputs, if there is
n subsystems in Se with one input and one output each. Stability of the
supersystem is equivalent to Q and Q−1 being stable, since the transfer
matrices P and Q constitute a coprime factorization of Se.
Addressing the model reduction problem can be done similarly as was

done before. Assume without loss of generality, that subsystems Gk+1, . . . ,Gn
have to be preserved during the approximation procedure and G1, . . . ,Gk
are being reduced. All the subsystems Gk+1, . . . ,Gn are treated as one
subsystem N and the problem is cast a minimization one as follows.

min
low order Ĝ1 ,...,Ĝk

qSe(N,G1, . . . ,Gk) − Se(N, Ĝ1, . . . , Ĝk)qH∞

After that, Algorithm 6 can be modified in a straightforward manner in
order to address this problem.

5.3 Examples

All the algorithms are implemented using SEDUMI ([Sturm, 1999]) and
YALMIP ([Löfberg, 2004]). The first example depicts a continuous time
closed loop. Therefore, the model is discretized as in Chapter 2.

EXAMPLE 5.1—CONTROLLER REDUCTION IN THE LFT STRUCTURE
Consider an LFT structure F l (G, K ) as in Figure 5.5 with G being a
plant and K a controller, which is desirable to reduce. The structured left
coprime factorization is computed as follows.

P =



PG11 PG12 0

PG21 PG22 0

0 0 PK


 Q =



QG11 QG12 −PG12
QG21 QG22 −PG22
0 −PK QK



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Figure 5.5 LFT structure

Table 5.1 Approximation errors qFl(G, K ) −Fl(G, K̂ )qH∞ in Example 5.1

Reduction Orders 2 3 4 5 6 7

SWA SHMR 2.75 0.69 0.42 0.34 0.19 0.22

ALG 15 0.98 0.68 0.34 0.31 0.17 0.14

The reduction techniques were tested on the famous example by Enns,
which was a model reduction case study in [Zhou et al., 1996]. The initial
point computation is performed by using SWA method (see, [Zhou et al.,
1996]), which can be formulated as follows:

min
K̂

∥∥∥Wa(K − K̂ )
∥∥∥
H∞

where Wa = (I − G22K )−1G22

The problem was addressed by frequency-weighted semidefinite Hankel-
type model reduction (see, Chapter 2). ALG 15 will denote Algorithm 15
with the result of SWA SHMR as a starting point.
Table 5.1 shows that the improvement in the approximation error be-

tween the original and the reduced models is noticeable almost for every
order. Table 5.2 shows that the performance of ALG 15 is near the original
one qF l(G, K )qH∞ = 1.2 for orders 4− 7. For order 2 ALG 15 outperformed
SWA considerably. In fact, even performance oriented methods PWRCF
and PWA by [Zhou et al., 1996] can not achieve such performance levels.

EXAMPLE 5.2—MIXED SENSITIVITY CONTROL LOOP
Consider a structure as in Figure 5.6, where K is a controller and G is a
plant. Notice that in this example there is no need to add extra inputs and
outputs. The left coprime factorization of this supersystem is as follows:

P =

[
PG 0

0 PK

]
Q =

[
QG −PG

−PK QK

]
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Table 5.2 Performance of the reduced closed loop qFl(G, K̂ )qH∞ in Example 5.1

Reduction Orders 2 3 4 5 6 7

SWA SHMR 3.44 1.65 1.34 1.29 1.23 1.23

PWRCF H/O 1.98 2.03 1.19 1.19 1.19 1.19

PWA H/O 1.94 2.73 1.19 1.19 1.19 1.19

ALG 15 1.34 1.34 1.21 1.23 1.20 1.20

Table 5.3 Approximation errors qSe(G, K ) − Se(G, K̂ )qH∞ in Example 5.2

Reduction Orders 2 3 4 5 6 7 8

SWA SHMR 0.91 0.39 0.13 0.14 0.04 0.04 0.04

ALG 15 0.63 0.07 0.06 0.04 0.01 0.01 0.01

where K = Q−1K PK and G = Q
−1
G PG . In this subsection a similar notation

and methods will be used. However, the weight in SWA is changed to:

Wa =

[
G

I

]
(I + KG)−1

ALG 15 will denote Algorithm 15 with a starting point from SWA SHMR.
The controller was designed by [Garpinger, 2009]. The plant is asymp-

totically stable with poles near the imaginary axis. This makes the sta-
bilization almost redundant, requiring only the performance level to be
optimized.
As seen from Table 5.3 the approximation errors are significantly

improved by the proposed approach in comparison to SWA. However, it
should be noted that, since the plant is stable, the problem for the fixed-
order controller design is much easier than in Example 5.1, for instance.
Table 5.4 shows, that the performance levels of ALG 15 is always within
10% of the nominal value qSe(G, K )qH∞ = 1. The improvement in approx-
imation error is quite remarkable when comparing ALG 15 to SWA.

Figure 5.6 Mixed Sensitivity Control loop
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Table 5.4 Performance of the closed loop qSe(G, K̂ )qH∞ in Example 5.2

Reduction Orders 2 3 4 5 6 7 8

SWA SHMR 1.38 1.15 0.87 0.87 0.99 0.98 0.98

ALG 15 1.11 0.93 0.94 0.95 1.00 1.01 1.01

5.4 Conclusion and Discussion

A few generalizations of known results are described in this chapter. For
instance, a coprime factorization of structured systems is introduced, a
known two-step procedure is generalized to an arbitrary supersystem and
essentially any number of subsystems. There are a few issues which are
still not addressed in this thesis and require further research.

• Is it possible to generalize the normalized coprime factorizations to
the structured case? In the current setting it is not clear how this
generalization may occur. Perhaps instead of a direct generalization
to supersystems, one can normalize the factors of subsystems.

• The problem of computing an initial point is crucial for this ap-
proach. However, to the author’s best knowledge, it is a common
problem in all the methods unless a special type of system is be-
ing reduced, such as a positive, positive-real system. Nevertheless,
a number of methods can obtain an initial point in a heuristic man-
ner and using the presented framework it is possible to considerably
improve the quality of approximation.

• There are similar two-step procedures, which can be used to address
the model reduction problem. One such method addresses the non-
smooth optimization problem directly ([Apkarian and Noll, 2006]).
The comparison of the proposed approach to [Apkarian and Noll,
2006] is a topic of future research.
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Conclusion and Discussion

6.1 Summary of Thesis

The main contribution of this thesis is the development of two model
reduction methods. Both methods are based on matching of the frequency
response samples of the full and reduced order models. This approach is
computationally cheap for a certain class of models. Both methods also
guarantee stability. If required, a number of extensions can be performed
as well, such as frequency-weighting, enforcing passivity and so on.
The first method is based on a relaxation approach, which results in

semidefinite Hankel-type model reduction (SHMR). Due to significant re-
semblance to optimal Hankel model reduction, the accuracy of SHMR is
very similar to the Hankel model reduction one. It can be argued that
SHMR is a numerically scalable approach to Hankel model reduction.
The SHMR algorithm can be applied to H∞ model reduction and para-
meterized model reduction problems, which are described in chapters 2
and 3. However, in the second case, explicit parameter-dependent models
are not easily obtainable. In both H∞ and parameterized model reduction
problems the relaxation gap is estimated, which acts as lower and upper
error bounds on the approximation error. Although the upper bounds are
very conservative, estimation of a relaxation gap is required to motivate
the relaxation.
The second method constitutes an iterative approach, where on every

iteration a semidefinite program has to be solved. This method can be
applied to all the problems described in the thesis: H∞ model reduction,
parameterized model reduction, ν -gap model reduction and, finally, struc-
tured model reduction. The major issue of the method is the computation
of the initial point of the algorithm. In H∞ model reduction computation of
initial point is rather straightforward. One can also be computed based on
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the approximation computed by another model reduction method. There-
fore, the iterative approach can potentially improve the quality of any
model reduction method. In parameterized and ν -gap model reduction
the computation of an initial point is more involved, but always feasible.
A few guidelines is provided for a reasonable computation of the initial
point. However, in structured model reduction computation of the initial
point is an open question. In this thesis, such computation was not the
foremost goal and a few known heuristics were listed, which address this
problem.
The iterative approach is, essentially, addressing a non-smooth, non-

convex optimization problem. Therefore, it is hard to theoretically predict
the properties of the resulting solution. Nonetheless, the numerical sim-
ulations show promising results with respect to accuracy of the iterative
approach.

6.2 Discussion on Future Work

There are a few open questions concerning the presented framework. Some
of the questions are well known in the control literature. For example,
computation of the initial point in structured model reduction is related
to fixed order controller design and static output feedback problem. These
problems are known to be hard and all the solutions are yet to be found.
Other questions arose with the development of the methods in this thesis.
These are discussed in detail.

Properties of the Iterative Approach

The iterative approach is a powerful tool to address the model reduc-
tion problem. It was shown that the limit point always exists, however,
the properties of this limit point seem hard to investigate. Due to non-
convexity of the objective function, it is certainly possible to obtain a limit
point, which is not equal to the global minimizer. The relaxation approach
(the SHMR method) guarantees a certain sub-optimality and a solution
that is relatively close to the global minimum in terms of the objective
function. However, there is no guarantee that minimizer of the relaxed
problem is also close to the global minimizer. The main obstacle in evalu-
ation of the obtained minimizer is lack of properties of a globally optimal
solution. To author’s best knowledge, there is no known results concern-
ing the optimal solutions in H∞ model reduction, which is a non-smooth
optimization problem.
A certain analogue to the iterative method can be obtained for the

H2 model reduction problem for which conditions for local optimality are
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known. Therefore, one of the future work directions will be evaluation of
such a method. Such an evaluation can shed light on H∞ problem as well.

Applications of Parameterized Model Order Reduction Framework

The presented parameterized model order reduction method performs ex-
tremely well when the parameters in the model are constant. When the
LPV systems are considered, the picture is not as clear. One problem is
stability, since only a necessary condition is guaranteed.
Even if stability can be addressed, a problem occurs in accuracy of ap-

proximation. Consider the variables ω and θ used in the presented algo-
rithms. Here ω is a frequency variable, and θ is a parameter. Throughout
the derivation of the algorithms, it is assumed that ω and θ are inde-
pendent. However, in practice, the parameter θ does depend on time and
states and, therefore, it depends on ω . It means that inactive modes of
θ are kept, which creates conservatism. One possibility to reduce conser-
vatism, is using frequency weights in order to get a better match along
some frequencies. However, it is not clear at this point how determine
these weights and if this approach is valid at all.
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