
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Application of Control Theory to a Commercial Mobile Service Support System

Amani, Payam; Aspernäs, Bertil; Åström, Karl Johan; Dellkrantz, Manfred; Kihl, Maria; Radu,
Gabriela; Robertsson, Anders; Torstensson, Andreas
Published in:
International Journal on Advances in Telecommunications

2012

Link to publication

Citation for published version (APA):
Amani, P., Aspernäs, B., Åström, K. J., Dellkrantz, M., Kihl, M., Radu, G., Robertsson, A., & Torstensson, A.
(2012). Application of Control Theory to a Commercial Mobile Service Support System. International Journal on
Advances in Telecommunications, 5(3&4).

Total number of authors:
8

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 27. Jun. 2024

https://portal.research.lu.se/en/publications/f126ec7f-fd66-48eb-bd93-f436ffc199e9

Abstract—The Mobile Service Support system (MSS), which

Ericsson AB develops, handles the setup of new subscribers and

services into a mobile network. Experience from deployed

systems show that traffic monitoring and control of the system

will be crucial for handling overload situations that may occur at

sudden traffic surges. In this paper we identify and explore some

important control challenges for this type of systems. Further, we

present analysis and experiments showing some advantages of

proposed solutions. First, we develop a load-dependent server

model for the system, which is validated in testbed experiments.

Further, we propose a control design based on the model, and a

method for estimation of response times and arrival rates. The

main contribution of this paper is that we show how control

theory methods and analysis can be used for commercial telecom

systems. Parts of our results have been implemented in

commercial products, validating the strength of our work.

Keywords— Performance management; telecommunication

systems; queuing theory; control theory; database servers;

admission control; Kalman filters

I. INTRODUCTION

Resource management of computer systems, which has

gained increased attention during recent years, was explored

already in the late 60's [2][3]. It is an essential mechanism to

handle load disturbances such as traffic surges and changes in

user behavior. Poorly managed resources can severely degrade

the performance of a system with potentially large financial

consequences.

The work presented in this paper is motivated by a

commercial Mobile Service Support System (MSS),

developed and produced by Ericsson AB. Mobile Service

Support Systems are used by the network operators for all

processing regarding new subscribers and services in the

network. Each new subscriber or service requires processing

and data storage in several network nodes. The systems are in

general multi-tier systems, implemented as distributed server

clusters, where web and application servers process the

incoming requests and database servers are used for data

1 This work represents the outcome of a long-term collaboration between

Lund University and Ericsson AB and the contributors are listed in alphabetic

order.

storage. The resource management of these systems, based on

measurements of the system states such as actual utilization

and response times, is crucial for the optimization of operation

cost and the guarantee of service level agreements during load

surges, for example during marketing campaigns or various

events.

Therefore, the challenge is how to control system

performance while providing guarantees on convergence and

disturbance rejection. The solution is based on dynamic

control schemes, which monitors the systems and provides

actions when needed. Several types of resource–management

mechanisms have been proposed and evaluated in the

literature. In larger computer systems, load balancing is

performed in order to distribute the demand for resources

uniformly over a number of resource units (computers, CPUs,

memory, etc.), thus avoiding the case that among the nodes

with similar functionalities some are under-utilized while

others are overloaded [4][5]. During overload periods, when

more resources are requested than are available, admission

control mechanisms reduce the load to the system by blocking

or delaying some of the requests [6][7][8][9]. For Internet

applications, virtualized server systems can be used to divide

physical resources into a number of separated platforms where

different web applications are allowed to operate without

affecting one another. Dynamic resource allocation between

the virtualized platforms serves as a new and easy way to

perform resource optimization on web server systems

[10][11][12]. In the last years, the field of power and energy

management has become important. Large software systems

have high energy consumption, which means that dynamic

resource optimization of these systems may considerably

lower the operating costs for the network operators

[13][14][15][16].

However, all optimization techniques require accurate

performance models of the involved computing systems. The

operation region is mainly high traffic load scenarios, which

means that the computing systems show non-linear dynamics

that needs to be characterized accurately [17]. A software

system is basically a network of queues, as examples, the CPU

ready queue, semaphore queues, socket queues, and I/O device

queues, which store requests in waiting of service in the

processors. Therefore, queuing models can be used when

Application of Control Theory to a

Commercial Mobile Service Support System

Payam Amani
a, 1

, Bertil Aspernäs
c
, Karl Johan Åström

b,
Manfred Dellkrantz

b
, Maria Kihl

a
, Gabriela Radu

a
,

Anders Robertsson
b
, and Andreas Torstensson

c

a
Dept. of Electrical and Information Technology, Lund University, Sweden

b
Dept. of Automatic Control, Lund University, Sweden

c
Ericsson AB, Karlskrona, Sweden

{payam.amani, maria.kihl}@eit.lth.se, {manfred.dellkrantz, andersro, kja}@control.lth.se,

luminita.radu@gmail.com, bertil.aspernas@telia.com, andreas.torstensson@ericsson.com

describing the dynamic behavior of server systems

[2][18][19][20].

The concept of Load-Dependent Server (LDS) models, in

which the response time of the jobs in the system is a function

of the service time of the jobs and current number of jobs

waiting to be served has, to the best of our knowledge, firstly

been introduced in [21]. In [21][22][23], standard benchmarks

were used for workload generation and also regression models

to capture the system dynamics. In [24], a queuing network

model which represents the load dependent behavior of the

LDS was presented and validated with simulations. In [25], a

theoretical analysis of the D/G/1 and M/G/1 models with load

dependency assumptions was presented.

In this paper, we investigate solutions to some important

control challenges identified for the commercial MSS

developed by Ericsson AB. We present a load-dependent

server model, which is validated in experiments. The model

has been previously published in [1]. Further, we extend [1]

by proposing and validating an admission control mechanism

based on a load-adaptive controller. A modified version of the

controller has been implemented in the Ericsson product.

Finally, we show how extended Kalman filters can be used for

estimating the response times and arrival rates in the system.

The paper is organized as follows. In Section II, the

Ericsson product is described and the control challenges

identified for the system are presented. In Section III, the

testbed used for some of the experiments is described. In

Section IV, the load-dependent server model is presented and

validated. In Section V, the load-adaptive controller is

presented and experiments validating its performance are

described. In Section VI, our work on response time

estimation based on extended Kalman filters is presented.

Finally, in Section VII, some conclusions are presented.

II. SYSTEM AND PROBLEM DESCRIPTION

The Mobile Service Support system (MSS), which Ericsson

AB develops, handles the setup of new subscribers and

services into a mobile network. It presents to the operator and

its business support systems a unified middleware where

complex functions, such as setting up a new subscriber or

modifying services for an existing subscriber, can be easily

invoked. The software architecture is complex with several

layers and distributed infrastructures, which means that

specific parts of the system will not have complete knowledge

of the interactions among other parts of the system.

A. System architecture

The system architecture is illustrated in Figure 1. One

request to the MSS from an upstream system normally results

in a number of requests downstream out on the mobile

network to several different network elements (NEs). A

network element is usually a database storing subscriber and

service data, for example, the Home Location Register (HLR).

A user id, which needs to be fetched from one database, needs

to be supplied in a query to another database to get the system

consistent.

Customer administration

system

Mobile service support

system (MSS)

Network elements (NE)

Mobile phone

users

Figure 1. Mobile service support system (MSS)

In parallel to the changes and setups that the MSS performs,

the network is also used by the end users. Services being set

up by the MSS are queried by base stations and other systems

requiring that information. In respect to the MSS, this traffic

can be considered as unknown background traffic, in contrast

to the known traffic flowing through the MSS.

B. Control challenges

The experience from deployed Ericsson systems shows that

there can be problems with overload in the NEs. The

measurable load arriving from the MSS and the unknown (not

directly measurable) load arriving from mobile users may

interfere with each other, creating a race for resources that

may lead to overload in a NE. When one NE becomes

overloaded and unresponsive, this may result in the entire

transaction requiring rollback to avoid in-consistencies in the

network. Such a rollback may require manual work which is

of course costly for the operator.

To protect against such situations, traffic monitoring and

control are crucial. In cooperation with Ericsson AB, some

important control challenges have been identified for this type

of system. These challenges are described below. In the

following sections our collaborative work on these challenges

will be presented. The models and control designs are based

on response times, as this metric is rather easily measurable in

the real system and because the response times can be mapped

to the load status of the controlled system using the proposed

model.

1) Performance models

The first challenge is to design a performance model for the

NEs, since good control designs are based on sufficiently

accurate system models. The model should capture the

dominant load dynamics of the NEs. Most service

performance metrics such as response times and service rates

depend on queue state dynamics, which means that queue

models are suitable for these systems.

l

m
Figure 2. M/M/1 model

For the objective of performance control, simple models,

such as single server queues, are often preferred. The model

should only capture the dominating load dynamics of the

system, since a well-designed control system can handle many

model uncertainties [26].

The classical M/M/1 model, where a single-server queue

processes requests that arrive according to a Poisson process

with exponential distributed service times, see Figure 2, has

been shown to accurately capture the response time dynamics

of a web server system [27]. However, experience from

deployed systems and lab measurements have shown that

databases may not have M/M/1 dynamics [28]. Therefore,

other models are required that more accurately captures the

dynamics of database servers.

2) Admission control in MSS

The NEs are loaded by two traffic sources, the measurable

traffic coming to the MSS and the unknown (unmeasurable)

traffic coming from the mobile users, as illustrated in Figure 3.

The average arrival rates can be denoted as l for the

measurable traffic and lu for the unknown traffic. Overload in

the NEs can be detected by monitoring the response time of

requests sent to each node. When the average requests’

response times exceed some threshold, the MSS can classify

the involved NE as overloaded and thereby start actions to

lower the arrival rate to that particular NE, in order to achieve

an acceptable arrival rate, denoted as lc. Therefore, the second

control challenge is to design an admission control scheme

that can handle the unknown traffic at the NEs and further can

handle the time varying mean measured traffic rates

experienced in the systems.

3) Monitoring and estimation

One of the problems when designing control mechanisms in

these types of systems is the lack of performance information.

The designed protocols basically provide no means of control

communication between the MSS and the NEs that can be

used by a control system. Therefore, the third control

challenge that has been identified is the design of monitoring

and estimation mechanisms that could help in the design of,

for example, an admission control scheme. The estimation

scheme can be used as feed-forward control in the control

system, and thereby improving the performance of the control

system compared to when only using feedback control. In

collaboration with Ericsson AB, some preliminary work on the

application of extended Kalman filters for load estimation

have been started for systems as in Figure 3.

MSS NE

l lc

Rejected

requests

lu

Figure 3. Load at the NEs

Measurable traffic

generator (MSS)
MySQL server

Unknown traffic generator

(mobile users)

Figure 4. Testbed for the experiment.

III. TESTBED

To validate some of the proposed solutions, we have

performed a series of experiments in our server lab. We

developed a MSS testbed with two traffic generators, one for

the measurable traffic and one for the unknown traffic, and a

MySQL 5.1.41 database server as depicted in Figure 4. The

computers were connected to a local 100 Mbit/s Ethernet

network.

The traffic generators were implemented in Java, using the

JDBC MySQL connector, and they were executed on

computers with an AMD Phenom II X6 1055T Processor at

2.8 GHz and 4 GB main memory. The operating system was

Ubuntu 10.04.2 LTS. The traffic generators use 200 working

threads and generate MySQL queries according to a Poisson

process with average rate l and lu queries per second. Both

traffic generators were validated in order to guarantee that

they were not a bottleneck in the experiments.

The database server has several relations with the same

structure but with different number of tuples. The maximum

number of allowed concurrent connections is set to 100. The

structure of the relations comes from the Scalable Wisconsin

Benchmark [29] with 10 million tuples. Two basic types of

queries are used, SELECT (read) and UPDATE (write).

The queries look like this:
SELECT * FROM <relation> WHERE unique1=?;

UPDATE <relation> SET unique2=? WHERE

unique1=?;

The question marks are replaced with uniformly distributed

random numbers from zero to ten million.

IV. PERFORMANCE MODELS

In this section, we focus on the modeling aspects of

database servers. The objective is to develop a performance

model for the database server that captures the dynamics

during high loads. The performance model can be used in

resource optimization schemes, as admission control systems,

in order to maximize the throughput of the database server,

while keeping some latency constraints. One of the challenges

for these database servers is that they have a write-heavy

workload, which means that the CPU is not the bottleneck

during high loads. This means that previous work on

performance modeling of server systems may not be

applicable since they assume CPU-intensive workload.

A. M/M/m model with load dependency (M/M/m-LDS)

We propose to add load-dependency to an M/M/m system.

In all load-dependent server models, the service time for a

request will be dependent on the number of concurrent

requests in the system. This load-dependency will model

effects of the operating system, memory use, etc., which may

cause service degradation when there are many concurrent

jobs in a computing system [23]. In the experiment section, we

will show that the M/M/m-LDS model accurately captures the

behavior of various database workload.

The properties of the load dependent M/M/m model

(M/M/m-LDS) are set by an exponential distributed base

processing time, xbase =1/m and a dependency factor, f. When a

request enters the system, it gets the base processing time xbase

assigned to it. A single request in the system will always have

a processing time of xbase. Each additional request inside the

system increases the residual work for all requests inside the

system (including itself) by a percentage equal to the

dependency factor f. When a request leaves the system all

other requests have their residual work decreased by f percent

again. This means that if n concurrent requests enter the

system at the same point, they will all have a processing time

of

 1() (1)n

s basex n x f    (1)

A special case is when f = 0. It means that there is no load

dependency, and all requests will have processing time xbase.

The system can process a maximum of m concurrent

requests at each time instance. Any additional request will

have to wait in the queue. New requests arrive according to a

Poisson process with average rate l.

Therefore, the system can be modeled as a Markov chain as

illustrated in Figure 5.

The average service rate of the system depends on the

number of concurrent requests in the system, , derived as

follows:

 1

1

(1) 0

(1)

k

k

m

k

f if k m

m
if k m

f

m

m

m






   


 

 



 (2)

By solving the balance equations, stationary probability

distribution of existence of k concurrent requests in the system

is calculated as below:

(1)

2
0

(1)()
2

0

0(1)
!

(1)
!

k

k k

k

k

m
m k

k m

if k mf
k

f if k m
m m

l

m




l

m




 



  
  

   



 


 
     



 (3)

Figure 5. Illustration of M/M/m-LDS model as a Markov chain.

As the sum of the probabilities of all possible states equals

to one, 0
can be derived as follows:

0

0 (1)

2
(1)1

2
1

1

1

1

(1)

1 (1)
! (1)!((1))

kk

k m m m

k km

m
k

f

f
k m m f




l l

m
m m

m l












 


   

   
     

  





 (4)

The stability condition in this case is

1(1) 1mf
m

l

m

  (5)

The average number of requests in the system, N, can be

calculated as below:

(1)

1 2

1

(1)

2

1

1 0

0

2 12

2 01 2

(1)

(1)!

(1) ((1)(1))

(1)!((1))

m m

k

k

k k k

m

k

m

m

m

N k N N

f

N
k

f m m f

N
m m f



l

m


l
m l m

m


m l

















   

 
 

 


 
    

 
  





 (6)

Finally by means of Little’s theorem [30], the average time

each request spends in the system, T, can be derived as

follows.

N
T

l


(7)

B. M/M/m/n model with load dependency (M/M/m/n-LDS)

In case that the queue is limited to n positions, the

probability for an empty system, 0, can be determined as

follows. This queuing system is named as M/M/m/n-LDS.

2

0

1
(1)

2

1

1

1 1
1

12 2

1

1
(1)

2

1 1

1

(1)

1
!

(1)

!((1))

(1)

(1)!((1))

k
k k

m

k

m m mn n
n m

n n m m

m m
m

m m

I II III

f

I
k

f
II

m m f m

f
III

m f m



l

m

l

m l m

l

m l m







   
 

 



 


 

 
 

  




 


 

  


 (8)

Further, the average number of requests in the system is as

follows:

0 1 2 k

0 0 0 0 0

l l l l l

m 2

(1)f

m

 2

3

(1)f

m


1(1)k

k

f

m


(1)

(1)k

k

f

m



m m+1

0 0 0

l l l

1(1)m

m

f

m


1(1)m

m

f

m
 1(1)m

m

f

m


 

  

   

   

2

1 2 3

1 2 3

2

1

2

2

1 2

1
(1)

2
01

1

0

1 1
1

2 2
2 2 2

2 11
2 2 2

1 1
1 3

` 1
2 2

2

1 1
`

2 2

2

(1)

!

1

1

1
1

1 1 (1)

n n n

D D D

n

n

k
k k

m

k

m m

mm

n m n
m m mn n

m m mn nm

N N N

k f

N
k

N N Nf
N

N N Nm f m

N n m f
m

N m f n m f

l


m

m

l m

l
l

m

m







 



  
 

    
 

  

 

 
  

 

 
 

   

   
      

  

    



      
 

 
 

  
 

 

 

 

3

1

2

2

1 1

1
12

2
2

1
1

2
11

1 1
2

2

1

1

2

1

1 1 (1) 1

1
1

1 ! 1
!

1 1
1

n

D

D

n m n

m

m m m

k

k k

m m
m m m

k

m mn n m

n m

m

N f m f m f

f

N f m f m
m k

f
N

mm

l

m

l
l m m

m

l

m
l m

l

m

   
 
 






 



  



    
         

 
       

 

  
  

            
 
 
 

        
   
 



 
 

  

 
3

1
1 1

2

1

2

! 1

1
D

m m m

m
m

f m f m

f
N m

m

l m

l
m

m

 



   

 
  

 
 

(9)

Finally, the average response time for a request can be

derived using Little’s theorem.

C. Parameter tuning

In a telecom system with latency constraints, the dominant

dynamic of the system is often characterized by the average

response time, T, when varying the average arrival rate, l.

Tuning of the parameters of the LDS model in a way that it

fits the measured data from the actual server system is a

necessary step in modeling of such systems. Assuming that l

and T are measureable, there are three main parameters for the

M/M/m-LDS model, m, f and mto tune in order to fit the

model on the measured data. Further, for the M/M/m/n-LDS

there is an extra parameter, n, to tune.

Therefore, in Figures 6-10, the effects of changing model

parameters on dynamics of average response time versus mean

arrival rate of queries are illustrated. In the rest of the paper,

this graph will be called the l/T graph. In each figure, it is

assumed that two (three) of the parameters are fixed and the

one that is mentioned is the variable. As the equations for

calculating the mean response times are rather complex and

the parameters are interdependent, more than one set of

parameters can be fit on the measured data. Thus using these

figures, a heuristic rule for tuning the parameters of the LDS

model can be achieved.

In the cases where the M/M/m-LDS model is used, the first

parameter to be tuned is the number of servers, m. As it can be

seen in Figure 6, by increasing the maximum number of

concurrent requests that can be processed in the system, the

linear part of the l/T graph will be shorter and the exponential

rising rate of the graph is increased. In this case it is assumed

that (f, m) = (0.6, 22).

The second parameter to be tuned is the dependency factor,

f. As shown in Figure 7, by decreasing the dependency factor,

the linear part of the l/T graph is increased, however, the

change is slower than in the case where m is decreased. On the

other hand the exponential rising rate of the graph is increased

in comparison with the case where m is decreased. Here, it is

assumed that (m, m) = (3, 22).

The effects of changing mon thel/T graph while fixing the

two other parameters is illustrated in Figure 8. As shown in

the figure, by increasing m in equal steps, the l/T graph will be

shifted to the right in equal steps. In this case, where (m, f) =

(3, 0.6), the rate of rising of the graph is decreased.

In cases where the M/M/m/n-LDS model is used, there will

be a saturation of the response times when the load is high

enough to overload the queue. Here, it is assumed that the

default values are (m, n, f, m) = (4, 15, 0.6, 22). Figure 9 and

Figure 10 show the effects when varying m and f respectively.

In each case, the values of the other three parameters are

constant. The general effect of changing the parameters is

similar as for the case with the infinite queue, with the

difference that the response times saturate when the load is

high.

Figure 6. Variations of the l/T graph for a special scenario with m

as variable when (f,m) = (0.7, 22).

Figure 7. Variations of l/T graph for a special scenario with f as

variable when (m,m) = (3, 22).

Figure 8. Variations of l/T graph for a special scenario with m as

variable when (m, f) = (3, 0.6).

Figure 9. Variations of l/T graph for a special scenario with m as

variable when (n, f, m) = (15, 0.6, 22).

Figure 10. Variations of l/T graph for a special scenario with f as

variable when (m, n, m) = (4, 15, 22).

D. Experiments

In order to validate the model, we have performed a series

of experiments in our testbed, as described in Section III. In

this case, the arrival rate of the unknown traffic was set to

zero. The dynamics of the database server highly depends on

the mix of requests, since SELECT and UPDATE queries

require different amount of server capacity. Therefore,

experiments with varying workload mix have been performed.

Figure 11, Figure 12, and Figure 13 show the results from

experiments where the arrival rate is varied from low load to

high load. The graphs show the average response times of

queries as a function of the arrival rate. We have fitted

M/M/m/n-LDS models for the data using the tuning steps

described in the previous section. In both scenarios, the CPU

utilization was very low, also for high loads. The maximum

CPU load was about 5%.

In order to model the network delays, we have added a bias

of 0.023 seconds in the average response times of the

proposed models.

In Figure 11, the workload is based on 100% UPDATE

queries. The fitted model in this case has the following

parameters (m, n, f, m) = (3, 81, 0.75, 37.1). Figure 12 depicts

the same experiment setup when using a mix of 25% SELECT

queries and 75% UPDATE queries. The fitted M/M/m/n-LDS

model in this case has the following parameters (m, n, f, m) =

(6, 73, 0.44, 35.2). In Figure 13 only SELECT queries are

used. In this case the model parameters are (m, n, f, m) = (6,

240, 1.39, 38).

The results verify that the proposed model can represent the

average dynamics of a database server with various workloads

very well

Figure 11. Performance of the M/M/m/n-LDS queuing model in

modeling steady state dynamics of a MySQL database server using

UPDATE queries.

Figure 12. Performance of the M/M/m/n-LDS queuing model in

modeling steady state dynamics of a MySQL database server using

mixed queries.

Figure 13. Performance of the M/M/m/n-LDS queuing model in

modeling steady state dynamics of a MySQL database server using

SELECT queries.

V. ADMISSION CONTROL

As part of the collaboration with Ericsson AB, we have

designed an admission control mechanism for the measurable

traffic to the NEs, as illustrated previously in Figure 3. As a

direct effect of this work, a modified version of the control

mechanism has been implemented in the Ericsson product. In

this section, the controller design and its validation are

described.

A. Control structure

The MSS includes a control system, as illustrated in Figure

14, which should ensure that the load on a specific NE is kept

at an acceptable level. The control objective is to keep the

mean response times of the NE queries below a desired value

while maximizing the throughput. The control actions must be

based on a limited amount of control information, due to the

standardized protocols and the layered software architecture.

The control system includes a controller and a gate.

The controller uses a response time reference value, Tref,

and measurements to determine an acceptable workload to the

database server. The acceptable workload is defined by the

normalized rate of admitted queries, lA, which corresponds to

the ratio of the average arrival rate of the admitted requests

over the higher bound of the average arrival rate of the

requests. It is desired that the control system performs robustly

in presence of fluctuations in the average arrival rate of the

queries sent to the database. Therefore, the controller design is

crucial for guaranteeing the control objectives.

The gate ensures the ratio lA of arriving queries is admitted

to the database. In the experiments, the gate rejects requests

that cannot be admitted. However, in the real product, this is

not feasible. Instead, the real product has a traffic shaping

mechanism that adds delays to the responses to the customer

administration system. Since the communication with the

customer administration system is synchronous, adding delays

to the responses will lower the arrival rate of requests.

Controller

Gate

lA

Tref

Queries
To database

Measurements

Reject

Figure 14. Control system

In this paper, we focus on the controller performance.

Therefore, the implementation of the gate is not the main

focus as long as it can be assumed that the gate actuates the

control signal accurately.

B. Controller design

We have designed a controller that can guarantee the

control objectives for the system. The controller, called the

Load-Adaptive Controller (LAC), only uses measurements of

the query response times. A classical PID controller [26]

includes one Proportional part (P), one Integral part (I), and

one Derivative part (D) that determines the control signal

based on the deviation of the input signal from the reference

value. For stochastic systems, the derivative part will amplify

the effect of high frequency noise in the response time error

and thus deteriorate the overall performance of the system.

Therefore, the LAC is based on a modified PI controller

with anti-windup. The LAC adapts its proportional gain with

the variations in the mean arrival rates of queries sent to the

database. The structure of the modified PI controller is

illustrated in Figure 15.

The total load of the NE is determined by the aggregated

arrival rates of the measurable and the unknown traffic

streams. However, assuming that the unknown traffic is

stationary during a limited time period and that the database

server behaves as a conservative queuing system [30], a

specific admitted ratio of the traffic will correspond to a

specific mean response time, as illustrated in Figure 16.

-

i

i

K

T
()dt

-

1

tT

+
Tref

Load

adaptive

Low pass

filter

l

+

+
lA

+

T

-

Figure 15. Load-adaptive controller (LAC)

Tref

T

lA

(llow,Tlow)

(lhigh,Thigh)

Figure 16. An illustration of the LAC calculations.

The controller continuously keeps track of two points in this

graph, one low point, (llow, Tlow), which is situated below the

reference response time, Tref, and one high point, (lhigh, Thigh),

which is situated above Tref. As the control system operates

only based on measured response times of NE queries, llow

guarantees that those measurements exist for all sampling

intervals. The upper limit for mean arrival rates of the queries

processed by the NE while not overloading the database is

represented by lhigh. The starting values for llow and lhigh are

set to 5% and 100% respectively.

The admittance rate of the incoming queries is iteratively

updated so that its corresponding response time meets the

desired value. Every sampling time, the controller calculates

the average response time, T, over the last period. If the

average response time during sampling period k, Tk, is too

high, (Tk>Tref), the high point is updated as (lhigh, Thigh) = (lk,

Tk) where lk is the normalized admitted arrival rate during

interval k. If the average response time during interval k is too

low, (Tk<Tref), the low point is updated as (llow, Tlow) = (lk, Tk).

It is now assumed that the optimal normalized arrival rate, lo,
which gives a response time of exactly Tref is in the interval

[llowlhigh]. Therefore, the next normalized admitted arrival

rate, lk+1, can be interpolated from these points using classic

geometry:

)(1 kref

lowhigh

lowhigh

kk TT
TT







ll
ll (10)

Therefore, the quotient (lhigh-llow)/(Thigh-Tlow) is used as

proportional gain in the P-part of the controller. The algorithm

will converge to the desired response time value assuming that

the arrival process is stationary or slowly changing. It is

obvious that the control gate cannot admit more queries than

the incoming ones. This upper limit will be noted in the

calculations and treated as a saturation limit of the control

signal.

The integral I-part of the controller is used when the P-part

is not enough for keeping the steady state error to zero. The

integral part uses a controller parameter, , which in

conventional PI controllers are equal to the proportional gain.

However, in this case, as the proportional gain changes

drastically due to the load-adaptive algorithm, using the

conventional PI structure will lead to a reduced phase margin

which will drive the system to unstable region. Therefore, Ki is

chosen as a static gain and its suitable value is determined in

tuning phase of the controller.

Further, the parameter is the integration time constant

and is the integrator‘s reset time constant in the anti-windup

mechanism. Anti-windup is added to avoid building up of the

integration part when the control gate is saturated or

completely open. It is desired to choose small values for so

that the integrator resets quickly. Generally, is chosen to be

less than .
A low pass filter is added after the proportional gain to

smoothen the response time error signal as it is very noisy.

The bandwidth of this filter should be suitably chosen so that

its effect on the in-band characteristics of the response time

errors is minor while attenuating high frequency components

of that signal.

C. Experiments

To investigate the controller performance, a Java

implementation of the controller was deployed as a web

application to a Glassfish application server, placed on the

server acting as traffic generator in Figure 4. The web

application also included the traffic generator that generated

requests for the web application. For each request, the

admission control decides whether to allow the request to be

sent to the database or rejected. The traffic generator for

unknown traffic did not have an admission control, and was

set to a specific average arrival rate that could be altered

during run time. All requests sent to the database server were

SELECT queries (according to the query structure described

earlier). The l/T graph for this particular scenario setting is

shown in Figure 17. The saturation of the system is not shown

in the graph for clarity reasons, since the operation region is

around the “knee”.

To test the performance of the controller, a scenario was

chosen where the load changed from slight overload to high

overload. The reference response time, Tref, was set to 0.2

seconds. According to the l/T graph in Figure 17, this

corresponds to a total arrival rate of approximately 40 queries

per second.

In this paper, two experiments are shown, one with a step in

the unknown traffic and one with a step in the measurable

traffic. The controller parameters were set to Ti=4, Ki=0.5,

Tr=1, and the sampling time h=0.5 seconds. Ti was determined

as a multiple of the sampling time, chosen so that the

controller was able to maximize the throughput while keeping

the mean response times below Tref. Ki was set equal to the

sampling time. To give the controller time to settle this state

was kept for 100 seconds after which a step in the traffic was

performed. The resulting graphs are shown in Figure 18 and

Figure 19. The graphs show the average dynamics from 100

runs.

In the first experiment, shown in Figure 18, the starting

arrival rate was set to 23 requests per second for the measured

traffic and 22 requests per second for the unknown traffic. The

step increased the arrival rate of the unknown traffic by 10 (to

32) requests per second, resulting in a more severe overload

situation.

Figure 17. l/T graph for the admission control experiments.

The second experiment, shown in Figure 19, was similar to

the first experiment. However, the arrival rate step was in the

measurable traffic instead. To obtain a similar control signal

response as in the first experiment, the step in the controllable

traffic had to be larger. Therefore, the observable arrival rate

was increased from 23 requests per second to 51 requests per

second.

Both experiments show a well-behaved controller, with a

reasonable settling time and smooth dynamics after the step.

VI. MONITORING AND ESTIMATION

The system in Figure 1 is complicated with many different

queues, caches and databases. Attempting to capture all details

gives models that are too complex for on-line control.

Extensive experience in the field of control has clearly

demonstrated that simple models that capture essential

behavior can be very beneficial [31]. One aspect of the

collaboration with Ericsson has been to explore if benefits can

also be obtained for monitoring and control of the MSS. A

crucial issue is what complexity of the models is required for

estimation and control of the MSS.

Response time and arrival rates are variables of prime

concern. The variables have strong variations, which can be

reduced by averaging. A more effective way is to construct

estimators that exploit the dynamic behavior of the system.

Exploration of such estimators has been one of the goals of the

project.

A key feature of the system shown in Figure 1 is that there

are two traffic streams. The measured traffic, generated by the

customer administration system has a known arrival rate lc,

can be controlled. The unknown stream, which is created by

the mobile phone users, has an arrival rate lu that cannot be

controlled. Monitoring and control of the system can be

improved if good estimates of the average service time are

available.

An abstraction of the system in Figure 1 is shown in Figure

20, where an estimator and the controller have been included.

In this section, we will focus on the estimator, which only has

access to measurements of the measured arrival stream l and

the response time T. All actions by the NEs and the MSS have

been represented by one queue that represents the aggregated

behaviors.

Figure 18. Performance of the LAC with step in unknown traffic.

Figure 19. Performance of the LAC with step in observable traffic.

The queue length is represented by the variable x, which

captures the aggregated behavior of many different queues in

the real system. The variable x can be interpreted as a virtual

queue length. The queue length cannot be measured. The

actual response time T and the actual arrival times can,

however, be measured. Variations in x reflect changes in the

system‘s load.

A. Flow Model

To model the system, we will make an additional

abstraction by assuming that the variables x and T are

continuous and that they vary continuously in time. The

behavior of the system can then be captured by the simple

flow model:

)(max xf
dt

dx
ml  (11)

where x is the virtual queue length,lcis the known arrival

rate, lu is the unknown arrival rate, mmax is the maximum

service rate and f is a monotone function with the range [0, 1].

The response time is given by

))(1()1(00  ftxtT (12)

where t0 = 1/mmax is the average time to serve one job when the

queue is empty and  is the normalized service rate or the

utility =l/mmax.

Controller and

Estimator

l lc

lu

T

x mmax

Figure 20. Schematic diagram of an abstraction of the MSS in

Figure 1 with a controller and estimator.

The response time goes to infinity as l approaches mmax if

the range of the function f is [0, 1]. The function f gives

significant freedom in adjusting the behavior to real queue

behavior.

The model (11), (12) has been used extensively to model

queuing systems [33]. The simple M/M/1 queue can be

represented by (12) with f = x/(x + 1) [32].

Even if the model (11), (12) is simple it captures some

important features of real queuing systems, for example the

fact that response time increases with queue length. The model

also captures the behavior that the rate of change of the

response time increases with increasing arrival rate. The

behavior of the system can be shaped by the function f.

 In the project, we have investigated simulated models with

servers and we have demonstrated that it is possible to find

functions f which matches the steady state behavior of

simulated systems. An illustration is given in Figure 21.

B. Estimation algorithm

There are significant variations in the arrival and response

times due to their discrete nature. To monitor and control the

system it is necessary to smooth these variations. For example,

the average arrival rate of the controlled stream can be

estimated the simple exponential smoother









ic

iaii

t

thktt

ˆ1ˆ

)ˆ(ˆˆ
3

l
 (13)

where ti is the arrival time and ha is the time since the last

arrival update.

One advantage with the model (11), (12) is that it is

possible to use Kalman filtering [31] to combine the model,

which captures the gross behavior of the queuing system, with

measured data.

If continuous data was available, an extended Kalman filter

for the service time is given by

))ˆ1((

))ˆ1(()ˆ(
ˆ

02

01max

xtTk
dt

d

xtTkxf
dt

xd

u

uc





l

mll

 (14)

This filter will capture the behavior that response time

increases with increasing queue length and arrival rate. The

detailed behavior can be shaped by the function f.

It must be considered that the real measurements are events

that represent arrival of a request or a completed response. To

deal with this, we have developed an event-based Kalman

filter.

Figure 21. Service times for the operations SELECT (left) and

UPDATE on an SQL server and predictions based on the model (12)

with f(x)=(1/(1+x))n, n = 1.5 and mmax = 880 for SELECT and n =

0.15 and mmax = 132 for UPDATE.

At arrivals, the queue length is updated according to the flow

model:

))ˆ(ˆˆ(ˆˆ
max xfhxx uca mll  (15)

This difference equation is simply a forward Euler

approximation of (11). Equation (15) is simply a prediction of

x based on the model (11). Information about x is obtained

when a service is completed. The queue length and the

unknown arrival rate are then updated as

)ˆ(ˆˆ

))ˆ()ˆ((ˆˆ

2

1max

TTkh

TTkxfhxx

duu

ucd









ll

mll
 (16)

where hd is the time since the last departure update. The

arrival rate can be estimated because it results from the model

(11) and (12) that the arrival rate is observable from a

measurement of service time [31].

C. Experiment

The Kalman filter estimator was evaluated using a discrete-

event simulation program written in Java, The program

simulates a single server queue with exponentially distributed

service times with mean mmax=100 requests per second. The

queue has two arrival processes, representing the measurable

and unknown traffic. The Kalman filter has been evaluated for

a number of scenarios validating its performance. However, in

this paper we show the results of one specific scenario.

In this scenario, the unknown arrival process was a

stationary Poisson process with mean 42.5 requests per

second. The measurable arrival process was basically a

Poisson process with changing average rate. The arrival rate,

l, was the sum of one constant part and one part represented

by a sine function as given by

)sin()(ktaCt l (18)

The parameters were chosen so that the system can handle

the workload over long time but with periodic overloads,

hence

maxmax
mm  Ca (19)

Therefore, the numerical values used in the simulations are

C=42.5 and a = 20 requests per second.

The differential equations describing the behavior of the

estimates between events were approximated using first order

forward Euler discretization.

Figure 22 shows the response times and the arrival rate,

both real values and estimates for a time period of 20 seconds

during the simulation. The estimate error is shown in Figure

23. It can be seen how the Kalman filter manages to follow the

real system during the quick rises in response time around

time 424 and 427. Here the mean square error is 4104.7 

for the period 415 < t < 420 and 2101.1  for the period

425 < t < 430. The mean square error for the entire experiment

is 2109.1  .

VII. CONCLUSIONS

Accurate control designs using control theory are essential

for resource management in computer systems. In this paper

we have presented work performed in collaboration with

Ericsson AB, investigating how control theory can improve

the performance of a commercial mobile service support

system. Together with Ericsson AB, we have identified three

major control challenges, and investigated solutions. The first

challenge is to find accurate performance models for the

system, with the objective to capture the system dynamics.

The second challenge is to develop an admission control

scheme that can handle unknown traffic and load surges. The

final challenge is to develop estimation methods for accurate

prediction of response times and arrival rates in systems with

unknown traffic.

In this paper, the challenges have been treated rather

independent of each other. However, the future goal is to be

able to use all solutions together, in order to improve the

system performance and speed up the development process.

The performance model could be tuned using real data and

then used for validating control designs, which is much easier

than implementing the designs in testbeds or the real system.

Also, in the future, the estimation algorithms should be

incorporated in the control system, improving the control

decisions.

ACKNOWLEDGMENT

The authors at Lund University are members of the Lund

Center for Control of Complex Engineering Systems (LCCC).

Maria Kihl and Anders Robertsson are members of the

Excellence Center at Linköping-Lund in Information

Technology (eLLIIT). The work is partly funded by the

Swedish Research Council, grant VR 2010-5864.

REFERENCES

[1] M. Kihl, P. Amani, A. Robertsson, G. Radu, M. Dellkrantz, and

B. Aspernäs, “Performance modeling of databases in

Telecommunication service management systems”, IARIA 7th

International Conference on Digital Communications (ICDT),

2012.

[2] B. Brawn and F. Gustavson. “Program behavior in a paging

environment”, AFIPS Fall Joint Computer Conference, pages

1019-1032, 1968.

[3] Crocus, “Systemes d'Exploitation des Ordinateurs”, Dunod,

Paris, 1975.

[4] Y. Diao, C. Wu, J. Hellerstein, A. Storm, M. Surendra, S.

Lightstone, S. Parekh, C. Garcia-Arellano, M. Carroll, L. Chu,

and J. Colaco, “Comparative studies of load balancing with

control and optimization techniques," American Control

Conference, 2005.

Figure 22. Kalman filter estimates of response times and estimation

of arrival rate.

Figure 23. Proposed Kalman filter’s response time prediction

error.

[5] Y. Fu, H. Wang, C. Lu, and R. Chandra, “Distributed utilization

control for real-time clusters with load balancing," IEEE

International Real–Time Systems Symposium, 2006.

[6] M. Kihl, A. Robertsson, M. Andersson, and B. Wittenmark,

“Control theoretic analysis of admission control mechanisms for

web server systems,” The World Wide Web Journal, Springer,

vol. 11, no. 1, 2008.

[7] X. Chen, H. Chen, and P. Mohapatra, “Aces: an efficient

admission control scheme for QoS-aware web servers,"

Computer Communication, vol. 26, no. 14, 2003.

[8] X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of multi–

tiered web applications using queuing predictor," 10th
IEEE/IFIP Network Operation Mangement Symposium, 2006.

[9] T. Voigt and P. Gunningberg, “Adaptive resource based web

server admission control”, 7th International Symposium on

Computers and Communications, 2002.

[10] M. Kjaer, M. Kihl, and A. Robertsson, “Resource Allocation

and Disturbance Rejection in Web Servers using SLAs and

Virtualized Servers”, IEEE Transaction on Network and Service

Management, Vol. 6, No. 4, 2009.

[11] W. Xu, X. Zhu, S. Singhal, and Z.Wang, “Predictive control for

dynamic resource allocation in enterprise data centers," 10th

IEEE/IFIP Network Operation Mangement Symposium, 2006.

[12] Z. Wang, X. Liu, A. Zhang, C. Stewart, X. Zhu, T. Kelly, and S.

Singhal, “AutoParam: automated control of application-level

performance in virtualized server environments", 2nd IEEE

International Workshop on Feedback Control Implementation

and Design in Computing Systems and Networks, 2007.

[13] R. Bianchini and R. Rajamony, “Power and energy management

for server systems,” IEEE Computer, vol. 37, no. 11, 2004.

[14] H. Claussen, L.T.W Ho, and F. Pivit, “Leveraging advances in

mobile broadband technology to improve environmental

sustainability”, Telecommunications Journal of Australia, Vol.

59, No. 1, 2009.

[15] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu, “Dynamic

voltage scaling in multitier web servers with end-to-end delay

control," IEEE Transactions on Computers, vol. 56, no. 4, 2007.

[16] E. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient

server clusters,”, Lecture Notes in Computer Science 2325.

Springer-Verlag Berlin Heidelberg, 2003.

[17] M. Kihl, A. Robertsson, and B. Wittenmark, “Performance

Modelling and Control of Server Systems using Non-linear

Control Theory”, 18th International Teletraffic Congress, 2003.

[18] J. Dilley, R. Friedrich, T. Jin, and J. Rolia, “Web server

performance measurement and modeling techniques”,

Performance Evaluation, Vol. 33, No. 1, 1998.

[19] D. A. Menascé and V. A. F. Almeida. Capacity Planning for

Web Services, Prentice Hall, 2002.

[20] R. D. van der Mei, R. Hariharan, and P. K. Reeser, “Web server

performance modeling”, Telecommunication Systems, Vol. 16,

No. 3, 2001.

[21] H. Perros, Y. Dallery, and G. Pujolle, “Analysis of a queueing

network model with class dependent window flow control,” 11th

Annual Joint Conference of the IEEE Computer and

Communications Societies, IEEE, pp. 968–977 vol.2, May 1992.

[22] A. Rak, and A. Sgueglia, "Instantaneous Load Dependent

Servers (iLDS) Model for Web Services," International

Conference on Complex, Intelligent and Software Intensive

Systems, 2010.

[23] Curiel, M. and Puigjaner, R., “Using load dependent servers to

reduce the complexity of large client-server simulation models”,

Performance Engineering, LNCS 2047, Springer-Verlag Berlin

Heidelberg, 2001.

[24] V. Mathur and V. Apte, “A computational complexity-aware

model for performance analysis of software servers”, IEEE

International Symposium on Modelling, Analysis and

Simulation of Computer and Telecommunication Systems

(MASCOTS), 2004.

[25] K. K. Leung, Load-dependent service queues with application to

congestion control in broadband networks, Performance

Evaluation, Vol. 50, Issue 1, October 2002, pp 27-40.

[26] K J. Åström and B. Wittenmark, Computer–Controlled Systems.

Upper Saddle River, NJ: Prentice Hall, 1997. Dover reprint

2011.

[27] J. Cao, M. Andersson, C. Nyberg and M. Kihl, “Web Server

Performance Modeling using an M/G/1/K*PS Queue”,

International Conference on Telecommunication, 2003.

[28] M. Kihl, G. Cedersjö, A. Robertsson, B. Aspernäs,

“Performance measurements and modeling of database servers”,

Sixth International Workshop on Feedback Control

Implementation and Design in Computing Systems and

Networks, 2011.

[29] D.J. DeWitt. The Wisconsin benchmark: Past, present, and

future, The Benchmark Handbook for Database and Transaction

Processing Systems, 1, 1991.

[30] L. Kleinrock, Queueing Systems, Volume I: Theory, Wiley

Interscience, New York, 1975.

[31] K. J. Åström and R. Murray. Feedback Systems - An

Introduction for Scientists and Engineers. Princeton University

Press, 2008.

[32] D. Tipper and M.K. Sundareshan, “Numerical methods for

modeling computer networks under nonstationary conditions”,

IEEE Journal on Selected Areas in Communications, 8(9), pp

1682-1695, Dec 1990.

[33] Carson E. Agnew, “Dynamic modeling and control of

congestion-prone systems”, Operations Research, 24(3), pp.

400-419, 1976.

http://www.eit.lth.se/index.php?uhpuid=ssr.mki
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=532468&fileOId=625315
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=532468&fileOId=625315
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=532468&fileOId=625315
http://www.eit.lth.se/index.php?id=260&uhpuid=ssr.mki
http://www.eit.lth.se/index.php?id=260&uhpuid=dhs.guc
http://www.eit.lth.se/index.php?id=260&uhpuid=bnms.aro
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=2018672&fileOId=2018673

