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and MDA-5 Stimulation in Nasal Epithelial Cells
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1 Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden, 2 Department of Otorhinolaryngology,

Skane University Hospital, Lund University, Malmé, Sweden

Abstract

Background: The human nasal epithelium is an important physical barrier, and a part of the innate immune defense that
protect against pathogens. The epithelial cells recognize microbial components by pattern-recognition receptors (PRRs),
and thereby trigger an immune response. Even though TLR3, TLR7, TLR9, RIG-I and MDA-5 are all known to respond to viral
stimulation, their potential role in chronic airway inflammation triggered by local cytokine release remains to be established.

Methods: mRNA and corresponding protein expression of TLR3, TLR7, TLR9, RIG-l and MDA-5 were analyzed in nasal
biopsies and various upper airway epithelial cell lines using real-time reverse transcription PCR, immunohistochemistry and
flow cytometry. Ligand induced, cytokine release, was evaluated with ELISA.

Results: Nasal biopsies were found to express TLR3, TLR7, TLR9, RIG-I and MDA-5, with the most abundant expression in the
surface epithelium. These receptors were verified in primary human nasal epithelial cell (HNEC) as well as in the airway
epithelial cell lines Detroit-562 and FaDu. Poly(l:C) (TLR3) and R-837 (TLR7) stimulation increased secretion of IL-6 and GM-
CSF from the nasal mucosa and the epithelial cell lines. CpG (TLR9) stimulation caused release of IL-8 in the nasal mucosa
and in FaDu. Poly(l:C)/LyoVec (RIG-I/MDA-5) stimulation activated the secretion of IFN-B in the nasal mucosa. A
corresponding release was also detected from HNEC and Detroit-562.

Conclusion: The nasal epithelium has the ability to recognize viral intrusion through TLR and RLR receptors, and the
subsequent response might have a role in exacerbation of inflammatory diseases like allergic rhinitis and chronic

rhinosinusitis.
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Introduction

The airway epithelium provides protection against pathogens
[1,2]. In addition to its barrier function, it is a major source of
cytokines, chemokines, and other inflammatory mediators that
affects both the adaptive and innate immune responses. Epithelial
cells recognize conserved molecular motifs of microbial origin
called pathogen-associated molecular patterns (PAMPs) by use of
different pattern-recognition receptors (PRRs) [3]. PRRs, includ-
ing Toll-like receptors (TLRs), nucleotide-binding oligomerization
domain-like receptors (NLRs) and the recently discovered retinoic
acid-inducible gene 1 (RIG-I)-like receptors (RLRs), are all known
to play important roles in pathogen recognition, cell activation and
regulation of immune responses [3,4,5]. Despite the protective
function of PRRs against infections, accumulating evidence
suggests a role for these receptors in the pathogenesis of various
inflammatory diseases.

Mammals express at least 10 different TLRs that recognize
components of bacteria and viruses, and they have been identified
in several tissues and cells within the human airway [6,7] The
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virus-recognizing TLRs, namely TLR3, TLR7, TLR8 and TLRY,
respond to double-stranded (ds) RNA, single-stranded (ss) RNA
and CpG-DNA, respectively [8,9,10]. The most recently discov-
ered PRR members are the RLRs, comprising three homologues:
RIG-I, melanoma differentiation-associated gene 5 (MDA-5), and
laboratory of genetics and physiology 2 (LGP-2) [11]. RIG-I and
MDA-5 detect RNA from replicating viruses in infected cells,
which leads to the induction of type I interferons (IFNs) through
the activation of the IFN regulating factor 3, and the production of
proinflammatory cytokines by the activation of the nuclear factor
(NT)-kB signaling pathway [12]. It has recently been shown that
RIG-I is responsible for sensing viral RNA bearing triphosphate,
while MDA-5 functions as a dsRNA sensor [13].

TLRs play important roles in host defense, but also contribute
to the pathogenesis of specific diseases. Evidence suggests that
there are intrinsic or locally induced deficiencies in epithelial
barrier function of the nasal mucosa in patients with allergic
rhinitis, due to persistent inflammation [14]. This inflammation is
characterized by increased release of cytokine such as GM-CSF,
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infiltration of inflammatory cells and up-regulation of intercellular
adhesion molecule-1 (ICAM-1) [15]. Defects in the host response
to external pathogens, including viruses, have also been suggested
to underlie the persistence of the inflammatory state [16].
Clinically, respiratory viral infections are also often implicated as
triggers of flare-ups in patients with chronic rhinosinusitis (CRS)
and these infections are also known to damage the function of
human nasal epithelial cells (HNEC) [17,18]. Several studies have
shown abnormalities in the immune responses in patients with
CRS, such as an exaggerated response to TLR3 [19]. dsRNA is
known to bind to TLR3 and stimulate the expression of IL-8 in
airway epithelial cells [20]. However, the role of all virus-
recognizing PRRs on nasal epithelial cells has not yet been
established. The aim of the present study was to characterize the
expression and explore the activation of virus-recognizing PRRs
on nasal epithelial cells as well as their functional response in the
nasal mucosa. To this end, the nasal biopsies, primary human
nasal epithelial cells and two complementary nasopharyngeal
epithelial cells were used.

Materials and Methods

Ethics Statement

The study was approved by the Ethics Committees of
Karolinska Institutet, Stockholm, Sweden. All participants gave
their written informed consent, while all procedures were

conducted according to the principles expressed in the Declaration
of Helsinki.

Sample collection

29 nasal biopsies were obtained from the inferior turbinate of
healthy, non-smoking, volunteers (14 male, 15 female, ages 18—
31). They were all symptom-free, with no history of allergic rhinitis
and a negative skin prick test to the standard panel of allergens,
including pollen, house dust mites, moulds and animal allergens
(ALK Abell6, Horsholm, Denmark). None of the participants in
this study had any history of upper airway infection within 2 weeks
before the time of visit, and they were all free of medication. The
biopsies (approximately 2X2X2 mm in size) were sampled after
topical application of local anesthesia containing lidocaine
hydrochloride: nafazoline (34 mg/ml: 0.17 mg/ml), as previously
described [9].

Isolation of HNECs and cell lines

HNEC were obtained by nasal brushings of 13 healthy, non-
smoking, volunteers (5 males, 8 females, age 26-51) as described
by O’Brien et al. [21]. Cells were maintained in collagen-coated
tissue culture flasks in complete medium containing keratinocyte
serum-free medium (KSFM) (Invitrogen, Paisley, UK) supple-
mented with 0.05 mg/ml bovine pituitary extract, 5 ng/ml
epidermal growth factor, 100 U/ml penicillin and 100 pg/ml
streptomycin (Gibco, NY, USA). In the experiments cells from
passages 2-5 were used and they were all positive for EpCAM (>
90%), an adhesion molecule specific for epithelial cells [22].

Human pharyngeal epithelial cell lines Detroit-562 (CCL-138)
and FaDu (HTB-43) (ATCC, Manassa, USA) was cultured in
complete medium containing minimum essential medium (MEM)
with Earl’s salts and 2 mM L-glutamine (Gibco), supplemented
with 10 % FBS (PAN Biotech, Aidenbach, Germany), 100 U/ml
penicillin and 100 pg/ml streptomycin (Gibco). The medium for
Detroit-562 also contained 1 mM sodium pyruvate (Sigma-
Aldrich, St. Louis, USA), 0.1 mM non-essential amino acids,
50 pg/ml gentamicin and 0.25 pg/ml fungizone (Gibco). All cells
were cultured at 37°C in a humidified 5% CO, air atmosphere.
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RNA extraction and real-time reverse transcription-PCR

The biopsies and the epithelial cells were lysed in RLT buffer
(Qiagen, Hilden, Germany) with 1% 2-mercaptoethanol. Total
RNA was extracted using RNeasy Mini Kit (Qiagen), and the
quantity and quality of the RNA were measured by spectropho-
tometry using the wavelength absorption ratio (260/280 nm).
Reverse transcription of total RNA into ¢cDNA was performed
using the Omniscript reverse transcriptase kit (Qiagen) with
oligo(dT)16 (DNA Technology, Aarhus, Denmark) in a Master-
cycler personal PCR machine (Eppendorf, Hamburg, Germany).
The RNA samples were denatured (65° for 5 min) and chilled (4°
for 5 min). The reaction was carried out at 37°C for 1 h in a final
volume of 20 pl.

Real-time reverse transcription PCR was performed using
Stratagene Brilliant QPCR Mastermix (Agilent Technologies,
Santa Clara, USA) and FAM dye-labelled probes for TLR3
(Hs00152933_ml), TLR7 (Hs00152971_ml), TLR9 (Hs0015
2973_ml), RIG-I (Hs01058986_m1), MDA-5 (Hs00223420_m1)
and PB-actin (Hs99999903_m1) (Applied Biosystems, Foster City,
USA). The thermal cycler was set to perform an initial set-up
(95°C for 10 min) and 45 cycles of denaturation (95°C for 30 s)
followed by annealing/extension (60°C for | min) using a
Stratagene Mx3000P (Agilent Technologies). The mRNA expres-
sion was assessed using the comparative cycle threshold (Ct)
method where the relative amounts of mRNA were determined by
subtracting Ct values of the detected gene with the Ct values of the
housekeeping gene B-actin (ACt). The amount of mRNA is
expressed in relation to 10° B-actinmolecules, as 10°x 2 B [23].

Immunohistochemistry

The immunohistochemical staining was performed on paraffin
embedded sections from 4 nasal biopsies (3 male, 1 female) and
cultured HNEC, Detroit-562 and FaDu. The immunohistochem-
ical staining was performed according to the labelled streptavidin
biotin (LSAB") System-horseradish peroxidase (HRP) kit (Dako,
Copenhagen, Denmark), according to the manufacturer’s instruc-
tions. Briefly, the cultured cells were seeded (300 000 cells/
chamber) on 4-well Lab Tek chamber slides (Nalge Nunc
International, Rochester, NY, USA) and grown to 80-90%
confluence in complete medium. After three washes in PBS, cells
were fixed in 4% formaldehyde. Slides were then rehydrated in
PBS and treated with 0.05% hydrogen peroxide to quench
endogenous peroxidase activity. The nasal biopsy sections were
incubated at 4°C overnight and the epithelial cells at room
temperature (RT) for 1 hour with monoclonal mouse anti-human
Abs against TLR3 (Cat. no. 40C1285.6; AMS Biotechnology,
Abingdon, UK), diluted 1:20, TLR9 (211-MG-1TLRY; Acris
antibodies, Hiddenhausen, Germany), diluted 1:40 and RIG-I
(ab77010; Abcam, Cambridge, UK), diluted 1:20, or polyclonal
rabbit anti-human Abs against TLR7 (ab45371), diluted 1:20, and
MDA-5 (ab69983; Abcam), diluted 1:40. Counterstaining was
performed with Mayer’s haematoxylin. Thereafter, the glass slides
were mounted in Faramount Aqueous Mounting Medium (Dako).
As negative controls, N-series Universal Negative Control
Reagents against mouse and rabbit (Dako) were utilized. Tris-
buffered saline (TBS) (pH 7.6) supplemented with 0.05% Tween
20 (Sigma-Aldrich) was used for all washing steps. The sections
were examined using light microscopy.

FACS analysis

The epithelial cells were analysed on a Coulter Epics XL flow
cytometer (Beckman Coulter, Marseille, France) and gated based
on forward and side scatter properties. Events in the range 20
00040 000 were collected and the data were analysed with the
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expo32 analysis software (Beckman Coulter). To identify intracel-
lular protein expression, the IntraPrep permeabilization reagent
kit (Beckman Coulter) was used according to the manufacturer’s
instructions. Briefly, cells were incubated with Abs for 20 min at
RT, and thereafter washed and resuspended in phosphate-
buffered saline (PBS). The conjugated mouse antibodies TLR3-
FITC (clone 40C1285.6) and TLR9-PE (26C593.2) and rabbit
polyclonal antibody TLR7-FITC was obtained from Imgenex
(San Diego, CA, USA). Unlabeled mouse polyclonal antibodies
against RIG-I (clone not specified; Abcam) were detected with the
Alexa Fluor 488 msIgG2b labeling kit (Invitrogen, Carlsbad, CA,
USA), whereas the unlabeled rabbit polyclonal antibodies against
MDA-5 (Abcam) were detected with the labeled secondary
antibody; goat polyclonal to rabbit IgG-FITC from AbD Serotec
(Oxfordshire, UK). Isotype controls relevant for each antibody
were used for background staining. The independent experiments
were performed three times in singlets.

Stimulation of nasal mucosa

Biopsies used for stimulation were collected in sterile, cold,
complete medium containing KSFM supplemented with 0.05 mg/
ml bovine pituitary extract, 5 ng/ml epidermal growth factor,
100 U/ml penicillin and 100 pg/ml streptomycin. The biopsies
were separated into equally small pieces of 0.05 g and incubated in
1 ml of complete medium on 24-well culture plates at 37°C in a
humidified 5% CO2 air atmosphere. The biopsies were stimulated
in the absence (Untreated) or presence of 10 pg/ml poly(I:C),
10 pg/ml R-837, 1 uM phosphorothioate-modified CpG oligo-
deoxynucleotide 2006, 5'-tcgtegttttgtegttttgtegtt-3', (DNA Tech-
nology A/S), 1 ug/ml poly(I:C)/LyoVec (Invivogen, San Diego,
CA, USA), or 10 ng/ml recombinant human tumor necrosis
factor (I'NF)-o0 (R&D Systems, Minneapolis, USA) for 24 h.

Epithelial cell stimulation

HNEC, Detroit-562 and FaDu were seeded on 24-well culture
plates (250 000 cells/well) in 1 ml complete medium and
incubated overnight. Cells were then cultured for additionally
24 h in 1 ml complete medium in the absence (Untreated) or
presence of 10 pg/ml poly(I:C), 10 pg/ml R-837, 1 uM phos-
phorothioate-modified CpG oligodeoxynucleotide 2006, 5'-
tegtegttttgtegttttgtegtt-3', 1 pg/ml poly(I:C)/LyoVec, or 10 ng/
ml recombinant human TNF-o. The independent experiments
were performed 5 to 9 times, all in duplicates. Cell-free culture
supernatants were analysed for levels of interleukin (IL)-6 (antigen
sensitivity: 3.1-30 pg/ml), IL-8 (31.2-2000 pg/ml) and granulo-
cyte macrophage colony-stimulating factor (GM-CSF; 1-64 pg/
ml) using ELISA plates from R&D Systems, as well as IFN-B
(12.5-2000 pg/ml) using ELISA plates from PBL Interferon
Source (NJ, USA), all according to the manufacturer’s instructions.

Statistics

Statistical analysis was performed using Graphpad Prism 5.01
(San Diego, CA, USA). n equals the number of independent
experiments or donors. Data were analyzed using one-way
repeated measures analysis of variance together with Dunnett’s
post test (for comparisons of more than two data sets). Data are
expressed as mean = SEM. P-values <0.05 were considered
statistically significant.

Results

mMRNA and protein expression in nasal tissue
The presence of TLR3, TLR7, TLRY, RIG-I and MDA-5 in
nasal mucosa biopsies was determined using real-time reverse
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transcriptase-PCR. Data showed significantly higher levels of
RIG-I mRNA in the nasal mucosa, as compared to other PRRs
measured. Expression of TLR3 and MDA-5 was also high,
whereas TLR7 and TLR9 was more moderate (Fig. 1). Immu-
nohistochemistry was used to determine the location of the
receptor in the nasal mucosa. A strong expression for TLR7,
TLRY9, RIG-I and MDA-5 was seen, whereas TLR3 was
moderately expressed. Overall, the staining was most abundant
in the surface epithelium. It is also worth noting that a relatively
strong staining of seromucous glands within the submucosa layer
was also evident (Fig. 2A—E). Replacement of the specific primary
antibodies with mouse isotype-matched controls (Fig. 2F) and
rabbit isotype-matched controls resulted in a complete loss of
staining (data not shown).

TLR and RLR expression in epithelial cells

Since the staining of virus receptors was most abundant in the
nasal epithelium, the expression of TLR3, TLR7, TLR9, RIG-I
and MDA-5 was explored in primary HNEC and the nasopha-
ryngeal epithelial cell lines Detroit-562 and FaDu using real-time
reverse transcriptase-PCR, immunohistochemistry, and flow
cytometry. mRNA data showed expression of all receptors in
HNEC. Detroit-562 exhibited strong expression of TLR3, RIG-I
and MDA-5, whereas the expression of TLR7 and TLR9 was
barely detectable. FaDu exhibited significantly higher levels of
RIG-I as compared to the other receptors measured. A strong
expression of TLR3 and MDA-5 was also demonstrated, whereas
the expression of TLR7 and TLR9 were barely detectable.
(Fig. 3A-C). In contrast, all receptors could be demonstrated using
immunohistochemistry. TLR3 was moderately expressed in
HNEC (Fig. 4A), whereas a strong expression for TLR7, TLRY,
RIG-I and MDA-5 was seen (Fig. 4B-E). Detroit-562 and FaDu
expressed all receptors (Fig. 4G-K, M—Q). Replacement of the
specific primary antibodies with mouse isotype-matched controls
(Fig. 4F, L, R) and rabbit isotype-matched controls (data not
shown), resulted in complete loss of staining. Using flow cytometry
all receptors could be demonstrated in HNEC, Detroit-562 and
FaDu with the exception of MDA-5 in Detriot-562 (Fig. 5A—C).

In vitro stimulation of the nasal mucosa

TLR3, TLR7, TLRY, RIG-I and MDA-5 were found present in
the nasal mucosa and their potential function upon ligand
stimulation was therefore investigated. Biopsies were stimulated

Nasal mucosa

~ 100000-
£
S & 10000-
n
? o
$B 1000,
X O
< c 100
=z 2
m e
Eg 107
=
£
~ 1_

TLR3 TLR7 TLR9 RIG-I MDA-5

Figure 1. mRNA expression of TLR3, TLR7, TLR9, RIG-l and
MDA-5 in human nasal mucosa. mRNA expression in nasal mucosal
biopsies was determined by real-time reverse transcriptase-PCR (n = 20).
Data is presented in relation to B-actin as 2-ACt x 105 and depicted in

log scale as mean + SEM.
doi:10.1371/journal.pone.0098239.g001
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Figure 2. The nasal epithelium expresses TLR3, TLR7, TLR9, RIG-I and MDA-5. Sections of nasal biopsies were incubated with antibodies
against TLR3 (A), TLR7 (B), TLR9 (C), RIG-I (D), and MDA-5 (E) and visualized by 3, 3’-diaminobenzidine (brown). In control slides (F), N-series universal
negative control reagent was used. All sections were accompanied with a square magnification. All slides were counterstained with haematoxylin
(blue). The figure shows one representative biopsy out of four (3 male, 1 female). The arrows indicate positive stained cells.

doi:10.1371/journal.pone.0098239.g002

for 24 h with or without poly(I:C) (TLR3), R-837 (TLR7), CpG
(TLRY) or poly(I:C)/LyoVec (RIG-I/MDA-5) followed by mea-
surements of IL-6, IL-8, GM-CSF and IFN-B secretion. The
cytokine release from ligand stimulated biopsies was compared to
unstimulated biopsies (Untreated), in duplicates. TNF-o stimulated
the secretion of all cytokines measured (data not shown).
Stimulation with poly(I:C) resulted in an increased in IL-6, IL-8
and GM-CSF release (P=0.04; P=0.6; P=0.9) although only IL-
6 production reached statistical significance (Fig. 6A-C). R-837
stimulated a significant upregulation of IL-6 and GM-CSF
production (P<<0.01, P<0.01), whereas CpG stimulated a
significant upregulation of IL-8 production (P =0.04). Poly(I:C)/
LyoVec stimulated a small increase in the release of IL-6 and GM-
CSF, but a robust production of IFN-B was detected upon RIG-1/
MDA-5 activation (P=0.02) (Fig. 6D).

Functional expression in cultured epithelial cells

In order to evaluate the receptor functionality on the epithelial
cells, HNEC, Detroit-562 and FaDu were cultured for 24 h with
or without poly(I:C) (TLR3), R-837 (TLR7), CpG (TLR9) or
poly(I:C)/LyoVec (RIG-I/MDA-5) followed by measurements of
IL-6, IL-8 and GM-CSF. The cytokine release from ligand
stimulated cells was compared to unstimulated cells (Untreated), in
duplicates. TNF-oo stimulated the secretion of all cytokines
measured (data not shown). In HNEC, stimulation with poly(I:C)
gave rise to a significant production of IL-6, IL-8 and GM-CSF

A

B

HNEC
60000+ 60000-
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§ & 20000- ; 200004
§f‘ 2000 L e
£ 2
% § 10 L m— -

©
£ s

2 5l

£

o
L

TLR3 TLR7 TLR9 RIG-I MDA-5 TLR3

TLR7

(P=0.04; P<0.01; P=0.04). R-837 gave rise to an increased
production of IL-6 (P=0.03) and GM-CSF (P=0.6), all compared
to cytokine production by untreated cells. Poly(I:C)/LyoVec also
contributed to a small production of IL-6 and GM-CSF, although
this did not reach statistical significance (Fig. 6E—G). In Detroit-
562, stimulation with poly(I:C) caused a significant increase in the
secretion of all cytokines (IL-6, P=0.03; IL-8, P<0.01; GM-CSF,
P<0.01), whereas CpG only induced a significant release of GM-
CSF (P=0.04). Poly(I:C)/LyoVec also stimulated an increase in
I1L-6 and GM-CSF secretion, but this increase did not reach
statistical significance. No effects were seen with R-837 (Fig. 61—
K). In FaDu, Poly(I:C) and poly(I:C)/LyoVec also significantly
increased the secretion of IL-6 (P=0.01; P=0.01). All ligands
except R-837 significantly enhanced the release of IL-8 (Poly(1:C),
P=0.01; CpG, P=0.01; Poly(I:C)/LyoVec, P=0.01). GM-CSF
levels were significantly increased following poly(I:C) stimulation
(P=0.01) and slightly enhanced after incubation with CpG and
poly(I:C)/LyoVec (Fig. 6M-0O).

HNEC, Detroit-562 and FaDu was also analysed for their
ability to produce IFN-f upon TLR and RLR stimulation.
Poly(I:C)/LyoVec increased the release of IFN-f in HNEC
(P=0.02) and Detroit-562 (P=0.08), whereas no effects were
seen on FaDu cells. Poly(I:C) also stimulated a significant release of
IFN-B in Detroit-562 (P<<0.01). No effects were seen upon
stimulation of the remaining receptors (Fig 6H, L, P).

C FaDu
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1000
10 L m——

RIG-

TLR9 MDA-5 TLR3 TLR7 TLR9 MDA-5

Figure 3. mRNA expression of TLR3, TLR7, TLR9, RIG-I and MDA-5 in epithelial cells. Levels of innate immune receptors in human nasal
epithelial cells (HNEC) (n=5) (A), Detroit-562 (n =6) (B), and FaDu (n=4) (C) was determined by real-time reverse transcriptase-PCR. Data is presented
in relation to B-actin as 2-ACt x 105 and depicted in linear scale as mean * SEM.

doi:10.1371/journal.pone.0098239.9003
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Figure 4. Expression of TLR3, TLR7, TLR9, RIG-l and MDA-5 on epithelial cells. Epithelial cells from primary HNEC (A-E), Detroit-562 (G-K)
and FaDu (M-Q) were incubated with antibodies against TLR3, TLR7, TLR9, RIG-l, and MDA-5 and visualized by 3, 3’'-diaminobenzidine (brown). In
controls, N-series universal negative control reagent was used (F, L, R). All cells were counterstained with haematoxylin (blue). The figure shows one

representative staining out of three independent experiments. The markers in the figure are 50 um
doi:10.1371/journal.pone.0098239.g004
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Figure 5. Expression of TLR3, TLR7, TLR9, RIG-I and MDA-5 proteins on epithelial cells. HNEC (A), Detroit-562 (B) and FaDu (C) were

stained intracellularly with Abs against TLR3, TLR7, TLR9, RIG-l and MDA-5 (open histograms) or appropriate isotype control (shaded histograms) and

analyzed by flow cytometry. Representative pictures from one out of three independent experiments are shown
doi:10.1371/journal.pone.0098239.9g005
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Figure 6. TLR3, TLR7, TLR9, RIG-l and MDA-5 stimulation promotes cytokine release. Nasal biopsies and epithelial cells were cultured in
the absence (Untreated) or presence of 10 ug/ml poly(l:C) (TLR3), 10 ug/ml R-837 (TLR7), 1 uM CpG (TLR9) and 1 pg/ml poly(l:C)/LyoVec (RIG-I/MDA-
5). TNF-o (10 ng/ml) was used as a positive control (data not shown). After 24 h, supernatants from nasal biopsies (n=5) (A-D), HNEC (n=6-9) (E-H),
Detroit-562 (n=5) (I-L) and FaDu (n =5-9) (M-P) were collected and analyzed for levels of IL-6, IL-8, GM-CSF and IFN- using ELISA. Data is presented
as mean = SEM of 5 to 9 independent experiments. ¥, p<<0.05; **, p<<0.01; ***, p<<0.001.

doi:10.1371/journal.pone.0098239.9g006

Discussion

The presence of TLRs in airway tissues as well as on structural
and immunocompetent cells is well documented [6,24,25,26]. The
present study extends the perspective of these findings by focusing
on virus-recognizing PRRs in the nasal epithelium. We investigate
the activation of the PRRs and demonstrate their specific role and
function in the nasal mucosa. We initially noted that nasal biopsies
expressed all receptors investigated. However, to fully understand
the PRR expression in primary nasal epithelial cells, both mRNA
and protein levels of the PRRs were analysed in isolated epithelial
cells. The cell content in nasal biopsies primarily consists of nasal
epithelial cells but also consists of neutrophils, leukocytes, goblet
cells, brush border cells and endothelial cells lining the vessels.
Therefore, through nasal brushing, we were able to collect chunks
that consisted mainly of epithelial lining that were subsequently
well preserved and thereby provided a culture of only HNEC for
further analysis. Using this method, we found that TLR3, RIG-I
and MDA-5 was expressed at both mRNA and protein levels in
HNEC. These receptors were also expressed in all epithelial cell
lines which is in line with a previous report by Broquet et al.
stating a role for TLR3, RIG-I and MDA-5 in viral detection in
the intestinal epithelium [27]. The discrepancy between mRNA
and protein expression of TLR7 and TLR9 in Detroit-562 and
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FaDu can be explained by differences in posttranscriptional
regulation, such as ubiquitination, phosphorylation, mRNA and
protein turnover rates, or mRNA secondary structures that all
have the ability to affect the protein translation efficiency [28]. It
has been shown that mRINA has a shorter half-life compared to
proteins in human cell lines, this could be an alternative
explanation for the lower levels of the mRNA [29]. In
combination, mRNA and protein levels provide us with a detailed
understanding of the receptor’s gene function [30].

The immunological activity of the airway epithelium involving
cytokines, chemokines, and an array of other inflammatory
mediators is essential for our host-defense against invading
microbes [1]. However, there is always a risk for unwanted
parallel effects of this defense system, especially if the patient is
suffering from an ongoing chronic inflammatory disease [16]. In
this study we directed our efforts on epithelial cell activity, induced
by specific ligands of virus recognising PRRs in the nasal mucosa.
1L-6, 1L-8 and GM-CSF secretion were chosen as markers for
epithelial cell activation, as they are powerful mediators of airway
inflammation. IL-6 induces antibody production in B cells and T-
cell activation and differentiation [31]. IL-8 is a major chemoat-
tractant for neutrophils, and it stimulates these cells to release
enzymes and produce reactive oxygen species [32]. Similarly, GM-
CSF can prime both neutrophils and eosinophils for activation
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[33]. Several studies have also demonstrated that these cytokines
are involved in virus induced exacerbations of inflammatory
diseases [34,35].

TLR3 was expressed in all our epithelial cell cultures and
stimulation of the receptor activated a production of IL-6, IL-8
and GM-CSF from both the nasal mucosa as well as the epithelial
cell lines. In addition to the ability of the TLR3 agonist to induce
pro-inflammatory cytokines, it also promoted an upregulation of
the viral epithelial cell receptor ICAM-1 (unpublished data). In
line with our study, other reports have demonstrated that poly(I:C)
induce the production of inflammatory cytokines/chemokine in
nasal epithelial cells [36], as well as increased production of both
IL-6 and IL-8 in human airway epithelial cells [37]. Rhinovirus
RV), a common dsRNA virus inducing cold in healthy
individuals, is also recognized by TLR3 [38]. Studies have
demonstrated elevated IL-6 and IL-8 production in nasal lavage
fluids during common cold [39,40]. This highlights the importance
of epithelial TLR3, as a major mediator for the inflammatory and
antiviral response in the nasal mucosa. TLR3 activation also
causes unwanted parallel effects when the defense is activated [16].
Upregulation of TLR3 has been reported in the nasal mucosa of
patients with allergic rhinitis [41]. Subauste et al. state that IL-6,
IL-8 and GM-CSF produced by RV increase the susceptibility to
further upper airway infection [42]. A recent study using a mouse
model also suggested that TLR3 contributes to the exacerbation of
virus-induced asthma [20]. This highlights the importance of
TLR3 on epithelial cells, not only as a major mediator for the
antiviral response, but also as an important player in virus-induced
exacerbations of inflammatory diseases.

The present study demonstrates the presence of both TLR7 and
TLRY in the epithelial cell lines but only TLR7 stimulation
upregulated the production of IL-6 and GM-CSF from the nasal
mucosa. A similar cytokine production was also seen in epithelial
cells, emphasizing the importance of TLR7 on epithelial cells in
response to infections in the nasal mucosa. In line with this,
Chehadeh et al. have demonstrated a TLR7 dependent IL-6
production after enterovirus infections [43]. This further empha-
sizes the role of TLR7 in viral recognition. Presently, CpG
stimulation of the nasal mucosa significantly increased IL-8
secretion, whereas no such thing was seen in supernatants from
the epithelial cells. Zhao et al. have reported that TLR9 is highly
up-regulated in CRS patients with nasal polyps [44]. This
indicates that also TLR9 activation could have an important role
in exacerbation of inflammatory airway diseases like CRS.

RIG-I/MDA-5 activation resulted in upregulated IFN-p release
in the nasal mucosa. A similar release was also seen in our
epithelial cell lines, demonstrating that epithelial cells are
responsible for the nasal mucosa release of IFN-f early upon
viral infection. IFN-B is essential for the induction of a robust
Immune response in response to viral infections and previous
studies have shown that epithelial cells pre-treated with IFN-3 are
protected against subsequent viral infections [45], even days after
stimulation [46]. Wark et al. show that the impairment of virus-
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induced IFN-B expression is associated with enhanced viral
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suggested to be involved in various inflammatory diseases, like
asthma. Asthmatic patients are known to be more susceptible to
RV infection due to impaired RIG-I/MDA-5 production of IFN-3
[47], among the infected epithelial cells. In analogy, MDA-5—/—
mice exhibit decreased IFN mRNA expression five days after a
virus infection, resulting in increased mortality and severe
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To summarize, this study demonstrates that TLR3, TLR7,
TLRY9, RIG-I and MDA-5 are expressed on human nasal
epithelial cells can and recognize virus-related products causing
an increased inflammatory response. Such activates have previ-
ously not been reported for RIG-I and MDA-5. Especially the
presented induction of IFN-f underscores that viruses via PRRs
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to speculate in a role for epithelial expressed-, virus-recognizing
PRRs in exacerbations of inflammatory diseases like allergic

rhinitis and CRS.
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