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Populärvetenskaplig sammanfattning 

På apoteket hittar vi den ena burken efter den andra med olika sorters 

smärtstillande medicin. Hur många av dessa är verkligen effektiva mot ihållande 

och svår smärta?  

Många receptbelagda läkemedel som lindrar smärta förändrar samtidigt vårt 

beteende, till exempel vår förmåga att fatta beslut. De kan dessutom också orsaka 

slöhet och onormal koordination. För att kunna tillverka effektiva läkemedel mot 

smärta behöver vi därför först förstå hur smärta fungerar. Vi måste veta att det är 

en smärtsignal vi mäter och även hur smärtsystemet bearbetar den.  

En metod som ger information om hur hjärnbarken (den yttre delen av hjärnan där 

upplevelsen skapas och som bl. a ger information om var och hur mycket det gör 

ont) bearbetar smärtsignaler i vaket tillstånd skulle ge ett mer lämpligt mått på 

smärta än vanliga reflextester. Vårt mål var att utarbeta en metod, där vi kunde 

mäta smärtsignalen i hjärnbarken på råttor och följa den före, under och efter en 

skada.  

Många smärtforskare använder reflexer som ett mått på att något gör ont hos djur, 

men även en beröring kan utlösa en reflex. Detta är ett stort problem inom 

smärtforskningen och läkemedelstillverkningen. Vid tillverkning av läkemedel 

testar man ofta den medicinska effekten på just reflexer. Med elektroder på 

hjärnbarken kan vi däremot mäta aktiviteten i de nervceller som mottar signalen 

om en stimulering på huden och skilja på om den orsakas av beröring eller smärta.  

Vi ville ta reda på om det är möjligt att även kunna särskilja smärtstillande 

läkemedels lugnande effekt från den bedövande, genom att mäta smärtsignalen i 

hjärnbarken med elektroder. Smärtsignalen uppstår när vi stimulerar råttornas ena 

baktass med en kort laserpuls som känns som ett nålstick.  

Vi visar att det sannolikt går att särskilja på läkemedels lugnande och bedövande 

effekt om man samtidigt tar höjd för den sänkta hjärnaktiviteten, som är en 

konsekvens av lugnande läkemedel. Det visade sig att vi kunde kompensera för 

den lugnande effekten genom att sänka narkosnivån. Observationen skapar en 

förutsättning att skräddarsy läkemedel till att ge önskade smärtstillande egen-

skaper. 

Därefter undersökte vi om det är möjligt att mäta smärtsignalen i hjärnbarken från 

skadad hud. Vi undrade om signalerna i hjärnbarken återspeglar reflextester. Hälen 
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på råttornas ena baktass strålade vi med UV ljus för att skapa en solbränna med 

rodnad hud. För att kunna mäta smärtsignalen i vakna djur under en längre tid 

opererade vi in en elektrod i hjärnan. Elektroderna består av flera 18 mikrometer 

tunna vajrar. Det betyder att ungefär fem vajrar motsvarar tjockleken på ett 

hårstrå.  

För första gången synliggör vi en läkningsprocess i hjärnbarken. Vi visar att 

signalerna från en stimulering på solbränd hud är större första dagen efter UV-

strålningen än före skadan. Den ökade känsligheten sjunker kraftigt efter andra 

dagen och efter två veckor har signalen återgått till ursprungsläget. Skadan orsakar 

också större smärtsignaler i hjärnbarken från en stimulering på huden bredvid den 

solbrända. Där såg vi den största förändringen och tidsförloppet liknande det i 

skadad hud. Det är alltså inte bara skadan i sig som kan göra ont, utan även 

området vid sidan om.  

En annan intressant upptäckt var att våra reflextester inte uppvisade samma 

tidsförlopp för förändringarna som signalerna från hjärnbarken gjorde. Dessutom 

såg vi den största skillnaden i det strålade området. Detta tyder på att 

reflexbanorna och de uppåtgående banorna troligtvis är organiserade på olika sätt 

med olika funktion.  

Från ryggmärgen löper grovt sett två nervbanor - reflexbanor och uppåtstigande 

banor. De uppåtgående banorna gör oss medvetna om att något gör ont. När vi 

skadar oss, t ex trampar på en spik, skickas en signal i smärtnerverna via 

ryggmärgen till hjärnbarken. Men innan vi känner att det gör ont har vi 

reflexmässigt dragit undan foten.  

Smärta är ett viktigt varningssystem som talar om att något kan skada kroppen. 

Men ibland fortsätter smärtsignaleringen även om skadan har läkt ut. Idag lider var 

femte svensk av långvariga smärtor pga. kroniska sjukdomar eller skador, som 

försvårar deras liv och kostar samhället 87 miljarder kronor om året. För att kunna 

hjälpa dessa personer behöver smärtforskare ett tillförlitligt sätt som kan mäta 

graden av smärta.  

Studierna i denna avhandling är startskottet till en ökad förståelse för hur 

smärtsystemet signalerar i vakna individer. De har öppnat upp för möjligheter att 

följa de föränderliga förlopp som ligger till grund för långvarig smärta. Det i sin 

tur kan leda till framställningen av effektiva smärtstillande läkemedel och bättre 

behandlingar.  
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Abbreviations 

AUC area under curve 

EEG electroencephalogram 

LCEP  CO2 laser C fibre evoked potentials 

LFP  local field potentials 

SI  primary somatosensory cortex 

UV  ultraviolet 
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Glossary and definition 

- Allodynia 

Pain resulting from a stimulus that does not normally cause pain 

- Hyperalgesia 

An increased response to a stimulus which is normally painful 

o Primary hyperalgesia 

Hyperalgesia at the site of injury 

o Secondary hyperalgesia 

Hyperalgesia in an area adjacent or remote of the site of injury 

- Nociception 

Response to a noxious stimulus  

- Noxious stimulus 

An incident of actual or potential tissue damage 

- Pain 

 “Unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such”, as defined by 

International Association for the Study of Pain (IASP) 
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Summary 

Current models of pain in conscious animals usually scores nocifensive responses. 

However, it is still unclear to what extent these responses are related to, for 

instance, the sensory discriminative or affective aspects of pain. This touches upon 

an intriguing question on how the nervous system processes nociceptive 

information in the conscious brain, a matter of which little is known. In order to 

illuminate how the nociception is processed, a suitable animal model for analysis 

on the conscious brain is essential.  

In this thesis, we pursued to develop an animal model to illuminate how 

nociception is processed in primary somatosensory cortex (SI), which is likely to 

play an important role in processing sensory aspects of pain. As part of this, 

differentiating the antinociceptive outcome of drugs would clarify confounding 

sedative properties of drugs when assessing analgetic effects. Surface electrodes or 

ultrathin implantable electrodes were used to record the transmission to SI. 

We show that both a sedative and an analgesic compound can inhibit 

nociceptive transmission to the cortex. Furthermore, by adjusting for effects on the 

electroencephalogram, CO2 laser C fibre evoked potentials (LCEP) may be used to 

distinguish between the sedative and analgesic effect of a drug in anaesthetized 

rats.  

To clarify the implications whether LCEP can provide information about 

central changes in anaesthetized and conscious rats, hyperalgesia was induced by 

partially irradiating the hind paw of rats with UVB-light. Changes were monitored 

during 14 days after induction of hyperalgesia in conscious animals, whereas 

changes from anaesthetised animals were collected one day after irradiation.  

A clear increase in LCEPs from both the primary and the secondary 

hyperalgesic skin, peaking the first day and declining over 14 days, was 

demonstrated. Also later onset latencies were observed the first day after exposure 

in awake rats. 

Additionally in anaesthetised rats, the LCEPs in forelimb SI elicited from 

forelimb skin displayed unaltered magnitude. This area was not monitored in 

conscious rats. Furthermore, tactile poke evoked potentials were also collected and 

displayed no change in anaesthetised rats, however, increased from secondary 

hyperalgesic skin day one in conscious rats. 

To further evaluate hyperalgesia in anaesthetised rats, tramadol was 

administered, which counteracted the changes induced by UVB exposure. 

This suggests that altered sensory processing related to hyperalgesia is 

reflected in altered LCEPs in SI. Comparing the time course and spatial 



18 

characteristic of the changes in transmission to SI and the behavioural responses in 

the same animals, it is clear that there are prominent differences. Behavioural 

responses increased preferentially from the primary hyperalgesic skin. Moreover, 

the significant changes in nociceptive transmission to SI occurred earlier than 

those of motor responses. In view of this, it is conceivable that pathways to motor 

circuits and sensory circuits differ markedly. Together these findings show that 

multichannel electrodes implanted in SI may offer a more sensitive test for 

hyperalgesia in conscious, behaving rats than conventional models.  

The improvement of ground breaking neural interfaces has the potential to 

lay fundamentally new grounds for our understanding of how the nervous system 

processes nociceptive information in the long run. 
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Introduction 

What is pain? 

Pain is essential for our survival. It is usually caused by the activation of a special 

class of receptors in the tissue called nociceptors 
1-3

. Without the ability to detect 

noxious stimuli we would not be able to protect ourselves sufficiently from the 

heat of a flame, piercing from sharp objects or even the discomfort of bruising. 

This is evidenced by the rare occurrence of congenital insensitivity to pain, in 

which a person is born without the ability to detect pain. Their life expectancy is 

greatly reduced, as they fail to engage in protective behaviour against injuries they 

inflict on themselves 
4
.  

Following the activation of nociceptors by a noxious stimulus, alterations at 

several levels in the nociceptive pathways occur that serve to protect the injured 

area. For example, through local mechanisms in the tissue, peripheral nerves 

release neuropeptides that increase blood flow and vascular permeability which 

contribute to the healing process. In the central nociceptive pathways, the 

excitability may increase temporarily, causing enhanced pain and focused 

attention to the injured tissue 
3
.  

From a clinical point of view, acute pain can usually be relieved in an 

adequate way. The situation is very different for long lasting (chronic) pain, 

whether caused by malignant or a non-malignant conditions, which is not 

satisfactorily treated, with troublesome side effects and inadequate relief 
5-7

. 

Although there has been considerable progress on the molecular and cellular basis 

for nociception, the development of analgesics over the last decades has been a 

scarcity 
3,8-10

. Conceivably, this may be due to underestimating the complexity of 

the nociceptive system. Indeed, poorly understood functional changes of the 

nociceptive circuits have been implicated in the development and maintenance of 

pain 
11,12

. It may thus be that chronic pain conditions cause maladaptive alterations 

in the nociceptive system, the understanding of which may lead to effective 

therapies to prevent or even reverse these alterations. To allow significant 

advances on this urgent matter, valid animal models for pain are essential. As will 

be described below, current models of pain in the awake animals usually scores 

nocifensive responses 
13-17

 as a measure of pain. However, it is still unclear to what 

extent these responses are related to, for instance, the sensory discriminative or 

affective aspects of pain.  
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Pain cannot be perceived until it reaches the brain, where the location and the 

intensity of the pain are sensed and associated to an unpleasant emotion and 

cognitive memory. This touches upon an intriguing question on how the nervous 

system processes nociceptive information in the conscious brain. At present, very 

little is known about this, as much of the information available comes from 

anaesthetized animals.  

The nociceptive pathways – a brief overview 

Pain is normally caused by the activation of a subpopulation of peripheral nerve 

fibres called nociceptors. These can detect mechanical, thermal and chemical 

noxious stimuli 
18

 and send a message about the damage or threat of damage to the 

brain. Nociceptors can further be divided into two major classes 
3
, thin myelinated 

Aδ afferents and small diameter, unmyelinated C fibres, which in turn can be 

divided in many subgroups on the basis of response characteristic and surface 

receptors 
19,20

.  

Nociceptive signals from the body are conveyed to the dorsal horn of the 

spinal cord, where neuronal processing leads to e.g. the execution of reflexes and 

interactions between different modalities 
21

. Processed nociceptive information is 

then distributed by projection neurones, mainly located in laminae I and V in the 

dorsal horn 
22,23

, to supraspinal centres 
18,24

 in the brainstem, cerebellum, 

hypothalamus, thalamus and cerebral cortex 
25-27

. These different targets are 

involved in different aspects of pain and pain modulation. For example, the 

spinothalamo-primary somatosensory cortical pathway is held to be the major 

contributor to sensory discriminatory aspects of pain 
24

, such as intensity and 

location of pain 
28,29

. Other pathways project to hippocampus and amygdala which 

appear to be engaged in emotional responses relevant to aversive properties of 

pain 
30

 and the anterior cingulate cortex which appear to be associated with emo-

tional aspects of pain 
31,32

. In addition, many supraspinal centres, in particular the 

periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) 
33

 engage in 

descending control of the spinal nociceptive processing, which can be either 

antinociceptive or pronociceptive 
34,35

. The widespread distribution of nociceptive 

information to different targets in the brain thus provides the basis for the 

complexity of the pain experience including its sensory, emotional, and motor 

components 
25,36

.  

This thesis focuses on the sensory aspects of nociception. SI is a major 

receiving area of somatotopically organized somatosensory information in the rat 
37,38

. SI also receives somatosensory information in other species, such as monkey 
28,39

, cat 
40

 and human 
11,12,26

. Additionally, from animal studies, it is clear that a 

population of neurons receiving nociceptive input are present in SI 
28,37,38

 and that 

these show a graded response to graded nociceptive input from restricted receptive 

fields 
38,41

, similar to many neurons in, for example, the ventral posterior lateral 
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nucleus of the thalamus and the dorsal horn of the spinal cord. Furthermore, SI 

also contains neurons that have convergent input from nociceptors and other 

afferents 
38

. These findings strongly implicate SI in the sensory discriminative 

aspect of pain. 

Sensitization of nociceptors and the phenomenon of hyperalgesia 

and pain 

Injury commonly results in sensitization of primary nociceptive afferents 
42,43

 

leading to decreased pain threshold and an increase in pain to suprathreshold 

stimuli from the injured tissue. This phenomenon is termed primary hyperalgesia. 

Moreover, the activation of nociceptors also causes an increased excitability of 

nociceptive neurons in the central nervous system, often termed central 

sensitization 
44,45

, leading to enhanced transmission of nociceptive messages. 

Numerous spinal mechanisms are believed to be implicated in central sensitization 
46,47

, which is expressed as lowered mechanical and thermal activation thresholds 
48

, facilitation of responses to innocuous stimuli 
49

, increased response to 

peripheral nociceptive stimuli 
50

, and expanded receptive fields of convergent 

neurons 
51

. Importantly, secondary hyperalgesia may also arise from the tissue 

outside the innervation territory of the nociceptors in the injured area due to 

central mechanisms 
52

. Whether or not this latter phenomenon is mainly a sensory 

phenomenon or also expressed in sensorimotor systems, such as nocifensive reflex 

systems, is not entirely clear. Nociceptive processing in the brain may likely 

follow enhanced neuronal activity in the dorsal horn 
53

, but it is still unclear to 

what extent hyperalgesia is reflected in enhanced nociceptive transmission to SI.  

There are several methods to induce and study hyperalgesia, such as diet or 

stress induced hyperalgesia and drug or irritant induced hyperalgesia 
47

. Many 

established and commonly used animal models evoke inflammation, which 

contributes to hyperalgesia, by injecting irritant substances (such as mustard oil, 

formalin, Complete Freund´s Adjuvant) 
47

. An important aspect of inflammatory 

pain is human relevance. Intensely studied models of cutaneous hyperalgesia, 

which are also used on humans, are paradigms like thermal burn 
54,55

 and capsaicin 

(the pungent ingredient of chilli pepper) application 
44,56

. Both models produce 

primary and secondary hyperalgesia. This has also been shown after other 

cutaneous injuries such as ultraviolet (UV) irradiation (i.e. sunburn), which 

produces pronounced primary mechanical and thermal hyperalgesia in humans 
57,58

 

as well as rats 
15,16

. Furthermore, cutaneous UVB irradiation is a sterile injury, 

restricted to cutaneous tissue, which to date has emerged as an important 

inflammatory pain model 
15,16,59

, suitable for analogous studies on humans 
60

.  
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Current pain assessments in animals  

Understanding how the spinal cord and brain process nociceptive information in 

the awake individual and how this processing change during long term nociception 

has for a long time been hampered by the pain models available. Spinal 

withdrawal reflexes or other nocifensive behaviours, such as innate (e.g. flinching 

or licking) or operant (e.g. learned escape), are extensively used as an index of 

pain 
17,61

. Yet, it is still unclear to what extent these responses are related to the 

sensory discriminative or affective aspects of pain. Also, the behaviour can be 

elicited by stimuli provoking painful sensation, although, non-noxious stimuli may 

also elicit a withdrawal reflex 
62

, which is therefore not specific for nociception. In 

fact, spinal sensorimotor circuits mediating nocifensive reflexes do not appear to 

be part of ascending pathways mediating nociceptive information to the relevant 

nociceptive areas of thalamus and cortex 
63

. Instead, there is a clear link between 

reflex circuits and ascending spino-olivo-cerebellar pathways 
64

. 

It is not obvious to recognize pain in rats, neither by looking at them 
65

 nor by 

interpreting their behaviour 
66

. Furthermore, behavioural measures can be distorted 

by the effect of analgesics or sedatives on motor coordination 
67,68

, since they 

depend on a functional motor system. The frequent failure of animal models of 

pain in predicting analgesic effects of drugs 
69,70

 provide additional support for the 

notion that motor responses are subserved by at least partly different systems than 

those involved in pain perception. Consequently, animal models of pain based on 

other measurements than motor responses are needed for our full understanding of 

the mechanisms underlying nociception. A promising model would be one in 

which the pain condition occurred naturally and in which cerebral events are 

measured, rather than reflexes.  

Studies show that, in humans, nociceptive evoked potentials in the SI 

correlate with pain sensation in the normal situation 
25

 and after induction of 

hyperalgesia 
71

. Further, the potentials change with the level of analgesia 
72

. In the 

rat, nociceptive C fibre evoked potentials in SI 
73

, have been suggested to be a 

useful model to monitor pain related ascending transmission under various 

conditions 
74

. However, so far, this model has only been used in anaesthetized 

animals and it is not clear if the model can be used to differentiate between 

sedative and analgesic treatments and whether or not it can be used to monitor 

hyperalgesia. 

How pain better could be measured in animals 

There remain crucial gaps in our knowledge of nociceptive processing in the 

conscious brain. While imaging studies on awake humans have contributed 

importantly to identify several cortical areas that subserve nociceptive functions 
11,12,26

, such techniques do not provide the spatial and temporal resolution 
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necessary to reveal detailed neuronal and network mechanisms underlying pain. 

Such information can only be obtained from animal studies. However, much of the 

current knowledge on the functional organisation of the nociceptive system comes 

from electrophysiological studies performed in anaesthetized animals 
37,38,48

. 

Implanted multichannel electrodes serving as a brain computer interface, 

which enables long term measurements of neural information processing, has 

pushed the limits and opened new fields of research. As the technique of recording 

neural activity has progressed, new areas of application have emerged such as 

monitoring the simultaneous activity of hundreds of neurons or individual neurons 

in behaving animals. Implanted electrodes have successfully been used to study 

nociceptive transmission in conscious animals for short periods 
31,75,76

 but due to 

that they cause substantial tissue responses and provide unstable recordings 
77,78

 

they need to be improved before being used in long term studies of pain. 

Nevertheless, improved brain computer interfaces have the potential to lay 

fundamentally new grounds for our understanding of how the nervous system 

processes nociceptive information in the long run. Clearly, analysing neural 

processes in conscious animals during prolonged periods will also lay new 

grounds for novel drug candidates to reach the light of the market.  
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Aims 

The general aim of this thesis was to develop a useful animal model for studies on 

the sensory aspects of pain. The specific goals were:  

 

1. Develop a method to differentiate between the sedative and analgesic 

effect of drugs on nociceptive transmission to SI  

2. Evaluate if primary and secondary hyperalgesia is reflected in altered 

transmission to SI  

3. Develop a method for long term measurements of nociceptive 

transmission to SI in conscious unrestrained rats using chronically 

implanted multichannel electrodes 

4. Evaluate the relation between nociceptive behavioural responses and 

transmission to SI in the conscious animal during development of 

hyperalgesia 
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Method 

Animals used 

Sprague-Dawley rats of both sexes were used. All rats received food and water ad 

libitum and were kept in a 12-hour day–night cycle at a constant environmental 

temperature of 21C and 65% humidity. Approvals for the experiments were 

obtained in advance from the Lund/Malmoe local ethical committee on animal 

experiments. 

Experimental procedure 

Indices of pain and pain related phenomena  

The experimental protocol was devised so as to allow a quantitative characteri-

zation and comparison of how nociceptive transmission is affected by different 

indices of pain related phenomena and/or drug administration.  

 

 

 

Figure 1. Stimulated sites, irradiated area and behavioural test area of the right hind 
paw. The sites, subjected to CO2 laser and mechanical stimulation with the tapping device, are 

indicated with numbers. The UVB exposed area is shaded in light grey (III). In II the UV irradiated 

area consisted of sites 14-18. From this area laser Doppler measurements were taken. The dark grey 

ellipse indicates where the stimulation of the behavioural tests was done. Dotted line divides the paw 

into three areas; heel, pad and digit.  
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Induction of hyperalgesia using UVB narrowband irradiation (I & III) 

UVB irradiation produces a skin inflammation and a dose-dependent hyperalgesic 

state 
16

. The rats were anaesthetized with isoflurane (1.4-1.8 %) in a mixture of 40 

% oxygen and 60 % nitrous oxide. They were then covered with an UV opaque 

material, exposing the proximal plantar part of the right hind paw (Figure 1), 

which was irradiated with 1.2-1.3 J/cm
2
. A calibrated UVB narrowband lamp ( = 

300-320 nm, Philips) was used.  

Behavioural tests 

Assessment of behavioural responses to mechanical stimulation (III) 

Withdrawal responses to mechanical stimuli were tested from the proximal part of 

the right hind paw using a dynamic plantar aesthesiometer (Ugo Basile). Rats were 

placed in a clear cubicle (19.5 x 19.5 x 14 cm) on top of a metal grid and left to 

acclimatize. A linear force ramp of 0.4 g/s was applied and the paw withdrawal 

thresholds were collected during six weeks.  

Assessment of behavioural responses using noxious thermal 
stimulation (II & III) 

Behavioural hyperalgesia was assessed before surgery in awake rats (II) by 

measuring the threshold of the withdrawal reflex of the irradiated and contralateral 

heel. Further, nocifensive withdrawal responses (III) from 20 sites of the hind paw 

were determined. A radiant heat CO2 laser (Irradia, Sweden; model 315M 

Superpulse, wavelength 10.6 m, output power 10 W, beam diameter 3.0 mm) 

was used.  

Also, the presence of thermal nociception was determined (III), by measuring 

paw withdrawal latency to a thermal stimulation system (Hargreaves apparatus, 

Ugo Basile). Rats were placed in a clear cubicle (17 x 22 x 14 cm) on top of a 

glass floor and left to acclimatize, whereafter data was collected during six weeks.  

Assessment of inflammation (III) 

To determine the degree of inflammation, rats were anesthetised with isoflurane 

(1.2-1.5 %) in a mixture of 40 % oxygen and 60 % nitrous oxide, whereafter blood 

flow in the proximal part of plantar right hind paw was measured with a laser 

Doppler flow meter (MoorVMS-LDF™).  
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Surgery and preparation for electrophysiology 

Acute experiment (I, II) 

Rats were anaesthetized with isoflurane (1.8–2.0 % during surgery and 0.6–1.1 % 

during recordings) in a mixture of 40 % oxygen and 60 % nitrous oxide. The 

trachea was cannulated and the animals were artificially ventilated. An infusion of 

5 % glucose in Ringer’s acetate was given through the right jugular. Mean arterial 

blood pressure was monitored continuously and the rectal temperature was kept at 

36.5–38.5 C. The head was fixed by a nose ring and ear bars, after administration 

of local anaesthesia (EMLA® salve). The spinous process of a thoracal vertebra 

was clamped and the chest lifted to facilitate ventilation. A craniotomy partly 

exposing the left parietal and frontal cortex was made, whereafter the dura mater 

was cut and the surface covered with paraffin oil. Infiltration of local anaesthetic 

(Xylocaine®) was made during all surgery to reduce the nociceptive input. After 

completed surgery, muscle relaxant (Pavulon®) was given repeatedly to enable 

stable recordings, whereafter surface electrodes (~0.3 mm diameter) were placed 

on SI.  

Long term experiment (III) 

All rats were anaesthetised i.p. with a solution containing an analgesic (fentanyl) 

and a sedative (Domitor® vet.). The head was placed in a stereotactic frame and 

the skull was exposed. Thereafter a reference screw was mounted and inserted to 

the depth of the dura mater. Additionally two more screws were mounted for 

anchoring the implant to the skull. The centre of the stereotactic coordinates for 

the craniotomy (3 x 2 mm) was 1 mm caudal of Bregma and 2.4 mm lateral to the 

midline, corresponding to hind paw representation area. The exposed dura mater 

was removed and the surface covered with artificial cerebrospinal fluid. The 

electrodes were implanted in the left hemisphere and dental cement (FujiCEM™ 

Automix) covered the hole in the skull and embedded the wire bundle. After the 

surgery, an antidote (Antisedan® vet.) to the anaesthesia and an analgesic 

(Temgesic®) was injected s.c. 

Electrodes (III)  

In I and II ball tipped platinum electrodes were used to record surface potentials. 

In III, in house developed multichannel electrodes were used. Twenty eight 12 µm 

wires (platina-irridium) insulated with a polymer (3 µm thick parylene C) and 

embedded in gelatine, were implanted. In total, the microelectrode was 200-300 

µm in diameter. One of the electrodes was uninsulated 2 mm at the tip and used as 
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a reference. The electrodes and a 150 µm platina ground wire were soldered to a 

chip and the connections were covered with epoxiharts (bisfenol F). 

Electrophysiological recordings and sequence of stimulations 

In experiments I and II, recordings of mechanical and laser evoked potentials 

started after completed surgery.  

Anaesthetized rats were irradiated (II) with UVB-light 20-24 hours prior to 

recordings. At this time, an inflammatory process had begun 
16

. Furthermore, 

moderate redness, but no skin lesions or scarring, was seen on the irradiated skin.  

In experiments III, electrophysiological recordings in the awake animal 

started > 1 week after implantation of multichannel electrodes. About two weeks 

after implantation, the heel was irradiated with UVB. Recordings were made on 

days 1, 2, 4, 7 and 14 after UVB irradiation. These were compared to base line 

recordings from the same animals collected during the week before irradiation.  

Assessing cutaneous representation on SI by tactile stimulation (I, II) 

Nociceptive and tactile input from the skin overlaps to some extent in SI 
38,73

. 

Therefore, to avoid input from nociceptors, which may produce excitability 

changes in peripheral and central pathways, tactile input was used to locate the 

cortical representation of the glabrous skin of the arch, heel (I, II) and digits (I) of 

the right hind paw and of the digits of the right forepaw (II). A hand-held 

electromechanical stimulator with a blunt metal probe was used. For each skin 

area and rat, the cortical site eliciting potentials with the highest amplitude was 

used for recordings.  

Nociceptive heat stimulation 

To elicit input from nociceptors in SI, the glabrous skin of the right hind paw or 

forepaw (II) were stimulated with a CO2 laser. The stimulation energies used, 

corresponded to 210-330 mJ, have been shown to evoke late cortical field 

potentials reliably in the rat SI through the activation of cutaneous nociceptive C 

fibres 
73,79

. Furthermore, C fibres, and also Aδ fibres, in rats 
73

 and humans 
80

 are 

activated by noxious CO2 laser stimulation, without simultaneous activation of low 

threshold mechanoreceptors. CO2 laser evoked potentials have furthermore been 

monitored in human and rat SI 
75,81

. CO2 laser pulses were delivered to different 

sites within a skin area, e.g. the heel, at a frequency of 1 Hz (I, II). The 

stimulations of an area were repeated three to five times, with an interstimulus 

interval of 10 minutes (I, II). Furthermore, in rats administered with a drug, an 
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additional set of CO2 laser C fibre evoked potentials (LCEPs) were collected. 

Electroencephalogram (EEG) was also monitored every 10 minutes throughout the 

experiments.  

In paper III, 20 sites (Figure 1) on the hind paw were stimulated 20 times in a 

semi random order. 

Drug administration (I, II) 

The effect of 2 mg/kg of tramadol (Tradolan®) i.v. on LCEP was evaluated on 

some UVB exposed rats (II).  

In experiment I, either morphine (3 mg/kg) or midazolam (10 mol/kg; 

Midazolam Hameln) was administered i.v. to evaluate the effect on LCEP. 

Furthermore, in some animals the level of volatile anaesthesia was also lowered 

after drug administration (I) to reverse the EGG frequency to that of the control 

level. 

Statistical analysis 

Analysis of motor response tests 

To compare the thresholds of the nociceptive withdrawal reflex in the irradiated 

heel with the contralateral (II) paired t test was used. One-way ANOVA followed 

by a Tukey´s post hoc test was used for statistical analysis (III) of behavioural 

tests (p < 0.05 was taken as significant, 95 % confidence interval). Withdrawal 

responses elicited by CO2 laser stimulation evoked during SI recordings were 

followed by Bonferroni´s multiple comparison test. Paired student´s t test was 

used for statistical analysis of blood flow measurements.  

Data analysis of EEG and evoked potentials  

Study I and II 

The signals (10 kHz sampling frequency), were amplified and filtered using 

Digitimer Neurolog system (Digitimer LTD, England) with a low cut-off 

frequency of 1 Hz and a high cut off frequency of 700 Hz.  

Fourier analysis was used to analyse the dominating EEG frequency in study 

I. In house scripts, created in Scilab-4.1.1, were used to calculate area under the 

curve (AUC), onset latency and duration (Figure 2) to characterize C fibre evoked 

potentials. As for tactile evoked potentials, the onset latency and peak amplitude 
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of the initial positive surface potential were analysed (II). Student´s t-test was used 

as statistical analysis, p < 0.05 considered significant.  

Study III 

Local field potential (LFPs) were recorded using a 32-channel Neuralynx system 

(Digital Lynx 10S, Neuralynx). The signals were pre-amplified and buffered. LFPs 

were sampled at 1 kHz and filtered using a low-pass (<300 Hz) FIR filter (Figure 

2).  

Averaged evoked LFP responses were calculated using in-house developed 

MATLAB (version 2010 b) scripts. Data were grouped according to: 1) Area 

stimulated, divided into digits (sites 1-9), secondary area (pad, sites 10-13, 19) and 

primary area (heel, sites 14-18, 20); 2) stimulus modality (nociceptive and tactile) 

and 3) days after UV exposure over all animals. Furthermore, means of LFP 

responses were calculated for each site and modality and then smoothened using a 

moving average filter.  

AUC and onset latencies of CO2 laser C fibre evoked potentials were 

determined as was the peak amplitudes and peak latencies of tactile evoked 

potentials.  

A two-sample Kolmogorov-Smirnov test with Bonferroni correction (p < 

0.05 was taken as significant) was used for analysis.  

 

 

 

 

Figure 2. Illustration of the scheme to record local field potentials. Signals were recorded 

from the recording site (Rec). Amplified LFPs were filtered. The LFP shows the onset, duration, 

peak amplitude and area under curve (AUC) of the nociceptive C fibre evoked potentials.  
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Results at a glance  

 By adjusting for effects on EEG, CO2 laser evoked cortical potentials may 

be used to distinguish between the sedative and analgesic effect of a drug 

in anaesthetized rats.  

 Secondary hyperalgesia is reflected in altered transmission to SI in the 

anaesthetized rat. 

 Tramadol reverses much of the changes in nociceptive C fibre 

transmission to cortex from the primary and secondary skin regions but 

had little effect on transmission from distant skin  

 Nociceptive C fibre transmission to SI in the awake animal is enhanced, 

peaking on the first day, after cutaneous UVB irradiation.  

 Hyperalgesia as measured from SI and from motor responses differ in time 

course in the awake animal. 

 Secondary hyperalgesia was prominent from cortical recordings but was 

not significant in reflex tests, indicating differences in topographical 

organisation of nociceptive motor and sensory systems.  
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Results and comments 

Characterizing evoked potentials may indicate if a drug has 

sedative or analgesic properties (I) 

The preceding studies on nociceptive transmission to SI indicate that nociceptive 

C fibre evoked potentials in SI may be useful to evaluate the overall nociceptive 

transmission to the brain and the analgesic properties of drugs 
3,25,74

. An 

unresolved, but important question is, however, how to differentiate between the 

analgesic and sedative properties of a drug using this model. Little attention has 

been given in the past to this problem in animal pain models.  

To clarify the antinociceptive outcome of drugs, we set out to develop a 

method to differentiate the sedative and analgesic effect of drugs. First we studied 

the effects of different depths of anaesthesia on nociceptive C fibre transmission 

on LCEP and EEG. We then tested whether it is possible to compensate for the 

sedative effects of a drug on LCEP by keeping the dominant frequency of EEG 

constant. Finally, we tested whether the method of keeping the dominant 

frequency of EEG constant could be used to differentiate between sedative and 

analgesic properties of two drugs.  

Isoflurane and midazolam reduces LCEP and EEG frequency  

Initially, the effect of different concentrations (0.8 - 1.3 %) of isoflurane on EEG 

and LCEP was tested. At 0.8 - 0.9 % isoflurane, the EEG was dominated by 3-8 

Hz and clear LCEPs could be elicited. LCEP consisted of a late surface positive 

wave. Previous studies have shown that the source of this potential is in cortical 

layer III-IV 
73

. As the anaesthetic level increased, the LCEP and the dominating 

EEG frequency were gradually reduced. At 1.3 % isoflurane, LCEP was nearly 

abolished and the mean dominating frequency of EEG was about 2.0 Hz. Under 

anaesthesia, a parallel reduction in EEG frequency and LCEP was also found after 

administration of the sedative midazolam. The produced outcome resembled that 

of an increase in the isoflurane concentration from 0.9 to 1.1 %. By lowering the 

concentration of isoflurane from 0.8-0.9 % to 0.6-0.7 %, the dominant frequency 

of EEG and LCEP were reversed to control level again. These findings suggest 

that the apparent analgesic effect of midazolam is mainly due to its sedative 

properties.  
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Figure 3. The effect of morphine on LCEP without and with EEG frequency 
compensation. Averaged median values and 25/75 % quartiles are shown. a) The effect of 

morphine on LCEP. b) The effect of morphine on LCEP after compensation of change in EEG. c) 

Changes of dominant EEG frequency after administering morphine. 

Morphine reduces LCEP and EEG frequency despite reduction of 
anaesthesia 

Morphine is an analgesic, which depress nociceptive transmission to SI 
82,83

. 

Nevertheless, since morphine also exhibit sedative properties, in particular in 

higher doses 
84,85

, the possibility that the entire effect on LCEP is due to its 

sedative properties, could not be excluded. In this thesis, morphine (3 mg/kg) 

caused a similar effect on LCEP and EEG as midazolam, yet still caused a 

profound depression of the LCEP (5.6 % of the control, p < 0.01) after lowering 

the isoflurane level to keep the EEG frequency around 4-6 Hz (Figure 3). These 

findings indicate that at the dosage used, morphine causes both significant sedative 

and analgesic effects. 

Taken together this study suggests that the proposed method might be a 

valuable tool to distinguish between analgesic and sedative effects of a drug. 

Importantly, the clear relationship between EEG and LCEP also indicate that the 

dominant frequency of EEG needs to be kept constant when assessing the 

analgesic effects of various drugs or other manipulations.  

Secondary hyperalgesia is reflected in altered nociceptive 

transmission to SI in anaesthetised rats (II) 

Since SI is likely to play an important role in processing sensory aspects of pain 

we assessed whether monitoring SI nociceptive C fibre evoked potentials can 

provide useful information about central changes related to primary and secondary 

hyperalgesia in rats. Additionally we tested whether tramadol, a centrally acting 

opiate, could reverse the changes noted. Local UVB irradiation was used, which 

has been demonstrated to cause reliable behavioural hyperalgesia in animals 
16

and 

in humans 
57,58

. 



37 

To confirm that the dosage of UVB irradiation used caused behavioural 

hyperalgesia, we tested the withdrawal response to CO2 laser stimulation in awake 

rats and compared the UVB exposed heel to the contralateral heel. This 

comparison confirmed an increased sensitivity in the irradiated heel 
15,16

, 

displaying reflex thresholds significantly lower (7.2%) compared to the 

contralateral heel. In paper III, we also confirmed an increased blood flow in the 

irradiated skin.  

A first step towards characterising the changes in tactile and nociceptive C 

fibre evoked potentials after UVB irradiation, was to monitor the spatial 

distribution of hyperalgesia. For this purpose, multiple surface electrodes were 

used to record potentials in forepaw and hind paw SI (heel and arch). The heel and 

arch of the hind paw were used to assess primary and secondary hyperalgesia 

respectively. These two areas represent skin areas where primary hyperalgesia 
16

 

and secondary hyperalgesia may occur in human 
57

. The LCEP evoked from the 

forepaw was studied to characterize distant effects. The evoked potentials were 

recorded under anaesthesia in control conditions and one day after UVB 

irradiation of the heel. All measurements were conducted during dominant EEG 

frequencies of 3-8 Hz. 

  

 

 

Figure 4. Magnitude of LCEPs recordings from three cortical areas. Top: The difference 

between means and S.E.M of area under the curve (AUC) for the naïve (black circles) and the UVB 

exposed (white boxes) groups are shown. Bottom: The mean of differences and S.E.M of AUC in 

UVB exposed rats before (white boxes) and after (black triangles) tramadol administration are 

shown. The x-axis depicts the recording areas on SI cortex. * p < 0.05,** p < 0.01, *** p < 0.001 
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Control recordings confirmed a rather crude somatotopic organisation of the 

nociceptive C fibre input as compared to tactile input. Hence, CO2 laser 

stimulation of the hind paw also evokes significant, but smaller, potentials in the 

forelimb representation area of SI and vice versa 
73

.  

Although tending to increase, the magnitude (measured as AUC) of the 

LCEPs in heel SI elicited from the primary hyperalgesic skin, did not reach 

significant levels (Figure 4). However, an increased duration of the LCEPs in heel 

and arch SI was found. By contrast, the magnitude, but not duration, of the LCEPs 

in the arch SI was strongly increased (46 % of control) upon stimulation of 

secondary hyperalgesic skin. Furthermore, the LCEPs on forelimb skin stimulation 

increased (44 ms difference) in duration in the SI forelimb area and showed 

delayed onset latencies (difference: heel 29 ms and arch 41 ms) in hind limb SI 

after irradiation. Magnitudes remained unaltered. Concerning the tactile evoked 

potentials, UVB irradiation induced no significant changes in onset latencies or 

peak amplitude.  

From these studies, it can be concluded that UVB not only altered the 

nociceptive transmission to SI from the irradiated skin area but also from nearby 

and distant skin areas.  

In the next step, we examined whether tramadol, a centrally acting opiate, can 

counteract the changes in LCEPs following UVB irradiation (Figure 4). The drug 

reduced the changes produced by UVB irradiation on transmission to SI from the  

 

 

 

 

Figure 5. Time course of changes in mechanical and thermal thresholds after UVB 
exposure. Mean and SEM of mechanical withdrawal thresholds (mechanical; left y-axis) and the 

withdrawal latencies to heat (heat; right y-axis) are shown. The measurements made following 

exposure were compared to the measurements before surgery (*) or to measurements between 

surgery and irradiation (#) (*, #p < 0.05; ***, ### p < 0.001). 
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hind limb significantly. Notably, tramadol administration lessened both the 

prolonged duration of the input from the irradiated heel to the heel and arch 

representation in SI, as well as the increase in transmission from the secondary 

hyperalgesic skin to the arch and heel SI. However, no significant effect on 

transmission from forelimb skin was observed. Taken together, tramadol reversed 

much of the changes in nociceptive C fibre transmission to cortex from the 

primary and secondary skin regions but had little effect on transmission from 

distant skin. The latter finding may indicate that the effects on transmission from 

distant skin by UVB irradiation is produced by mechanisms other than those 

related to primary and secondary hyperalgesia. 

These results support the notion that LCEPs in rat SI provides useful 

information on altered sensory processing related to hyperalgesia and in particular, 

provide an opportunity to monitor transmission to SI from primary and secondary  

hyperalgesic skin in the same rat. Therefore, this way of monitoring the pain 

related pathways appears to be a useful supplement to animal behavioural tests of 

mechanisms related to pain and analgesia. 

Nociceptive transmission to SI differ from behavioural responses 

during development of hyperalgesia in the awake animal (III) 

As mentioned in the introduction, there is a need for a new animal model of pain 

that can monitor pain related activity in the brain in the awake animal during a 

long time period. To this end a novel multichannel electrode was used. It consists 

of ultrathin platinum wires embedded in hard gelatine, shaped as a needle to 

permit implantation. The embedding technique solved the long standing problem 

of how to implant ultrathin electrodes in soft tissue. This construction was used, 

since studies have shown that gelatine embedding and ultrathin electrodes produce 

less tissue responses (astrocyte proliferation and microglia invasion) than large 

electrodes 
78,86

, and thus fewer effects on the normal condition of the brain. The 

electrode was implanted in SI and the individual wires spread out in layer V, 

where nociceptive neurons are present 
73,76,87

.  

It is conceivable that surgery and the electrode in itself may cause 

sensitization on nocifensive behavioural tests. We therefore tested these plausible 

effects using two established behavioural tests before and after the implantation. 

No significant changes in mechanical and thermal nociceptive withdrawal 

thresholds were found, indicating that the surgery and the implanted probe did not 

cause major changes in nociceptive responses (Figure 5).  

UVB irradiation of the heel was used to induce hyperalgesia. Blood flow 

measurements made before and one day after UVB irradiation confirmed the 

development of an erythema.  
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Figure 6. Time course of C fibre magnitude. Mean and SD of LCEP magnitudes are shown 

for digit, pad and heel before irradiation and during 14 days after. (*p  < 0.05, **p < 0.01, ***p < 

0.001) 

 

 

Tactile and nociceptive evoked potentials in SI were studied one week before 

and up to 14 days after UVB irradiation of the heel. CO2 laser stimulation of the 

skin evoked a short latency potential due to input from nociceptive Aδ fibres and a 

later potential due to input in nociceptive C fibres. These potentials resembled the 

potentials evoked in layer V, previously observed in anaesthetized rats 
73

. There 

was a clear increase (188 % of the control) in the magnitude of nociceptive evoked 

potentials elicited from the secondary hyperalgesic skin peaking the first day after 

UVB exposure, whereafter a decline over the next days was shown (Figure 6). 

Also, primary hyperalgesic skin displayed the same trend with an increased 

magnitude (265 % of the control) the first day after irradiation, followed by a 

decrease in magnitude the subsequent days. Additionally, later onset latencies the 

first day following irradiation was also observed from both primary (53 ms 

difference) and secondary skin (41 ms difference) in awake rats compared to 

before.  

It should be noted that the CO2 laser intensity was kept lower in paper III 

than in paper II, to ensure cooperation of the awake rat. A preceding study 

exhibited same responses to laser heat stimuli when data was divided into reflex 

and no-reflex group 
76

, thus suggesting that the long latency evoked potential 

unlikely is caused or affected by secondary input from muscles or joints. 

Additionally, tactile evoked responses, markedly increased from secondary 

hyperalgesic skin (peak amplitudes: pad 14 % of control; digit 4.2 % of control) on 

the first day following exposure. 



41 

Interestingly, hyperalgesia as measured from behavioural responses to 

mechanical and thermal stimuli in the same animals using motor response tests, 

changed significantly after UVB irradiation, with sensitivity peaking at days four 

and two, respectively (Figure 5 and 7). This increased sensitivity declined over the 

following days to baseline levels. Furthermore, the frequency of withdrawal reflex 

responses to CO2 laser stimulation increased significantly only from the primary 

hyperalgesic skin peaking day two. Comparing the time course and spatial 

characteristic of the changes in transmission to SI and the behavioural responses in 

the same animals, it is clear that there are marked differences. Whereas, 

behavioural responses increased preferentially from the primary hyperalgesic skin, 

transmission to SI increased from both primary and secondary hyperalgesic skin. 

Moreover, the significant changes in nociceptive transmission to SI occurred 

earlier than those of motor responses. In view of these findings, it is conceivable 

that mechanisms related to hyperalgesia in pathways to motor circuits and sensory 

circuits differ markedly. Together, these results show that multichannel electrodes 

implanted in SI may offer a more sensitive test for hyperalgesia in conscious, 

behaving rats than conventional models.  

 

 

 
Figure 7. Time course of changes in withdrawal frequencies to CO2 laser 

stimulation. Mean and SD of the normalized withdrawal responses to CO2 laser stimulation within 

three areas of the hind paw are shown for elicited responses before and after UV exposure (***p < 

0.001). 
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General discussion 

The main aim of this thesis was to contribute to the development of a valid animal 

model for studies of pain related mechanisms, in particular sensory aspects of pain 

related to hyperalgesia. To this end, focus was put on nociceptive transmission to 

SI, since this region is likely to be involved in the sensory discriminative analysis 

of pain in both humans and animals. Moreover, we used UVB irradiation, a 

translational method to induce hyperalgesia. For the first time, using brand new 

multichannel electrodes, we have achieved long term recordings of nociceptive 

transmission to SI covering the entire time course of hyperalgesia in awake 

animals. Importantly, it is demonstrated that the recorded nociceptive C fibre 

evoked potentials in SI provide useful information on changes in nociceptive 

transmission related to both primary and secondary hyperalgesia in anaesthetized 

and also awake rats. Moreover, a comparison of the nociceptive input to SI and 

nocifensive behavioural and reflex tests in the awake animal indicates clear 

differences in spatial and temporal characteristics. This latter finding underlines 

the notion that nocifensive behavioural responses may differ substantially from 

pain perception and thus may provide misleading information on pain related 

mechanisms. It is also demonstrated that CO2 laser evoked C fibre potentials in SI, 

in combination with EEG recordings, can provide information on the sedative and 

analgesic effects of systemically administered drugs.  

Monitoring UVB induced changes in nociceptive transmission to 

SI in anesthetized and awake animals 

Hyperalgesia is a healthy physiological reaction, which is subject to short term 

inflammatory responses. This means that the process of hyperalgesia is usually 

reversible. If, however, the painful condition indeed persists there may be more 

pronounced changes in central nociceptive pathways. The mechanisms of 

hyperalgesia are therefore commonly assumed to play an important role in the 

development of chronic pain 
3,47

 and have consequently been studied extensively 
2,46,47

. As this thesis shows, these mechanisms may differ substantially for different 

nociceptive systems. Since hyperalgesia is primarily a sensory phenomenon, it was 

of particular interest to study the mechanisms of hyperalgesia in a system involved 

in sensory discrimination. Our studies demonstrate that changes in transmission 

from both primary and secondary hyperalgesic areas as well as from distant skin 
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areas can be monitored in SI in the anaesthetized (II) and awake animals (III). 

Notably, the studies on awake animals, in addition, revealed that the time course 

of enhanced nociceptive C fibre responses in SI after UVB, is similar to that in 

humans 
88

, which add strength to this animal model of hyperalgesia. 

While the magnitude of the LCEPs elicited from the primary and secondary 

hyperalgesic skin increased significantly in awake animals, the LECPs elicited 

from the primary hyperalgesic skin, did not reach statistical significance in 

anaesthetised animals. Importantly, these changes were found to be reversed by 

the opiate tramadol, indicating that the changes after UVB irradiation were in fact 

due to hyperalgesia. In awake animals, changes in onset latencies were noted for 

LCEPs elicited from the primary and secondary hyperalgesic skin. Similar 

observations regarding primary hyperalgesia in anaesthetised animals, have been 

made in dorsal horn neurons (wide dynamic range neurons) after UVB exposure
59

. 

One conceivable explanation for the lack of significant potentiation of responses 

from the irradiated skin in anaesthetised animals, is that the nociceptive C fibre 

input from the primary skin and consequent activity in the dorsal horn are 

desynchronized somewhat by the ongoing spontaneous activity, thereby partly 

masking the stronger nociceptive input from the primary hyperalgesic skin. An 

additional possibility is that the response frequency in nociceptive C fibres on CO2 

laser stimulation of the irradiated skin, despite being sensitized 
48

, decreases in the 

hyperalgesic situation. Nociceptive C fibres fatigue easily 
89

, and there is evidence 

that, after skin inflammation, induced by injection of complete Freund’s adjuvant, 

the response frequency on moderate to strong noxious heat stimulation decreases 

in C fibres 
48

. However, the finding that there was a significant enhancement of 

nociceptive input from the primary hyperalgesic skin area to both SI cortex and 

reflexes in the conscious rat (III), may however suggest that these two plausible 

mechanisms alone cannot explain why the potentiation of nociceptive transmission 

from the irradiated skin to SI did not reach statistical significance in the 

anesthetized rat. Rather, anaesthesia has an effect on the nociceptive transmission 
72

. Therefore it is tempting to speculate that the discrepancy, between LCEPs from 

primary hyperalgesic skin in awake and anaesthetised animals, indicates that 

anaesthesia may have differential effects on nociceptive pathways from the 

primary and secondary hyperalgesic skin areas. Indeed, it has been reported that 

the transmission pathways from nociceptors from primary and secondary 

hyperalgesic skin to the SI are under different supraspinal control 
35

. Further, there 

is evidence for an inhibitory and excitatory supraspinal control of transmission 

from the primary and secondary hyperalgesic skin area, respectively, which might 

have contributed in the present situation. This possibility should be addressed in 

further studies, in which responses in cortical nociceptive neurons are studied 

during activation of different supraspinal control systems. Nevertheless, irrespec 

tive of which mechanisms are responsible and where they are located, it is clearly 

an advantage to be able to record the end result in SI, since this is likely to reflect 

the perception of pain intensity.  
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Relation between nociceptive input to SI and nocifensive 

responses 

At present, most studies on nociceptive transmission and analgesia in awake 

animals are based on behavioural and reflex responses 
13-17

. As mentioned in the 

introduction, there are reasons to suspect that nociceptive motor pathways are at 

least partly different from nociceptive pathways to SI. We therefore evaluated the 

relationship between nociceptive transmission to SI and nocifensive behaviour. In 

contrast to the results obtained on nociceptive input to SI, enhanced nocifensive 

responses were more prominent from the primary skin than from the secondary 

hyperalgesic skin. Moreover, we found major differences in the time course of 

potentiation of nociceptive input to SI and reflex output after UVB irradiation, the 

latter lagging behind in time. Nocifensive responses to heat stimulation were 

significantly altered day two, whereas responses day four following irradiation 

was most prominently potentiated for mechanical stimulation. These findings 

support the notion that the functional organization of the withdrawal reflex system 

does not match that of a sensory system and that different nociceptive systems 

exhibit different properties.  

From a functional point of view, however, it is not clear why the defensive 

reactions should be sensitized later than sensory pathways to peripheral 

sensitization. One possibility that deserves to be analysed in more detail is that 

there may be more subtle changes in the nociceptive motor system after induction 

of hyperalgesia, such as alterations in which reflex modules that are active.  

On the effect of sedation on nociceptive input to SI  

In studies aiming at developing new centrally acting analgesic drugs, the potential 

contamination of sedative properties is a major concern. Ideally, an analgesic 

should of course produce no sedation at all, but this is rarely the case with 

available centrally acting analgesics. An animal model for assessment of analgesic 

effects should therefore also consider sedative effects. In the case of nocifensive 

behaviour, sedative effects are rarely accounted for despite the fact that sedative 

properties of a drug can have direct effects on the motor responses. Interestingly, 

after maturation of supraspinal centres, midazolam desensitizes flexor reflex 

activity and shows sedative effects as evaluated from both behavioural tests and 

electrophysiological recordings 
90

. In contrast, midazolam sensitizes withdrawal 

reflex activity in rat pups, which additionally do not show signs of sedation.  

In this thesis (I) it is demonstrated that LECP is clearly affected by the 

anaesthetic level and can be equally depressed by systemic administration of the 

sedative midazolam, a benzodiazepine, and the analgesic morphine. Importantly, 

the depressant effect of midazolam, but not morphine, on LCEP was found to be 
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abolished if the dominant frequency of EEG is kept constant. This suggests that 

the apparent analgesia produced by midazolam mainly is derived from its sedative 

effects 
91

. The main effect of benzodiazepines is sedative 
92

, but for certain routes 

of administration it has been claimed to also exert analgesic effects 
93

.  

In case of morphine, sedative properties are exhibited in addition to its 

analgesic effects, explaining its effect on EEG 
84,85

. However, what is striking from 

the present results is that, at the dose used, the sedative effects of morphine appear 

to depress the nociceptive transmission equally effective as its analgesic effects.  

Hence, the method of recording nociceptive evoked potentials in SI while 

keeping the dominant frequency constant, may prove to be useful in probing new 

drugs with potential analgesic effects. Although promising, a word of caution is 

appropriate as it is not entirely clear to what extent the effects of different 

sedatives is additive. Therefore, this method should at present only be considered a 

first test for sedative effects of a compound and be supplemented by other 

conventional tests for sedation based on behavioural changes.  

Conclusions and future aspects 

It is clear that recordings from conscious rats will offer a superior animal model 

for pain that, with proper study design of multichannel electrodes, will lay new 

grounds to reach a profound knowledge of how the central nervous system 

processes nociceptive input. The method has the potential to clarify the 

physiological role of various ascending pathways and different cortical targets. 

Not only will it be possible to reveal how pain occurs, but most importantly it will 

also be possible to ease the way of new and effective analgesics and treatments of 

pain. This has the potential to revolutionize the way we treat pain and will provide 

new strategies to develop novel pharmacological candidate drugs.  

We are still left to speculate on how acute pain switches into the maladaptive 

changes of chronic pain. It is complicated to gain access and isolate pain related 

mechanisms, not the least because injury starts a chain of reactions, which depend 

on the context in which the pain mechanism function (e.g. target of innervation, 

time after injury, history of the injured tissue). Nevertheless, successively pin 

pointing one mechanism of nociception after the other is likely to fill the current 

black box between nociceptive input and perception and eventually lead to 

unravelling the puzzle of pain. 

Once we know the lay of the land, we can use the knowledge to develop 

effective therapies for chronic pain. 
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analgesic effects of drugs and various treatments is critically dependent on valid ani-
ce primary somatosensory (SI) cortex is likely to play an important role in processing

n, we here assess whether monitoring SI cortex nociceptive C fibre evoked potentials
ormation about central changes related to hyperalgesia in rats. Recordings of tactile
voked potentials (LCEPs) in forelimb and hind limb SI cortex were made 20–24 h after
e heel at a dose that produced behavioural signs of hyperalgesia.
d skin increased significantly in duration but showed no significant change in mag-
ea under curve (AUC). By contrast, LCEPs in hind limb SI cortex from skin sites nearby
wed no increase in duration or onset latency but increased significantly in magnitude
The LCEPs in forelimb or hind limb SI cortex elicited from forelimb skin did not change
e significantly delayed in hind limb SI cortex. Tramadol, a centrally acting analgesic

ralgesia, induced changes that counteracted the changes produced by UV-B irradia-
tion on transmission to SI cortex from the hind paw, but had no significant effect on time course of LCEPs
from forelimb skin. Tactile evoked potentials were not affected by UV-B irradiation or tramadol. We con-
clude that altered sensory processing related to hyperalgesia is reflected in altered LCEPs in SI cortex.
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Introduction

To develop new analgesics, appropriate animal models of pain
crucial. The current models are based primarily on measuring
changes in motor responses (Sandkuhler and Gebhart, 1984;

Mahon et al., 1991; Koltzenburg et al., 1994; Yeomans et al.,
96; Valle et al., 2000; Davies et al., 2005; Bishop et al., 2007;
nro et al., 2008; Saade et al., 2008). Because the nociceptive
ut to motor systems and to sensory systems are channelled
ough at least partly different central pathways, with differ-

t physiological and pharmacological properties (Weng and
ouenborg, 1996), the validity of motor responses in predicting
sory aspects of pain and analgesia is ambiguous (Kalliomaki

al., 1993b; Weng and Schouenborg, 1996; Palecek et al., 2002).
develop new and effective analgesics, it is therefore crucial to

velop supplementary animal models that provide assessments
the activity in the brain regions involved in the sensory aspects
pain. The primary somatosensory (SI) cortex receives strong and

atotopically organized nociceptive input in humans (Apkarian
al., 2005) and animals (Lamour et al., 1983; Kalliomaki et al.,

1993a; Chang et al., 2008
tive evoked potentials in th
in the normal (Schnitzler a
(Kochs et al., 1990), and so
(Treede et al., 2003). Alth
also contribute to pain p
role in this aspect (Apkaria
mal studies reveal the pre
ing nociceptive input, in
response to graded nocic
fields (Treede et al., 2003),
the ventral posterior late
spinal cord.

Monitoring cortical pot
CO2 laser stimulation in a
bres provide powerful in
1986; Kalliomaki et al., 19
by multiple parallel spinal
1986; Kalliomaki et al., 19
potentials (LCEPs) are red
analgesia (Kalliomaki et
dependent way after spin
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related ascending transmissio
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o et al., 2008). In humans, nocicep-
cortex correlate with pain sensation
loner, 2000) and analgesic situation
imes after induction of hyperalgesia

it is clear that other cortical areas
ssing, SI cortex plays an important
al., 2005; Lee et al., 2008). Also, ani-

e of a population of neurons, receiv-
SI cortex. These show a graded

ve input from restricted receptive
ilar to many neurons in, for example,
ucleus and the dorsal horn of the

ls evoked by electrical or cutaneous
als has shown that nociceptive C fi-

to SI cortex (Schouenborg et al.,
; Qiao et al., 2008). This is mediated
ways in the rat (Schouenborg et al.,

). Notably, CO2 laser C fibre evoked
following morphine-induced spinal
998) and increased in an NMDA-
ind-up (Kalliomaki et al., 2003). It
CEPs can be used to monitor pain
n under various conditions. If this
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on proves to be correct, LCEPs may provide a useful animal
el for the assessment of potentially analgesic drugs.
ur aim was to evaluate whether hyperalgesia, induced by UV-

radiation of the skin (Davies et al., 2005; Bishop et al., 2007;
e et al., 2008), is reflected in altered LCEPs in SI cortex. In addi-

, we examined whether tramadol hydrochloride, a centrally
ng analgesic drug known to reduce hyperalgesia (Munro
l., 2008), can counteract the changes in LCEPs following UV-B
diation.

ethods

Ethical approval

pproval for the experiments was obtained in advance from the
d/Malmoe local ethical committee on animal experiments, reg-
ed by the code of regulations of the Swedish Board of Agricul-
. These regulations, including directives from the European

on, follow the law on animal welfare legislated by the Swedish
iament. The County Administrative Board governs the imple-
tation of the rules. Further, the experiments were in accor-

ce with the policies and guidelines reported by Drummond
mmond, 2009) and IASP (Zimmermann, 1983).

Animals used

wenty-seven Sprague–Dawley (Taconic, Denmark) rats weigh-
215 ± 55 g were used whereof 17 were used in the analysis of
Ps. All rats received food and water ad libitum and were kept
12-h day–night cycle at a constant environmental temperature
1 �C and 65% humidity. The animals were kept in the animal
lities of the Biomedical Center at Lund University and the
eriments were carried out at the Section for Neuroscience.
facilities are approved by the Swedish Board of Agriculture.

Induction of hyperalgesia using 1.3 J cm�2 UV-B narrowband
diation

he right hind paw, exposing the heel, was covered with a UV-
king film from an FR-4 clad board (ELFA, Sweden) and tin foil
red with paper to protect the rat from UV exposure. Sixteen
als were irradiated with 1.3 J cm�2 on the right heel (exposure
8 mm � 9 mm), using a Philips UV-B TL/01 narrowband lamp

S 9 W/01, k = 300–320 nm). This intensity has been reported to
ust below the threshold for blistering (Bishop et al., 2007).
eover, Bishop et al. (2007) show that UV-B irradiation produces
in inflammation and a dose-dependent hyperalgesic state. Be-
every exposure, the lamp was left on for 3 min to allow the

B intensity to stabilize. UV intensity was measured before
y exposure using a Varicontrol UV/PDT meter and skin tester

rbert Waldmann GmbH & Co. KG, Germany). Recordings of la-
evoked potentials were commenced 20–24 h after irradiation.
his time, discrete to moderate redness of the irradiated skin,
no skin lesions or scarring, was seen on the irradiated skin in

rat, confirming an inflammatory process as has been shown
ishop et al. (2007). However, one rat later on developed a small

ter on the UV-B irradiated skin and was therefore excluded
further analysis. Animals did not exhibit any obvious signs

istress while being handled or observed and appeared to groom
ally.

Nociceptive withdrawal reflex

n order to verify that an effective dose of UV-B irradiation had
n given and that the UV-B irradiated rats showed similar

changes as have been repo
et al., 2007), behavioural h
by measuring the threshold
the irradiated and contrala
radiant heat CO2 laser (Irra
wavelength 10.6 lm, ou
3.0 mm; pulse length of 18
embedded in a towel, the
tress, in the hands of our e
the experimenter operated
pulse was increased in step
a response in three of five

2.5. Surgery and preparation

The rats were anaesthe
surgery) in a mixture of 4
adequacy of the depth of
the surgery by applying no
monitoring blood pressure
animals were artificially v
monitored continuously. A
cose (50 mg ml�1) in Ringe
jugular vein. Mean arterial
ously in the left femoral ar
36.5–38.5 �C, using a feedb
nous process of T11 was c
ventilation. The rat’s head
tion of local analgesia (EM
prilocaine and 2.5% lidoc
and a nose ring. Cerebrosp
of the skull and the first ce
tical oedema (Kalliomaki e
left parietal cortex was ma
face covered with paraffin
caine� 20 mg ml�1 + 12.5
Addlestone, Weybridge, En
reduce the nociceptive inp
relaxant pancuronium brom
non AB, Göteborg, Sweden
every hour. Also, the isoflu
the same gas mixture as be
terized by an EEG domina
corded (recording sites sa
below) for periods of 90 s
(�0.3 mm diameter) and an
bridge Electronic Design L
pling rate for EEG recor
terminated after any signs
hind paw oedema or a pre
rats were discarded on th
ment, the rats were killed
ture of 40% oxygen and 6
blood pressure was 0, air w

2.6. Mappings of cutaneous

The SI representations
the same skin area overla
put being more (Kalliomak
that neurons receiving no
receive a tactile input fro
et al., 1983; Kalliomaki et
ceptors as much as possib
ability changes in periphe
was used to locate the c

T. Jensen et al. / European Journal of Pain 15 (2011) 368–375
previously at a reflex level (Bishop
lgesia was assessed before surgery

he nociceptive withdrawal reflex of
heels in awake animals (n = 14). A

Sweden; model 315 M Superpulse,
power 10 W, beam diameter

ms stimulation) was used. Loosely
ested calmly, with no signs of dis-
ienced laboratory technician while
laser. The duration of the CO2 laser
2 ms until the threshold, defined as
, was reached.

electrophysiology

with isoflurane (1.8–2.0% during
xygen and 60% nitrous oxide. The
esthesia was assessed throughout
s pinch to check for reflexes or by

e trachea was cannulated and the
ted. The end-expiratory PCO2 was

fusion of 2.5–4.5 ml h�1 of 5% glu-
cetate was given through the right
d pressure was monitored continu-
The rectal temperature was kept at
regulated heating system. The spi-
ed and the chest lifted to facilitate
fixed by ear bars after administra-
salve 5%; eutectic mixture of 2.5%
AstraZeneca, Södertälje, Sweden)
uid was drained between the base

l vertebra to reduce the risk of cor-
1993a). A craniotomy exposing the
he dura mater was cut and the sur-
cal infiltration of lignocaine (Xylo-
l�1 adrenaline, Dentsply Ltd.,

d) was made during all surgery to
fter completed surgery, the muscle
0.2 ml (Pavulon� 2 mg ml�1, Orga-
given and thereafter 0.15 ml once
level was lowered to 0.8–0.9% in

. This anaesthetic level was charac-
y 4–6-Hz waves. The EEG was re-
s used for recording of potentials
g fine silver ball-tipped electrodes
ed with Signal 3.05 software (Cam-
d, Cambridge, England). The sam-

was 500 Hz. Experiments were
terioration such as cortical oedema,
us decline in expiratory PCO2 (five
riteria). At the end of the experi-
an overdose of isoflurane in a mix-
itrous oxide. When the PCO2 and
njected i.v.

sentation on the SI cortex

actile and nociceptive input from
a large extent, with the tactile in-
al., 1993a). Moreover, it is known
tive input in SI cortex often also
e same area on the skin (Lamour
1993a). To avoid input from noci-
hich in itself may produce excit-

nd central pathways, tactile input
al representation of the glabrous
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n of the arch and heel of the right hind paw (Fig. 1a) and of
digit area of the right forepaw. A hand-held electromechan-

l stimulator with a blunt metal probe (0.8 mm diameter) at-
hed to a coil was used for tactile stimulation. The probe
s displaced 1 mm by a current pulse (10 ms) generated by a

T. Jensen et al. / European Journal of Pain 15 (2011) 368–375
ass stimulator. The stimulation was adjusted to cause a light
ch of the skin activating tactile Ab fibres, without any visible

ordi

ntra
paw

tane
for

of n
CEPs

eous
ed o
ins
Ps r
nim
dro

e LCE
ecord
trols

s of
cordin
on an
nt movement. The recordings of the tactile evoked potentials
re amplified and monitored using Signal 3.05 software.

oked potentials were sampled from 6 to 18 cortical sites in
d paw and forepaw areas respectively (coordinates: hind

w �0.6 to �3.3 mm rostro-caudal to bregma and 1.3–2.7 mm
eral to the midline; forepaw 1.0 to �2.14 mm rostro-caudal
bregma and 3.0–4.3 mm lateral to the midline). For each skin
a/rat, the cortical site eliciting potentials with the highest
plitude was used for recordings. In total, three electrodes
re placed on SI cortex. Fig. 1b shows the distribution of the
ording sites used.

. Nociceptive stimulation

To elicit C fibre evoked potentials, the glabrous skin of the right
d paw/forepaw areas were stimulated using a CO2 laser with a

lse duration of 21–33 ms. These stimulation energies have been
wn to evoke late cortical field potentials reliably in the rat SI
tex through the activation of cutaneous nociceptive C fibres
lliomaki et al., 1993a,b). Based on previous latency measure-
nts (Kalliomaki et al., 1993a) we here classify evoked potentials

th an onset latency exceeding 120 ms and 180 ms for forepaw
d hind paw, respectively, as C fibre evoked. Superimposed aver-

2.8. Electrophysiological rec

LCEPs elicited in the co
of the forepaw digits (fore
paw were recorded simul
not show clear LCEPs from
a control of transmission
cluded from analysis of L
of stimulations per cutan
10 min. Each train consist
were averaged and the tra
ous area. All data on LCE
averaged LCEPs. From a
50 mg ml�1, tramadol hy
Sweden), an additional fiv
istration. The first LCEPs r
in the analysis, as the con

Fig. 2. Superimposed recording
(n = 7) animals (28 averaged re
the variation of the onset, durati
averaged (n = 16) recording.
d recordings can be seen in Fig. 2. During the stimulation of a
en skin area, e.g. the heel, a train of 16 CO2 laser pulses with a
quency of 1 Hz was used. The stimulation site, within the skin
a, was shifted between the pulses to avoid repeated stimulation
the same site, as this could reduce LCEPs (Kalliomaki et al.,
93a). No visible damage to the skin was observed.

first train. Since it is necessary
testing the effect of a drug an
train tended to be larger than
of stimulation was excluded. N
tiation of LCEP resulting from
quence of stimulations was at
arch of the hind paw (arch) an
90 s every 10 min five times, s

2.9. Drug administration

In the UV-B irradiated group
istered i.v. 5–10 min after the
this dose is known to be ana
minutes after tramadol admin
tions was repeated five times.
ysis with tramadol was comm

2.10. Data analysis of EEG and

The signals (10 kHz sampl
filtered using Digitimer Neuro
with a low cut-off frequency of
700 Hz. The epoch length was
10 ms for evoked potentials a
analysis was used to analyse t

CO2 laser Ad evoked pote
irregularly and were therefore
fibre input, due to their slow c
rive to the spinal cord during
fore, to obtain a representativ
activity evoked by nociceptive
the area under the curve (AU
using in-house scripts created

. 1. (a) Hind paw stimulation areas. The heel and arch areas of the rat hind paw
t were subjected to stimulation are indicated. (b) Recording sites on SI cortex. All
mals (n = 17) used in the LCEPs analysis are included. Coordinates in mm are
en with respect to bregma and midline for forepaw digits, heel (heel of the hind

), arch (arch of the hind paw).
ngs and sequence of stimulations

lateral SI cortex representation area
), the heel and the arch of the hind
ously (Fig. 1b). Rats (n = 5) that did
elimb stimulation, which served as

ociceptive input to cortex, were ex-
. The time interval between trains
area and individual site was set to
f 16 stimulations. These recordings

repeated five times for each cutane-
eported in this study are based on
als receiving tramadol (Tradolan�

chloride, Nordic Drugs, Limhamn,
Ps were collected after drug admin-
ing per SI cortex area was not used
showed a stable baseline after the

to establish a stable baseline before
d the LCEP resulting from the first
the subsequent LCEP, the first train

LCEPs. The raw data recordings from naïve
gs) after nociceptive stimulation illustrates
d AUC of the LCEPs. The inset shows a single
otably, there was no trace of poten-
the first train of stimulation. The se-

time (t in minutes) t0 for heel, t5 for
d t7 for forepaw. EEG was monitored
tarting at t3.

, 2 mg kg�1 of tramadol was admin-
fifth completed cycle. Tramadol at

lgesic (Kayser et al., 1991). Twenty
istration, the sequence of stimula-

The first recording used in the anal-

enced 30 min after drug injection.
evoked potentials

ing frequency), were amplified and
log system (Digitimer Ltd., England)
1 Hz and a high cut-off frequency of
0.7 s with a pre-stimulus interval of
nd 90 s for EEG recordings. Fourier
he EEG.
ntials (onset 20–45 ms), occurred
not analysed in detail. In case of C

onduction velocity the impulses ar-
a relatively long time period. There-
e measure of the magnitude of the
C fibres following a laser stimulus

C) (inset in Fig. 2) was calculated
in Scilab-4.1.1 (INRIA, France). The



AUC
leve
was

A
amp
max
inte
sure
last
tact
tials

2.11

F
lect
tion
dru
and
the
sum
for
com
two
tive
taile
and
wer
p va

3. R

3.1.

T
33 m

bres
omo

mula
tatio
reco
mus
ptive
e to
ns ha

para
ate s
start
s on

espo
tent

ioma
2 las

in ra
. The
rtex
SI c
993b
n on
paw
the
two

ia (B
stor

V-B i

Fig.
stim
was defined as the sum of amplitudes between the baseline
l and LCEPs, with a maximum duration of 300 ms. Baseline
set to the amplitude at the onset latency of each LCEP.
s for tactile evoked potentials, the onset latency and peak
litude of the initial positive surface potential, defined as the
imal amplitude of the averaged (n = 16) recording within an
rval of 10–33 ms from the onset of the stimulus, was mea-
d. Since the tactile input is much more synchronized and short

ing than the nociceptive input and the decay phase of the first
ile potential overlaps with subsequent more variable poten-
, AUC was not used as a measure for the tactile potential.

. Statistical analysis

our averaged recordings from each cutaneous area were col-
ed from each animal. In animals receiving tramadol an addi-
al four CO2 laser evoked potential trials were collected after
g administration. The amplitude of tactile evoked potentials
the AUC, duration and latency of LCEPs were used to compare
differences between the groups. The examined data was as-
ed to be normally distributed and Student’s t test was used

statistical analysis. The unpaired two-tailed t test was used to
pare the difference between naïve and irradiated rats. Paired
-tailed t test was used to analyse the thresholds of the nocicep-
withdrawal reflex in irradiated rats. Furthermore, paired two-
d t test was used in the analysis of UV-B irradiated rats before
after tramadol administration. Seven rats from the UV group

e administered tramadol and used in the analysis of LCEPs. A
lue < 0.05 was considered significant.

Early potentials from Ad-fi
some occasions evoked in h
resentation on forelimb sti
tex (e.g. hind limb represen
be seen in the grand mean
that the stimulus intensity
to reliably activate nocice
Since these potentials wer
further. Similar observatio
using a similar stimulation

In all included rats, a l
evoked with onset latencies
stimulation and 200–240 m
tion exceeding 110 ms, corr
bres (Figs. 3 and 5). This po
due to C fibre input (Kall
(30–47 mJ mm�2) of the CO
to C nociceptive activation
mans (Bromm et al., 1984)
tude in the homotopic SI co
magnitude, in heterotopic
findings (Kalliomaki et al., 1
used to provide informatio
the heel and arch of the hind
fects on transmission from
non-irradiated skin. These
where primary hyperalges
hyperalgesia, in human (Gu

3.2. Behavioural effects of U

T. Jensen et al. / European Journal of Pain 15 (2011) 368–375
esults

General findings

actile evoked potentials with peak latencies between 10 and
s were reliably evoked in all rats(Kalliomaki et al., 1993a).

The effect of UV-B irradiation
ated by comparing the withdra
heel on CO2 laser stimulation wi
eral heel in awake animals. This
sensitivity in the irradiated hee

3. Grand mean of LCEPs recordings from three cortical areas. The grand mean of recordings from naïve (n = 7) and UV-B ir
ulation (stim) evoked potentials starting at �200 ms for the hind paw areas and at �160 ms for the forepaw digits (forepa
(onset latency 20–45 ms) were on
topic SI cortex (e.g. in forelimb rep-
tion), but not in heterotopic SI cor-
n on forelimb stimulation), and can
rdings (Figs. 3 and 5). It is plausible
t be higher than used here in order

Ad fibres (LaMotte et al., 1982).
o variable they were not analysed
ve been made in previous studies
digm (Kalliomaki et al., 1993a).

urface-positive field potential was
ing around160–200 ms on forelimb
hind limb stimulation with a dura-

nding to input from nociceptive C fi-
ial has previously been found to be
ki et al., 1993a). The energy level
er pulse to elicit LCEPs corresponds
ts (Kalliomaki et al., 1993a) and hu-
LCEPs exhibited the largest ampli-
but were also seen, albeit at lower

ortex in accordance with previous
). The LCEPs from the forepaw were
heterosegmental effects, whereas
were used to test the segmental ef-
UV-B irradiated skin and adjacent
latter areas represent skin areas

ishop et al., 2007) and secondary
ff et al., 2004), may occur.

rradiation
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on the reflex threshold was evalu-
wal responses from the irradiated
th those evoked from the contralat-
comparison confirmed an increased
l (Davies et al., 2005; Bishop et al.,

radiated rats (n = 10) are plotted. CO2 laser
w). Arch denotes the arch of the hind paw.
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Fig. 4. Magnitude of LCEPs recordings from three cortical areas. Top: The difference between means and S.E.M. of area under the curve (AUC) for the naïve (black circles) and
the UV-B exposed (white boxes) groups are shown. Bottom: The mean of differences and S.E.M. of AUC in UV-B exposed rats (n = 7) before (white boxes) and after (n = 7)
(black triangles) tramadol administration are shown. The x-axis depicts the recording areas on SI cortex. * p < 0.05, ** p < 0.01, *** p < 0.001.

Fig. 5. Grand mean of LCEPs recordings from three cortical areas. The grand mean of recordings from UV-B irradiated rats before (n = 7) and after (n = 7) tramadol
administration are shown. CO2 laser stimulation (stim) evoked potentials starting at �200 ms for the hind paw areas and at �170 for forepaw digit (forepaw) stimulation.
Arch denotes the arch of the hind paw.
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07) with reflex thresholds significantly lower (7.2%, mean of dif-
ences �15 mJ, p < 0.01) compared to the contralateral heel.

. Effects of UV-B irradiation on cortical evoked potentials

LCEPs in homo- and heterotopic SI cortex in rats irradiated on
heel (n = 10) were compared to naïve rats (n = 7).

.1. Responses from UV-B irradiated skin
On stimulation of the UV-B irradiated skin (heel), LCEPs in SI
tex for the corresponding area displayed a significantly longer

ration (difference between means 60 ms, p < 0.01) (Table S1, on-
e only) compared to naïve animals (n = 7) but showed no signif-

icant change in onset lat
there was a tendency tow
tex. Similarly, the duration
area corresponding to nea
er duration (difference be
group and showed no sign
tude (Fig. 4a). The LCEPs in
rats did not differ from na

3.3.2. Responses from non-
On stimulation of the a

in the arch SI cortex area
compared to that in naïv
(Table S2, online only), although
shorter onset latency in heel SI cor-
ble S1) of the LCEPs in the SI cortex
on-irradiated skin displayed a long-

en mean 91 ms, p < 0.01) in the UV
nt change in onset latency or magni-
forepaw SI cortex of UV-B irradiated

rats.

iated nearby skin
the magnitude (Fig. 4b) of the LCEPs

significantly higher (46%, p < 0.05)
ts. LCEPs onset latency (Table S2)
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duration (Table S1) did not differ. Furthermore, the magnitude,
et latency and duration of the LCEPs in heel SI cortex did not
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ponse frequency on moderate to strong noxious heat stimula-
n decreases in C fibres (Andrew and Greenspan, 1999). A third
ssibility is that the transmission pathways from nociceptors
m UV-B irradiated and adjacent skin areas (secondary hyperal-
ic) to the SI cortex are under different control. There is evidence
a differential descending inhibitory control of transmission

m primary hyperalgesic skin areas and excitatory control of sec-
dary hyperalgesic areas (Vanegas and Schaible, 2004). Further
dies will be necessary to resolve this issue. Notably, the poten-
tion of the LCEPs elicited from the arch, assumed to be related to
chanisms of secondary hyperalgesia, was surprisingly stronger
n the changes in the transmission from the primary hyperalge-
skin area. The mechanisms underlying secondary hyperalgesia

ve for a long time been assumed to arise mainly from central
chanisms (Torebjork et al., 1984; Sandkuhler, 2009). It is con-
vable, but remains to be tested, that NMDA dependent mecha-
ms triggered by ongoing spontaneous input from sensitized
ciceptors are involved, since it is known that MK-801 (an NMDA
tagonist) blocks frequency dependent potentiation of LCEP
lliomaki et al., 2003). We stimulated a skin area on the arch
ated about 5–15 mm away from the border of the UV-B irradiated
n area. This distance is greater than the known expansion of
eptive fields caused by inflammation (Andrew and Greenspan,
99). Nevertheless, if the spread of hypothetical algogenic chem-
ls, caused by inflammation, to nearby skin areas sensitize mec-
no-insensitive C nociceptors at a distance, then such changes
y contribute to the enhanced evoked potentials from the arch.
mentioned above, there is evidence for an excitatory supraspi-

l control of transmission from the secondary hyperalgesic skin
a, which, if operative, might have contributed in the present sit-

4.3. Animal models for hyp

Several animal models
ferent agents can be used
and rats, cutaneous UV e
inflammatory pain model
et al., 1993; Davies et al.,
2008) by releasing endog
mation and sensitize the p
et al., 1992). This model h
tantly, the model can be
to permit translational
primary hyperalgesia an
(Gustorff et al., 2004).

At present, most anima
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Koltzenburg et al., 1994;
Davies et al., 2005; Bishop
et al., 2008); in particula
pathways and the ascend
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related activity. LCEPs thu
plement to behavioural an
analgesic drugs.

4.4. Conclusion

In summary, changes i
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tion. An additional central mechanism underlying the increased
nsmission from the adjacent skin area is the expansion of recep-
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e fields of dorsal horn neurons (Hylden et al., 1989; Urban et al.,
93). Also, thalamic neurons exhibit enhanced responses to heat
d mechanical stimuli in parts of their receptive field remote from

injury site (Guilbaud et al., 1986).

. Effects of tramadol

Our data are consistent with a previous report showing that UV
ht-induced hyperalgesia can be reduced with opioids and non
roidal anti-inflammatory drugs (NSAIDs) (Bishop et al., 2007).
r present data suggest that tramadol (2 mg kg�1) to a large ex-
t reverses the changes noted after UV-B irradiation, but had
effect on transmission from forepaw. Notably, tramadol admin-

ration lessened both the increase in transmission from the arch
arby non-irradiated skin) to the arch and heel SI cortex, and the
longed duration of the input from the heel (irradiated skin) in-

t to the heel and arch representation. Interestingly, tramadol has
en reported to affect hyperalgesia as measured using reflex re-
nses (Munro et al., 2008). Interestingly, a significantly increased

ration of forelimb LCEP evoked by forelimb stimulation after UV-
rradiation and increased latencies for the arch and heel LCEP
ked on forelimb stimulation was found, supporting a report
yser and Guilbaud, 1987) showing that hyperalgesia in one

dy part may affect nociceptive transmission from distant body
rts. That tramadol did not affect this distant effect may indicate
t it is produced by mechanisms other than those related to pri-
ry and secondary hyperalgesia.
We emphasize that our aim was not to characterize the effects
tramadol per se, but rather to evaluate the hypothesis that the
EPs can be used to monitor the changes occurring after induction
hyperalgesia. That it was possible to reduce the changes in the
EPs occurring after UV-B exposure adds strength to this
pothesis.

potentials in SI cortex. Th
related pathways appears
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Duration:  difference between means of UV-B and naive group

stimulation site / SI recording area         (s)        (%)  significance

heel  /  heel  0,060 34         **

heel  /  arch  0,091 54         **

heel  /  forepaw  0,014 8         ns

arch  /  arch  0,028 16         ns

arch  /  heel  0,040 25         ns

arch  /  forepaw  0,003 2         ns

forepaw  /  forepaw  0,044 38         *

forepaw  /  heel  0,030 24         ns

forepaw  /  arch  0,014 12         ns

Table S1. Difference in duration of the LCEPs
between naïve and UV-B exposed rats. The mean
of the duration in the naïve group (n = 7) is subtracted
from the mean value in the UV-B exposed group 
(n = 10). Significant differences are indicated in grey. 
* p < 0.05,** p < 0.01, using unpaired t test. 

Onset: difference between means of UV-B and naive group

stimulation site / SI recording area         (s)        (%)  significance

heel  /  heel  -0,016 -7         ns

heel  /  arch  -0,022 -10         ns

heel  /  forepaw  0,004 2         ns

arch  /  arch  0,002 1         ns

arch  /  heel  0,007 3         ns

arch  /  forepaw  0,005 2         ns

forepaw  /  forepaw  0,000 0         ns

forepaw  /  heel  0,029 17         ***

forepaw  /  arch  0,041 25         ***

Table S2. Difference in onset latency between naïve 
and UV-B exposed rats. The mean of the onset 
latency in naïve rats (n = 7) is subtracted from the 
mean value of the UV-B exposed rats (n = 10). 
Values are shown in seconds (s) and percentage. 
Significant differences are indicated in grey. 
*** p < 0.001, using unpaired t test. 



stimulation site/SI recording area: heel / heel arch / arch forepaw / forepaw

A: Onset latency: naïve (n=7) 0.011 /0.0014/ 0.011 /0.0014/ 0.009 /0.0017/

mean /±SEM/ (s) UV-B (n=10) 0.008 /0.0003/ 0.009 /0.0004/ 0.007 /0.0003/

significance ns ns ns

UV-B (n=7) 0.0009 /0.0005/ 0.009 /0.0004/ 0.008 /0.0004/

UV-B+t (n=7) 0.0009 /0.0003/ 0.009 /0.0001/ 0.007 /0.0004/

significance ns ns ns

B: Peak amplitude: naïve (n=7) 105 /13/ 106 /9/ 132 /18/

mean /±SEM/ (µV) UV-B (n=10) 101 /5/ 106/12/ 127 /6/

significance ns ns ns

UV-B (n=7) 102 /7/ 101 /9/ 129 /8/

UV-B+t (n=7) 93 /9/ 82 /10/ 113 /12/

significance ns ns ns

Table S3. Mean and SEM of onset latencies and peak amplitudes of  
tactile evoked potentials recorded from the cortical surface. The mean 
and SEM of averaged tactile evoked potentials are shown between 
naïve (n=7), UV-B irradiated rats (n=10) as well as UV-B irradiated 
rats before (n=7) and after (n=7) tramadol administration (UV-B+t). 
Ns depicts no significant difference.



Onset: mean of differences before and after tramadol administration

stimulation site / SI recording area         (s)        (%)  significance

heel  /  heel  0,008 4         ns

heel  /  arch  0,033 17         *

heel  /  forepaw  -0,006 -2         ns

arch  /  arch  0,017 7         ns

arch  /  heel  0,016 7         ns

arch  /  forepaw  0,004 2         ns

forepaw  /  forepaw  0,004 2         ns

forepaw  /  heel  -0,014 -7         ns

forepaw  /  arch  -0,007 -4         ns

Table S4. The effect of tramadol on the LCEPs 
onset latency in irradiated rats. The mean of the 
onset latency in UV-B exposed rats before (n = 7)
tramadol administration is subtracted from the value 
of the onset latency in UV-B exposed rats after (n = 7)
tramadol administration. The values are shown in
seconds (s) and percentage. Significant differences 
are indicated in grey. * p < 0.05, using paired t test. 

Duration: mean of differences before and after tramadol administration

stimulation site / SI recording area        (s)       (%)  significance

heel  /  heel  -0,057 -24         *

heel  /  arch  -0,100 -37         ***

heel  /  forepaw -0,019 -10         ns

arch  /  arch  -0,069 -33         *

arch  /  heel  -0,072 -34         *

arch  /  forepaw  -0,019 -11         ns

forepaw  /  forepaw  -0,009 -6         ns

forepaw  /  heel  -0,043 -27         ns

forepaw  /  arch  0,012 8         ns

Table S5. The effect of tramadol on the LCEPs 
duration. The mean of the duration in the UV-B
exposed group before (n = 7) tramadol administra-
tion is subtracted from the mean in the UV-B exposed 
group after (n = 7) tramadol administration. The
values are shown in seconds (s) and percentage.
Significant differences are indicated in grey. 
* p < 0.05, *** p < 0.001, using paired t test. 
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