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Stroke genetics includes several topics of clinical interest, including (1) molecular genetic 
variations affecting risk of monogenic stroke syndromes; (2) molecular genetic variations 
affecting risk of common stroke syndromes, sometimes with specific effects on risk of spe-
cific main types of stroke or subtypes of ischemic and hemorrhagic stroke; (3) genetics of 
conditions associated with stroke risk e.g. white matter hyperintensities, atrial fibrillation 
and hypertension; (4) hereditary causes of familial aggregation of stroke; (5) epigenetic im-
pact on protein expression during acute brain injury; (6) genetic influence on stroke recov-
ery; and (7) pharmacogenetics. Genetic research methods include candidate gene studies; 
Genome Wide Association Studies; family studies; RNA and protein analyses; and advanced 
computer-aided analytical methods to detect statistically significant associations. Several 
methods that could improve our knowledge of stroke genetics are being developed e.g.: 
Exome content analysis; Next-generation sequencing; Whole genome sequencing; and Epi-
genetics. During 2012-2014, several Single Nucleotide Polymorphisms (SNPs) have been re-
lated to common ischemic stroke risk. Certain SNPs have been associated with risk of spe-
cific ischemic stroke subtypes such as large vessel disease and cardiac embolism, particular 
subtypes of intracerebral hemorrhage (ICH), especially lobar ICH, and with prognosis after 
ICH. Large international studies on stroke recovery and exome content are ongoing. Advanc-
ed mathematical models have been used to study how several SNPs can act together and 
increase stroke risk burden. Such efforts require large numbers of patients and controls, which 
is achieved by co-operation in large international consortia such as the International Stroke 
Genetics Consortium. This overview includes an introduction to genetics, stroke genetics in 
general, and different genetic variations that may influence stroke risk. It presents some of 
the latest reports on stroke genetics published in high impact journals. The role of pharma-
cogenetics, the current clinical situation, and future prospects will also be discussed.
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Introduction

The human genome
The human genome consists of 23 chromosome pairs i.e. in 

total 46 chromosomes. The DNA of these chromosomes con­
tain about 6 billion base pairs.1 The genome can be divided into 
the exon part, called the exome. This is the 1.5% of DNA that 

contains approximately 25,000 genes coding for about 100,000 
proteins in humans.2 The intron part is not coding for proteins 
but has regulatory properties. In addition, there is also mitochon­
drial DNA containing approximately 16,000 base pairs with 13 
protein coding genes.3 Each human cell contains hundreds or 
thousands of sets of this mitochondrial DNA.3
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Genetic variation
Genetic variation in humans may have several causes. The 

DNA in the genome itself can be altered. Epigenetic factors can 
influence the gene expression through variations in DNA meth­
ylation and variations of histones ­ proteins controlling the DNA 
string formation. DNA changes range from large alterations of a 
part of or of a whole chromosome ­ cytogenetic changes that 
are possible to detect on microscopic chromosomal examina­
tion and sometimes not compatible with life. Alterations of in­
termediate size are on a submicroscopic level. The smallest mo­
lecular changes are confined to variation of one single base pair 
­ a Single Nucleotide Polymorphism (SNP) where a nucleotide 
has been exchanged for another (Figure 1). Even though there 
are about 6 billion base pairs, only about 78 million ­ i.e. a small 
proportion of these base pairs have variations described as SNPs.4 
Today’s clinical molecular research is often heavily focused on 
SNP analyses and there is a risk that other alterations therefore 
remain unnoticed. It should therefore be kept in mind that oth­
er molecular DNA changes such as copy number variants (CNVs), 
repeats, insertions, deletions and microsatellites may also ac­
count for clinical genetic variation. Another question is how 
several variations may interact with each other and there is a 
need for advanced mathematical analytical methods utilizing 
powerful computer techniques to investigate such associations. 

It should also be considered how common a genetic variation 
is and how common the disease studied is. For a common stroke 
phenotype the genetic variant can be common, rare, or even 
private i.e. confined to one individual or family. The impact of 

the genetic variant may differ considerably: with a high pene­
trance and importance it may cause a monogenic syndrome, 
with less influence it may still contribute to commonly occur­
ring disorders with a more complex heritability.

Molecular genetic studies of stroke risk
One to two decades ago, molecular studies were often con­

ducted as linkage studies where markers such as microsatellites 
were used to identify areas related to risk. As an example, one 
study using microsatellite markers and SNP analyses reported a 
possible association between stroke and variations in the PD-
E4D gene.5 

An era of candidate gene studies followed the linkage studies. 
The idea is that by a logical and educated guess a candidate gene 
can be suggested as possibly related to variation in stroke risk. 
Numerous studies on this have been published, but many stud­
ies have been unsuccessful or not been possible to repeat. Genes 
of interest have included e.g. PDE4D6 and genes associated with 
cardiovascular disease.7,8 Many of the candidate gene studies have 
been on specific SNPs in the area of interest in the genome.

During the last decade many genome wide association stud­
ies (GWAS) have been performed. In a GWAS, an agnostic ap­
proach is used. A large number of SNPs, often in the range of 
500,000 to 5,000,000 are examined throughout the whole chro­
mosomal genome. Because so many SNPs are examined at the 
same time an adjustment for multiple testing has to be done. 
Therefore a p value threshold of 5 × 10­8 ­ corresponding to a 
Bonferroni correction for 1,000,000 tests ­ is often set as a sig­

Figure 1. Examples of DNA variations in 
the human genome. 
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nificance level for GWAS investigations. It could be questioned 
whether this level should always be the same or if it should be 
adjusted because of e.g. the actual number of SNPs being ana­
lyzed. GWAS examinations have now yielded several very inter­
esting results for ischemic stroke risk (Table 1). More studies 
are ongoing.9 Several overviews on stroke genetics have recently 
been published.10,11

Molecular genetic variations affecting 
risk of monogenic stroke syndromes

Today, there are several monogenic stroke syndromes that 
have been related to molecular genetic variation. Examples of 
monogenetic stroke syndromes are given in Table 2. Compre­
hensive accounts of have been published.11,22,23 Information on 
the Internet is available at e.g. Genetics Home Reference at http: 
//ghr.nlm.nih.gov/. 

Molecular genetic variations affecting 
risk of common stroke syndromes, 
sometimes with specific effects on 
specific main types of stroke or subtypes 
of ischemic and hemorrhagic stroke

Ischemic stroke
The three main ischemic stroke syndromes: large vessel dis­

ease, cardioembolic stroke and small vessel disease have been 
studied separately regarding genetic risk. Several molecular ge­
netic variations have been reported to be related to large artery 
disease and to cardioembolic stroke (Table 1). Some findings 
have been reported in several studies e.g. HDAC9 related to 
large vessel disease13,15 and PITX2 and ZFHX3 related to car­
dioembolic stroke.13,14 The effect sizes of the identified SNPs 
have been modest; e.g. for a HDAC9 variant and stroke related 
to large vessel disease: odds ratio (OR) = 1.42 (95% confidence 

interval [CI] = 1.28­1.57); and a PITX2 variant and cardioem­
bolic stroke OR1.32 (95% CI = 1.20­1.46).15 One observation 
is that the GWAS detected variations related to common isch­
emic stroke caused by small vessel disease have been fewer or 
absent in GWAS studies of ischemic stroke. The explanation 
for this is unknown but it has been suggested that small vessel 
disease may represent several different phenotypes and thus be 
a more heterogeneous condition24 and also be subject to differ­
ent definitions,25 whereas large artery disease and cardioembolic 
stroke may be less heterogeneous. The relation of genetic vari­
ants to overall ischemic stroke has also been reported but with 
less consistency. There is a trade­off between very specific phe­
notyping e.g. defined types of ischemic stroke and the number 
of subjects that can be included in the genetic studies. It seems 
clear today that ischemic stroke is not caused by one common 
pathogenetic factor, however there seems to be considerable 
overlap between the different subtypes of ischemic stroke re­
garding risk factors such as e.g. hypertension. It has been shown 
that a risk score taking several genetic variations related to isch­
emic stroke risk into account is associated with ischemic stroke 
overall.26

Intracerebral hemorrhage (ICH)
Also hemorrhagic stroke risk has been related to genetic vari­

ations (Table 3). The risk of lobar intracerebral hemorrhage has 
been firmly related to variations in the APOE gene, especially 
the ε2 or ε4 alleles. There are indications that although variations 
in the COL4A1 region have been related to monogenic related 
ICH, other variations in the same region may be related to a 
somewhat increased risk of sporadic ICH.27 A detailed descrip­
tion of genetic risk of sporadic ICH has recently been published.11

Genetics of conditions associated with 
stroke risk - intermediate phenotypes - 
e.g. white matter hyperintensities, atrial 
fibrillation, and hypertension

Several intermediate phenotypes are related to stroke risk and it 
is therefore of interest if genetic risk for these phenotypes is also 
associated with increased stroke risk either independently or 
through the intermediate phenotype. As mentioned above, a ge­
netic risk score considering genetic variations linked to intermedi­
ate phenotypes related to stroke has been associated with overall 
risk of ischemic stroke.26 The same reference contains a compre­
hensive supplemental table listing genes related to intermediate 
phenotypes indicating stroke risk. Another study reported that a 
risk score including genetic variations related to stroke and its risk 
factors could improve the prediction of future stroke compared 

Table 1. Examples of published results from genome-wide studies, showing 
SNPs related to ischemic stroke risk

SNP in chromosome Gene region Relation to Reference

4q25 PITX2 CE, All IS 12-14
7p21 HDAC9 LVD, All IS 13-15
6p21.1 SUPT3H/CDC5L LVD 16
9p21 CDKN2A/CDKN2B/ANRIL LVD, All IS 13,17
9q34 ABO blood locus LVD and CE 18
11q22 MMP12 LVD 19
12p13.33 NINJ All IS 20
12q24.12 NAA25/C12orf30 All IS 14
16q22 ZFHX3 CE 13,21

LVD, large vessel disease; CE, Cardioembolic Embolism; IS, Ischemic stroke.
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Table 2. Examples of monogenetic stroke syndromes

Syndrome Abbreviation Chromosome Gene region Symptoms

Cerebral autosomal dominant subcortical  
   infarcts and leukoencephalopathy

CADASIL 19p13.2-p13.1 NOTCH3 Migraine, cognitive problems, depression, seizures, stroke

Cerebral autosomal recessive arteriopathy  
   with subcortical infarcts and  
   leukoencephalopathy

CARASIL 10q26.3 HTRA1 Spasticity, stroke, cognitive problems, scalp hair loss, back pain 

Fabry disease X GLA Episodes of pain in hands and feet, angiokeratomas, corneal opacity,  
   renal affection, heart affection, stroke

Sickle cell disease 11p15.5 HBB Anemia, pain episodes, infections, affection of lungs including  
   pulmonary hypertension, kidneys, spleen, and brain including stroke

Hereditary endotheliopathy with  
   retinopathy, nephropathy and stroke 

HERNS 3p21.31 TREX1 Visual loss, cognitive problems, stroke-like episodes, renal dysfunction

Marfan syndrome 15q21.1 FBN1 Lens dislocation, cataract, myopia, aortic aneurysm, aortic dissection,  
   cerebral aneurysms, cerebral hemorrhage, arthritis, tall habitus,  
   pectus excavatum, dural ectasia

Ehlers Danlos syndrome type IV 2q31 COL3A1 Joint hypermobility, cerebral aneurysm, arterial dissection, short stature,  
   thin skin that easily bruises, intestinal and uterine fragility, joint  
   subluxation and pain

Pseudoxanthoma elasticum 16p13.1 ABCC6 Papules in flexor areas of skin, visual loss, hypertension,  
   arterial dissection

Homocystinuria 21q22.3, 1p36.3  
and other

CBS, MTHFR,  
and other

Varies. E.g. cognitive problems, myopia, lens dislocation, osteoporosis,  
   thromboembolic events

Neurofibromatosis type 1  
   (von Recklinghausen’s disease)

17q11.2 NF1 Café-au-lait skin spots, neurofibromas, optic glioma, cerebral ischemia,  
   intracranial aneurysm

von Hippel-Lindau syndrome 3p25.3 VHL Hemangioblastoma in brain, spinal cord, retina. Intracerebral  
   hemorrhage, pheochromocytoma, hearing loss

COL4A1-related brain small vessel disease 13q34 COL4A1 Hemorrhagic stroke, white matter changes, seizures, migraine
Hereditary hemorrhagic telangiectasia  
   (Osler-Weber-Rendu disease)

Several Several Telangiactasia, arteriovenous malformaitons in lungs, brain, liver  
   intestines. Intracerebral hemorrhage. Ischemic stroke

Hereditary cerebral amyloid angiopathy 21q21.3  
and other

APP and other Lobar intracerebral hemorrhage, cerebral microbleeds, cognitive  
   problems

Familial cerebral arterial aneurysms Several Several May be associated with other syndromes eg Marfan syndrome,  
   Polycystic kidney disease

Cerebral cavernous malformations 7q21.2, 7p13  
and other

KRIT1, CCM2  
and other

Cerebral hemorrhage, seizures, brainstem symptoms, cranial nerve  
   symptoms

Mithochondrial encephalopathy lactic  
   acidosis and strokelike episodes

MELAS Mitochondrial DNA Several Muscle weakness, headache episodes, seizures, strokelike episodes

Table 3. Examples of SNPs related to ICH risk

SNP in chromosome Gene region Relation to Reference

19q13 APOE Lobar ICH 28
1q22 PMF1/SLC25A44 Non-lobar ICH 29
13q34 COL4A1 ICH 27
6p21 KCNK17 ICH 30

SNP, single nucleotide polymorphism; ICH, intracerebral hemorrhage.

with using a risk score based only on clinical information.31 Some 
intermediate phenotypes are discussed in more detail below.

White matter hyperintensities (WMH)
The presence of white matter lesions has been related to stroke 

risk.32,33 Therefore it is possible that genetic changes resulting in 
WMH may also result in increased risk of stroke. The heritabili­
ty of cerebral white matter hyperintensities is high.34 An associa­

tion between the 17q25 locus and white matter hyperintensity 
volume has been reported.35,36 This association has also been 
reported in subjects with stroke although there was not a clear 
relation to the presence of small vessel disease manifested as la­
cunar infarction.37 It is likely that several different genetic varia­
tions contribute to the risk of WMH and a recent study of pa­
tients with CADASIL reported a polygenic risk score for WMH 
volume, illustrating that examination of a subgroup of individu­
als with high likelihood of a condition can be used to detect ad­
ditional traits contributing to risk of the condition.38 ApoE ε4 
carriers have been reported to have higher subcortical white 
matter lesion volume.39 However, the effect of the APOE ε4 al­
lele on white matter integrity is uncertain.40 Variations in the 
NOTCH3 gene may also influence the risk of WMH or small 
vessel disease in individuals without the typical CADASIL syn­
drome.41
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Atrial fibrillation (AF)
Several genes have been related to AF.42­44 The mechanisms 

through which these genes contribute to AF risk are largely un­
known although a recent study showed a relation between some 
of these genes and prolonged atrial action potential duration in 
an animal model.43 It seems as if adding a genetic risk score of 
gene variations related to AF in patients with AF improves the 
risk assessment for stroke in addition to the often used CHADS2 
score in these patients.45 

Hypertension
Hypertension is one of the most important risk factors for 

stroke, both ischemic and hemorrhagic. Blood pressure has heri­
tability estimates of 30%­50%.46 Several genes have been report­
ed to be related to hypertension in GWAS studies of patients 
without or with stroke. A risk score of 29 such SNPs was related 
to stroke, not further subtyped, as well as to hypertension and to 
coronary heart disease.47 It is of interest that an age related effect 
of genes related to a certain phenotype e.g. blood pressure has 
been reported48 and it is possible that such age related effects are 
of importance also for other phenotypes including stroke. 

In another study, a risk score consisting of 39 SNP associated 
with blood pressure levels was related to ICH, especially deep 
ICH rather than lobar ICH, supporting the concept that elevat­
ed blood pressure may be more prone to cause deep ICH.49 It 
was discussed if gene variations influencing blood pressure may 
be of importance for stroke risk also in individuals with seem­
ingly “normal” blood pressure.49

Ischemic heart disease
The situation for ischemic heart disease (IHD) is similar to 

that for hypertension. Many traditional risk factors are shared 
between stroke and IHD. Several genetic variations have been 
associated with ischemic heart disease.50 A variation in the chro­
mosome 9p21 region has been related to ischemic stroke.17 A 
subsequent follow­up study was not able to find additional vari­
ants from the Cardiogram study to be associated with stroke 
overall or main ischemic stroke subtypes although the number 
of patients in the individual subtypes were small.7 A much larger 
GWAS study could detect that several genetic variations were 
shared between ischemic stroke ­ especially the large artery dis­
ease subtype, and coronary heart disease.51

It can be expected that in the near future new reports on stroke 
risk scores including several intermediate phenotypes for stroke 
risk, also other than discussed above, will be published using 
more elaborate statistical methods, larger number of genetic 
variants as well as larger number of individuals. Another meth­
od to consider for future studies is that if patients with a very 

specific phenotype can be detected this may decrease the num­
ber of subjects needed to detect genetic influence on cerebro­
vascular risk as illustrated in the study on CADASIL and WMH 
volume mentioned above.38

Hereditary causes of familial aggregation 
of stroke

Apart from molecular analyses, family studies and twin stud­
ies are important tools to study heritability of stroke. Such stud­
ies clearly indicate heritability of stroke. One study reported a 
prevalence of stroke or TIA of 12.3% among first degree rela­
tives of stroke patients compared with 7.5% among first degree 
relatives of control subjects.52 Another study showed that oc­
currence of stroke in a parent by 65 years of age was associated 
with a 3­fold increase in risk of stroke in their offspring.53 Twin 
studies suggest that a genetic component of stroke risk is pres­
ent.54,55 However, subtyping of ischemic stroke and other types 
of stroke in twin studies would be useful to increase the possi­
bility to better understand heritability of ischemic stroke.56

Also GWAS studies have through statistical analyses shown 
evidence that there is a hitherto unexplained heritability com­
ponent in the risk of ischemic stroke of about 38%, and that this 
may vary between different subtypes of ischemic stroke.8 Future 
family studies of stroke should preferably include stroke sub­
types and also focus on not only first­degree relatives but also 
somewhat more distant relatives of the probands.

Epigenetic impact on expression of 
different proteins before, during and after 
acute brain injury

The genetic expression can be influenced by other causes than 
changes of the DNA content.57 Such influences may be referred 
to as epigenetic mechanisms (Figure 2). One such mechanism 
is that gene transcription can be regulated by e.g.:

­ Methylation of DNA58

­ Histone modifications58/ Histone deacetylases (HDACs)
­ Micro­RNA59

­ Other
It is possible to influence the above mechanisms with phar­

macological agents. E.g. valproate is a HDAC inhibitor and has 
been suggested to perhaps inhibit atherosclerosis. However, 
much more studies are needed to examine if and how it is possi­
ble to treat patients by modifying these mechanisms.

The role of non­protein coding RNA (ncRNA) is intriguing. 
The DNA coding for ncRNA is in the intronic portion of the 
genome, which is the vast majority of the DNA. Several classes 
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of non­protein coding RNA exist, among these micro­RNA. 
Micro­RNA can regulate gene expression and is considered to 
be an epigenetic regulator.59 Micro­RNA has been suggested to 
regulate several mechanisms in brain ischemia and therefore be 
of importance for recovery after stroke.59 These regulatory mech­
anisms may also be involved in the situation of cerebral ischemia 
with influence on cell death as well as on regeneration after stroke.60

The gene expression for coding of different proteins during 
pathological conditions is of importance for the response of the 
individual subject. Indeed microarray analyses indicate that there 
is a very dynamic response varying both with time after stroke 
as well as between the core and the periinfarct areas of the isch­
emic area of the brain.61 An additional therapeutic epigenetic 
method suggested is to regulate endogenous or exogenous stem 
cells to respond to cerebral injury in stroke.62 

Genetic influence on functional outcome 
and recovery after stroke

Recovery after stroke begins immediately after the stroke on­

set. Many different biological responses are involved after isch­
emic stroke and these vary in time and between different areas 
of the affected brain.63 Several of these responses may be of in­
terest from a genetic point of view. These include epigenetic 
mechanisms ­ discussed above ­ that can be targeted for treat­
ment in the varying temporal phases after ischemic stroke on­
set.60

It is also of interest whether genetic variation may influence 
the possibility and degree of functional outcome after stroke. 
Different drug therapies have been tried as treatments after stroke 
but the responses to these therapies vary between patients. E.g. 
genetic polymorphisms affect the response to L­dopa treatment.64 
The brain derived neurotrophic factor (BDNF) is involved in 
brain repair and plasticity and a variation of a SNP (Val66Met) 
in the BDNF gene has been shown to be related to improved re­
covery although the early response was in the opposite direc­
tion.65 The APOE ε4 has been related to poorer outcome.66 Other 
examples of genes related to functional outcome include IGF1,67 
COX-2 and GPIIIa.68 

After lobar ICH, APOE ε2 has been related to poorer out­

Figure 2. Examples of epigenetic mechanisms. Image courtesy of National Institutes of Health (public domain). http://commonfund.nih.gov/sites/default/files/epi-
geneticmechanisms.pdf.
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come.69 But also other genes are of interest for outcome after 
ICH: an heritability estimate of 90­day ICH mortality for non­
APOE loci using genomewide complex trait analysis has been 
calculated to about 41%.70

Apart from the study by Devan et al.,70 all the above mentioned 
studies on functional outcome and recovery have been candi­
date gene studies. No large GWAS examining the genetic effect 
on functional outcome after stroke has been published yet. How­
ever, such a study is now ongoing ­ the Genetics of Ischemic 
Stroke Functional Outcome Study (GISCOME) and results 
are expected within the coming year.71

Pharmacogenetics

Pharmacogenetics is a research area holding large promise to 
be of importance both for stroke and other diseases in the years 
to come. As has been discussed above, both epigenetics and 
SNP variations may be used for therapeutic considerations in 
stroke. Two additional examples are discussed below: Throm­
bolytic therapy with tissue­type plasminogen activator (tPA) 
and anticoagulation therapy with warfarin or dabigatran.

Thrombolytic therapy
A study examined 140 candidate SNPs in 497 tPA­treated 

ischemic stroke patients and showed that IL1B and vWF vari­
ants were associated with early recanalization.72 The vWF vari­
ant was also related to FVIII activity in a subsequent functional 
study.72 The same group has published results showing that a 
genetic variation rs669 (Val1000Ile) in the alpha­2­macroglob­
ulin gene is related to hemorrhagic transformation after tPA 
treatment.73 This indicates that genetic information may possi­
bly be used in the future to predict the response of tPA treatment 
in ischemic stroke. Such a prediction may help in decision­mak­
ing regarding iv tPA or alternative treatments such as endovas­
cular treatment. 

Anticoagulation therapy with warfarin or dabigatran
The treatment with anticoagulants to prevent cardioembolic 

stroke is highly efficient in a population of individuals with atrial 
fibrillation and increased risk. However the metabolism of the 
anticoagulant administered may vary for several reasons where 
a genetic variation may be one of these. Cytochrome P­450 en­
zyme CYP2C9 gene variants as well as variants in VKORC1, 
coding for vitamin K epoxide reductase (VKOR) are related to 
warfarin metabolism but the usefulness of genetic testing regar­
ding these variants for guidance on initiation of warfarin treat­
ment has been debated.74 The future may lead to other conclu­
sions ­ in a very recent study association with APOE ε2 and AP-

OE ε4 for lobar warfarin related ICH was reported.75

In the Randomized Evaluation of Long­term Anticoagulation 
Therapy (RE­LY) study a GWAS was performed in 2944 RE­
LY patients and showed that the CES1 rs2244613 minor allele  
was associated with lower active dabigatran metabolite levels.76 
This minor allele was associated with a lower risk of any bleed­
ing in the dabigatran treated patients but there was no reported 
association with ischemic events. The value of genetic testing 
and clopidogrel treatment is also of interest. Clopidogrel is me­
tabolized to its active metabolite by CYP2C19 but the clinical 
utility for genetic testing to detect influence on CYP3C19 activ­
ity is still under debate.77

Conclusion

Stroke genetics today is involved in many fields, including 
risk, outcome and pharmacogenetics. The research on stroke 
genetics is progressing with high pace and is expected to con­
tinue to do so during the next decade. Stroke subtyping is very 
important for all these areas. New methods are emerging in­
cluding detailed exome content analysis, exome sequencing, 
whole genome sequencing and advanced statistical analytical 
methods. Large numbers of subjects are often needed in genetic 
studies and therefore co­operation in international consortia 
such as the International Stroke Genetics Consortium (ISGC) 
­ www.strokegenetics.org is necessary.
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