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ABCA4-associated retinal degenerations are inherited as 
autosomal recessive traits. The most common form of the 
disorder is Stargardt macular dystrophy (STGD), which is 
typically a juvenile-onset macular degeneration presenting 
with central vision loss in late childhood or the early teenage 
years [1-3]. Usually, STGD leads to symmetric bilateral 
atrophy of the retinal pigment epithelium (RPE) in the fovea 
and posterior pole, along with orange-yellow flecks in the 
same areas [4]. ABCA4 mutations also can lead to cone-rod 
dystrophy (CRD) [5-7], a more severe form of retinal degener-
ation causing reduced central vision and progressive reduction 
of general cone function with severe central and paracentral 
scotomas and reduced color vision. Eventually, rod function 
is also reduced, resulting in visual field constriction and night 

blindness [8]. In CRD, more unspecific pigmentary changes 
are frequently seen in the macula and mid-periphery. More 
seldom, ABCA4 mutations can cause autosomal recessive reti-
nitis pigmentosa (arRP) [6,9,10], starting with reduced night 
vision combined with visual field constriction and in time 
also causing reduced central vision and defective color vison. 
Fundus changes can be typical of RP, with a pale optic nerve 
head, attenuated retinal vessels, and peripheral bone spicule 
pigmentations [11] but in some cases may be more unspecific 
with spread atrophies in the macula and posterior pole. It has 
also been discussed that some ABCA4 mutations could be 
important in age-related macular degeneration (AMD) [2,4]. 
The carrier frequency of possible disease-generating ABCA4 
alleles has been found to be quite high at around 1:20 in 
different populations [12,13], and over 700 ABCA4 variants 
have been identified to date.

The ABCA4 gene encodes the ABCA4 protein, which is 
an ATP-binding cassette (ABC) transporter protein located 
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Reduced macular function in ABCA4 carriers

Ulrika Kjellström

Department of Ophthalmology, University of Lund, Lund, Sweden

Purpose: To study retinal function and morphology in ABCA4 carriers to investigate if ABCA4 carriership is associated 
with any functional or morphological changes and, if so, to explore whether certain mutations may be associated with 
particularly severe alterations.
Methods: Eighteen subjects were recruited by means of being the parents of 10 teenagers/young adults with genetically 
confirmed ABCA4-associated retinal degenerations. The teenagers/young adults are well-known patients and have been 
followed in our clinic for many years. The eighteen subjects underwent careful ophthalmological examinations, including 
fundus photography and autofluorescence imaging, Goldmann perimetry, optical coherence tomography (OCT), full-
field electroretinography (ffERG), multifocal electroretinography (mERG), and ABCA4 gene sequencing. The ffERG 
and mERG results were compared with those of healthy controls.
Results: All subjects carried at least one ABCA4 mutation. Two subjects were compound heterozygous and therefore 
were excluded from the group-wise statistical analysis. Thirteen different ABCA4 mutations were found. C.2894 A>G 
(5/18) and c.768 G>T (4/18) were most common. Fourteen of 16 ABCA4 carriers demonstrated significantly altered mERG 
parameters (reduced amplitudes and/or delayed implicit times (ITs)) compared to normal values. In addition, the two 
subjects with compound heterozygous ABCA4 mutations had altered mERG parameters. A statistical comparison to 
the control group showed significantly reduced amplitudes and delayed ITs; p≤0.003 for all mERG parameters. FfERG 
parameters were altered in two ABCA4 carriers and one of the subjects with compound heterozygous ABCA4 mutations 
(reduced amplitude and delayed IT for the 30 Hz flicker ERG). No significant alterations were found for the whole group 
of ABCA4 carriers compared to the ffERG control group. Fundus photographs showed subtle to extensive pigmentary 
changes in several ABCA4 carriers.
Conclusions: In this study, ABCA4 carriers demonstrated reduced macular function measured by mERG along with none 
to subtle and even extensive morphological retinal changes. The c.768 G>T, c.5461–10T>C, and c.319 C>T mutations 
were associated with the most deviant ERGs, including both significant reduction of mERG amplitudes and prolongation 
of mERG ITs, as well as with reduced amplitude or delayed IT for the 30 Hz flicker ffERG in a few cases. They may 
therefore be considered serious mutations. The c.5917delG and c.4469 G>A mutations were associated with milder or no 
macular alteration. Long-term follow-up of these and other ABCA4 carriers may be of importance to elucidate the role 
of ABCA4 mutations in age-related macular degeneration. Moreover, improved knowledge of separate ABCA4 mutations 
may help us to better understand their role in ABCA4-associated retinal degenerations.
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in the rims of the photoreceptor discs [14-16]. The ABC 
transporter proteins comprise a superfamily of proteins 
with the important function of transferring various biologic 
compounds, such as amino acids, polypeptides, vitamins, and 
lipids, across cell membranes [17]. The main tasks for the 
ABCA4 protein in photoreceptors are to remove N-retinyl-
idene-phosphatidylethanolamine (NRPE) and phosphatidyl-
ethanolamine (PE) from the lumen of the outer segment disc 
membranes to the cytoplasmic leaflet during photo transduc-
tion [18,19]. In this way, the ABCA4 protein facilitates the 
elimination of potentially toxic retinoid compounds from 
photoreceptors. ABCA4-associated retinal degenerations are 
consequently proposed to be caused by a buildup of a lipo-
fuscin fluorophore, N-retinylidene-N-retinylethanolamine 
(A2E), which is produced when the ABCA4 rim protein is 
dysfunctional or missing and therefore cannot clear the photo-
receptor outer segment of NRPE. Eventually, A2E accumu-
lates in RPE cells, leading to RPE cell death and probably 
the secondary loss of photoreceptors [19,20]. Lately, it has 
also been proposed that direct photoreceptor cell death may 
precede alterations in the RPE [21,22].

Electrophysiological (ERG) evaluation is important in 
both diagnosing and following up ABCA4-associated retinal 
disorders. The different entities can be separated by ERG 
results [23]. In STGD, typically, multifocal ERG (mERG) 
is reduced while full-field ERG (ffERG) is normal or very 
mildly affected [23,24]. In CRD, mERG is always signifi-
cantly reduced along with decreased cone responses in the 
ffERG. Later on, rod responses may also be affected [8,23]. 
ArRP is associated with an initial reduction of ffERG rod 
responses, followed by reduced cone responses [4,23]. Thus, 
ABCA4 mutations can lead to very diverse phenotypes, 
making it difficult to predict the course of the disease or 
visual outcome when a doctor first sees a patient. Some 
studies propose models that correlate severity of disease to 
estimated residual function of ABCA4 based on the suggested 
effect of individual mutations on gene transcription and 
protein translation [13,25,26]. Other studies instead suggest 
that the rate of ABCA4 activity correlates with the timing of 
disease onset rather than to a specific form of retinal degen-
eration (STGD, CRD or arRP) [27]. In this survey, we wanted 
to study separate ABCA4 mutations more closely. Therefore, 
we investigated ABCA4 carriers to explore if they have any 
functional retinal changes and if any specific mutations are 
associated with particularly serious deficits indicating severe 
mutations.

METHODS

Subjects and control groups: In this study, 18 tentative 
ABCA4 carriers (nine men and nine women aged 40–61, 
median age 51, mean age 52) were included, and two control 
groups were used (29 controls for mERG, aged 38–69, 
median and mean age 51, and 20 controls for ffERG, aged 
42–67 years, median age 47 and mean age 51). The ABCA4 
carriers were recruited from our clinic by means of being the 
parents of ten teenagers/young adults with ABCA4-associated 
retinal degenerations. The teenagers/young adults have been 
patients in our clinic for many years and have been followed 
closely. All the teenagers/young adults have two confirmed 
mutations in the ABCA4 gene, and mutations in other genes 
associated with retinal degenerations have been ruled out. 
Data concerning genotypes and phenotypes for the teenagers/
young adults are presented in Table 1. Two parents of the 
teenagers/young adults (the mother of patient C and the father 
of patient D) were also already diagnosed with typical STGD 
and therefore were excluded from the study. Consequently, 
information about them is not presented. Subjects 1 and 2 
only had the right eye examined. The rest of the subjects 
(3–18) had both eyes tested. The study was conducted in 
accordance with the Tenets of the Declaration of Helsinki and 
was approved by the Ethical Committee for Medical Research 
at Lund University. All subjects gave their written informed 
consent to participate in the study.

Ophthalmological examination: Best monocular visual 
acuity (BVA) was tested separately in both eyes using the 
Snellen chart at five meters. Visual fields were mapped with 
Goldmann perimetry using standardized objects V4e, I4e, 
and 04e. For some subjects, II4e, 03e, 02e, and 01e were also 
applied. Fundus photographs, including color photographs, 
red-free photographs, and autofluorescence (AF) images, 
were captured with a Topcon TRC 50DX fundus camera 
(Topcon, Inc., Oakland, NJ). For AF images, Spaide filters 
with an excitation wavelength of 530–580 nm and a barrier 
filter of 600–720 nm were used, and the field of view was 
50×50°. All subjects also had a thorough slit- lamp and fundus 
examination.

Genetic Analysis: A sequence analysis of the entire coding 
region of the ABCA4 gene was performed at Asper Biotech 
(Asper Ophthalmics, Tartu, Estonia). The same analysis was 
performed for both the teenagers/young adults with ABCA4-
associated retinal degenerations (Table 1) and their parents 
(the tentative ABCA4 carriers; Table 2). No other genetic 
analyses were performed.

Statistical analysis: The Mann–Whitney U-test was used 
to compare ffERG and mERG results in ABCA4 carriers, 
with ffERG and mERG measurements for the control group 
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members. All statistical analyses were performed using 
SPSS 20.0. Statistical significance was defined as p<0.05. 
The limits of normality for ERG parameters were defined by 
the means ± two standard deviations (2SD). The lower limits 
of normality were used for amplitudes and the upper limits 
of normality for implicit times (ITs). This method could be 
used because ffERG parameters have only a slightly skewed 
distribution.

Full-field electroretinography: FfERGs were recorded using 
an Espion E2 analysis system (Diagnosys, Lowell, MA, USA) 
according to the standardized protocol for clinical electro-
retinography recommended by the International Society for 
Clinical Electrophysiology of Vision (ISCEV) [28]. Measure-
ments were recorded with a Burian–Allen bipolar ERG 
contact lens electrode after 40 min of dark adaptation and 
with maximally dilated pupils (1% cyclopentolate and 10% 
phenylephrine hydrochloride). To ensure reproducibility, the 
recordings were repeated for all stimulus intensities until two 
successive identical curves were obtained.

Multifocal electroretinography: MERGs were recorded with 
a Visual Evoked Response Imaging System (VERIS Science 
6; EDI, San Mateo, CA, USA) using settings that adhere to 
the ISCEV guidelines [28]. The stimulus matrix consisted 
of 103 hexagonal elements, scaled with eccentricity to elicit 
approximately equal amplitude responses at all locations. 
Each hexagon independently alternated between black and 
white according to a pseudorandom binary m-sequence at 75 
Hz. The pupils were maximally dilated with 1% cyclopento-
late and 10% phenylephrine. Retinal activity was registered 
using a Burian–Allen bipolar ERG contact lens electrode that 
was placed on the anesthetized (oxybuprocaine) cornea. Fixa-
tion was monitored with an IR eye camera. The first order 
component of the mERG was analyzed regarding amplitudes 
(A) and ITs of P1 (first positive peak) within the five concen-
tric rings (A 1–5 and IT 1–5) around the fovea. Ring 1, the 
innermost ring, represents the summed responses from the 
central hexagon and the first ring (A1 and IT1).

Optical coherence tomography: Optical coherence tomog-
raphy (OCT) images were obtained with a Topcon 3D 
OCT-1000 (Topcon, Inc., Paramus, NJ). This is a Fourier 
domain-based OCT that captures 3D scans with scan size 
6×6 mm and a scan density of 512×128. The internal fixa-
tion target (pre-set for macular imaging) was used. Macular 
morphology was studied on B-scan images, and macular 
thickness was further analyzed using the standard retinal 
thickness map of the OCT software (version 3.51 or 8.11) 
consisting of three circles with diameters of 1 mm, 3 mm, 
and 6 mm, respectively. The two outer rings are further 
divided into four segments, corresponding to a superior, a 

nasal, an inferior, and a temporal segment. For each segment 
of the retinal map, the mean thickness of the retina from the 
RPE to the inner limiting membrane (ILM) can be measured. 
The mean thickness of each segment is also automatically 
compared to an age-matched normative database and results 
outside normal limits are indicated. Retinal thickness was 
considered abnormally attenuated if values below the fifth 
percentile of the age-related normal material were obtained. 
Likewise, it was considered abnormally thickened if values 
over the 95th percentile were found.

RESULTS

Genetic analysis: Genetic analysis was performed for all 
subjects (Table 2). Of the 18 subjects, 16 (89%) carried one 
ABCA4 mutation and were defined as ABCA4 carriers. Two 
subjects (9 and 18) were found to be compound heterozygous 
with ABCA4 mutations on both alleles. They were conse-
quently not considered as ABCA4 carriers and their data were 
therefore excluded from further analysis, although some of 
their test results are presented in Table 2. The most common 
ABCA4 mutation was c.2894 A>G, which was found in five 
of the 18 (28%) subjects. Four (22%) of the subjects carried 
the c.768 G>T mutation. In all, 13 different ABCA4 mutations 
were identified (Table 1). All mutations except c.2894 A>G 
and c.768 G>T were found in one subject only.

Ophthalmological examination: Data concerning demo-
graphics and visual parameters for the ABCA4 carriers are 
presented in Table 2. Eleven (69%) of the 16 ABCA4 carriers 
had BVA 1.0 in both eyes, while five (31%) demonstrated 
reduced visual acuity (VA). Only one of the ABCA4 carriers 
(1) complained about reduced vision. She had had cataract 
surgery in her right eye and still had a moderate cortical 
cataract in her left eye. Fundus examinations demonstrated 
subtle to extensive retinal changes (Table 2, Figure 1, Figure 
2, Figure 3). There was no significant statistical difference 
in age between the ABCA4 carriers with and without fundus 
changes (Mann–Whitney U test; p=0.54). In addition to the 
pigmentary changes, subject 8 had numerous orange-yellow 
retinal flecks around the macula and in the posterior pole. 
Myelinated nerve fibers were found along the superior 
vascular arcade in subject 1, and she also had a corresponding 
small scotoma for object 03e inferiorly and temporally 
between the 10° to 20° isopters. AF images were obtained 
for 13 of the 16 ABCA4 carriers and in some cases showed 
hyper- and/or hypofluorescence.

Full-field electroretinography: FfERGs were recorded for 
all subjects. Of the 16 ABCA4 carriers, 14 (88%) had normal 
results (Table 2). The ITs of the 30 Hz flicker were delayed 
in subject 5, and the amplitude of the 30 Hz flicker was 
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Figure 1. Autofluorescence (AF) images, color photographs, red-free photographs, and OCT examinations of subjects 5, 7, and 8. In subject 
5, (A–C), the AF (A) image shows a hyperfluorescent spot in the left macula corresponding with pigmentary changes on fundus photos 
(B and C). In subject 7 (D–H), the AF image (D) shows discrete hyper- and hypofluorescence around the vascular arcades. E and F show 
subtle pigmentary changes in the macula and along the vascular arcades, seen most clearly in the red-free photo (F). The OCT B-scan (G) 
shows subtle outer retinal disruption, but the retinal thickness (H) is within normal limits. The AF image (I) from subject 8 demonstrates 
multiple foci with mixed hyper- and hypofluorescence. Fundus photographs (J and K) also reveal widespread orange-yellow flecks in the 
posterior pole, as well as macular pigmentary changes. The OCT B-scan (L) shows outer retinal disruption, although the retinal thickness 
(M) is within normal limits.
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reduced in subject 1 (Table 2). The two subjects (9 and 18) 
with compound heterozygous mutations were excluded from 
the group-wise statistical analysis. A comparative analysis 
(Mann–Whitney U test) demonstrated no significant changes 
in ffERG parameters for the ABCA4 carriers compared to the 

control group (p>0.05 for all ffERG parameters). Subject 9, 
who was compound heterozygous, also had delayed ITs for 
the 30 Hz flicker.

Multifocal electroretinography: MERGs were recorded for 
all subjects. Examples of mERG registrations are shown in 

Figure 2. AF images, color photographs, red-free photographs, and OCT examinations from subjects 10, 11, and 12. In subject 10 (A–E), the 
AF image (A) is normal. Fundus photographs (B and C) show subtle pigmentary changes in the macula. The OCT B-scan (D) reveals subtle 
central outer retinal disruption with some central thickening (E). Subject 11 has normal FA image (F) and fundus photographs (G and H). 
In subject 12 (I–M), the AF image (I) is normal while the fundus photographs (J and K) show pigmentary changes in the macula, and the 
OCT B-scan reveals some degree of central outer retinal disruption (L) and central retinal attenuation (M).
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Figure 3. AF images, color photographs, red-free photographs, and OCT examinations from subjects 14, 15, and 16. In subject 14 (A–E), the 
AF image (A) demonstrates foci with mixed high and low AF signals in the macula and in the more peripheral parts of the posterior pole 
inside the vascular arcades. The fundus photographs (B and C) show pigmentary changes in the macula. The OCT B-scan (D) shows outer 
retinal disruption and some degree of edema, and there is thickening of the retina in the most central ring of the macular map (E). In subject 
15, the AF image (F) shows some discrete hyperfluorescent spots superior to the macula, with corresponding subtle pigmentary changes on 
fundus photographs (G and H). The OCT B-scan is normal (I). On the retinal map (J), the outermost temporal segment is slightly thickened. 
Subject 16 (K–M) has no changes on the AF image (K) or fundus photographs (L and M).
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Figure 4. The two subjects with compound heterozygous 
mutations were excluded from the group-wise statistical 
analysis. The Mann–Whitney U test revealed significant 
reduction of the amplitudes for all rings (A1–A5) of the 
mERG when comparing the measurements in ABCA4 

carriers to the control group (right eye: A1, p<0.0001; A2, 
p=0.003; A3, p=0.002; A4, p=0.001; A5, p<0.0001; left eye: 
A1, p=0.001; A2, p=0.001; A3, p=0.002; A4, p<0.0001; A5, 
p<0.0001; Figure 5). A corresponding statistical comparison 
of ITs showed significant delay in study subjects compared to 

Figure 4. MERGs from three of the ABCA4 carriers (subject 4, top row; subject 5, second row; and subject 8, third row). The bottom row 
illustrates a normal mERG in one of the controls. Subject 4 has reduced mERG amplitudes and delayed ITs, although the fundus photos do 
not show any changes. Subject 5 also has reduced mERG amplitudes and delayed ITs. In this subject, the mERG alterations are accompanied 
by pigmentary changes in the macula (Figure 1B, C). Subject 8 with quite widely spread retinal flecks (Figure 1J, K) demonstrates delayed 
mERG ITs but normal mERG amplitudes.
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the control group (right eye: IT1, p=0.002; IT2–5, p<0.0001; 
left eye: IT1–5, p<0.0001; Figure 6). Only two (13%) of 16 
subjects (6 and 11) had both normal amplitudes and ITs 
compared to controls. Eleven of the 16 subjects (69%) had 
significantly reduced mERG amplitudes, and 14 (89%) had 
significantly delayed ITs (Table 2). The two subjects that were 
compound heterozygous (9 and 18) both had reduced mERG 
amplitudes and delayed ITs.

Optical coherence tomography: OCT scanning of the macular 
region was performed for all subjects. In two subjects, only 
the right eye was tested (1 and 2). Outer retinal disruption 
was found in several ABCA4 carriers. Examples of OCT 
images are found in Figures 1G,H,L,M, Figures 2 D,E,L,M, 
and Figures 3D, E,I,J. Measurements of retinal thickness 
were performed for 34 eyes. Fifteen had retinal thickness 
within normal limits compared to the normative database 
of the Topcon 3D OCT-1000. Thirteen showed thickening of 
one or more segments, three showed attenuation of one or 
more segments, and three had both attenuated and thickened 
segments.

Genetics, full-field electroretinography, multifocal electro-
retinography, optical coherence tomography, and ophthal-
mological examination: The three subjects (1, 5, and 9) with 

altered ffERG parameters all carried different ABCA4 muta-
tions. One (9) was compound heterozygous for c.1622 T>C 
and c.3113 C>T, and in addition to delayed ffERG IT, she 
had severely reduced mERG amplitudes, prolonged mERG 
ITs, and bilateral outer retinal disruption on OCT images. 
The other two (1 and 5) carried the c.768 G>T and c.319 C>T 
mutations, respectively. Subject 1 with c.768 G>T also had 
severely reduced mERG amplitudes, prolonged mERG ITs, 
and outer retinal loss on an OCT B-scan. Subject 5 with the 
c.319 C>T mutation had altered mERG, AF changes, and 
pigmentary changes in the fundus (Figure 1A-C), and the 
OCT B-scan detected subtle outer retinal disruption in her left 
eye. Subject 4, who carried the mutation c.5461–10T>C, had 
normal ffERG but marked mERG changes, including reduced 
amplitudes and delayed ITs for all rings of the mERG and 
constricted 03e, 02e, and 01e isopters on Goldmann perim-
etry. Her OCT images also showed outer retinal disruption in 
both eyes. Two of the ABCA4 carriers (6 and 11) had normal 
mERG and ffERG results. Subject 6 with the c.5917delG 
mutation also had normal visual fields and fundus images 
but reduced BVA in her right eye, for which the OCT B-scan 
showed subtle outer retinal disruption. Subject 11, who had 
a c.4469 G>A mutation, presented with normal BVA, visual 
fields, AF, and fundus findings, (Figure 2F-H) including 

Figure 5. MERG P1 amplitudes 
(nV/deg2) in rings 1–5 for ABCA4 
carriers and controls. Boxes show 
the median and interquartile ranges. 
Bars illustrate range. Circles indi-
cate outliers.
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OCT images. Subject 10 (Figure 2A-E) with c.1804 C>T and 
subject 12 (Figure 2I-M) with c.6079 C>T both had normal 
ffERG and BVA but reduced mERG amplitudes, delayed 
mERG ITs, subtle pigmentary macular changes on fundus 
photos, and discrete outer retinal disruption on OCT B-scans. 
In three subjects (2, 3, and 13), the mERG showed reduced 
amplitudes and delayed ITs, and OCT images identified outer 
retinal changes; the other tests were normal. Two of these 
subjects carried c.768 G>T (2 and 3), and one had the c.2894 
A>G mutation (13). Subjects 16 (Figure 3K-M) and 17 that 
carried the c.5714+5G>A and c.2894 A>G mutations, respec-
tively, only showed delayed mERG ITs; otherwise, all their 
examinations were normal.

DISCUSSION

ABCA4-associated retinal degenerations are recessively 
inherited disorders that lead to a wide spectrum of visual 
handicaps, from juvenile macular degeneration that affects 
central vision to CRD and recessive forms of RP with more 
widespread reduction of retinal function. The combination of 
ABCA4 mutations seems to influence the course of the disease 
[13,25,26] but in what way is still not fully understood. The 

conventional view on recessive traits is that carriers are free 
of symptoms. Still, in this study we wanted to investigate 
ABCA4 carriers to evaluate their visual function and, in the 
case of reduction, see if any particular mutations may be 
linked to particularly severe or mild changes. All but one 
subject (1) regarded themselves as free of visual complaints. 
Despite this, mERG recordings revealed clearly reduced 
macular function in the majority of the subjects and for the 
group of ABCA4 carriers as a whole compared to controls, 
with strong statistical significance for both P1 amplitudes and 
P1 ITs. Genetic testing revealed ABCA4 mutations in all the 
subjects. Two were even found to be compound heterozygous, 
which explains their reduced retinal function; therefore, they 
were not included in further group analysis. Still, another 14 
ABCA4 carriers showed abnormal mERG results along with 
other altered parameters, such as AF, fundus appearance, 
and OCT, suggesting that carriership of ABCA4 mutations is 
associated with a risk of retinal dysfunction. This is in agree-
ment with findings by Maia-Lopes et al. [29] and has to our 
knowledge been shown only once before. The most frequent 
mutations were c.2894 A>G and c.768 G>T, which have been 
found at a high frequency in other studies as well [9,30,31]. 
For example, c.2894 A>G was the most common mutation 

Figure 6. MERG P1 implicit times 
(ms) in rings 1–5 for ABCA4 
carriers and controls. Each box 
shows the median and interquar-
tile ranges. Bars illustrate range. 
Circles indicate outliers.
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in a study done in Denmark [30]. In our study, the c.768 
G>T mutation seemed to be associated with serious macular 
dysfunction, including both widespread reduced mERG 
amplitudes and delayed ITs. In one subject (1), even ffERG 
30 Hz flicker amplitudes were reduced. This is in agreement 
with previous results [9,31,32] that found c.768 G>T to be a 
serious mutation. The c.768 G>T mutation was also associ-
ated with outer retinal disruption in all carriers. The c.2894 
A>G mutation seemed to be associated with slightly milder 
but still severe macular dysfunction with delayed mERG ITs 
in all five subjects, but two had normal mERG amplitudes. 
AF was abnormal in three of the c.2894 A>G carriers, and 
OCT showed outer retinal changes in three c.2894 A>G 
subjects. Previous studies [30,32,33] have also suggested that 
the c.2894 A>G mutation is quite serious, leading to reduced 
mERGs and ffERGs.

The remaining ABCA4 mutations each occurred in only 
one subject and were therefore difficult to evaluate more 
closely. Nevertheless, some of them seemed to stand out in 
certain ways. For example, subject 5, who carried the quite 
uncommon mutation c.319 C>T, demonstrated severe changes 
with delayed ffERG 30 Hz flicker ITs, abnormal mERG 
parameters, an aberrant AF pattern, and degenerative macular 
changes. Based on this, c.319 C>T may be regarded as a likely 
serious mutation. Subject 4 showed constricted visual fields, 
reduced mERG amplitudes, delayed mERG ITs, and slightly 
reduced BVA. She carried the c.5461–10T>C mutation that 
has been found to be rather common in many populations 
[34-36] and that has also been associated with severe disease 
and early presentation [35,36], facts that support the serious-
ness of this mutation.

Subjects 6 and 11 had normal electrophysiological 
results, indicating that they may carry milder mutations. The 
c.5917delG mutation was found in subject 6. This mutation 
has previously been suggested to be quite severe in the homo-
zygous state [32,33,37] but has also been associated with late 
onset STGD in compound heterozygous patients [32,37,38]. 
Thus, the severity is still difficult to define, but in the present 
study it seemed to be associated with normal retinal func-
tion in the carrier state. Subject 11 carried the c.4469 G>A 
mutation, a mutation that has been described in patients with 
STGD [34,39], but thorough phenotypic descriptions are 
few. Testa et al. [33] have described one compound hetero-
zygous patient who had normal ffERG but abnormal mERG, 
and Fujunami et al. [34] have reported another compound 
heterozygous subject with abnormal pattern ERG and fundus 
changes who had a late onset foveal-sparing phenotype 
without any subjective visual complaints. The latter case 

supports the observation of this study that c.4469 G>A might 
be fairly mild.

Previous studies of patients with ABCA4-associated 
retinal degenerations have shown disruption of outer retinal 
layers and atrophy in the RPE and neurosensory retina on 
OCT scans [33,40-42]. Similar but less severe occurrences 
of outer retinal disruption were also found in subjects in the 
present study. Moreover, ABCA4-associated retinal degen-
erations have been associated with foveal attenuation and 
reduced macular volume [25,32,33,43]. In our study, OCT 
measurements of retinal thickness instead showed a mix of 
macular attenuation and thickening, and no correlations were 
found between macular thickness and mERG results. Perhaps 
this is because early retinal changes are very subtle and 
sometimes include some degree of edema before degenera-
tion is manifest. Similar phenomena are seen in other retinal 
degenerations, such as RP [44-47].

Fundus photographs showed pigmentary changes in 
several ABCA4 carriers. Subject 8 even had deep yellow 
spots in the posterior pole and mid-periphery, pigmentary 
changes in the macula, and corresponding AF hyper - and 
hypofluorescence. This brings up the suspicion that he may 
have another as yet undetected ABCA4 mutation on his other 
allele and actually has late onset STGD [32,37,38]. However, 
because we found only one mutation he is considered a carrier 
in this study.

The findings of reduced retinal function and fundus 
changes in ABCA4 carriers again bring up the question of a 
possible role for ABCA4 mutations in AMD, and our results 
may support this hypothesis. Early studies on AMD propose 
the role of genetic factors in the cause of the disease, as the 
prevalence of AMD has been shown to be significantly higher 
in relatives of patients having the disease [48,49]. Allikmets 
et al. [50] have suggested that the risk of AMD is elevated 
threefold in c.6529 G>A carriers and fivefold in subjects 
carrying c.5882 G>A, as those mutations are correspond-
ingly overrepresented in AMD patients compared to control 
subjects. Fritsche et al. [51] have reported that one subtype of 
AMD with typical fundus changes characterized by a fine 
granular pattern and peripheral punctate spots is significantly 
associated with heterozygous ABCA4 mutations. Moreover, 
Maia-Lopes et al. [29] have also demonstrated reduced 
retinal function in ABCA4 carriers, suggesting a predispo-
sition for AMD in this group. Yet, other studies screening 
AMD populations for ABCA4 mutations have failed to show 
any increased frequency of ABCA4 mutations [39,52]. The 
discrepancy between results may be due to differences in the 
groups of AMD patients that have been included; perhaps 
ABCA4 mutations only occur in certain sub-groups of AMD 
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[51]. To further elucidate the role of the ABCA4 gene in 
AMD, we plan to follow our subjects over time, repeatedly 
monitor the course of functional and morphological changes, 
and repeat the genetic testing as new ABCA4 mutations are 
continuously identified. Advanced knowledge of separate 
ABCA 4 mutations and their roles in various retinal degen-
erations is important to improve our counselling of patients 
and their relatives. One drawback of this study is the small 
sample size, although this shortcoming is partly compensated 
for by the evident statistical results concerning retinal func-
tion clearly reached with non-parametric tests.

To conclude, this study demonstrated reduced retinal 
function along with none to subtle or more widespread 
morphological retinal changes in ABCA4 carriers, again 
indicating a possible role for the ABCA4 gene in AMD. 
However, further follow-up of these and other ABCA4 carriers 
is needed. It also identified some ABCA4 mutations (c.768 
G>T, c.5461–10T>C, and c.319 C>T) that seem to be associ-
ated with more severe retinal changes, making them likely 
severe mutations in ABCA4-associated retinal degenerations. 
Moreover, some mutations were instead correlated to milder 
or no retinal changes in the heterozygous state (c.5917delG 
and c.4469 G>A).
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