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Characterising Stability Implying Properties that are Preserved under
Feedback

Richard Pates

Abstract— The passivity approach to the design of large net-
works is based on preserving the passivity property under dif-
ferent types of interconnection: parallel and negative feedback.
Since the passivity property implies stability, this allows large
and topologically complex networks to be constructed on the
basis of simple local rules without the need for global stability
analysis. In this paper we characterise two different stability
implying properties that are preserved under negative feedback.
The first generalises the passivity approach to electrical network
design to other classes of minimum phase impedance functions.
The second allows for networks with, for example, Laplacian
structures in the feedback loop, to be designed using only local
models.

I. INTRODUCTION

The passivity theorem is a central result in control theory.
It plays a key role in a number of different areas, including
input-output theory, the study of nonlinear systems, and,
as is the topic of this paper, network control systems. The
importance of the passivity theorem for networks stems from
the property that the parallel or negative feedback intercon-
nection of passive networks is also passive. This allows large
and topologically complex networks to be constructed in a
plug and play manner on the basis of simple rules:

1) A dynamical property: the networks must be passive.
2) An interconnection rule: parallel and negative feedback

interconnections are allowed.
The key implication of the above is that to ensure passivity
of a large network, one must only check the passivity of
the ‘base networks’ from which it is constructed. Provided
these are simple, the associated robustness and synthesis
questions are often tractable even when they are combined to
form a very large and complex networks, where analysis and
synthesis problems are typically intractable. Furthermore the
large network can be changed without the need for system
wide analysis or redesign.

A natural question is then: are there other interconnection
rules that preserve a different stability implying property?
Such a question is important because there are situations
and applications where the above rules are known to be
unnecessarily conservative. A significant example is con-
gestion control of the Internet. The design task here could
be conducted using the passivity approach, however less
restrictive but equally scalable conditions can be obtained
by considering products of subsystem dynamics [1]. This
is possible because in this application there is additional
structure in the network models that can be exploited. It is
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our objective to develop a notation and theoretical tools to
allow such features to be captured.

In order to generalise 1) and 2), consider the following
equations, which capture the notion of a property preserving
interconnection:

Gi ∈ P, i ∈ {1, 2, 3} , (1)
G3 ∈ I (G1, G2) . (2)

The objects Gi correspond to the dynamical models of
different networks, assumed to belong to some modelling
class N . P ⊆ N is the set of all dynamical models with
a given property, and I (G1, G2) ⊆ N the set of models
obtained from ‘allowable’ interconnections of G1, G2. Equa-
tion (1) is saying that the networks have the property P , and
eq. (2) is specifying the rules for constructing a network
G3 from G1 and G2. The objective is then to characterise
pairs (P, I (·, ·)) that satisfy eqs. (1) and (2). This may be
equivalently stated as

Find (P, I (·, ·))
Such that I (·, ·) : P × P → Q ⊆ P,

P ⊆ N .
(3)

If such a pair can be found, they can be used exactly as
in the passivity design method to recursively build large
networks, since they imply that any network constructed
according to eq. (2) out of networks in P will remain in
P . This opens the possibility of finding more restricted
notions of interconnection (that may still be suitable for a
given application) which preserve a less restrictive dynamical
property, and vice versa.

To clarify the above we will sketch out a such a char-
acterisation for the passivity case. In the linear setting,
the networks may be taken as square matrices of transfer
functions, the dynamical property strict positive realness
(SPR)

P =
{
Z ∈ RHn×n

∞ : Z is SPR
}
,

and the interconnection constraint parallel or negative feed-
back

I (G1, G2) =

{
G1 +G2,

[
G1 0
0 G2

] [
I G2

−G1 I

]−1
}
.

In this paper we will show how preserving pointwise
properties written in terms of the numerical range can
be used to prove this classical passivity result (we will
actually give a slight variant). We will additionally use
this approach to show two other ways in which a stability



implying property can be preserved under feedback. The
first new characterisation gives an alternative notation for
describing series-parallel interconnections in the electrical
sense. This characterisation is better suited for this role than
I (G1, G2) described above (which is more general), and can
be used to show that less restrictive dynamical properties
can be preserved. This generalises the classical passivity
based approach for the design of electrical networks to
classes of impedance functions with minimum phase, but not
necessarily passive dynamics. The second characterisation
shows how stability implying properties of the return ratio
of a feedback interconnection can be preserved. We show
how this result can be used to deduce stability of networks
with, for example, Laplacian structures in the feedback loop,
on the basis of only local dynamics.

II. PRESERVED PROPERTIES OF THE NUMERICAL RANGE

In this section we will argue for the suitability of the nu-
merical range for characterising pairs (P, I (·, ·)) that satisfy
eq. (3), when N = Cn×n. These can be applied frequency
by frequency to give preserved properties of interconnections
of transfer functions.

The numerical range of a matrix A ∈ Cn×n is defined to
be the set

W (A) := {x∗Ax : x ∈ Cn, x∗x = 1} .

W (A) is always a compact convex set of the complex plane.
For a general introduction to the many appealing properties
of this object, see [2, ch.1]. We will now give some results
that preserve the location of the numerical range in the
complex plane.

A. Preserving the right half plane
The most basic type of region that can be preserved

is the open right half plane C+. These results are the
constant matrix analogues of classical passivity preserving
interconnection results.

Lemma 1: If W (Ai) ⊂ C+, i ∈ {1, 2}, then:
(i) W (A1 +A2) ⊂ C+;

(ii) W

([
A1 0
0 A2

] [
I A2

−A1 I

]−1
)
⊂ C+.

Proof: To see (i), note that any point p ∈W (A1 +A2)
can be written as

p = x∗A1x+ x∗A2x.

This implies that p ∈ {W (A1) + W (A2)}, which is con-
tained in C+. For (ii), observe that 0 /∈ W (Ai), which
implies that A−1

i exist. Hence[
A1 0
0 A2

] [
I A2

−A1 I

]−1

=

([
I A2

−A1 I

] [
A−1

1 0
0 A−1

2

])−1

=

[
A−1

1 I
−I A−1

2

]−1

=: M−1.

Next note that W (A) ⊂ C+ if and only if W (A+A∗) ⊂
C+. Since

M +M∗ =

[
A−1

1 +A−∗1 0
0 A−1

2 +A−∗2 ,

]
,

it follows that

W (M +M∗) ⊂ Co
(
W
(
A−1

1 +A−∗1

)
,W

(
A−1

2 +A−∗2

))
,

which implies that W (M) ⊂ C+. The result follows because
W (M) ⊂ C+ implies that W

(
M−1

)
⊂ C+ (we will prove

a stronger version of this in the next section).

B. Preserving angular sectors

Angular sectors can also be preserved under operations re-
sembling series-parallel interconnections. An angular sector
is defined to be

Λ (θ1, θ2) := {z : arg (z) ∈ (θ1, θ2)} .

In the above arg (z) denotes the argument of a complex
number. This quantity is undefined for z = 0, so 0 is not
in the above sets.

Lemma 2: If W (Ai) ⊂ Λ (θ1, θ2) , i ∈ {1, 2}, and θ2 −
θ1 ≤ π, then

(i) W (A1 +A2) ⊂ Λ (θ1, θ2);
(ii) W

((
A−1

1 +A−1
2

)−1
)
⊂ Λ (θ1, θ2).

Proof: (i) is true for exactly the same reason as property
(i) in Lemma 1. To see (ii), observe that for any x 6= 0, there
exists a y 6= 0, such that x = Ay, and that

x∗A−1
i x = y∗A∗i y.

This implies that if W (Ai) ⊂ Λ (θ1, θ2), then W
(
A−1
i

)
⊂

Λ (θ1, θ2)
∗ (this gives the result on C+, because C∗+ = C+).

Therefore by (i),

W
(
A−1

1 +A−1
2

)
⊂ Λ (θ1, θ2)

∗
,

which in turn implies (ii).

C. Preserving Convex Sets

Arbitrary convex sets can also be preserved, albeit under
a more abstract looking notion of interconnection.

Lemma 3: If W (Ai) ⊂ C, i ∈ {1, 2}, where C ⊂ C is a
convex set, then:{

W

(
X

[
A1 0
0 A2

]
X

)
: X∗X = I

}
⊂ C.

Proof: This result is well known. Let y = Xx:

x∗X

[
A1 0
0 A2

]
Xx = y∗

[
A1 0
0 A2

]
y.

Since X∗X = I , y∗y = 1. Hence the above is contained in
Co (W (A1) ,W (A2)) ⊂ C.

III. STABILITY IMPLYING PROPERTIES OF THE
NUMERICAL RANGE

In this section we will show how to infer stability from
pointwise numerical range conditions. The following shows
that if the numerical range of a real rational (not necessarily
proper) matrix of transfer functions G (s) ∈ Rn×n can be
constrained to lie within a convex region along a closed
contour Γ (using for example, any of the results in the
previous section), one can deduce

wnoΓ detG (s).



In the above wnoΓ denotes the winding number evaluated
on the contour Γ. When Γ is the Nyquist D-contour, this is
typically all that is required to deduce stability using Nyquist
type arguments.

Theorem 1: Let R (s) ⊂ C \ {0} be convex ∀s ∈ Γ.
Assume there exists a g ∈ R such that g (s) ∈ R (s) ,∀s ∈
Γ. If G ∈ Rn×n satisfies

W (G (s)) ⊂ R (s) , ∀s ∈ Γ,

then
wnoΓ detG (s) = n (wnoΓ g (s)) .

Proof: The following (and much of this paper) leans
heavily on [3][chapter 1].Define

X (λ) =

[√
(1− λ2)In√

λIn

]
, M (s) =

[
g (s) In 0

0 G (s)

]
.

Observe that for any λ [0, 1], X (λ)
∗
X (λ) = In. SinceR (s)

is convex, by Lemma 3

W
(
X (λ)

∗
M (s)X (λ)

)
⊂ R (s) ,∀s ∈ Γ,∀λ [0, 1] .

Define fλ (s) = det
(
X (λ)

∗
M (s)X (λ)

)
. Since 0 /∈ R (s),

the above implies that fλ 6= 0,∀s ∈ Γ,∀λ [0, 1]. Therefore
since fλ (s) is continuous in both λ and s, wnoΓ fλ (s) is
constant for all λ ∈ [0, 1]. The result then follows because
wnoΓ f0 (s) = wnoΓ det (g (s) In) = n (wnoΓ g (s)), and
wnoΓ f1 (s) = wnoΓ detG (s).

IV. SCALABLE NETWORK PROTOCOLS

In this section we will combine Theorem 1 with the
preserved properties in Section II to define some properties
and interconnection rules (P, I (·, ·)) that satisfy eq. (3). A
key feature of the found pairs is that they can be used to
deduce and preserve stability under feedback. Throughout
the modelling class N will be Rn×n, and a model Gi ∈ N
is said to be stable if in addition it is in H∞. We will have
frequent need to take inverses within the model class, and so
explicitly point out that a matrix A ∈ Rn×n has an inverse
in Rn×n if and only if the matrix A (s) is invertible for some
value of s ∈ C. Finally, from here on Γ will refer to ‘the
usual Nyquist D-contour’, though this will be given formal
clarification when it is used below.

A. Passivity

Existing stability criteria based on passivity ideas allow
for different classes P , depending on the ‘type’ of passivity
being considered (strictly positive real, strictly output pas-
sive, etc.), and the definition of stability used. Rather than
considering standard definitions, we instead focus on finding
the largest class of transfer functions that can be shown to
define a pair satisfying Equation (3) using the results in the
previous sections. This class is most easily written in terms
of the following class of transfer functions

Pnpass =
{
Z ∈ Rn×n : W (Z (s)) ⊂ C+∀s ∈ Γ

}
.

In the above when we say that the numerical range condition
holds on Γ, we mean is that it holds for any sufficiently large
D-contour, since this is what is required to apply Nyquist

type arguments. This is clearly an abuse of notation, and
precisely we mean that

W (G (s)) ⊂ C+,∀s = jω,

and that there exists an R0 such that for all r > R0 and
θ ∈ [−π/2, π/2],

W
(
G
(
rejθ

))
⊂ C+.

This means that the numerical range condition is satisfied
on all Nyquist contours with sufficiently large semicircular
arcs.

The similarities with passivity type properties is more
apparent when the above is rewritten in terms of matrix
inequities, and Pnpass could be equivalently defined as those
transfer functions for which

G (jω) +G (jω)
∗
> 0,∀ω ∈ R,

and in addition G (s) + G (s)
∗ is positive definite along all

sufficiently large semicircular arcs in the right half plane.
When restricted to H∞ the above is closely related to, but not
equal to, the class of strictly positive real transfer functions.
As a simple example

g (s) =
1

s+ 1

is both in Ppass and is SPR, but

g (s) =
s+ 1

s2 + s+ 1
=

(
s+

1

s+ 1

)−1

is in Ppass, but is not SPR.
The following result is reminiscent of standard passive

interconnection results, and states that the parallel or negative
feedback interconnection of stable transfer functions in Ppass,
remains stable and in Ppass. Here the term passivity should
be interpreted very loosely, and we claim no physical inter-
pretation of Ppass. We use the term passivity simply because
the transfer function condition here is very similar to that
obtained with standard passivity results.

Proposition 1: If G1, G2 satisfy:
(i) Gi ∈ RHni×ni

∞ ,
(ii) Gi ∈ Pni

pass;
then

G3 ∈

{
(G1 +G2) ,

[
G1 0
0 G2

] [
I G2

−G1 I

]−1
}
,

also satisfies (i) and (ii).
Proof: Satisfaction of (ii) follows immediately from

Lemma 1 for both interconnections. It is also immediate that
(i) holds for G1 +G2 since RH∞ is closed under addition.
To show that (i) holds for the second interconnection, first
recall that for any nonsingular H ∈ Rn×n, by the principle
of the argument

wnoΓ detH (s) = ζ (H)− η (H) . (4)

In the above ζ (H) , η (H) are the number of zeros and poles
of H (s) in the open right half plane (since the transfer



functions we consider only have finitely many poles and
zeros, there always exists a D-contour with sufficiently large,
but finite, radius such that this holds). Since Gi satisfies
(i) and (ii), the choice g (s) = 1 in Theorem 1 shows that
wnoΓ detGi (s) = 0. By eq. (4), this means that

ζ (Gi) = 0.

Define[
G1 0
0 G2

] [
I G2

−G1 I

]−1

=

[
G−1

1 I
−I G−1

2

]−1

=: M−1.

Clearly η (M) ≤ ζ (G1)+ζ (G2) = 0, and hence η (M) = 0.
Since M = G−1

3 , this means that ζ (G3) = 0. Running the
same argument as before with eq. (4) and Theorem 1 this
time implies that η (G3) = 0. The result then follows since
G3 is clearly proper, and is therefore in RH∞.

B. Angular Sector Conditions

Lemma 2 suggests that an angular sector based property
can be preserved for the series parallel interconnection.
Under an additional restriction to the functions θ1, θ2 this
property can additionally be made stability implying, as the
following shows.

Proposition 2: Let θ1 (s) , θ2 (s) satisfy θ2 (s)− θ1 (s) ≤
π,∀s ∈ Γ, and assume that there exists a g ∈ R such
that g (s) ∈ Λ (θ1 (s) , θ2 (s)) ,∀s ∈ Γ and wnoΓ g = 0.
If G1, G2 satisfy:

(i) Gi ∈ RHni×ni
∞ ,

(ii) W (G (s)) ⊂ Λ (θ1 (s) , θ2 (s)) ,∀s ∈ Γ;
then

G3 ∈
{

(G1 +G2) ,
(
G−1

1 +G−1
2

)−1
}

satisfies (i) and (ii).
Proof: As before (ii) is guaranteed by Lemma 2, and

satisfaction of (i) for G1 + G2 is again immediate. (i) is
guaranteed for the second interconnection by using the same
argument as in the proof of Proposition 1, but with M =
G−1

1 +G−1
2 .

The requirements on the angular sector is simply that
pointwise in s, the arclength is less than or equal to π
(as in Lemma 2), and that the sector is making no net
encirclements of the origin (this is due to the Nyquist type
requirement). These requirements force the transfer functions
to be minimum phase by Theorem 1. However they allow
for a more general class of transfer functions, because
C+ is a special instance of the angular sector requirement
corresponding to

θ2 (s) = −θ1 (s) =
π

2
.

Under different choices of θ1 (s) , θ2 (s), the dynamical prop-
erty in Proposition 2 can cover minimum phase transfer
functions that are not passive under both our unconventional,
as well as conventional, definitions. This is particularly inter-
esting because the interconnection rules in Proposition 2 also
capture series and parallel interconnection in the electrical
sense, because they correspond to the series and parallel in-
terconnection rule for resistors. This extends the applicability

of the passivity approach for electrical networks to allow
for the interconnection of impedance functions described by
broader families of minimum phase transfer functions.

To understand why we do not see this more general
class in Proposition 1, observe that to use the feedback
interconnection [

G1 0
0 G2

] [
I G2

−G1 I

]−1

to describe a parallel interconnection (in the electrical sense),
one Gi must correspond to an impedance, and the other an
admittance, and the resulting transfer function is actually a
mixture of the two. This means that our network models
must be able to describe both admittances and impedances
(and mixtures) for the interconnection rules to make sense
electrically, and hence the properties (i) and (ii) are implicitly
required on both these forms also. This is not the case for
Proposition 2. We may take our family of network models to
correspond to either all impedances, or all addmittances, and
the interconnections generated by the interconnection rule
will make sense and remain of the same type. This allows
for a more flexible characterisation, since it must only apply
to one of these forms, and not all.

To see the relevance of an angular sector condition for
the interconnection of minimum phase transfer functions,
consider the simple example

G1 =
(s+ 1)

3

(s/20 + 1)
3 , G2 = k > 0.

Both are minimum phase, but there exists no angular sector
meeting the conditions of Proposition 2 that contains both
these transfer functions. This is because for some frequency,
G1 cuts the negative real axis, and it is impossible for a
positive and negative number to both lie within an angular
sector of arclenth at most π. Examining the root locus of G−1

1

shows that there are values of k for which
(
G−1

1 +G−1
2

)−1

on the above is unstable (e.g. k = 1/20). This provides a
type of converse result for Proposition 2, because it shows
that for certain minimum phase transfer functions, violating
the angular sector requirement results in instability under
feedback.

C. Convex Set Conditions

The convex set conditions can be used to study stability
of feedback interconnections by preserving properties of the
return ratio. This result can be used to study the stability
of networks with dynamics characterised by the standard
feedback interconnection:

[Pi, Ci] :=

[
Pi
I

]
(I + PiCi)

−1 [Ci I
]
.

By this we mean that the network dynamics are specified
by (Pi, Ci), but given by the closed loop transfer function
[Pi, Ci]. This feedback characterisation is useful because
descriptions of this form, where the network structure is in
(Pi, Ci), are available for a wide range of applications, in-
cluding consensus problems, vehicle platoons, Internet con-
gestion control, etc., e.g. [4], [5], [6] (note that a frequently



considered subclass of the above is that Pi is diagonal, and
Ci is a sparse ‘interconnection matrix’).

Proposition 3: Let C (jω) ⊂ C \ {0} be convex ∀ω ∈ R,
and assume that there exists a g, g−1 ∈ RH∞ such that
g (jω) ∈ C (jω) ,∀ω ∈ R. If G1, G2 satisfy:

(i) (I +Gi) , (I +Gi)
−1 ∈ RHni×ni

∞ ,
(ii) W (I +Gi) ⊂ C (jω) ,∀ω ∈ R;

then

G3 ∈
{
X∗
[
G1 0
0 G2

]
X : X∗X = I,X ∈ R(n1+n2)×n3

}
satisfies (i) and (ii).

Proof: To see that (ii) is satisfied as a result of
Lemma 3, note that

I +G3 = X∗
[
I +G1 0

0 I +G2

]
X.

The result then follows by using the same argument as in
the proof of Proposition 1 with M = I + G3. Note that
we do not need to make the argument about the Nyquist
contour since we additionally assume biproperness of the
relevant transfer functions, and hence this requirement is
satisfied automatically. This is because lims→∞ (I +G (s))
is nonzero and independent of the direction in which ∞ is
approached.

To see that the above can be used to deduce the stability of
families of feedback interconnections, note that for a feed-
back interconnection [Pi, Ci], if Pi, Ci are both stable, then
[Pi, Ci] is internally stable if and only if (I + PiCi)

−1 ∈
RHni×ni

∞ (e.g. [7]). Hence if it can be additionally guaran-
teed that the elements in the feedback loop for our network
application are stable (which is often the case), (i) is stability
implying.

Unlike in Propositions 1 and 2 the restriction on Gi does
not require that the elements in the feedback loop (Pi, Ci in
this case, G1, G2 from before) are minimum phase, allowing
them to include right half plane zeros.

To see the utility of Proposition 3, consider networks with
dynamics described by the interconnection

g1

. . .
gp

 , L
 . (5)

In the above gi (s) are scalar transfer functions, and L a
symmetric Laplacian matrix. Proposition 3 can of course be
used to analyse far more complex feedback interconnections,
though it is reasuring that when additional structure is avail-
able it can be exploited to give simple stability conditions.

In the following discussion, we will show that any in-
terconnection of the form in eq. (5) can be written in the
appropriate form, with:

PiCi = 2gi (s)1ni
. (6)

In the above ni is equal to Lii, and 1ni
an ni × ni matrix

of ones. It is easy to show that

W (2gi (s)1ni + I) = 1 + Co (2nigi (s) , 0) .

This means that conducting design using Proposition 3 is
equivalent to requiring that kigi lies in convex regions of
the complex plane for a range of values of the constant ki.
This can be tackled with a wide array of standard tools, and
the resulting analysis will be valid for any possible Laplacian
interconnection of the form in eq. (5).

To show this, let us first rewrite eq. (5). Since L is a
Laplacian matrix it can be factorised as L = BBT , where
B is an oriented incidence matrix. Since the gi’s are assumed
stable1, we can equivalently consider internal stability ofBT

g1

. . .
gp

B, I
 . (7)

The following lemma shows the return ratio for this inter-
connection can be written in the appropriate form. Hence
Proposition 3 shows that we can conduct design as discussed
on the subsystems described by eq. (6).

Lemma 4: A = blkdiag (a1, . . . , ap) and B ∈ Cp×m. If
B is an oriented incidence matrix, then there exists an X
such that X∗X = I and

B∗AB = X∗blkdiag
(
2a11n1

, . . . , 2ap1np

)
X,

where ni = (BB∗)ii.
Proof: Let Yi equal diag (Bi•), except with all the zero

rows deleted. Observe that

Bi• = 1Tni
Yi,

where 1ni
is the vector of ni ones. Therefore

B∗AB =

p∑
i=1

B∗i•aiBi•

= Y ∗blkdiag
(
a11n1

, . . . , ap1np

)
Y,

where

Y =

Y1

...
Yp

 .
Observe that Y ∗Y = 2I . This follows because B has two
nonzero entries in each column, and

(Y ∗Y )kk =

p∑
i=1

B∗ikBik = 2.

The result follows by putting X = 1√
2
Y , and rescaling the

diagonal matrix.

1It is often desirable to allow the gi’s to contain an integrator. By
indenting the Nyquist contour into the right half plane around this pole,
the presented method can be extended with minimal changes to this case.
However the resulting criteria will be inconclusive about the number of
poles that remain at the origin in the closed loop. A separate argument will
be required (based on the properties of B) to draw conclusions about this
and any assoicated ‘consensus subspace’.



V. CONCLUSIONS

A method for conducting network design by preserving
stability implying properties under interconnection is pre-
sented. The method hinges on showing that properties of the
frequency responses of the numerical range are preserved
under various notions of interconnectoin. When combined
with a Nyquist type argument, this is sufficient for stability. It
is shown that classical passivity results arise as a special case
of this approach, and that the passivity approach to electrical
network design can be extended to other impedance classes
with non-passive dynamics. In addition a stability preserving
property of the return ratio of feedback interconnections,
which has applications to networks with Laplacian structures,
is given.
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