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Abbreviations 
3’ss 3’ splice site, splice acceptor 
3’UTR 3’untranslated region 
5’ss  5’ splice site, splice acceptor  
AdoMet  Adenosylmethionine 
AP1 Activator protein-1 
AP2 Activator protein-2 
ASF/SF2 Alternative splicing factor/splicing factor2  
Bak Bcl-2 homologous antagonist/killer 
BCC Basal cell carcinoma  
BPS Branch point sequence  
C/EBPs CCAAT-enhancer-binding proteins 
CDP/Cut CCAAT displacement protein/human Cut protein  
CFI/CFII Cleavage factorsI/ cleavage factorsII 
CIN Cervical intraepithelial neoplasia  
CPSF Cleavage and polyadenylation specificity factor  
CR Conserved regions  
CstF Cleavage stimulation factor  
CTLs CD8+ cytotoxic T cells  
DBD DNA-binding domain  
DNA Deoxyribonucleic acid  
ER Endoplasmic reticulum 
ESE Exonic splicing enhancer  
ESS Exon splicing silencer  
E6AP E6-associating protein 
E6C E6- carboxyl-terminus 
E6N E6- amino-terminus 
eUTR Early untranslated region-Papillomavirus 
GTP Guanosine-5'-triphosphate 
hDlg Human disc large 
hnRNP Heterogeneous ribonucleoprotein 
HPV Human papillomavirus 
HR High-risk 
ICTV International Committee on Taxonomy of Viruses  
IFN Interferon  
ISE Intron splicing enhancer 
ISS Intron splicing silencer  
KRF-1 Keratinocyte-specific transcription factor 
lUTR Late untranslated region 
LR  Low-risk  



LCR Long control region  
mRNA Messenger ribonucleic acid  
MAG1 Membrane-associated guanylate kinase, WW and PDZ domain-

containing protein  
MAPK Mitogen-activated protein kinases  
MHC Major histocompatibility complex 
NMSCs  Non-melanoma skin cancers  
NRF Nuclear factor kappa B-repressing factor  
Oct-1 Octamer-motif-binding factor I 
ORF Open reading frame 
Ori  Replication origin site 
PAP Polyadenylate Polymerase 
PV Papillomaviruses  
pAE Early polyadenylation signal- papillomavirus 
pEarly Early promoter- papillomavirus 
pLate  Late promoter- papillomavirus 
pAL Late polyadenylation signal- papillomavirus  
p53 Protein 53 
PPT Polypyrimidine tract  
pRb Retinoblastoma protein 
pre-mRNA  Precursor messenger RNA  
RB Retinoblastoma 
RBDs  RNA-binding domains  
RCA Rolling circle amplification 
RNA  Ribonucleic acid  
RS domain Serine/arginine-rich domain  
RRM RNA recognition motif  
SCC Squamous cell carcinoma 
SLIM Site-directed, ligase-independent mutagenesis  
Sp1  Specificity protein 1 
snRNA Small nuclear RNAs  
snRNPs Small nuclear ribonucleic particles 
SR protein Serine-arginine rich protein 
TEF-1 Transcriptional enhancer factor  
USP15  Ubiquitin carboxyl-terminal hydrolase 15 
VLPs  Virus-like particles  
YY1 Yin Yang 1 
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Introduction 
Each year an estimated 530 000 new cases of cervical cancer are diagnosed and 
more than 275 000 women die from cervical cancer worldwide (2). Cervical 
cancer is caused by sexually-acquired infections with a subset of human 
papillomavirus (HPV) (359, 360). HPV is the most common viral infection of the 
anogenital tract (2). Almost all sexually active individuals will be infected by HPV 
at least once but probably multiple times during their lives. Most HPV infections 
do not cause any symptoms or disease as they spontaneously resolve, often within 
one to two years after infection. However, infections with specific types of HPVs 
(most frequently type 16 and 18) may persist and lead to precancerous lesions or 
cancer if they are not appropriately treated. 

More than 40 types of HPVs are sexually transmitted and infect the anogenital 
region. HPV types that infect the genital mucosa are divided into two groups: 
High-risk (HR) types like HPV-16, 18, 31 and 33 that can cause genital, mouth, or 
oro-pharynx cancer, and low-risk (LR) types like HPV-6 and 11 that may cause 
warts, but are not found in malignancies. HR HPV-16 and 18 are the most 
frequently detected HPV types in cervical cancer (244). 

Although vaccines against HR HPV-16 and 18, and LR HPV-6 and 11, are 
available nowadays, there is a large number of new cases of cervical cancer and 
deaths each year, especially in low and middle income countries (2). Vaccination 
is only freely available for girls aged 9-13 years in a few developed countries. 
Papanicolaou test and liquid-based cytology are two available methods in cervical 
cancer screening (44, 247). However, there are no efficient biomarkers or 
medicines available for diagnostic or treatment of HPV infections at risk of 
progressing to cancer. Therefore, it is important to fully understand the mechanism 
of HPV persistence in order to uncover novel biomarkers for disease, or targets for 
antiviral treatment. In this study, we have investigated how HPV-16 late gene 
expression is regulated at the level of RNA processing. These results will enhance 
our understanding of the ability of HPV-16 to hide from the immune system by 
using a highly regulated gene expression program. This is highly significant since 
establishment of HPV-16 persistence is one of the most important risk-factors for 
development of cervical cancer. 
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Human papillomaviruses and cancer 

Virus-related cancer accounts for about 15% of all human cancers (244), half of 
which is attributable to human papillomaviruses (HPVs) (25, 244). Genital tract 
infection by HPV is the most common sexually transmitted virus infection (192). 
Decades ago, researchers postulated and identified the role of HPV in cervical 
cancer (198, 338, 357, 358). The first experiments to search for papillomavirus 
DNA in cervical cancers were performed in 1974 (361) and papillomavirus was 
identified in cervical smears in 1976 (208). The human papillomarvirus family 
were shown to be heterogeneous (102, 103, 241), and various HPV types were 
isolated from various genital cancers, genital warts and laryngeal papillomas (101, 
104). 60-65% of vaginal cancers, 20-50% of vulvar cancers and about 40-50% of 
all penile cancers were found to contain HPV-DNA (1, 244). High prevalence of 
HPV-DNA are also found in oro-pharynx cancers, head and neck cancers, and anal 
cancers but the strongest correlation between HPV and cancer was observed for 
cervical cancer as it has been shown that 99.7% of all cervical cancers contain 
HPV (2, 244). 

Cervical cancer is the second most common cancer in women worldwide and 
causes about 15% of all female cancers (86). The first HPV type isolated from 
cervix cancer was HPV-16 (79, 359). A role for HPVs in cervical cancer was 
strengthened when it was show that specific viral genes, the E6 and E7 genes, 
were always detected in cervical cancer cell lines and cancer biopsies (218, 273). 
Furthermore, the E6 and E7 oncogenes could immortalize human primary cells 
(78, 254). It was later shown that E6 and E7 inhibit tumor suppressor proteins p53 
and pRb, respectively (221, 359), thereby preventing apoptosis and inducing cell 
proliferation. Some HPV types establish persistent infections that may progress to 
cervical cancer as well as other anogenital cancers and a subset of head and neck 
cancers (359). It is therefore important to investigate how HPV regulates gene 
expression to establish persistence. 

Classification of HPVs 

HPVs are commonly classified as cutaneous or mucosal based on the location of 
the lesion in which the HPV virus is consistently identified. Cutaneous HPV 
infections are ubiquitous (9), but most infections have no clinical symptoms and 
are spontaneously cleared by the immune system within months. Some cutaneous 
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HPV types may cause benign lesions, such as HPV types 2 and 27 that are 
frequently found in common warts; or HPV types 1, 2, 3 and 4 that cause plantar 
warts. Some cutaneous HPV types contribute to premalignant or malignant 
cutaneous lesions such as melanoma and non-melanoma skin cancers (NMSCs), 
including squamous cell carcinoma (SCC) (321) and basal cell carcinoma (BCC) 
(5). For example, HPV-17 and 38 are found in malignant melanoma (268) and 
HPV-96, 94 and 92 are found in SCC or BCC (68, 89, 268, 321). Mucosal HPV 
types infect epithelial cells in genital or oral mucosa. Forty seven mucosal HPV 

Figure 1. Phylogenetic analysis based on the L1 ORF sequences of 170 HPV types. Adapted from 
(25, 67). 

types have been identified so far (41), and of those, about 12 are carcinogenic 
tohumans, including HPV-16, 18 and others (136). These HPVs are termed HR 
HPV types (29). Other mucosal HPV types such as HPV-6, 11 and 61 may cause 
benign tumors, mostly genital warts (41). These HPVs are termed LR HPV types 
(29). Persistence of HR HPV infections is the most significant risk factor for 
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cervical cancer (29, 30, 222, 359) and may also cause cancer of the uterine cervix, 
vulva, vagina, penis, oropharynx or anus (244).  

The L1 ORF has been used to identify new types of papillomaviruses (PV) since 
the L1 ORF is the most conserved gene within the genome (68). A new PV type 
must be completely cloned and the DNA sequences of the L1 ORF must have less 
than 90% similarity to the closest known HPV type (68). The Greek alphabet is 
officially used for the systematic naming of PVs by the International Committee 
on Taxonomy of Viruses (ICTV) (68) (Fig. 1). About 174 HPV types have been 
identified to date and classified into genus, species, type, subtype, and variant 
(68). Variants have less than 2% sequence difference in the L1 ORF (68). Based 
on the comparison of L1 genes, the HPVs are classified into alpha, beta, gamma, 
nu and mu genera (41, 67, 68, 90) (Fig. 1). Only HPV types in the alpha and beta 
genera can cause malignant lesions in mucosal and cutaneous epithelium, while 
HPVs in the other genera are benign (68). The alpha genus contains all high-risk 
mucosal HPV types, for instance HPV-16 and 18 that are the most frequently 
detected HPV types in cancer (187). HPV-16 was investigated in this thesis. 

The HPV virion 

HPVs are non-enveloped viruses. The capsid has icosahedral symmetry and is 
approximately 55-60 nm in diameter (Fig. 2A). The viral genome is about 7.9 kb 
in length and consists of circular double-stranded DNA. It encodes the early 
genes E6 and E7 that maintain viral DNA replication competence of the cells, 
early and late genes E1, E2, E4, E5, and E8 that modulate viral DNA 
transcription, replication and late functions, and the two late genes encoding the 
L1 and L2 capsid proteins. The genome also contains a long control region (LCR) 
that contains the viral replication origin (ori) and a promoter with mutiple binding 
sites for viral and host cell proteins (29, 127, 144, 267) (Fig. 2B). 

HPV genetic organization and gene products 

All HPVs have a common genetic organization (Fig 2B). The viral genome is 
divided into two parts by the virus early promoter, differentiation-dependent late 
promoter and two polyadenylation signals that are coordinately regulated during 
cell differentiation (Fig. 3). The Early promoter (pEarly) controls E6 and E7 
oncogene expression assisted by the early polyadenylation signal (pAE) that is 



  

5 

A. 

 
B. 

 
Fig 2. Human papillomavirus (A). assembled virion (Adapted from virology.wisc.edu/virusworld). 
(B). Schematic presentation of the HPV genome. Ori: The replication origin, RE: transcriptional 
regulatory elements, LCR: Long control region. pEarly: virus early promoter, pLate: differentiation-
dependent late promoter, eUTR: early 3’ untranslated region, lUTR: late 3’ untranslated region. 
Open reading frames (ORFs) are colored to indicate at which phase of the virus life cycle each is 
most highly expressed (See Figure 3). 
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preceded by the 3’UTR (3’untranslated region, eUTR). As infected cells 
proliferate and differentiate, E1, E2, E4, E5 and E8 genes are expressed for both 
early and late promoters (pEarly and pLate) (Fig. 3 and 8). The late L1 and L2 
genes are expressed from the late promoter (pLate) that produces late mRNAs that 
are terminated at the late polyadenylation signal (pAL), which is preceded by the 
late 3’UTR (lUTR) (29, 144) (Fig. 2B). 

LCR 

The HPV LCR is approximately 850 bp in size (Fig. 2B). It controls viral gene 
expression and viral replication through its multiple transcription factor binding 
sites and ori (6, 151, 186, 253, 285, 325). LCR variants within a HPV type may 
differ by up to 5 % (68). Transcription of E6 and E7 oncogenes is regulated by 
cellular and viral factors binding to pEarly in the LCR. Variations in HPV-16 and 
HPV-18 LCR could also affect ori function (6, 131). Nucleotide variation in LCR 
therefore affects viral oncogenic potential and biological properties (85).  

Many cellular transcription factors that bind to the LCR of HPV and regulate the 
activity of the E6/E7 promoter have been identified, for example, KRF-1 (192), 
AP-1 (279), AP-2 (277), YY1 (18), Oct-1 (297), Sp1 (125), TEF-1 (139), 
CDP/Cut (235), and C/EBP (19). Mutations in the LCR that increase expression of 
the E6/E7, could potentially affect the carcinogenic process (253). Naturally 
occuring mutations in the LCR also affects the binding of the E2 protein that 
regulates viral transcription in trans (212). European LCR variants of both HPV 
type 16 and 18 have lower transcriptional activities than Asian-American variants 
(151, 324, 325). Both Asian-American and European LCR variants of HPV-18 
have higher transcriptional activity than African variants (6).  

E5, E6 and E7 oncoproteins 

HR HPV E6 and E7 oncoproteins are well known to interfere with the cellular 
tumor suppressor protein p53 and retinoblastoma protein (Rb) to induce cell 
transformation and resistance to terminal cell differentiation (78, 234, 263, 294, 
320). These proteins drive cell immortalization and the carcinogenesis process (29, 
221, 226) and are consistently expressed in malignant cells. In addition to 
promoting cell growth and inhibit apoptosis, E6 and E7 may also interact with host 
immune functions (31, 220). Several beta genus HPV E6 and E7 also have 
transforming and immortalization activities in several experimental models (3, 42, 
94, 126, 223, 326, 331). Inhibition or depletion of E6 and E7 halted cell division 
of differentiation-resistant E6 and E7 expressing transformants (69, 221), whereas 
overexpression of these proteins dramatically increases transforming activity (14, 



  

7 

118). HPV E5 may also be an oncoprotein since E5 alone can induce cancer in 
transgenic mice (197). The E5 protein may therefore be involved in cervical 
carcinogenesis by cooperation with E6 and E7 (34, 73, 299, 318, 323). Another 
mechanism that may contribute to HPV induced tumorigenesis is alleviation of the 
repressive effects of E2 on E6 and E7 via viral integration into host chromosomes 
that deletes E2 (216). 

E6 

HPV E6 is an approximately 150 amino acid-protein containing two zinc-finger 
domains (N-terminal and C-terminal) (180, 230, 231). HPV E6 is well-known for 
its ability to degrade the tumor suppressor protein p53 (340) by binding to p53 and 
the E3 ubiquitin ligase E6-associating protein (E6AP) (48, 133, 134, 266). 
Degradation of p53 is necessary for malignant progression (216) and is activated 
by E6 only when E6AP and p53 bind to E6 (154, 341). Both E6 N-terminal and C-
terminal domains are needed for p53 degradation (340). The HPV E6 N-terminal 
self-association is also required to promote degradation of p53 (96, 233, 339-341). 
LR HPV E6 also self-associates via its N-terminal domain and binds to p53, even 
though it cannot degrade p53 (36, 314). HR HPV E6 is involved in several E6AP-
mediated pathways that block apoptosis, alter the transcription machinery, interfer 
with cell-cell interactions (an important step towards malignancy), increase life 
span of cells, and promote cell immortalization (46, 161, 173). E6 may also 
degrade p53 independently of E6AP ligase activity (43, 195, 232, 278). E6 
proteins are ubiquitinated and degradated by the proteasome (298), but are 
stabilized by E6AP (316). HPV-16 E6 may also contribute to carcinogenesis by 
interacting with cellular proteins containing PDZ domains (115, 313), for 
example, human discs large (hDlg) (160), the MAG1 family of proteins (105, 
312), the proapoptotic protein Bak (311), c-Myc (116) and the deubiquitinating 
enzyme USP15 (327).  

E7 

The E7 protein is primarily located in cell nucleus and associates with the hypo-
phosphorylated pRb to facilitate cell cycle transition into S phase by preventing 
pRb binding to E2F (359). E7 also mediates ubiquitinylated-degradation of pRb 
(143). In addition to binding to several pocket proteins (pRb, p107 and p130), 
HPV E7 also directly interacts with many additional cellular targets (219) to 
maintain the episomal HPV DNA and to promote cells amplification (55, 88, 206). 
E7 has three conserved regions (CR): CR1, CR2, and CR3 (252). The CR1 and 
CR2, which are located in the N-terminal domain of E7 protein (95), have pRb 
binding affinity and are associated with pRb destabilization. These regions are 
indispensable for early viral activities (122, 147). For example, CR1 competes 
with E2F transcription factors and is involved in pRb destabilization. CR2 is 
required for cell transformation (81). The CR3 region which is located in the C-
terminal zinc finger domain and has high binding affinity for pRb (246), inhibits 
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pRb function by cooperating with the CR1 and CR2 regions (228). HR HPV E7 is 
expressed in infected epithelium and is associated with cell replication, 
immortalization, and carcinogenesis (219, 228). HPV-16 E7 also inhibits IFN-γ-
mediated enhancement of major histocompatibility complex (MHC) class I 
antigen processing (58, 171) and T-cell-induced target cell lysis (175, 319, 350, 
351), thereby allowing HPV to persist in the presence of a functional immune 
system. Vaccines containing HPV-16 E6 and E7 epitopes for MHC class I human 
alleles could potentially prevent HPV-induced tumor formation (215).  

E5 

The HR E5 proteins are small, hydrophobic peptides, approximately 83 amino 
acids in length that primarily exist at the endoplasmic reticulum (ER), Golgi 
apparatus and nuclear membrane (57, 74, 75, 99, 304). Tumors with episomal 
HPV-16 may have more aggressive properties (323), since E5 may only be 
produced from episomal HPV DNA. HPV E5 could potentially promote cell 
proliferation and induce viral replication (216, 260). The N-terminus of E5 is 
bound to the ER lumen, whereas the C-terminus is exposed in the cytoplasm (162) 
where it interacts with cytoplasmic- and ER- proteins (11, 49, 57, 117, 170, 240, 
262). HPV E5 is involved in various cellular pathways, primarily at the early stage 
of cervical carcinogenesis (156). HPV-16/18 E5 can enhance the percentage of 
cells in the S phase (178). HPV-16 E5 also inhibits TRAIL- and FasL-mediated 
apoptosis (149) and downregulates CD1d-mediated innate and adaptive immunity 
(149, 209, 323). Overexpression of HPV-16 E5 significantly suppresses cancer-
related proteins (269, 309) and down-regulates tumor suppressor proteins (248, 
317, 323). Moreover, HPV-16 E5 reduces the cell surface levels of MHC class I 
(11). The same effects were observed in CIN lesions (59). The HPV-16 E5 protein 
may induce viral integration and accelerate aggressive cervical carcinogenesis via 
stimulation of the type I IFN response and activation of antiviral genes (224, 250). 
Some animal studies have shown that HPV-16 E5-adenovirus vectors as tumor 
vaccines inhibit tumor development in mice by reducing the growth of tumors 
through induction of CD8+ cytotoxic T cells (CTLs) (181). The HPV DNA 
genome usually integrates and the E5 gene is lost during tumor progression (29, 
323), Therefore, the role of HPV E5 in the viral life cycle is still poorly 
understood (216, 360). 

E1, E2, E8^E2 and E4 proteins 

E1 

E1 and E2 play an important role in initiating replication of episomal HPV DNA 
(60). E1 protein is expressed at the early stage of the viral life cycle. E1 initiates 
viral DNA replication via binding to the viral origin of replication. The HPV E1 
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consists of three functional domains: an N-terminal regulatory domain, a DNA-
binding domain (DBD), and a C-terminal ATPase/helicase domain (97, 132, 275, 
315). E1 binds to the HPV DNA origin with very low specificity. In contrast, E2 
binds HPV DNA with high specificity. Binding of E1 to E2 therefore increases the 
specificity and efficiency of recognition of the HPV DNA (47). In addition, E1 
can recruit cellular replication factors to the viral origin by interacting with DNA 
polymerase alpha-primase, topoisomerase I and the single-stranded DNA binding 
protein RPA to form a replication complex (56, 185, 196, 243, 300). Integration to 
human genome usually disrupts/deletes the E1 and E2 ORFs (10, 60) and results in 
dysregulation of viral gene expression and replication. This dysregulation might 
contribute to the progression of cervical neoplasia to invasive cancer (10, 128). 

E2 

The full-length E2 gene produces a 45-48 kDa protein which is consistently 
expressed at early and intermediate stages of the viral life cycle. The E2 protein is 
mainly located in nucleus (130), with the exception of one report that shows 
nuclear-cytoplasmic shuttling of HR E2 proteins (27). E2 protein contains a 
conserved N-terminal “transactivation” domain and a C-terminal DNA 
binding/dimerization domain connected by a flexible linker called the “hinge” 
(100, 203). The hinge region of the E2 protein is not well conserved either in 
sequence composition nor in length (100, 201). E2 is a multifunctional protein and 
is involved in several viral processes by associating with viral or cellular proteins 
(22, 144, 200, 202). E2 protein is the major transcriptional regulator in PVs (51, 
61, 167, 291) and acts by specifically binding to PV genomes and recruiting 
cellular factors to the viral genome (35, 93, 229, 274, 286, 336). E2 protein 
regulates viral transcription mostly by silencing the promoter that controls 
expression of viral E6 and E7 oncogenes (286). Restoration of E2 expression leads 
cells to senescence in HPV-associated cancer cells that depend on E6/E7 
expression (71, 77, 109). E2 protein also supports and loads E1 onto the 
replication origin to initiate viral DNA replication (91, 211, 265). E2 is involved in 
the RNA post-transcriptional regulation by promoting HPV late gene expression 
(145). In transgenic mice, expression of the HPV-8 E2 protein in skin results in the 
development of skin tumors, demostrating that HPV-8 E2 may play an important 
role in cell transformation (174, 251). Moreover, E2 links viral genomes to 
cellular chromosomes to ensure that viral genomes are segregated in 
approximately equal numbers in daughter cell nulcei (138, 163, 164, 172). In a 
few cases, E2 protein can regulate cellular gene expression (146, 328) and enhance 
genome-packaging into virions (344). The hinge region of E2 proteins of different 
HPVs can promote nuclear localization, link E2 to nuclear matrix, and interact 
with cellular proteins (166, 276, 355). The stability of E2 protein can be 
modulated by phosphorylation (276), binding to E4 (66), and interaction with E1 
(158). 
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E8^E2 

All HPVs have the potential to encode shorter E2 forms which may play a role in 
the control of viral DNA copy number and in the stable maintenance of HPV 
episomes, as well as transcription and replication (7, 165, 302, 354). For example, 
alpha genus HPVs produce E8^E2 proteins that contain a short E8 peptide fused to 
the entire hinge and DNA binding domain of E2 (301) (Fig. 8) that are strong 
repressors of viral transcription and replication (87, 302, 354). 

E4 

The PV E4 ORF overlaps the E2 ORF. The most abundant products of E4 
transcripts are E1^E4 proteins which contain five amino acid residues of E1 at N-
terminus of E4 (76) (Fig. 8). The E1^E4 protein is hereafter called E4, E4 proteins 
are intensely expressed at differentiated layers of the infected lesions suggesting 
that E4 protein can serve as a useful biomarker for HPV-specific infection (114, 
120, 296). E4 is likely to have many functions in the viral life cycle since it is the 
most abundant protein in the mid to uper layers of the epithelium. Suggested 
functions of E4 are induction of G2/M cell cycle arrest, RNA processing (21, 272), 
and association of mitochondrial functions (256). E4 also appears to be involved 
in genome amplification and virus assembly (76). E4 is required for viral late gene 
expression，but it is not known how (225, 249, 334). In HR HPV-16 and HPV-
31, but not in HPV-18, E4 is involved in maintenance of viral genome (225, 335). 
Phosphorylation of HPV-16 E4 promotes the interaction with cytokeratins (332). 

L1 and L2 capsid proteins 

Late L1 and L2 genes which encode the major L1 and minor L2 viral capsid 
proteins, are only expressed in the upper most layers of the epithilium (13, 144). 
Expression of L1 and L2 is controlled at the level of transcription by the late 
differentiation-dependent promoter p670, and at the level of RNA processing by 
viral and cellular factors, including HPV E2 (144, 145) and cellular SR proteins 
(287) and hnRNPs (50, 177).  

The viral capsid is a T=7 icosahedral lattice containing 360 copies of the L1 protein 
and associated with 37-72 copies of the L2 protein (37, 205). L1 can spontaneously 
self-assemble into capsid structures that lack L2 and the viral genome. The viral 
particles are released from the top of the epithelium. Expression of L1 alone in 
eukaryotic cells results in virus-like particles (VLPs) with similar morphology and 
immunogenicity as native virions (159). VLPs of L1 is the component in 
prophylactic vaccines against HPV infection (45, 205).  
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The HPV infectious cycle 

The HPV life cycle is unique and differs from most other virus families in that 
HPV only infects proliferating epithelial cells and that the virus life cycle is highly 
linked to the differentiation of the host cells (157, 359). HPV infection 
preferentially initiates at basal epithelial cells through microwounds. Infection 
often occurrs in the transformation zone. In basal layer cells, only early genes 
(such as E6, E7) are expressed to enhance cell proliferation and lateral expansion 
(Fig. 3). The early to late genes (such as E2 and E4), which control replication and 
transcription of viral DNA, are expressed in proliferating cells. The late genes are 
only expressed in suprficial layers and is followed by production, assembly, and 
release of viral particles in the upper layers of the mucosa (29, 359) (Fig. 3).  

Viral capsids initially bind to the basement membrane of infected cells which is 
followed by entry into basal cells and uncoating of the viral genome. Expression 
of E6 and E7 promote cell division to maintain an intracellular environment that is 
permissive for HPV DNA replication. E7 binds to tumor suppressor protein pRb 
and induces the expression of DNA replication factors (for example DNA 
polymerase, thymidine kinase, and cdc6) by liberating E2F transcription factors 

Figure 3. Structure of the cervical epithelium and human papillomavirus life cycle. Nuclei are 
colored to indicate the different viral proteins expressed during the life cycle (See Figure 2).  

(220). E7 also induces the tumor suppressor protein p53 to activate DNA repair 
proteins, arrest cell growth and initiate apoptosis (220), whereas E6 inhibites p53 
activity by binding to p53 and induces E6AP-mediaed p53 degradation (98). 
Expression of E1 and E2 link the episomal viral genome to the cellular DNA 
polymerase and result in viral DNA replication (144, 219, 295). E1 initiates viral 
DNA replication by binding to early promoter p67 associated with E2. The E2 
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protein controls the early viral promoter to regulate expression of E6, E7, E1, as 
well as E2 itself (91, 100, 325). The HPV genome is present at about 50-200 
episomal copies per cell in undifferentiated cells (29, 216). Viral protein 
production is low in undifferentiated cells for immune evasion purpose and viral 
persistence (359). As cells differentiate, the late viral promoter is activated to 
produce high levels of viral proteins, in particular E1, E2, and E4, and viral copies 
increase to thousands per cell (293). Both E4 and E5 play essential roles at the late 
stage of viral infection (334). The capsid proteins L1 and L2 are highly 
immunogenic proteins and are expressed in the superficial level of the epithelium 
(144, 270, 271). Then virions assemble. Virus delays the L1 and L2 late gene 
expression to avoid the host defense systems. For instance by using differentiation 
dependent gene expression program and by switching from early to late 
polyadenylation signals (270).  

In HR HPV infected cancer cells, the viral genome may integrate into the host 
genome with disruption/deletion of the E1, E2 and E5 genes as a consequence 
(199). Therefore, high levels of E6, E7 genes are expressed which facilitates 
progression to cervical neoplasia and invasive cancer (29, 144). The immunogenic 
L1 and L2 proteins are never expressed in cancer cells. 

Regulation of gene expression 

Regulation of gene expression is important for a cell to produce the exact amount 
of functional gene products when they are needed. It is for example vital for cells 
to respond to external and internal signals when the environment changes, or for 
example for cellular differentiation. Gene regulation includes transcriptional 
modulation, post-transcriptional regulation and translational modification. Post-
transcriptional regulation is executed on processes that convert precursor RNA 
(pre-mRNA) into mature mRNA and is essential to control the levels of mRNAs 
that are made available for translation. Post-transcriptional regulation may occur in 
the cell nucleus and mainly target three pre-mRNA processing events: 5’-capping, 
3’-polyadenylation, and RNA splicing.  

Transcriptional modulation of gene expression 

Transcription is the first step of gene expression which occurs in the nucleus 
and begins with the binding of RNA polymerase to the promoter in DNA 
(40). The TATA box is a common core promoter in eukaryotes. 
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Transcription factors play important roles in modulation of transcription. 
For example, TATA-binding protein and Transcription Factor II D bound 
TATA box to form a preinitiation complex. Transcriptional activator factors 
can specifically bind to DNA sequence and stimulate transcription(92, 238). 

Post-transcriptional regulation of gene expression 

Capping 

5’ cap is a specially altered nucleotide on the 5’ end of pre-mRNA. The process of 
5’ capping is important as the cap structure stimulates mRNA splicing and 
polyadenylation. It is also recognized by the protein synthesis machinery (52). 
Capping occurs soon after transcription initiation when the nascent RNA is 25-30 
nucleotides in length (148, 258). The capping reaction undergoes three steps 
(210): first, the 5' γ-phosphate end of the nascent RNA molecule is removed by 
RNA triphosphatase. Then, mRNA guanylyltransferase form a covalent enzyme-
GMP intermediate with GTP to transfer GMP onto the 5’-diphosphate end. 
Finally, S-adenosylmethionine synthetase methylates the cap at position 7 of the 
terminal guanosine (4). 

Polyadenylation 

In eukaryotes, polyadenylation is a part of the process that produces mature 
mRNA. It begins as the transcription passes the polyadenylation signal. First, 
cleavage and polyadenylation specificity factor (CPSF) binds to a polyadenyl ation 
signal sequence 5'- AAUAAA-3' located near the 3' end of the pre-mRNA 
molecule Cleavage stimulation factor (CstF) binds to a GU-rich sequence 
presented downstream of the polyadenylation signal sequence (Fig. 4A). This 
protein complex recruits additional cleavage factors (CFI/CFII) and the 
enzymePolyadenylate Polymerase (PAP) to cut the RNA at the cleavage site (5'- 
CA-3') located between the polyadenylation sequence and the GU-rich sequence 
(Fig. 4A). PAP then adds 200-300 adenosine units to the 3' end of the new RNA 
molecule, followed by binding of multiple copies of poly(A) binding protein 
(PABII) to protect the 3'-end from ribonuclease digestion (Fig. 4B). 

Splicing 

Pre-mRNA splicing was first described in adenovirus late mRNAs (23, 24, 53). 
Later, it was found that splicing is a common event and that the majority of all 
cellular mRNA are spliced. Splicing is required to remove non-coding regions 
called introns and join protein coding sequences called exons to form a single 
continuous mRNA molecule (Fig. 5). Introns typically have a GU at their 5' ends 
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A.  

 
B. 

  
Figure 4. Schematic diagram showing the cleavage and polyadenylation process. (A) Cleavage of 
the pre-mRNA. (B) Addition of the poly(A) tail.  

 (5’ splice site, 5’ss) and an AG at the 3' end of the intron (3’ splice site, 3’ss). In 
addition, a polypyrimidine tract (PPT) which contains a variable number of 
polypyrimidines and a branch point sequence (BPS) with a conserved adenosine is 
located at the 3’-end of the intron (307) (Fig. 5 top). In addition to these elements, 
the secondary structure of the pre-mRNA can also affect splicing (261, 333). In 
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Figure 5. Schematic diagram showing the structure of pre-mRNA(top), and the mechanism of pre-
mRNA splicing reaction (middle to bottom).  

eukaryotes, pre-mRNAs undergo splicing to produce mature mRNAs before they 
are transported to the cytoplasm for translation. In prokaryotes, splicing is a rare 
event and occurs in non-coding RNA. In yeast, approximately 5% of genes contain 
one or two intron(s) which undergo splicing (80). Splicing is catalyzed by the 
spliceosome, which is a complex of small nuclear RNAs (snRNA) and a range of 
associated protein factors that recognize splice sites, PPT and BPS. The 5’ss is cut 
first and the GU end of the 5’ss binds to the BPS. Then, the 3’ss is cut, followed 
by ligation of the two exons (Fig. 5 middle and bottom) (182). There are two types 
of splicing: constitutive and alternative splicing. Constitutive splicing removes 
introns and joins exons together to form mature mRNAs and alternative splicing 
alternatively joins exons from multi-exon pre-mRNAs to produce different mRNA 
isoforms that may encode different proteins. Many diseases have been found that 
are caused by splicing deficiencies in humans (15, 28, 189). Recent experiments 
suggest that correction of defective splicing could become new way to treat 
Genetic diseases (15, 28, 189). 
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Figure 6. Schematic representation of the splicing process and spliceosome assembly.  
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Spliceosome assembly 

A transcribed pre-mRNA needs a spliceosome to catalyze the removal of introns 
and to ligate the flanking exons. There are five snRNAs (U1, U2, U4, U5, and U6) 
that make up the major spliceosome. Combined with protein factors, they make 
RNA-protein complexes, called small nuclear ribonucleic particles (snRNPs) (8). 
Spliceosomes assemble snRNPs onto the pre-mRNA (330). First, U1 snRNP binds 
to the 5'ss with other non-snRNP associated factors to form the early (E) complex 
(64, 141) (Fig. 6). Then, U2 snRNP binds to BPS with the E complex component 
U2AF (U2 snRNP auxiliary factor) and possibly U1 snRNP in an ATP-dependent 
manner forming the A complex (Fig. 6). Next, the U4/U5/U6 tri-snRNP is 
recruited to the pre-spliceosome to form the B complex with U6 and U2 forming 
the U2/U6 helix II (Fig. 6). Then, with several rearrangements, the B complex 
transfers the 5’ss from U1 to U6 and releases both U1 and U4 snRNPs, leading to 
complex C. The U5 snRNP is thought to align the two exons via the invariant loop 
of U5 snRNA (8, 204) (Fig. 6).  

Alternative splicing 

Alternative splicing is a common phenomenon occurring in eukaryotes. It splices a 
single pre-mRNA into a range of unique mRNAs, which encode different protein 
sequences that might have different biological functions. This is achieved by 
varying the exon composition of the mRNA. About 95% of multiexonic genes are 
alternatively spliced in humans (242). Alternative splicing of some genes occurs 
under specific cellular conditions and/or in a tissue-specific manner (242). Five 
types of alternative splicing have been detected so far, including intron retention, 
exon skipping (or cassette exon), mutually exclusive exons, alterntive 5’ splicing 
(alternative donor site), and alternative 3’ splicing (alternative acceptor site) 
(Fig.7). 

Trans/cis-acting splicing factors 

Competition between the splice sites occurs and different splice sites are used with 
different efficiencies (193). Alternative splicing is regulated by cis-acting RNA 
splicing elements (enhancers and silencers) on the pre-mRNA transcript that are 
bound by trans-acting splicing factors (activators and repressors) (352). These 
trans/cis-acting splicing factors induce or reduce the usage of a particular splice 
site (32, 33). Regulation of alternative splicing plays an important role in gene 
expression (32, 33, 39). Various human diseases, including cancer, have been 
linked to perturbed alternative splicing (65, 150, 352). There are exonic splicing 
enhancers (ESE), exonic splicing silencers (ESS), intronic splicing enhancers 
(ISE), and intronic splicing silencers (ISS). The major cellular trans-acting 
splicing factors are proteins from the serine/arginine rich protein family (SR 
proteins) (112, 123) and the heterogeneous nuclear ribonucleoproteins (hnRNPs) 
(39, 119, 271). Although many SR proteins act as splicing activators (15), and 
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hnRNPs as repressors (179) by binding to pre-mRNAs, it has been shown that 
trans/cis-acting factors regulate splicing in both time and position-dependent 
manners (179). For example, exon sequences that act as enhancers may also 
inhibit splicing if they are moved into an intron (111). Furthermore, a splicing 
activator protein induces splicing when it is bound to an intronic enhancer, served 
as a repressor when it was bound to an exon sequence (137, 176, 179, 207, 287, 
288). 

 

Figure 7 Schematic representation of constitutive splicing and five types of alternative splicing 
patterns..  

 

SR proteins regulate pre-mRNA splicing 

SR proteins are splicing control factors involved in both constitutive and 
alternative splicing (292), and may play a role in the evolution of splicing (38, 
257). SR proteins also interact with the cap-binding complex and the 
polyadenylation machinery to regulate splicing (63, 292). SR proteins are highly 
conserved splicing regulators which contain an RNA recognition motif (RRM) and 
a serine/arginine-rich domain (RS domain) (184, 338). SR proteins are RNA 
binding proteins containing RRMs as certain hnRNP proteins (39, 308). But the 
RS domain is unique for SR proteins and separates SR proteins from other RNA 
binding proteins. Although SR proteins have different RNA binding specificities 
and many different functional properties, they also have common properties in the 
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splicing process (352). SR proteins generally bind ESE sequences to enhance exon 
inclusion during splicing, either by antagonizing the effect of negative regulators 
such as hnRNP proteins, by promoting splicing factors (such as U1/U2snRNPs) to 
splice sites, or by regulating spliceosome assembly. SR proteins also have the 
ability to induce exon skipping by binding to ESE sequences (176). Recently 
studies showed that some SR proteins suppress splicing (280, 281). For example, 
SRp38 acts as a splicing repressor in mitotic cells and in response to heat shock 
(280, 281).  

hnRNP proteins regulate pre-mRNA splicing 

The hnRNPs are primarily nuclear proteins that contain RNA-binding domains 
(RBDs), except for hnRNP U. Many of them also contain RGG boxes (repeats of 
Arg-Gly-Gly tripeptides) or glycine-rich, acidic or proline-rich domains. Like SR 
proteins, hnRNP proteins regulate pre-mRNA splicing by binding directly to the 
target RNA through the RBD domains. After binding to the pre-mRNA, hnRNPs 
promote protein-protein interactions via the RGG domains, or glycine-rich, acidic 
or, proline-rich domains (39). Unlike SR proteins, hnRNPs are only known to 
interfere with some steps of the splicing process. For example, they repress 
spliceosomal assembly (353), block the recruitment of snRNPs, or interfere with 
splicing by looping out exons (194). It has been reported that the function of 
hnRNPs in splicing depends on their location on pre-mRNA and that they can both 
repress and activate splicing (39, 119).  

Regulation of HPV-16 gene expression 

HPV-16 initiates the infection in the basal layer of epithelium. The viral genome 
migrates to the cell nucleus after uptake of the virion by endocytosis (144, 305). In 
the basal epithelium, HPV-16 uses the cellular transcription machinery to activate 
viral transcription from the early promotor p97 (143, 144). All mRNAs generated 
from this stage undergo different patterns of alternative splicing and are 
polyadenylated at pAE (Fig. 8) (144, 270, 271). Many viral and cellular factors are 
involved in these processes (270, 271). Cellular factors KRF-1 (192), AP-1 (279), 
AP-2 (277) and YY1 (18) regulate viral transcription activity. E1 and E2 bind to 
the viral LCR sequence and initiate replication (47, 60). As cells differentiate and 
leave the basal layer, the differentiation-dependent promotor p670 is activated and 
will be used to produce high levels of E4, E2, and probably E7, and subsequently 
promotes expression of the L1 and L2 genes. All mRNAs encoding the early genes, 
such as E4, E1, and E2 are polyadenylated at pAE (144, 270, 271). Whereas 
mRNAs encoding the late genes L1 and L2 are polyadenylated at pAL. There is an 
abundance of regulatory factors linked to these processes (12, 17, 270, 271). For 
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Figure 8. The HPV-16 genome shown linerised above, encoding early (E) genes from E1-E8, and 
late (L) genes L1 and L2. The LCR is located before p97 and contains the DNA replication origin 
(ori). The Early promoter p97 and the late promoter p670 are shown. Two polyadenylation signals 
are present, pAE and pAL. All known splice sites are indicated (blue triangle for splicing donor, red 
triangle for splicing acceptor). A subset of the alternatively spliced mRNAs are indicated seperated 
as p97- and p670- derived. All the genes and mRNAs are colored to indicate the different viral genes 
expressed during the life cycle (also see Figure 2 and 3). 

instance, E2 promotes transcription by binding to different LCR sites and also 
regulates early polyadenylation to induce late gene expression (145). SR 
andhnRNP families of RNA binding proteins control late gene expression by 
regulating pre-mRNA splicing (287-289). 

Polyadenylation and splicing in HPV-16 gene expression 

HPV-16 mRNA splicing and polyadenylation are tightly connected to each other 
(144, 349) (Fig. 8). HPV-16 genome is divided into an early and a late region by 
the early pAE signal. The HPV-16 pAE signal not only controls early gene 
expression, but also prevents premature expression of late genes L1 and L2 during 
the early stages of infection (144, 271, 349). All mRNAs encoding the early genes 
are polyadenylated at pAE (Fig. 8). A cryptic polyadenylation site upstream of 
pAE is efficiently used if HPV-16 pAE is mutationally inactivated, demonstrating 
that pAE is strongly regulated by surrounding sequences (144, 347).  

There are multiple polyadenylation enhancer elements located in sequences 
downstream of pAE and in the HPV-16 early 3’UTR (eUTR) (347) (Fig. 2B). 
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Cellular factors regulating polyadenylation bind directly to these enhancer 
elements (144, 145). For example, Fip1 (155), CstF64, and hnRNP H (236). 
Reduced usage of pAE results in the expression of the late genes L1 and L2 (144, 
145). The L1 and L2 mRNAs undergo alternative splicing and polyadenylation at 
the late pAL. HPV-16 E2 protein induces HPV-16 late gene expression by 
interfering with cleavage and polyadenylation specificity factor CPSF-30 (also 
known as CPSF4) of the early polyadenylation complex (145).  

HPV-16 3’-splice site SA3358 is predicted to be weak, yet it is the most 
commonly used 3’ splice site of HPV-16 (270, 271) (Fig. 8). mRNAs encoding to 
oncogenes E6 and E7 are dependent on splicing to SA3358 (239, 288). Inhibiton 
of SA3358 indirectly induces premature L1i gene expression (288) (Fig. 8). There 
is a strong splicing enhancer downstream of HPV-16 3’-splice site SA3358 that 
enhances the splicing to SA3358 (264, 288). Mutational inactivation of these sites 
reduces splicing to SA3358 and enhances splicing to late splice site SA5639 (288). 
A number of cellular proteins are involved in the regulation of SA3358. This 
enhancer contains 10 clusters of serine-and arginine-rich splicing factor 1 (SRSF1) 
also called ASF/SF2 binding sites (288). ASF/SF2 binds to this enhancer and 
enhances mRNA splicing to SA3358 (288). High levels of ASF/SF2 at the early 
stage of the viral life cycle induce expression of E6 and E7 mRNAs, whereas 
moderate levels of ASF/SF2 in terminally differentiated cells induce expression of 
L1 and L2 mRNAs (144). SRp30c also binds to this enhancer and causes skipping 
of SA3358, thereby promoting splicing to SA5639 (287). Another sequence 
downstream of this enhancer element interacts with SRp20 that inhibits splicing to 
SA3358 (142).  

HPV-16 splice sites SD3632 and SA5639 are used exclusively for production of 
L1 mRNAs and are regulated in a cell differentiation-dependent manner during the 
HPV-16 life cycle (144) (Fig. 8). The splice sites SD3632 and SA5639 are 
activated in terminally differentiated cells, and are completely suppressed in 
mitotic cells and cervical cancer cells (270, 271). hnRNP A1 inhibits late gene 
expression by binding to exonic splicing silencers downstream of SA5639 (346, 
348). HPV-16 5’ splice site SD3632 is suppressed by a splicing inhibitor upstream 
of SD3632 (264).  

Late 3′ UTR (lUTR) controls late mRNA levels by either reducing late mRNA 
stability or by inhibiting polyadenylation at pAL or translation (111, 144, 349). 
HPV-16 lUTR contains two GUUUG motifs, which are CUGBP1 binding sites, 
and four 5’ splice site-like sequences that interact with U1snRNP (144). 
Interaction of these factors with the lUTR results in inhibition of polyadenylation, 
mRNA half-life and translation (111, 144, 349). 
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Cellular splicing factors in this thesis 

hnRNP D family and hnRNP A2/B1 

The hnRNP D family contains hnRNP D, hnRNP DL and hnRNP AB proteins 
(62). The hnRNP D gene produces four alternatively spliced mRNAs giving rise to 
four isoforms of hnRNP D: hnRNP D37, hnRNP D40, hnRNP D42, and hnRNP 
D45 (329). hnRNP D37 lacks exons 2 and 7, hnRNP D40 contains only exon 2, 
hnRNP D42 contains only exon 7 and hnRNP D45 contains both. It has been 
shown that hnRNP D37 and hnRNP D42 isoforms destabilize cellular IL-6 
mRNAs (245), while hnRNP D42 and hnRNP D45 activate transcription (255). 
hnRNP D may stabilize cytoplasmic mRNAs (337) and play a role in mRNA 
translation (188) and splicing (140). It has been shown that hnRNP D can bind 
RNA in a cooperative manner (356). The hnRNP D proteins can be 
posttranslationally modified by methylation (237), phosphorylation (342), and 
ubquitination (169) in an isoform specific manner. Overexpression of the hnRNP 
D37 and D40 isoforms suppresses the expression of the HIV-1 gag capsid protein, 
while overexpression of hnRNP D42 and D45 has the opposite effect (191). 
hnRNP D can specifically bind to the pre-mRNA 3' splice site sequence 
r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n (140). 
Overexpression of hnRNP D has also been shown to prevent cellular senescence 
(255), thereby, leading to tumorigenesis (110). 

hnRNP DL, known as hnRNP D-like protein or JKT41-binding protein, has 
several isoforms and has affinity for polyG (70). It binds to AU-rich RNA 
instability elements in TNF-α and COX-2 mRNAs (70), and may regulate 
translation of human nuclear factor kappa B-repressing factor (NRF) (259). 
hnRNP AB regulates splicing and is present in prespliceosomal complexes (20). 

hnRNP A2/B1 is a splicing factor that binds to splicing silencers and inhibits 
splicing to both 5’- and 3’-splice sites (26, 106, 135). It also binds to RNA 
trafficking elements (168) and RNA stability elements (108), contributing to many 
steps in the cellular RNA processing pathway. hnRNP A2/B1 protein is 
overexpressed in many different cancer forms and can drive tumorigenesis (107). 
It also controls invasive cell migration (217) and epithelial-mesenchymal 
transition (310).  

hnRNP G 

hnRNP G, which belongs to hnRNP family, is a well conserved nuclear protein 
with a RNA binding domain at its amino terminus (124, 290). It contains one 
RRM and one RBD which have been shown to be important for RNA binding and 
for performing the function of hnRNP G (121, 152). hnRNP G binds directly to 
CC(A/C)-rich single-stranded RNA sequences and influences alternative splicing 
(6). It can also change splice site selection independent on its RRM motif (6). 
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hnRNP G has been shown to be involved in the tissue-specific regulation of 
transcription of some genes (345) and is essential for neural and muscle 
development in zebrafish and Xenopus laevis embryos (72). In mammals, hnRNP 
G is important for normal sperm development (82, 153, 322) and regulates 
alternative splicing of several pre-mRNAs by specifically binding to certain RNA 
sequences (153, 227, 322). hnRNP G has a negative effect on RNA alternative 
splicing in skeletal muscle (227, 306). whereas hnRNP G can efficiently activate 
the testis-specific exon splicing by specific binding to the pre-mRNA (183). 
hnRNP G has been shown to compete with Tra2β and ASF/SF2 for the same target 
RNA with opposite effects on RNA splicing (83, 353). hnRNP G has tumor-
suppressive activity by binding to the promoter of the tumor suppressor gene 
Txinp in mice and mutations of hnRNP G RNA-binding domain were found in a 
tumor-derived cell line (282, 283). Expression of hnRNP G is dramatically 
decreased in premalignant and malignant epithelial tissues, while levels are 
relatively high in normal or hyperplastic non-dysplastic epithelium (284). 
Knockdown of hnRNP G protein inhibits neurogenesis, causing brain defects and 
abnormal muscle development in Xenopus (72).  

ASF/SF2 (SRSF1)  

ASF/SF2 is a key regulator of RNA processing (32, 113). It also plays an 
important role in nonsense-mediated mRNA decay (343), mRNA export (129), 
and translation (303). Expression of ASF/SF2 increases with the grade of severity 
of the HPV positive cervical lesion (84). High level of ASF/SF2 were detected in 
the entire epithelium of high-grade, CIN-III cervical intraepithelial lesions, and all 
cervical cancers (84). Relatively little ASF/SF2 is expressed in low-grade lesions 
and normal HPV-negative cervical epithelium (84, 214). ASF/SF2 is required for 
production of HPV-16 mRNAs that are spliced to HPV-16 SA3358 (288). It has 
also been reported that HPV-16 E2 enhances ASF/SF2 expression by 
transcriptional activation of the ASF/SF2 promoter (214).  
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Present investigation  

Aims of the present study 

A strict regulation of HPV-16 late gene expression may be necessary to avoid 
premature production of L1 and L2, and detection by the immune system. This 
paves the way for vival persistence which is the most important risk factor for 
HPV-16-induced cervical cancer. Exploring of HPV-16 late gene expression will 
therefore further increase our understanding of the progression of HPV-16 
infection to cervical cancer.  

The goal of this thesis project was: 

1) to determine how the HPV-16 late 5’-splice site SD3632 is regulated by 
cis-acting RNA elements and cellular trans-acting factors 

2) to determine how HPV-16 3’-splice site SA3358, which is used by the 
majority of early and late HPV-16 mRNAs, is regulated, and how it 
contributes to the ability of HPV-16 to immortalize human cells.   
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Introduction to papers 

paper I 

Suppression of HPV-16 late L1 5’-splice site SD3632 by binding of hnRNP D 
proteins and hnRNP A2/B1 to upstream AUAGUA RNA motifs. 

HPV-16 5’-splice site SD3632 is the only 5’-splice site used to produce late L1 
mRNAs. This splice site is suppressed in proliferating cells, including cervical 
cancer cells, thereby, preventing L1 production and contributing the ability of 
HPV-16 to hide from the immune system and estabish persistence. Studies on the 
regulation of this splice site would further our understanding of HPV-16 gene 
expression and the establishment of persistence and progression to cancer.  

In order to identify cis-acting RNA elements that regulate SD3632, subgenomic 
HPV-16 plasmids that contain the strong viral CMV promoter and the CAT/sLuc 
reporter gene as a surrogate marker for L1 expression were constructed. We found 
that the 232 nucleotides immediately upstream of SD3632 inhibited production of 
spliced L1 mRNA. Next, we inactivated SD3632 by using a site-directed, ligase-
independent mutagenesis (SLIM) method, and found that SD3632 is suboptimal 
and subject to negative regulation. Deletions revealed that the splicing inhibitory 
elements were located in the 34 nucleotides immediately upstream of HPV-16 late 
5’-splice site SD3632. We found two HPV-16 specific AUAGUA motifs that are 
located in these 34 nucleotides inhibited SD3632 and two nucleotide substitutions 
in each of the AUAGUA motifs alleviated splicing inhibition and induced late L1 
mRNA production from episomal forms of the HPV-16 genome in primary human 
keratinocytes.  

We identified cellular proteins that bind specifically to the AUAGUA motifs in the 
inhibitory RNA element by RNA affinity purification assay. These cellular 
proteins are hnRNP D proteins (p37, p40, p42, and p45), hnRNP DL and hnRNP 
AB, as well as hnRNP A2/B1. We found that siRNA knock-down of these 
proteins induced HPV-16 late L1 mRNA expression, and overexpression of 
hnRNP A2/B1, hnRNP AB, hnRNP DL and the two hnRNP D isoforms hnRNP 
D37 and hnRNP D40 further suppressed L1 mRNA expression. In conclusion, we 
have identified a splicing inhibitory RNA element that suppresses HPV-16 late 5’-
splice site SD3632 and identified the cellular factors that interact with this 
inhibitor.  



26 

paper II 

Eight nucleotide substitutions inhibit splicing to HPV-16 3'-splice site SA3358 
and reduce the efficiency by which HPV-16 increases the life span of primary 

human keratinocytes. 

HPV-16 3’-splice site SA3358 is the most commonly used 3’-splice site producing 
the mRNAs encoding early genes E4, E5, E6 and E7, and late genes L1 and L2. 
Previously we have showed that SA3358 is suboptimal and is strictly controlled by 
a downstream splicing enhancer containing 15 clusters of potential ASF/SF2 
binding sites.  

In this paper we used subgenomic HPV-16 plasmids that contain the 
CAT/Luc/sLuc reporter genes as markers for L1 expression to better map and 
characterize this splicing enhancer. We found that only one of the predicted 
ASF/SF2 sites accounts for the majority of the enhancer activity. This ASF/SF2 
binding site consists of 8 nucleotides. Mutations inactivated the splicing enhancer 
at SA3358, thereby redirectly to an induction of L1 mRNA expression from these 
plasmids.  

Further mutagenesis revealed that single nucleotide substitutions in this predicted 
ASF/SF2 site impaired the enhancer function. We provide evidence that HPV-16 
mRNAs that are spliced to SA3358 interact with ASF/SF2 in vitro and in living 
cells by in vitro RNA pull-downs, and in vivo UV cross-linking, followed by 
immunoprecipitation and RT-PCR. In addition, mutational inactivation of the 
enhancer weakened splicing to SA3358 in episomal forms of the HPV-16 genome 
leading to induction of HPV-16 late gene expression.  

Furthermore, inactivation of the splicing enhancer at SA3358 reduced the ability 
of E6- and E7-encoding HPV-16 plasmids to increase the life span of primary 
keratinocytes in vitro. We concluded that efficient usage of HPV-16 3’-splice site 
SA3358 was dependent on one ASF/SF2 binding site and that an intact splicing 
enhancer of SA3358 is required for efficient production of the E6 and E7 mRNAs.  

paper III  

hnRNP G/RBMX inhibits splicing to the HPV-16 3’-splice site SA3358 

This is a continuation of the project on the enhancer element at HPV-16 3’-splice 
site SA3358. Splice site SA3358 is totally dependent on a splicing enhancer 
downstream of SA3358. Here we have investigated if there are other cellular 
factors binding to the enhancer, in addition to ASF/SF2. We first incubated biotin-
labelled enhancer RNA sequences with HeLa nuclear extract, followed by a pull 
down of the RNA-protein complexes with streptavidin beads. After SDS-PAGE, 
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silver staining, and mass spectrometry analysis, we found that one of the hnRNP 
proteins hnRNP G (also known as RBMX) binds to this enhancer. These results 
were confirmed by Western blot assay.  

hnRNP G is a RNA-binding protein and a tumor suppressor in human oral 
squamous cell carcinomas (HOSCC) (282, 284). To determine if hnRNP G affects 
HPV-16 late gene expression, we cotranfected the cDNA plasmid encoding 
hnRNP G protein with HPV-16 subgenomic plasmids containing sLuc/Luc 
reporter genes in place of HPV-16 L1. We found that overexpression of hnRNP G 
inhibited HPV-16 SA3358, presumably by interfering with the downstream 
enhancer, thereby redirecting splicing to late L1 3’-splice site SA5639. In contrast, 
hnRNP G had little effect on SA3358 when the downstream enhancer had been 
mutated. RT-PCR and q-PCR of the RNAs extracted from the transfected cells 
suggested that hnRNP G induced late HPV-16 L1i mRNAs by negatively 
interfering with the eight-nucleotide splicing enhancer element downstream of 
HPV-16 SA3358.  

We also performed siRNA knock-down of hnRNP G in a cell line that contains 
HPV-16 subgenomic expression plasmid pBELsluc integrated in the genome 
(177). The results showed that knock-down of hnRNP G decreased the expression 
level of sluc. This is the first report on the role of hnRNP G in the regulation of 
HPV-16 pre-mRNA splicing. Our results suggest that the hnRNP G protein plays 
an important role in the HPV-16 gene expression program. 
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Overall conclusions 

I. HPV-16 late 5’-splice site SD3632 project. 

1) A splicing silencer inhibits HPV-16 late 5’-splice site SD3632.  

2) The splicing silencer located immediately upstream of HPV-16 SD3632 is 
34-nucleotide long and contains two AUAGUA motifs. 

3) Two AUAGUA motifs are required for inhibition of SD3632.  

4) Cellular proteins hnRNP A2/B1, hnRNP DL, hnRNP AB, and hnRNP D 
isoform p37 and p40 specifically interact with the AUAGUA motifs and 
inhibit splicing at SD3632. 

II. HPV-16 3’-splice site SA3358 project. 

1) One ASF/SF2 binding site consisting of eight-nucleotide accounts for the 
majority of the activity of the splicing enhancer downstream of HPV-16 
SA3358. 

2) Cellular protein ASF/SF2 and hnRNP G specifically bind to eight-
nucleotide sequence and have opposite effects on splicing at HPV-16 3’-
splice site SA3358: ASF/SF2 enhances splicing to splice site SA3358, 
whereas hnRNP G inhibits splicing to SA3358. 

3) Mutational inactivation of the single ASF/SF2 site reduces HPV-16 E6/E7 
oncogene expression and the ability of HPV-16 to immortalize human 
keratinocyte in vitro. 
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Concluding Remarks and Future 
perspectives 

More than 99% of cervical cancers are attributable to HPV and HPV-16 accounts 
for about half of the cases. Expression of the immunogenic viral proteins L1 and 
L2 is inhibited to allow the virus to hide from immune system. One of the 
mechanisms is to strictly regulate HPV-16 gene expression at the level of viral 
RNA processing during the infection (Fig. 8). Cis-acting RNA elements and Trans-
acting splicing factors regulate HPV-16 splice sites SA3358 and SD3632 two vital 
splice sites controlling HPV-16 late gene expression (Fig. 9).  

In this thesis, we identified two exonic splicing elements: 34-nucleotide inhibitor 
and an eight-nucleotide enhancer that regulate HPV-16 SD3632 and SA3358 (Fig. 
9), respectively. The 34-nucleotide exonic splicing inhibitor efficiently blocks the 
usage of SD3632 to prevent the expression of late gene L1, whereas the eight-
nucleotide enhancer stimulates the usage of SA3358, thereby further blocking late 
gene expression. It has been reported that mutations in exonic splicing elements 
might cause human genetic diseases that are linked to splicing defects (28). An 
increasing number of human genetic diseases are linked to point mutations that 
cause splicing defects, and many of these mutations are located within exons (28). 
Nucleotide substitutions in splicing inhibitor or enhancer elements induce high 
levels of HPV-16 L1 expression. These findings gain a deeper understanding of the 
regulation of HPV-16 late gene expression. 

Cellular hnRNP D and hnRNP A2/B1 proteins were found to interact with the 
exonic inhibitor elements and downregulate HPV-16 L1 expression (Fig. 9). 
hnRNP D proteins and hnRNP A2/B1 are highly expressed in cervical cancer 
cells and no or little expression is seen in normal, terminally differentiated cells 
(www.proteinatlas.org). Although hnRNP D proteins have been reported that 
have various effects on gene expression (16, 190), there are no investigations on 
hnRNP D proteins and HPV-16 in cervical cancer. It would be interesting to 
determine the role of hnRNP D proteins and hnRNP A2/B1 in the HPV-16 life 
cycle. We also identified cellular protein ASF/SF2 and hnRNP G that interact 
with eight-nucleotide splicing enhancer. ASF/SF2 is a proto-oncogene that shows 
increased expression levels in high-grade cervical lesions (213) and hnRNP G is a 
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Figure 9. HPV-16 splice sites are controlled by multiple cellular proteins. Position of splicing 
enhancer element at 3’-splice site SA3358 (purple) and splicing silencer element (green) at 5’-splice 
site SD3632 are indicated. Arrows show the effect of the viral regulatory RNA elements and cellular 
trans-acting factors on different HPV-16 splice sites. 

tumor suppressor protein, of which expression level was dramatically decreased 
in premalignant and malignant oral epithelial tissues (282, 284). Ongoing work 
on this project is to characterize the role of these proteins in the HPV-16 life 
cycle. It will enhance our understanding of how the functions of these splicing 
factors are altered in cervical cancer. The results undoubtedly will contribute 
insights into the mechanisms of HPV-16 gene expression. 

Cytology is a screening method that has contributed to a significant reduction of 
cervical cancer, yet false-positive results are common (54). Biomarker is could 
enhance sensitivity and specifictiy. The hnRNP D proteins, hnRNP A2/B1, 
ASF/SF2, and hnRNP G proteins investigated in the thesis could potentially be 
used as biomarkers for detection of lesions that have a high risk of development 
to cervical cancer. 
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论文摘要（In Chinese） 

人类乳突病毒引起的癌症占由病毒引起癌症总数的百分之五十，其中高危型
人类乳突病毒十六型病毒是导致癌症的最危险的病毒类型，百分之五十的宫
颈癌都可以检测到人类乳突病毒十六型病毒。 高危人类乳突病毒十六型病
毒是一种嗜上皮性病毒，它的基因表达与被感染细胞的分裂和分化有密切关
系。人类乳突病毒十六型病毒早期基因在表皮细胞的基底层表达，而编码具
有高度免疫原性的病毒结构蛋白的两个晚期基因只在表皮细胞的上层表达。
大多数人类乳突病毒感染可在短期内消失，机体通过自身免疫系统使病毒逐
渐清除，感染一般持续十八到二十四个月左右。但如果细胞持续感染高危型
人类乳突病毒十六型病毒可引起宫颈癌变。在被人类乳突病毒十六型病毒感
染的癌细胞中，只有早期基因表达，晚期基因被完全抑制，不能表达。我们
推测病毒潜伏感染和细胞癌变需要抑制人类乳突病毒十六型病毒的晚期基因
表达。 

人类乳突病毒十六型病毒利用选择性剪接来调控早期和晚期基因的表达。同
时，病毒调控因子和细胞调控因子也参与控制病毒蛋白的表达。我们的研究
项目是为了增强在核糖核酸调控水平上，对人类乳突病毒十六型病毒高危型
病毒的基因表达调控的了解。本论文的目的是鉴别调控人类乳突病毒十六型
病毒早期和晚期信使核糖核酸表达的病毒核糖核酸调控因子，和结合在该核
糖核酸调控因子上的，共同调控病毒基因表达的细胞调控因子。这些研究结
果可能为宫颈癌早期诊断和预测患病危险度的生物标记物的鉴定提供重要依
据。 

我们鉴定出一个在有丝分裂细胞和宫颈癌细胞中，抑制人类乳突病毒十六型

病毒晚期基因表达的外显子剪切抑制因子。并鉴定和分析了与这个抑制因子

结合的四种细胞质蛋白（人异质性胞核核糖核蛋白 D, DL, AB, 和 A2/B1) ，

他们互相结合并共同调控人类乳突病毒十六型病毒晚期基因的表达。我们还

鉴定和分析了一个上调人类乳突病毒十六型病毒早期基因表达的外显子剪切

增强因子，该因子因此可以间接的抑制人类乳突病毒十六型病毒晚期基因的

表达。突变的增强因子与细胞质剪切调控蛋白可变剪接因子一/剪切因子二

结合的能力明显减弱，从而抑制了人类乳突病毒十六型病毒 病毒癌基因早

期基因六和早期基因七的表达，影响了早期基因六和早期基因七对细胞生长

周期的调控，降低了人类乳突病毒十六型病毒使细胞永生化和恶变的能力。 

因此，确定人类乳突病毒十六型病毒信使核糖核酸的剪接和调控与其致病机

制有较高的相关性。 
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