
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Receding Horizon Prediction by Bayesian Combination of Multiple Predictors

Ståhl, Fredrik; Johansson, Rolf

Published in:
Proc. 51st IEEE Conf. Decision and Control (CDC 2012), December 10-13, 2012. Maui, Hawaii, USA

2012

Link to publication

Citation for published version (APA):
Ståhl, F., & Johansson, R. (2012). Receding Horizon Prediction by Bayesian Combination of Multiple Predictors.
In Proc. 51st IEEE Conf. Decision and Control (CDC 2012), December 10-13, 2012. Maui, Hawaii, USA (pp.
5278-5285). IEEE - Institute of Electrical and Electronics Engineers Inc..

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 27. Apr. 2024

https://portal.research.lu.se/en/publications/6ed27d98-78f0-4dee-9b55-d89e585c99f8


Receding Horizon Prediction by Bayesian
Combination of Multiple Predictors

F. Ståhl and R. Johansson

Abstract—This paper presents a novel online approach of
merging multiple different predictors of time-varying dynam-
ics into a single optimized prediction. Different predictors are
merged by recursive weighting into a single prediction using
regularized optimization. The approach is evaluated on two
different cases of data with shifting dynamics; one example of
prediction using several approximate models of a linear system
and one case of glucose prediction on a non-linear physiologically
based simulated type I diabetes data using several parallel
linear predictors. The performance of the combined prediction
significantly reduced the total prediction error compared to each
predictor in each example.

I. INTRODUCTION

In many applications in science and technology the predic-
tion of future values for some data series is of interest. For
this purpose different models can be identified and utilized to
produce predictions. When more than one model is constructed
the question arises whether it is more useful to use one of
them solely, or if it is possible to gain additional prediction
accuracy by combining their outcomes. Accuracy may be
gained from merging due to mismodeling or to changing
dynamics in the underlying data creating process. Of special
interest are time-varying systems with unknown, or complex,
shifts in dynamics, where a single model capturing the system
behaviour may be infeasible, e.g., for practical identification
concerns.

Merging models for the purpose of prediction has been
developed in different research communities. In the mete-
orological and econometric communities regression-oriented
ensemble prediction has been a vivid research area since the
late ’60s, see e.g. [18] and [8].

Also in the machine learning community the question of
how different predictors or classifiers can be used together
for increased performance has been investigated and different
algorithms developed such as the bagging, boosting [5] and
weighted majority [15] algorithms, and online versions of these
[13], [17].

In most approaches the merged prediction ŷe
k at time k

is formed by a linear weighted average of the individual
predictors ŷk.

ŷe
k = wT

k ŷk (1)

It is also common to restrict the weights wk to [0,1]. The
possible reasons for this are several, where the interpretation
of the weights as probabilities, or rather Bayesian beliefs, is
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the dominating. Such restrictions are however not always ap-
plicable, e.g. in the related optimal portfolio selection problem
where negative weight (short selling) can reduce the portfolio
risk [9].

A special case considering distinct switches between dif-
ferent linear system dynamics has been studied mainly in
the control community. The data stream and the underlying
dynamic system are modelled by pure switching between
different filters derived from these models, i.e., the weights
wk can only take value 1 or 0. A lot of attention has been
given to reconstructing the switching sequence, see e.g. [10],
[16]. From a prediction viewpoint the current dynamic mode
is of primary interest, and it may suffice to reconstruct the
dynamic mode for a limited section of the most recent time
points in a receding horizon fashion [2].

Combinations of specifically adaptive filters has also stirred
some interest in the signal processing community. Typically,
filters with different update pace are merged to benefit from
each filter’s specific change responsiveness respectively steady
state behaviour [3].

Finally, in fuzzy modeling, soft switching between multiple
models is offered using fuzzy membership rules in the Takagi-
Sugeno systems [20].

This paper presents a novel approach combining elements
from both switching and averaging techniques above, forming
a ’soft’ switcher in a Bayesian framework. The paper is
organized as follows; in Sec. II the problem formulation is
presented, Sec. III describes the algorithm, in Sec. IV and Sec.
V results from two example are given and Sec. VI concludes
the paper.

II. PROBLEM FORMULATION

Considering the above, this paper addresses the following
problem: A non-stationary data stream zk : {yk,uk} arrives
with a fixed sample rate, set to 1 for notational convenience,
at time tk ∈ {1,2, ...}. The data stream contains a variable
of primary interest called yk ∈ R and additional variables
uk. The data stream can be divided into different periods
TSi of similar dynamics Si ∈ S = [1...n], and where sk ∈ S
indicates the current dynamic mode at time tk. The system
changes between these different modes according to unknown
dynamics.

Given m number of expert p-steps-ahead predictions at time
tk, ŷ j

k+p|k, j ∈ {1, ..m}, each utilizing different methods, and/or
different training sets; how is an optimal p-steps-ahead pre-
diction ŷe

k+p|k of the primary variable y(tk), using a predefined
norm and under time-varying conditions, determined?
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III. SLIDING WINDOW BAYESIAN MODEL AVERAGING

Apart from conceptual differences between the different
approaches to ensemble prediction the most important differ-
ence is how the weights are determined. Numerous different
methods exist, ranging from heuristic algorithms [3], [20] to
theory based approaches, e.g. [11]. Specifically, in a Bayesian
Model Averaging framework [11], which will be adopted in
this paper, the weights are interpreted as partial beliefs in each
predictor Mi, and the merging is formulated as:

p(yk+p|Dk) = ∑
i

p(yk+p|Mi,Dk)p(Mi|Dk) (2)

and if only point-estimates are available one can e.g. use:

ŷe
k+p|k = E(yk+p|Dk) (3)

= ∑
i
E(Mi|Dk)E(yk+p|Mi,Dk) (4)

= wT
k ŷk (5)

w(i)
k = E(Mi|Dk) (6)

p(w(i)
k ) = p(Mi|Dk) (7)

Where ŷe
k+p is the combined prediction of yk+p using

information available at time k, Dk : {z1:k} is the data received
up until time k, w(i)

k indicates position i in the weight vector.
The conditional probability of predictor Mi can be further
expanded by introducing the latent variable Θ j.

p(Mi|Dk) = ∑
j

p(Mi|Θ j,Dk)p(Θ j|Dk) (8)

or in matrix notation

p(wk) =
[
p(wk|θk=1) . . .p(wk|θk=n)

]
p(Θ|Dk) (9)

Here Θ j represents a predictor mode in a similar sense to the
dynamic mode S j, and likewise θk the prediction mode at time
k. p(Θ|Dk) is a column vector of p(Θ j|Dk), j = {1 . . .m} and
p(wk|Θi) is a row vector of the joint prior distribution of the
conditional weights of each predictor model given the predictor
mode Θi.

Data for estimating the distribution for p(wk|Θi) is based
on labelled training data used in the following constrained
optimization.

{wk|Θi}TΘi
= argmin

k+N/2

∑
i=k−N/2

L (y(ti),wT
k|Θi

ŷi), k ∈ TΘi (10)

s.t. ∑ j w( j)
k|Θi

= 1.
where TSi represents the time points corresponding to dynamic
mode Si, N is the size of the evaluation window, L (y, ŷ) is a
cost function. From these data sets the prior distributions can
be estimated by the Parzen window method [4], giving mean
w0|Pi = E(wk|Θi) and covariance matrix RΘi . An alternative to
the Parzen approximation is of course to estimate a more par-
simoniously parametrized pdf (e.g., Gaussian) for the extracted
data points.

Now, in each time step k the wk|θk−1
is determined from the

sliding window optimization below, using the current active

mode θk−1. For reasons soon explained, only wk|θk−1
is thus

calculated.

wk|θk−1
= argmin

k−1

∑
j=k−N

µ
k− jL (y j,wT

k|θk−1
ŷ j) (11)

+(wk|θk−1
−w0|θk−1

)Λ(wk|θk−1
−w0|θk−1

)T

s.t. ∑
j

w( j)
k|θk−1

= 1

Here, µ j is a forgetting factor, and Λ is the regularization
matrix. Now, to infer the posterior p(Θ|Dk) it would nor-
mally be natural to set this probability function equal to the
corresponding posterior pdf for the dynamic mode p(S|Dk).
However, problems arise if p(S|Dk) is not directly possible to
estimate from the dataset Dk. This is circumvented by using the
information provided by the p(wk|θk

) estimated from the data
retrieved from equation (10) above. The p(wk|θk

) prior density
functions can be seen as defining the region of validity for each
predictor mode. If the wk|θk−1

estimate leaves the current active
mode region θk−1 (in a sense that p(wk|θk−1

) is very low) it can
thus be seen as an indication of that a mode switch has taken
place. A logical test is used to determine if a mode switch has
occurred. The predictor mode is switched to mode Θi, if:{

p(Θi|wk,Dk)> λ , and
p(wk|Θi,Dk)> δ

(12)

where

p(Θi|wk,Dk) =
p(wk|Θi,Dk)p(Θi|Dk)

∑ j p(wk|Θ j,Dk)p(Θ j|Dk)
(13)

Where a λ somewhat larger than 0.5 gives a hysteresis
effect to avoid chattering between modes, and δ assures
that non-conclusive situations, evaluated on the outskirts of
the probability functions, don’t result in switching. Unless
otherwise estimated from data, the conditional probability of
each prediction mode p(Θi|Dk) is set equal for all possible
modes, and thus cancels in (13). The logical test is evaluated
using the priors received from the pdf estimate and the wk|θk
received from (11). If a mode switch is considered to have
occurred, (11) is rerun using the new predictor mode.

Now, since only one prediction mode θk is active; (9)
reduces to p(wk) = p(wk|θk

).
A. Choice of L

Cost function should be chosen by the specific application
in mind. A natural choice for interpolation is the 2-norm,
but in certain situations asymmetric cost functions are more
appropriate.

B. Parameter choice

The length N of the evaluation period is, together with the
forgetting factor µ , a crucial factor determining how fast the
ensemble prediction reacts to sudden changes in dynamics.
A small forgetting factor will put much emphasis on recent
data making it more agile to sudden changes. However, the
drawback is of course that noise sensitivity increases.
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Λ should also be chosen such that a sound balance between
flexibility and robustness is found, i.e., a too small Λ may
result in over-switching, whereas a too large Λ will give a
stiff and inflexible predictor. Furthermore, Λ should force the
weights to move within the perimeter defined by p(w|Θi).
This is approximately accomplished by setting Λ equal to the
inverse of the covariance matrix Rθk , thus representing the pdf
as a Gaussian distribution in the regularization.
C. Nominal mode

Apart from the estimated prediction mode centres an ad-
ditional predictor mode can be added corresponding to a
heuristic fall-back mode. In the case of sensor failure or other
situations where loss of confidence in the estimated predictor
modes arises, each predictor may seem equally valid. In this
case a fall-back mode to resort to may be the equal weighting.
This is also a natural start for the algorithm. For these reasons
a nominal mode p(w̄0) ∈ N(1/n,I) is added to the set of
predictor modes.

Summary of algorithm

1) Estimate n number of predictors according to best
practice.

2) Run the constrained estimation (10) on labelled
training data and retrieve the sequence of
{wk|Θi}Tθi

,∀i ∈ {1, ..,n}.
3) Classify different predictor modes and determine

density functions p(wk|Θi) for each mode Si from
the training results by supervised learning. If
possible; estimate p(S|D).

4) Initialize mode to the nominal mode.
5) For each time step; calculate wk according to (11).
6) Test if switching should take place by evaluating

(12) and (13), and switch predictor mode if
necessary and recalculate new wk according to
(11).

7) Go to 5).

IV. EXAMPLE: PREDICTION USING APPROXIMATE
LOWER-ORDER MODELS

A. Data

Data were generated using a switched fourth-order ARX
system, where the A-polynomial switches between three dif-
ferent models MA,MB,MC, with poles according to Table I. The
B-polynomial was simply a one step delay, and white noise
N(0,0.25) was added to the output channel. A PRBS signal
was used for input.

The active dynamic mode sk ∈ S switches according to a
transition matrix M between dynamic mode A,B and C.

sk+1 = Hsk (14)

H =

 0.99 0.005 0.005
0.005 0.99 0.005
0.005 0.005 0.99

 (15)

TABLE I
POLES OF THE DATA GENERATING PROCESSES.

Model Poles
MA 0.8,0.1,−0.3+ i

√
0.41,−0.3− i

√
0.41

MB 0.9,0.2,−0.2,−0.5
MC 0.8,−0.2,−0.4,−0.4

A labelled training set of 2000 samples and a 2000 sample
validation set were simulated in 40 different batches. An
example of a training data set can be seen in Fig. 1.

200 400 600 800 1000 1200 1400 1600 1800 2000

−1

0

1

Input

200 400 600 800 1000 1200 1400 1600 1800 2000
−10

0

10

Output

200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

Switching sequence

Time [samples]

Fig. 1. Training Data. Upper plot: input, middle plot: output and lower plot:
switching sequence of dynamic mode.

B. Predictors

To simulate modeling errors three prediction models MI −
MIII were set up as reduced order approximations of the
corresponding state-space models of the data generating pro-
cesses. Model reduction was undertaken by singular value
evaluation to the second order [12]. Using these models and
their associated Kalman filters 50 step prediction length was
evaluated.

C. Cost function

For this example the 2-norm was used.

D. Parameter Choices

Different values for the tunable parameters N and µ were
evaluated. 20 batches for the combinations of {10,20,30}
and {0.8,0.9,1}, and 20 batches for the combination of
{25,50,75} and {0.7,0.8,0.9}. The parameters λ and δ for
the switching test were fixed to 0.6 and 3 ·10−3.

E. Evaluation Metric

To evaluate the predictive performance, the squared sum
of prediction errors was compared to the squared sum of
prediction errors using a pure switching strategy where it
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(optimally) has been assumed that the dynamic mode at the
time of prediction was known.
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Fig. 2. Distribution of weights in the training data retrieved by (10). Blue
stars represents tk ∈ TA for Mode A, Red circles: TB for Mode B and Green
crosses: TC for Mode C.

The corresponding probability distribution for each mode,
projected onto the (w1,w2)-plane, estimated by Parzen win-
dow technique, can be seen in Fig. 3 together with the
pdf of the nominal mode. The densities have higher val-
ues in the corners [1,0,0], [0,1,0] and [0,0,1], but with
means w0|1 = [0.57,0.03,0.4], w0|2 = [0.18,0.76,0.06] and
w0|3 = [0.25,0.03,0.72] defining the expected weights for each
predictor mode.

F. Results

1) Training the mode switcher: Using the labelled training
set the pdf:s p(wk|Θi) were estimated for each batch using the
different N values. For this example the best evaluation record

Fig. 3. Estimated probability density functions for the weights in the training
data, including the nominal mode.

length for the estimation task was 10. In Fig. 2 an example of
the distribution of {wk|Θi}Si along the {w1 +w2 +w3 = 1,0≤
wi≤ 1} plane can be seen for one representative training batch.

2) Evaluation of parameter choices: Comparing the pre-
dictive performance for the different value combinations of
N and µ , the slightly better choice over the others was
[25,0.8]. Table II summarizes the predictive performance for
each combination of N and µ .

TABLE II
SUMMARY OF PREDICTIVE PERFORMANCE USING DIFFERENT N AND µ ON
VALIDATION DATA OVER ALL SIMULATED BATCHES, EVALUATED AS MEAN

∑e2
Ni ,µ j

∑e2
opt

, WHERE eNi ,µ j IS CORRESPONDING PREDICTION ERROR(PE) AND

eopt IS THE PE WHEN USING THE OPTIMAL SWITCHING STRATEGY.

Ni/µ j 1 0.9 0.8 0.7
10 0.92 0.91 0.90 -
20 0.95 0.94 0.92 -
25 - 0.91 0.87 0.87
30 0.94 0.92 0.88 -
50 - 1.05 1.04 1.01
75 - 0.95 0.90 0.88

3) Predictive performance: The merged prediction was
compared on the validation data, using the best choices of
N = 25 and µ = 0.8, to 1) each individual predictor, 2) an
unregularized version of (11) without switching functionality,
and 3) to the optimal pure switching strategy. The results are
summarized in Table III.

TABLE III
SUMMARY OF PREDICTIVE PERFORMANCE ON VALIDATION DATA OVER

ALL SIMULATED BATCHES.

Predictor ∑e2

∑e2
opt

Predictor I 1.07
Predictor II 2.76
Predictor III 1.39

Merged Predictor 0.87
Unregularized Merged Predictor 0.93

Optimally Switched Predictor 1.0

Compared to the other approaches a 7% improvement can
be seen to the unregularized version, and a 13% improvement
to the optimal switching scheme.

Looking at the distribution of the weights for the validation
data in Fig. 4 it’s apparent that the merging mechanism
has concentrated these around the prediction mode centres,
especially if comparing to the corresponding distribution for
the unregularized version, see Fig. 5.

Switching between the different prediction modes in com-
parison to the dynamic mode for the validation data can be
seen in Fig 6 for a representative batch.

G. Discussion

1) Parameter Choice: The optimal choices of N and µ ,
are unsurprisingly, closely connected. These parameters must
be set with the specific dynamics in mind, and are probably
difficult to determine beforehand. λ and δ should probably
not be set too low in order to avoid uncalled for switching,
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Fig. 4. Distribution of weights in the test data using the estimated pdf:s and
expected weights.
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Fig. 5. Distribution of weights in the test data using the unregularized merging
predictor.

and the values used are deemed correct from this aspect.
The regularization penalty term R is on the other hand an
important parameter determining the sensitivity to switching
and robustness to noise. Analysis of tuning aspects of this
parameter has however been left out for space limit reasons.

2) Predictive Performance: The merged predictor clearly
outperformed each of the individual predictors, and also the
unregularized version as well as the optimal pure switching
predictor. The latter can be explained by that the merged
predictor offers some extra robustness to sudden dynamical
changes, as all predictors to some extent are used in all situa-
tions. The unregularized version has quite good performance,
but the regularization in the proposed merging mechanism
reduces the impact of noise making it slightly better.

Regarding the distribution of weights and the corresponding
prior pdf:s it is interesting to notice that the merging mech-
anism puts almost equal confidence in predictor I and III for

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Comparison between dynamic and predictor mode switching

Time [samples]

 

 

Dynamic Mode

Predictor Mode

Fig. 6. Example of switching between different predictor modes in the
validation data. Here predictor mode 4 represents the nominal mode.

dynamic mode A. This could be interpreted as a means to
handle and improve the predictive quality given the modeling
errors in model MI in comparison to MA.

V. EXAMPLE: DIABETES TYPE I BLOOD GLUCOSE
PREDICTION

A. Insulin Dependent Diabetes Mellitus

Insulin Dependent Diabetes Mellitus (IDDM) is a chronic
metabolic disease characterized by impaired plasma glucose
regulation. Maintaining normoglycemia is crucial in order to
avoid both immediate and long-term complications, and to this
end, several insulin injection are taken daily. To facilitate the
management of this therapy, blood glucose (BG) is measured
using different devices, among them the so-called Continuous
Glucose Measurement System (CGM) e.g., [1], which provides
glucose values every 5 or 10 min. Accurate predictions of near-
time glucose evolution would improve means to tight glucose
control and further improve life-quality for these patients.

B. Data

Data was generated using the non-linear metabolic simula-
tion model described in [7] with parameter values obtained
from the authors.

Twenty datasets, each corresponding to 8 days, were gener-
ated. Two dynamic modes A and B were simulated by, after 4
days, changing four model parameters (following the notation
in [7]) k1,ki, kp3 and p2u, related to endogenous glucose
production and insulin and glucose utilization. One data set
was used for training and the others were considered test data.

A section of four days, including the period when the
dynamic change takes place, of the training data and an
example test data can be seen in Fig. 7.

Timing and size of meals were generated with some normal
randomization for each data set according to Table IV. The
amount of insulin administered for each meal was also ran-
domized by normally distributed noise with a 20 % standard
deviation.
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TABLE IV
MEAL AMOUNT AND TIMING RANDOMIZATION. STANDARD DEVIATION IN

PARENTHESIS.

Meal Time Amount carbohydrates (g)
Breakfast 08:00 (30 min) 45 (5)

Lunch 12:30 (30 min) 70 (10)
Dinner 19:00 (30 min) 80 (10)
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Fig. 7. Middle four days of the plasma glucose Training and Test Data.

Noise was added by perturbing some crucial model pa-
rameters pi in each simulation step; pi(t) = (1 + δ (t))p0

i ,
where p0

i represent nominal value and δ (t) ∈ N(0,0.2). The
affected parameters are (again following the notation in [7]))
k1,k2, p2u,ki,m1,m30,m2,ksc.

C. Predictors

Three models, based on subspace based technique, were
identified using the N4SID algorithm of the Matlab System
Identification Toolbox. Model order [2− 4] was determined
by the Akaike criterion [12]. The first model I was estimated
using data from dynamic mode A in the training data, and
the third III from the mode B data, and the final model II
from the entire training data set. Thus, model I and III are
each specialized, whereas II is an average of the two dynamic
modes. The models were evaluated for a prediction horizon of
60 min.

D. Cost function

A suitable cost function for determining appropriate weights
should take into account that the consequences of acting on too
high glucose predictions in the lower BG region (<90 mg/dl)
could possibly be life threatening. The margins to low blood
glucose levels that may result in coma and death are small, and
blood glucose levels may fall rapidly. Hence, much emphasis
should be put on securing small positive predictive errors and
sufficient time margins for alarms to be raised in due time in
this region. In the normoglycemic region (here defined as 90-
200 mg/dl) the predictive quality is of less importance. This is
the glucose range that non-diabetics normally experience, and
thus can be considered, from a clinical viewpoint in regards

Fig. 8. Cost function of relative prediction error.

to possible complications, a safe region. However, due to
the possibility of rapid fluctuation of the glucose into unsafe
regions some considerations of predictive quality should be
maintained.

Based on the cost function in [14] the selected cost function
incorporates these features; asymmetrically increasing cost of
the prediction error depending on the absolute glucose value
and the sign of the prediction error.

In Fig. 8 the cost function can be seen plotted against
relative prediction error and absolute blood glucose value.

1) Correspondence to the Clarke Grid Error Plot: A de
facto accepted standardized metric of measuring the perfor-
mance of CGM signals in relation to reference measure-
ments, and often used to evaluate glucose predictors, is the
Clarke Grid Plot [6]. This metric meets the minimum criteria
raised earlier. However, other aspects makes it less suitable;
no distinction between prediction errors within error zones,
instantaneous switches in evaluation score, etc.

In Fig. 9 the isometric cost of the chose cost function for
different prediction errors at different BG values has been
plotted together with the Clarke Grid Plot. The boundaries
of the A/B/C/D/E areas of the Clarke Grid can be regarded
lines of isometric cost according to the Clarke metric. In the
figure the isometric cost of the cost function has been chosen
to correspond to the lower edge defined by the intersection of
the A and B Clarke areas. Thus, the area enveloped by the
isometric cost can be regarded as the corresponding A area of
this cost function. Apparently it puts much tougher demands
both in the lower and upper BG regions in comparison to the
Clarke Plot.

E. Parameter Choice

µ was set to 0.8 and N to 40 minutes.
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ensemble version.

F. Results

1) Training the mode switcher: The three predictors were
used to create three sets of 60 minute ahead predictions for
the training data. Using (10) with N = 10 the weights wk were
determined. In Fig. 10 the distribution of the wk along the
w1 +w2 +w3 = 1,0 ≤ wi ≤ 1 plane can be seen for the two
different dynamic modes.

The corresponding probability distribution for each mode,
projected onto the (w1,w2)-plane, was estimated by Parzen
window technique, and can be seen in Fig. 11. The densi-
ties are well concentrated to the corners [1,0,0] and [0,0,1]
with means w0|1 = [0.83,0.11,0.06] and w0|2 = [0.25,0.1,0.65]
defining the expected weights for each predictor mode.

The nominal mode probability density function was set to
N( 1

3
1
3

1
3 ,0.1I). In Fig. 11 all density functions, including the

nominal mode, projected onto the (w1,w2)-plane, can be seen
together.

2) Ensemble prediction vs individual predictions: Using
the estimated pdf:s and expected weights w of the identified
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Fig. 11. Estimated probability density functions for the weights in the training
data, including nominal mode.
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Fig. 12. Example of the distribution of weights in the test data using the
estimated pdf:s and expected weights.

predictor modes the ensemble machine was run on the test
data. An example of the distribution of the weights for the
two dynamic modes A and B can be seen in Fig. 12.

An example of how switching between the different modes
occurs over the test period can be found in Fig 13.

For evaluation purposes all predictors were run individually.
Table V summarizes a comparison of predictive performance
between the different approaches in terms of mean Root Mean
Square Error (RMSE) over the test batches.

TABLE V
PERFORMANCE EVALUATION FOR THE 60 MINUTE PREDICTORS USING

DIFFERENT APPROACHES.

RMSE [mg/dl]
Predictor Type Section A Section B A+B

Predictor I 8.3 16.3 13.0
Predictor II 9.1 11.2 10.9
Predictor III 14.3 7.9 12.6

Merged prediction 8.7 10.5 9.6

VI. COMPARISON TO OTHER MERGING TECHNIQUES

Compared to the strategy of pure switching between
different predictors the evaluation indicates that the proposed
algorithm is more robust to sudden changes and in reducing
the impact of modeling errors. Apart from that, in many
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the criteria.

applications, transition between different dynamic modes
is a gradual process rather than an abrupt switch, making
the pure switching assumption inappropriate. The proposed
algorithm can handle such smooth transitions by slowly
sliding along a trajectory in the weight plane of the different
predictors, perhaps with a weaker Λ if such properties are
expected. Furthermore, any type of predictor may be used, not
restricting the user to a priori assumptions of the underlying
process structure.

In Tagaki-Sugeno (TS) system, a technique that also
gives soft switching, the underlying assumption is that the
switching dynamics can be observed directly from the data.
This assumption has been relaxed for the proposed algorithm
extending the applicability beyond that of TS systems.

In [19] another interesting approach to online Bayesian
Model Averaging is suggested for changing dynamics. In
this approach the assumed transition dynamics between the
different modes is based on a Markov chain. However, in our
approach no such assumptions on the underlying switching
dynamics are postulated. Instead switching is based on recent
performance in regards to the applicable norm, and possibly on
estimated correlations between predictor modes and features of
the data stream P(Θi|Dk), see Eq. 13.

VII. CONCLUSIONS

In this paper a novel merging mechanisms for multiple
predictor has been proposed for time-varying conditions. The
approach has been evaluated on two different examples of
artificial data sets incorporating modeling errors in the individ-
ual predictors and different cost criteria. In the first example
it was shown how the merged predictor could reduce the
impact of the modeling errors resulting in performance beyond
the optimal switching strategy. The latter example outlined
how the technique may be applied to the specific example
of diabetes glucose prediction under sudden changes in the
underlying physiological dynamics. Also in this example the
merged prediction turned out to be the best choice.

This early assessment indicates that the concept may prove
useful when dealing with several individual predictors of
uncertain reliability and when data incorporates significant
time-varying properties.

Further research will be undertaken to investigate the prop-
erties under slowly time-varying processes, the implications
of applying different cost functions, and most importantly;
performance on real-world data.
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