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Introduction 

 

Cells express multiple receptors to be able to respond to their local 

microenvironment. These receptors are activated by ligands, which 

may be proteins, sugars, fats or other molecules. When the ligand 

binds the receptor, the receptor becomes activated and starts a 

signalling cascade, which will influence the receptor-bearing cell. One 

large family of receptors is the enzyme-linked receptors comprising 

five subfamilies, including receptor tyrosine kinases (RTK). The 

RTKs have an extracellular domain, one transmembrane domain and 

one intracellular domain with enzymatic activity. When the ligand 

binds a RTK, the receptors assemble into dimers, bringing the 

intracellular domains in close proximity. The intracellular domains 

will phosphorylate each other at specific tyrosine residues, enabling 

adaptor proteins to bind to the now activated receptor dimer. The 

adaptor proteins will transmit the signal into the cell, leading to altered 

cell behavior. 

The human genome encodes 58 receptor tyrosine kinases, which are 

grouped in 20 families based on homology. The receptors of the TAM 

family have similar domain organization, with two immunoglobulin 

domains, two fibronectin domains in the extracellular domain.  

The TAM family include the Tyro3, Axl and Mer receptors. My thesis 

will focus on the soluble form of the Axl receptor, but will also give a 

introduction to the TAM family at large including the ligands Gas6 

and protein S. 
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Background 
 

The Gas6 gene and the Gas6 protein 
The gene coding for growth arrest specific-6 (Gas6) was discovered in 

1988 when searching for genes specifically expressed in growth-

arrested fibroblasts. 6 genes were found and they were named gas1 to 

gas6. The expression of these genes was high when cells were treated 

with media low in nutrients, but when the media was changed to a 

growth factor rich media, the expression decreased1. The full-length 

human cDNA for Gas6 is 2,461 nucleotides long and encodes a 75 

kDa protein consisting of 678 amino acids2. Gas6 was found to be 

similar to the vitamin K-dependent protein S, sharing the domain 

organization and 44% amino acid identity. However, in contrast to 

protein S and the other vitamin K-dependent proteins, the expression 

of Gas6 is low in liver, but high in lung, intestine, bone marrow and 

endothelial cells2.  

The vitamin K-dependent proteins share the Gla domain, containing 

several glutamic acids, which are γ-carboxylated in the endoplasmatic 

reticulum3. The Gla domain is a common feature in several proteins 

involved in coagulation (Fig 1), and the Gla domain enables them to 

bind surfaces containing negatively charged phospholipids4, on which 

many of the reactions of the coagulation cascade occur5. In vivo, 

negatively charged phospholipids are present on the membranes of 

endothelial cells and activated platelets6,7. The γ-carboxylation of the 

Gla domain is dependent on vitamin K, and in its absence, the Gla 

domains have impaired membrane binding4,5. The anticoagulant drug 
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warfarin exerts its function by inhibiting the γ-carboxylation of several 

of the proteins of the coagulation cascade8. 

 
 

Figure 1 

The domain organization of Gas6, protein S, and other Gla-containing 

proteins.  

 

The first translated amino acids of the Gas6 protein compose the 

signal peptide, which is cleaved off during secretion. The mature Gas6 

protein consists of a N-terminal Gla domain, a loop region, four 

epidermal growth factor (EGF) domains and two laminin G (LG) 

domains.  

The loop region of Gas6 is the region with lowest homology to protein 

S2. Thrombin cleaves protein S in the loop region, but no such 

cleavage has been reported for Gas6. EGF domains are found in over 

600 proteins9, including several coagulation factors (Fig 1). Each EGF 

module has 6 cysteins with a characteristic binding pattern between 

Cysteins 1-3, 2-4 and 5-610.  
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The LG domains constitute the C-terminal part of Gas6. LG domains 

are usually present in single modules or pairs, and are found in over 

80 proteins11. The two LG domains are together sometimes called the 

SHBG domain. It is called so due to the similarity with sex hormone 

binding globulin (SHBG), produced by the liver12. SHBG binds 

hormones in circulation and prolongs their half-life13. 

 

An alternative transcript of Gas6 has been reported, with an insert of 

129 basepairs between the last EGF domain and the SHBG domain. 

The expression of this splice variant, called Gas6sv can be seen in 

lung, brain, kidney and placenta where it makes up a small fraction of 

the total Gas6 expression. However, in the spleen, Gas6sv is the 

dominant form, but the role of this variant is not fully elucidated14. 

The Gas6 promoter regions are defined15, and an estrogen response 

element has been found upstream of the Gas6 gene16. 

 

Protein S 
Gas6 is similar to the more widely known protein S which was 

discovered in 197717 when purifying coagulation factor IX and factor 

X from plasma. The purification method used included an absorption 

step using barium citrate, which precipitates proteins containing Gla 

domains. During the elution of factors IX and X, another protein peak 

was observed. The protein was purified and amino terminal 

sequencing revealed a new, Gla-containing protein, which was named 

protein S17.  

Protein S is mainly produced in the liver, but some expression can 

also be observed in endothelium, megakaryocytes, smooth muscle 

cells and osteoblasts7,18-22. 
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The mature human protein S consists of 635 amino acids and is 

composed of a N-terminal Gla domain, a thrombin sensitive loop 

region, four EGF domains and two LG domains23. The Gla domain 

anchors protein S to negatively charged phospholipids on which it can 

function as a cofactor to the activated protein C. The loop region is 

sensitive to thrombin and cleavage at Arg49 and Arg70 removes the 

cofactor activity to activated protein C5. The LG domains in protein S 

bind with high affinity to the complement regulatory protein C4b 

binding protein (C4BP).  

 

Protein S is reported to have anticoagulant effects on multiple steps in 

the coagulation cascade. The most studied effect is the function as a 

cofactor to activated protein C (APC). Thrombin activates protein C 

when bound to thrombomodulin, and APC inactivates factor Va and 

factor VIIIa, limiting further formation of thrombin. With protein S 

present, the affinity between APC and the membrane is increased 

tenfold, leading to more efficient inactivation24. Protein S is also 

reported to have direct anticoagulant function on factor X25, and an 

anticoagulant function through TFPI6. 

 

60-70 % of protein S in circulation is normally bound to C4BP26. The 

C4BP-protein S complex has an octopus-like appearance with eight 

chains linked together by disulfide bonds in the central region27. C4BP 

consists of seven α-chains with complement regulatory activity, and 

of one β-chain that binds the SHBG domain of protein S28. The 

affinity between the β-chain and protein S is around 0.1 nM29. Thus, 

all β-chains in circulation are bound to protein S. C4BP inhibits 

complement by acting as a cofactor for factor I in degrading C4b and 



 16 

C3b30, and protein S-C4BP inhibits phagocytosis of apoptotic cells31, 

as opposed to free protein S32. 

 

Receptor tyrosine kinases 
RTKs comprise a large group of transmembrane proteins with the 

ability to transfer signals from the outside of the cell to the inside. 

When a ligand binds a receptor tyrosine kinase, two receptor chains 

are brought in close contact and will become phosphorylated on 

specific residues of the RTK33. The phosphorylated domain will allow 

adaptor proteins to bind, which in turn will transfer the signal further 

into the cell34. In the human genome, 58 RTKs have been found, 

grouped into twenty families due to homology35. 

 

 
Figure 2 

Seven families of receptor tyrosine kinases.  
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The TAM family of receptor tyrosine kinases 
The TAM family consist of three proteins: Tyro3, Axl and Mer. As 

the proteins have been of interest for many groups, working 

simultaneously and with different species, a plethora of names are in 

use. Tyro3 is called Sky, Rse, Brt, Tif, Dtk and Etk-2, Axl is also 

known as Ufo, Ark and Tyro7 and Mer is referred to as Eyk, Nyk or 

Tyro12. The whole family of proteins is called the TAM family 

(Tyro3, Axl and Mer), the Tyro3 family, or the Axl family. In this 

thesis, I will use the TAM family and Tyro3, Axl and Mer 

nomenclature.  

 

The Tyro- names were given after an experiment using primers to 

conserved parts of RTKs. The primers were used to investigate the 

nervous system for presence of RTKs, and found several known RTKs 

and also 13 mRNAs of RTKs not yet described36. Three of the new 

mRNAs, Tyro3, Tyro7 and Tyro12 could not be assigned to any 

known family of receptors. However, the signalling domains of these 

three receptors all contained a common recognition motif and were 

denoted the Tyro3 subfamily. 

 

The Axl gene was found as a gene able to induce chronic 

myeloproliferative leukemia37, and was later revealed to code for a 

RTK38. The gene was named Axl after the Greek anexelekto, meaning 

the uncontrolled. The same gene was also found by another group as a 

gene causing chronic myeloproliferative disorder, calling it Ufo, 

referring to its unknown function39, and the murine gene was given the 

name Ark40. The Axl gene is expressed in brain36,41, endothelial cells, 

heart, skeletal muscle, liver, kidney, testis and hematopoietic tissues42-
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44 and cell lines from epithelial, mesenchymal and hematopoietic 

origin38. 

 

Jia et al  identified the gene behind the oncogenic properties of the 

avian virus RPL30, and sequence analysis showed a high homology to 

Axl45. After screening a human λgt11 library in E. Coli with an 

antisera against phosphotyrosine a human homologue to the RPL30 

gene was identified. High expression was observed in monocytes, 

epithelium and reproductive tissue, and thus the protein was named 

Mer46.  

 

During March and April 1994, four groups independently published 

findings of a new RTK. They named the receptor tif47, Sky48, brt49 and 

rse50, all describing the same protein.  

Expression is high in the nervous system48-51, but can also be observed 

in ovaries and testis47, endothelial cells52 and osteoclasts53. 

 

Tyro3, Axl and Mer share the same domain organization with two N-

terminal immunoglobulin-like domains, two fibronectin type III 

domains, a transmembrane domain and an intracellular signalling 

domain. The latter contains a KW(I/L)A(I/L)ES motif which is 

specific for the TAM family54,55. Both Ig and FNIII domains are 

common in RTKs35 and are also present in neural cell adhesion 

molecules56. 
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Figure 3 

The structure of the receptors of the TAM family 

 

The Tyro3, Axl and Mer proteins contain 890, 894 and 999 amino 

acids, respectively, which theoretically should encode proteins with a 

size of 100-110 kDa. Due to extensive glycosylation, the full-length 

Axl and Tyro3 proteins migrate as 140 kDa57,58, and Mer as 205 kDa59.  

 

Gas6 and protein S as ligands of the TAM family 
Gas6 was found to function as a ligand to the Axl receptor in 1995. 

Axl-bearing cells were exposed to media from 70 different cell lines 

in search for a factor that could activate the receptor, and media from 

two cell lines were able to stimulate Axl. The cell media was purified 

on the basis of the Axl stimulatory activity, and after several 

purification steps, a single protein band was sent to mass 

spectrometry, which identified the Gas6 protein60. Further studies 

showed that Gas6 bound and activated the Tyro361,62, and Mer 

receptors63.  
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The binding of protein S to the TAM receptor family has been 

debated. Protein S was identified as a ligand to the TAM family of 

receptors64, but as the study used human protein S to stimulate murine 

Tyro3, the relevance of this finding has been questioned61,63,65,66. 

However, Protein S has been reported to activate TAM receptors in 

several animal models67-70 and an oxidized, oligomeric form of protein 

S has been shown to activate Mer and induce phagocytosis71, 

suggesting that oligomerization is crucial for signalling. 

 

The domains of Gas6 able to stimulate the TAM receptors have been 

defined using deletion constructs of Gas6. The C-terminal portion is 

enough to stimulate the TAM receptors65,72,73, and Gas6sv can also 

stimulate receptors72. Even so, Gas6 expressed in the presence of 

warfarin, lacking gamma carboxylated glutamic acids is unable to 

activate the receptors on cells to give cellular effects73-77.  

 

The affinity of the human Gas6-TAM receptor interaction has been 

estimated by several groups. Nagata et al78 estimated the Gas6-Axl 

affinity to 1 nM and the Gas6-Tyro3 affinity to 10.8 nM. Chen et al63 

determined the affinity for Gas6 to 1.6 nM for Axl, 3.6 for Tyro3 and 

9.7 for Mer. Fisher et al79 report 0.053, 0.031 and 0.304 nM for the 

three receptors respectively. Wimmel80 reported 0.178 nM for Gas6 

and Axl, and we have estimated the Gas6-Axl affinity to 0.4 nM 

(Paper I).  
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Equilibrium constant of Gas6 (nM) 

Axl Tyro3 Mer Reference 
1.0  10.8 ND Nagata 1996 
1.6 3.6 9.7 Chen 1997 
0.053 0.032 0.304 Fischer 2005 

 

Table 1  

Reported strength of the Gas6 interaction with the TAM receptors.  

 

A number of crystals revealing the three-dimensional structure of 

Gas6 and its receptors have been published. The first published crystal 

demonstrated the structure of the LG domains of Gas6. The fold was 

similar to previously described LG-containing proteins and indicated 

which amino acids that could influence binding to receptors, and when 

Leu620 was mutated to an alanine, the affinity towards Axl decreased 

tenfold81.  

Alone, the Ig domains of Tyro3 can bind Gas6, and a crystal of the 

Tyro3 Ig domains has also been presented82. A complex crystal 

containing the LG domains of Gas6 and the Ig domains of Axl has 

been presented. In this crystal, two pairs of Ig and LG domains form a 

2:2 complex, with one major binding site between Ig1 and LG1, and a 

minor between Ig2 and LG183. 

 

Soluble TAM receptors 
Several receptors exist in soluble forms, consisting of the extracellular 

regions of the receptor. The soluble receptors can remove the ligand 

from cell bound receptors and thus inhibit signalling84,85, and several 

experiments have utilized a extracellular, soluble form of Axl (sAxl) 

or a dimeric Axl (Axl-Fc) as specific inhibitors for Gas6 
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signalling60,86-89. Soluble receptors can be produced by alternative 

splicing or by proteolysis of the full-length receptor. 

The Axl receptor is cleaved just outside the membrane, and shedding 

of soluble Axl can be induced by treatment with phorbol esters58. 

Several mouse cells and organs release sAxl constitutively86,90. 

Decreased shedding of sAxl could be observed during treatment of the 

broad metalloproteinase inhibitor GM6001, the more specific inhibitor 

GW280264X (targeting TACE and ADAM10) and also siRNA 

against ADAM10. The cleavage site of Axl was localized with use of 

deletion mutants, lacking parts of the extracellular domain close to the 

membrane. In mouse serum, Gas6 could be co-immunoprecipitated 

with anti-Axl antibodies, which indicated that the proteins circulate in 

complex86. Human dendritic cells shed sAxl upon inflammatory 

stimuli91. sAxl is shedded from human cell lines, and is present in 

human plasma where it binds Gas6 (see Paper I). Soluble Mer (sMer) 

is reported to be present in mouse and human serum59. Similar to 

sAxl, the shedding of sMer could be increased with phorbol esters and 

LPS. The shedding was inhibited by TAPI, an inhibitor of the TACE 

metalloproteinases. The Mertk gene, (encoding the Mer protein) 

contains a additional polyadenylation site after the extracellular 

domain, indicating that sMer could be translated without the C-

terminal parts of the protein46. Expression of this extracellular domain 

alone has been reported as unpublished observations55.  

 

Cellular effects of Gas6 signalling 
Gas6 binding to the TAM family induces receptor dimerization. The 

intracellular signalling domains are brought into close proximity and 

become phosphorylated on specific tyrosine residues. Stimulation of 
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Tyro3 can stimulate the Src family92 as well as Erk93, and has in yeast 

2-hybrid systems been shown to interact with PI3K94 and RanBPM95. 

In Axl, the tyrosine residues in positions 779, 821, and 866 are known 

to be phosphorylated, which leads to signalling through the Grb2 and 

PI3K pathways96,97.  

Activation of Mer leads to phosphorylation of the tyrosine residues at 

749, 753 and 75498, and to interaction of PLC, PI3K, Shc, Grb299 and 

Vav100. 

 

The cellular effects initiated by Gas6 signalling are different in 

different cell types and can work synergistic with other signals. Gas6 

signalling is of importance in many physiological and pathological 

situations, and below is a brief description of some of the more 

studied areas. 

 

Antiapoptotis and mitogenesis 
Several studies have been presented on the antiapoptotic and 

mitogenic effects of Gas6 signalling. These effects have been 

documented in fibroblasts77,101-103, different endothelial cells74,76,104-106 

vascular smooth muscle cells75,107,108, oligodendrocytes109,110, Schwann 

cells111, lens epithelial cells112, neurons113,114 and liver cells115-117. Gas6 

decrease apoptosis after serum starvation74,77,101,104,107,113,115 and TNFα-

treatment106,110,112 in several cell types. Gas6 has a mitogenic 

effect75,77,101,111 but the Gas6 effect is lower compared to PDGF and 

FGF4101.  

 

The TAM receptors were found as transforming genes, and the role of 

TAM receptors and Gas6 in cancer has been studied by several 
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groups. Presence of Gas6 and the TAM receptors have been observed 

in many malignancies, including leukemia118, cancer of the 

thyroid119,120, lung80, uterus121, endometrium122, ovary123, prostate124-127, 

gastric cancer87, breast cancer128, Kaposi’s sarcoma129, malignant 

gliomas130,131 and renal cell carcinoma132. 

 

Gas6 induces proliferation and survival in breast133 and prostate 

cancer cells124,126. Several animal models have also indicated the role 

of TAM receptors. In mouse models of glioma131, breast cancer134, 

hepatocellular carcinoma135 and metastatic ovarian cancer136, high 

expression of Axl is deterimental, and blocking Axl expression on 

transcriptional or protein level increase survival. Gas6 is mitogenic for 

tumors, and implanted tumors grow faster in wildtype than Gas6-/- 

mice137, as infiltrating macrophages released Gas6 to the tumor.  

 

Presence of Gas6 and the TAM receptors have clinical implications 

for cancer patients. Low expression of Axl mRNA indicate a good 

prognosis in patients with renal cell carcinoma132. High Axl 

expression in breast cancer134, pancreatic adenocarcinoma138, 

malignant glioma130 and esophageal adenocarcinoma139 is a negative 

prognostic factor. However, in breast cancer, high Gas6 expression is 

associated with smaller tumor size and decreased metastases140. 

 

Inhibition of RTKs has been shown to be a viable way of treating 

several cancers141-143. Inhibiting Axl with antibodies and shRNA leads 

to decreased proliferation and invasiveness in animal models129,144-146. 

Axl-inhibitory small molecules are under development, and have been 

shown to inhibit breast cancer metastasis in mice147.  
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Phagocytosis & Migration 
Gas6 can act as a bridging molecule with the Gla domain binding 

negatively charged phospholipids, coincident with LG domains 

binding a TAM-bearing phagocytic cell. Phosphatidylserine (PS) 

normally resides in the inner leaflet of the cell membrane, but as cells 

become apoptotic, PS accumulates in the outer leaflet148. Without 

proper removal of apoptotic cells, secondary necrosis ensues and leads 

to inflammation. Gas6 binds PS in microtiter plates, and monocytes 

bind PS-coated microtiter plates when Gas6 is present, but not in its 

absence149. Liposomes and apoptotic cells, both containing PS are 

taken up more efficiently by mouse macrophages when Gas6 is 

present150.  

Macrophages with a cytoplasmatic truncation of Mer are deficient in 

phagocytosis of apoptotic thymocytes151. Macrophages mainly use the 

Mer receptor for phagocytosis152, whereas dendritic cells use Tyro3 

and Axl153, Glial cells use Axl and Mer154, and the sertoli cells in the 

testis use all three receptors155.  

 

The TAM receptors are involved in the phagocytosis of the outer 

segments of photoreceptors by the retinal pigmental epithelium (RPE) 

cells. Without trimming of the photoreceptors, they overgrow and 

eyesight is impaired. The Royal College of Surgeons rat strain has a 

hereditary retinal degradation, which is caused by a mutation in the 

Mertk gene. The mutation inserts a premature stop codon, truncating 

the Mer protein, thus hindering effective phagocytosis156,157. The 

phagocytosis of the outer segments in cell cultures can be inhibited by 

targeting Gas6 or Mer158. The Gla domain of Gas6 bind to the outer 
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segments, and stimulates phagocytosis159 through Mer, present on the 

RPE cells160. However, Gas6-/- mice do not become blind,161, but mice 

lacking Mertk do68, indicating that protein S might play a role. Also in 

human RPE cells, phagocytosis can be decreased by using anti-Gas6 

or anti-Mer antibodies162. The genome of several families with 

hereditary retinal dystrophies have been investigated and revealed 

several mutations in the Mertk gene163-166. 

 

Gas6 can induce migration in Axl expressing cells, including 

VSMC167,168, neurons169,170, and dendritic cells91, but is reported to 

inhibit migration in mouse fibrosarcoma cells86, renal carcinoma 

cells171, and to inhibit chemotaxis of endothelial cells172, showing that 

the migration is highly dependent on cell type. 

 

Gas6 and mesangial cell proliferation 
Hyperproliferation of mesangial cells in the kidney is a hallmark of 

glomerular disease. Several studies indicate that mice show lesser 

symptoms of kidney disease when given warfarin, Axl-Fc, or are 

deficient in Gas6. In the first published study, mesangial cells were  

treated with medium from Gas6-producing cells and started to 

proliferate. However, this proliferation could be inhibited by treating 

the Gas6-producing cells with warfarin173. Gas6 and Axl was later 

found to be upregulated in the mesangial cells in a mouse model of 

experimental glomerulonephritis88. The STAT3 dependent89 

hyperproliferation of mesangial cells could be inhibited in vivo with 

Axl-Fc or warfarin88. In a related model of nephrotoxic nephritis, 

Gas6-/- mice survived to a higher degree and showed less albuminuria, 
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but infusion of Gas6 brought back the symptoms to the level of 

wildtype animals174.  

Experimentally induced diabetes nephropathy can also be improved 

with warfarin. Warfarin decreases mesangial cell area and lowers 

urinary albumin excretion and Gas6-/- mice were also protected175. 

Also in aldosterone induced hypertension, Gas6-/- mice fare better and 

show less albuminuria and kidney inflammation176. Kidney expression 

of Gas6 is increased during chronic rejection of transplanted 

kidneys177, lupus nephritis, glomerulonephritis and IgA 

nephropathy178. These findings indicate that Gas6 signalling can be 

detrimental in several renal diseases, and the researchers suggest that 

low dose warfarin could be beneficial for these patients179. 

 

Gas6 and TAM in the vasculature 
Axl and Gas6 are expressed by numerous cell types in the vascular 

wall, including endothelial cells, smooth muscle cells and 

fibroblasts52,102,106,107,180. Gas6 and Axl are important for vessel 

integrity and injury response in the vessel wall, and Axl is upregulated 

after balloon injury181,182. Animals deficient in Axl or Gas6 display 

impaired vessel integrity and have increased vessel leakage compared 

to their wildtype littermates18. Mice deficient in Axl also show 

decreased intimal proliferation after carotid ligation183,184 and 

attenuated intimal growth during hypertension185.  

The role of Gas6 in atherosclerosis has been investigated by 

comparing mice deficient in ApoE with mice deficient in ApoE and 

Gas6. The plaques in Gas6 deficient mice had more collagen and 

smooth muscle cells and less macrophages, indicating higher stability 

of the plaque in the absence of Gas6186. Interestingly, polymorphisms 
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in the human Gas6 gene are protective to stroke in two studies187,188 

and polymorphisms in the Mertk and Tyro3 genes are protective 

against carotid atherosclerosis189. In an animal model of blood brain 

barrier stability, protein S induced phosphorylation of Tyro3 is 

reported to be protective70. 

 

Regulation of inflammation  
Cell experiments show that Axl stimulation by Gas6 can inhibit 

release of proinflammatory cytokines from human macrophages190,191, 

dendritic cells192,193 sertoli cells194, and glial cells154, thus limiting the 

immune response. In bone marrow derived dendritic cells Gas6 

induces upregulation of SOCS proteins, known for their suppression 

of cytokine signalling192.  

Interestingly, interferon signalling upregulates Axl mRNA 

transcription in dendritic cells91,192, enabling a negative feedback loop. 

The role of Gas6 for endothelial activation is complex. Endothelial 

cells activated by TNFα or phorbol esters showed less granulocyte 

binding after treatment with high doses of Gas6195, but animals 

deficient in Gas6 do not upregulate ICAM-1 and VCAM-1 after 

TNFα stimulation and exhibit less transmigration of leucocytes52,196. 

 

Gas6/protein S/TAM-deficient animals 
To be able to study the complex role of the Gas6/protein S – TAM 

system, genetically altered mice lacking one or several of these 

proteins have been developed. The animals are useful since they can 

reveal new and unexpected physiological roles of the proteins studied. 

Mice lacking either Tyro3 or Axl display milder immunological 

abberations, and animals lacking Mer exhibit a hyperactive response 
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to LPS and have higher cytokine secretion compared to wildtype 

littermates197. The single knockouts were still fertile, and breeding was 

directed towards double and triple knockout mice. The double 

knockouts show increased autoimmune manifestations, and the 

immune system of the triple knockout is severly deranged198. Multiple 

organ defects were observed, including blindness and infertility57. In 

one-year old mice, the spleen of a triple knockout was ten times the 

size of the wildtype animal. This growth was due to proliferation of B 

and T cells, which filled the normal immunological compartments, but 

also established ectopic colonies in all organs investigated198. The 

animals developed autoimmune disorders with antibody deposition in 

the glomeruli, and presence of antibodies against DNA, collagen, 

cardiolipin and α-phosphatidylinositol. 

 

When a mouse deficient in Gas6 was reported, no obvious phenotype 

could be observed. However, in thrombosis models, the Gas6-/- mice 

had smaller thrombi and lower mortality199. The platelets were found 

to be less responsive to agonists and platelet aggregates from Gas6-/- 

mice were less densly packed. Interestingly, addition of anti-Gas6 

antibodies could protect mice equally well as total deficiency of Gas6. 

This study was followed up by a study evaluating hemostasis in 

animals deficient in all three TAM receptors. These animals were also 

protected in thrombosis models and had less responsive platelets200. 

Studies on human platelets have also indicated a role for Gas6 during 

platelet activation201, but the role is debated202,203. Further studies 

showed that TAM-/- mice have half the number of thrombocytes 

compared to wildtype littermates. Megakaryocytes were found to 
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express all TAM receptors and megakaryocytes lacking all the 

receptors produced less proplatelets204.  

 

Mice deficient in Gas6 were also found to have lower levels of 

erythroid cells, and the hematocrit recovered slower from induced 

anemia205. When inducing acute hemolysis with phenylhydrazine, also 

Axl and Mer knockouts are slower to regain normal hematocrit206. 

Animals deficient in Gas6 show altered endothelial response to 

inflammatory stimuli. Gas6-/- endothelium activated with TNFα had 

less upregulation of p-selectin, VCAM-1 and ICAM-1 than wildtype 

endothelium and adhesion by platelets and leukocytes is decreased52. 

The Gas6-/- animals showed less inflammation following LPS 

injection and slower rejection of non-matched transplanted hearts. 

Graft versus host disease is slower in Gas6-/- animals compared to 

wildtype, presumably due to the slower extravasation of leucocytes, 

decreasing the rate of organ damage196. Gas6 deficient mice also have 

a higher baseline of many inflammatory cytokines205. 

 

Mice deficient in protein S do not survive embryogenesis due to 

severe hemorrhages. Heterozygous PROS1-/+ mice however, survive 

but have decreased levels of protein S in plasma and are more 

susceptible to induced thrombosis207. 

The vasculature in the PROS1-/- embryos is disorganized and less 

smooth muscle actin can be found around the vessels at embryonic 

day 13.518. Furthermore, PROS1-/+ mice had defective vasculature, 

observed by dye leakage from the vessels. This leakage was also 

found in endothelial PROS1-/-  knockouts and Gas6-/- and Axl-/- mice, 

indicating a role for these proteins for vascular integrity.  
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Studies of plasma concentrations of Gas6 
As Gas6 was indicated to be important for platelet function, early 

studies focused on investigating human platelets, which do not contain 

large amounts of Gas6201,202. However, plasma was found to contain 

18 ng/ml of Gas6, and patients treated with warfarin had decreased 

Gas6 levels in plasma202. Another ELISA was published, which 

estimated the plasma concentration of Gas6 to 50-63 ng/ml208. This 

ELISA was later used for relating the Gas6 concentration with 

different coagulation parameters, but found no statistically significant 

correlation in the investigated patients203. However, patients with 

aspirin pseudoresistance were overrepresented in patients with high 

Gas6209, and Gas6 was influenced by oral contraceptives208. Plasma 

from patients with acute coronary syndromes were also investigated, 

but were not different from a control population210. 

Patients with severe sepsis were evaluated by two groups, and both 

found increased Gas6 in patients with sepsis, correlating with degree 

of organ dysfunction, but the concentrations of Gas6 reported were 50 

ng/ml211 and 100 pg/ml212. These studies were followed up by a 

japanese group, measuring Gas6 in patients with acute pancreatitis, 

another condition characterized by inflammation and organ 

dysfunction. These patients had triple Gas6 concentration compared to 

a control group213. 

A Gas6 ELISA made of commercially available reagents was 

presented214, and was used to investigate cerebrospinal fluid from 

patients with neurological diseases, revealing that patients with 

chronic inflammatory demyelinating polyneuropathy have increased 

Gas6215. The same group investigated patients with acute dyspnea with 
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the Gas6 ELISA to elucidate if Gas6 could be used for diagnosis, and 

high Gas6 was observed in patients with heart failure and systemic 

infections216. 

Patients with acute coronary syndrome were investigate by a chinese 

group, finding that patients with stable or unstable angina, and also 

patients with acute myocardial infarction had decreased plasma Gas6 

to a control group217. Patients with impaired glucose tolerance and 

type 2 diabetes have also been found to have decreased Gas6218.  

We have recently shown that patients with renal cell carcinoma with 

higher Gas6 and sAxl have poorer survival compared to patients with 

low Gas6 and sAxl132. A recent study evaluating patients with 

Systemic Lupus Erythematosus (SLE) indicate that the Gas6 

concentrations are similar to controls, but patients with high disease 

activity have increased Gas6219.  
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The present investigation 
 

Overview 
The overall aim of my project was to gain structural and functional 

insight in the TAM family of receptors. Several studies from the lab 

have been focused on understanding the structural properties of 

proteins, many times using site directed mutagenesis.  

In 2005, when I started in the lab, methods were set up for expressing 

both protein S and Gas6, and there was a wide collection of antibodies 

for these proteins, but there were no methods to express the TAM 

receptors. One could have gone for commercial reagents, but as many 

experiments demand large quantities of protein, we decided it would 

make sense to produce the reagents ourselves. Purified TAM receptors 

could be used for binding studies, signalling experiments and 

immunizing animals to obtain antibodies. The antibodies could be 

used for detection of protein, from western blotting, to 

immunohistochemistry and ELISAs.  

 

The work started with making plasmids with the genes coding for 

sAxl, sTyro3 and sMer, and transfecting cell lines with these 

plasmids. sAxl and sTyro3 showed good expression and purification 

began. Despite several attempts to express sMer, we could not get 

sufficient expression, and the sMer project was put on hold. 

Meanwhile, sAxl and sTyro3 were expressed in large scale, purified to 

single band on silver stained SDS-PAGE, and used for immunization 

of rabbits. With the anti-Axl antibodies, we soon found out that 

several cell lines express sAxl, and that sAxl is present in human 
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circulation, and the work leading to paper I started. With functional 

ELISAs for Gas6 and sAxl, it was easy to investigate patient 

materials, and as we got interesting results, we followed that path, 

leading to papers II-V. The antibodies against Axl have also been 

useful for immunohistochemistry in several projects. 
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Paper I – Gas6 in complex with soluble Axl 
 
Background 

My work in the lab began with expression of the extracellular domains 

of the Axl protein. A vector with full-length cDNA for Axl was used 

as template, which was amplified with specific primers to add 

restriction sites and a thrombin sensitive His6-tag. The pcr product was 

ligated and inserted in a pcDNA3.1 vector, which was transfected into 

HEK293 cells. sAxl Expression was confirmed by using a commercial 

affinity purified anti-Axl antibody, and the colony expressing highest 

amounts of sAxl was chosen for large scale expression. 

The first purification step was precipitation with saturated ammonium 

sulphate. The pellet was resuspended and dialyzed in a low salt buffer 

to allow for anion exchange chromatography. The fractions containing 

sAxl from the anion exchange were pooled and applied to a nickel 

affinity column. After elution, the sAxl-containing fractions from this 

column was concentrated and futher purified using gel filtration. The 

resulting protein could be seen as a single band on a silver stained gel.  

After removal of the His6-tag, the purified sAxl protein was used to 

immunize two rabbits to obtain antibodies against Axl. After several 

immunizations, the two antisera (041 and 042) contained high titers of 

anti-Axl antibodies and the antibodies were collected on Protein A and 

Protein G columns. The antibodies bound sAxl in Western blotting 

and in microtiter plates with good specificity and low background. 

Parts of each antisera were biotinylated to allow visualization with 

streptavidin-coupled horseradish peroxidase. Different concentrations 

were tested to identify the optimal concentrations of antibodies for an 

Axl ELISA. The recombinant purified sAxl was quantified using total 
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amino acid analysis after acidic hydrolysis, and a serial dilution of the 

sAxl was used as standard in the ELISA. 

 

Results and Discussion 

Human serum and plasma was investigated with the Axl ELISA. A 

positive signal could be detected in all the samples tested, 

corresponding to a concentration around 0.6 nM.  

To evaluate that the ELISA was measuring the correct protein, 

recombinant sAxl was added to serum samples, and the signal 

increased accordingly. To determine the specificity of the ELISA, 

samples were immunoprecipitated with a commercially available anti-

Axl antibody, which effectively removed the sAxl signal in these 

samples. To further show specificity of the antibodies, the 042 and 

041 antibodies were coupled to NHS-activated columns. Large 

amounts of plasma were added to the 042 column, followed by 

extensive washing and elution. The eluate was added to the 041 

column which was washed and eluted similarly. The collected sample 

was evaluated by SDS-PAGE stained with collodial coomassie. A 65 

kDa band was excised and sent to mass spectrometry, which could 

confirm the identity of the band as Axl. Four peptides, all from the 

extracellular domain could be identified. Immunoprecipitation of 

human serum with the antibodies revealed a 65 kDa band, and several 

cell lines also seemed to express sAxl, although the glycosylation 

pattern differed slighlty. 

Due to the high affinity between Axl and Gas6, we used gel filtration 

to determine if Gas6 and sAxl are complexed in human circulation. 

The elution patterns of recombinant Gas6 and serum Gas6 was 

compared, and recombinant Gas6 eluted later than serum Gas6, 
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indicating that serum Gas6 was a part of a larger complex. The 

recombinant sAxl eluted as serum sAxl, except a small part of the 

serum sAxl that eluted in the Gas6 fractions. Antibodies to Gas6 

displaced sAxl to the void volume, and antibodies to Axl displaced 

Gas6, indicating that Gas6 and sAxl were in complex. In an ELISA, 

with catching anti-Axl antibodies, and detecting anti-Gas6 antibodies, 

a signal was detected in the Gas6 peak of serum and plasma. 

Immunoprecipitation of serum was performed to precipitate the 

complex. After immunoprecipitation with an anti-Gas6 and an anti-

Axl antibody, similar amounts of Gas6 could be immunoblotted, 

indicating that practically all Gas6 is in complex with Axl. 

Immunoblotting with anti-Axl antibodies revealed that much more 

sAxl is precipitated with anti-Axl compared to anti-Gas6 antibodies, 

indicating excess of sAxl in human serum. When testing serum 

samples with the complex ELISA, an increased signal could be seen 

after adding Gas6 to the serum, but not after adding sAxl, indicating 

that Gas6 is the limiting factor for complex formation.  

To further show presence of the complexes, native gels were used to 

investigate the migration of Gas6 alone and together with sAxl and 

Axl-Fc. Gas6 travelled shorter distances when the sAxl and Axl-Fc 

were present, indicating that a larger complex was formed. 

To rule out that sTyro3 or sMer took a part in complex formation, gel 

filtration of serum was performed with and without anti-Gas6 

antibodies. No change in the elution of sTyro3 or sMer could be 

observed, indicating that sAxl is the main binder of Gas6 in human 

serum.  

These findings indicate that the Gas6 present in human serum is 

bound to sAxl and suggests that serum Gas6 is incapable of 
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stimulating cell-bound receptors. The signalling of Gas6 ought be 

local to its nature, as Gas6 leaked to the circulation would be bound 

by the excess sAxl. Earlier research in mice models have indicated 

that Gas6 is an important mediator for platelet activation, and that 

soluble TAM receptors or antibodies against Gas6 could be useful 

against thrombosis. This study indicates that Gas6 in circulation isn’t 

available for binding in humans. Further studies on TAM receptor 

content of human platelets or Gas6 release by endothelium could be 

very useful to better understand platelet activation, as some studies 

suggest that Gas6 has a role in human platelet activation201. 

The developed ELISA to quantify sAxl in human sera is a useful tool 

to investigate the role of sAxl in a number of human conditions. As 

the lab have setup an ELISA for Gas6, we found it natural to 

investigate these two proteins in a number of patient materials.  
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Paper II - Gas6 and sAxl in patients with 

Abdominal Aorta Aneurysms 
 
Background 

Abdominal Aorta Aneurysm (AAA) is a disease characterized by 

weakening of the abdominal aorta, causing the vascular wall to bulge 

outwards, resulting in increased vessel diameter. Inflammation, 

mechanical stress and proteolytic degradation of the aortic wall are all 

proposed to be of importance for the development of AAAs, but the 

mechanisms are not fully elucidated220,221. High age, smoking, 

heredity, coronary heart disease, high cholesterol and blood pressure 

are all risk factors for development of AAA222. Increased diameter of 

the AAA increases the likelihood of rupture, causing massive 

bleeding, which often is lethal223. AAAs are present in approximately 

5% of elderly men and ruptured aorta is estimated to be responsible 

for 2% of all deaths in the Western world222.  

Surgery for all aneurysms larger than 5.5 cm is the recommended 

treatment for all patients suitable for operation224. Due to the 

suggested role for Gas6 and Axl in the vasculature, we decided to 

evaluate the concentrations of these proteins in patients with large and 

small aortic aneurysms and compare them to a control population. The 

study included 123 patients with large AAAs, 122 with small AAAs, 

and 141 healthy controls.  

 

Results and discussion 

Compared to the control population, Gas6 was increased and sAxl 

decreased in patients with large aneurysms, with the small aneurysms 

having intermediate Gas6 and sAxl concentrations. The diameter of 
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the AAA correlated positively to Gas6 and negatively to sAxl 

concentration. Due to Gas6 being bound to sAxl, we calculated the 

Gas6/sAxl-ratio and this ratio correlated better than Gas6 or sAxl to 

the diameter of the AAAs. Thus, the Gas6/sAxl ratio was high in the 

patients with large AAAs, and 40% of the patients with large AAA 

had higher Gas6/sAxl-ratios compared to the highest ratio in the 

control group. The Gas6/sAxl-ratio is not specific enough to allow 

screening of AAAs, as 60% of all patients with large AAAs have 

Gas6/sAxl ratios in the normal range. The causes of this altered ratio 

remains to be elucidated, but increased Gas6 is observed during severe 

inflammatory conditions211-213. Gas6 and Axl are important for 

vascular integrity18 and involved in vascular remodelling181,183, likely 

to take place during the development of AAA. The patients with high 

Gas6/sAxl-ratio might constitute a subgroup with different AAA 

properties, with higher involvement of the Gas6/Axl-system. 

The study demonstrated that Gas6 and sAxl were altered in the patient 

group and encouraged us to further study the role of Gas6 and sAxl in 

patient materials.  
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Paper III - Gas6 and sAxl in Critical Limb Ischemia 
 
Background 

Critical limb ischemia (CLI) is a disease caused by atherosclerosis. 

Atherosclerosis is characterized by fat accumulation under the intima 

of the larger vessels, causing inflammation225. Atherosclerosis causes 

several diseases, including coronary heart disease and cerebrovascular 

disease, and patients with critical limb ischemia have high co-

morbidities with these diseases226. CLI is characterized by low blood 

supply to the tissues, which leads to rest pain, ulcers or gangrene in 

the affected limbs227. The diagnosis of CLI is made after measuring 

blood pressure in ankles and toes or by transcutaneous measurements 

of the oxygen pressure228. CLI is present of 0.26% in the population 

between 40 and 69 years of age229, and patients have a high mortality, 

often due to cardiovascular disease and stroke230. The treatment of 

CLI includes revascularization when possible, as well as controlling 

atherosclerotic risk factors as smoking, hypertension, hyperlipidemia 

and diabetes mellitus. In our study, 189 patients with CLI and 204 

controls were included. 

 

Results and discussion 

Patients with CLI have increased Gas6 and sAxl compared to healthy 

controls, and both Gas6 and sAxl correlated with inflammatory 

markers as C-reactive protein, interleukin-6, TNFα and neopterin. 

Gas6 and sAxl were increased in patients who have had ulcers, were 

amputated, had gangrene or angina. A small number of patients were 

investigated with echocardiography and in these patients, Gas6 

correlated strongly to left heart strain. Patients who died within three 
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years of sampling had increased Gas6 and sAxl compared to the 

survivors. Gas6 and sAxl predicted mortality independent of age and 

gender, and Gas6 was also independent to many known risk factors of 

CLI, indicating a role in the disease. This study shows that Gas6 and 

sAxl correlate to several inflammatory markers and many aspects of 

CLI.  

Gas6 has earlier been shown to be important for cortisone induced 

heart hypertrophy176, and the strong correlation to left heart strain 

indicates that Gas6 might be of importance for human heart 

remodelling. Only 35 patients were investigated with 

echocardiagraphy, so a larger study on patients with heart 

insufficiency would be enlightening for the role of Gas6 in heart 

remodelling. sAxl correlated strongly with neopterin, which indicates 

that sAxl and neopterin release are connected in CLI, which can be a 

useful starting point when elucidating the mechanisms of sAxl 

shedding. 
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Paper IV - Gas6 and sAxl in Sepsis and SIRS 
 
Background 

Sepsis is a complex disease, defined as presence of infection and 

systemic inflammatory response syndrome (SIRS). A patient has SIRS 

when two or more of the following criteria are fulfilled: (1) 

Temperature above 38 °C or under 36 °C; (2) Heart rate above 90 

beats per minute; (3) Breathing frequency above 20 breaths per 

minute, or PaO2 less than 32 mm Hg or (4) White blood cell count 

above 12^109 or below 4^109 per liter, or the presence of more than 

10% of immature neutrophils231. The patients are treated with 

antibiotics to eradicate the infection, and fluid replacement to avoid 

shock, and otherwise given supportive treatment in case of organ 

failure. Controlling glucose and countering anemia does also increase 

survival232. Increased plasma concentrations of Gas6 have earlier been 

reported in two studies of sepsis211,212, but sAxl has never been 

measured. Due to the complex between these two molecules, we 

decided to evaluate the concentrations of both molecules in patients 

with sepsis and related conditions. The Division of Infection Medicine 

at Lund University has a well-characterized sepsis material consisting 

of blood samples from 232 patients with severe sepsis, sepsis, 

infections and SIRS and 100 blood donors as controls233. 

 

Results and discussion 

All patient groups showed approximately doubled Gas6 

concentrations compared to healthy controls, whereas sAxl is 

increased by around 20%. Our results confirm that Gas6 is increased 

in patients with sepsis, but also show that patients with milder 
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infections have Gas6 levels similar to the sepsis patients. Gas6 is 

increased in patients developing organ failure and patients in need of 

intensive care, indicating that increased Gas6 correlates with severe 

disease. Plasma sAxl is altered in the patients, but the increase is 

lower compared to Gas6, indicating that Gas6 can travel longer before 

complexed to sAxl, inducing more signalling during sepsis. Again, 

Gas6 and sAxl correlate to markers of inflammation, and especially 

Gas6 seems to behave as an acute phase protein. 

 



 45 

Paper V - Gas6 and sAxl in systemic lupus 

erythematosus 
 
Background 

Systemic lupus erythematosus (SLE) is a systemic autoimmune 

disease with symptoms including rash, arthritis, anemia, nephritis and 

serositis234. The disease is associated with impaired clearance of 

apoptotic cells235,236 and antibodies directed to nuclear antigens237, but 

the etiology of the disease is not fully elucidated. SLE patients are 

predominantly female and African or Asian descent is overrepresented 

amongst the patients238. SLE is usually treated by immunosuppression 

with corticosteroids, cyclosporine or antimalarials, but a new 

generation of drugs as TNFα blockers and other specific therapies 

based on monoclonal antibodies are coming into the clinic239. 

Mice deficient in the TAM receptors develop several symptoms 

reminiscent of SLE, including deficient uptake of apoptotic cells151, 

glomerulonephritis and antibodies to DNA and phospholipids198. As 

Gas6 and the TAM receptors are of importance for immune 

regulation, we measured Gas6 and sAxl in a 96 SLE patients with a 

wide range of symptoms to evaluate the role for Gas6 and sAxl in the 

disease.  

 

Results and discussion 

In the 96 patients, the plasma concentrations of Gas6 and sAxl 

correlated with the disease intensity estimated by the SLEDAI-2K 

index. For 45 of the patients, two samples were available, one with 

high and one with low SLEDAI. Gas6 and sAxl were significantly 

increased in the high SLEDAI sample. Gas6 and sAxl correlated to 
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sedimentation rate, C-reactive protein and negatively to hemoglobin. 

Especially patients with glomerulonephritis or anti-DNA antibodies 

had increased levels of Gas6 and sAxl. The study shows that Gas6 and 

sAxl correlate with disease intensity in SLE, indicating a role in the 

disease, probably linked to inflammation.  
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Future perspectives 
 

Gas6 and the TAM receptors are important for many physiological 

and pathological processes. The main findings of my PhD project are 

that Gas6 is bound to sAxl in human circulation, that Gas6 and sAxl 

levels are increased during various inflammatory conditions. 

Released Gas6 can influence the adjacent cells, before sAxl can 

inactivate it, but the site of Gas6 release is still poorly defined. We 

have preliminary data indicating that TNFα-activated endothelial cells 

don’t upregulate their Gas6 expression on the mRNA level, arguing 

for that the main Gas6 expression in inflammation come from other 

cell types. Systematic studies of cells beeing exposed to 

proinflammatory stimuli could reveal cell types involved in the Gas6 

production. 

The release of sAxl also remains poorly defined. In the CLI material, 

neopterin correlated strongly to sAxl, which indicates that the release 

of sAxl could be linked to activated macrophages. Dendritic cells have 

been reported to shed sAxl upon inflammatory stimulation, but 

macrophages might induce considerable sAxl shedding, and should be 

further investigated to reveal if this is a direct or an indirect effect. 

Warfarin seems to inhibit Gas6 function in some animal models, and 

further characterization of mouse and human Gas6 produced during 

treatment with low dose warfarin would be interesting. As low dose 

warfarin interferes with formation of functional Gas6, it might be an 

interesting experimental drug in animal models, as shown before with 

several kidney manifestations. As animal models for AAA, CLI, 

Sepsis and SLE exist, it is tempting to evaluate warfarin treated 
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animals to determine if lack of functional Gas6 is making a difference 

in those animal models.  

Due to the findings in the patient materials, we believe that further 

studies of Gas6 and sAxl in other diseases are motivated. Vasculitis, 

multiple sclerosis and gout would be interesting to study to widen our 

knowledge of Gas6 and sAxl in inflammatory conditions. Soluble Mer 

and Tyro3 seems to be present in circulation, and systematic studies of 

these proteins might also give us additional clues of the role of the 

TAM system in human physiology. 
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Populärvetenskaplig sammanfattning 

 
Cellerna i vår kropp kommunicerar med varandra genom att skicka ut 

substanser, som binder till receptorer på andra celler. Min forskning 

har handlat om en sådan substans som heter Gas6, och dess receptorer 

Tyro3, Axl och Mer, som gemensamt kallas TAM-receptorerna. 

Receptorerna sitter genom cellens vägg och när Gas6 binder en av 

sina receptorer, så förändras de inre delarna av receptorn, vilket drar 

igång processer inne i cellen. Gas6 och TAM-receptorerna är viktiga 

för cellöverlevnad, reglering av immunförsvaret och för blodkärlens 

väggar.  

Celler som inte regelbundet får överlevnadssignaler där de befinner 

sig brukar genomgå en kontrollerad dödsprocess. Detta gör att 

onödiga cellansamlingar undviks och försvårar okontrollerad 

celltillväxt, som kan ge upphov till cancer. När svältande celler 

behandlas med Gas6 dör de inte, och kan till och med börja dela sig.  

Flera olika celler från immunförsvaret dämpas av Gas6. Om man 

behandlar celler med bakteriella ämnen drar de igång ett starkt 

immunsvar, men om man samtidigt stimulerar med Gas6, så blir 

produktionen av inflammatoriska ämnen mindre. Eftersom en 

överdriven reaktion av immunförsvaret kan ställa till med mycket 

skada, är det viktigt att reglera det så det inte skadar kroppen. 

Gas6 och Axl finns i cellerna som klär blodkärlens insida. Möss som 

på genetisk väg saknar Axl eller Gas6 har läckande kärl och minskad 

reparationstakt av skadad kärlvävnad. 
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Mitt projekt inleddes med att tillverka den del av Axl som finns 

utanför cellen (sAxl) genom att sätta in genen för detta i celler som 

sedan producerade sAxl-proteinet. sAxl-proteinet renades och 

användes för att vaccinera kaniner, för att få antikroppar mot Axl. 

Med antikropparna kan koncentrationen av Axl mätas i en metod som 

heter ELISA. I denna metod används en plastbricka med 96 små 

brunnar. Antikroppar mot sAxl fästs i botten av varje brunn, varpå en 

standard med kända mängder sAxl tillsätts, samt prov med okända 

mängder sAxl i olika brunnar. Sedan tvättas brickan och andra anti-

Axl antikroppar tillsätts. Dessa är märkta med en enzym som 

producerar ett färgat ämne. Mer Axl innebär mer färg, och genom att 

jämföra med standarden kan mängden Axl i varje brunn räknas ut. 

Metoden är känslig och kan mäta prov med Axl från 0.4 nanogram per 

milliliter. Löslig sAxl uppmättes i blodprov från friska frivilliga och 

medelkoncentrationen var 25 nanogram per milliliter. Eftersom Gas6 

också finns i blod, och Gas6 och Axl binder starkt till varandra, 

undersökte vi om de var bunda till varandra i blodet. Till detta 

användes antikroppar mot Gas6 och Axl som var fästa på 

mikrometerstora kulor av socker som kan centrifugeras till en liten 

prick på botten av ett provrör. Vi tillsatte antikropp/kulblandningen till 

blodprov, lät det dra sig en stund och centrifugerade sedan ner 

kulorna. Med anti-Axl antikropparna drog vi ner Axl, men också 

Gas6, vilket visar att de sitter ihop i blod. Gas6 kan inte binda till Axl 

på celler då det är bundet till lösligt Axl. Det Gas6 som finns i blodet 

är således inaktivt. 

 

Eftersom vi vet ganska lite om Gas6 och sAxl i olika sjukdomar, 

beslöt vi oss för att mäta sAxl och Gas6 i patientmaterial för att se om 
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dessa proteiner kan vara av betydelse. Det finns data på många andra 

prover och tester på patienterna, som gör att man kan hitta något 

oväntat som har ett samband Gas6 eller sAxl. 

 

Första materialet som undersöktes var patienter med bråck på stora 

kroppspulsådern. Patienter med stora bråck hade mer Gas6 och mindre 

sAxl än friska frivilliga. Skillnaden är intressant, men räcker inte för 

att diagnosticera, men visar att Gas6 och sAxl är förändrade i en 

kärlsjukdom, vilket uppmuntrade oss till nya studier. 

 

Andra materialet som undersöktes var patienter med en annan 

kärlsjukdom, kritisk ischemi. Det är en sjukdom när blodcirkulationen 

i fötterna är otillräcklig på grund av förträngningar i blodkärlen. 

Smärta, långvariga sår och kallbrand kan bli följden. Gas6 och sAxl 

var förhöjda i patienterna, och de som dog inom tre års uppföljning 

hade förhöjda koncentrationer av både Gas6 och sAxl när provet togs, 

detta oberoende av andra kända riskfaktorer.  

 

Det tredje gruppen av patienter som undersöktes hade blodförgiftning. 

Man har tidigare vetat att det ger förhöjda värden av Gas6, men ingen 

har mätt sAxl i dessa patienter. Eftersom sAxl binder till och 

inaktiverar Gas6 är det viktigt att veta om sAxl också ökar. Gas6 var 

dubblerat, och sAxl ökade med tjugo procent, så det fanns mer fritt 

Gas6. Gas6 var särskilt högt i de patienter som hade organsvikt och de 

som behövde intensivvård.  

 

Den fjärde gruppen var patienter med SLE, som är en sjukdom där 

immunförsvaret skadar den egna kroppen av okända orsaker. sAxl och 
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Gas6 var förhöjda i patienter med aktiv sjukdom, och Gas6 och sAxl-

koncentrationerna korrelerade med sjukdomsaktivitet, så att patienter 

med många symptom hade mer Gas6 och sAxl än patienter med få 

symptom.  

 

Sammantaget har vi visat att Gas6 är bundet till sAxl i blodet, att Gas6 

och sAxl är förhöjda i flera sjukdomar.   
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