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Type 2 diabetes mellitus (T2D) is a slowly progressive disease that can be postponed or
even avoided through lifestyle changes. Recent data demonstrate highly significant corre-
lations between DNA methylation and the most important risk factors of T2D, including
age and body mass index, in blood and human tissues relevant to insulin resistance and
T2D. Also,T2D patients and individuals with increased risk of the disease display differential
DNA methylation profiles and plasticity compared to controls. Accordingly, the novel clues
to DNA methylation fingerprints in blood and tissues with deteriorated metabolic capac-
ity indicate that blood-borne epigenetic biomarkers of T2D progression might become a
reality. This Review will address the most recent associations between DNA methylation
and diabetes-related traits in human tissues and blood.The overall focus is on the potential
of future epigenome-wide studies, carried out across tissues and populations with cor-
relations to pre-diabetes and T2D risk factors, to build up a library of epigenetic markers
of risk and early progression of T2D. These markers may, tentatively in combination with
other predictors of T2D development, increase the possibility of individual-based lifestyle
prevention of T2D and associated metabolic diseases.
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The complex multi-organ disease type 2 diabetes mellitus (T2D)
is difficult to predict and cure. Abnormalities in glucose metabo-
lism and states of intermediate hyperglycemia are established long
before overt T2D develops (1, 2). Therefore, prediction of pre-
diabetes and early T2D progression enables individuals at high
risk to reduce the likelihood of developing the disease through
lifestyle changes (3–5). Epigenetics, which can be described as
heritable, cell-specific modifications of the DNA and its asso-
ciated proteins, which can alter the expression of genes, has
been implicated in the pathogenesis of T2D and other complex
age-related diseases (6–15). Methylation of cytosine residues in
DNA (DNA methylation) is the most studied epigenetic trait,
and recent data show significant influences of age and lifestyle
related risk factors such as overweight and physical activity on
site-specific DNA methylation in blood and tissues relevant for
T2D (11, 14, 16–20). This review will discuss the potential of
identifying DNA methylation biomarkers to predict development
of T2D.

THE HETEROGENEITY OF TYPE 2 DIABETES
The main risk factors for T2D are age, overweight defined by a
high body mass index (BMI), an unhealthy diet, reduced phys-
ical activity, an adverse intrauterine environment, and an unfa-
vorable genetic predisposition (4, 5, 21–23). Large-scale studies
indicate that the incidence of T2D and pre-diabetes can be reduced
through lifestyle changes such as non-smoking, physical activity,
improved diet, and weight loss (3, 24). Studies suggest insulin
resistance in the liver and peripheral tissues (skeletal muscle and

adipose tissue) as a predictive marker of future T2D development
(2, 25, 26). Insulin resistance in different tissues together chal-
lenges the pancreatic beta cells to produce and secrete increased
amounts of insulin. The capacity of insulin production at these
challenged states largely determines the likelihood of T2D devel-
opment. Although several of the identified genetic risk variants of
T2D seem to influence insulin processing and secretion (27), the
individual capacity of beta cell function during long-term chal-
lenged states cannot yet be predicted. Similarly, there is a lack of
predictive markers of the individual capability to maintain glu-
cose homeostasis during challenged metabolic conditions such as
overweight, which is determined by key metabolic features such
as hepatic and peripheral insulin sensitivity, hepatic glucose pro-
duction, as well as secretion and action of hormones derived from
the intestines, adipocytes, and the brain. To optimize the preven-
tive care of T2D, prediction of the disease should be achieved at
an early stage. This could potentially be achieved through epi-
genetic biomarkers that, in combination with measurements of
blood metabolites and possibly also identification of genetic vari-
ants associated with T2D, may link the heterogenic etiology and
pathogenesis of T2D.

AGE ASSOCIATED DNA METHYLATIONS IN BLOOD AND
DIABETES-RELATED TISSUES
In 2005, a study by Fraga et al. revealed that the pattern of DNA
methylations and histone modifications in several tissues were
more diverse in monozygotic twin pairs who were older, had dif-
ferent lifestyles, and had spent less of their lives together (28).
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This study was among the first to demonstrate that environmental
factors and age can have lifelong impacts on the phenotype by
altering DNA methylations across multiple human tissues.

The number of studies that demonstrate highly significant
correlations between age and site-specific DNA methylation in
diverse human populations is rapidly increasing. Convincing data
obtained with both site-specific and epigenome-wide approaches
has contributed to the identification of specific cytosines in the
human genome where either the addition or removal of an elec-
trophilic methyl group is significantly associated with age (11, 18,
19, 29–37). These studies have advanced the research of human
aging, suggesting that epigenetics is involved in the age-related
gradual decline of cellular functions that,opposed to chronological
age, is referred to as biological age (38). Indeed, two independent
but highly overlapping predictive models of aging, characterized
by the DNA methylation levels of 71 and 353 genomic CpG sites
respectively, have been developed from epigenomic data derived
from several human tissues and cell types obtained with Illumina
Infinium HumanMethylation450 BeadChips (34, 39). These “epi-
genetic age clocks”may be promising markers of human aging (34,
39, 40). Knowledge of the individual aging process could increase
our understanding of why some individuals develop complex, age
related diseases such as Alzheimer’s, cancer, cardiovascular disease,
and T2D.

Many of the DNA methylations which represent strong age-
related associations in blood are situated in CpG islands of genes
important for human metabolism, which are not functional in
blood cells but are highly expressed in metabolically active tissues
such as adipose tissue, liver, heart, and skeletal muscle (31, 32, 35,
36, 41, 42). Interestingly, CpG methylation of the krüppel-like fac-
tor 14 gene (KLF14), which has been genetically linked to T2D
and to high-density lipoprotein cholesterol levels in genome-wide
association studies (GWAS) (43, 44), was identified in two of the
studies mentioned above (34, 39). Thus, if age-associated DNA
methylations in blood reflect DNA methylations in other tissues,
these epigenetic modifications might be involved in age-related
diseases and pathologies.

Indeed, an increasing amount of studies demonstrate that dis-
tinct age-associated DNA methylations in blood are present in
other human tissues including skeletal muscle (45, 46), kidney
(45), and the brain (33, 45). Together, these results point toward
a general “epigenetic aging clock” across several human tissues
(34), and furthermore indicate that age-induced DNA methyla-
tions may affect gene transcription and function. Hereby, they
may serve as possible indicators of age-associated progression of
insulin resistance and T2D.

DNA METHYLATIONS ASSOCIATED WITH
LIFESTYLE-RELATED TRAITS IN BLOOD AND
DIABETES-RELATED TISSUES
Recently, Dick et al. reported significant associations between BMI
and site-specific DNA methylation of the gene encoding hypoxia
inducible factor 3 alpha (HIF3A) in blood from 479 individu-
als, as well as in adipose tissue from another population of 635
women (16). This study demonstrates that specific DNA methy-
lations in blood that are associated with a lifestyle-related trait
can reflect DNA methylations in other tissues. To date, few other

studies report significant associations between DNA methylation
and BMI or fat distribution in human blood or adipose tissue (47–
50), and more studies are needed to consolidate these findings and
to discover novel descriptive and mechanistic clues to the associ-
ation between adipose tissue DNA methylation and overweight.
In addition, epigenetic markers of pancreatic beta cell function,
glucose tolerance, and insulin sensitivity in liver and peripheral
tissues are required in the search for epigenetic biomarkers of T2D
development.

The DNA methylation levels and plasticity of CpG sites in
the promoter region of the metabolic regulator PPARGC1A have
been extensively studied in relation to T2D. PPARGC1A encodes
PGC1α, which is a transcriptional co-activator that regulates
expression of numerous genes with a key role in mitochondr-
ial function (51). Hitherto, PPARGC1A promoter methylation
represents the best example of site-specific DNA methylation alter-
ations in insulin secretory and insulin responsive tissues from
T2D patients (12, 52, 53) and individuals at increased risk of
T2D (53–56). Significant correlations between PPARGC1A pro-
moter methylation and insulin sensitivity have been reported in
skeletal muscle (57) and liver (58). Moreover, blood DNA methy-
lation at four loci in PPARGC1A predicted adiposity in children
up to 14 years (59). Accordingly, besides age and BMI, associa-
tions between DNA methylation and key features responsible for
hyperglycemia, such as insulin resistance and beta cell dysfunction,
could potentially be present in T2D-relevant tissues. If mirrored in
blood, these DNA methylations may constitute predictive markers
of T2D progression.

EPIGENETIC AND NON-EPIGENETIC BIOMARKERS FOR
DIABETES PROGRESSION
The research field of epigenetic biomarkers for metabolic dis-
eases is still in its infancy. Among the studies reporting potential
epigenetic markers of T2D with predictive or diagnostic char-
acter, Hidalgo et al. identified a CpG site in a gene important
for cholesterol transport (ABCG1) with DNA methylation lev-
els that were significantly associated with fasting insulin and
HOMA-IR in CD4+ T cells from 837 non-diabetic individuals
(60). Another study examined epigenome-wide methylations in
blood from twins discordant for T2D, that were followed up with
replication and omics analyses, and identified DNA methylation
alterations in MALT1 (which has a role in the nuclear factor-
κB pathway) as well as the G-protein receptor 6 gene (GPR61),
that were suggested to reflect T2D progression (61). In addi-
tion, effective screening of the blood-borne human epigenome
in relation to T2D was conducted by Toperoff et al. who identi-
fied DNA hypomethylation of specific sites in young individuals
who later developed T2D (62). Also adipose tissue specific CpG
sites in numerous genes associated with T2D (PPARG, IRS1, and
TCF7L2) were shown to exhibit differential DNA methylation in
individuals with T2D compared to healthy controls (13). PPARG
encodes a transcription factor with a key role in adipose tissue
and IRS1 encodes insulin receptor substrate one which is involved
in insulin signaling. Additionally, TCF7L2 encodes a transcrip-
tion factor involved in the Wnt signaling pathway. However, these
markers of T2D or pre-diabetes need to be further replicated in
future studies.
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Small non-coding RNAs (e.g., miRNA and lncRNA) are yet
another possible source of biomarkers for disease progression
(63, 64). Recently, Guay et al. reviewed the potential of using the
microRNA profile in blood as an estimates of health status and
identified differential miRNA profiles in patients with type 1 dia-
betes (T1D) and T2D as well as distinct miRNAs which appear to
be predictive of long-term complications of diabetes (65). Fur-
thermore, another study reported associations between risk of
diabetic nephropathy in T1D cases and blood methylation at 19
CpG sites (66).

Importantly, human experiments aiming to identify diverse
markers of T2D progression based on genetic (family history,
GWAS SNPs), epigenetic (DNA methylation, histone modifica-
tions), transcriptomic, metabolomic, and anthropometric mea-
sures, and the combination of these, are ongoing (14, 67–70).

CLINICAL UTILITY OF FUTURE EPIGENETIC BIOMARKERS
The current enthusiasm for identification and clinical application
of epigenetic biomarkers for early pathological states in complex
non-communicable diseases is great. Whereas many DNA methy-
lation biomarkers of T2D are awaiting discovery, a diagnostic test
for the early detection of colorectal cancer through blood-borne
DNA hypermethylation of the SEPT9 promoter is available and
used in the clinic today (71). In short, the Septin9 test is simply
a detection of DNA methylation levels in the v2 region of the
SEPT9 promoter in blood plasma which is sampled in the clinic
and analyzed in the laboratory (71–73). Here, hypermethylation
of the SEPT9 promoter is identified in cell-free DNA that has been
released into the bloodstream from tumor cells. In the field of
T2D, early identification of more subtle epigenetic markers that
mirror tissues with deteriorated metabolic function is desirable.
Nevertheless, the strong evidence that an increased risk of com-
plex metabolic diseases originate in early life (21, 74, 75) opens up
possibilities of discovering DNA methylation biomarkers that may
help to estimate the individual susceptibility of future T2D devel-
opment (76). To this end, it is noteworthy that we in a recent study
identified reduced DNA methylation and increased gene expres-
sion of SEPT9 in pancreatic islets of T2D individuals compared
with non-diabetic controls, supporting the role of this gene also
in T2D (11).

PERSPECTIVES AND FUTURE CHALLENGES
Novel research in the field of epigenetics opens up new opportuni-
ties of identifying biomarkers for risk and progression of complex
metabolic diseases such as T2D. Through epigenome-wide as well
as site specific DNA methylation characterization, new informa-
tion about tissue-specific and tissue-general associations between
DNA methylation and age or lifestyle related risk factors of T2D
are rapidly revealed. Further insight to these associations will ide-
ally improve the variety and quality of existing predictive T2D
biomarkers, and thereby increase the possibilities to postpone, or
prevent, T2D in individuals at high risk for the disease.

Epigenetic research will also increase our current understand-
ing of epigenetic patterns and plasticity in humans. Interest-
ingly, mechanistic studies of DNA methylation regulation, recently
reviewed by Gabriella Ficz (77), reveal tight associations between
cellular signaling pathways and DNA methylation. This implies

that external, environmental stimuli are involved in the regula-
tion of epigenetic modifications. Besides further understanding of
DNA methylation regulation in different human tissues via exter-
nal signals and age, mechanistic and descriptive epigenetic studies
will increase our understanding of how DNA methylation is inher-
ited and determined by genetic variants (14, 29, 77–79). Recent
reports of DNA methylation changes induced by lifestyle-related
factors such as exercise and overfeeding (14, 20, 80) together with
the appearing impact of genetic variation on DNA methylation
levels (18, 78, 79) in metabolically active tissues, suggest that spe-
cific DNA methylations might be phenotypic mediators of both
environmental and genetic effects. Further descriptive as well as
mechanistic studies are required to reveal how these hypothetical
genome–epigenome–environment interactions might influence
human health and disease, and perhaps also help us to find the
“missing heritability”of T2D (10, 79). In support of functional and
disease-related interactions between genetics and tissue-specific
epigenetic patterns, the NIH Roadmap Epigenomics Mapping
Consortium published some of the most recent human epige-
nomic data, where they demonstrate epigenomic enrichments in
tissues related to a trait which had previously been associated with
a genetic variant (81). An additional layer to this complicated
network is the memory of fetal development. Since the epige-
netic fingerprints were established during fetal life, an adverse
intrauterine environment may be memorized as differences in
DNA methylation patterns and plasticity in adult individuals and
thereby increase their risk of T2D (23, 54, 55, 82–85).

Future challenges include targeted research that will bring us
closer to a better understanding of epigenetic features such as the
environmentally influenced plasticity of DNA methylation in dif-
ferent tissues, the influence of heritability and genetic variation
on DNA methylations, the epigenetic influence on transcriptional
regulation, as well as the mechanistic control of specific DNA
methylations that are associated with either age- or lifestyle-related
phenotypes.

Prevention of T2D through lifestyle changes can be improved
through early discovery of T2D progression. Future research on
epigenetics and T2D will possibly result in an archive of epigenetic
markers that might aid in the individually targeted prevention of
T2D and associated metabolic diseases.
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