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Objective:To locate components and target proteins of relevance for the cAMP and cGMP
signaling networks including cAMP and cGMP phosphodiesterases (PDEs), salt-inducible
kinases (SIKs), subunits of Na+, K+-ATPases, and aquaporins (AQPs) in the human saccule.
Methods:The human saccule was dissected out during the removal of vestibular schwan-
noma via the translabyrinthine approach and immediately fixed. Immunohistochemistry
was performed using PDE, SIK, Na+, K+-ATPase, and AQP antibodies. Results: PDEs selec-
tive for cAMP (PDE4A, PDE4D, and PDE8A) and cGMP (PDE9A) as well a dual specificity
PDE (PDE10A) were detected in the sensory epithelium of the saccule. Furthermore, AQP2,
4, and 9, SIK1 and the α-1 subunit of the Na+, K+-ATPase were detected. Conclusion:

cAMP and cGMP are important regulators of ion and water homeostasis in the inner ear.
The identification of PDEs and SIK1 in the vestibular system offers new treatment targets
for endolymphatic hydrops. Exactly how the PDEs are connected to SIK1 and the SIK1
substrate Na+, K+-ATPase and to AQPs 2, 4, 9 remains to be elucidated.The dissection of
the signaling networks utilizing these components and evaluating their roles will add new
basic knowledge regarding inner ear physiology.

Keywords: saccule, immunohistochemistry, cAMP, cGMP, cyclic nucleotide phosphodiesterase, salt-inducible

kinase, Na, K-ATPase, aquaporin

INTRODUCTION
The membranous labyrinth of the inner ear is a sensory system for
sound, motion, and gravity, consisting of the cochlea, vestibular
system, and the endolymphatic sac. The lumen of the membranous
labyrinth is filled with endolymph, a K+-rich, positively polarized
fluid, whereas the surrounding spaces are filled with perilymph,
with a composition similar to regular extracellular fluid (Andrews,
2004; Thalmann et al., 2006; Lang et al., 2007). Dysregulation of
ion and water homeostasis in the inner ear is believed to result
in endolymphatic hydrops, a condition associated with vertigo
and hearing loss (Semaan et al., 2005). Several studies indicate an
important role for the cAMP second messenger system in the regu-
lation of ion and water homeostasis in the inner ear. For example,
cAMP has been shown to regulate the secretion of K+ into the
endolymph (Wangemann, 2002; Salt and Plontke, 2010) and it has
been suggested that water homeostasis in the inner ear is regulated
in part via the vasopressin–cAMP–aquaporin (AQP)2 water chan-
nel system (Takeda and Taguchi, 2009) in the same fashion as in
the kidney (Lang et al., 2007; Noda et al., 2010). When it comes
to the cGMP signaling system and the regulation of ion and water
homeostasis in the inner ear, less is known. However, roles for
the nitric oxide–cGMP and the atrial natriuretic peptide (ANP)–
cGMP systems have been suggested (Fessenden and Schacht, 1998;

Abbreviations: Abbreviations: AQP, aquaporin; DAPI, 4,6-diamidino-2-
phenylindole; GFAP, glial fibrillary acidic protein; PDE, phosphodiesterase;
SIK, salt-inducible kinase.

Semaan et al., 2005; Borghi et al., 2006). ANP has hypotensive and
hypovolemic effects which are mediated via increases in intracel-
lular cGMP levels (Ahluwalia et al., 2004). Hypotension has been
suggested to play a role in inner ear disorders (Pirodda et al., 1997,
2001) and ANP receptors are expressed in the inner ear (Long
et al., 2010).

By hydrolyzing cAMP and cGMP, cyclic nucleotide phospho-
diesterases (PDEs) regulate a wide variety of biological responses
mediated by these second messenger molecules. Mammalian PDEs
can be sorted into 11 functionally distinct, highly regulated, and
structurally related families (Manganiello et al., 2006; Conti and
Beavo, 2007). These PDE families differ in their primary sequences,
substrate affinities, and catalytic properties, sensitivity to effectors
and inhibitors, responses to regulatory molecules, and cellular
functions. Some PDE families are specific for cAMP hydrolysis
(PDEs 4, 7, 8), others are cGMP-specific (PDEs 5, 6, 9), and some
hydrolyze both cGMP and cAMP (PDEs 1, 2, 3, 10, 11). Most cells
contain representatives of more than one PDE gene family, but
in different amounts, proportions, and subcellular locations. By
virtue of their distinct intrinsic characteristics and their intracel-
lular targeting to different subcellular locations, different PDEs
integrate multiple cellular inputs and modulate the amplitude,
duration, termination, and specificity of cyclic nucleotide signals
and actions (Manganiello et al., 2006; Conti and Beavo, 2007;
Houslay, 2010).

Very little is known about PDEs and how they relate to other
signaling networks and targets in the inner ear. In this study we
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focus on PDEs and some selected potential targets for PDEs in the
human saccule namely AQP water channels, salt-inducible kinases
(SIKs) and Na+, K+-ATPases. AQP water channels are known to
play a crucial role in water homeostasis not only in the kidney but
also in the inner ear (Lopez et al., 2007; Takeda and Taguchi, 2009;
Ishiyama et al., 2010). Na+, K+-ATPases which couple the hydrol-
ysis of ATP to transport of Na+ ions out of and K+ ions into the
cell have previously been shown to be involved in endolymph ion-
exchange processes (Kuijpers and Bonting, 1970). Recently the α

subunit of N+, K+-ATPase was shown to be regulated by SIK1 in
kidney cells (Sjöström et al., 2007; Jaitovich and Bertorello, 2010;
Taub et al., 2010).

The aim of this study is to evaluate the expression pattern of
PDEs and selected potential downstream targets in human saccule.

MATERIALS AND METHODS
TISSUE SAMPLING AND PREPARATIONS
Human saccule was obtained during the removal of vestibular
schwannoma via the translabyrinthine approach. As the specimens
were obtained at surgery no on bloc fixation of bone and inner ear
structures was possible. However, the structures of the vestibulum
could be defined before retrieval. The sample was immediately
fixed in HistoChoice (Amresco) in phosphate buffer saline (PBS)
for 12 h, soaked in 30% sucrose in PBS at 4˚C over night and
then embedded in Tissue Tec OCT Compound (Gene Research
Lab.). Eight micromolar thick sections were cut with a cryostat
and collected on slides (super-frost-plus, Fischer Scientific). Eight

consecutive tissue sections were placed on each glass slide. Tis-
sue sections were stored at −80˚C until use. The procedures were
evaluated by the responsible committee at Lund University on
human experimentation and were in accordance with the Helsinki
Declaration of 1975, as revised in 1983.

IMMUNOHISTOCHEMISTRY
Before being immunohistochemically stained, sections were
thawed and allowed to air-dry for 10 min. Next, a circle sur-
rounding each tissue section was drawn with a hydrophobic pen
(Dako, Denmark). Tissue sections were covered with 5% nor-
mal goat serum diluted in PBS for 1 h (approximately 30 μl
per section). Subsequently, the specimens were exposed overnight
at 4˚C in a humid chamber to antibodies specific for PDE4A,
PDE4D, PDE8A, PDE9A, PDE10A, AQP2, AQP4, AQP9, SIK1,
α-1 subunit of Na+, K+-ATPase, laminin γ 1, pan-laminin,
caveolin-1, and glial fibrillary acidic protein (GFAP). Table 1
provides information regarding the antibodies including source,
cat#, immunogen, and positive/negative controls. All antibod-
ies were diluted 1:75 in 5% normal goat serum (Invitrogen). At
the end of the incubations, the tissue sections were rinsed in
PBS (3 × 15 min). Secondary goat anti rabbit antibodies (labeled
with Alexa 555) or goat anti mouse antibodies (labeled with
Alexa 488; Invitrogen, diluted 1:200), were applied to the tissue
sections and incubated for 2 h at room temperature in the dark.
At the end of the incubation, sections were washed with PBS
and in some experiments 4,6-diamidino-2-phenylindole (DAPI,

Table 1 | Antibodies: source, type, immunogen, positive/negative controls.

Antibody/source/cat #/antibody type Immunogen Positive/negative control

AQP2 (H-40)/Santa Cruz/sc 28629/rabbit

polyclonal

Amino acid 232–291 within the C-terminal

domain of human AQP2

Ref1/omission of the antibody (no reaction)

AQP4 (H-80)/Santa Cruz/sc 20812/rabbit

polyclonal

Amino acid 244–323 within the C-terminal

domain of human AQP4

Refs2,3/omission of the antibody (no reaction)

AQP 9/Abcam/ab84828/rabbit polyclonal A 15 amino acid synthetic peptide from the

N-terminal of human AQP9

Stains AQP9 using immunohistochemistry on

human liver sections (Abcam)/omission of the

antibody (no reaction)

PDE4A, PDE4D, PDE8A, PDE9A,

PDE10A/Scottish Biomedical/rabbit polyclonal

Designed from the C-terminal region from

respective human enzyme

Refs4,5 (PDEs 8A, 9A,10A) and Omar et al. (unpub-

lished) (PDE4A and 4D)/omission of the antibody

(no reaction)

N+/K+ ATPase α-1/Millipore/05-369/mouse

monoclonal

Purified N+, K+-ATPase isolated from membrane

fractions of rat kidney outer medulla

Refs6,7/omission of the antibody (no reaction)

SIK1 (Y-20)/Santa Cruz/sc83754/rabbit polyclonal A peptide within an internal region of human SIK1 Ref8/omission of the antibody (no reaction)

Caveolin-1 (N-20)/Santa Cruz/sc-894/rabbit

polyclonal

A peptide at the N-terminal of human caveolin-1 Refs9,10/omission of the antibody (no reaction)

Laminin γ1/Gift Dr. Sorokin/mouse monoclonal Rat glomerular basement membrane membrane Ref11/omission of the antibody (no reaction)

Pan-laminin 1/455/Gift Dr. Sorokin/rabbit

polyclonal

Mouse laminin α1, β1, γ1 Ref12/omission of the antibody (no reaction)

Glial fibrillary acidic

protein/Sigma-Aldrich/G3893/mouse monoclonal

Purified GFAP from pig spinal cord Ref13/omission of the antibody (no reaction)

1Maekawa et al., 2010 (human endolymphatic sac); 2Ishiyama et al., 2009 (human utricle); 3Kakigi et al., 2009 (human endolymphatic sac); 4Heimann et al., 2010

(human pancreatic islets); 5Omar et al., accepted for publication (human adipose tissue); 6Kobayashi et al., 2009 (rat erythrocytes); 7Yang et al., 2011 (mouse cochlea,

stria vascularis capillaries); 8Yoon et al., 2009 (mouse liver); 9Nilsson et al., 2006 (rat adipocytes); 10Noël et al., 2009 (rat astrocytes); 11Sanes et al., 1990 (muscle fiber,

nerve trunk, kidney, blood vessels from rat, rabbit, guinea pig and human); 12Ishiyama et al., 2010 (human utricle); 13Agrawal et al., 2006 (mouse brain).
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Invitrogen) was added for 10 min to visualize all cell nuclei. At
the end of the incubation, the sections were washed in PBS
and mounted with Vectashield (Vector Laboratories). Sections
were observed using a camera-equipped fluorescence microscope.
Images were obtained using a Zeiss Axiophot 2 microscope
and a Hamamatsu C4742-95 camera with OpenLab 5 software
(Improvision) for image processing. The quality of the microdis-
sected saccule was determined by staining with hematoxylin and
eosin. For all staining, several sections from three saccules were
analyzed.

RESULTS
To map the expression pattern of PDEs and other signaling com-
ponents and targets of relevance for the cAMP and cGMP signaling
networks and for the regulation of water and ion homeostasis, an
immunohistochemistry approach was used.

Figure 1A shows hematoxylin and eosin staining of a repre-
sentative section of human saccule. The sensory epithelium with
nuclei at several layers, non-sensory epithelium, otoconia, the
endolymph compartment, as well as the stroma, with cells, can be
seen. Glial fibrillary acidic protein (GFAP) antibodies were used
to stain supporting cells in the sensory epithelium (Figures 1B–D;
Lopez et al., 2007). Figure 1B is an overview showing the sensory
epithelium and the non-sensory epithelium. Figures 1C,D show
supporting cells as well as hair cells.

As shown by representative photographs (Figures 2A–J), the
sensory epithelium of the saccule expresses PDEs specific for
cAMP (PDE4A, PDE4D, and PDE8A), for cGMP (PDE9A), and
a dual specificity enzyme (PDE10A). The immunoreactivity to
PDE10A was mainly found in the apical part of the epithelium

FIGURE 1 | Hematoxylin and eosin and GFAP staining of a section from

human saccule. Hematoxylin and eosin staining shows the sensory
epithelium with nuclei at several layers (bar with two arrow heads),
otoconia (vertical bar with one arrow head) and a section of the non
sensory saccule epithelium (horizontal bar with one arrow head) (A). Glial
fibrillary acidic protein (GFAP) staining was used to indicate supporting cells
in the sensory epithelium (B–D). Merged photos of GFAP and DAPI, to
stain nuclei (B,D). Supporting cells (sc), hair cells (hc) (non stained) and
sensory epithelium (bar with two mμ arrow heads) are indicated (C,D).
Lumen (lu), stroma (st). Bars 20 M (C,D). μM (B), 15 μ (A), 40.

(Figures 2I,J). As is shown in Figures 2A,B, no significant stain-
ing in the non-sensory epithelium was obtained for PDE4A.
This was also the case for the other PDEs investigated (data
not shown).

The water channel AQP2 is known to be regulated by vaso-
pressin in a cAMP-dependent manner (Takeda and Taguchi, 2009)
as has been investigated in detail in kidney cells (Lang et al., 2007).
Immunoreactivity to AQP2 is expressed in the sensory epithelium
of the human saccule as well as in stromal cells (Figures 3A,C)
but not in the non-sensory epithelium (data not shown). The
expression of AQP4 and AQP9, two other AQPs known to be
regulated in cAMP- and cGMP-dependent manners, were then
investigated. Immunoreactivity to AQP4 was detected in the baso-
lateral part of the sensory epithelium (Figures 3D–F) as well as
in non-sensory epithelium (data not shown). Basolateral location
of AQP4 was confirmed by co-expression with laminin 1, a basal
membrane protein (Figures 3G,H). In previous studies AQP4 has
been shown to co-stain with flotillin-1 in brain astrocytes, indicat-
ing raft location of AQP4 (Noël et al., 2009). We found no staining
for flotillin-1 (unpublished observation) in human saccule sensory
epithelium, however, immunoreactivity of another raft marker,
caveolin-1, was detected in the sensory epithelium (Figure 3B) but
not in the non-sensory epithelium (data not shown). Immunore-
activity to AQP9 was detected partially in the basolateral part of
the epithelium as indicated by co-stained with laminin 1. AQP9
immunoreactivity was not seen in the non-sensory epithelium
(Figures 3I,J).

The expression of SIK1, another cAMP-regulated target of
relevance for ion and water homeostasis, was investigated.
Immunoreactivity to SIK1 was detected in the sensory epithe-
lium (Figures 4A,B). SIK1 has been shown to regulate the activity
of Na+, K+-ATPase in kidney cells (Jaitovich and Bertorello,
2010; Taub et al., 2010), and AQP4 has been shown to asso-
ciate with a Na+, K+-ATPase (Illarionova et al., 2010). The α-1
subunit of the Na+, K+-ATPase was expressed in the human sac-
cule epithelium and immunostaining was partially localized to the
basolateral part of the cells as shown by co-staining with laminin 1
(Figures 5A–C).

Figure 6 shows a schematic view of the possible interrelation of
signaling components and targets studied in this work. Included
in the figure is also cAMP-dependent protein kinase (PKA) and
cGMP-dependent protein kinase (PKG), the major mediators of
cAMP and cGMP effects, respectively. PDEs with the function to
specifically catalyze the hydrolysis of cAMP and cGMP in response
to signaling inputs, such as vasopressin, catecholamines, atrio
natriuretic peptide, and nitric oxide may be important in the reg-
ulation of water and ion homeostasis in the inner ear by having
impact on SIK1 and the SIK1 substrate Na+, K+-ATPase as well as
on a number of AQPs. The presence of these signaling networks
in the inner ear needs to be verified and studied at the functional
level.

DISCUSSION
cAMP and cGMP have important roles in the regulation of water
and ion homeostasis in the inner ear (Fessenden and Schacht, 1998;
Wangemann, 2002; Semaan et al., 2005; Salt and Plontke, 2010).
Regulation of the cyclic nucleotides occurs at the level of synthesis
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by adenylate and guanylate cyclases as well as at the level of degra-
dation by PDEs. PDEs have been studied in many different cell
types and these have been shown to express different members of
the 11 PDE families (Manganiello et al., 2006; Conti and Beavo,

2007). Here we show for the first time that PDE proteins are
expressed in the inner ear. More specifically, we demonstrate the
expression of PDEs selective for cAMP (PDE4A, PDE4D, PDE8A)
and for cGMP (PDE9A) as well as of a PDE hydrolyzing both

FIGURE 2 | Immunostaining of phosphodiesterases (red) in human

saccules. Merged photos of PDE4A, laminin (green), and DAPI [blue (A)],
merged photos of PDE4A and DAPI (B), PDE4D (C), merged photos of
PDE4D and DAPI (D),PDE8A (E), merged photos of PDE8A and DAPI (F),

PDE9A (G), merged photos of PDE9A and DAPI (H), PDE10A (I), merged
photos of PDE10A, laminin (green), and DAPI (J). Sensory epithelium (bar
with two arrowheads), transition to non-sensory epithelium (vertical bar with
one arrow head), lumen (lu), stroma (st). Bars 30 μm (A,B), 20 μm (C–J).

FIGURE 3 | Immunostaining of aquaporins (red). AQP2 (A), merged
photos of AQP2 and DAPI [blue (C)], Caveolin-1 [red (B)], AQP4 (D,E),
merged photos of AQP4 and DAPI (F), merged photos of AQP4
and laminin [green (G)], laminin [green (H)], merged photos of AQP9,
laminin and DAPI (I) and merged photos of AQP9 and laminin (J).

Lumen (lu), bm [basal membrane (G–J)], stroma (st), sensory
epithelium (bar with two arrow heads), stromal cell (A,C, bar with one
arrow head), transition to non sensory epithelium (I,J, bar with one
arrow head). Bars 15 μm (A,C), 12.5 μm (B), 25 μm (D), 15 μm (E–H),
20 μm (I,J).
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cAMP and cGMP (PDE10A) in the sensory epithelium of human
saccule. These enzymes could have a number of physiological roles
when it comes to the regulation of cAMP- and cGMP-mediated
processes in the saccule related to water and ion homeostasis.
For example, PDE4 has been shown to have an important role
in the regulation of vasopressin-induced translocation of AQP2
to the plasma membrane in cultured kidney cells (Stefan et al.,
2007). In our study, AQP2 was detected in the human saccule
together with two PDE4 members. Thus, it is possible that PDE4A
and PDE4D control a cAMP pool involved in the regulation of
AQP2 translocation. Functional studies indeed indicate an impor-
tant role for AQP2 in the inner ear (Takeda et al., 2010), as
is the case in the kidney. For example, it has been shown that
expression of AQP2 is up-regulated in the cochlea and endolym-
phatic sac by the systemic application of vasopressin whereas it
is down-regulated by systemic and local application of a vaso-
pressin receptor 2 antagonist (OPC-31260; Takeda et al., 2010).
The observation of high plasma vasopressin levels in Meniere’s
disease suggests that components in the vasopressin–cAMP–AQP2
system, including cAMP PDEs, are promising targets for the devel-
opment of therapies for diseases characterized by vertigo and
hearing loss. However, although the vasopressin–cAMP–AQP2
system is believed to be important for water homeostasis in
the inner ear, exactly what the role is for this system in the
human saccule is not known and needs further investigation. β-
adrenergic receptors are known to mediate effects via the cAMP
system. K+ secretion in vestibular dark cells and chloride secre-
tion by semicircular canal duct epithelium have been shown to
be mediated via β-1 and β-2 adrenergic receptors, respectively

FIGURE 4 | Immunostaining of salt-inducible kinase (SIK) 1. SIK1 [(A)

red], merged photos of SIK1 and DAPI [blue (B)]. Lumen (lu), stroma (st),
sensory epithelium (bar with two arrowheads). Bars 25 μm (A,B).

(Wangemann et al., 1999; Milhaud et al., 2002). Exactly which
PDEs are connected to the β-adrenergic systems in the inner ear is
not yet know.

Two cGMP-degrading PDEs,PDE9A,and PDE10A,were shown
to be expressed in the epithelium of human saccule. When it
comes to the cGMP signaling system and the regulation of ion
and water homeostasis in the inner ear much less is known as
compared to the cAMP system. However, the cGMP-increasing
hormone atrial natriuretic peptide has been suggested to regu-
late inner ear functions via the atrial natriuretic peptide recep-
tor (Long et al., 2010), which is a membrane bound guanylate
cyclase. Also, stimuli activating cGMP-dependent protein kinase

FIGURE 6 | Hypothesis regarding how selected signaling components

may interrelate in the inner ear to control ion and water homeostasis.

PDEs and potential downstream targets of cAMP and cGMP signaling
networks involving cAMP and cGMP activated kinases (PKA and PKG, not
studied in ths work), SIK1, the α-1 subunit of Na+, K+-ATPase, and AQPs in
the human saccule sensory epithelium are schematically represented. The
presence of these signaling networks in the inner ear needs to be verified
and studied at the functional level.

FIGURE 5 | Immunostaning of the α-1 subunit of the N+, K+-ATPase. Merged photos of N+, K+-ATPase and DAPI (A), merged photos of N+, K+-ATPase and
laminin (B) and laminin (C). Lumen (lu), stroma (st), basal membrane (bm), non-sensory epithelium [bar with one arrowhead (A)]. Bars 25 μm (A), 32.5 μm (B,C).
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has been shown to cause translocation of AQP2 to the plasma
membrane in kidney epithelial cells (Bouley et al., 2000, 2005).
Furthermore, cGMP production is tightly linked to the nitric
oxide system, the soluble form of guanylate cyclase being acti-
vated by nitric oxide (Semaan et al., 2005). Excess nitric oxide
production is believed to mediate ototoxicity induced by cisplatin
and aminoglycosides by stimulating the production of reactive
oxygen species (Semaan et al., 2005; Hong et al., 2006; Rybak
et al., 2009). In addition, nitric oxide has been implicated in
mediating ototoxic effects associated with endolymphatic hydrops;
surgical induction of endolymphatic hydrops results in the upreg-
ulation of nitric oxide synthase II in cochlear and vestibular cells
(Semaan et al., 2005). Exactly what the role is for nitric oxide-
mediated induction of cGMP, or cGMP produced by soluble
guanylate cyclases in response to other signals in the inner ear is not
known. Thus, the role for PDE9A and PDE10A in cGMP-related
processes needs further investigation. With regard to another
cGMP-degrading PDE, PDE5 (a cGMP-specific enzyme), ver-
tigo, and sudden hearing loss have been observed in patients
treated with PDE5 inhibitors for erectile dysfunction (Maddox
et al., 2009). We were not able to detect PDE5 in human saccule
(unpublished observation).

In this work, in addition to AQP2 as was discussed above, sev-
eral other potential downstream targets of the cAMP–cGMP–PDE
signaling networks were detected in the sensory epithelium of
the saccule, such as AQP4 and AQP9 (Yamamoto et al., 2002;
Zelenina, 2010). For example, vasopressin has been shown to
activate water permeability of AQP4 in renal epithelial cells via
vasopressin type 2 receptors linked to cAMP production (Zelen-
ina, 2010), and cAMP has been shown to increase AQP4 pro-
duction in astrocytes (Nicchia et al., 2008). Co-localization of
AQP4 and laminin γ 1 noted in this study is in agreement with
co-localization of AQP4 and α-dystroglycan, a laminin recep-
tor, in vestibular supporting cells in humans (Lopez et al., 2007;
Ishiyama et al., 2009). AQP4 appears to have an important role
in the regulation of water homeostasis in the brain, by trans-
porting water at blood–brain and ependymal–cerebrospinal bar-
riers (Zador et al., 2009). A similar role has been suggested
in the inner ear when it comes to water transport in-between
blood, endolymph, and perilymph compartments. Furthermore,
decreased expression of AQP4 in the macula utriculi of patients
with Meniere’s disease has been reported (Ishiyama et al., 2010).
The expression of AQP9 in astrocytes has been shown to be
up-regulated by activation of cAMP-dependent protein kinase
(Yamamoto et al., 2002). We found that AQP9 was partly local-
ized to the basolateral part of the sensory epithelium as shown
by co-staining with laminin 1. On the other hand, Huang
et al. (2002) detected AQP9 mainly at the surface of the sen-
sory epithelium of mouse saccule, indicating a species differ-
ence. The importance for AQP4 and AQP9 as targets for cyclic
nucleotide signaling in the vestibular systems remains to be
established.

The detection of two other cAMP-regulated signaling compo-
nent, SIK1, and the α-1 subunit of Na+, K+-ATPase, in human
saccule sensory epithelium is interesting (Okamoto et al., 2004;

Taub et al., 2004, 2010; Matlhagela et al., 2005; Jaitovich and
Bertorello, 2010). In the kidney, SIK1 is believed to be an important
regulator of Na+, K+-ATPase, a critical target for natriuretic and
anti-natriuretic factors in the renal proximal tubule. The expres-
sion pattern of α- and β-subunits of the Na+, K+-ATPase has
previously been studied in the developing vestibular system in
mice (Peters et al., 2001). With regard to the α-1 subunit of Na+,
K+-ATPase, Peters et al. (2001) primarily found immunostain-
ing in transitional cells and dark cells which is in contrast to
our results showing high expression also in the sensory epithe-
lium in human saccule which could indicate species differences.
Interestingly, AQP4 has been shown to interact with Na+, K+-
ATPase in astrocytes (Illarionova et al., 2010). Whether there is a
SIK1-Na+, K+-ATPase–AQP4 connection in the inner ear and
in the human saccule is not known and needs to be further
evaluated.

In summary (Figure 6), several PDEs and potential down-
stream targets of cAMP and cGMP signaling networks such as
AQPs 2, 4, 9, SIK1, and the α-1 subunit of Na+, K+-ATPase were
detected in human saccule sensory epithelium. To our knowl-
edge PDEs and SIK1 are new actors in the vestibular system and
the importance of these proteins in signaling networks regulat-
ing AQPs, Na+, K+-ATPases, and other components of relevance
for water and ion homeostasis remains to be established. It is
also important to verify the findings using other techniques than
immunohistochemistry since there is a potential for non specific
staining. Regarding the potential role in water and ion home-
ostasis for the components studied, this can be discussed in the
context of radial flow of endolymph. A number of studies chal-
lenge the largely accepted longitudinal flow theory which suggests
that endolymph is produced in the cochlear duct and flows in
an unidirectional pattern toward the endolymphatic sac, where
resorption occurs (Guild, 1927). The radial flow theory postu-
lates that endolymph is produced and absorbed throughout the
endolymphatic space. For example, using ionic markers Salt and
Ma (2001) provided evidence that control of endolymph home-
ostasis is distributed throughout the endolymphatic space. In
addition, a study using microscale analysis of proteins in the inner
ear tissues and fluids with emphasis on the endolymphatic sac,
otoconia, and organ of corti support the existence of marked
regional differences in the mode and rate of endolymph protein
regulation implicating the role of various locally acting molecules
and ion channels in endolymph homeostasis (Thalmann et al,
2006).
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