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Elastostatic computations on aggregates of grains with

sharp interfaces, corners, and triple-junctions

Johan Helsing∗, Rikard Ojala

Numerical Analysis, Centre for Mathematical Sciences,

Lund University, Box 118, SE-221 00 LUND, Sweden

Abstract

We present a fast algorithm for the calculation of elastostatic fields in two-
dimensional assemblies of elastic grains, separated by sharp grain bound-
aries. The algorithm uses an integral equation approach, combined with the
fast multipole method and recursive compression to resolve stress concentra-
tions also very close to grain boundary junctions. Singular basis functions
on analytic form are not required. Accurate results can be obtained at a cost
roughly proportional to the number of grains in the assembly. Large-scale
problems, with thousands of grains, are solved using modest computational
resources.

Key words: Corner singularities, Elasticity, Fast multipole method,
Granular media, Integral equation, Multi-wedge points

1. Introduction

Large-scale elastostatic computations are crucial parts in the simulation
of many important material science processes. Often the computations have
to be performed repeatedly, rapidly and also accurately as to resolve stress
fields everywhere in the material and to prevent accumulated error from
corrupting the final result. Examples include dislocation dynamics (Jonsson,
2003), grain boundary diffusion (Sethian and Wilkening, 2004; Wei et al.,
2008), quasi-static crack growth (Englund, 2007), and more general damage
evolution in composite materials (Kushch et al., 2008).
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In terms of algorithmic development, the last decades have seen great
progress. Particularly so for problems with simple boundary conditions
and smooth well-separated boundaries. Here the introduction of matrix-
free matrix-vector multiplication via fast multipole techniques (Greenbaum
et al., 1992; Greengard and Rokhlin, 1987) has revived the use of integral
equation methods (Mikhlin, 1964). Two-dimensional domains with up to
several thousand separated circular inclusions or straight cracks in an elastic
matrix pose no major difficulty in achieving high accuracy on ordinary com-
puters (Greengard and Helsing, 1998; Helsing and Jonsson, 2002; Kushch et
al., 2008; Liu, 2008; Mogilevskaya et al., 2007; Wang et al., 2005). Storage
requirements and computational speed are also acceptable. Even thousands
of smooth cylindrical non-aligned rigid fibers in three dimensions can be
readily handled on multi-processor machines (Liu et al., 2005). Note that
smooth boundaries and loads often result in smooth elastic fields which can
be well resolved by polynomials or Fourier series. This is favorable for nu-
merical solvers.

Unfortunately, many material geometries of engineering interest do not
exhibit smooth boundaries. This has severe effects on numerics. Non-
smooth boundaries generally give rise to solutions with complicated asymp-
totics close to singular points. These are hard to resolve irrespective of what
numerical method is used (Jin and Wu, 2004). One technique to resolve
singular fields is local mesh refinement, also called mesh grading (Atkin-
son, 1997). Alternatively, one can use singular basis functions depend-
ing on geometry and material parameters and whose exponents are con-
structed via variable separation and the solution of non-linear eigenvalue
problems (Carpinteri and Paggi, 2007; Linkov and Koshelev, 2006; Mantič
et al., 2003). Not only are both these techniques complicated in terms of
analysis and programming – they also lead to performance degradation.
Mesh grading makes spectra of system matrices grow, which is bad for con-
vergence in iterative solvers. Singular basis functions may lead to reduced
order accuracy in quadrature rules. A natural consequence of these diffi-
culties is that elastostatic computations on domains modeling, for example,
branching cracks, notches, polygonal inclusions, multilevel thin film pack-
ages, and aggregates of grains often stand in stark contrast to computations
on domains with smooth boundaries. They are much smaller, less accurate,
or slower (Dong et al., 2002; Englund, 2007; Jeon et al., 2008; Koshelev and
Ghassemi, 2008; Noda et al., 2003; Sethian and Wilkening, 2004).

This paper takes a multi-level approach to resolving multiple junction
singularities that arise in linear elasticity. We shall work in an integral
equation environment. Our proposed technique, recursive compression, uses
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both singular basis functions and mesh refinement. But unlike eigenfunc-
tion expansion techniques, the construction of our basis functions is purely
numerical. There is no asymptotic analysis involved. And unlike ordinary
mesh grading, our fine mesh is not visible on the coarse level where large
linear systems are solved. The fine mesh is only used to construct the ba-
sis functions. More precisely, our basis functions are chosen as a set of
functions that accurately solve local problems which, in addition to taking
geometry and material parameters into account, also involve the nature of
the applied load. This makes the basis set efficient. Our technique can be
seen as an extension of a recent scheme for electrostatics (Helsing and Ojala,
2008b). The major difference between elastostatics and electrostatics is the
type of integral equations required for modeling. In electrostatics they are
of Fredholm’s second kind with compact operators away from the singular
boundary points. In elastostatics they are singular everywhere. The ab-
sence of compactness leads to more involved numerical constructions. But,
as we shall see, the final scheme of this paper performs on par with that for
electrostatics. There is just extra need for storage.

The paper is organized as follows: Section 2 presents integral equa-
tions for linear elasticity in multiphase granular materials. These contain a
Cauchy-singular operator which is discretized in Sections 3 and 4. Section 5
is about the resolution of integral operators near boundary singularities on
fine grids and the compression back onto coarse grids. This gives block diag-
onal matrices whose fast and accurate construction is the topic of Sections 6,
7, and 8. We aim at solving large-scale problems. Our compressed equations
are stable under increased resolution. Still, as more grains are added or as
stronger inhomogeneity is introduced, spectra of system matrices may grow.
Then the preconditioning of Section 9 is useful. Well documented small-
scale numerical examples are given in Section 10. The ability to retain high
accuracy and speed as the computational domain grows in complexity is
illustrated by the large-scale examples of Section 11. Some details, needed
for reproducibility, are collected in Appendix A and B.

2. An elastostatic multiphase inclusion problem

This section summarizes and extends results from Helsing and Peters
(1999); Sherman (1959); Theocaris and Ioakimidis (1977). We make no
distinction between points or vectors in a real plane R

2 and points in a
complex plane C. All points will be denoted z or τ .

Let an inclusion made out of Ngr linearly elastic grains with two-dimensional
bulk and shear moduli κk and µk, k = 1, . . . , Ngr, be embedded in an infinite
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elastic plane D. The remainder of D has bulk and shear modulus κ0 and
µ0. The local moduli κ(z) and µ(z) are then piecewise constant functions
on D. Let the boundary of all grains be denoted Γ and be given orientation.
Γ will have branching-points in the form of triple-junctions for Ngr > 1. Γ
may also have corners. Let n(z) be the outward unit normal of Γ at z. Let
the stress

lim
z→∞

(σxx(z), σyy(z), σxy(z)) = (σ∞
xx, σ∞

yy, σ
∞
xy) (1)

be applied at infinity. The stress field in D can be computed in several
ways. For example, via a system of second-order elliptic partial differential
equations for the displacement field or via a variety of singular and hyper-
singular integral equations for quantities related to the Airy stress function.
The stress state at infinity may be described by two constants α and β as
σ∞

xx + σ∞
yy = 2α and σ∞

yy − σ∞
xx + 2iσ∞

xy = 2β̄, where the bar means complex
conjugation.

In terms of a complex layer density Ω(z) on Γ and via the analytic
functions

Φ(z) =
1

2πi

∫

Γ

Ω(τ) dτ

τ − z
+

α

2
, z ∈ D\Γ , (2)

and

Ψ(z) = − 1

2πi

[

∫

Γ

Ω(τ) dτ̄

τ − z
+

∫

Γ

τ̄Ω(τ) dτ

(τ − z)2

]

+ β , z ∈ D\Γ , (3)

one can derive the singular integral equation for the inclusion problem

(I + λ1M1 + λ2M3) Ω(z) = −αλ1 − β̄λ2
n̄

n
, z ∈ Γ . (4)

Here the two piecewise constant functions λ1(z), λ2(z) ∈ [−1, 1] are

λ1(z) =
aκ(z)

b(z)
, λ2(z) =

aµ(z)

b(z)
, z ∈ Γ , (5)

with

aκ(z) =
1

κ+(z)
− 1

κ−(z)
, aµ(z) =

1

µ+(z)
− 1

µ−(z)
, (6)

b(z) =
1

κ+(z)
+

1

κ−(z)
+

1

µ+(z)
+

1

µ−(z)
, (7)

where subscripts ’+’ and ’–’ indicate values on the positive and on the neg-
ative side of Γ. Further, I is the identity and M1 and M3 are integral
operators whose action on a function f(z) are

M1f(z) =
1

πi

∫

Γ

f(τ) dτ

τ − z
, z ∈ Γ , (8)
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and

M3f(z) =
1

2πi

[

∫

Γ

f(τ) dτ

τ − z
+

n(z)

n(z)

∫

Γ

f(τ) dτ

τ̄ − z̄

+

∫

Γ

f(τ) dτ̄

τ̄ − z̄
+

n(z)

n(z)

∫

Γ

(τ − z)f(τ) dτ̄

(τ̄ − z̄)2

]

, z ∈ Γ . (9)

The operator M3 is compact on smooth Γ and computable limits exist for its
kernel when τ → z. The potentials Φ(z) and Ψ(z), which can be evaluated
once Ω(z) is solved from (4), are related to the stress field in D via

σxx + σyy = 4ℜe{Φ(z)} , (10)

σyy − σxx − 2iσxy = 2
(

zΦ′(z) + Ψ(z)
)

. (11)

One can show, by multiplying both sides of (4) with b(z) and integrating
over Γ with respect to z, that for non-zero moduli

∫

Γ
Ω(z) dz = 0 . (12)

This corresponds to single-valued displacements and enables the construc-
tion of yet another integral equation for the inclusion problem in terms of a
layer density ω(z), which is a primitive function of Ω(z),

(I + λ1M1 + λ2M2) ω(z) = −αλ1z + β̄λ2z̄ , z ∈ Γ , (13)

where the action of the integral operator M2 is

M2f(z) =
1

π

∫

Γ
f(τ)ℑm

{

dτ

τ − z

}

+
1

2πi

∫

Γ
f(τ) d

[

τ − z

τ̄ − z̄

]

, z ∈ Γ . (14)

In addition to being more regular than Ω(z), the density ω(z) is useful when
displacements are to be computed. See Helsing and Peters (1999) for details.

Remark 1: Planar elasticity can be viewed as either a special case of three-
dimensional linear elasticity with planar loads known as ’plane strain’ or an
approximation of three-dimensional linear elasticity with planar loads known
as ’plane stress’. Under plane strain conditions one has λ1(z) + λ2(z) ∈
[−1, 1] and λ2 − 5

3λ1(z) ∈ [−1, 1]. Under plane stress conditions one has
λ1(z) + λ2(z) ∈ [−1, 1] and 5

3λ2(z) − λ1(z) ∈ [−1, 1].
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3. Regularization and integrals of the solution

The action of M1 of (8) should be interpreted in the Cauchy principal
value sense. Let

cκ(z) =
1

κ+(z)
+

1

κ−(z)
− 2

κ0
, z ∈ Γ . (15)

One can then show

1

πi

∫

Γ

aκ(τ) dτ

τ − z
= cκ(z) , z ∈ Γ , (16)

and write the action of λ1M1, occurring in (4) and (13), in globally regularized

form as

λ1M1f(z) =
cκ

b
f(z)+

1

b(z)πi

∫

Γ

(aκ(z)f(τ) − aκ(τ)f(z)) dτ

τ − z
, z ∈ Γ . (17)

Note that aκ(z), b(z), cκ(z), and also λ1(z) and λ2(z) all are piecewise
constant functions on Γ which only change values at triple-junctions.

After having solved (4) or (13) for a given problem and obtained the
density Ω(z) or ω(z), we would like to compute some functionals on the
solution for convergence studies. We settle for the integrals

q1 = −
(

1

κ0
+

1

µ0

)
∫

Γ
ℑm{zΩ(z) dz} =

(

1

κ0
+

1

µ0

)
∫

Γ
ℑm{ω(z) dz} (18)

and

q2 = −
∫

Γ
ℑm{(b + (aκ + aµ)M3) Ω(z)z̄ dz}

=

∫

Γ
ℑm{(b + (aκ + aµ)M2) ω(z) dz̄} , (19)

which are of importance in homogenization theory when the effective com-
pliance tensor is to be computed. See Helsing and Peters (1999) for similar
expressions in the context of the stiffness tensor.

4. Basic quadrature and the Cauchy integral

We shall use Nyström discretization for the integral equations and com-
posite 16-point Gauss-Legendre quadrature as our basic quadrature tool.
Let τ(t) be a parameterization of Γ and let there be nΓ quadrature panels
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placed on Γ. Then one can easily compute N = 16nΓ nodes tk and weights
wk, k = 1, . . . , N , associated with integration in t. Let f be a function on Γ.
The parameterization allows us to view f both as function of position f(τ)
and of parameter f(t). We let the argument indicate which view is taken in
a particular situation. The discretization of λ1M1 of (17) leads to a matrix
λ1M1 with entries

(λ1M1)jk = δjk

(

cκ(τj)

b(τj)
− dκ(τj)

)

+
λ1(τj)

πi

(1 − δjk)τ
′
kwk

(τk − τj)

+
2λ1(τj)wj

πi∆j

Bjk , j, k = 1, . . . , N . (20)

Here τj = τ(tj), δjk is the Kronecker delta and the second term on the right
hand side is zero for j=k,

dκ(τj) =
1

πib(τj)

N
∑

k=1

k 6=j

aκ(τk)τ
′
kwk

τk − τj

, (21)

the prime means differentiation so that τ ′
k = τ ′(tk), ∆j is the length in

parameter of the panel on which τj is situated, and Bjk are entries of a
block diagonal matrix with identical 16×16 blocks BI performing numerical
differentiation based on polynomial interpolation at the Legendre nodes xk

on the canonical panel [−1, 1]. The entries of BI are given by

16
∑

k=1

BI
jkx

n
k = nxn−1

j , j = 1, . . . , 16 , n = 0, . . . , 15 .

The choice of 16-point quadrature is a compromise between conflicting con-
siderations such as the order of convergence and the size and conditioning
of various auxiliary matrices.

The accuracy to which we can compute and interpolate quantities related
to discretized Cauchy integrals will be of great importance in later sections.
Consider the one-panel Cauchy integral

C1(z) =
1

πi

∫

Γp

f(τ) dτ

τ − z
≈ 1

πi

16
∑

k=1

fkτ
′
kwk

τk − z
, τk ∈ Γp, z ∈ D , (22)

where Γp is a quadrature panel of arc length lp, f(τ) is a smooth function,
and z is a target point, perhaps on another panel Γq with arc length lq. The
discretization for C1(z) is often accurate to machine epsilon (ǫmach) when z
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Figure 1: The discretization for C1(z) of (22) with f(τ ) = 1 and Γp being the line segment
[−1, 1]. The figure depicts the base-10 logarithm of the pointwise absolute error for various
z ∈ D.

is at least a distance lp away from Γp. Fig. 1 shows that for f(τ) = 1 and
Γp being a line segment, the discretization is accurate for z approximately
collinear with Γp already at a distance 0.5lp away from the tips of Γp.

As for interpolation, consider the field due to a source at the origin

C0(z) =
lq

πiz
, z ∈ Γq . (23)

Polynomial interpolation in z on Γq, based on C0(zj) with zj ∈ Γq and
j = 1, . . . , 16, is illustrated in Fig. 2. The maximum interpolation error is
shown as a function of the distance between the origin and Γq. When Γq is
separated a distance 2lq, the interpolation is accurate to ǫmach. The result
is similar for C1(z). It can typically be interpolated accurate to ǫmach when
lq = lp and Γq is at least a distance 2lp away from Γp. For f(τ) = 1, lq = lp,
and Γp and Γq being collinear line segments separated a distance lp, the
maximum pointwise interpolation error in C1(z) is on the order of 103ǫmach.

5. Compressed equations

Assume that the boundary Γ has s corners or triple-junctions at points
γi, i = 1, . . . , s. A coarse mesh, that is, a division into quadrature panels
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Figure 2: Maximum interpolation error of C0(z) of (23), z ∈ Γq, as a function of how far the
origin is separated from the closest tip of Γq. A 15th-degree interpolating polynomial is used.
Γq is a line segment collinear with the origin.

of approximately equal length, is constructed on Γ. The mesh is arranged
so that no panel has γi as an interior point. Let Γ1⋆

i refer to the part of
Γ covered by coarse panels that are nearest neighbors to γi. The union of
all Γ1⋆

i is Γ1⋆. Now let there also be a fine mesh on Γ, constructed from
the coarse mesh by repeated subdivision of the coarse panels on each Γ1⋆

i in
direction towards γi. See the left image of Fig. 3 for an example with one
corner. Grids are constructed by placing quadrature points corresponding to
composite 16-point Gauss-Legendre quadrature on the two meshes. Nyström
discretization of (13) on the fine grid gives

(Ifin + λ1M1fin + λ2M2fin) ωfin = g2fin , (24)

where Ifin, λ1M1fin, and λ2M2fin are matrices and ωfin and g2fin are column
vectors, the latter corresponding to the right hand side. A similar discretiza-
tion is done on the coarse grid with subscripts ‘coa’. Obviously, the solution
to the coarse grid equation will be less accurate than the solution to the
fine grid equation. The purpose of this section is to compress (24) into an
equation on the coarse grid without loss of point-wise accuracy (under some
mild conditions on the relation between discretized operators and functions
on the two grids). We shall also, in an analogous manner, compress a dis-
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Figure 3: A coarse mesh with eight quadrature panels on a closed contour Γ with one corner.
Γ1⋆

1 is panels 4 and 5, Γ2⋆
1 is panels 3 and 6, and Γ⋆

1 is panels 3, 4, 5, and 6. A fine mesh of
14 panels is created by subdividing Γ1⋆

1 three times towards the corner.

cretization of (4)

(Ifin + λ1M1fin + λ2M3fin)Ωfin = g3fin . (25)

5.1. Prolongation and restriction

We introduce two discrete operators, P and Q on sparse block-matrix
form, intended to act on discretizations fcoa and ffin of functions f(t) on the
two grids. P is the prolongation operator that performs panelwise 15th-
degree polynomial interpolation in t from the coarse grid to the fine grid so
that Pfcoa = ffin provided that f(t) is resolved on the coarse grid on Γ1⋆. Q

is the restriction operator that performs panelwise 15th-degree polynomial
interpolation in the other direction. P and Q differ from identity matrices
only for blocks corresponding to points on Γ1⋆

i and they obey

QP = Icoa . (26)

With Wcoa and Wfin being diagonal matrices containing the quadrature
weights on the two grids one can also show

PTWfinP = Wcoa , (27)

where superscript ‘T ’ denotes the transpose.
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5.2. Splitting

Let Γ2⋆
i refer to the part of Γ covered by coarse panels that are next-

nearest neighbors to γi. Let Γ⋆
i = Γ1⋆

i ∪Γ2⋆
i , let Γ◦

i = Γ\Γ⋆
i , and let the union

of all Γ⋆
i be Γ⋆. Thus, Γ⋆ covers four coarse panels per corner, see Fig. 3,

and six coarse panels per triple-junction. Let the matrices M2coa and M2fin

be split into two parts each

M2j = M⋆
2j + M◦

2j , j = coa,fin . (28)

Here matrices with superscript ‘⋆’ contain 16 × 16 blocks of the unsplit
matrices describing interaction and self-interaction of all panels on Γ⋆ which
are close to the same γi. Matrices with superscript ‘◦’ contain the remaining
elements. With interaction of two boundary parts Γp and Γq we mean matrix
elements whose column indices belong to points on Γp and whose row indices
belong to points on Γq, and vice versa. We also split λ1M1coa and λ1M1fin,
discretized according to (20), into two parts each, in an analogous way.

The coarse grid on Γ cannot be arbitrarily coarse. It should be suffi-
ciently fine for

λ1M
◦
1finW

−1
fin = Pλ1M

◦
1coaW

−1
coaP

T (29)

and
M◦

2finW
−1
fin = PM◦

2coaW
−1
coaP

T (30)

to hold to high accuracy. These requirements can be interpreted as that the
restriction of the kernels whose discretizations are λ1M

◦
1coa and M◦

2coa are
resolved in both their variables on Γ1⋆.

Note that the diagonal elements of λ1M1coa or λ1M1fin, accounting for
self-interaction on a panel Γp, do not just contain contributions from dis-
cretization points on Γp but contain contributions from points on all of Γ via
dκ(τj) of (21). Consider, in particular, the diagonal elements of the square
block of λ1M

⋆
1fin accounting for self-interaction of a panel on Γ⋆

i . These ele-
ments will contain contributions dκ(τj) of (21) which in turn could be split
into two parts,

dκ(τj) = d⋆
κ(τj) + d◦κ(τj) , (31)

where d⋆
κ(τj) denotes the partial sum of (21) with τk ∈ Γ⋆

i and d◦κ(τj) denotes
the partial sum of (21) with τk ∈ Γ◦

i . According to the discussion about
interpolation of C1(z) in Section 4, d◦κ(z) is smooth for z ∈ Γ1⋆

i .
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5.3. Compression

Now (24) will be compressed into an equation on the coarse grid. In
addition to (29) and (30) we also assume that the coarse grid is sufficiently
fine for

g2fin = Pg2coa (32)

to hold to high accuracy. Matrix splitting (28) and use of the transformed
density

ω̃fin = (Ifin + λ1M
⋆
1fin + λ2M

⋆
2fin)ωfin (33)

in (24), together with (29,30,32), give

ω̃fin+P (λ1M
◦
1coa + λ2M

◦
2coa)W

−1
coaP

T Wfin (Ifin + λ1M
⋆
1fin + λ2M

⋆
2fin)−1

ω̃fin

= Pg2coa . (34)

Multiplication of (34) with PQ from the left and (26) imply that ω̃fin can
be restricted and prolonged without loss of information

ω̃fin = PQω̃fin . (35)

Defining
ω̃coa = Qω̃fin and ωcoa = Qωfin , (36)

one can, via (33,35,36), write

ωcoa = Sω̃coa , (37)

where the compressed un-weighted inverse

S = Q (Ifin + λ1M
⋆
1fin + λ2M

⋆
2fin)−1

P (38)

has to be computed on the fine grid. The columns of S can, from (37), be
interpreted as discrete basis functions for ω(z) on the coarse grid. Multipli-
cation of (34) with Q from the left and use of (26) and (35–37), lead to the
equation for ωcoa on the coarse grid

(

Icoa + (S−1 − Icoa) + (λ1M
◦
1coa + λ2M

◦
2coa)RS−1

)

ωcoa = g2coa , (39)

where also the compressed weighted inverse

R = W−1
coaP

TWfin (Ifin + λ1M
⋆
1fin + λ2M

⋆
2fin)−1

P (40)
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has to be computed on the fine grid. Note that the block diagonal matrices
S and R differ from Icoa only for blocks describing interaction and self-
interaction between panels on the same Γ⋆

i . The term (S−1 − Icoa) in (39)
can be interpreted as an accurate implementation of λ1M

⋆
1coa + λ2M

⋆
2coa.

Equation (39) has a counterpart in a compressed version of (25)

(

Icoa + (S−1 − Icoa) + (λ1M
◦
1coa + λ2M

◦
3coa)RS−1

)

Ωcoa = g3coa , (41)

where S and R are as in (38) and (40) but with M⋆
2fin replaced by M⋆

3fin.

5.4. Alternative formulations

The columns of R can be be interpreted as the columns of S multiplied
with quadrature weight corrections. The action of RS−1 on ωcoa in (39), for
example, produces a discrete density on which λ1M

◦
1coa and λ2M

◦
2coa can

act accurately. Introducing the weight-corrected densities

ω̂coa = RS−1
ωcoa and Ω̂coa = RS−1Ωcoa (42)

on the coarse grid, one can rewrite (39) and (41) on the simpler form

(

Icoa + (R−1 − Icoa) + λ1M
◦
1coa + λ2M

◦
2coa

)

ω̂coa = g2coa , (43)

(

Icoa + (R−1 − Icoa) + λ1M
◦
1coa + λ2M

◦
3coa

)

Ω̂coa = g3coa , (44)

which is free of S. One can also construct compressed right inverse precon-
ditioned equations for the transformed densities ω̃coa and Ω̃coa:

(Icoa + (λ1M
◦
1coa + λ2M

◦
2coa)R) ω̃coa = g2coa , (45)

(Icoa + (λ1M
◦
1coa + λ2M

◦
3coa)R) Ω̃coa = g3coa . (46)

5.5. Computing q1 and q2

The weight-corrected vector ω̂coa is useful for numerical integration of
ω(t) against functions that are well resolved by polynomials on the coarse
grid. Therefore, once (40) is constructed and (43) is solved, the quantity q1

of (18) can be obtained as

q1 =

(

1

κ0
+

1

µ0

) N
∑

k=1

ℑm
{

(ω̂coa)kτ
′
kwk

}

. (47)

The quantity q2 of (19) is more involved. This is so since the kernel of
the integral operator whose discretization is M⋆

icoa is not resolved in both

13



its variables on Γ1⋆ on the coarse grid. To accurately compute q2 we also
need the compressed block-diagonal matrix

X = W−1
coaP

T WfinM
⋆
2fin (Ifin + λ1M

⋆
1fin + λ2M

⋆
2fin)−1

P . (48)

Then

q2 =
N
∑

k=1

ℑm
{

b(τk)(ω̂coa)k τ̄
′
kwk

}

+
N
∑

k=1

ℑm
{

(aκ(τk) + aµ(τk))((M
◦
2coa + XR−1)ω̂coa)k τ̄

′
kwk

}

. (49)

The formulas (47) and (49) can easily be adjusted as to allow for com-
putations based on the densities ωcoa, ω̃coa, Ω̂coa, Ωcoa, and Ω̃coa.

6. Intermediary results for one corner

unrefined

refined n=5

i=4, a

i=4, b

i=4, c

Figure 4: Placement of panels on Γ⋆
p of a corner in the shape of a wedge. Upper left: Panels

of the coarse mesh on Γ⋆
p. Lower left: Panels of an n-ply refined mesh on Γ⋆

p, n=5. Right:
Panels on Γ⋆

pi upon which the grids Gia, Gib, and Gic are constructed for i=4 and n=5. Note
that Gia and Gib coincide for i = 1.

This section defines some auxiliary constructions that will help us to
compute R of (40) in an efficient way. For simplicity we shall consider

14



a single corner. Triple-junctions can be treated analogously. Consider a
boundary Γ with a singularity in the shape of a corner with vertex γp at
the origin and Γ⋆

p being a part of Γ surrounding γp. There are nΓ coarse
panels on Γ, four of which are located on Γ⋆

p and the rest on Γ◦
p. See Fig. 4,

upper left image for an illustration of the coarse mesh on Γ⋆
p. The mesh on

Γ1⋆
p is now refined n times, using binary panel subdivision, so that there are

2(n+2) panels on Γ⋆
p. We call this is an n-ply refined mesh. The placement

of panels on a 5-ply refined mesh on Γ⋆
p is shown in the lower left image of

Fig. 4.
Different grids on various subsets of Γ⋆

p are introduced. Assume an n-ply
refined mesh on Γ⋆

p and let Γ⋆
pi denote the part of Γ⋆

p covering a mesh made
up of the 2(i + 2) innermost panels, 1 ≤ i ≤ n. Let Gia denote a grid of
32(i+2) quadrature points τk on this latter mesh. The right images of Fig. 4
show Γ⋆

pi for i = 4 and n = 5 and the upper right image is the mesh upon
which Gia is constructed. Let Gib denote a grid of 96 quadrature points on
a simply refined mesh on Γ⋆

pi, see the middle right image. Let Gic denote
a grid of 64 quadrature points placed on a unrefined mesh on Γ⋆

pi, see the
lower right image. On Γ◦

p we just need a single grid G◦
p with 16(nΓ − 4)

points.
For each quadrature point in Gia, Gib, and Gic there is a corresponding

Gauss-Legendre weight. Let Wia, Wib, and Wic be diagonal matrices con-
taining these weights on the diagonal. We also need discrete prolongation
operators, in the style of Section 5.1, on Gia, Gib, and Gic. Let Piab be the
prolongation operator that performs polynomial interpolation from Gib to
Gia. Define Piac and Pbc = Pibc in a similar fashion.

Introduce T as the discretized operator

T = Ifin + λ1M
⋆
1fin + λ2M

⋆
2fin , (50)

from (40). Let the fine grid on Γ⋆
p be Gna and consider the square block of T

describing interaction on Γ⋆
p. Denote this block Tna and assume that the τ ′

k

associated with τk ∈ Gna and τk ∈ G◦
p and the corresponding weights wk are

available. Then Tna can be written as a sum of several 32(n+2)×32(n+2)
matrices

Tna = Ina + Dna + Kna (51)

Kna = K(1)
na + K(2)

na + K(3)
na + K(4)

na , (52)

where for j, k = 1, . . . , 32(n + 2)

(Ina)jk = δjk , (Dna)jk = δjk

(

cκ(τj)

b(τj)
− dκ(τj,Gna) − dκ(τj ,G◦

p)

)

,
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(K(1)
na )jk =

λ1(τj)

πi

(1 − δjk)τ
′
kwk

(τk − τj)
, (K(2)

na )jk =
2λ1(τj)wj

πi∆j

Bjk ,

(K(3)
na )jk =

λ2(τj)

π
ℑm

{

τ ′
kwk

τk − τj

}

, (K(4)
na )jk =

λ2(τj)

π

ℑm {(τ̄k − τ̄j)τ
′
kwk}

(τ̄k − τ̄j)2
~c .

(53)
Here ~c is an operator that conjugates to the right, compare the second
integral of (14) where f(τ) is conjugated, and

dκ(τj ,G) =
1

πib(τj)

∑

τk∈G

τk 6=τj

aκ(τk)τ
′
kwk

τk − τj

, (54)

where wk are weights corresponding to points on G. The (K
(1)
na )jk and

(K
(2)
na )jk elements are discussed in connection with (20). The diagonal ele-

ments (K
(3)
na )jj and (K

(4)
na )jj can be computed taking limits τ → z in (14).

Let Iia, Dia, Kia, K
(1)
ia , K

(2)
ia , K

(3)
ia , and K

(4)
ia be 32(i + 2) × 32(i + 2)

submatrices extracted from the centers of the corresponding matrices with
subscript ‘na’. Let the 64 × 64 matrices Ri be defined as

Ri = 2(n−i)PT
iacWia(Iia + Dia + Kia)

−1Piac , i = 1, . . . , n . (55)

The matrix W−1
nc Rn corresponds to the square block in R of (40) describing

interaction on Γ⋆
p. The next section is devoted to its rapid construction.

Remark 2: The complex matrix K
(4)
ia contains the ~c operator. Linear

systems with system matrices of this type are, in fact, not linear. But
if expanded into real systems the linear property is retained. Inverses of
matrices containing the ~c operator should be interpreted with this in mind.

7. Recursive construction of Rn

We seek a relation between Ri and Ri−1 of (55). For this, we split Kia

into two 32(i + 2) × 32(i + 2) matrices

Kia = K⋆
ia + K◦

ia , i = 1, . . . , n . (56)

Here K⋆
ia contains the elements of Kia which have both indices in the set

{17 : 32i+48}, the remaining elements being zero. K◦
ia contains the elements

of Kia which has at least one index in the set {1 : 16} or {32i+49 : 32i+64},
the remaining elements being zero. One can view the non-zero elements of

16



K◦
ia as a frame of width 16 around the non-zero elements of K⋆

ia. Let F{·}
denote an operator which creates a frame of width 16 of zeros around its
argument. Then

K⋆
ia = F{K(i−1)a} , i = 2, . . . , n . (57)

Similar splits are allowed for Dia and Wia.
Now let the fine grid be constructed on an (n − i + 1)-ply refined mesh

on Γ⋆
p, so that it coincides with Gib on Γ⋆

pi, and consider the square block
of T of (50) describing interaction on Γ⋆

pi. Denote this block Tib. The
elements of Tib are similar to those of Tna of (53,54), the difference being
that τk, τ ′

k, and wk now refer to 96 points on Gib rather than to 32(n + 2)
points on Gna and that, for i < n, the term dκ(τj ,Gna) is replaced with
dκ(τj ,Gib ∪ (Gna \ Gia)). As in (51,52) we group the elements of Tib into
96 × 96 matrices

Tib = Iib + Dib + Kib , i = 1, . . . , n . (58)

Kib = K
(1)
ib + K

(2)
ib + K

(3)
ib + K

(4)
ib . (59)

We split Kib, Dib, and Wib as in (56). Note that D◦
ia and D◦

ib up to round-
ing error have identical non-zero elements corresponding to self-interaction
on the outermost panels on Γ⋆

pi. This is so since the meshes for Gia and
Gib only differ for panels which are more than one panel length away from
the outermost panels, see Fig. 4, and since discretization of non-regularized
Cauchy integrals such as dκ(τj ,G) in (54) are accurate a panel length away
from the panel on which the source points τk ∈ G are located, compare the
discussion about C1(z) in Section 4.

Using matrix splitting and elementary relations between the P operators,
equation (55) can be rewritten

Ri = 2(n−i)PT
bcP

T
iab

[

(

Wia(Iia + D⋆
ia + K⋆

ia)
−1
)−1

+

(D◦
ia + K◦

ia)W
−1
ia

]−1
PiabPbc , i = 1, . . . , n . (60)

Now the following approximation, corresponding to prolongation of some
low-rank matrix blocks, holds to high accuracy irrespective of the corner
opening angle and the precise values of n, i, λ1, and λ2

(D◦
ia + K◦

ia)W
−1
ia ≈ Piab(D◦

ib + K◦
ib)W−1

ib PT
iab . (61)

Actually, the relative error in (61) is on the order of 102ǫmach in 2-norm.
This is so since the interpolating action of Piab and PT

iab in (61) differs from
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identity only for blocks of (D◦
ib + K◦

ib)W
−1
ib describing interaction between

innermost and outermost panels of the mesh upon which Gib is constructed.
The row- and column elements of these blocks can be seen as expressions
similar to C0(z) of (23), where z are distances between points on innermost
and outermost panels and lq is the length of the innermost panel. The
separation distance is at least lq irrespective of corner opening angle, see the
middle right image of Fig. 4. The interpolation error is then on the order
of 104ǫmach, see Fig. 2. Since the largest singular value of (D◦

ib + K◦
ib)W

−1
ib

typically is on the order of 102 the relative error becomes 102ǫmach.
The spectral radius of the matrix

(Iia + D⋆
ia + K⋆

ia)
−1(D◦

ia + K◦
ia) (62)

is well below unity for most corner opening angles and permissible values of
λ1 and λ2. Use of a Neumann series argument in (60) together with (61)
gives

Ri = 2(n−i)PT
bc

[

(

PT
iabWia(Iia + D⋆

ia + K⋆
ia)

−1Piab

)−1
+

(D◦
ib + K◦

ib)W
−1
ib

]−1
Pbc , i = 1, . . . , n . (63)

Using

2(n−i)Wib = Wnb , (64)

Kib = Knb , (65)

where (65) only holds for a corner in the shape of a wedge, and (55,57) we
can rewrite (63) on the simple recursive form

Ri = PT
bc

[

2F{R−1
i−1} + (I◦nb + D◦

ib + K◦
nb)W−1

nb

]−1
Pbc , i = 1, . . . , n ,

(66)
and take

2F{R−1
0 } = (I⋆

nb + D⋆
1b + K⋆

nb)W
−1
nb , (67)

to start the recursion.

8. Recursive construction of X

Let L = M⋆
2fin. In analogy with (55) we define

Xi = 2(n−i)PT
iacWiaLia(Iia + Dia + Kia)

−1Piac , i = 1, . . . , n , (68)
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where W−1
nc Xn corresponds to the square block in X of (48) describing

interaction on Γ⋆
p. Matrix splitting in (68), an approximation in the style

of (61)
Lia ≈ L⋆

ia + PiabL
◦
ibW

−1
ib PT

iabWia , (69)

use of Piac = PiabPbc, a Neumann series argument, equations (55,57,61,64,68),
the assumption of a corner in the shape of a wedge, and reasoning simi-
lar to that in Section 7 allow us to rewrite (68) as a recursion in tandem
with (66,67)

Xi = PT
bc

[

F{Xi−1}F{R−1
i−1} + WnbL

◦
nbW

−1
nb

]

[

2F{R−1
i−1} + (I◦nb + D◦

ib + K◦
nb)W

−1
nb

]−1
Pbc , i = 1, . . . , n , (70)

where
F{X0} = 2W⋆

nbL
⋆
nb (Inb + D⋆

1b + K⋆
nb)

−1 , (71)

is used to start the recursion.
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Figure 5: The operator λ1M1 is discretized on a coarse mesh with 448 discretization points
and expanded into a real 896 × 896 matrix. The real parts of its eigenvalues are shown. The
geometry is that of Section 10.2 with λ1 ≈ −0.225, −0.137, and 0.339 on different parts of
the boundary.
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9. Spectral properties and preconditioning

System matrices arising from the discretization of Fredholm second kind
integral equations with compact operators have eigenvalues clustered at
unity – a property which is good for iterative solvers. The integral equa-
tions (4) and (13) do not have compact operators. Not even for smooth
disjoint interfaces each with its own constant λ1 and λ2. The integral oper-
ators λ2M2 and λ2M3 are then compact, but λ1M1 has a spectrum consisting
of all distinct values of ±λ1. The situation is similar for aggregates of grains.
Fig. 5 shows an example with two grains in contact and where λ1 assumes
three different values on the interfaces. One can clearly see six points of
accumulation corresponding to ±λ1.

The presence of multiple points of eigenvalue accumulation for λ1M1

may have a negative influence on the convergence rate of iterative solvers
used for our discretized equations. Especially so when the range of values
of λ1 is wide. To better cluster the spectra we suggest the use of I + λ1M1,
or something similar, as preconditioner. A simple option is the Neumann
series polynomial inverse preconditioner

(I + λ1M1)
−1 ≈ I − λ1M1 . (72)

A more elaborate option is the exact inverse, given in closed form by Muskhe-
lishvili (1953), see eq. (107.12) in his book. The inverse can be expressed in
globally regularized form as

(I + λ1M1)
−1 f(z) =

Z(z)

1 − λ1(z)2

(

f(z) − 1

πi

∫

Γ

(λ1(z)f(τ) − λ1(τ)f(z)) dτ

Z(τ)(τ − z)

)

, z ∈ Γ , (73)

where Z(z) is the fundamental function (107.9) of Muskhelishvili (1953).
For its efficient computation we choose

Z(z) = (1 + λ1(z)) exp

(

1

2πi

N
∑

k=1

log G(λ1(τk)) log H(z, τ+
k , τ−

k )

)

, z ∈ Γ ,

(74)
where

G(λ) =
1 − λ

1 + λ
, (75)

and

H(z, τ+
k , τ−

k ) =
z − τ+

k

z − τ−
k

(76)
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is a Möbius transformation whose logarithm has no branch cuts outside a
circle of radius |τ+

k −τ−
k |/2 centered at (τ+

k +τ−
k )/2 and where τ+

k = τ−
k+1 are

points on Γ in between the discretizations points τk and τk+1 (assuming that
they lie next to each other). For straight panels and z = τk, that is when z
is inside the circle where log H(z, τ+

k , τ−
k ) has branch cuts, one should take

logℜe{H(z, τ+
k , τ−

k )} as to ensure the limit from the right in the function
called X(z)+ by Muskhelishvili. Note that, despite the discretization, the
formula (74) is exact. The preconditioners (72) and (73) can be applied
numerically to the left in (39), (41), (43), and (44). Finding an accurate
quadrature for the integral in (73) requires yet more matrix compression,
but for the purpose of preconditioning one can discretize (73) along the same
lines as (17) is discretized in (20), possibly modifying the quadrature weights
as to account for the behavior of Z(τ) close to corners and triple-junctions.
We will do so in the examples of Section 11.

For future reference we loosely say that λ2 dominates λ1 when |λ2(z)| >
|λ1(z)| on most of Γ. The relevance of this concept is that if λ2 dominates λ1,
the operators λ2M3 and λ2M2 control (4) and (13), and the benefit of (72)
and (73), targeting the operator λ1M1, becomes less pronounced. Then (45)
and (46) are the most efficient equations, see Sections 10 and 11.

Remark 3: The inverse (73) assumes a much simpler form if the grains are
separated. Should a grain be a hole, then λ1 + λ2 = ±1 on the boundary
of that grain and (4) and (13) have nontrivial homogeneous solutions. See
Helsing and Jonsson (2002) for techniques to remove this non-uniqueness.

10. Small-scale numerical examples

The performance of our techniques is now demonstrated for three small
geometries. In the first two experiments the goal is to compute (q1, q2) of (18)
and (19) accurately and cheaply using the GMRES iterative solver (Saad and
Schultz, 1986) with a low-threshold stagnation avoiding technique (Helsing
and Ojala, 2008a) for the main linear system. In the third experiment we
investigate the convergence of the von Mises effective stress. The code is im-
plemented in Matlab version 7.6 and executed on an ordinary workstation
equipped with an Intel Core2 Duo E8400 CPU at 3.00 GHz. As for reference
values of (q1, q2) we take estimates based on a variant of the un-compressed
Eq. (24), involving heavy use of local coordinates and special interpolatory
quadrature, see the last paragraph of Appendix A.
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Figure 6: The single square problem and the double square problem.

10.1. The single square problem

The left image of Fig. 6 depicts a square inclusion with boundary Γ
of length 2

√
2 centered at the origin and embedded in an infinite plane.

Unit stress, σ∞
yy = 1, is applied. The elastic moduli are chosen as in earlier

work (Eischen and Torquato, 1993; Greengard and Helsing, 1998) for boron-
epoxy composites under plane strain conditions and give λ1 ≈ −0.2253 and
λ2 ≈ −0.7566. Four equi-sized coarse quadrature panels are placed on each
side of the square.

First fine meshes are created by repeated subdivision of panels adjacent
to corners and the un-compressed equations (24) and (25), discretized ac-
cording to Section 4, are solved. The quantities (q1, q2) are computed via
discretizations of (18) and (19). The compressed equations (43) and (44)
and their right preconditioned variants (45) and (46) are also implemented
along with the discretizations (47,49) for (q1, q2), and the recursions (66,67)
for R, and (70,71) for X. Here special interpolatory quadrature is used.

Fig. 7, left image, shows convergence for (q1, q2). Convergence for the
un-compressed equations is plotted against the number of subdivisions of
the innermost coarse panels of each corner. Convergence for the compressed
equations is plotted against the number of recursion steps in R and X. One
can see that all equations give convergence to the same values of (q1, q2)
and that the accuracy produced by the compressed equations is very high,
thereby illustrating the consistency and the validity of various equations,
discretizations, approximations, and recursions of previous sections. The
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Figure 7: The single square problem. Left: Convergence of (q1, q2). Reference values are
q1 = −0.3949603789008513 and q2 = −0.1974624767099451. Eqs. (43) and (45) use special
interpolatory quadrature and therefore converge faster than Eq. (24). Right: the number of
GMRES iterations needed to reach a stopping criterion threshold of ǫmach in the estimated
relative residual.

high final accuracy also shows that there is nothing ill-conditioned about
computing (q1, q2) on a domain with non-smooth interfaces.

The un-compressed equations (24) and (25), despite the different regu-
larities of Ω(z) and ω(z), behave similarly. With 40 subdivisions the relative
error in (q1, q2) is about 10−12. By then, the number of GMRES iterations
needed is in the range 55–70, see right image of Fig. 7. The compressed equa-
tions (43) and (44) behave much better. They are computationally cheaper
than their un-compressed counterparts. The un-compressed equations at n
subdivisions result in linear systems with 256 + 64n unknowns while the
compressed equations have 256 unknowns irrespective of the number of re-
cursion steps. Furthermore, the compressed equations exhibit lower relative
errors and fewer GMRES iterations. The right preconditioned variants (45)
and (46) are even more efficient than (43) and (44) for this problem. In
terms of achievable accuracy they are on par with (43) and (44), but in
terms of GMRES iterations they are almost twice as fast. This is in accor-
dance with the discussion in Section 9 about (45) and (46) being preferable
when λ2 dominates λ1. The total wall-clock time for obtaining the solution
at n = 40 subdivisions or recursion steps, including the setup of various
matrices (all system matrices in this experiment are formed explicitly), is
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around 40 seconds for (24), around 55 seconds for (25), and between 0.6 and
0.8 seconds each for (43), (44), (45) and (46).

Further experiments, not illustrated, show that beyond 76 recursion steps
R of (43) has converged to within ǫmach in Frobenius norm and nothing more
happens. The same holds for R of (44) beyond 84 recursion steps.

10.2. The double square problem

The right image of Fig. 6 depicts an extension of the single square prob-
lem. The original square is translated by −0.25 − 0.25i. A new square
is added. The values of (λ1, λ2) are approximately (−0.2253,−0.7566),
(−0.1373,−0.5542) and (0.3393, 0.5655) on the different interfaces, so λ2

again dominates λ1. In addition to testing the equations used in Section 10.1,
we shall also apply the numerical preconditioner (73) to (43) and to (44).
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Figure 8: The double square problem. Left: convergence of (q1, q2). Reference values are
q1 = −0.675066104519704 and q2 = −0.336029323458141. Right: the number of GMRES
iterations needed to reach a stopping criterion threshold of ǫmach in the estimated relative
residual. ’L-prec’ refers to application of the preconditioner (73) from the left.

Fig. 8, analogous to Fig. 7, shows that (24), (25), and (43-46) all give
convergence to the same values of (q1, q2). Again, the convergence of (44)
and (46) are almost identical, as is the convergence of (43) and (45). Again,
the compressed equations exhibit a far more stable behavior in terms of
GMRES iterations than do the un-compressed equations. The application
of the preconditioner (73) to (43) and to (44), only shown in the right image
of Fig. 8, gives a 10% improvement in terms of GMRES iterations.
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The differences between (43-46) become more pronounced as we change
from the single- to the double square problem. Eqs. (43) and (45), which
have more regular solutions, need fewer recursion steps for convergence than
do (44) and (46), which have less regular solutions. The right preconditioned
variants (45) and (46) need far fewer GMRES iterations than do the merely
compressed equations (43) and (44). Still, the most important conclusion
may be that using any of the equations (43-46), the less symmetric double
square problem with corners, triple-junctions, and discontinuous λ1(z) and
λ2(z) is only slightly more difficult to solve than the highly symmetric single
square problem with only corners and constant λ1 and λ2.

10.3. The three-grain problem
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Figure 9: Convergence of the von Mises effective stress at the centroids of three hexag-
onal grains, as a function of the number of recursion steps in (66,67). The geomet-
ric and material properties are given in Tab. 1 and the reference solutions are (σv)ref =
[1.143007309293997, 1.200686919310857, 1.167025937518209].

As a last small-scale experiment we investigate the convergence of the von
Mises effective stress computed on a geometry consisting of three hexagonal
grains. Plane strain conditions are assumed, and the geometric and material
properties of the grains are given in Tab. 1. The surrounding material has
Young’s modulus E0 = 30 GPa and Poission’s ratio ν0 = 0.2. Unit stress,
σ∞

yy = 1, is applied. Under plane strain conditions, the von Mises effective
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Vertices Ek (GPa) νk

1
-0.478-0.376i -0.247-0.471i 0.003-0.386i

78 0.42
0.013-0.046i -0.279+0.075i -0.474-0.084i

2
0.003-0.386i 0.249-0.497i 0.487-0.334i

200 0.3
0.486-0.046i 0.232+0.049i 0.013-0.046i

3
-0.279+0.075i 0.013-0.046i 0.232+0.049i

100 0.33
0.224+0.345i -0.028+0.493i -0.270+0.378i

Table 1: Geometric and material properties for the three grains. For the surrounding material
we use E0 = 30 GPa and ν0 = 0.2.

stress is given by

σv =
√

(1 − ν(1 − ν))
(

σ2
xx + σ2

yy

)

− 3
(

σxxσyy − σ2
xy

)

. (77)

In order to evaluate this quantity, we first compute the weight-corrected
density Ω̂coa from (44), using 4 quadrature panels per grain edge and n
steps in the recursion (66,67) with n varying between 2 and 70. Having
obtained Ω̂coa, we then compute the stress components σxx, σyy, and σxy

via (2,3) and (10,11) at the centroids of the three grains, which in turn
give the von Mises effective stress via (77). As reference solutions we use
effective stresses computed using 8 panels per grain edge and 80 recursion
steps. They are

(σv)ref = [1.143007309293997, 1.200686919310857, 1.167025937518209]

at the three centroids, respectively. The geometry and the relative error as
a function of the number of recursion steps is shown in Fig. 9. As can be
seen, the values have converged to 15 digits at 50 recursion steps.

11. Large-scale numerical examples

This section demonstrates the performance of different combinations of
equations and preconditioners, introduced in preceding sections, on a larger
scale. We also discuss aspects of applicability, that is, under what circum-
stances to use what equations and preconditioners in order to achieve the
best results. The goal is to compute the quantity (q1, q2), given in dis-
cretized form by (47) and (49), for inclusions consisting of perturbed hexag-
onal grains. The experiments are performed in the Matlab environment,
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Figure 10: A perturbed honeycomb structure with 2475 grains. The coloring is based on the
Young’s modulus. Darker colors indicate stiffer materials.

with some time-critical functions written in C. Linear systems are solved us-
ing GMRES as in the small-scale examples, but matrix-vector multiplication
is now accelerated with fast multipole techniques (Greenbaum et al., 1992).
The computer is an ordinary workstation equipped with an Intel Core i7
CPU running at 2.66 GHz.

A number Ngr of hexagonal grains are placed in a honeycomb-like pat-
tern, within the unit square. The structure is randomized slightly by moving
each vertex a distance of one tenth of the length of a grain edge in a random
direction. This is done to avoid symmetries that may allow for a simpler
solution. The largest structure used, with Ngr = 2475 is displayed in Fig. 10.
The material properties of the grains are assigned as follows:

• The Young’s modulus Ek for grain k is given by Ek = 10γ where γ
is a uniformly distributed random variable in the interval [4, 6]. The
geometric mean of the Ek is then approximately 105.

• The Poisson’s ratio νk for grain k is uniformly distributed in the in-
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terval [−0.99, 0.49], encompassing a wide range of materials, while
avoiding the most pathological ones.

The surrounding material has E0 = 105 and ν0 = 0. The bulk and shear
moduli κk and µk of each grain is computed according to different formulas
depending on whether we simulate plane strain or plane stress conditions.
Unit stress σ∞

yy = 1 is applied in all examples.
The coarse mesh over Γ is constructed by distributing ne panels of equal

length in parameter as well as arc length on the shortest grain edge in the
structure. Panels on the other edges are distributed so that all the panels
in the mesh have approximately equal length. That is, each edge in the
structure consists of at least ne panels. Each panel, in turn, has 16 Gauss-
Legendre nodes with accompanying suitably scaled weights.

After the mesh is constructed the blocks of R and X are computed. Let
Rp and Xp denote the block of R and X describing interaction on Γ⋆

p. For
each corner and triple-junction these matrix blocks are constructed using the
recursion (66,67) for Rp and (70,71) for Xp. The techniques in Appendix A
and B are applied for efficiency. The recursion for Rp is run until

‖(Rp)i − (Rp)i−1‖F

‖(Rp)i−1‖F
≤ 10ǫmach , (78)

where (Rp)i is the ith step in the recursion of Rp, and ’F’ indicates the
Frobenius norm. An analogous condition is used for Xp. Since the fast
multipole method is used for the system matrices, blocks corresponding to
M⋆

1coa,p,M
⋆
2coa,p and M⋆

3coa,p need to be subtracted. Furthermore, in the

post-processor (49), X does not appear by itself but is multiplied by R−1. To
save time and memory, compositions of these matrix blocks are precomputed
and stored. For example, in the setting of (43), the compositions

BR,p = R−1
p − I − λ1M

⋆
1coa,p − λ2M

⋆
2coa,p (79)

BX,p = XpR
−1
p − M⋆

2coa,p (80)

are computed for each corner and triple-junction. The former is stored in
RAM and the latter on disk, since it is needed in the post-processor only.
Analogous expressions are used in the setting (44).

We take Eqs. (43) and (44) as our primary choice of equations. In
addition, we apply the preconditioners (72) and (73) to the left in (43)
and (44) for a total of six setups. These are tested under both plane strain
and plane stress conditions. It should be mentioned that the right inverse
preconditioned equations (45) and (46) are competitive for certain materials.
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As a rule of thumb, λ2 dominates λ1 when ν0 > 0, νk > 0 for all k, which
is true for most common materials. In this case, Eqs. (45) and (46) are
favorable in that they require about as many GMRES iterations as the left
preconditioned equations (43) and (44), while each iteration is faster. In the
present setting with highly general materials, however, Eqs. (45) and (46)
suffer and were omitted.
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Figure 11: Estimated relative errors in (q1, q2) using different panel resolutions for a composite
with 218 grains. Stars indicate Eq. (43) and circles Eq. (44).

We first demonstrate the behavior of Eqs. (43) and (44) under increased
mesh resolution. Using a structure with Ngr = 218 grains we vary the
minimum number of panels ne from 4 to 20 and calculate (q1, q2) in each
instance under both plane strain and plane stress conditions. As reference
solution we choose the arithmetic mean of the eight solutions computed
with ne = 5, 6, 7, 8. Fig. 11 shows the relative errors. One can see that
the methods are stable under overresolution, that the quantity (q1, q2) has
converged already at ne = 4, and that the error is very low also for problems
significantly more complex than those of Section 10.

Next, we vary the number of grains Ngr from 1 to 2475 while keeping ne

fixed. The discretization of the coarse grid has ne = 4 in light of the pre-
ceding paragraph, but reference quantities (q1, q2) are also calculated using
ne = 5. All six setups are tested. Fig. 12 for plane strain and Fig. 13 for
plane stress are similar. The errors are roughly the same, albeit somewhat
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Figure 12: Plane strain conditions. Left: The estimated relative errors of the computed
quantity (q1, q2) as a function of the number of grains Ngr. Right: The number of GMRES
iterations needed to reach a stopping criterion threshold of ǫmach in the estimated relative
residual.

higher under plane stress conditions. The number of GMRES iterations are
also similar. This is a very favorable characteristic; the setups are equally
stable and usable regardless of whether plane strain or plane stress con-
ditions are assumed, and regardless of whether layer densities related to
displacements or stresses are sought. The most important difference is that
for plane strain conditions, the preconditioner (73) should be used in order
to minimize the number of GMRES iterations, while for plane stress con-
ditions (72) is preferable for the same reason. The fact that the number
of GMRES iterations increases with the number of grains is a concern, but
experiments with more homogeneous materials suggest that the number of
iterations will eventually settle around an upper limit.

As for an example of memory and time requirements we choose the
largest geometry with Ngr = 2475, plane stress conditions, and Eq. (43)
with the preconditioner (72). The entire computation takes about two hours.
Time-wise, the computation is dominated by the calculation of (79), (80)
and the GMRES solver. The mean number of recursion steps needed for
the blocks Rp and Xp to satisify (78) are 50 and 47, respectively, and the
total block computation accounts for 38% of the solution time. GMRES,
requiring 184 iterations for the estimated relative residual to drop below
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Figure 13: Plane stress conditions. Left: The estimated relative errors of the computed
quantity (q1, q2) as a function of the number of grains Ngr. Right: The number of GMRES
iterations needed to reach a stopping criterion threshold of ǫmach in the estimated relative
residual.

ǫmach, accounts for around 60%. Precomputed blocks and Krylov subspace
vectors in GMRES also dominate the memory required. There are 5149
corners and triple-junctions. At each of these the block (79) needs to be
stored in RAM for later use in GMRES. These blocks, together, require
about 1.5 GB of RAM. Furthermore, the computational grid consists of
693952 points, and with the density ω̂coa being complex this means that each
Krylov vector in the GMRES solver uses approximately 1.1 MB of RAM.
With 184 GMRES iterations, about 2 GB of memory is required. One should
keep in mind that this is a very large and complicated geometry which, by
necessity, translates into a high use of computational resources. The point
is that even these very difficult geometries can be handled efficiently enough
to be feasible for off the shelf workstations. In addition, these numbers
correspond to solving the problem at hand to maximum accuracy. It should
be pointed out that the solver components are tunable in terms of desired
precision, saving time and storage accordingly. Setting the stopping criterion
in (78) and in the GMRES solver to some specified tolerance ǫtol > ǫmach

saves time and lowers the memory required by the Krylov vectors. The
amount of memory required by the precomputed blocks can be lowered by
computing the singular value decomposition of the blocks (79) and only store
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Figure 14: A contour plot of the base-10 logarithm of the von Mises effective stress. The
coloring is as in Fig. 10.

the singular vectors corresponding to singular values greater than 100ǫtol.
Setting ǫtol = 10−8, for example, roughly cuts solution time and memory
requirements in half and the relative error in (q1, q2) is kept around 10−8 as
specified.

Now, we briefly demonstrate an extension to the convergence experiment
in Section 10.3 by calculating the von Mises effective stress over an entire
domain. We choose a geometry of moderate size – a honeycomb structure
consisting of 23 grains. The method used is, basically, the same as in Sec-
tion 10.3, with the addition that close to grain boundaries we now utilize
special-purpose interpolatory quadrature (Helsing and Ojala, 2008a) to im-
prove accuracy. The result is displayed in Fig. 14.

To conclude this section, we briefly summarize the findings. Firstly,
there is little difference in the performance of (43) and (44). That is, one
is free to solve for quantities corresponding to stresses or displacements,
whichever best suits a given problem from a modeling point of view. Sec-
ondly, provided the appropriate left preconditioner is used, there is little
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difference in performance between plane strain and plane stress conditions.
The suggested left preconditioners are :

• the Neumann series inverse preconditioner (72) for plane stress,

• the Muskhelishvili inverse preconditioner (73) for plane strain.

Thirdly, these setups perform well for structures consisting of highly general
materials, with ν = (−1, 0.5). For more common materials, where ν >
0, further efficiency can be gained by using the compressed right inverse
preconditioned equations (45) and (46). To sum up: the combination of
recursive compression with a suitable left preconditioner is a robust, flexible,
efficient, and highly accurate tool in planar elasticity.

12. Outlook and conclusion

This paper is about a recursive compression technique for the accurate
resolution of sharp corners and triple junctions in the context of solving
integral equations for problems in linear elasticity. Its description requires
a fair amount of detail. Once implemented, however, the technique is a
versatile and powerful tool.

To limit the size of the paper we have focused on an elastic plane with
a multiphase granular inclusion and boundary conditions at infinity, where
we compute some functionals of the solution. In the numerical examples we,
further, specialize to boundaries made up of straight edges. Objects with
curved boundaries can be treated with almost the same ease, as demon-
strated for Laplace’s equation in Section 10.2 of (Helsing and Ojala, 2008b).
The modification in the present context is that (65) no longer holds. The
recursion (63) must be used, rather than the simplified (66). More work
is required to obtain the dκ quantities, see Appendix A. Perhaps, then,
it would pay off to replace the global regularization (17) with panelwise
evaluation throughout Γ⋆

p.
Should one need to reconstruct the pointwise values of ω(z) and Ω(z)

on the fine grid from the computed values of their transformed counterparts
on the coarse grid, this can be done by, in a sense, running (63) backwards.
The pointwise discretization error is the same as if un-compressed equations
were used from the start. We may return to this in future work, possibly in
combination with more compact notation for describing the entire scheme.

Other geometries, boundary conditions, and output, such as multi-wedge
stress intensity factors and plots of elastic fields in finite bodies with mixed
boundary conditions, could in principle also be treated. Stress intensity
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factors can be extracted via curve fitting of singular basis functions to re-
constructed layer densities. Singular exponents may be computed via multi-
wedge eigenvalue analysis or determined in the fit itself. Mixed boundary
conditions require the derivation of new integral equations. This, too, we
leave for future work.

One may argue that real materials seldom have corners that are atom-
ically sharp, that linear elasticity is not valid at atomic length scales, that
grains are never perfectly bonded in triple junctions and that one, therefore,
somehow should smooth out geometrical difficulties that arise in material
modeling as to avoid such ‘unphysical complications’. We believe that while
some smoothing could perhaps increase realism it will not lead to simpler
problems from a computational viewpoint. On the contrary, non-sharp in-
terfaces introduce new numerical complications. Furthermore, this paper
shows that the presence of corners and triple junctions in a geometry does
not generally increase the conditioning of an underlying elastostatic problem.
Why, then, should it increase the computational difficulty in any significant
way? Indeed, apart from the need for extra storage, non-smooth boundaries
can be treated with the same ease as smooth boundaries. This is the main
conclusion of our paper.
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Appendices

A. Efficient computation of D◦

ib
, D⋆

1b
, and K⋆

nb

While all matrices entering into the recursion (66,67) have been defined,
a discussion about the efficient computation of D◦

ib, D⋆
1b, and K⋆

nb is in
order. For this we need another two sets of discretization points. Let G1⋆

p

denote a set of 32 points on the coarse panels on Γ1⋆
p , see Fig. 3. Let G◦

ib

denote the 32 points on the outermost two panels in the set Gib, see Fig. 4.
The 32 non-zero elements of D◦

ib are needed in each recursion step i. In
the last step, i = n, they can be written

cκ(τj)

b(τj)
− dκ(τj ,Gnb) − dκ(τj ,G◦

p) , τj ∈ G◦
nb , (81)
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see (53). Row summation in K
(1)◦
nb gives dκ(τj,Gnb) and row summation in

λ1M
◦
1coa gives dκ(τj,G◦

p). When i < n, the non-zero elements can be written

cκ(τj)

b(τj)
− dκ(τj,Gib) − dκ(τj ,Gna \ Gia) − dκ(τj ,G◦

p) , τj ∈ G◦
ib , (82)

The quantities dκ(τj,Gna \ Gia) and dκ(τj ,G◦
p) can, in general, be computed

via interpolation and recursion in the opposite direction of (63). When Γ
is a collection of line segments, (82) is independent of i and simple options
exists for all its terms. Independence of i is shown as follows: The first
term of (82) is a constant. The second term is invariant under the change
dκ(τj ,Gib), τj ∈ G◦

ib → dκ(τj ,G(i−1)b), τj ∈ G◦
(i−1)b and thus independent of

i. From (16) we have

1

πib(z)

∫

Γ1+Γ2+Γ3

aκ(τ) dτ

τ − z
=

cκ(z)

b(z)
, z ∈ G◦

ib , (83)

with Γ1 = Γ \ Γ⋆
p(i+1), Γ2 = Γ⋆

p(i+1) \ Γ⋆
pi, and Γ3 = Γ⋆

pi. The functions b(z)

and cκ(z) are constant on each edge, see (7) and (15), so the right hand
side of (83) is independent of i and therefore also the left hand side. Now
the integrals over Γ2 and Γ3 are independent of i and therefore also the
integral over Γ1. Furthermore, the discretization of the integral over Γ1 is
accurate according to Fig. 1 and therefore independent of i. Clearly, the
discretization of the integral over Γ2 is independent of i. The sum of the
discretizations of the integrals over Γ1 and Γ2 corresponds to the the sum
of the third and the fourth term of (82).

The elements in (82) can now be computed choosing i = n−1. For the
second term we observe that dκ(τj,G(n−1)b), τj ∈ G◦

(n−1)b and dκ(τj ,Gnb),
τj ∈ G◦

nb are the same. The latter values were computed in connection
with (81). For the third term we observe that Gna \ G(n−1)a = G◦

nb and that
G◦

(n−1)b is a subset of Gnb. For the fourth term we interpolate values of

dκ(τj ,G◦
p) at τj ∈ G1⋆

p , available by row summation in λ1M
◦
1coa, to points in

G◦
(n−1)b. See the last paragraph of Section 5.2. In conclusion, to evaluate (81)

and (82) when Γ consists of straight lines, it suffices to do summation in

K
(1)◦
nb and λ1M

◦
1coa followed by interpolation . The elements of K

(1)◦
nb are

independent of n and we choose n=1.
The 64 non-zero elements of D⋆

1b

cκ(τj)

b(τj)
− dκ(τj,G1b) − dκ(τj ,Gna \ G1a) − dκ(τj,G◦

p) , τj ∈ G1b \ G◦
1b , (84)
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are needed in the first recursion step. Again, we specialize to Γ being a
collection of line segments. Scale invariance gives that (84) is independent
of n and we choose n=1. The second term then corresponds to summation

in K
(1)
nb with τj ∈ Gnb \ G◦

nb. The third term vanishes. For the fourth we
interpolate values of dκ(τj,G◦

p) at τj ∈ G1⋆
p to points in Gnb \ G◦

nb. So, again,

it suffices to do summation in K
(1)
nb and λ1M

◦
1coa followed by interpolation.

The entries of K⋆
nb, which come from K

(1)⋆
nb , K

(3)⋆
nb and K

(4)⋆
nb and describe

interaction of neighboring panels which meet at a vertex, can be computed
more accurately using special interpolatory quadrature (Helsing and Ojala,
2008a). For λ1M1 of (17) this corresponds to panelwise evaluation, rather
than to global regularization.

B. Speedup of the recursions and storage

Each recursion step of (66) involves a fair amount of matrix inversion
and matrix-matrix multiplication. The complex matrix Ri is 64 × 64, the
complex matrix within square brackets is 96 × 96 and Pbc is 96 × 64, even
though a majority of the elements are zero. Using the Schur-Banachiewicz
inverse formula for a partitioned matrix (Henderson and Searle, 1981) one
can show

[

PT 0

0 I

] [

A−1 U

V D

]−1 [
P 0

0 I

]

=

[

PTAP + PTAU(D − VAU)−1VAP −PT AU(D − VAU)−1

−(D −VAU)−1VAP (D − VAU)−1

]

. (85)

After permutation of (66) and with A = 0.5Ri−1, P being a collection of
blocks of Pbc, and U, V, and D being collections of blocks of (I◦nb + D◦

ib +
K◦

nb)W
−1
nb , one can use (85) to speed up the recursion.

It is worth pointing out that the recursion (66), except for the last step
i = n, can be viewed as a fixed-point iteration. This is so since D◦

ib is
independent of i for i<n assuming a corner in the shape of a wedge. One
can, thus, iterate (66) with D◦

ib = D◦
(n−1)b until convergence for Rn−1,

without knowing the precise number n in advance, and then perform one
last iteration for Rn with D◦

nb.
Some other observations: The recursion (70) can be viewed as a fixed-

point iteration, too, for i < n. It can be sped up by replacing Ri−1 with
the converged quantity Rn−1 computed above. The blocks of XR−1 can
be stored on disk since they are only needed in the post-processor (49).
Symmetries in the non-zero blocks of the Qcb and Pbc matrices can be used
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to reduce the number of arithmetic operations needed for their application,
see eq. (45) of Helsing and Ojala (2008a). Use of (85), rather than a straight-
forward implementation of (66), allows for a reduction of the computational
cost with about 70% per recursion step.
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