
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On Robotic Work-Space Sensing and Control

Linderoth, Magnus

2013

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Linderoth, M. (2013). On Robotic Work-Space Sensing and Control. [Doctoral Thesis (monograph), Department
of Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ccac0d12-9040-4acb-82fb-699408a95742


On Robotic Work-Space

Sensing and Control

Magnus Linderoth

Department of Automatic Control



PhD Thesis
ISRN LUTFD2/TFRT--1098--SE
ISBN 978-91-7473-669-4 (print)
ISBN 978-91-7473-670-0 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

cF 2013 by Magnus Linderoth. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2013



Abstract

Industrial robots are fast and accurate when working with known objects
at precise locations in well-structured manufacturing environments, as
done in the classical automation setting. In one sense, limited use of
sensors leaves robots blind and numb, unaware of what is happening in
their surroundings. Whereas equipping a system with sensors has the
potential to add new functionality and increase the set of uncertainties
a robot can handle, it is not as simple as that. Often it is difficult to
interpret the measurements and use them to draw necessary conclusions
about the state of the work space. For effective sensor-based control, it is
necessary to both understand the sensor data and to know how to act on
it, giving the robot perception–action capabilities.
This thesis presents research on how sensors and estimation tech-

niques can be used in robot control. The suggested methods are theoreti-
cally analyzed and evaluated with a large focus on experimental verifica-
tion in real-time settings.
One application class treated is the ability to react fast and accurately

to events detected by vision, which is demonstrated by the realization of
a ball-catching robot. A new approach is proposed for performing high-
speed color-based image analysis that is robust to varying illumination
conditions and motion blur. Furthermore, a method for object tracking is
presented along with a novel way of Kalman-filter initialization that can
handle initial-state estimates with infinite variance.
A second application class treated is robotic assembly using force con-

trol. A study of two assembly scenarios is presented, investigating the
possibility of using force-controlled assembly in industrial robotics. Two
new approaches for robotic contact-force estimation without any force sen-
sor are presented and validated in assembly operations.
The treated topics represent some of the challenges in sensor-based

robot control, and it is demonstrated how they can be used to extend the
functionality of industrial robots.

3





Acknowledgments

First of all I would like to thank my supervisors Rolf Johansson and An-
ders Robertsson, who introduced me to the field of robotics. They comple-
ment each other well and have given me important support and guidance
in the different aspects of my development as a researcher. I also want
to thank Klas Nilsson, who in practice has acted as an extra supervisor.
Much of my work has been done in close cooperation with Andreas Stolt,
who has been a very good work partner. Coming up with solutions to
problems and implementing them always works smoothly with Andreas.
I also want to thank the rest of my colleagues in the ROSETTA project
for many fruitful discussions and feedback on my work.
My interest for computer vision, which has been an important part

of my thesis work, first started while following Kalle Åström’s inspiring
lectures. I have on numerous occasions discussed my image-analysis al-
gorithms with Håkan Ardö, who has a large knowledge and insight about
image analysis and implementation aspects. The meetings with Håkan
have been interesting and fruitful, and afterwards I have always had lots
of new ideas to try out.
I want to thank all my colleagues at the Department of Automatic

Control for making it such a nice environment to work in. The coffee
breaks and lunches often offered interesting discussions on all imaginable
topics. In particular I want to thank Kristian Soltész, who played an
important role when I decided to do a PhD and has provided valuable
input to discussions on my research and many other topics.
Some people have been particularly important for making the work

run smoothly. Anders Blomdell, with his vast programming experience,
served as the living book of answers when I had programming problems,
and the robots in the lab could not run without him. Blomdell has together
with Leif Andersson and Anders Nilsson helped out with computer-related
problems and made sure that we have a functioning computer environ-
ment. Rolf Braun and Pontus Andersson have made sure that the labs are
in good shape. Eva Schildt, Britt-Marie Mårtensson, Agneta Tuszynski,

5



Eva Westin, Ingrid Nilsson, Monika Rasmusson, and Lizette Borgeram
have helped me handle all administrative matters.
I want to thank my family for supporting me and laying the foundation

that got me where I am today. Finally, I want to thank my lovely Kerstin
for making me feel happy and giving me energy as well as giving me
valuable feedback on my work while writing this thesis.

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme FP7/2007–
2013 – Challenge 2 – Cognitive Systems, Interaction, Robotics – under
grant agreement No 230902 - ROSETTA. This document reflects only the
author’s views and the European Community is not liable for any use that
may be made of the information contained herein.
The author is a member of the LCCC Linnaeus Center and the eLLIIT

Excellence Center at Lund University.

6



Contents

1. Introduction 11

1.1 Motivation and Background . . . . . . . . . . . . . . . . . 11
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Outline and Contributions . . . . . . . . . . . . . . . . . . 14

Part I Vision-Based Control 17

2. Ball-Catching Robot 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 21
2.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Color-Based Detection Robust to Varying Illumination 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Chromaticity Representation . . . . . . . . . . . . . . . . . 26
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 31
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. Compensation for Motion Blur 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Motion-Blur Compensation . . . . . . . . . . . . . . . . . . 43
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 48
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. Initialization of the Kalman Filter 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Optimal Solution of a Linear System of Equations with

Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Filter Initialization . . . . . . . . . . . . . . . . . . . . . . 62

7



Contents

5.5 Simulation Example . . . . . . . . . . . . . . . . . . . . . . 67
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6. Object Tracking 74

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 75
6.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Detection of False Positives . . . . . . . . . . . . . . . . . . 79
6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7. Robot Trajectory Generation 87

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 89
7.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8. System Integration of a Ball-Catching Robot 122

8.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.4 Robot Control . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5 Accuracy Requirement . . . . . . . . . . . . . . . . . . . . . 131
8.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.7 Discussion and Future Work . . . . . . . . . . . . . . . . . 135
8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Part II Force Control and Estimation 139

9. Robotic Assembly 141

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2 Task Specification and Control Framework . . . . . . . . 143
9.3 Shield-Can Use Case . . . . . . . . . . . . . . . . . . . . . 148
9.4 Emergency-Stop-Button Use Case . . . . . . . . . . . . . . 152
9.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . 165
9.6 Discussion and Lessons Learned . . . . . . . . . . . . . . . 167
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10. Robotic Force Estimation without any Force Sensor 172

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.2 Force Estimation Using Joint Control Errors . . . . . . . 173
10.3 Force Estimation Using Motor Torques . . . . . . . . . . . 181

8



Contents

10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11. Conclusions 201

11.1 Vision-Based Control . . . . . . . . . . . . . . . . . . . . . 201
11.2 Force Control and Estimation . . . . . . . . . . . . . . . . 202
11.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 203

A. Fundamentals of Robotics and Computer Vision 204

A.1 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . 204
A.2 Robot Kinematics . . . . . . . . . . . . . . . . . . . . . . . 208

Bibliography 210

9





1

Introduction

1.1 Motivation and Background

Industrial robots are fast and accurate when working with known ob-
jects at precise locations in well structured manufacturing environments.
In this classical automation setting, both peripherals/tooling and the pro-
gramming are tailored to cope with commonly occurring variations. Under
such conditions robots are outperforming humans in many applications,
but at the expense of flexibility. Widening the perspectives, it is desir-
able that robots should be general-purpose working or human-assisting
machines that perform well in real-world settings with time-varying, dy-
namic, and non-deterministic elements. To function in such environments
the robots must be equipped with sensors, giving them the ability to
measure the positions and other properties of the objects in their sur-
roundings. They also need the cognitive ability to interpret the sensor
information and react on it in a proper way.
Even in controlled factory environments there are benefits of adding

sensing capabilities to robots. If the robots become good at handling un-
certainties, less effort has to be put into structuring the environments
around them. There are also limits on how accurately objects can be po-
sitioned or gripped. In assembly operations the relative positions of the
objects to assemble are of interest, and they can be inferred with high
accuracy from contact forces even in the presence of uncertainties in the
absolute position measurements. The potential of using force sensing can
be imagined by observing how humans outperform robots in many as-
sembly operations, in spite of poor human position accuracy. The superior
performance of humans can be explained by the dexterity of the hands,
tactile sensing, impedance-control performance, cognitive vision, and the
ability to detect and recover from error situations. Instead of the automa-
tion approach to robotics, developing productive robots that exhibit such
sensor-based performance represents the robotics approach to automa-
tion.

11



Chapter 1. Introduction

This thesis presents work on how real-time sensor-based control can
be used to gain improved performance and robustness of robotic task ex-
ecution, considering both touch-based sensing (such as interaction forces
between the robot and the work piece) and contact-less position sensing
(such as vision). Particular attention is given to two challenging appli-
cation cases: a ball-catching industrial robot, and force-controlled robotic
assembly.
Several skills are required for catching a ball. The ball has to be de-

tected and its position must be estimated and extrapolated to the future
with high accuracy. Due to acceleration constraints, the robot has to start
moving soon after an estimate of the catching position is available, and
then the trajectory must be modified while moving, as the catching po-
sition is updated due to new measurements. All of these actions have to
be performed under hard real-time constraints in order for the robot to
reach the catching position before the ball reaches the robot.
Using force sensing in assembly provides important advantages over

position-based control, but also introduces new challenges in terms of as-
sembly strategies, task description and feedback-controller design. Due to
the cost of force sensors, there are also incitements to be able to estimate
the forces without using any force sensor.
Both of the above application examples require control based on high-

rate sensor information, and together they represent some of the chal-
lenges in sensor-based robotic task execution.

1.2 Publications

Publications on Robotic Ball Catching

Chapters 2–8 are based on the publications below and some previously
unpublished material. In these publications, M. Linderoth was the main
contributor, and the co-authors assisted with discussion of the ideas and
structuring of the manuscripts.

Linderoth, M., A. Robertsson, K. Åström, and R. Johansson (2009). “Vi-
sion based tracker for dart-catching robot”. In: Preprints 9th IFAC In-
ternational Symposium on Robot Control (SYROCO’09). Gifu, Japan,
pp. 883–888.

Linderoth, M., A. Robertsson, K. Åström, and R. Johansson (2010). “Ob-
ject tracking with measurements from single or multiple cameras”.
In: Proc. International Conference on Robotics and Automation (ICRA
2010). Anchorage, AK, USA, pp. 4525–4530.

12



1.2 Publications

Linderoth, M., K. Soltész, A. Robertsson, and R. Johansson (2011). “Ini-
tialization of the Kalman filter without assumptions on the initial
state”. In: Proc. IEEE International Conference on Robotics and Au-
tomation (ICRA 2011). Shanghai, China, pp. 4992–4997.

Linderoth, M., A. Robertsson, and R. Johansson (2013). “Color-based
detection robust to varying illumination spectrum”. In: IEEE Work-
shop on Robot Vision (WoRV 2013). Clearwater Beach, Florida, USA,
pp. 120–125.

Publications on Robotic Assembly

Chapters 9–10 are based on the publications below, for which M. Lin-
deroth and A. Stolt were the main contributors and assert equal contri-
bution. The work was produced through close cooperation between the
main authors, but M. Linderoth had a focus toward the theoretical as-
pects of the methods while A. Stolt had a focus toward implementation
and experimental evaluation. A. Robertsson and R. Johansson assisted
with discussion of the ideas and structuring of the manuscripts. The pa-
per “Force controlled robotic assembly without a force sensor” received
the Best Automation Paper Award at ICRA2012.

Linderoth, M., A. Stolt, A. Robertsson, and R. Johansson (2013). “Robotic
force estimation using motor torques and modeling of low velocity fric-
tion disturbances”. In: Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2013). Tokyo, Japan.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2011). “Force
controlled assembly of emergency stop button”. In: Proc. IEEE Interna-
tional Conference on Robotics and Automation (ICRA 2011). Shanghai,
China, pp. 3751–3756.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012). “Force
controlled robotic assembly without a force sensor”. In: Proc. Interna-
tional Conference on Robotics and Automation (ICRA 2012). St. Paul,
Minnesota, USA, pp. 1538–1543.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2013). “Robotic
assembly of emergency stop buttons”. In: Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2013).
Tokyo, Japan.

Other Publications

Björkelund, A., L. Edström, M. Haage, J. Malec, K. Nilsson, P. Nugues,
D. Störkle, A. Blomdell, R. Johansson, M. Linderoth, A. Nilsson, A.
Robertsson, A. Stolt, and H. Bruyninckx (2011). “On the integration
of skilled robot motions for productivity in manufacturing”. In: Proc.

13



Chapter 1. Introduction

IEEE/CIRP International Symposium on Assembly and Manufactur-

ing (ISAM2011). Tampere, Finland, pp. 1–9.

Stolt, A., M. Linderoth, A. Robertsson, M. Jonsson, and T. Murray (2011).
“Force controlled assembly of flexible aircraft structure”. In: Proc.
IEEE International Conference on Robotics and Automation (ICRA

2011). Shanghai, China, pp. 6027–6032.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012a). “Adap-
tation of force control parameters in robotic assembly”. In: 10th Inter-
national IFAC Symposium on Robot Control (SYROCO’12). Dubrovnik,
Croatia, pp. 561–566.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012b). “Robotic
assembly using a singularity-free orientation representation based on
quaternions”. In: 10th International IFAC Symposium on Robot Control
(SYROCO’12). Dubrovnik, Croatia, pp. 549–554.

All of the above publications are available for download from
http://www.control.lth.se/Publications.html.

1.3 Outline and Contributions

Part I, including Chapters 2–7, presents work done in the context of a
robotic ball-catcher. Part II, including Chapters 9–10, describes work done
in the context of force-controlled robotic assembly. Finally, conclusions are
given in Chapter 11. Appendix A describes basic concepts from robotics
and computer vision used in this thesis.
The chapters have been written so they should be possible to read inde-

pendently. This comes at the cost of some repetition between the chapters.

Chapter 2 – Ball-Catching Robot

This chapter introduces the problem of robotic ball-catching, which serves
as a common framework for the problems treated in Chapters 3–7.

Chapter 3 – Color-Based Detection Robust to Varying

Illumination

When color is used for pixel classification in images, attention must be
payed to varying illumination conditions. An object may be perceived to
have different colors under different light sources. Chapter 3 presents a
new systematic way of designing a color classifier that works for a desired
range of illumination conditions.

14



1.3 Outline and Contributions

Chapter 4 – Compensation for Motion Blur

When objects in a scene move during image exposure, there is a risk of
motion blur appearing in the captured images. This presents a problem
for color-based classification, since the colors in the blurred regions may
resemble neither the foreground nor the background. Chapter 4 describes
an original way of estimating which pixels were subject to motion blur
on a pixel-by-pixel basis. This information is then used to improve how
accurately the size and position of a moving object can be measured. The
algorithm is very fast and suitable for real-time execution.

Chapter 5 – Initialization of the Kalman Filter

When using the traditional way of initializing the Kalman filter, a full
estimate of the initial state has to be provided. The variance of the initial
estimate may be large, but it has to be finite in all directions of the
state space. Chapter 5 presents a novel way of initialization that makes
no assumptions about the initial state and can produce a state estimate
based purely on the measurements.

Chapter 6 – Object Tracking

Chapter 6 presents an alternative to traditional triangulation in stereo
vision for dynamic objects. Instead, 2D image measurements are combined
using a Kalman filter. When the dynamical model of the moving object is
known, this approach makes it possible to estimate the state of the object
even when no images are captured simultaneously, something that could
not have been done using triangulation-based methods.

Chapter 7 – Robot Trajectory Generation

Chapter 7 presents a method for fast trajectory generation with the ob-
jective that the maximum acceleration should be minimized. The method
is appropriate to use when the robot has to start moving before the desti-
nation position is completely known and the trajectory has to be modified
while in motion.

Chapter 8 – System Integration of a Ball-Catching Robot

This chapter describes the integration of the components needed to form
the ball-catcher system. The system was experimentally evaluated, and it
demonstrated higher spatial accuracy and faster response time than ball
catchers developed by other groups.

15



Chapter 1. Introduction

Chapter 9 – Robotic Assembly

Chapter 9 presents a framework for specifying and executing force-
controlled robotic assembly. Experiences and lessons learned from ap-
plying the system to real-world assembly scenarios are presented.

Chapter 10 – Robotic Force Estimation without any Force

Sensor

Force sensing is necessary for many robotic operations, but dedicated force
sensors may be very expensive. Chapter 10 presents two new methods
for estimating forces using the internal sensing of the robot. The first
method presented uses the control errors of the robot joints to estimate
the contact forces. The second method uses the motor torques and models
that the uncertainty of the friction torques varies significantly, mostly
due to varying joint speeds. This is used to improve the accuracy of the
force estimates and provide dynamic confidence intervals in real time.

16



Part I

Vision-Based Control





2

Ball-Catching Robot

2.1 Introduction

Chapters 2–8 describe how high-speed computer vision can be used in
a motion-control application. The problem considered is a ball-catching
robot. An image of a robot catching a ball can be seen in Fig. 2.1. When
a ball is thrown, the robot should move so that the ball hits the hole of
a box mounted on the robot. The detection of the ball is to be performed
with cameras providing data to the estimation of the position and future
trajectory of the ball. In turn, this information should be used to move
the box to the correct catching position.

Figure 2.1 Image of a ball-catching robot with a green blurred ball flying
toward the hole.

19



Chapter 2. Ball-Catching Robot

Robotic ball catching is a challenging task that requires several tech-
nologies working together, including fast image analysis, object tracking,
and on-line trajectory generation. All these are capabilities that are re-
quired for robots that should perform reactive control in unstructured
environments.
During the last two decades a number of ball-catching robot systems

have been developed. The systems have used a range of different solutions
when it comes to the positioning of cameras, whether the ball should be
gripped by a robotic hand or caught in a different way, the type of robot
etc. A few of them will be described below, and additional examples can
be found in [Hove and Slotine, 1991; Hong, 1995; Riley and Atkeson, 2000;
Barteit et al., 2008]
A ball-catching system at DLR [Frese et al., 2001] caught balls with 7

cm diameter in a net with 16 cm diameter. More recently, they used the
mobile humanoid platform Rollin’ Justin [Borst et al., 2009] to catch balls,
and produced numerous publications on this topic, including [Birbach et
al., 2008; Birbach and Frese, 2009; Bäuml et al., 2010; Birbach et al.,
2011; Birbach and Frese, 2011; Bäuml et al., 2011b; Bäuml et al., 2011a],
thus providing the best base for comparison with my system. They used a
computationally relatively heavy motion planner, exploiting most joints of
the robot, including moving the base. For vision they used high-resolution
gray-scale stereo cameras mounted on the robot’s head. The balls were
detected using a generalization of the Hough transform [Ballard, 1981].
The camera placement on the head gave a relatively short baseline and
caused the cameras to shake when the robot started to move to catch the
ball. Hence, the motion of the head was estimated using an IMU during
the catch.
The papers [Lippiello and Ruggiero, 2012a] and [Lippiello and Rug-

giero, 2012b] described a ball catcher using a single eye-in-hand camera
mounted in the palm of a robotic hand. When a ball was detected the robot
made a sideways movement, thus getting views of the ball from different
directions though the system only had a single camera. The trajectory of
the ball was parameterized by its initial position and velocity, and the pa-
rameters were estimated by numerically solving an optimization problem
that tried to minimize the errors between the simulated trajectory and
the measurements. The control of the hand’s position was decoupled from
the control of its orientation to be able to always keep the ball in the field
of view of the camera.
A hydraulic humanoid robot catching and tossing balls was described

in [Kober et al., 2012]. It used an RGB-and-depth camera, observing the
robot and the thrower from the side, to detect the ball with an accu-
racy of 5 cm. The robot was poorly damped, and they used a very simple
linear kinematic model. The poor kinematic model alone resulted in po-

20



2.2 Problem Formulation

sition errors up to 5 cm within a catching range that was approximately
20 cm $ 50 cm in a horizontal plane.
In [Bätz et al., 2010] basket balls were caught using a flat plate

mounted on a robot. In the beginning of the catching motion, the plate
was controlled to match the position and velocity of the ball. The ball
was then smoothly decelerated to stay on the plate with out bouncing.
Finally, the ball was balanced on the plate by means of a force sensor.
The tracking of the balls was based on color and stereo vision.
This thesis presents work that aimed to develop a ball-catching robot

with the highest possible position accuracy and fast response time. Much
attention was given to the real-time performance of all components in
order to cope with the timing requirements of the task. The work was to
a large extent performed concurrently with the related systems described
above.

2.2 Problem Formulation

The problem of robotic ball catching requires a range of sub-problems to
be solved, some of which are listed below:

• image analysis

• outlier rejection

• tracking/state estimation

• ball-trajectory prediction

• choice of catching position

• robot trajectory generation

The list is not exhaustive and other ways of partitioning the problem are
possible. For example, image analysis and state estimation can be inte-
grated by exploiting the predicted position of the ball when performing
the image analysis, or the initial pose and velocity of the robot can be
taken into account when choosing the catching position. The listed prob-
lems can, of course, also be broken down into smaller problems. If color is
used to detect the ball, the pixels should first be processed based on their
color, followed by object detection.
Chapters 3–7 describe solutions to different components needed for

the ball catcher. Chapter 8 then describes how the components were in-
tegrated to a complete system.

21



Chapter 2. Ball-Catching Robot

Figure 2.2 The coordinate system used to describe the position of the
ball. The coordinate system is fixed w.r.t. the world frame and has its
origin centered in the hole of the catching box when the robot is in its
home position.

2.3 Definitions

This section describes a few concepts and definitions that will be used
repeatedly in the subsequent chapters.

Coordinate system

The coordinate system used to describe the position of the thrown ball
in this thesis is illustrated in Fig. 2.2. It is a right-handed Cartesian
coordinate system with the y-axis pointing in the vertical direction and
the z-axis in the horizontal plane pointing away from the robot. The origin
of the coordinate system is centered in the hole of the catching box when
the robot is in its home position.

Dynamic ball model

A ball in flight is considered to be affected by the gravity and by air drag
proportional to the speed squared. The position of the ball, p = [X Y Z]T ,

22



2.3 Definitions

in the coordinate system of Fig. 2.2 then follows the differential equation

p̈ = −cṗqṗq2 −





0
�
0



+ vc, (2.1)

where vc is a load disturbance (e.g., acceleration caused by wind), � is
the Earth gravity, and c is an air drag coefficient, depending on the size
and mass of the ball, and the density of air, etc. With the state vector
x = [X Y Z Ẋ Ẏ Ż]T the differential equation (2.1) can be written in
state-space form:

ẋ =











0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











x +











0
0
0

−cẊ V
−cẎV − �
−cŻV











+
[
03$1
vc

]

, (2.2)

where V =
√

Ẋ 2 + Ẏ2 + Ż2 is the speed of the ball.
To discretize (2.1), let h be the sampling period, k the sample num-

ber, and t the time. Furthermore, we make the approximation that the
acceleration is constant during each sampling interval, i.e.,

p̈(t) ( p̈(kh) ∀ kh ≤ t < kh+ h. (2.3)

This results in the non-linear discrete-time time-varying system

x(k+ 1) =











1 0 0 h 0 0
0 1 0 0 h 0
0 0 1 0 0 h

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











x(k) +











h2

2





−cẊ (k)V (k)
−cẎ(k)V (k) − �
−cŻ(k)V (k)





h





−cẊ (k)V (k)
−cẎ(k)V (k) − �
−cŻ(k)V (k)















︸ ︷︷ ︸

f (x(k))

+v(k),

(2.4)

where v is the discrete-time load disturbance. From now on the sampling
period is left out from the time indices of discrete-time systems to make
the notation shorter.
If the air drag is neglected (c = 0), then the system is linear and (2.4)

23



Chapter 2. Ball-Catching Robot

is an exact discretization of (2.2). The state update equation is then

x(k+ 1) =











1 0 0 h 0 0
0 1 0 0 h 0
0 0 1 0 0 h

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











︸ ︷︷ ︸

Φ

x(k) +











0
−�h2/2
0
0
−�h
0











︸ ︷︷ ︸

Γ

+v(k). (2.5)

24



3

Color-Based Detection

Robust to Varying

Illumination Spectrum

3.1 Introduction

Whenever color recognition is used for object detection, varying illumi-
nation often causes problems, since an object may be perceived to have
different colors under different lighting conditions. Many methods handle
this difficulty by estimating the illumination spectrum and accounting
for its effect on the perceived color. The method presented in this chap-
ter uses a different approach and describes a systematic way to design
a constant classifier that can detect a colored object for a given range of
lighting conditions. This strategy also naturally handles the case where
different parts of an object are illuminated by different light sources at
the same time, e.g., sunlight from a window in combination with indoor
lighting from the ceiling. Only one set of training data per light source
has to be collected, and then the detector can handle any combination of
the light sources for a large range of illumination intensities.
The fact that the apparent color of an object depends on the illumina-

tion is a well known problem that has been given a lot of attention in the
field of color constancy [Ebner, 2007], which tries to estimate the ’true’
color of an object irrespective of the illumination. Humans usually do
this very well without realizing it, but there are also numerous examples
[Lotto, 2011] of how the human vision system can be fooled. Land’s retinex
algorithm [Land, 1983] attempts to imitate the human vision system, and
does so by finding large color gradients and looking at the relative color
between nearby areas.
Another way to achieve color constancy is to look at the observed color

of a reference object of known color and adjust the color of all observed

25



Chapter 3. Color-Based Detection Robust to Varying Illumination

images, as done in [Balkenius et al., 2003]. If the illumination changes, a
reference object has to be observed again to adjust the color correction. In
[Soriano et al., 2000] the position and color of a face are tracked simulta-
neously to update the color range of the face as the illumination changes.

The methods described in the previous paragraphs depend on the envi-
ronment (colors in the background or the availability of a reference color)
and are adaptive in the sense that they can adjust their color correction if
the illumination varies. The classifier presented in this chapter, however,
is of the robust type in the sense that a single classifier works for a large
range of illumination conditions. The method is illustrated by an example
that can handle any combination of daylight and fluorescent light, which
covers a large set of the conditions encountered in common indoor envi-
ronments. The cost of having a single classifier for all lighting conditions
is that the color range that is classified as foreground gets larger, which
means that there is an increased risk of false positives, but if the range
is chosen wisely the amount of false positives can be made small.
A number of different approaches to detecting balls for ball-catching

robots have been presented by others. In [Bätz et al., 2010; Lippiello and
Ruggiero, 2012a; Kober et al., 2012] color images were used and the balls
were detected by defining ranges in the HSV color space [Forsyth and
Ponce, 2002], but nothing was mentioned about handling of varying illu-
mination spectrum. The positions of the balls were then estimated using
the centroid of the detected blobs or the Hough transform [Ballard, 1981].
In [Barteit et al., 2008] gray-scale images were used and motion was de-
tected by subtracting a background image from all images. The ball was
then detected by means of the Hough transform. In [Birbach et al., 2011]
the cameras were not stationary, so no background subtractions could
be used. The balls were detected in high-resolution gray-scale images by
using a generalization of the Hough transform.

3.2 Chromaticity Representation

A color can be described by its chromaticity and its luminance. The lu-
minance represents the total intensity of the color. The chromaticity is
independent of the luminance and only depends on the ratio of the red,
green and blue intensities. In this chapter the chromaticity will be rep-
resented by the red and green channels in the normalized RGB space
[Forsyth and Ponce, 2002]. Given a color (R,G, B), with R,G, B ≥ 0,
where the three components are the intensities of red, green and blue,

26



3.3 Method

the chromaticity is given by

r = R

R + G + B , � = G

R + G + B (3.1)

Now assume that we have two colors (R1,G1, B1) and (R2,G2, B2) with
the corresponding chromaticities (r1,�1) and (r2,�2), and we make a lin-
ear combination of the two colors to form a third color:

(R3,G3, B3) = λ1(R1,G1, B1) + λ2(R2,G2, B2) (3.2)

with λ1,λ2 ≥ 0. The resulting chromaticity is

(r3,�3) =
(R3,G3)

R3 + G3 + B3

= λ1(R1,G1)
R3 + G3 + B3

+ λ2(R2,G2)
R3 + G3 + B3

= λ1(R1 + G1 + B1)
R3 + G3 + B3

︸ ︷︷ ︸

θ1

(R1,G1)
R1 + G1 + B1
︸ ︷︷ ︸

(r1,�1)

+ λ2(R2 + G2 + B2)
R3 + G3 + B3

︸ ︷︷ ︸

θ2

(R2,G2)
R2 + G2 + B2
︸ ︷︷ ︸

(r2,�2)

= θ1 ⋅ (r1,�1) + θ2 ⋅ (r2,�2)

(3.3)

It can easily be verified that θ1,θ2 ≥ 0 and θ1 + θ2 = 1, i.e., (r3,�3) is a
convex combination of (r1,�1) and (r2,�2). This means that for all possible
values of λ1 and λ2 in (3.2), (r3,�3) is on the straight line between (r1,�1)
and (r2,�2). This property will be used in the design of the classifier
proposed in this chapter.

3.3 Method

Outline of Method

The bullet lists below outline the suggested method, and the following
subsections describe the steps in more detail.

Steps to be done off line

1. Collect training data with a single light source at a time. Collect
many images from each scene and calculate the average to reduce
the effect of noise.

27



Chapter 3. Color-Based Detection Robust to Varying Illumination

2. Subtract bias from the images (the intensity recorded by the camera
in complete darkness).

3. Make a histogram over the chromaticities. For each pixel in the
training data, draw a line between the chromaticities at the different
illuminations, and increase the value of all bins intersected by the
line. The resulting histogram will be interpreted as a probability
density function for the various different chromaticities.

4. Make a 3-dimensional table, where the inputs are the intensities
of red, green and blue in a pixel, and the output is the probability
density from the chromaticity histogram in the previous bullet. Add
back the bias subtracted in step 2.

5. Blur the table from the previous bullet to account for image sensor
noise.

6. Choose the probability density of the background.

7. For each color in the table, compare the probability densities of fore-
ground and background to compute the probability of belonging to
the foreground.

8. Calculate (P( f ore�round)−0.5) to get a score that is positive if the
color is most likely to belong to the foreground and negative if the
color is most likely to belong to the background. Put the scores in a
look-up table to be used on line.

Steps to be done on line

1. Retrieve the score from the look-up table for each pixel in the image.

2. Find the circle that maximizes the sum of the scores of the pixels
enclosed by the circle in the probability image (to detect balls if used
for the ball-catching robot example).

Training-Data Collection

One set of images should be collected for each type of light source. For the
example described in the introduction this means that two sets of images
of the green balls should be collected; one where they are illuminated by
daylight only, and one where they are illuminated by fluorescent light
only. If possible, several images should be captured for each light source,
to form the average image and reduce the effect of image sensor noise.
The light intensity returned by an image sensor is the sum of a bias

and the actual light intensity. Depending on the type of sensor, the bias
may be different for the different color channels and for different pixels.

28



3.3 Method

Since a bias affects the ratios between the intensities of the different color
components, the bias has to be subtracted before the chromaticities are
calculated. Otherwise the chromaticity will depend on the luminance.
The averaging over many images and the bias correction are performed

to be able to estimate the actual color distribution of the foreground ob-
jects. The variations that remain after these corrections stem mainly from
differences in color on different parts of the training objects and from
varying reflectance in different directions.

Histogram

A histogram over the chromaticities in the training data is created to
estimate the probability density (up to a scale) for different chromaticities.
For this histogram a grid of bins is created in the chromaticity plane.
For each pixel in the training data, let the bias-corrected intensities

be (R1,G1, B1) and (R2,G2, B2) for the two light sources respectively, and
the corresponding chromaticities be (r1,�1) and (r2,�2). According to the
last paragraph in Sec. 3.2, the observed chromaticity will then be on the
straight line between (r1,�1) and (r2,�2) for all combinations of the two
light sources. Hence, all bins in the histogram that are intersected by
the line between (r1,�1) and (r2,�2) are increased by 1. When all pixels
have been added to the histogram, it is normalized so the total probability
mass equals 1.

Look-Up Table

In order to minimize the amount of calculations at classification time, as
much as possible is calculated off-line and stored in a look-up table. The
table takes the intensities of red, green and blue in an image as inputs
and returns the probability of that pixel belonging to the foreground.
When choosing the number of elements in the look-up table there is

no reason to choose more elements than the color depth of the image
can produce. Reducing the number of intensity levels, however, may give
significant reduction of the size of the look-up table (scaling as O(n3)),
with only marginal reduction in the color classification accuracy caused
by larger round-off errors in the intensities.
As a first step in creating the look-up table, the bias is subtracted from

the (R,G, B)-intensities of each element and the corresponding probabil-
ity density is retrieved from the (r,�)-histogram. Each element in the
look-up table covers a small cube in (R,G, B)-space, and to reduce sam-
pling artifacts the resulting probability density is calculated as the aver-
age of all bins in the (r,�)-histogram covered by the small (R,G, B)-cube.
In this process the probabilities are assumed to be independent of the
total intensities, (R + G + B). The result will be a look-up table where

29



Chapter 3. Color-Based Detection Robust to Varying Illumination

most elements are close to zero, and the elements with a high probability
of belonging to the foreground will form a cone with its tip at the point
corresponding to the bias, and the cone gets a larger cross-section area
as the total intensity increases.
We now have a table with the probability densities for the actual colors

of the foreground objects, but the captured images will be corrupted by
noise. Hence, the look-up table is convoluted with a Gaussian kernel that
corresponds to the noise variance of the image sensor. This smoothing
operation handles in a neat way the fact that the chromaticity is affected
more by noise in dark areas than in well illuminated areas. In the parts
of the look-up table where the intensities are high, the cone of foreground
colors is wide compared to the smoothing kernel and the probability den-
sities will not be affected much by the smoothing operation. However, in
the darker parts of the table, near the tip of the cone, the smoothing oper-
ation will spread out the probability mass over a much larger volume than
before and will result in a lower peak probability density. This reflects the
reality well and results in more uncertain classifications in dark areas.
We now have a table with scaled probability densities for observing

different colors from a foreground object. To determine the probability
P f� of the pixel belonging to the foreground, the probability density p f�
of the foreground has to be compared to the probability density pb� of the
background:

P f� =
p f�

p f� + pb�
(3.4)

For simplicity, the probability density of the background is assumed to be
the same for all colors, and its value is the only tuning parameter of the
algorithm.
For the elements in the look-up table where any of the colors is sat-

urated, the probability is set to P f� = 0.5, indicating that nothing can
be said about that pixel and both foreground and background are equally
likely.
Finally, all elements in the look-up table are subtracted by 0.5 to gen-

erate scores. This results in a table where positive scores indicate that
the color is most likely to belong to the foreground and negative scores
indicate that the color is most likely to belong to the background.

Image of Scores

The operations described so far can be done off line during the training
phase. The remaining operations have to be done in real time on the
images that should be analyzed. The first operation on the image is to
replace the RGB-value of every pixel with the corresponding score from

30



3.4 Experimental Results

the look-up table. This gives a soft foreground/background classification
of each pixel.

Motion Detection

Motion detection may be performed if it is desired to only detect objects
that are moving. For the proposed motion-detection method it is assumed
that the image sensor noise is Gaussian with known variance. For each
pixel, the difference between the current image and the previous image
are calculated. If the difference is small, it was probably only caused by
noise, but if the difference is big, there was probably motion in the area
exposing that pixel. Let Pm be the confidence level (in the range [0, 1]) of
a hypothesis test testing whether the difference could be inferred to be
caused by motion, and not only by noise.
If the score of the pixel is positive, it is multiplied by Pm. If Pm is close

to one (there was almost certainly motion), the score is hardly affected.
If Pm is close to zero, motion can neither be confirmed nor rejected, and
the score is reduce toward the neutral value zero.
Since only positive scores are affected by the motion detection, and

since they are reduced toward 0 (not −0.5) objects can be detected even if
parts of the background behind the foreground object have a color similar
to the foreground object.

Object Localization

For the application of the ball catcher it is necessary to localize thrown
balls in the images. For this purpose, each image is searched for circles
that locally maximize the sum of the scores for all pixels enclosed by the
circle. If the circle is made larger than the optimum, negative scores will
be included and reduce the sum. If the circle is made smaller than the
optimum, fewer pixels with positive score will be included, and the sum
will be reduced. The optima can be found efficiently using integral images
[Viola and Jones, 2001].

3.4 Experimental Results

Cameras

The algorithm described in this chapter was experimentally verified on
images captured by a Basler A602fc camera, connected to the computer
via FireWire. All images used for the experiments were captured with the
intensities as integers in the range [0, 255].

31



Chapter 3. Color-Based Detection Robust to Varying Illumination

Training

The bias of the camera was measured by capturing a number of images
in complete darkness and calculating the average intensities. The bias
was (5.5, 5.7, 41.4) and the standard deviation of the sensor noise was
(2.1, 1.5, 3.8), for the red, green and blue channels respectively. No signif-
icant differences could be observed between the different pixels.
Seven green balls were illuminated by fluorescent light only, and

100 images were captured by the camera. By calculating the average
image the colors could then be calculated with a standard deviation of
(0.21, 0.15, 0.38). Similarly 100 images were captured at noon when the
balls were illuminated by daylight only. One example image for each light
source is shown in Fig. 3.1. Seven green balls, marked by white circles
in the figure, were manually picked out and the 1859 pixels enclosed by
those circles were used for training. Note that the remaining green balls
in the image had a slightly more yellowish green color.
Figure 3.2 shows a scatter plot of the chromaticities for all the pixels

in the training data. Note that the sets of points from the different light
sources were almost disjoint. This means that if a classifier was trained
for only one of the light sources, it would work very poorly for the other
light source. For the histogram 750$750 bins were used and the result
is shown in Figs. 3.3 and 3.4. In Fig. 3.4 you can see the lines drawn
between the chromaticity pairs from the different illuminations, most in
the direction from lower left to upper right. The probability density of
the background was chosen so the total probability of the background
was 6 times larger than that of the foreground. This value was selected

50 100 150 200 250 300 350 400 450

20

40

60

80

100

50 100 150 200 250 300 350 400 450

20

40

60

80

100

Figure 3.1 Sample images from the training data. The top image was
captured with fluorescent light and the bottom image was captured with
daylight. The pixels enclosed by the white circles were used for training.

32



3.4 Experimental Results

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fluorescent
daylight

r

�

Figure 3.2 Scatter plot of the chromaticity for the pixels in the training
data. The black and red points correspond to data from the two different
light sources. The color scale in the background illustrates the chromatic-
ities of the points. For the camera used, the white curve illustrates the
response to monochromatic light in the range 390 – 700 nm.

200 400 600

100

200

300

400

500

600

700

 

 

0

10

20

30

40

50

r

�

Figure 3.3 Histogram of fore-
ground colors in the chromaticity
space.

100 150 200 250

200

250

300

350

 

 

0

10

20

30

40

50

r

�

Figure 3.4 The same histogram as
in Fig. 3.3, zoomed in on the area
with the observed chromaticities.

by tuning to find a good trade off between missed detections and false
positives.
Different sizes of the look-up table were evaluated and it was concluded

that the number of intensity levels per channel could be reduced from 256
(as in the original images) to 64 without any significant decrease in the
performance, giving a table size of 643 = 262144 elements. Figures 3.5
and 3.6 show scatter plots of the elements that had probability densities
higher than the background before and after smoothing. The probability
densities were transformed to probabilities and subtracted by 0.5 to get

33



Chapter 3. Color-Based Detection Robust to Varying Illumination

0 20 40 60
0

10

20

30

40

50

60

Red

G
re
en

0

50
0

50
0

20

40

60

Red Green

B
lu
e

0 20 40 60
0

10

20

30

40

50

60

Red

B
lu
e

0 20 40 60
0

10

20

30

40

50

60

Green

B
lu
e

Figure 3.5 Scatter plot of the elements in the look-up table that had
higher probability density than the background before the smoothing,
viewed from four different directions. Note that the values were continuous
in the range [0, 1], though this plot only shows which elements exceeded
the threshold 0.5. The tip of the cone corresponds to the bias of the camera.

the scores. The scores were scaled from the range [−0.5, 0.5] to [−127, 127]
and stored in 8-bit signed integers in the look-up table. The resulting size
of the look-up table was hence 256 kB, which easily fits inside the L2
cache of modern processors, allowing fast access when the pixels of an
image were classified.

Classification

Images were collected under various different illumination conditions to
test the performance of the classifier. In Fig. 3.7 one can see three images
captured with fluorescent light, daylight or a combination of both. In the
upper part of each image one can see a number of green balls placed on
a bar. The seven middle balls (of the type that was used for training)
had a slightly more bluish color than the two outer balls, that were more
yellowish green. In every image you can also see a ball (of the bluish kind

34



3.4 Experimental Results

0 20 40 60
0

10

20

30

40

50

60

Red

G
re
en

0

50 0

50
0

20

40

60

Red Green

B
lu
e

0 20 40 60
0

10

20

30

40

50

60

Red

B
lu
e

0 20 40 60
0

10

20

30

40

50

60

Green

B
lu
e

Figure 3.6 Scatter plot of the elements in the look-up table that had
higher probability density than the background, after the smoothing.
There is a small but important difference in smoothness compared to
Fig. 3.5

that was used for training) thrown toward the area below the camera.
If you look at different areas in the images, you can see that dark areas

tended to have probabilities close to 0.5, since the sensor noise made it
hard to determine the chromaticity of the object, while bright areas tended
to have probabilities close to one if they were green balls and close to zero
otherwise. The pixels where any of the color channels was saturated had
the probability 0.5.
The classification was the most confident when the scene was illu-

minated by a combination of daylight and fluorescent light. This can be
understood by looking at Figs. 3.2 and 3.4. The center area in Fig. 3.4
had the highest probability density, since those colors were likely to be
observed for all illumination conditions. When only one light source was
used, more of the observed colors were close to the boundary with lower
probability density.
Figure 3.8 illustrates how the range of colors classified as foreground

35



Chapter 3. Color-Based Detection Robust to Varying Illumination

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

 

 

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

 

 

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

 

 

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.7 Left column: Images that were used to test the classifica-
tion performance. Right column: Images showing the probability of a pixel
belonging to the foreground. Top row: Fluorescent light only. Middle row:
Fluorescent light and daylight. Bottom row: Daylight only.

36



3.4 Experimental Results

50 100 150 200 250

50

100

150

200

250

300

 

 

50 100 150 200 250

50

100

150

200

250

300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250

50

100

150

200

250

300

 

 

50 100 150 200 250

50

100

150

200

250

300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250

50

100

150

200

250

300

 

 

50 100 150 200 250

50

100

150

200

250

300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.8 Images of color scales, illustrating the width of the classifier
in different illumination conditions. Top row: Fluorescent light only.Middle
row: Fluorescent light and daylight. Bottom row: Daylight only.

37



Chapter 3. Color-Based Detection Robust to Varying Illumination

 

 

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.9 Probability of belonging to the foreground, where the prob-
ability was reduced for the pixels that did not change much since the
previous image.

varied with the lighting conditions. In the yellowish fluorescent light in
the top row, the cyan color in the color scale was classified as foreground,
since the observed color was close to that of the bluish green ball in
daylight. In the bluish daylight, however, the cyan color in the color scale
was too blue to be classified as foreground. On the other hand, the bluish
daylight made the yellowish large ball appear so blue that it was classified
as foreground, as seen in the bottom row of Fig. 3.8. The small green
ball (of the bluish kind used for training), was confidently classified as
foreground under all illuminations.
The images shown in Fig. 3.7 are samples from image sequences cap-

tured with a frame rate of 50 fps. Figure 3.9 shows the resulting prob-
ability image when the middle image in Fig. 3.7 was compared to the
previous image to perform motion detection, and the probabilities were
reduced for the pixels that had not changed much since the previous im-
age. Then the thrown ball was the only object with a high probability of
belonging to the foreground. The result of the ball detection described in
the last paragraph of Sec. 3.3 is indicated by a circle.

38



3.4 Experimental Results

Ball-Catching Robot

The algorithm described in this chapter was successfully used to let a
robot catch tossed balls, as described further in Chapter 8. The execution
time for the entire image analysis process was approximately 5 ms per
656$480-pixel image when executed on one of the cores of an Intel RF
CoreTM2 Quad CPU Q6600 processor running at 2.40 GHz

Validation of Assumptions

The method described in this chapter assumes that all illuminations are
linear combinations of two colors. To investigate whether this well de-
scribes the illumination conditions commonly encountered in real life,
images of the green balls were captured under a number of different illu-
mination conditions. The resulting distributions of the chromaticities are
shown in Fig. 3.10. The images were captured in a lab with windows, but
no direct sunlight could hit the balls. The daylight data used to train the
classifier for the experiments described previously in this section (green
in Fig. 3.10) were captured when the sky was blue but the sun itself
was behind clouds. The fluorescent-light training data (blue in Fig. 3.10)
were captured at night with fluorescent ceiling lamps pointing upwards,
so most of the light hitting the balls was reflected off the white ceiling.
The additional data sets were captured when it was sunny (red), cloudy

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.25

0.3

0.35

0.4

0.45

0.5

0.55

r

g

 

 

fluorescent ceiling lamps

blue sky

blue sky + direct sun

cloudy

fluorescent desktop lamp

incandescent desktop lamp

Figure 3.10 Observed chromaticities of the green balls for different il-
lumination conditions.

39



Chapter 3. Color-Based Detection Robust to Varying Illumination

(cyan), with a fluorescent desktop lamp shining directly onto the balls
(magenta), and with a light bulb shining directly onto the balls (black).
Note that in Fig. 3.10 the different data sets were plotted one after the
other, so the data sets in the bottom of the legend partly hide the data
sets in the top of the legend.
It can be seen that the different kinds of daylight and fluorescent light

almost formed a line in the chromaticity space. The fluorescent desktop
light was almost identical to the ceiling light that was used for training.
The cloudy light was close to the sunny light, but slightly further toward
the chromaticities of the fluorescent light. The light bulb, however, gave
chromaticities that were quite different.
Figure 3.10 indicates that the illuminations encountered in practice

really can be described as combinations of sunlight and fluorescent light,
as long as light bulbs are not used.

3.5 Discussion

In this chapter the probability density was assumed to be uniform for all
colors in the background, which is quite an unrealistic assumption. As an
alternative the background distribution could have been estimated in the
same way as the foreground, but then there would be a big risk that the
classification would perform poorly if the camera was moved to a different
room with different colors in the background. The uniform background
distribution was used here to show that the method worked with such
simple assumptions and should work even better with a properly modeled
background.
Only a combination of two light sources was considered. The method

could easily be generalized to several light sources. Instead of drawing a
line between the data points from the two light sources, one should then
draw the polygon forming the convex hull of the data points.
It was assumed that nothing was known about a pixel if any color

channel was saturated, which was conservative. For example, if only the
red and blue channels were saturated, one could with high confidence say
that the object was not green.
Many different machine learning strategies could have been considered

for training the classifier [Bishop, 2006], but if they are applied without
a good understanding of the problem it may be hard to collect data that
cover all illumination conditions that can be encountered at classification
time. With the method described in this chapter it was enough to capture
data under two different illumination conditions to be able to classify
images from a large range of illumination spectrums and a range of illu-
mination intensities that was limited only by the dynamic range of the

40



3.6 Conclusions

camera.

3.6 Conclusions

A method for designing a color classifier that works over a large range
of illumination conditions was presented. Only two different illumination
conditions were required during the training phase and there is only one
tuning parameter. The method was experimentally verified on real data
and used to detect balls for a ball-catching robot.

41



4

Compensation for Motion

Blur by Extrapolation of

Color Change

4.1 Introduction

When color is used to detect a moving foreground object in an image
with motion blur, the blurred regions may be difficult to classify correctly,
since the resulting colors may be significantly different from both the
foreground and the background. As a consequence, the position and size
of the foreground object may be difficult to estimate accurately.
This chapter presents a method for classifying the pixels in the blurred

regions more correctly. The color of the current image is compared to a
background image to estimate which pixels were subject to motion blur
and how large fraction of the exposure time they were exposed by the
foreground object. This makes it possible to determine the pose of the
foreground object more accurately. The method executes very fast and is
appropriate to use for real-time tracking.
The problems of image matting and blending are essential for cutting

an object from one image and pasting it into another [Jia et al., 2006;
Lalonde et al., 2007; Levin et al., 2008]. The color distributions of both
foreground and background, the object contour, and the level of trans-
parency of the edge pixels are then estimated, often using very little prior
information. At the edges of the object (in particular for fuzzy edges, e.g.,
around hair) the colors of foreground and background mix, which in many
ways resembles the process of motion blur. The methods that can solve
these general problems are, however, not suitable for real-time image pro-
cessing at high frame rates.
Much attention has been given to the problem of restoring blurred

images [Harris, 1966; Lu et al., 2006; Sezan and Tekalp, 1990; Yitzhaky

42



4.2 Motion-Blur Compensation

et al., 1999]. These methods typically model the relative motion between
the camera and the scene by estimating a point spread function (PSF).
The observed image is assumed to be generated by convolution between an
ideal image and the PSF. An estimate of the ideal image is then recovered
by deconvolution of the blurred image, taking noise characteristics into
account.
When objects should be detected, however, it is not necessary to recon-

struct the original image. This fact is exploited by the method described
in this chapter, which instead analyzes the images to determine which
pixels were subject to motion blur and estimates what fraction of the ex-
posure time they were exposed by a moving object. This information can
be used to determine the pose of the moving object more accurately. A key
property is that the method should be very fast, so that it can be used for
object tracking in real time.
Object tracking in videos has been treated in a large number of papers,

e.g. [Perez et al., 2002; Shen et al., 2010; Wu et al., 2009]. In [Dai et
al., 2006; Wu et al., 2011] the tracking performance was improved by
explicitly modeling the motion blur. These methods are more general than
the method presented here, in terms of what foreground objects they can
track and what backgrounds they can handle. They are, however, also
more complex and require much longer computation times.
The method described in this chapter was experimentally evaluated by

detecting balls for the ball-catching robot described in Chapters 2 and 8.
The same problem has been treated in [Bätz et al., 2010; Lippiello and
Ruggiero, 2012a; Kober et al., 2012], which used color-based detection,
and in [Barteit et al., 2008; Birbach et al., 2011], which used gray-scale
images and variations of the Hough transform. None of them, however,
mentioned any specific handling of motion blur.

4.2 Motion-Blur Compensation

Problem Formulation

In this chapter, I address the problem of determining whether the color
of a pixel may be the result of motion blur, under the requirement that
it should execute in real time for high frame rates. Based on such ana-
lysis, a method is designed to re-evaluate which pixels could be part of a
foreground object. Application of this method permits the pose of moving
foreground objects to be estimated more accurately.

Assumptions

The work in this chapter assumes that static cameras are used to capture
images of moving foreground objects. There should be a way to estimate a

43



Chapter 4. Compensation for Motion Blur

background image. The background should be fairly static but can contain
moving background objects.
There should be a function, 0 ≤ P f�(c) ≤ 1,∀c, that maps the color,

c, of a pixel to the probability that the pixel belongs to the foreground
(when there is no motion blur). The term foreground colors is in this
chapter used to denote colors for which P f� is large, though P f� is con-
tinuous and there is no sharp boundary for the foreground colors. The
set of foreground colors should be convex in the space of color component
intensities, explained further on page 47.

Fundamentals of Motion Blur

During image exposure each pixel is assumed to be exposed to its back-
ground color during the time Tb� ≥ 0 and exposed to a moving object
during the rest of the exposure; Tmv ≥ 0. They relate to the total expo-
sure time, T , as

T = Tb� + Tmv. (4.1)

Either Tb� or Tmv could be zero, which corresponds to the case with no
motion blur.
It is important to note that nothing has been assumed about the color

of the moving object at this point. There can be many moving objects in
the scene, but only (moving or static) objects within a given color range
are considered to be foreground objects in the terminology of this chapter.
Let cb� be the color of a given pixel in the background image, repre-

sented as a vector with the intensities of the different color components,
e.g., red, green, and blue. Similarly, let cmv be the color of a moving object
in the scene. An example with two color components is shown in Fig. 4.1.
If the moving object is passing in front of a given pixel during the

exposure, that pixel may be partly exposed by the background and partly
exposed by the moving object. The resulting observed color, cobs, will then
be a convex combination of cb� and cmv:

cobs =
Tb�

Tb� + Tmv
cb� +

Tmv

Tb� + Tmv
cmv . (4.2)

Fig. 4.1 illustrates how the color cobs is created. The relation between the
exposure times and the distances, a and b, in the figure is given by

a

Tmv
= b

Tb�
. (4.3)

44



4.2 Motion-Blur Compensation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cb�

cobs
cmv

a

b

P
ro
ba
bi
li
ty
of
be
lo
n
gi
n
g

to
th
e
fo
re
gr
ou
n
d,
P
f
�

Intensity of color component 1

In
te
n
si
ty
of
co
lo
r
co
m
po
n
en
t
2

Figure 4.1 Illustration of how the observed color is generated in a pixel
when motion blur occurs. In this example, two color components are used.
cb� is the background color for the given pixel, and cmv is the color of a
moving object that projects onto the pixel during part of the exposure.
cobs is the observed color resulting from the motion blur. The green/white
shades show how likely it is that a pixel belongs to the foreground, as a
function of the color.

Let r be the fraction of the exposure time that the pixel was exposed by
cmv, calculated as

r = Tmv

Tmv + Tb�
= a

a+ b . (4.4)

Figure 4.1 demonstrates an example scenario. The green/white shades
show P f�, the probability of a pixel belonging to the foreground as a func-
tion of the color. Further, cmv is in the center of the region of foreground
colors, and the exposure times relate as Tmv : Tb� = a : b = 70 : 30. This
example, hence, simulates a moving foreground object. Even though the
pixel was exposed by a foreground color during r = 70% of the exposure
time, the observed color is classified as being almost certainly background,
since cobs is outside the green area in the figure.

Method

When the motions of objects in the scene are not known, only cb� from
the background image and cobs from the current image are available, and

45



Chapter 4. Compensation for Motion Blur

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cb�

cobs cmv

a

b

Possible
values
of cmv

P
ro
ba
bi
li
ty
of
be
lo
n
gi
n
g

to
th
e
fo
re
gr
ou
n
d,
P
f
�

Intensity of color component 1

In
te
n
si
ty
of
co
lo
r
co
m
po
n
en
t
2

Figure 4.2 When the method is used, the background color, cb�, and the
observed color, cobs, are known. cobs is possibly generated by mixing cb� with
some color, cmv. If the ray of possible values of cmv intersects the region of
colors that have a high probability of being foreground, it is possible that
the pixel was exposed by a foreground object during a part of the exposure
time.

the values of cmv, r, and b etc. have to be estimated. Using the model
(4.2) for how colors mix, cobs must be on the line between cb� and cmv,
as illustrated in Fig. 4.1. Equivalently, when cb� and cobs are the colors
known, cmv must be somewhere on the ray that extends from cobs in the
direction opposite to cb�, as illustrated by the dashed line in Fig. 4.2. The
ray of possible values of cmv can be interpreted as an extrapolation of how
the color changed from the background, cb�, to the current observation,
cobs.
Hence, the set of possible values of cmv that could have generated the

observation, cobs, is restricted to a line, and each hypothesis of cmv is asso-
ciated with a corresponding value of r, which can be used to parameterize
the hypotheses. Inserting (4.4) into (4.2), and solving for cmv gives

cmv(r) =
(

1− 1
r

)

cb� +
1
r
cobs. (4.5)

An alternative way to determine cmv as a function of r is to solve (4.4)

46



4.2 Motion-Blur Compensation

for b,

b(r) =
(
1
r
− 1
)

a, (4.6)

and then use the distance b to determine cmv graphically from a figure
like Fig. 4.2. The case b(1) = 0 corresponds to the pixel being exposed only
by a moving object and cmv = cobs. Values of r closer to zero correspond to
larger Tb� and larger values of b, i.e., cmv being extrapolated further away
from cobs and cb�.
If the ray of possible values of cmv intersects the region of colors where

P f� is large, it is possible that the observed color was the result of mixing
the background with a foreground object. The task is now to estimate cmv
and an associated probability of belonging to the foreground.
It is unlikely that both r and P f�(cmv(r)) are large simultaneously

unless cobs was generated by mixing cb� with a foreground color, as we
will see in the next subsection. Motivated by this insight we propose that
the estimate of r should be given by

r̂ = argmax
0<r≤1

r ⋅ P f�(cmv(r)). (4.7)

In the presence of motion blur, P f� is not appropriate to answer the
question whether a pixel is part of the foreground, since it has no clear
interpretation when the pixel was exposed by foreground only during a
fraction of the exposure. To find the pose of the foreground object, we
propose to instead use the quantity

R f� = r̂ ⋅ P f�(cmv(r̂))
= max
0<r≤1

r ⋅ P f�(cmv(r)), (4.8)

where the probability that the moving object is a foreground object is
weighted by how long the pixel was exposed by it. It has the property
that the size and shape of the region where R f� > 0.5 is similar to the
actual foreground object.

Influence of Disturbances

Foreground objects with non-uniform color The measurement
model (4.2) is a simplification of the real measurement process. Specifi-
cally, it assumes that the moving object has uniform color.
If the moving object has non-uniform color, it will generate the same

observation, cobs, as if the entire moving object had the color c̄, where c̄
is the average of (and, hence, a convex combination of) the colors that
projected to the pixel during the exposure.

47



Chapter 4. Compensation for Motion Blur

This means that if a pixel is exposed by a range of foreground col-
ors, the measurement model (4.2) approximates these colors by a convex
combination thereof. If P f� has convex superlevel sets, this convex com-
bination also is a foreground color. The method, hence, works for objects
with non-uniform colors, but the set of foreground colors (for example the
green area in Fig. 4.2) should be convex. However, having a too large
range of foreground colors also increases the risk of false positives.

Motion in the background There is a risk that moving objects in the
image are erroneously classified as foreground. This can happen if the
color of the moving object is positioned between the colors of the back-
ground and the foreground in the color space. For example, the measure-
ment cobs in Fig. 4.2 could be generated by the marked hypothesis of
cmv and r = 0.7, but it could also be generated by a moving object with
cmv = cobs and r = 1. In order for this situation to generate large values
of R f�, however, both of the following conditions must be fulfilled:

1. The color of the moving object is positioned between cb� and the
foreground colors.

2. The color of the foreground object is close to the foreground colors.

If the first condition is not fulfilled, P f�(cmv(r)) is small for all r. If the
second condition is not fulfilled, r is small. In either case, the maximand
of (4.8) is small, thus, not generating any false positive of R f�.
Image sensor noise The measurement model (4.2) implies that if
cobs ,= cb�, an object has moved in front of the pixel. In practice, the differ-
ence in color can also be caused by image sensor noise, i.e., cobs = cb� + e,
where e is noise.
For the noise to cause false large values of R f�, the randomly generated

ray of possible cmv has to point in the direction of the foreground colors.
How likely this is depends on the size of the region of foreground colors,
and it is less likely to happen the more color components are used.
When cobs = cb�+ e and cb� is not similar to the foreground colors it is

required that b≫ a (i.e., r small) to find a hypothesis of cmv with a large
value of P f�(cmv). When extrapolating the color so far, however, the small
value of r makes the maximand of (4.8) small.
The sensor noise is, hence, unlikely to generate false positives unless

the background color is very similar to the foreground colors.

4.3 Experimental Results

The method described in this chapter was evaluated on data from the ball-
catching robot system described in Chapters 3 and 8. The cameras used

48



4.3 Experimental Results

0 20 40 60
0

10

20

30

40

50

60

Red

G
re
en

0

50

0

50

0

20

40

60

RedGreen

B
lu
e

0 20 40 60
0

10

20

30

40

50

60

Red

B
lu
e

0 20 40 60
0

10

20

30

40

50

60

Green

B
lu
e

Figure 4.3 Visualization of the 3D look-up table used to obtain P f� as a
function of the color, viewed from four different directions. The diagrams
show the elements that have a higher probability of belonging to the fore-
ground than to the background.

were of the type Basler A602fc, capturing RGB images with 656$480
pixels. The cameras were running at 50 FPS (frames per second) with
4 ms exposure time. The thrown balls were usually moving so fast that the
projections of a ball in two consecutive images were rarely overlapping.
Hence, the image captured just before the one being analyzed could be
used as background. When (4.8) was solved, 16 evenly spaced values of r
were evaluated to see which gave the largest value of the maximand.
A look-up table with 64$64$64 elements, generated by the method

described in Chapter 3, was used to calculate P f� as a function of the
intensities of red, green, and blue of a pixel. The values were, hence,
in the range 0 ≤ P f� ≤ 1, and the elements with P f� > 0.5 are marked
with blue dots in Fig. 4.3. These elements represent a range of greenish
chromaticities for a large range of intensities, forming a convex cone in
the RGB space.

49



Chapter 4. Compensation for Motion Blur

Detection of a Flying Ball

An example image, showing a green flying ball, can be seen in Fig. 4.4(a).
The ball is in the lower right corner of the image. It was thrown by the
person in the image and was flying toward a point beneath the camera.
Motion blur in the vertical direction is visible. The region around the ball
is magnified in Fig. 4.5(a).
In Fig. 4.4(b) and Fig. 4.5(b) the color of each pixel indicates its prob-

ability of belonging to the foreground, P f�. The values were obtained from
the look-up table shown in Fig. 4.3, assuming that there was no motion
blur. It can be seen that the blurred upper and lower parts of the ball
were classified to be background with high confidence, even though the
pixels were exposed by the ball during a part of the exposure time.
To find the position of the ball, a score was calculated as s = P f� − 0.5.

Hence, s was positive if the pixel was most likely to belong to the fore-
ground, and s was negative if the pixel was most likely to belong to the
background. The ball was then located by finding the circle that locally
maximized the sum of the scores of the pixels enclosed by the circle.
This operation was performed efficiently using integral images [Viola and
Jones, 2001].
The result of the ball detection is shown as white circles in Figs. 4.5(a)

and 4.5(b). The radius of the ball seems to be underestimated.
Figures 4.4(c) and 4.5(c) show R f�, i.e., the pixel-wise probability that

a foreground object was there during part of the exposure scaled by r
according to (4.8). The region with R f� > 0.5 is more circular than the
region with P f� > 0.5 in Fig. 4.5(b), and hence resembling the actual
shape of the ball better. Above and below the circular red/yellow region
in Fig. 4.5(c), there are cyan regions with R f� significantly larger than
zero, but less than 0.5, indicating a larger uncertainty of the position in
the vertical direction than in the horizontal direction.
The result of the ball detection applied to R f� is shown as black circ-

les in Figs. 4.5(a) and 4.5(c). The estimated radius appears to be more
accurate than for the white circle.
Figures 4.4(d) and 4.5(d) show the estimated value of r, i.e., the frac-

tion of the exposure time that a pixel was exposed by a green ball. The
estimation seems to have worked very well for the pixels that were actu-
ally exposed by the green ball. The value of r is close to 1 in the center of
the ball, and r gradually decreases when going up or down in the image,
toward the blurred regions.
In the rest of the image, the estimates of r are basically only noise,

but the effect on R f� (which is the quantity used to detect foreground) is
small, as expected from the analysis in Sec. 4.2. If you compare Figs. 4.4(b)
and 4.4(c) you can see slightly more noise in R f� than in P f�, e.g., on the

50



4.3 Experimental Results

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

(a) RGB image.

 

 

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Probability of belonging to the fore-
ground, P f�(cobs); without motion-blur es-
timation.

 

 

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) R f� , the probability that a foreground
object passed the pixel during the exposure,
scaled by r̂; with motion-blur estimation.

 

 

50 100 150 200 250 300 350 400 450

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Estimated values of r; the fraction of
the exposure time that the pixels were ex-
posed by the ball.

Figure 4.4 Analysis of an example image with a thrown green ball. The
ball can be seen in the lower right corner of each image.

51



Chapter 4. Compensation for Motion Blur

380 390 400 410 420 430

580

590

600

610

620

630

640

(a) RGB image.

 

 

380 390 400 410 420 430

580

590

600

610

620

630

640 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) P f�(cobs), without
motion-blur estimation.

 

 

380 390 400 410 420 430

580

590

600

610

620

630

640 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) R f� , with motion-blur
estimation.

 

 

380 390 400 410 420 430

580

590

600

610

620

630

640 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Estimates of r; r̂.
380 390 400 410 420 430

580

590

600

610

620

630

640

(e) Estimates of the color
of the moving object;
cmv(r̂).

 

 

380 390 400 410 420 430

580

590

600

610

620

630

640 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) P f�(cmv(r̂)), the proba-
bility that a foreground ob-
ject passed during the ex-
posure.

Figure 4.5 Magnification of the region around the ball in Fig. 4.4. The
circles show the estimated size and position of the ball. White circles:
withoutmotion-blur estimation. Black circles: withmotion-blur estimation.

floor in the lower left corner.
On the edges of the person’s right arm in Fig. 4.4(c), you can see

large values of R f�, caused by moving background objects as described on
page 48. The values were, however, not large enough to cause erroneously
detected foreground.

Improved Estimate of Size and Position

In order to evaluate how the motion-blur estimation affected the accuracy
of the estimated position and radius of the ball, images of 31 throws were
captured, resulting in totally 877 images of the ball. The images were
captured with or without people walking around in the background, and
the scene was lit by sunlight, fluorescent light, or a combination of both
light sources. The ball thrown had a radius of 30 mm. Since the ball was
observed by two different cameras, and the motion was tracked, it was
possible to estimate the position of the ball at each measurement. When
the position was known, it was possible to calculate the expected radius
of the ball in the image, giving a ground truth for the radius estimation.
The tracking of the ball was performed by a Kalman filter running

52



4.3 Experimental Results

10 15 20 25 30 35 40
0

50

100

150

200

250

300

 

 

With blur estimation

Without blur estimation

Correct value

Estimate of ball radius [mm]

Figure 4.6 Histogram of the estimates of the ball radius. The correct
radius, 30 mm, is indicated by a green line.

0 10 20 30 40 50 60
0

50

100

150

200

250

 

 

With blur estimation

Without blur estimation

Position errors [mm]

Figure 4.7 Histogram of the one-step prediction errors of the positions
of the ball.

All measurements Bright background
Blur est. mean std mean std
No 27.2 mm 4.7 mm 23.7 mm 3.2 mm
Yes 29.5 mm 4.0 mm 28.2 mm 1.6 mm

Table 4.1 Statistics on the performance of the ball-radius estimation,
with and without motion-blur estimation. In the left half all measurements
are included. The right half only includes measurements made with the
bright yellow floor as background. The correct radius was 30 mm.

53



Chapter 4. Compensation for Motion Blur

14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

 

 

With blur estimation

Without blur estimation

Correct value

Estimate of ball radius [mm]

Figure 4.8 Histogram of the estimates of the ball radius. This figure
only includes measurements that had the bright floor as background. The
correct radius, 30 mm, is indicated by a green line.

0 10 20 30 40 50 60
0

5

10

15

20

25

 

 

With blur estimation

Without blur estimation

Position errors [mm]

Figure 4.9 Histogram of the one-step prediction errors of the positions
of the ball. This figure only includes measurements that were made with
the bright floor as background.

with a time step of 20 ms, the same as the duration between two consec-
utive images. The ball was modeled as a point mass affected by gravity
and air drag according to Eq. (2.4).
Figure 4.6 shows a histogram of the estimates of the ball radius, with

and without motion-blur estimation. The mean and standard deviation
are given in the left half of Table 4.1. It can be seen that the use of
motion-blur estimation resulted in a mean value closer to the correct
value, 30 mm, and a smaller standard deviation. In particular, the tail of
underestimated radii was decreased.
The one-step prediction of the position of the ball was compared to the

measured position, to evaluate the accuracy of the position estimates. The
result, with and without motion-blur estimation, is displayed in Fig. 4.7,

54



4.4 Discussion

showing that the motion-blur estimation gave a slightly reduced error.
The mean error decreased from 5.4 mm to 4.9 mm.
When the ball was moving in front of a dark background, the colors

in the blurred edges of the ball were very similar to the actual color
of the ball, only darker. Hence, the radius estimation worked quite well
with dark backgrounds, even without motion-blur estimation. When the
background was the bright yellow floor, however, the colors in the blurred
regions were very different from the green color of the ball, and then the
use of the motion-blur estimation gave a very large improvement of the
performance, as shown in Figs. 4.8 and 4.9, and the right half of Table 4.1.
Figure 4.9 shows that the motion-blur compensation managed to recover
an outlier position measurement.

Real-Time Execution

The motion-blur estimation was performed in real time to track balls for
the ball-catching robot. The code was written in C and executed on one of
the cores of an Intel RF CoreTM2 Quad CPU Q6600 processor running at
2.40 GHz.
The approximate positions and radii of the balls were first detected

using P f�. In a square around each estimate, R f� was then calculated
and used to refine the estimates of the positions and radii.
The total execution time was approximately 5 ms per image, and the

motion-blur estimation added 60 µs, i.e., an increase of only 1.2 %. The
image analysis had to be performed on one pair of images every 20 ms,
and the total time for solving the correspondence problem and executing
the tracker was approximately 150 µs.

4.4 Discussion

In this chapter r was estimated for a single pixel at a time, giving benefits
in the form of low complexity and fast computation time. To my knowledge,
no previous method can estimate the motion blur for pixels individually.
The estimates showed good accuracy where motion blur occurred, and
the accuracy could probably be improved by estimating r jointly with the
position and velocity of the ball, but it would come with the cost of higher
complexity and longer computation times.
The motion-tracking methods [Dai et al., 2006; Perez et al., 2002; Shen

et al., 2010; Wu et al., 2009; Wu et al., 2011] are more general than the
method described in this chapter, but they have typically been reported
to run at 10− 20 FPS on 320$240 pixel images. In terms of computation
time, my method could run at 200 FPS on 656$480 pixel images.

55



Chapter 4. Compensation for Motion Blur

Additionally, my method can run independently from the tracker, and
does not need any prior information on where in the image the object
should be. If the predictions from the tracker were used to limit the region
to search for the ball in, the execution times reported in Sec. 4.3 could
probably be reduced even more.
One drawback of the proposed method is that R f� has slightly higher

noise level than P f�. For an erroneous large value of R f� to occur, however,
the ray extending from cb� through cobs has to intersect the foreground
colors, combined with cobs being closer to the foreground colors than to
cb�. In the experiments, the increased noise level had a small impact,
compared to the improved performance in the regions where motion blur
occurred.
One way to reduce the amount of false positives caused by the in-

creased noise level, is to find the approximate position of the ball using
P f�, and then locally refine the position estimate using R f�. For the ball-
catching robot, false positives can also be filtered out if they do not match
the motion model of a flying ball.
The proposed method does not model sensor noise, and it is argued

why this only has a small impact on R f�. A natural extension would be
to model the noise, which probably could give better estimates of r, and
possibly also better estimates of R f�.
The discrepancy between the one-step predictions and the correspond-

ing measurements, presented in the experimental results, were not caused
only by image measurement errors, but also by prediction errors caused by
load disturbances and modeling errors. Hence, the actual measurement
errors were probably smaller than the values presented in Fig. 4.7.
Figure 4.5(e) shows the value of cmv(r̂), i.e., the estimated color of

the object that caused motion blur in Figure 4.5(a). Fig. 4.5(f) shows the
values of P f�(cmv(r̂)), i.e., the estimated probability that the moving object
was a foreground object. Figures 4.5(e) and 4.5(f) indicate which pixels
were exposed by the ball during any part of the exposure time. The length
of this region could be used to estimate how far the ball traveled during
the exposure time and give an estimate of the velocity of the ball.
P f�(cmv(r̂)) in Fig. 4.5(f) indicates which pixels were exposed by the

ball during any part of the exposure, while P f�(cobs) in Fig. 4.5(b) indi-
cates which pixels were exposed by the ball during the entire exposure.
R f� in Fig. 4.5(c) can be interpreted as an interpolation of P f�(cmv(r̂)) and
P f�(cobs), and can be used to calculate the average position of a foreground
object during the exposure.
In the examples given, the previous image was used as background

to the current image. It had the advantage that the background image
adapted very quickly if the background or illumination changed, and this
approach was possible since the foreground object was moving fast.

56



4.5 Conclusions

4.5 Conclusions

A method for handling motion blur in color-based detection was described.
It estimates which pixels were subject to motion blur, as well as how large
part of the exposure time the pixel was exposed by a foreground object.
The method was successfully evaluated on data from a ball-catching robot
system. The method was shown to increase the accuracy when measuring
the positions and radii of flying balls. The method also executed fast,
making it suitable for high-speed tracking applications.

57



5

Initialization of the Kalman

Filter without Assumptions

on the Initial State

5.1 Introduction

When performing state estimation on dynamical systems, the Kalman
filter is a very commonly used tool [Kalman, 1960]. Just as for other re-
cursive algorithms, initialization is necessary. In the original formulation
of the Kalman filter, it was assumed that the distribution of the initial
value of the state had a known mean value and known, finite covariance.
If no such data are available, the estimate will have a transient in the
initial phase of the filtering. If it is possible to start the estimation well
before the estimate is to be used, this causes no problem, since the es-
timate will have time to converge. The transient can also be reduced by
assuming that the initial value has a large covariance.
However, if the estimate is needed as soon as possible after the start of

the estimation, it is desirable that not even the first estimates are biased
by the guess of the initial state. One such example is a ball-catching
robot, described further in Chapters 2 and 8. Only a limited number of
measurements are available during the flight of the ball, and to make the
motion of the robot as smooth as possible, it has to start moving as soon
as the catching position can be estimated. Thus, it is essential to have a
good estimate from the very start of the measurement series so the robot
can get to its target in time.
The class of systems considered in this chapter is discrete-time time-

varying linear systems on the form

x(k+ 1) = Φ(k)x(k) + Γ(k)u(k) + v(k)
y(k) = C(k)x(k) + e(k) (5.1)

58



5.1 Introduction

where x(k) is the state vector, u(k) is an input vector and y(k) is a mea-
surement vector. The matrix Φ(k) describes the system dynamics, Γ(k)
describes how the system is affected by the input, and C(k) describes
the measurement function. The disturbances v and e are assumed to be
white-noise processes with zero mean values, E[v(k)vT (k)] = Rv(k) 4 0,
E[e(k)eT (k)] = Re(k) ≻ 0, and E[v(k)eT (k)] = 0. The number of states is
assumed to be constant, but the numbers of inputs and outputs can be
time-varying.
Many specialized approaches for making an informed initialization of

the Kalman filter have been proposed for specific problems. In [Linderoth,
2008] it was assumed that a flying ball with the model (2.5) was always
observed by two cameras simultaneously, making it possible to measure
the 3D position in every time step. When the ball had been observed at
two different time instants, both position and velocity could then be esti-
mated. In [Einhorn et al., 2007] a mobile robot was used to estimate the
positions of stationary features. Taking images from two different posi-
tions and using the odometry measurements from the wheels, it was pos-
sible to estimate the positions of the features. These estimates were used
as initial values and were incrementally improved by means of a Kalman
filter. In [Hyland, 2002] and [Weiner, 1981] special care was taken when
estimating the subspace that was observable from the first measurement.
The estimation was then continued assuming large covariance in the re-
maining directions.
A more general way to initialize (5.1) is to stack all measurements to

form a large system of linear equations:







y(0)
y(1) − C(1)Γ(0)u(0)
y(2) − C(2) [Φ(1)Γ(0)u(0) + Γ(1)u(1)]

...








︸ ︷︷ ︸

y′

=








C(0)
C(1)Φ(0)
C(2)Φ(1)Φ(0)

...








︸ ︷︷ ︸

C′

x(0) + e′

(5.2)
where all the disturbances are collected in e′. The value of x(0) can be
estimated if C′ gets full row rank. One problem with (5.2) is that y′ and
C′ may become very large if many measurements are needed before C′

gets full row rank. One must also take into consideration how y(k) are
correlated for all k.
An alternative approach is to use the information form of the Kalman

filter [Kailath et al., 2000]. In the standard Kalman filter, the informa-
tion is represented by the state estimate, x̂, and its covariance matrix,
P. In the information form of the filter, the state is represented by the
information matrix, Z = P−1, and the information vector, ẑ = P−1 x̂. The

59



Chapter 5. Initialization of the Kalman Filter

fact that nothing is known about the state can then simply be represented
as Z = 0, corresponding to infinite covariance. However, the time update
of the information filter puts extra requirements on the system (5.1), e.g.,
that Φ is non-singular or that (5.1) is controllable.
A general method for initializing (5.1) with infinite initial covariance

was presented in [Hagander, 1973]. It maintains a matrix Λ(k) that spans
the directions that have infinite variance, which is used to determine
an alternative measurement update equation for the Kalman filter. Λ(k)
looses rank when more measurements are introduced and becomes the
zero matrix when the state becomes observable. In the directions with
infinite variance, all states are equally likely. The state estimate is rep-
resented by one out of these infinitely many points.
This chapter presents an alternative general way of initializing (5.1)

with infinite initial covariance. This is done by transforming the state esti-
mate into a basis where the directions with infinite variance are spanned
by a subset of the basis vectors. In the subspace spanned by the remaining
basis vectors, the variance is finite.

5.2 Preliminaries

The Kalman Filter

The Kalman filter can be used to estimate the state of (5.1) recursively
as described by

x̂(kpk) = x̂(kpk− 1) + K (k) (y(k) − C(k)x̂(kpk− 1))

K (k) = P(kpk− 1)CT(k)
(
C(k)P(kpk− 1)CT(k) + Re(k)

)−1

P(kpk) = P(kpk− 1) − K (k)C(k)P(kpk− 1)
x̂(k+ 1pk) = Φ(k)x̂(kpk) + Γ(k)u(k)
P(k+ 1pk) = Φ(k)P(kpk)ΦT (k) + Rv(k)

(5.3)

where x̂(lpk) denotes the estimate of x(l) based on measurements up to
sample k, and P(lpk) denotes the covariance matrix of x̂(lpk).

Singular Value Decomposition

Consider a matrix A ∈ R
m$n with rank(A) = r. Using singular value

decomposition (SVD) it can be factorized as

A = UΣVT (5.4)

where U ∈ R
m$r satisfies UTU = I, V ∈ R

n$r satisfies VTV = I and
Σ = diag(σ 1,σ 2, . . . ,σ r) with σ 1 ≥ σ 2 ≥ . . . ≥ σ r > 0

60



5.3 Optimal Solution of a Linear System of Equations with Noise

5.3 Optimal Solution of a Linear System of Equations

with Noise

This section describes methods for solving linear systems of equations,
which will be used later in this chapter.

Over-Determined System

Consider a system of linear equations with disturbances:

z = Gx +w (5.5)
where z ∈ R

m and G ∈ R
m$n are known and w ∈ R

m is a disturbance
with E[w] = 0 and E[wwT ] = Rw ≻ 0.
Assume that rank(G) = n < m, i.e., the system is over-determined. Let

x̂ denote the minimum-variance unbiased estimate of x, which is given by

x̂ = (GTR−1w G)−1GTR−1w z (5.6)
Rx = E

[
(x̂ − x)(x̂ − x)T

]
= (GTR−1w G)−1 (5.7)

according to the Gauss-Markov theorem [Kailath et al., 2000].

Under-Determined System

Again consider the system (5.5), but now assume that rank(G) = r < n,
i.e., the system of equations is under-determined. Still, x can be partly
determined. By singular value decomposition G can be factorized as

G = UΣVT (5.8)
It is possible, as a part of the SVD algorithm, to construct

S =
[
S f Si

]
∈ R

n$n (5.9)

such that S f = V and STS = I. Define x f ∈ R
r and xi ∈ R

n−r as the
unique solution to

x = S
[
x f
xi

]

= S f x f + Sixi (5.10)

Note that x f is a parameterization of the part of x that can be estimated
by (5.5), and xi is a parameterization of the null space of G. Inserting
(5.8) and (5.10) into (5.5) and noting that VT [S f Si] = [I 0] one obtains

z = Gx +w
= UΣVT (S f x f + Sixi) +w
= UΣx f +w

(5.11)

Since UΣ has full row rank, one can solve (5.11) for x̂ f , using the method
for over-determined systems described in the previous subsection.

61



Chapter 5. Initialization of the Kalman Filter

5.4 Filter Initialization

State Partitioning

During the initialization of the Kalman filter there may be times when the
variance of the state estimate is finite in some directions of the state space
and infinite in other directions. To handle this situation the state can by
a linear transformation be reoriented to a space where the directions with
infinite variance are orthogonal to as many basis vectors as possible. Let
the state x̄ in this alternative space be defined by

T x̄ = x (5.12)

where T ∈ R
n$n and TTT = I. Let ˆ̄x denote the estimate of x̄, and denote

the estimation error by
˜̄x = x̄ − ˆ̄x (5.13)

Throughout the chapter it is assumed that the estimates are designed to
be unbiased, i.e., so that E [ ˜̄x] = 0. The state can be partitioned as

x̄ =
[
x̄ f
x̄i

]

(5.14)

such that the covariance-matrix of ˆ̄x f is finite and the variance of ˆ̄xi is
infinite in all directions. Define n f and ni such that

n f + ni = n (5.15)

and x̄ f ∈ R
n f , x̄i ∈ R

ni . Similarly, the transformation matrix T can be
partitioned as

T =
[
T f Ti

]
, Tf ∈ R

n$n f , Ti ∈ R
n$ni (5.16)

Since T is orthonormal we have

T−1 =
[
T f Ti

]−1 =
[
T f Ti

]T =
[

TTf

TTi

]

(5.17)

Note for future reference that inserting (5.14) and (5.17) into (5.12) gives
[
x̄ f
x̄i

]

=
[

TTf

TTi

]

x (5.18)

and inserting (5.16) into (5.12) gives

x = T f x̄ f + Ti x̄i (5.19)

62



5.4 Filter Initialization

which shows that Tf spans the directions in which x̂ has finite variance
and Ti spans the directions in which x̂ has infinite variance.
Let P̄ f denote the covariance matrix of ˆ̄x f :

P̄ f = E
[
( ˆ̄x f − x̄ f )( ˆ̄x f − x̄ f )T

]
(5.20)

In the remainder of the chapter all quantities may be appended with
time indices so that, for example, ˆ̄x f (lpk) is the estimate of x̄ f (l) based on
measurements up to sample k, and x̂(lpk) = T(lpk) ˆ̄x(lpk). Note, however,
the slightly different case x(l) = T(lpk)x̄(lpk). The actual state x has only
a single time index, since the second time index is meaningful only for
estimates. Still x̄ has two time indices to indicate which T was used for
the transformation.
To conclude, all the knowledge about x̂(lpk) can be fully specified by

T(lpk), ˆ̄x f (lpk) and P̄ f (lpk).

Time Update

Assume that T(kpk), ˆ̄x f (kpk) and P̄ f (kpk) are known. The purpose of
the time-update operation is to calculate T(k+ 1pk), ˆ̄x f (k+ 1pk), and
P̄ f (k+ 1pk), i.e., an estimate of x(k + 1) based on measurements up to
sample k. The time-update equation of the state model (5.1) is given by

x(k+ 1) = Φ(k)x(k) + Γ(k)u(k) + v(k) (5.21)

but it can not be used for calculations directly if x̂(k) does not have finite
variance.
Choose the transformation to be used for the state estimate after the

time update, T(k+ 1pk), such that

TTf (k+ 1pk)Φ(k)Ti(kpk) = 0 (5.22)
n f (k+ 1pk) = rank(Tf (k+ 1pk))

= n− rank (Φ(k)Ti(kpk))
(5.23)

TT(k+ 1pk)T(k+ 1pk) = I (5.24)

Equation (5.22) says that the columns of T f (k+ 1pk) should be in the left
null space of Φ(k)Ti(kpk). Why this is a good idea will become clear in
Eq. (5.28). The condition (5.23) is imposed to make sure that Tf (k+ 1pk)
spans the entire left null space of Φ(k)Ti(kpk). Equation (5.24)makes sure
that the transformation is orthonormal. The calculation of T f (k+1pk) can
be done by means of SVD.
Note that

rank (Φ(k)Ti(kpk)) ≤ rank (Ti(kpk)) (5.25)

63



Chapter 5. Initialization of the Kalman Filter

Inserting (5.25) and (5.15) into (5.23) gives

n f (k+ 1pk) = n− rank (Φ(k)Ti(kpk))
≥ n− rank (Ti(kpk))
= n− ni(kpk)
= n f (kpk)

(5.26)

The conclusion of (5.26) is that

n f (k+ 1pk) ≥ n f (kpk) (5.27)

where strict inequality holds if and only if Φ(k) is singular and its null
space satisfies N (Φ(k)) ∩R(Ti(kpk)) ,= ∅.
Now that we have chosen a state transformation, we go on to see how it

affects the state estimation. Premultiplying (5.21) with TTf (k+ 1pk) gives

x̄ f (k+ 1pk)

= TTf (k+ 1pk)x(k+ 1)

= TTf (k+ 1pk)Φ(k)x(k)
+ TTf (k+ 1pk)Γ(k)u(k)
+ TTf (k+ 1pk)v(k)

= TTf (k+ 1pk)Φ(k) (T f (kpk)x̄ f (kpk) + Ti(kpk)x̄i(kpk))
+ TTf (k+ 1pk)Γ(k)u(k)
+ TTf (k+ 1pk)v(k)

= TTf (k+ 1pk)Φ(k)T f (kpk)x̄ f (kpk)
+ TTf (k+ 1pk)Γ(k)u(k)
+ TTf (k+ 1pk)v(k)

(5.28)

where the equalities result from (5.18), (5.21), (5.19), and (5.22), respec-
tively. Here the advantage of choosing T(k+ 1pk) according to (5.22) be-
comes clear. Because of this choice x̄ f (k+ 1) is independent of x̄i(k) and
only depends on quantities with finite variance. Condition (5.23) guaran-
tees that T f (k+ 1) has the highest possible rank.
Motivated by (5.28), let the time update of the state estimate be de-

fined by
ˆ̄x f (k+ 1pk) = TTf (k+ 1pk)Φ(k)T f (kpk) ˆ̄x f (kpk)

+ TTf (k+ 1pk)Γ(k)u(k)
(5.29)

64



5.4 Filter Initialization

Inserting (5.28) and (5.29) into (5.13) gives

˜̄x f (k+ 1pk) = x̄ f (k+ 1pk) − ˆ̄x f (k+ 1pk)
= TTf (k+ 1pk)Φ(k)T f (kpk) ˜̄x f (kpk)
+ TTf (k+ 1pk)v(k)

(5.30)

It is easily verified that E [ ˜̄x f (k+ 1pk)] = 0 as required. The variance of
the estimate becomes

P̄ f (k+ 1pk) =E
[
˜̄x f (k+ 1pk) ˜̄xTf (k+ 1pk)

]

= QP̄f (kpk)QT + TTf (k+ 1pk)Rv(k)T f (k+ 1pk),

where Q = TTf (k+ 1pk)Φ(k)T f (kpk)

(5.31)

Measurement Update

Assume that T(kpk − 1), ˆ̄x f (kpk − 1) and P̄ f (kpk − 1) are known. The
purpose of the measurement update is to calculate T(kpk), ˆ̄x f (kpk) and
P̄ f (kpk). The state model (5.1) gives the measurement equation

y(k) = C(k)x(k) + e(k) (5.32)

Combining (5.13) and (5.18) gives

ˆ̄x f (kpk− 1) = x̄ f (kpk− 1) − ˜̄x f (kpk− 1)
= TTf (kpk− 1)x(k) − ˜̄x f (kpk− 1)

(5.33)

where the last term is a zero-mean Gaussian random variable with co-
variance given by (5.31).
Equations (5.32) and (5.33), containing the information from the new

measurement and from the previous state estimate, respectively, can be
formulated as a single linear system of equations:

[
y(k)

ˆ̄x f (kpk− 1)

]

︸ ︷︷ ︸

z

=
[

C(k)
TTf (kpk− 1)

]

︸ ︷︷ ︸

G

x(k) +
[

e(k)
− ˜̄x f (kpk− 1)

]

︸ ︷︷ ︸

w

(5.34)

which can be solved by the method for under-determined systems, de-
scribed on page 61, with

Rw =
[
Re(k) 0
0 P̄ f (kpk− 1)

]

(5.35)

65



Chapter 5. Initialization of the Kalman Filter

The solution is given by

T(kpk) = S (5.36)
ˆ̄x f (kpk) = (ΣUTR−1w UΣ)−1ΣUTR−1w z (5.37)
P̄ f (kpk) = (ΣUTR−1w UΣ)−1 (5.38)
n f (kpk) = rank(Σ) = rank(G) (5.39)

where U , Σ and S are defined in (5.8) and (5.9).
From the definition of G in (5.34) it can be seen that

rank(G) ≥ rank (T f (kpk− 1)) (5.40)
The orthonormality of T(kpk− 1) in combination with (5.16) gives

rank (T f (kpk− 1)) = n f (kpk− 1) (5.41)
Combining Eqs. (5.39)–(5.41) results in

n f (kpk) ≥ n f (kpk− 1) (5.42)
where equality holds if and only if R(CT (k)) ⊆R (Tf (kpk− 1)). Equations
(5.27) and (5.42) together show that n f (the dimension of the subspace
with finite variance) never decreases and give conditions for when n f
increases.
If G has full rank the variance of x̂(kpk) will be finite in all directions

and n f (kpk) = n.
Remark: For n f (kpk − 1) = n and Tf (kpk − 1) = I it can be shown

that the solution of (5.34) is equivalent to the measurement update of
the ordinary Kalman filter (5.3).

How to Start and When to Stop

Assuming that nothing is known about x when the estimation starts out
(n f = 0), the first thing to do is to apply the measurement update to
the first measurement. The lower blocks of the matrices z and G, and all
blocks except Re in Rw, will then be empty, since there is no prior state
estimate.
If the initial variance of x̂ is infinite only in some directions

(0 < n f < n) and the available information can be represented by a
system of linear equations with noise, then this prior information can be
plugged into Eq. (5.34) directly.
If the measurements provide enough information, the state becomes

observable and the variance of the estimate will be finite in all directions
(ni = 0) after a number of iterations of the filter. Then, it is no longer
necessary to use the algorithm described in this chapter, and one can
just as well use the standard Kalman filter (5.3), since the methods are
equivalent for ni = 0.

66



5.5 Simulation Example

5.5 Simulation Example

To illustrate the use of the filter, consider a flying ball affected by gravity
and negligible air drag. The ball is tracked by a vision system, where each
camera can provide an estimate of the line that intersects both the ball
and the focal point of the camera, but no depth information is available.
The process model is given by Eq. (2.5) on page 24 with the white-noise
load-disturbance covariance Rv = 10−6 I6$6. To make the example easy to
follow, we use the sampling period h = 1 and the Earth gravity constant
� = 10. Let the initial state of the system be x(0) = [1 2 3 0 1 4]T , where
the first three components are positions and the last three components
are velocities. The trajectory of the ball is shown as a black curve in
Fig. 5.1. The positions of the ball at the measuring instants are marked
with green circles and the corresponding lines that are extracted from the
images are marked in red. One camera observes the ball at time steps 0
and 2, and another camera observes the ball at time step 1. The simulated
measurements are given by

y(0) =
[
3
1

]

, C(0) =
[
0 1 0 0 0 0
0 0 1 0 0 0

]

(5.43)

y(1) =
[
3
2

]

, C(1) =
[
1 0 0 0 0 0
0 1 0 0 0 0

]

(5.44)

y(2) =
[
−1.9
1

]

, C(2) =
[
0.4 0.3 0 0 0 0
0 0 1 0 0 0

]

(5.45)

Re(0) = Re(1) = Re(2) = 10−4 I2$2 (5.46)
Performing the state estimation on the given data gives the following

results:

67



Chapter 5. Initialization of the Kalman Filter

0
5

−6−4−2024
−10

−8

−6

−4

−2

0

2

4

y(2)

y(0)

y(1)

ZX

Y

Figure 5.1 Simulated ball trajectory and measurements marked as
green balls.

Estimates at time 0 based on measurements up to time 0.

T f (0p0) =











0 0
1 0
0 1
0 0
0 0
0 0











(5.47)

Ti(0p0) =











1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











(5.48)

ˆ̄x f (0p0) =
[
3
1

]

(5.49)

P̄ f (0p0) = 10−4
[
1 0
0 1

]

(5.50)

68



5.5 Simulation Example

Estimates at time 1 based on measurements up to time 0.

Tf (1p0) =











0 0
0.707 0
0 0.707
0 0

−0.707 0
0 −0.707











(5.51)

Ti(1p0) =











1 0 0 0
0 0.707 0 0
0 0 0 0.707
0 0 1 0
0 0.707 0 0
0 0 0 0.707











(5.52)

ˆ̄x f (1p0) =
[
5.657
0.707

]

(5.53)

P̄ f (1p0) = 10−4
[
0.51 0
0 0.51

]

(5.54)

Estimates at time 1 based on measurements up to time 1.

T f (1p1) =











0 1 0 0
0 0 1 0
0.707 0 0 0
0 0 0 0
0 0 0 1

−0.707 0 0 0











(5.55)

Ti(1p1) =











0 0
0 0
0 0.707
1 0
0 0
0 0.707











(5.56)

ˆ̄x f (1p1) =







0.707
3
2
−6







(5.57)

P̄ f (1p1) = 10−4







0.51 0 0 0
0 1 0 0
0 0 1 1
0 0 1 2.02







(5.58)

69



Chapter 5. Initialization of the Kalman Filter

Estimates at time 2 based on measurements up to time 1.

T f (2p1) =











0 0.707 0 0
0 0 1 0
0.447 0 0 0
0 −0.707 0 0
0 0 0 1

−0.894 0 0 0











(5.59)

Ti(2p1) =











0.707 0
0 0
0 0.894
0.707 0
0 0
0 0.447











(5.60)

ˆ̄x f (2p1) =







0.447
2.121
−9
−16







(5.61)

P̄ f (2p1) = 10−4







0.214 0 0 0
0 0.51 0 0
0 0 5.03 3.02
0 0 3.02 2.03







(5.62)

Estimates at time 2 based on measurements up to time 2.

Tf (2p2) = I6$6 (5.63)
Ti(2p2) ∈ R

6$0 (5.64)

ˆ̄x f (2p2) =











2
−9
1
−1
−16
0











(5.65)

P̄ f (2p2) = 10−4











9.08 −3.77 0 9.08 −2.27 0
−3.77 5.03 0 −3.77 3.02 0
0 0 1 0 0 0.5
9.08 −3.77 0 10.1 −2.27 0
−2.27 3.02 0 −2.27 2.03 0
0 0 0.5 0 0 0.52











(5.66)

70



5.6 Discussion

Most insight on the estimation progress is given by studying T f . The
first measurement locates the ball on a line in the X -direction, which
gives information about the position in the Y- and Z-directions. This is
reflected in the columns of T f (0p0). After the time update the position
is no longer known. Only linear combinations of the positions and veloc-
ities can be determined, as seen in Tf (1p0). With the second measure-
ment, the coordinates in the X - and Y-directions are given, as seen in
Tf (1p1). Since it is the second measurement in the Y-direction, Ẏ can
be determined. Still, no information about Ẋ is available and, hence, X
is no longer known after the time update, as indicated by T f (2p1). The
last measurement gives information in the directions that still have in-
finite variance, and thus T f (2p2) spans the entire R

n and an estimate
x̂(2p2) = T f (2p2) ˆ̄x(2p2) can finally be computed.

5.6 Discussion

The reason for doing the partitioning suggested in this chapter, is the dif-
ficulty of representing matrices with infinite singular values and states
with correlated infinite variances. Special care must be taken before giv-
ing any numerical values of the state estimate x̂ in the original state
space. To see the complications, consider Eq. (5.19). If a row in Ti has
any non-zero element, then the corresponding element of x̂ has infinite
variance. The method in [Hagander, 1973] calculated an estimate in the
original state space and pointed out that is was one out of infinitely many,
equally likely estimates within a subspace. The method presented in this
thesis instead finds a transformation where x̄i is a minimal parameteri-
zation of the state along the directions with infinite variance, and x̄ f is
a minimal parameterization of the state along the directions with finite
variance. The full knowledge about the state is represented by T , ˆ̄x f and
P̄ f .
Equations (5.22)–(5.24) and (5.34) do not in general have a unique

solution for T . In this thesis SVD-based methods for solving the equations
are suggested, but other methods can be used. The transformation T can
be replaced by any T ′ fulfilling Eq. (5.12)–(5.20) such thatR(T f ) = R(T ′f ).
Of course ˆ̄x f and P̄ f have to be modified accordingly. In the example on
pages 67–70, the T matrices were chosen to align the basis vectors of
x̄ f with the basis vectors of the original state space as far as possible to
improve human readability.
The presented initialization procedure is useful when very little is

known about the initial state. If a priori knowledge is available, this
should of course be used to improve the estimate.
The state x = x(k), and hence also x̄ f and x̄i, are assumed to have

71



Chapter 5. Initialization of the Kalman Filter

Figure 5.2 Example illustrating state partitioning. The position of the
object o along the line l is unknown, and a new coordinate system, where
as many basis vectors as possible are orthogonal to the line, is chosen.

exact and finite time-varying values, although not known exactly. More
specifically it is assumed that no information at all is available about x̄i,
which is modeled as ˆ̄xi having infinite variance.
The information in ˆ̄x f can be used to give partial information about

the state before the full state is observable. For instance, it may be of
interest to know the altitude of an aerial vehicle before its longitude and
latitude can be estimated.
As an example of state partitioning, consider the scenario in Fig. 5.2,

where an object o is known to be near a given line l in 3D-space, but
nothing is known about its position along the line. Choose a coordinate
system such that its first two basis vectors are orthogonal to l and the
third basis vector is parallel to l. The position of o can then be partly
described by the first two components with a finite covariance matrix,
even though the variance in the direction of the third component (parallel
to l) is infinite.
The method presented in this chapter can handle infinite initial vari-

ances, but in practice most (all?) real quantities have finite variance. The
development of the method was motivated by the need to quickly get good
estimates for the ball-catching robot, no matter where the ball was thrown
from. However, considering the size of the room, the field of view and the
resolution of the cameras, and the physical limitations of a human pitcher,
it was safe to say the the distance from the robot to the ball was less than
15 m and the speed was less than 30 m/s. Using this information to form
an initial estimate did not cause any numerical problems for modern pro-
cessors, and it should generate more accurate estimates than a method
that does not make use of the actually available prior information. In the
light of these aspects, the initialization method presented here may be
considered a theoretical contribution, rather than a practical one.

72



5.7 Conclusions

5.7 Conclusions

A new way of initializing the Kalman filter was presented, making it
possible to calculate a state estimate that is not influenced by any guess
of the initial value of the state. Instead, the estimate can be determined
completely based on the first measurements.

73



6

Object Tracking with

Measurements from Single

or Multiple Cameras

6.1 Introduction

To be able to determine the position of a static object in 3D space by
means of computer vision, the object has to be observed by cameras from
at least two different view points, assuming that the size of the object
is not known. The same applies for measuring the position of a moving
object based on images captured at one single time instant. However, if
the cameras do not capture images simultaneously, or if a moving object is
not visible in all images, one can not rely on using triangulation methods
for making accurate position estimates of dynamical objects.
This chapter describes a strategy for tracking an object with known dy-

namical model, using a series of images where no pair has to be captured
simultaneously. It allows tracking of a point object in 3D space using a
single static camera, and provides a convenient way of fusing data from
multiple cameras.
The properties presented in the previous paragraph are very desirable

for a ball-catching robot. They allow any number of cameras to be used,
though at least two cameras are needed for good accuracy if the cameras
are static. If the position of the ball can not be extracted from an image,
due to occlusions or failed image analysis, the data from other images
captured simultaneously can still be used to improve the estimate of the
state of the ball. No explicit triangulation is needed.
An overview of tracking techniques is given in [Yilmaz et al., 2006].

Many methods focus on recognizing objects and determining correspon-
dences between frames. The recognition can be done using template
matching [Schweitzer et al., 2002], color histograms [Birchfield, 1998] in

74



6.2 Problem Formulation

combination with the mean-shift algorithm [Comaniciu and Meer, 1999],
SIFT features [Lowe, 1999], etc. When tracking a set of unlabeled points,
different approaches exist for determining correspondences. One possibil-
ity is to try to match a point in an image with the point being closest to it
in the next image [Salari and Sethi, 1990]. The method can be improved
by estimating the velocities of the points and assuming near-zero acceler-
ation. A method presented in [Ding et al., 2007] formed a Hankel matrix
out of the sequence of image point coordinates and analyzed the rank
of this matrix to identify tracklets obeying the same dynamical model.
A similar approach was used in [Lublinerman et al., 2006] to partition
image points into groups belonging to the same rigid object.
For a ball-catching robot it is not enough to determine correspondences

between image frames. It is also necessary to accurately determine the
state of the ball and perform reliable predictions of the future motion.
The method of this chapter does so by means of a Kalman filter [Kalman,
1960] and a dynamical 3D model. A compact way of relating image coordi-
nates to 3D rays and performing outlier detection is presented. The outlier
detection threshold is based on the uncertainties of the measurement and
the state estimate. The method was first published in [Linderoth et al.,
2010]
A similar method for parameterizing the ray relating to an image point

was presented in [Lippiello and Ruggiero, 2012a]. It was used to catch
balls with a single mobile camera. The state estimation was done by sim-
ulating the ball trajectory and trying to find the initial position and ve-
locity that best matched the measurements. In [Birbach and Frese, 2009]
an Unscented Kalman Filter, exploiting both position and size of the ball,
was used to track balls for a humanoid robot. Finding correspondences be-
tween images was done using a multiple-hypothesis tracker [Reid, 1979].

6.2 Problem Formulation

The goal is to track an object with a known process model. This is to be
done with images captured from different view points and where possi-
bly no images are captured simultaneously. The object to be tracked is
described by the discrete-time state-space model

x(k+ 1) = Φ(k)x(k) + Γ(k)u(k) + v(k) (6.1)

where x is the state vector and u is a known input signal. Measurements
are assumed to be on the form

y(k) = C(k)x(k) + e(k) (6.2)

75



Chapter 6. Object Tracking

Note that the C-matrix is time varying and will depend on the camera
parameters and the image coordinates at that particular time step. The
disturbances v and e are discrete-time white-noise processes with zero
mean values and covariances

E

([
v(i)
e( j)

] [
v(i)
e( j)

]T
)

=
[
Rv Rve
RTve Re

]

δ i j (6.3)

6.3 Method

State Estimation

A Kalman filter is used to estimate the state of the tracked object. The
update law can be described by (6.4)–(6.9). Here, for example, x̂(k+ 1pk)
denotes the estimate of x at sample k+ 1 based on measurements up to
sample k, and P(k+ 1pk) the covariance of that estimate.

x̂(kpk) = x̂(kpk− 1) + K f (y(k) − C(k)x̂(kpk− 1)) (6.4)

K f (k) = P(kpk− 1)CT (k)
(
Re(k) + C(k)P(kpk− 1)CT (k)

)−1 (6.5)
P(kpk) = P(kpk− 1) − K f (k)C(k)P(kpk − 1) (6.6)

x̂(k+ 1pk) = Φ(k)x̂(kpk− 1) + Γ(k)u(k) (6.7)
+ K (k) (y(k) − C(k)x̂(kpk− 1))

K (k) =
(
Φ(k)P(kpk− 1)CT(k) + Rve(k)

)
(6.8)

⋅
(
Re(k) + C(k)P(kpk− 1)CT(k)

)−1

P(k+ 1pk) = Φ(k)P(kpk− 1)ΦT(k) + Rv(k) (6.9)

− K (k)
(
Φ(k)P(kpk− 1)CT (k) + Rve(k)

)T

The Measurement Function

From the position of a feature point in a single image it is possible to
determine a ray in 3D-space along which the point must be situated, cf.
Fig. 6.1. The ray parameters then have to be related to the process model
states in some way in order to be used as input to the Kalman filter.
To determine the ray for a point in an image, first two lines through

the point in the image are chosen. The easiest way to do this is to take
one horizontal and one vertical line. Each one of these lines uniquely
defines a plane through the line and the focal point. Finally, the ray can
be determined as the intersection of these two planes.
Let x be an image point, and X a point in 3D space, both represented

as homogeneous coordinate vectors. For an introduction to homogeneous
coordinates, see Sec. A.1.

76



6.3 Method

X

Y

Z

lx
ly

ray

image point

image plane

focal point

Figure 6.1 Illustration of a ray. An object projected onto some image
point can be located anywhere along the corresponding ray. The coordinate
system in this example image corresponds to the camera projection matrix
Pc = [I3 03$1].

A line l in an image can be represented as the points fulfilling the
equation

lTx = 0 (6.10)
where l = [l1 l2 l3]T and x = [x y 1]T . Similarly, a plane π in space can be
represented as the points fulfilling

π
TX = 0 (6.11)

where π = [π1 π2 π3 π4]T and X = [X Y Z 1]T . If the point X projects onto
the image point x, then

x ∼ PcX (6.12)
where Pc is the camera projection matrix. Inserting (6.12) into (6.10), it
can be seen that all points projecting onto the line l satisfy

0 = lTx ∼ lTPcX = (PTc l)TX (6.13)
i.e., all points projecting onto l reside in the plane defined by

π = PTc l (6.14)
If the coordinate of a feature point in an image is (x, y), a convenient

choice of lines through this point is lx = [−1 0 x]T and ly = [0 −1 y]T (cf.
Fig. 6.1) corresponding to the planes defined by

πx = PTc lx
πy = PTc ly

(6.15)

77



Chapter 6. Object Tracking

The ray can then be described as the intersection of the planes πx and πy.
The planes in (6.15) each puts the constraint πTX = 0 on the feature

point position X. This can be rewritten as

0 = πTX =
[

π1 π2 π3 π4
]







X

Y

Z

1






Z[

−π4 =
[

π1 π2 π3
]





X

Y

Z



Z[

−π4 = cx′

where c =
[

π1 π2 π3
]

and x′ =
[
X Y Z

]T

(6.16)

If π is normalized so that
√

π 21 + π 22 + π 23 = 1 (6.17)

then −π4 can be interpreted as the signed length of the orthogonal pro-
jection of the feature point position onto the direction [π1 π2 π3].
Each image with a measurement of a feature position gives two con-

straints, each specified by a row vector c in (6.16); one in the x-direction
and one in the y-direction of the image. If several images are available,
this can be handled simply by adding rows in the C-matrix of (6.2):

C =










cax
cay
cbx
cby
...










(6.18)

where a and b denote different images and x and y the different measure-
ment directions. Similarly, the measurement vector y of (6.2) is composed
of the negative fourth component of the planes π in (6.15):

y=










−π4ax
−π4ay
−π4bx
−π4by
...










(6.19)

78



6.4 Detection of False Positives

If no measurements at all are available at some time step, the last term
of Eqs. (6.4), (6.6), (6.7), and (6.9) simply disappears.
The algorithm for generating the measurement function for the

Kalman filter can be summarized by the following steps:

1. For each image point, calculate the planes πx and πy according to
Eq. (6.15).

2. Normalize the π-vectors according to Eq. (6.17).

3. Stack the measurements to form C and y according to Eqs. (6.18)
and (6.19).

6.4 Detection of False Positives

When using computer vision, two different kinds of noise are common.
If the correct object was detected in the image, the value of the position
estimate has a distribution with most of the probability mass close to the
true value. There is also a risk that the position estimate was based on
the wrong feature, which typically results in outliers, i.e., estimates with
values far away from the main body of the distribution. For good tracker
performance, the outliers should be identified and eliminated.

Outlier Detection

In this subsection the time index is left out in the notation, since it is the
same for all quantities.
The measurement, y, is according to (6.2) given on the form

y= Cx + e (6.20)

with E[e] = 0 and E[eeT ] = Re. Based on the state estimate, x̂, the ex-
pected value of the measurement is

ŷ = Cx̂ (6.21)

The state-estimate error is given by x̃ = x− x̂, with E[x̃] = 0, E[x̃ x̃T ] = Rx,
and E[x̃eT ] = 0. The measurement error can be estimated by

ỹ= y− ŷ (6.22)
= Cx + e− Cx̂ (6.23)
= Cx̃ + e (6.24)

79



Chapter 6. Object Tracking

with the mean value E[ỹ] = 0 and the covariance

Ry = E[ỹỹT ]
= E

[
(Cx̃ + e)

(
x̃TCT + eT

)]

= CRxCT + Re
(6.25)

where the first term originates from the uncertainty of the state estimate
and the second term originates from the measurement uncertainty.
Using Gaussian approximations for all distributions, the probability

density function of ỹ is

f (ỹ) = 1

(2π )n/2 pRyp1/2
exp

(

−1
2
ỹTR−1y ỹ

)

(6.26)

where n is the dimension of the state vector. For constant Ry, (6.26) is
a decreasing function of ỹTR−1y ỹ. Motivated by this fact, it is a natural
option to consider the measurement as an outlier if a condition on the
form

ỹTR−1y ỹ> p2 (6.27)

is fulfilled, where p is a tuning parameter. Equation (6.27) defines an
ellipsoid. Inserting (6.27) into (6.26) it can be seen that all points outside
the decision boundary have a lower probability density than all points
inside the boundary.

Managing of Multiple Trajectory Hypotheses Simultaneously

It is useful to have a layer on top of the Kalman filter, keeping track
of several state vectors, each representing the trajectory of one ball. The
obvious advantage of this is that the trajectories of several balls can be
tracked simultaneously. A more important advantage has to do with out-
lier detection. In each iteration of the Kalman filter, the measurements,
y, are discarded if they are not close to the expected measurement, ŷ,
based on the state estimates, as described in the previous subsection. If
the measurement initiating the trajectory is a false positive, successive
correct measurements will be discarded, since they are not close to what
is expected after the incorrect measurement. This means that one incor-
rect measurement will block the system. The algorithm used to handle
this situation is described by the following pseudo code, which is run on

80



6.5 Results

every measurement:

for all trajectories

if the measurement is not an outlier to this trajectory

perform measurement update of Kalman filter

if the trajectory has not received a measurement for a while

throw it away

if the measurement did not match any existing trajectory

create a new trajectory

6.5 Results

Figure 6.2 shows example images of a thrown ball from the perspectives
of two cameras. The detected positions of the ball from a sequence of
such images are marked with green dots connected by lines. Different
subsets of these data were used as input to the tracker described in this
chapter. The results are shown in Figs. 6.3–6.6. For all cases the estimate
was initialized by the method described in Chapter 5. The model (2.5)
with the state vector x = [X Y Z Ẋ Ẏ Ż]T was used. The vector x
was equal to x′ in Eq. (6.16) extended by three velocity states. Hence, the
C-matrix of Eq. (6.18) could be used with x by extending it with three
columns of zeros to the right. The sampling time used was h = 20 ms and

Rv = 0.0012 ⋅ diag[ 22 22 22 52 52 52 ] m2 (6.28)
Rve = 0 (6.29)
Re = diag[ 0.012 0.012 ] m2 (6.30)

The accuracy of the estimates are illustrated by ellipsoids on the form
(z− ẑ)TR−1(z − ẑ) = p2, where z ∈ R

3$1 is the position or velocity and
R is the covariance matrix of its estimate, ẑ. In Figs. 6.3–6.6, the value
of the confidence level parameter in (6.27) was p = 3, which means that
there is a 97 % probability that the real value was within the ellipsoid,
assuming that the distributions were Gaussian.
Figures 6.3 and 6.4 show the estimates based on all the data points in

Fig. 6.2. The position estimates formed a smooth parabola and the esti-
mated velocities decreased in the vertical direction linearly with time, as
expected by the model due to the gravity. The size of the uncertainty ellip-
soids decreased as the number of measurements increased. The tracker
classified one measurement as a false positive, which is indicated by a
red circle in Fig. 6.2.
It was possible to track the ball using only a single fixed camera, since

the ball was observed from slightly different angles as it moved across the

81



Chapter 6. Object Tracking

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 6.2 Example images from a sequence of images of a thrown ball,
as seen from the two different cameras. The detected ball positions from
the entire sequence are marked with green dots. A detected ball position
that was classified as an outlier by (6.27) is marked with a red circle. In
these example images the ball can be seen at the third green dot in the
trajectory.

82



6.5 Results

0

0.5

1

1.5

2

2.5

−0.5

0

0.5

0

0.5

x [m]

y
[m
]

z [m]

Figure 6.3 Position estimates based on all measured image coordinates
from both cameras in Fig. 6.2.

−12
−10

−8
−6

−4

−2

0

2
−2

−1

0

1

2

3

x [m/s]

y
[m
/s
]

z [m/s]

Figure 6.4 Velocity estimates based on all measured image coordinates
from both cameras in Fig. 6.2.

83



Chapter 6. Object Tracking

0

0.5

1

1.5

2

2.5

−0.5

0

0.5

0

0.5

x [m]

y
[m
]

z [m]

Figure 6.5 The blue curve shows position estimates based on the mea-
sured image coordinates from only the upper image in Fig. 6.2. For compar-
ison, estimates based on the data from both images of Fig. 6.2 are shown
in red.

0

0.5

1

1.5

2

2.5

−0.5

0

0.5

0

0.5

x [m]

y
[m
]

z [m]

Figure 6.6 The blue curve shows estimates based on data from only one
camera for odd time indices, and data from another camera for even time
indices. Estimates based on all the data from both cameras are shown in
red.

84



6.6 Discussion

image. In Fig. 6.5 the blue curve shows the estimates based only on mea-
surements from the lower image in Fig. 6.2. The uncertainty ellipsoids
were initially very oblong, since the position in the direction of the rays
was very uncertain. As the ball moved and got observed from different
angles, the estimate variance decreased drastically. The estimated trajec-
tory based on the images from both cameras is plotted in red for reference.
The uncertainty ellipsoids of the estimates in the blue trajectory enclosed
the corresponding estimates in the red trajectory as expected. When both
cameras were used, a full state estimate could be obtained after two time
samples, while three time samples were needed when only one camera
was used. Hence, the first point in the red trajectory had no correspond-
ing position estimate in the blue trajectory.
When the blue trajectory in Fig. 6.6 was generated, only the data from

the odd time indices in the upper image and the data from the even time
indices in the lower image of Fig. 6.2 were used. After four measurements,
the estimate converged to almost coincide with the red curve, generated
by all the data points in both images of Fig. 6.2, and the 97 % confidence
ellipsoids are almost too small to be visible. The example illustrates that
the filter works well if images from cameras at two different locations are
provided, even if the images are not captured simultaneously.
The tracker was used to track balls for the ball-catching robot de-

scribed in Chapter 8.

6.6 Discussion

No explicit triangulation was done in the proposed procedure. However, if
the rows in C of (6.18) corresponded to measurements in many different
directions over time, an estimate with low variance in all directions could
be obtained.
A benefit of the tracking approach described in this chapter is that it

easily handles any number of cameras. In (6.18) and (6.19) two more rows
are simply added to C and y for every camera that captured an image at
the same sampling instant. Another advantage is that a measurement can
be used even if there are no valid measurements from any other cameras,
so that no 3D position estimate can be made from the data from only that
sampling instant. It was shown that a ball could be tracked using a single
static camera. Accuracy was, however, significantly better if two cameras
at different positions were used. The accuracy could probably be improved
further by using even more cameras.
The position of a 3D point and its image projection are related by a

non-linear measurement function. The standard way to handle the non-
linearity in an Extended Kalman Filter [Schmidt, 1966] is to linearize the

85



Chapter 6. Object Tracking

measurement around the current state estimate. The method presented
in this chapter uses a linearization that depends only on the image coor-
dinate and is independent of the state estimate.
If a continuous-time model of the process is available, the procedure

can be generalized to completely aperiodic measurements. The discrete-
time model representation (6.1)–(6.3) then has to be recalculated at every
measurement to reflect the actual time that passed since the previous
measurement.
The described managing of multiple trajectories works well for han-

dling false positive ball detections. For example, a trajectory hypothesis
induced by false positives can be kept in the memory until it can be
confidently discarded, and in the meantime a trajectory based on true
measurements can be estimated. The process of initiating new trajectory
hypotheses does, however, not work well if several balls are detected in
each image. Though several balls can be tracked, the performance will not
be good unless the sequence of which balls are detected in which images
follows an advantageous pattern. Extending the system to handle several
balls in a better way is part of the future work. Possible ways to do this
could be to use a multiple-hypotheses tracker (MHT) [Birbach and Frese,
2009] or a probability-hypothesis-density (PHD) filter [Birbach and Frese,
2011].

6.7 Conclusions

This chapter describes a strategy for tracking dynamical objects with com-
puter vision. A way of mapping image space data to a Kalman filter in
3D space is described. It provides a simple way to use data from an ar-
bitrary number of pictures captured simultaneously. In combination with
a dynamical model of the tracked object, it enables determination of the
position of the object in 3D space without any two images having to be
captured simultaneously. It also allows tracking of objects in 3D space,
using only a single static camera. Furthermore, this chapter presents a
method for determining whether a measurement is an outlier, based on
the covariances of the measurement and the state estimate.

86



7

Robot Trajectory Generation

with Uncertain Target Point

7.1 Introduction

In an unpredictable environment a robot may need to react quickly to
events and measurements, and generate a new trajectory for its motion.
One such application is a ball-catching robot, presented in Chapter 2.
The tracker described in Chapter 6 can be used to estimate the position
where a ball should be caught. When few measurements are available,
the variance of the estimated state of the ball may be large, but as the
ball moves along the trajectory and more measurements of the ball are
collected, the accuracy of the estimated catching point increases. In order
to have good performance of the ball-catcher, the robot should start mov-
ing the box toward the catching pose as soon as there is an estimate, and
then modify the trajectory on the fly when better estimates of the target
pose become available. Care should also be taken to make the trajectories
smooth to avoid excessive wear on the mechanical parts. The method pre-
sented in this chapter does so by minimizing the maximum acceleration
during the motion, but allows the jerk (the derivative of the acceleration)
to be infinite, resulting in piecewise second-order trajectories. It will be
discussed why a trajectory with infinite jerk can be considered smooth.
The computation time for the resulting trajectory generation is only a few
microseconds.
Popular methods for robotic path planning include probabilistic

roadmaps [Geraerts and Overmars, 2002] and rapidly exploring ran-
dom trees [Lavalle and Kuffner, 2000]. They solve the problem of finding
a path past obstacles, but when there are no obstacles within the robot’s
work space this is an unnecessary and time-consuming step. Off-line
methods can be used to optimize trajectories for sophisticated optimiza-
tion criteria [Debrouwere et al., 2013]. In [Dahl and Nielsen, 1989], the

87



Chapter 7. Robot Trajectory Generation

path speed was computed on line taking torque limitations into account,
but only for pre-defined paths.
The work described in this chapter is in line with the philosophy pre-

sented in [Kröger et al., 2006], which suggests to use an MPC-like strategy
for reactive robot trajectory generation. MPC (Model Predictive Control)
[Maciejowski, 2002] solves an optimal-control problem in each control cy-
cle and uses the first part of the solution. In the next control cycle, the
remainder of the solution is discarded, and a new solution is calculated
based on new measurement data. The standard method is to use sam-
pled systems and optimize an objective function numerically to calculate
a discrete-time control output for a given time horizon. Though this allows
to solve a wide range of problems, the general method may not be suit-
able for real-time high-resolution trajectory generation in robotics, where
the solution should be available within milliseconds. For this application,
specialized fast optimization methods are needed.
The work presented in [Kröger et al., 2006; Haschke et al., 2008] used

approaches similar to the one presented in this chapter. They also gen-
erated piecewise second-order trajectories with limitations on speed and
acceleration, but they did so from the perspective of time-optimal tra-
jectories, i.e., they calculated the fastest possible trajectory not violating
the constraints on velocity and acceleration, but they had no concern for
minimizing the acceleration. Since they added the requirement that all
joints of the robot should reach their targets at the same time, they also
solved the non-time-optimal case, i.e., the case where a joint should reach
its target at a specified time after the earliest possible time. When do-
ing so, however, they used the maximum acceleration and reduced the
maximum velocity. A further development was presented in [Kröger and
Wahl, 2010], which allowed the jerk to be limited. For the non-time-optimal
case, however, it used the maximum jerk and acceleration, and reduced
the maximum speed. A near-optimal planner handling bounded jerks was
presented already in [Macfarlane, 2001], but only for time-optimal trajec-
tories.
An alternative for fast trajectory generation is to use third-order poly-

nomials and specify the position and velocity at the beginning and the
end of the trajectory, as done in [Hong, 1995]. Smoother trajectories can
be achieved by using fifth-order polynomials and specifying also the accel-
eration at the beginning and end of the trajectory, as done in [Bätz et al.,
2010; Lippiello and Ruggiero, 2012b]. One drawback with this approach
is that it does not consider limitations on velocity and acceleration.
In [Bäuml et al., 2010] it was implied that they solved a problem iden-

tical to what is described in this chapter, though no details on the solu-
tion were given. Whereas my detailed solution to the problem was first
published in [Linderoth, 2011], it was demonstrated to work already in

88



7.2 Problem Formulation

[Linderoth, 2009]. In [Bäuml et al., 2010] they proceeded to solve a more
complex problem, optimizing the catching point along the trajectory of
the ball, as well as redundancy resolution of the robot. It resulted in a
computationally demanding solution running on 32 CPU cores, utilizing
a pipeline structure to calculate new trajectories every 20 ms with laten-
cies up to 60 ms. The high latencies resulted in shorter times to perform
the motion and also reduced the catch rate, since the accuracy of the
estimated catch pose typically increased over time.
The trajectories generated by the method described in this chapter

have piecewise constant acceleration and unbounded jerk. One drawback
with not bounding the jerk is that it may excite mechanical resonances of
the robot, thus reducing the actual tracking performance. It will, however,
be shown that infinite-jerk trajectories can compete well with bounded-
jerk trajectories in terms of tracking performance. In some cases they
even perform better than bounded-jerk trajectories.

7.2 Problem Formulation

The task is to generate a trajectory for moving a robot from one pose to
another and reach the final position before a given deadline. While the
robot is moving along the trajectory, the final point may change both in
space and time and the trajectory should be modified accordingly.
In order to reduce wear on the mechanical parts it is desirable not to

shake the robot excessively, even if the target point is updated frequently.

7.3 Method

The trajectory generation is performed separately for each DOF (degree
of freedom). In the simplest case, each DOF corresponds to a robot joint,
and in this case the generated trajectories can be used as references to the
respective joints directly. If the trajectory generation is done in Cartesian
space, the trajectories can be transformed to joint space by means of the
inverse kinematics and the robot Jacobian.
The trajectory generation is performed for every DOF every time new

values of the destination point and the deadline become available. If one
DOF can not meet the deadline, the other DOFs are slowed down so they
all reach their end points at the same time.

Assumptions

When a new destination point is acquired at time t0 the joint has an initial
position x0 and initial velocity v0. The time left to the deadline, td, is

89



Chapter 7. Robot Trajectory Generation

Td = td − t0 (7.1)
and the final (destination) position is x f , where the velocity should be
zero. The velocity and acceleration are limited to V and A respectively.
The total distance left to go at time t0 (when the new destination position
is acquired) is denoted by

X = x f − x0. (7.2)

T1 T2 T3

t
t0 t f

a

a∗

−a∗

Figure 7.1 Illustration of acceleration profile

Trajectory Primitive

In the following, two strategies for trajectory generation will be described.
They both split the movement into three time intervals:

1. apply acceleration a∗ during time T1

2. apply acceleration 0 during time T2

3. apply acceleration −a∗ during time T3

The acceleration profile is illustrated in Fig. 7.1. This trajectory primitive
can be seen as bang-bang control in the acceleration, used to minimize
the maximum acceleration when moving a given distance within a given
time. Graphical examples of the resulting velocity profiles are given in
Figs. 7.2–7.5 on the following pages. The middle time interval with zero
acceleration is needed in case the velocity reaches its maximum value.
Let vt be the velocity in the middle time interval, when the acceleration

is zero. Since the acceleration has different signs before and after this
interval, vt is always an extremum of the velocity, and is hence convenient
for determining whether an attempt to generate a trajectory violates the
velocity constraints.

90



7.3 Method

Strategy 1: Minimize Maximum Acceleration

This subsection describes a strategy that uses the smallest possible accel-
eration needed to reach the destination before the deadline. If the deadline
cannot be met, the destination will be reached at time t f , with t f > td.
The smallest possible t f that does not violate the constraints on velocity
and acceleration will then be used.
The problem can be formally described by equations (7.3)–(7.13),

where x(t), v(t) and a(t) are the position, velocity and acceleration as
functions of time.

• Initial conditions:

x(t0) = x0 (7.3)
v(t0) = v0 (7.4)

• Dynamics:

v(t) = v0 +
∫ t

t0

a(t) dt (7.5)

x(t) = x0 +
∫ t

t0

v(t) dt (7.6)

• Constraints:

x(t f ) = x f (7.7)
v(t f ) = 0 (7.8)

T1 + T2 + T3 = t f − t0 (7.9)
T1 ≥ 0, T2 ≥ 0, T3 ≥ 0 (7.10)

−V ≤ pv(t)p ≤ V ,∀t (7.11)
−A ≤ pa(t)p ≤ A,∀t (7.12)

• Parameterization of solution (cf. Fig. 7.1):

a(t) =







a∗, t0 ≤ t < t0 + T1
0 , t0 + T1 ≤ t < t0 + T1 + T2

−a∗, t0 + T1 + T2 ≤ t ≤ t0 + T1 + T2 + T3 = t f
(7.13)

91



Chapter 7. Robot Trajectory Generation

Task: The goal is to find T1, T2, T3 and a∗ that solve (7.3)–(7.13). The
quantities x0, x f , v0, t0, t f , V , and A are given as a part of the problem
formulation. Note that a∗ can be either positive or negative.

Inserting the acceleration profile (7.13) into the dynamics equation
(7.5) and enforcing the velocity end constraint (7.8) gives

v(t f ) = v0 +
∫ t f

t0

a(t) dtZ[ (7.14)

0 = v0 + a∗(T1 − T3) (7.15)

Inserting the acceleration profile (7.13) into the dynamics equation
(7.6), using the definition (7.2), and enforcing the position end constraint
(7.7) gives

x(t f ) − x0 =
∫ t f

t0

v(t) dtZ[ (7.16)

X = v0(T1 + T2 + T3) + a∗

(
T21
2
+ T1T2 + T1T3 −

T23
2

)

(7.17)

Equations (7.15) and (7.17) will be the foundation for calculating the
trajectories.
For convenience we also derive a few equations including vt, the ex-

tremum velocity attained during the zero-acceleration phase, cf. Fig. 7.1.
The velocity vt can be calculated by using the beginning of the acceleration
profile and the dynamics equation (7.5):

vt = v0 +
∫ t

t0

a(t) dt
∣
∣
∣
∣
t0+T1 ≤ t < t0+T1+T2

Z[ (7.18)

vt = v0 + a∗T1 Z[ (7.19)
T1 = (vt − v0)/a∗ (7.20)

Subtracting (7.15) from (7.19) gives

vt = a∗T3 Z[ (7.21)
T3 = vt/a∗ (7.22)

The solution of the trajectory generation will be divided into four cases,
depending on whether the velocity and acceleration become saturated. The
velocity profiles for the different cases are illustrated in Figs. 7.2–7.5. The
total distance to go, X , is equal to the area of the shaded region above the
t-axis, subtracted by the area of the shaded region below the t-axis. For
each case a∗, vt, and T2 will be calculated. T1 and T3 can then be obtained
from (7.20) and (7.22).

92



7.3 Method

T1 T3

t
t0 t f = td

v

V

−V

v0

vt

Figure 7.2 Illustration of velocity profile for Case 1.

Case 1: No saturation of velocity, no saturation of acceleration.

In this case it is assumed that the deadline is met. It is also assumed that
the velocity will not be saturated, thus requiring no phase with maximum
speed and zero acceleration. The assumptions can be expressed as

t f = td (7.23)
T2 = 0 (7.24)

and these constraints will be enforced for Eqs. (7.25)–(7.33). For an ex-
ample velocity profile, see Fig. 7.2.
Combining (7.23) and (7.24) with (7.9) and (7.1) gives

Td = T1 + T3 (7.25)

Inserting the expressions (7.20), (7.24), and (7.22) for T1, T2, and T3,
into (7.17) and (7.25) gives

X = 2v
2
t − v20
2a∗

(7.26)

Td =
2vt − v0
a∗

(7.27)

We now have two equations–(7.26) and (7.27)–with two unknowns–a∗ and

93



Chapter 7. Robot Trajectory Generation

vt. By taking X /Td, we can eliminate a∗, resulting in

X

Td
= v

2
t − v20/2
2vt − v0

Z[

0 = v2t − 2
X

Td
vt +

X

Td
v0 −

v20
2

=
(

vt −
X

Td

)2

− X
2

T2d
+ X
Td
v0 −

v20
2

=
(

vt −
X

Td

)2

−
(
X

Td
− v0
2

)2

−
(v0

2

)2
Z[

vt =
X

Td
+ k

√
(
X

Td
− v0
2

)2

+
(v0

2

)2
(7.28)

where k = ±1. To determine the sign of k, consider (7.20) and (7.22). In
order for the times to be non-negative, as required by (7.10), both vt and
(vt − v0) must have the same sign as a∗ or be zero, which implies

0 ≤ vt(vt − v0) (7.29)
Inserting (7.28) into (7.29) gives after some algebra

0 ≤ 2
(
X

Td
− v0
2

)




(
X

Td
− v0
2

)

+ k

√
(
X

Td
− v0
2

)2

+
(v0

2

)2



 (7.30)

Since
√
(
X

Td
− v0
2

)2

+
(v0

2

)2
≥
∣
∣
∣
∣

X

Td
− v0
2

∣
∣
∣
∣

(7.31)

(7.30) is fulfilled for

k =
{

1, X /Td ≥ v0/2
−1, X /Td ≤ v0/2

(7.32)

If X /Td = v0/2, then either sign of k is valid. The difference it will make
is whether T1 = 0 and vt = v0 or alternatively T3 = 0 and vt = 0. In both
cases a(t) is the same.
Inserting (7.32) into (7.28) lets us calculate vt. If pvtp > V , no valid

solution for Case 1 exists.
Solving Eq. (7.27) for the acceleration gives

a∗ = 2vt − v0
Td

(7.33)

If pa∗p > A, no valid solution for Case 1 exists.

94



7.3 Method

replacements

T1 T2 T3

t
t0 t f = td

v

vt = V

−V

v0

Figure 7.3 Illustration of velocity profile for Case 2; with saturated ve-
locity.

Case 2: Saturation of velocity, no saturation of acceleration. In
this case it is assumed that the deadline is met. It also assumes that the
velocity will be saturated, so there is a part with maximum velocity in
the trajectory. The assumptions can be expressed as

t f = td Z[ Td = T1 + T2 + T3 (7.34)
vt = V sign(X ) (7.35)

and these constraints will be enforced for Eqs. (7.36)–(7.38). For an ex-
ample velocity profile, see Fig. 7.3
Extracting T2 from (7.34) and inserting it into (7.17) gives

X = v0Td + a∗

(
T21
2
+ T1(Td − T1 − T3) + T1T3 −

T23
2

)

= (v0 + a∗T1)Td − a∗

(
T21
2
+ T

2
3

2

)

= vtTd −
(vt − v0)2 + v2t

2a∗

(7.36)

where the last equality follows from (7.20) and (7.22). Solving (7.36) for
a∗ gives

a∗ = (vt − v0)2 + v2t
2(vtTd − X )

(7.37)

Now we have vt and a∗ and can get T1 and T3 from (7.20) and (7.22),
and get T2 from (7.34). For the solution to be valid we must have T3 ≥ 0,

95



Chapter 7. Robot Trajectory Generation

which in combination with (7.22) gives that vt and a∗ must have equal
sign. Applied to (7.37) this gives that vt and (vtTd − X ) must have equal
sign, which in combination with (7.35) gives

pX p < VTd Z[
pX p
Td

< V (7.38)

If (7.38) is not fulfilled, no valid solution to Case 2 exists. This require-
ment is very intuitive, since it means that the mean velocity must be less
than the maximum allowed velocity. For a valid solution to exist, it is also
required that pa∗p ≤ A.

T1 T3

t
t0 td t f

v

V

−V
v0

vt

Figure 7.4 Illustration of velocity profile for Case 3; with saturated ac-
celeration (maximum slope during T1 and T3) and missed deadline, td.

Case 3: No saturation of velocity, saturation of acceleration. In
this case it is assumed that the velocity will not be saturated and that the
maximum acceleration will be used. These assumptions can be expressed
as

T2 = 0 (7.39)
a∗ = ±A (7.40)

and these constraints will be enforced for Eqs. (7.41)–(7.53). The deadline
will not be met. The sign of a∗ will be determined later. For an example
velocity profile, see Fig. 7.4
The conditions for Eq. (7.26) being valid are fulfilled, and solving for

vt gives

vt = k
√

X a∗ + v20/2 (7.41)

96



7.3 Method

where k = ±1. It will now be shown that there is always exactly one
solution to Eq. (7.41) fulfilling

X a∗ + v20/2 ≥ 0 (7.42)
T1 = (vt − v0)/a∗ ≥ 0 (7.43)
T3 = vt/a∗ ≥ 0 (7.44)

where Eq. (7.42) comes from the requirement that Eq. (7.41) should be
real, and Eq. (7.43) and Eq. (7.44) come from the requirement that all
durations must be non-negative. The condition (7.44) gives

0 ≤ vt
a∗
= k

a∗

√

X a∗ + v20/2Z[

k = sign(a∗)
(7.45)

• Make the assumption a∗ = A > 0 .
Through (7.41) and (7.45) this gives vt ≥ 0. Condition (7.42) is equiv-
alent to

2X A ≥ −v20 (7.46)

Condition (7.43) is trivial to verify if v0 ≤ 0, and in the case v0 > 0
it is equivalent to

vt − v0 ≥ 0Z[
√

X A+ v20/2 ≥ v0 Z[
X A+ v20/2 ≥ v20 Z[

2X A ≥ v20

(7.47)

Condition (7.46) is valid for all v0 and (7.47) only for v0 > 0. Both
conditions are fulfilled if and only if

2X A ≥ v0pv0p (7.48)

• Make the assumption a∗ = −A < 0 .
Through (7.41) and (7.45) this gives vt ≤ 0. Condition (7.42) is equiv-
alent to

2X A ≤ v20 (7.49)

97



Chapter 7. Robot Trajectory Generation

Condition (7.43) is trivial to verify if v0 ≥ 0 and in the case v0 < 0
it is equivalent to

vt − v0 ≤ 0Z[

−
√

−X A+ v20/2 ≤ v0 Z[
−X A+ v20/2 ≥ v20 Z[

2X A ≤ −v20

(7.50)

Condition (7.49) is valid for all v0 and (7.50) only for v0 < 0. Both
conditions are fulfilled if and only if

2X A ≤ v0pv0p (7.51)

Since either (7.48) or (7.51) is fulfilled for all values of X and v0,
there is always a solution for either a∗ = A or a∗ = −A. On the curve
2X A = v0pv0p both values of a∗ are valid. The sign of a∗ will only affect
whether T1 = 0 or T3 = 0 and in both cases a(t) will be the same.
Inserting (7.41) into (7.44) gives

T3 =
vt

a∗

= sign(a
∗)

a∗

√

X a∗ + v20/2

= 1
A

√

X a∗ + v20/2

(7.52)

Combining (7.43) and (7.44) gives

T1 =
vt

a∗
− v0
a∗

= T3 −
v0

a∗

(7.53)

Equation (7.41) lets us calculate vt. If pvtp > V , no valid solution for
Case 3 exists.

Case 4: Saturation of velocity, saturation of acceleration. In this
case it is assumed that both velocity and acceleration become saturated,
giving the constraints

vt = V sign(X ) (7.54)
a∗ = A sign(X ) (7.55)

and these assumptions will be enforced for (7.56)–(7.57). The deadline
will not be met.

98



7.3 Method

T1 T2 T3

t
t0 td t f

v

vt = V

−V

v0

Figure 7.5 Illustration of velocity profile for Case 4; with saturated ve-
locity and saturated acceleration (maximum slope during T1 and T3), and
missed deadline, td.

Inserting (7.20) and (7.22) into (7.17) gives

X = vtv0 − v
2
0

a∗
+ v0T2 +

vtv0

a∗

+ a∗

(
v2t − 2vtv0 + v20

2a∗2
+ T2
a∗
(vt − v0) +

v2t − vtv0
a∗2

− v2t
2a∗2

)

= vtT2 +
2v2t − v20
2a∗

(7.56)

Solving (7.56) for T2 gives

T2 =
X

vt
− vt
a∗
+ v20
2vta∗

= pX p
V
− V
A
+ v20
2VA

(7.57)

The durations T1 and T3 can be obtained from (7.20) and (7.22).

99



Chapter 7. Robot Trajectory Generation

Summary of solution. In the following, the solution to Eqs. (7.3)–
(7.13) for different cases of saturation will be summarized. First try using
Case 1, where neither velocity nor acceleration are saturated.

• Case 1: velocity not saturated, acceleration not saturated

vt =
{

X /Td +
√

(X /Td − v0/2)2 + (v0/2)2, X /Td ≥ v0/2
X /Td −

√

(X /Td − v0/2)2 + (v0/2)2, X /Td ≤ v0/2
a∗ = (2vt − v0)/Td
T1 = (vt − v0)/a∗

T2 = 0
T3 = vt/a∗

T1 T3

tt0 t f

v

V

−V
v0
vt

If pvtp > V the velocity constraint is violated and the solution is not
valid. Try using Case 2.

If pa∗p > A the acceleration constraint is violated and the solution is
not valid. Try using Case 3. The deadline will not be met.

• Case 2: velocity saturated, acceleration not saturated

vt = V sign(X )

a∗ = (vt − v0)2 + v2t
2(vtTd − X )

T1 = (vt − v0)/a∗

T3 = vt/a∗

T2 = Td − T1 − T3
T1 T2 T3

tt0 t f

v

vt = V

−V

v0

If VTd < pX p or pa∗p > A the solution is not valid. Use Case 4. The
deadline will not be met.

• Case 3: velocity not saturated, acceleration saturated

a∗ =
{

A, 2X A ≥ v0pv0p
−A, 2X A ≤ v0pv0p

vt = sign(a∗)
√

X a∗ + v20/2

T3 =
1
A

√

X a∗ + v20/2

T2 = 0
T1 = T3 − v0/a∗

T1 T3

tt0 td t f

v

V

−V
v0

vt

If pvtp > V the velocity constraint is violated and the solution is not
valid. Use Case 4.

100



7.3 Method

• Case 4: velocity saturated, acceleration saturated

a∗ = A sign(X )
vt = V sign(X )
T1 = (vt − v0)/a∗

T2 =
pX p
V
− V
A
+ v20
2VA

T3 = V/A
T1 T2 T3

tt0 td t f

v

vt = V

−V

v0

Numerical considerations A few of the calculations can give unfeasi-
ble results in special cases if the numerical round-off errors are not taken
into consideration.
We repeat the equations for solving Case 1 when X /Td ≥ v0/2:

vt = X /Td +
√

(X /Td − v0/2)2 + (v0/2)2, X /Td ≥ v0/2 (7.58)
a∗ = (2vt − v0)/Td (7.59)
T1 = (vt − v0)/a∗ (7.60)
T2 = 0 (7.61)
T3 = vt/a∗ (7.62)

It can be shown algebraically that the value returned by (7.58) obeys
vt ≥ v0
vt ≥ 0

(7.63)

which is a requirement for (7.60) and (7.62) to return non-negative du-
rations. Let δ be a number that can be resolved by the numerical repre-
sentation used for computations, but δ 2 is rounded to zero. Now assume
that X /Td = v0/2 = δ . According to Eq. (7.58), the value of vt is then

vt = δ +
√

(δ − δ )2 + δ 2 (7.64)

= δ +
√

02 + δ 2 (7.65)
= δ + δ (7.66)
= 2δ (7.67)

However, since δ is small, the numerical solution will be

vt = δ +
√

(δ − δ )2 + δ 2

( δ +
√
0+ 0

= δ

< v0 = 2δ

(7.68)

101



Chapter 7. Robot Trajectory Generation

thus violating Eq. (7.63). Similarly, we get vt ( −δ < 0 if we use the
input X /Td = v0/2 = −δ . These errors become a problem when X and v0
are close to zero and can be handled by adjusting the numerical output
of (7.58) so that it always satisfies (7.63).
The same reasoning with opposite sign applies for X /Td ≤ v0/2. For

Case 3, similar reasoning leads to the need to verify that vt ≥ v0 if a∗ > 0
and vt ≤ v0 if a∗ < 0.

Strategy 2: Use Maximum Acceleration

This strategy applies the maximum acceleration to move the robot to the
destination as fast as possible, hence, performing time-optimal trajectory
generation. The motion will be jerkier than with Strategy 1, but the dead-
lines may be met more often. For each DOF, the expressions for a, T1, T2
and T3 are first obtained by trying to solve Case 3 for Strategy 1, and
if no solution exists, Case 4 is used. To make sure all DOFs reach their
destinations simultaneously, the t f value of the slowest DOF is then used
as deadline and the algorithms of Strategy 1 are used to regenerate the
trajectories.

7.4 Results

Simulations Based on Real Data

Figures 7.6 - 7.9 show simulated robot trajectories based on real data
generated by the tracker described in Chapter 6. The simulations were
performed with the assumption that the robot had two independent ac-
tuators that could move the tool in the x- and y-directions, respectively.
The velocity was limited to V = 2 m/s and the acceleration was limited
to A = 20 m/s2, giving the robot properties similar to those of an ABB
IRB 140 robot [ABB, 2013].
Figures 7.6 and 7.7 are based on the same tracker data, denoted data

set 1, but in Fig. 7.6 the trajectory was generated using Strategy 1 and
in Fig. 7.7 Strategy 2 was used. Similarly, Figs. 7.8 and 7.9 are based
on the same data, denoted data set 2, but in Fig. 7.8 the trajectory was
generated using Strategy 1 and in Fig. 7.9 Strategy 2 was used. The
simulations serve to compare the strategy minimizing the acceleration
with the time-optimal method.
In the upper part of each figure the target points estimated by the

tracker are marked with blue stars. The stars are connected by blue lines
in chronological order and the final target point is marked in red. The
simulated robot trajectory is shown as a green curve. The positions the
robot was at when new target points arrived are marked with green stars.

102



7.4 Results

The lower left part of each figure shows the position, velocity and
acceleration in the x-direction as functions of time, and the lower right
part shows the corresponding functions in the y-direction. The final target
position and time are marked by a star.
Comparing Fig. 7.6 and Fig. 7.7 it can be seen that Strategy 1 used

smaller accelerations than Strategy 2 in the beginning and, hence, avoided
making a detour to the first poor estimates of the target position. Due to
a late update of the target position Strategy 1 was 0.4 mm away from the
target at the deadline and reached the target 6 ms later. Strategy 2 was
only 0.02 mm away from the target at the deadline and reached the target
1 ms later.
Comparing Fig. 7.8 and Fig. 7.9 it can again be seen that the trajectory

generated by Strategy 2 made a larger detour to the first bad estimates
of the target position. Both strategies reached the target in time and
Strategy 2 even finished 7 ms before the deadline. Strategy 1, however,
used less acceleration.

The Effect of Jerk on Resonant Systems

Simulations were performed to investigate how jerk limitation affects the
reference tracking of a robot. The robot was modeled as a mass-spring-
damper system, simulating how the difference between the position refer-
ence and the actual position of the robot arm was affected by the acceler-
ation profile. The transfer function from the reference acceleration to the
position error for the system used was

G(s) = 1
s2 + 2ζ ω 0s+ω 20

(7.69)

with ω 0 = 78.5 rad/s and the relative damping ζ = 0.16, which resulted
in the amplitude being reduced by a factor of 3 in every oscillation period.
The oscillation period was 81 ms, corresponding to a resonance frequency
of 12.3 Hz. The parameters were chosen to resemble the properties of an
ABB IRB 140 robot.
Figures. 7.10–7.14 show simulation results for three different acceler-

ation profiles. Within each figure, all profiles moved the reference the
same distance in the same time, having zero velocity and acceleration
both in the initial point and in the destination point. The distance, how-
ever, varied between the figures. The blue curves show the result when
the reference should be moved a given distance in minimum time with
the jerk bounded by Jmax = 200 m/s3. The green curves show the re-
sults for moving the same distance in the same time with the jerk bound
Jmax = 400 m/s3. The red curves show the result for the method pre-
sented in this chapter, with piecewise constant accelerations and infinite

103



Chapter 7. Robot Trajectory Generation

0 0.01 0.02 0.03 0.04 0.05

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 

 

x [m]

y
[m
]

Target positions
Final position
Robot trajectory

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

x
[m
]

v
[m
/s
]

a
[m
/s
2
]

t [s]

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

y
[m
]

v
[m
/s
]

a
[m
/s
2
]

t [s]

Figure 7.6 Generated trajectory based on data set 1, using trajectory
generation method 1. (Upper) Target points and robot trajectory in the xy-
plane. (Lower left) Time plots of position, velocity and acceleration in the
x-direction. (Lower right) Time plots of position, velocity and acceleration
in the y-direction.

104



7.4 Results

0 0.01 0.02 0.03 0.04 0.05

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 

 

x [m]

y
[m
]

Target positions
Final position
Robot trajectory

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

x
[m
]

v
[m
/s
]

a
[m
/s
2
]

t [s]

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

y
[m
]

v
[m
/s
]

a
[m
/s
2
]

t [s]

Figure 7.7 Generated trajectory based on data set 1, using trajectory
generation method 2. (Upper) Target points and robot trajectory in the xy-
plane. (Lower left) Time plots of position, velocity and acceleration in the
x-direction. (Lower right) Time plots of position, velocity and acceleration
in the y-direction.

105



Chapter 7. Robot Trajectory Generation

0 0.02 0.04 0.06 0.08 0.1

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

 

 

x [m]

y
[m
]

Target positions
Final position
Robot trajectory

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

x
[m
]

v
[m
/s
]

a
[m
/s
2
]

t [s]

0 0.05 0.1 0.15 0.2 0.25

−0.05

0

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

y
[m
]

v
[m
/s
]

a
[m
/s
2
]

t [s]

Figure 7.8 Generated trajectory based on data set 2, using trajectory
generation method 1. (Upper) Target points and robot trajectory in the xy-
plane. (Lower left) Time plots of position, velocity and acceleration in the
x-direction. (Lower right) Time plots of position, velocity and acceleration
in the y-direction.

106



7.4 Results

0 0.02 0.04 0.06 0.08 0.1

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

 

 

x [m]

y
[m
]

Target positions
Final position
Robot trajectory

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

x
[m
]

v
[m
/s
]

a
[m
/s
2
]

t [s]

0 0.05 0.1 0.15 0.2 0.25

−0.05

0

0 0.05 0.1 0.15 0.2 0.25

−1

0

1

0 0.05 0.1 0.15 0.2 0.25
−20

0

20

y
[m
]

v
[m
/s
]

a
[m
/s
2
]

t [s]

Figure 7.9 Generated trajectory based on data set 2, using trajectory
generation method 2. (Upper) Target points and robot trajectory in the xy-
plane. (Lower left) Time plots of position, velocity and acceleration in the
x-direction. (Lower right) Time plots of position, velocity and acceleration
in the y-direction.

107



Chapter 7. Robot Trajectory Generation

jerk. The curves will be referred to as the J200-curve, the J400-curve, and
the J∞-curve respectively. For the different figures, the motions ranged
from moving 1 mm in 54 ms to moving 3500 mm in 824 ms. The motion
duration will be referred to as Tm. Repeated integration of the accelera-
tion profiles gives that the total distance moved was

X = T3mJ/32 (7.70)

with J = 200 m/s3. The left column in each figure shows the reference
profiles for acceleration, velocity and position. In the right column, the
upper plot shows the position error. The two bottom plots show two dif-
ferent zoom levels of the reference position (dashed) the actual position
of the robot link (solid).
The bottom right plot in each figure is the most interesting for judging

the performance of a reference profile. It shows how quickly the actual po-
sition settled to the new reference position. In Fig. 7.10 with Tm = 54 ms
the curves are very similar to eachother, but the error was the small-
est for the J∞-curve. The same qualitative result with more significant
performance differences can be seen for Tm = 117 ms in Fig. 7.11. For
Tm = 200 ms in Fig. 7.12 the J400-curve and the J∞-curve showed simi-
lar performance, which was significantly better than the J200-curve. For
Tm = 252 ms in Fig. 7.13 the J400-curve and the J∞-curve still showed sim-
ilar performance, but now significantly worse than the J200-curve. When
Tm was increased further, as shown in Fig. 7.14, the J200-curve had the
smallest errors and the J∞-curve had the largest errors. The trends can
more easily be seen in Fig. 7.15, showing the position overshoot for the
different acceleration profiles as a function of the motion duration. All
accelerations, velocities and positions scale linearly with the jerk limi-
tation. The relative performance between the acceleration profiles only
depends on the duration of the motion. Figures 7.11–7.14 can, hence, be
used to compare the performance of the different profiles when moving a
constant distance with varying durations. The maximum jerk and accel-
eration would then be decreasing functions of Tm, where the maximum
jerk can be extracted from Eq. (7.70):

Jmax = 32X /T3m (7.71)

Figures 7.16–7.18 show simulations where the duration of the motion
was different in the different figures, but the distance to move was con-
stant. For the blue curves the jerk was limited to Jmax = 400 m/s3, while
the green curves allowed infinite jerk. These simulations were designed to
investigate how a constant jerk limitation performs compared to unlimited
jerk when moving a constant distance with different motion durations. For
Tm = 150 ms in Fig. 7.16, the bottom right plot shows that the J∞-curve

108



7.5 Discussion

behaved significantly better than the J400-curve, similar to the result in
Fig. 7.11. For Tm = 200 ms in Fig. 7.17 the J400-curve had slightly smaller
errors than the J∞-curve, and for Tm = 400 ms in Fig. 7.18 the curves
were almost indistinguishable. The trends can more easily be seen in
Fig. 7.19, showing the position overshoot for the two acceleration profiles
as a function of the motion duration.

Real-Time Execution

The trajectory generation methods were implemented in Java and used in
real time to catch balls, as described in Chapter 8. The catching position
used was the point where the trajectory of the ball intersected a vertical
plane in front of the robot. For each of the 6 joints a trajectory was gener-
ated according to the following sequence every time a new target position
was estimated by the tracker:

• Go to the target position before the deadline.

• Stay in the catching position for 0.5 s.

• Go to the home position in 1 s.

• Stay in the home position.

Usually only the first part of the trajectory was executed. When the catch-
ing position was updated by new measurements, a completely new trajec-
tory was generated from the current state, and the old trajectory was
discarded. This strategy can be considered to be a kind of MPC. Only the
trajectory based on the final measurement of a throw was executed to the
end. Since a safe return to the home position was generated every time
a trajectory was generated, no special action had to be taken for the last
estimate, and there was no risk for a trajectory to end while the robot
was moving. The trajectory generation took approximately 0.1 ms on one
of the cores of an Intel RF CoreTM2 Quad CPU Q6600 processor running
at 2.40 GHz. During that time, the algorithm described on pages 100–101
was executed in total 24 times; four times for each of the six joints accord-
ing to the bullet list above. A single execution of the trajectory generation,
hence, took approximately 4 µs.

7.5 Discussion

The presented method was easy to implement and could produce solu-
tions in a fraction of a millisecond. Short execution times are good, but
the achieved execution times were much shorter than is commonly re-
quired for robotic applications, and it can be argued that it may be worth

109



Chapter 7. Robot Trajectory Generation

while to spend more time on trajectory generation to solve a more ad-
vanced optimization criterion, taking more properties of the system into
consideration. The short computation times can be of larger benefit on
embedded platforms with less computational power.
The presented method solves an optimization problem and only uses

the first part of the solution. When new measurements become available,
the remaining part of the old solution is discarded, and a new solution is
computed. This makes the suggested approach a kind of MPC. Since the
computation time of the optimization is independent of the duration of
the motion, there is no reason to only calculate a solution for a receding
time horizon.
Discontinuous acceleration profiles can excite resonances in mechani-

cal systems, but the simulations in Figs. 7.10–7.19 show that they in some
cases perform better than profiles with bounded jerk. The simulations
used to generate Fig. 7.15, applying identical acceleration profile shapes
for different motion durations, indicate that minimizing the acceleration
and allowing infinite jerk gives good performance when the duration of
the motion is similar to the period of the eigenfrequency of the resonant
system, while minimizing the jerk gives less oscillations for motions with
longer durations. The simulations used to generate Fig. 7.19 indicate that
a constant jerk limitation has a very small effect on the performance if
the motion does not require the maximum jerk to reach the destination
in time.
The method presented in [Kröger and Wahl, 2010] may be considered

to be more general than the method presented in this chapter, since it
can generate trajectories with bounded jerk. However, when the specified
duration of the motion is longer than the duration of the time-optimal tra-
jectory, it applies the maximum jerk and acceleration, and minimizes the
maximum velocity. In this sense it always applies the minimum allowed
smoothness instead of maximizing the smoothness. One benefit of always
using the maximum jerk and acceleration is that it maximizes the dura-
tion with constant velocity. This may be desirable for some applications,
since the motion is linear while the velocities of all DOFs are constant.
In one sense, the method presented in this chapter optimizes the tra-

jectories for smoothness, since it uses the smallest possible acceleration.
Extending [Kröger and Wahl, 2010] to minimize jerk could be a way to
generate even smoother trajectories that automatically sacrifice smooth-
ness for speed when needed.
An alternative way to express that the trajectory generator minimizes

the maximum acceleration, is to say that is minimizes the infinity norm
of the acceleration.
One alternative for generating trajectories that do not excite the me-

chanical resonances, is to apply notch filters to the acceleration profiles,

110



7.6 Conclusions

removing the frequencies that match the eigenfrequencies [Erkorkmaz,
2004]. This may be feasible to do in real time, but it creates a few prob-
lems that have to be handled. If a notch filter is applied to a correct tra-
jectory, the resulting trajectory may violate the velocity and acceleration
constraints, and the total distance of the motion may be altered.
One natural extension of the method presented in this chapter would

be to let it handle specification of non-zero velocities at the end of the
trajectories.
In the section about real-time execution it was proposed to generate

trajectories for just maintaining the current position. This may seem like
a waste, but since the trajectory generation is so fast it may not be worth-
while to implement code for the special case of standing still. Another
reason to not use the trajectory generation for standing still, is that it
can run into numerical problems, as described on page 101. But enforcing
the inequalities (7.63) handles the numerical problems and, it also avoids
the need to choose a threshold specifying how short a motion must be for
it to be considered as standing still.
The proposed method generates a trajectory to the target in the short-

est possible time if the deadline cannot be met. This is a reasonable for
the ball catcher, since the ball may arrive to the catching point later than
expected, or future estimates of the catching point may be closer to the
current position. For other applications it may be desirable to stop the
motion and report that it was not possible to meet the deadline.

7.6 Conclusions

This chapter presented a method for generating trajectories, minimizing
the maximum acceleration attained during the trajectory. Constraints on
maximum velocity and maximum acceleration can be handled. It was also
shown that trajectories allowing infinite jerk in some cases can cause less
excitation of mechanical resonances than trajectories with limited jerk do.

111



Chapter 7. Robot Trajectory Generation

0 0.05 0.1 0.15 0.2 0.25
−3

−2

−1

0

1

2

3

 

 

0 0.05 0.1 0.15 0.2 0.25
−0.01

0

0.01

0.02

0.03

0.04

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
x 10

−3

0 0.05 0.1 0.15 0.2 0.25
−4

−2

0

2

4

6
x 10

−4

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5
x 10

−3

0.05 0.1 0.15 0.2 0.25
5

10

15
x 10

−4

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

a
r
e
f
[m
/s
2
]

v
r
e
f
[m
/s
]

x
r
e
f
[m
]

(x
−
x
r
e
f
)[
m
]

x
[m
]

x
[m
]

pJp ≤ 200 m/s3
pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.10 Simulated motion of the system (7.69)with different bounds
on the jerk, J. In this figure the reference was moved 1 mm in 54 ms.

112



7.6 Conclusions

0 0.1 0.2 0.3
−6

−4

−2

0

2

4

6

 

 

0 0.1 0.2 0.3
−0.05

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3
0

0.002

0.004

0.006

0.008

0.01

0 0.1 0.2 0.3
−2

−1

0

1

2
x 10

−3

0 0.1 0.2 0.3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.1 0.15 0.2 0.25 0.3
8.5

9

9.5

10

10.5

11

11.5
x 10

−3

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

a
r
e
f
[m
/s
2
]

v
r
e
f
[m
/s
]

x
r
e
f
[m
]

(x
−
x
r
e
f
)[
m
]

x
[m
]

x
[m
]

pJp ≤ 200 m/s3
pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.11 Simulated motion of the system (7.69)with different bounds
on the jerk, J. In this figure the reference was moved 10 mm in 117 ms.

113



Chapter 7. Robot Trajectory Generation

0 0.1 0.2 0.3 0.4
−10

−5

0

5

10

 

 

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4
−2

−1

0

1

2
x 10

−3

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.25 0.3 0.35 0.4

0.049

0.0495

0.05

0.0505

0.051

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

a
r
e
f
[m
/s
2
]

v
r
e
f
[m
/s
]

x
r
e
f
[m
]

(x
−
x
r
e
f
)[
m
]

x
[m
]

x
[m
]

pJp ≤ 200 m/s3
pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.12 Simulated motion of the system (7.69)with different bounds
on the jerk, J. In this figure the reference was moved 50 mm in 200 ms.

114



7.6 Conclusions

0 0.1 0.2 0.3 0.4
−15

−10

−5

0

5

10

15

 

 

0 0.1 0.2 0.3 0.4
−0.2

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4
−3

−2

−1

0

1

2

3
x 10

−3

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.25 0.3 0.35 0.4 0.45

0.0985

0.099

0.0995

0.1

0.1005

0.101

0.1015

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

a
r
e
f
[m
/s
2
]

v
r
e
f
[m
/s
]

x
r
e
f
[m
]

(x
−
x
r
e
f
)[
m
]

x
[m
]

x
[m
]

pJp ≤ 200 m/s3
pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.13 Simulated motion of the system (7.69) with different bounds
on the jerk, J. In this figure the reference was moved 100 mm in 252 ms.

115



Chapter 7. Robot Trajectory Generation

0 0.2 0.4 0.6 0.8 1
−50

0

50

 

 

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
−0.01

−0.005

0

0.005

0.01

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

0.8 0.85 0.9 0.95 1

3.497

3.498

3.499

3.5

3.501

3.502

3.503

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

a
r
e
f
[m
/s
2
]

v
r
e
f
[m
/s
]

x
r
e
f
[m
]

(x
−
x
r
e
f
)[
m
]

x
[m
]

x
[m
]

pJp ≤ 200 m/s3
pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.14 Simulated motion of the system (7.69)with different bounds
on the jerk, J. In this figure the reference was moved 3500 mm in 824 ms.

116



7.6 Conclusions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−3

 

 

Tm[s]

P
os
it
io
n
ov
er
sh
oo
t
[m
]

pJp ≤ 200 m/s3
pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.15 Position overshoots for acceleration profiles of the type pre-
sented in Figs. 7.10–7.14. The value of Tm is the duration from the begin-
ning of the motion until the reference position reached its final value. Note
that the distance traveled and the maximum acceleration are increasing
functions of Tm for the acceleration profiles used to generate this figure.

117



Chapter 7. Robot Trajectory Generation

0 0.1 0.2 0.3
−15

−10

−5

0

5

10

15

 

 

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3
0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3
−4

−2

0

2

4
x 10

−3

0 0.1 0.2 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.15 0.2 0.25 0.3 0.35

0.048

0.049

0.05

0.051

0.052

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

a
r
e
f
[m
/s
2
]

v
r
e
f
[m
/s
]

x
r
e
f
[m
]

(x
−
x
r
e
f
)[
m
]

x
[m
]

x
[m
]

pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.16 Simulated motion of the system (7.69) with and without
bounds on the jerk, J. In this figure the reference was moved 50 mm in
150 ms.

118



7.6 Conclusions

0 0.1 0.2 0.3 0.4
−6

−4

−2

0

2

4

6

 

 

0 0.1 0.2 0.3 0.4
−0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4
−2

−1

0

1

2
x 10

−3

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.25 0.3 0.35 0.4

0.0495

0.05

0.0505

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

a
r
e
f
[m
/s
2
]

v
r
e
f
[m
/s
]

x
r
e
f
[m
]

(x
−
x
r
e
f
)[
m
]

x
[m
]

x
[m
]

pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.17 Simulated motion of the system (7.69) with and without
bounds on the jerk, J. In this figure the reference was moved 50 mm in
200 ms.

119



Chapter 7. Robot Trajectory Generation

0 0.2 0.4 0.6
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

0 0.2 0.4 0.6
−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6
−4

−2

0

2

4

6
x 10

−4

0 0.2 0.4 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.4 0.45 0.5 0.55 0.6

0.0498

0.0499

0.05

0.0501

0.0502

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

a
r
e
f
[m
/s
2
]

v
r
e
f
[m
/s
]

x
r
e
f
[m
]

(x
−
x
r
e
f
)[
m
]

x
[m
]

x
[m
]

pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.18 Simulated motion of the system (7.69) with and without
bounds on the jerk, J. In this figure the reference was moved 50 mm in
400 ms.

120



7.6 Conclusions

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

 

 

Tm[s]

P
os
it
io
n
ov
er
sh
oo
t
[m
]

pJp ≤ 400 m/s3
pJp ≤ ∞

Figure 7.19 Position overshoots for acceleration profiles of the type pre-
sented in Figs. 7.16–7.18. The value of Tm is the duration from the begin-
ning of the motion until the reference position reached its final value. The
distance to travel was 50 mm.

121



8

System Integration of a

Ball-Catching Robot

Figure 8.1 Experimental setup for ball-catching with an ABB IRB 140
robot and two cameras.

122



8.1 System Overview

Figure 8.2 Overview of data flow, approximate execution times, and
execution rates.

8.1 System Overview

This chapter describes how the research presented in Chapters 3–7 was
used to create a ball-catching robot system, shown in Fig. 8.1. The first
section gives an overview of the components and the data flow. More
details about the different components are given in the following sections.
A block diagram of the data flow is shown in Fig. 8.2.
Images were captured by two cameras with a frame rate of 50 FPS

and transferred to the computer using a FireWire connection. A new pair
of images was captured every 20 ms, and the transfer of the data to
the computer took 20 ms. The computer was, hence, receiving data from
the cameras without interruption. The FireWire hardware, however, used

123



Chapter 8. System Integration of a Ball-Catching Robot

DMA (Direct Memory Access) to write the image data to a ring buffer in
RAM, and did not consume any CPU time of the computer.
Image analysis of the image pair took approximately 10 ms on a single

core of the processor, and it returned the image coordinates of balls found
in the images.
If any balls were found, their coordinates were sent to the tracker sys-

tem, where the positions and velocities of the balls were estimated using
EKFs (Extended Kalman Filters) [Schmidt, 1966]. Several hypotheses of
ball trajectories were maintained, partly to handle falsely detected balls
from the image analysis, and partly to be able to track several balls si-
multaneously. Every measurement was either matched with an existing
trajectory hypothesis and used for a Kalman filter measurement update,
or the measurement was used to create a new trajectory hypothesis. Then
the set of hypotheses was pruned to remove unlikely hypotheses. The re-
maining trajectory hypotheses were evaluated based on the number of
inlier measurements and the direction of flight. If any hypothesis was
good enough, the best one was used to calculate the catching position,
which was passed to the robot trajectory generator. Finally, a Kalman
filter time update was performed on all trajectory hypotheses. Executing
the tracker took approximately 0.1 ms.
The trajectories were designed to have piecewise constant acceleration,

minimizing the magnitude of the acceleration needed to reach the catch-
ing position before the ball got there. Every time a new estimate of the
catching position was generated by the ball tracker, a new trajectory for
the robot was generated based on its current position and velocity. Gener-
ation of the robot trajectory for all joints, including the trajectory back to
the home position after the ball was caught, took approximately 0.1 ms.
The trajectories were represented as piecewise second-order polynomials.
Every 4 ms they were sampled, and reference positions and velocities were
sent to the robot controller.
All computations were performed on a desktop computer with an

Intel RF CoreTM2 Quad CPU Q6600 processor running at 2.40 GHz.
The balls used for throwing had a diameter of 60 mm and weighed

approximately 21 g. The catching device used was a cardboard box with a
hole. The diameter of the hole was chosen so the ball had to be squeezed
through the hole.

8.2 Image Analysis

The task of the image analysis was to identify foreground objects and
discriminate them from the background. In the context of the ball catcher,
the foreground consisted of green flying balls, and everything else was

124



8.2 Image Analysis

background.

Cameras

For image acquisition, two cameras of the type Basler A602fc were used,
capturing images with 656$480 pixels. The cameras were run at 50 FPS
(frames per second) with 4 ms exposure time.
In the coordinate system of Fig. 2.2, the focal points of the cam-

eras were placed at the coordinates (X ,Y, Z) = (1.65, 1.00,−1.03) m and
(X ,Y, Z) = (−0.44, 1.12,−0.95) m, i.e., on the left and right sides of the
robot, slightly behind and above it, see Fig. 8.1. The cameras were point-
ing toward the area in front of the robot, where the thrower should stand.
This positioning gave a large area of stereo coverage in front of the robot.
The maximum distance between the robot and the positions where the
ball could be detected was mainly limited by the resolution of the cam-
eras. Having the cameras next to the robot allowed the system to detect an
incoming ball when it was far away, and get the best accuracy when the
ball was close to the robot (and the cameras). This setup was well suited
for a system where the robot started moving to an approximate catching
position as soon as the ball was detected and the catching position was
continuously refined based on the new measurements, with the highest
requirement on the accuracy just before the catching instant.
The cameras were calibrated using the Camera Calibration Toolbox

for Matlab available through [Bouguet, 2010]. Markers on the catching
box were used to measure a camera’s position relative to the box, and
the relative position between cameras was determined by capturing im-
ages of a checkerboard pattern in different poses visible by both cameras
[Linderoth, 2008].

Data Transfer

Data transfer from the cameras to the computer was done with the
IEEE 1394 serial bus, more commonly known as FireWire or iLink, using
the libdc1394 C library [Douxchamps, 2012]. The cameras were connected
to two FireWire ports, which in turn were connected to a single FireWire
root node in the computer. The data was transferred as 8-bit raw Bayer-
pattern images at a rate of 50 FPS.
The frame rate was limited by the data rate through the FireWire root

node. If a computer with two FireWire root nodes was used, images could
be transferred to the computer at 100 FPS.
The images were transferred to the computer as raw Bayer-pattern im-

ages, where each pixel only had information about one color component,
as depicted in Fig. 8.3. Demosaicing was performed using the “simple
method” in libdc1394, taking 2.8 ms for the image pair. This demosaic-

125



Chapter 8. System Integration of a Ball-Catching Robot

Figure 8.3 Using a Bayer pattern, each pixel only records light from the
red, green or blue color channel, as illustrated in the figure. In the process
of demosaicing the colors are interpolated to create full RGB images with
values for all three color channels for all pixels.

ing method resulted in poorly reproduced colors near sharp edges in the
images, but these artifacts only had a small impact on the ball-detector
algorithms, and more advanced demosaicing algorithms would take too
long to execute.
It should be noted that the execution times reported in Chapters 3

and 4 include the 1.4 ms needed to demosaic each Bayer-pattern image.
The cameras also provided the possibility to do the demosaicing in

the camera hardware and transfer the image in YUV(4:2:2) format (16
bits/pixel average), but this would require twice as much data to be sent
over the FireWire connections, halving the achievable frame rate, and this
option was hence rejected. More details about the image formats can be
found in the camera reference manual [Basler, 2005].

Pixel Classification

After demosaicing of the Bayer-pattern images, the next step of the image
analysis was to classify each pixel based on its color. This process gener-
ated an image, where the value of each pixel was its estimated probability
of belonging to the foreground, hereafter denoted the probability image.
More details on how the classification was done is given in Chapter 3, and
examples of classified images are shown in Fig. 3.7. The classifier was de-
signed to handle varying illumination conditions that were combinations
of daylight and fluorescent light.
In many images of a moving ball, significant motion blur was visible,

which reduced the accuracy of the classifier in Chapter 3. The method pre-
sented in Chapter 4 was used for reducing the effects of the motion blur,
making it possible to measure the positions of the balls more accurately.
Since the cameras were not moving, and moving balls should be de-

tected in front of a fairly static background, there was much to be gained

126



8.2 Image Analysis

from comparing the most recent image to a background image. A common
way to obtain a background image is to somehow create the median of a
set of images. I instead used one of the most recent images as background,
which was possible since the balls moved so fast that the projections of
a ball in two consecutive images rarely overlapped. Using a recent image
as background also had the advantage that it adjusted very quickly to
changes in the background or illumination, and it did not require any
extra processing.

Ball Detection

When the probability of belonging to the foreground had been computed
for each pixel, the next step was to detect the balls. To this purpose pixel
scores were calculated by subtracting 0.5 from the probability image. The
scores were, hence, positive for pixels that were most likely to be part
of a ball, and they were negative for pixels that were most likely to be
background.
The positions and sizes of the balls were estimated by locally maxi-

mizing the circle score, which was defined as the sum of the pixel scores
enclosed by a circle. Decreasing the radius from its optimum value would
exclude pixels with positive scores from the circle, and increasing the ra-
dius from its optimum would include pixels with negative scores in the
circle. Moving the center of the circle from its optimum would reduce
the circle score due to both of the above mentioned effects. Examples of
detection results can be seen in Figs. 4.5(b) and 4.5(c).
To find balls in an image, the approximate position was first estimated

by looking for areas having many pixels with positive scores. This oper-
ation was performed using integral images and a binary-fashion search.
The entire image was split in two halves, and the half with the most
foreground pixels was in turn split in half. This procedure was repeated
recursively until an area that mostly contained foreground pixels was
found.
When the approximate position and size of a ball had been estimated,

the local maximum of the circle score was found using a gradient-based
search. To facilitate fast computations, only integer values were used for
the center coordinates and the radius of the circle. The optimal circle was
then estimated with sub-pixel resolution by doing a second order approx-
imation of the circle score around the best set of integer parameters.

The Effect of Flicker

Many electric lights, such as fluorescent lights commonly used in indoor
environments, flicker at twice the frequency of the AC voltage powering

127



Chapter 8. System Integration of a Ball-Catching Robot

them. In Europe the power grid has a frequency of 50 Hz, resulting in
light flicker at 100 Hz, i.e., the flicker has a period of 10 ms.
The exposure time used for the ball catcher was 4 ms, and since this

was significantly lower than the period of the flicker, the intensity of the
captured images depended on the phase angle of the flicker at the time
of the exposure. Furthermore, the images were captured with a period
of 20 ms. Since this was a multiple of the period of the flicker, aliasing
effects were expected if the actual frequencies were not exactly equal to
those specified.
Let fs be the frame rate of the camera (the sampling frequency), fac the

frequency of the AC voltage, and f f = 2 fac the frequency of the flicker. Un-
der the assumptions fs ( 50 Hz and fAC ( 50 Hz, the aliased frequency
observed in the images is then

fa = p(( f f + fs/2) mod fs) − fs/2p
= 2 p fAC − fsp

(8.1)

Measurements on the power outlets in the lab showed frequencies in the
range 50± 0.08 Hz, which according to (8.1) corresponded to aliased fre-
quencies with periods down to 6.25 s, assuming that fs = 50 Hz. These
results corresponded well to what was observed in the images, where the
illumination intensity appeared to oscillate with varying periods down to
approximately 6 s.
The aliasing effects observed in the images had implications on the

image analysis. Since the motion detection was based on changes in in-
tensity of the different color components, varying illumination of the scene
could cause falsely detected motions. Since one of the recently captured
images (40 ms old) was used as background, and the intensity variation
caused by the aliasing varied slowly, there was no practical impact on the
motion detection.
If the illumination of the scene was a combination of daylight and flu-

orescent light, the aliasing also caused variations in the observed colors.
The pixel-classification method described in Chapter 3 is, however, robust
to this kind of variation and handled the disturbance without any further
action.

8.3 Tracking

The non-linear state-space model (2.4) was used to model the flight of the
ball. The sampling interval was set to h = 20 ms to match the frame rate
of the cameras. The air-drag parameter, c, was estimated by recording
data from a number of throws made with various speeds and directions
and then minimizing the one-step prediction errors, resulting in the value

128



8.4 Robot Control

c = 0.04 m−1. The method described in Chapter 6 was used to track the
balls.

8.4 Robot Control

Robot and Interfaces

The robot used for the ball catcher was an ABB IRB 140 [ABB, 2013],
shown in Fig. 8.4. It had a maximum payload of 6 kg, reach of 810 mm
and position repeatability of ±0.03 mm.
The robot was controlled by an IRC5 controller extended with an ex-

ternal controller through the ExtCtrl interface [Blomdell et al., 2005;
Blomdell et al., 2010]. It connected to the low-level joint controllers of
the robot with a sample rate of 250 Hz and let the higher level function-
ality be executed in an external controller. For each joint the external
controller could set the reference position, and provide feedforward data
for the velocity and motor torque. Measured positions and velocities, com-
manded motor torques, etc. were sent back from the robot control cabinet
to the external controller.
The data was transferred using the LabComm protocol [LabComm,

2013], which allowed the specification of data types that should be sent
over a socket. The communication overhead has been kept to a minimum
and the protocol is appropriate for sending samples of process data in real
time.

Trajectory Generation

For the ball-catching application, only the destination points of the tra-
jectories were important, and the paths to the destination were of little
interest. Hence the trajectory generation was performed in joint space.
This gave limited control of the paths compared to trajectory generation
in task space, but for the assigned range of catching positions the paths
were always well behaved.
The joint trajectories were designed to have piecewise constant accel-

erations, and to use the smallest possible acceleration to reach the target
before the deadline, given the constraints on maximum acceleration and
speed. Every time a new estimate of the catching position became avail-
able, a new robot trajectory, based on the current position and velocity,
was generated in approximately 0.1 ms. More details on the trajectory
generation can be found in Chapter 7.
The IRB 140 has 6 joints, where the three outer joints form a spherical

wrist. For the ball catcher, however, joints 4 and 6 were kept at fixed
angles, resulting in a robot that effectively had 4 joints, as illustrated by
the skeleton in Fig. 8.4. Joint 1 had a vertical rotation axis, and joints 2,

129



Chapter 8. System Integration of a Ball-Catching Robot

0
0.2

0.4
0.6

0.8

−0.4

−0.2

0

0.2

0.4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

XY

Z

Figure 8.4 Photo of the robot and a sketch of the used joints.

3, and 5 all had horizontal rotation axes perpendicular to the plane that
intersected all joint centers. This configuration allowed positioning in 3D
and reorientation around joint 5.
To make the catch as easy as possible, it was desirable to reorient

the box so that the velocity vector of the ball at the catching instant was
normal to the face of the box, but with only one rotational DOF, such a
reorientation was usually not possible. The normal vector of the face of
the box was confined to lie in the plane that intersected the centers of
all robot joints. Hence, the normal vector was chosen as the projection
of the negative velocity vector into this plane, thus minimizing the angle
between the negative velocity vector and the normal of the box.
If the ball was thrown from a position in front of the robot (the area

covered by the cameras’ field of view) toward the work space of the robot,
the horizontal direction of the ball was quite limited. The direction of the
velocity of the ball mainly varied due to different velocities in the Y- and
Z-directions, which could be accounted for by joint 5 of the robot. Hence,
locking joints 4 and 6 had a very small effect on the performance of the
ball catcher.
In a general trajectory-generation context it could be desirable to gen-

erate trajectories with non-zero end-point velocities. For the chosen way
of catching the ball–by means of a box with a hole–there was no need for
such functionality.
The catching positions were confined to be in the plane Z = 0 in

the range −0.25 m ≤ X ≤ 0.55 m and −0.20 m ≤ Y ≤ 0.55 m. The
asymmetric X range was due to the presence of a wall next to the robot,
cf. Figs. 2.2 and 8.1.

130



8.5 Accuracy Requirement

Figure 8.5 The experimental setup used to estimate the position accu-
racy required for the ball to pass through the hole.

8.5 Accuracy Requirement

Figure 8.5 shows an experimental setup that was used to measure how
accurately the catching position had to be estimated in order to accomplish
a successful catch. The box was put in a fixed position with its face in
the horizontal plane, as shown in the bottom of Fig. 8.5. The robot was
equipped with a tool with a corner that the ball could be pressed against,
as shown in the top part of Fig. 8.5. This setup could be used to drop
the ball from well-defined positions. A set of experiments was performed,
where the center of the ball always was 450 mm above the face of the box
when the ball was dropped, but various positions in the horizontal plane
were used. For each dropping position, 10 experiments were performed,
and the number of balls that passed through the hole of the box was
recorded. The results can be seen in Fig. 8.6.
The outcome of the experiments was affected by the required accuracy

131



Chapter 8. System Integration of a Ball-Catching Robot

 

 

480 485 490 495 500 505 510

−145

−140

−135

−130

−125

−120

−115

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [mm]

y
[m
m
]

Figure 8.6 Results from experiments of the type illustrated in Fig. 8.5.
For each position indicated by a non-white square, the ball was dropped
10 times from an elevation 450 mm above the face of the box. The color
of the square indicates what fraction of these experiments passed through
the hole.

to enter the hole, but also by how much the position of the ball varied
after being dropped from the corner on the robot tool. The model used
was that if the center of the ball deviated less than the distance r from
the center of the hole, the ball always passed through the hole, and if
it deviated more from the center of the hole, the ball always bounced
out. The actual position where the ball hit the box was assumed to be
normally distributed with the covariance matrix σ 2 I2$2 and the mean
value straight under the position where the ball was dropped from the
robot. The values of r, σ , and the center coordinates of the hole were
estimated by the maximum-likelihood estimate, i.e., the set of values that
was the most likely to generate the data in Fig. 8.6. The computations
were performed by means of numerical optimization and gave the result
r = 8 mm (marked by a magenta circle in Fig. 8.6) and σ = 7 mm.
The position of the box during the experiments was constant, but its

absolute position was not known. The offset of the axes and the center
coordinate of the circle in Fig. 8.6 were, hence, irrelevant. The impor-
tant data were the value of r and relative distance between the dropping
positions.
Since the ball entered the hole in the straight downward direction

132



8.6 Performance

during these experiments, the gravity could help to pull the ball through
the hole if it bounced a little on the edges of the hole. In a real catching
situation, where the face of the box was closer to vertical, the required
accuracy was likely to be slightly higher.

0.5
1

1.5
2

2.5
3

3.5
4

4.5

−0.2
0

0.2
0.4

0.6
0.8

−0.5

0

0.5

1

X [m]

Y
[m
]

Z [m]

Figure 8.7 Estimated trajectories of the throws that were used to evalu-
ate the catch rate of the robot. The trajectories that resulted in a successful
catch are marked in green, and the failures are marked in red. The black
rectangular frame in the plane Z = 0 indicates the designated catching
range.

8.6 Performance

To evaluate the performance of the ball catcher, an experiment with a
number of throws toward the robot was performed. Out of the 108 throws
that entered the catching range of the robot, 78 were caught, giving a
success rate of 72 %. The estimated trajectories of the throws are plotted in
Fig. 8.7. The throws were performed from distances in the range 2 – 7 m
from the robot, but the balls were usually not detected further away from
the robot than 4 m. The flight durations were in the range 0.35 – 0.90 s

133



Chapter 8. System Integration of a Ball-Catching Robot

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Distance to move [m]

M
ot
io
n
du
ra
ti
on
[s]

Figure 8.8 Plot of motion duration vs. the distance required to move to
catch the ball. Green: successful catch. Red: failure.

and the horizontal speeds in the range 3 – 11 m/s. The angles between
the velocity vector of the ball and the horizontal plane at the catching
instant were in the range 5 – 45 degrees.
The 60-mm ball had to be squeezed through the hole of the catching

box, but due to the rounded shape of the ball and the compliance of the
box, the ball would enter the hole if the position of the hole deviated less
than 8 mm from a perfect catch, as described in Sec. 8.5.
Figure 8.8 shows the duration from the instant when the first robot

trajectory was generated until the estimated catching instant on the ver-
tical axis, and the distance the robot had to move on the horizontal axis.
The large number of failures in the lower right part of the figure, where
the distance to move was large in comparison to the available time, in-
dicates that the robot acceleration was an important (but not the only)
limiting factor for the success rate.
Out of the ball catchers developed by other groups, the systems pre-

sented in [Bäuml et al., 2011a] and [Lippiello and Ruggiero, 2012a] are
the most notable. In [Bäuml et al., 2011a], the radius of the opening in the
hand was 2 cm larger than the radius of the ball. The system achieved a
success rate of 80 % for throws made 5 – 7 m away from the robot with
durations of 0.6 – 0.9 s. In [Lippiello and Ruggiero, 2012a], the size of the
hand allowed position errors of 5 cm. The ball was thrown from distances
of 6 – 6.5 m away from the robot and the flight duration was 0.7 – 0.9 s.
They achieved a catch rate of 70 %.

134



8.7 Discussion and Future Work

To conclude, my system demonstrated higher position accuracy in the
catching pose than the other ball-catching robots. It also showed a much
faster reaction time, being able to catch balls that had a short time of
flight.

8.7 Discussion and Future Work

The presented implementation determined the catching position by calcu-
lating where the trajectory of the ball intersected a vertical plane in front
of the robot. The catching range could probably be increased by choosing
a catching surface that was better adapted to the kinematics of the robot,
e.g., a torus. The choice of catching point could be generalized further by,
for example, choosing the point along the ball trajectory that the robot
could reach the fastest.
In the presented system the ball was caught using a box with a hole in,

whereas several other similar systems have used robotic hands or similar
gripping devices. Catching with a hand demonstrates higher temporal
accuracy, but the hand may add a significant cost to the system and be
prone to damages by the impact of the ball. The hands have also been
used to form a basket, allowing spatial uncertainties of a few cm. This
is a reasonable design choice if the objective is to maximize the catch
rate using a reasonably-sized hand. Using a box with a hole was a very
cheap and robust solution, and by choosing a small diameter of the hole
it demonstrated very high spatial resolution of the ball catcher.
When looking the performance of different ball catchers, it should

be noted that many systems have special challenging requirements that
make them hard to compare directly. In [Bäuml et al., 2011a] the catch-
ing was performed with a humanoid robot with a highly compliant upper
body and on-board sensing, making the estimation difficult due to shak-
ing cameras etc. In [Lippiello and Ruggiero, 2012a], only a single camera
was used. I [Bätz et al., 2010], very accurate timing and velocity tracking
was required, since a basket ball should be caught on a flat plate without
bouncing off.
If the orientation of the catching pose would have 2 DOFs, it would be

possible to always make the velocity vector of the ball perpendicular to
the face of the box. This was, however, not practical, due to the vicinity
of a kinematic singularity in the wrist of the robot, and in practice it was
usually possible to make the face of the box almost perpendicular to the
velocity vector. It could also be possible to mount the box on the robot in
a different way, avoiding the kinematic singularity.
The cameras were placed on the cage of the robot cell, see Fig. 8.1,

largely to interfere as little as possible with other activities in the robot

135



Chapter 8. System Integration of a Ball-Catching Robot

lab. This resulted in a rather wide base line of 2.10 m, helping to get
accurate depth information about the ball. The positioning on the cage
also meant that the cameras were somewhat distant from the catching
position. If the cameras were closer to the robot (and the ball), the mea-
surements of the ball could be more accurate, since a given error in the
image would result in a smaller error in 3D space. Having the cameras
mounted in fixed positions made it possible to calibrate them with high
precision. If the cameras could be moved, however, they could cover the
entire flight of the ball even if they were given a narrower field of view.
This could be used to adjust the zoom level (which could be constant or
varying during execution) and make better use of the resolution of the
cameras.

Every image was analyzed in its entirety. When an estimate of a ball’s
trajectory was available, time could be saved by only looking for the ball
around its predicted position in the images, but this could reduce the
robustness of the detector. For example, it would be impossible to track
multiple balls simultaneously, and an estimated ball trajectory based on
false measurements could prevent detection of a ball that was actually
present in the image. Further, the image processing time was approxi-
mately 10 ms, and with the frame rate used the image processing could
take almost 20 ms. Hence, there was no big incentive to reduce the image
processing time at the cost of reduced quality of the analysis result.

The two images captured simultaneously were processed on a single
CPU core, one after the other. Since the images were analyzed completely
independently, it should be easy to let them be processed on one core each,
probably giving almost half the processing time. The image analysis algo-
rithm was highly parallelizable, since more than 75 % of the processing
time was spent on operations on a single pixel at a time or on groups
of 2 $ 2 pixels. This could be used to reduce the image processing time
further on a system with many CPU cores or a GPU.

The aliasing effect caused by the flickering lights could be used to
measure time drift between the cameras and detect offsets in the syn-
chronization. The offset could be estimated by looking at the phase shift
in the oscillation of the illumination. However, since the frequency of the
AC voltage could be either less than or greater than the frame rate, it
would be difficult to determine which camera was ahead of the other. It
was, hence, difficult to measure the offset and compensate for it, but the
flickering could be used to detect whether the cameras are out of synch.

136



8.8 Conclusions

8.8 Conclusions

This chapter described the integration of several components to form a
ball-catching robot system and discussed different practical aspects. The
system demonstrated higher spatial accuracy and shorter response time
than ball-catching robots developed by other groups.

137





Part II

Force Control and Estimation





9

Robotic Assembly

9.1 Introduction

The traditional way of programming industrial robots is to use position-
based control and make the robots follow predefined trajectories. Modern
robots do this well with high speed and accuracy, and they are widely
used in industry, e.g., for welding, spray painting, and pick-and-place op-
erations. There are, however, limitations to what can be achieved with
position-based control strategies. For the accuracy of the robots to be ex-
ploited, they have to work in structured environments, where the positions
of all objects are well known, which often is a feasible requirement in a
factory setting.
In many assembly applications, however, the accuracy of the position-

ing in fixtures and grippers is not enough for a position-based approach to
work. Then it may be beneficial to introduce force sensing. If the contact
forces can be detected, it is possible to infer the relative position of the
objects to be assembled, without knowing exactly how they are gripped.
Equipping the robot with this extra sense makes it possible to approach
the ability of the human hand to perform complicated assembly opera-
tions in spite of poor position accuracy. One should also remember that,
even when it is possible to position all work objects accurately, it may be
desirable to avoid the job it requires, by using a force-controlled strategy.
There are different ways of using force sensing in robotic assembly.

One simple strategy is to use the sensor as a detector of contact events.
This can be useful if the robot should make contact with an object that
has an uncertain position. The robot then searches for the object by mov-
ing toward it, and when the measured contact force exceeds a specified
threshold, a contact event is detected, typically triggering the start of
the next motion in the assembly operation. Similarly, the force sensor
can be used to detect unexpected contacts (collisions) and trigger error
messages. In the above example a simple force threshold was used, but
filtering techniques can be used to detect more complex force signatures.

141



Chapter 9. Robotic Assembly

When contact has been made, as described in the previous paragraph,
it is common that the next step in the assembly operation is a sliding
operation along the contact surface. If the normal direction of the contact
surface is known and there is some compliance in the system (e.g., in the
robot, the gripper, or the work object), the sliding can be performed using
position control. If there are large uncertainties, or if the robot and the
involved parts are very stiff, a position-based strategy for sliding may,
however, lead to lost contact or very large contact forces that can damage
the equipment. In this situation it may be necessary to use continuous
force feedback to control the contact force. The benefit of this strategy is
that the contact forces can be kept at acceptable levels without knowledge
about the shape of the contact surface, but this strategy also requires a
more skilled programmer, since it may be difficult to find good feedback
parameters for the force control.
Using force control also puts new demands on the task specification.

Programming languages for industrial robots typically have no or limited
support for force-controlled operations and require an extension in order
to perform force-controlled assembly.
In [Bruyninckx et al., 2001] a survey of the requirements for au-

tonomous robotic assembly was presented, along with an overview of func-
tionality accomplished, and directions for future work. On the lowest level
contacts can be managed by passive compliance [Lane, 1980] or active con-
trol strategies based on force sensing, such as hybrid position/force control
[Raibert and Craig, 1981] or impedance control [Hogan, 1985]. Approaches
for specifying the end-effector behavior include the task frame formalism
[Mason, 1981], the operational space formulation [Khatib, 1987], and the
constraint-based task-specification framework [De Schutter et al., 2007].
On a higher level, the assembly tasks require sequencing [Fox and Kempf,
1985; Wang et al., 1998]. For robust assembly it is also important to detect
and recover from errors [Di Lello et al., 2012; Nägele et al., 2012].
Numerous application examples exist. In [Jörg et al., 2000] a combi-

nation of vision and force control was used to insert pistons into a mov-
ing engine block. The force sensor used had built-in compliance, which
reduced the bandwidth required for the force control. The use of senso-
rimotor primitives for task specification was proposed in [Morrow et al.,
1995]. The method was demonstrated by inserting cable connectors into
their sockets by means of vision and force sensing.
The work presented in this chapter has been performed to further

investigate the possibility of using robots for automated small-parts as-
sembly. In order to be industrially interesting, they must be competitive in
comparison to the current state of the art, i.e., human workers. Hence, the
productivity of a human assembly worker has been used as a benchmark
of the performance.

142



9.2 Task Specification and Control Framework

Two assembly scenarios have been used. One example was the attach-
ment of a shield can onto the PCB (printed circuit board) of a mobile
phone. The involved parts were small and delicate, and the shield can
should be squeezed onto its socket, thus requiring compliance and detec-
tion of contacts to fit it properly. The other example was the assembly of
an emergency stop button. It consisted of slightly larger components that
could withstand larger forces, but it required many different types of con-
tact operations for the complete assembly, including peg-in-hole insertion,
snap-fit attachment, and putting a nut on a thread and screwing it until
it was tightened.
Section 9.2 describes the framework that was developed for specifying

and executing the assembly tasks. Sections 9.3 and 9.4 then describe two
use-case assembly tasks, followed by experimental results in Sec. 9.5,
discussion in Sec. 9.6, and conclusions in Sec. 9.7.

9.2 Task Specification and Control Framework

This section describes the principles used for task specification and the
control framework that was developed to execute the tasks.
The tasks were hierarchically subdivided into skills and motions. A

typical motion could be to move to a given position, or to search for a
contact force along a given direction. Motions were combined to form skills,
which could typically be to pick up an object, or to assemble two objects
as a part of the full assembly task.

Specification of Force-Controlled Motions

The specification of the motions using force sensing was done with a
framework based on iTaSC (instantaneous Task Specification using Con-
straints) [De Schutter et al., 2007]. An overview of the parts relevant for
this chapter is given on next three pages.
The iTaSC methodology provides a convenient way of describing robot

motions by imposing constraints (e.g., on positions, velocities, or forces)
without being restricted to joint space or Cartesian space. One or several
kinematic chains are defined, relating the tool frame of the robot to the
world frame. Each kinematic chain can be seen as an alternative descrip-
tion of the 6-DOF pose of the tool frame, parameterized by a vector, χ f ,
of 6 feature coordinates. A kinematic chain consists of a series of trans-
formations, e.g., translations and rotations, and it is typically designed so
the feature coordinates represent quantities relevant for the task.
For convenience, object and feature frames can be introduced to facili-

tate the specification of the kinematic chain. The relations between these

143



Chapter 9. Robotic Assembly

w

q1
o1

χ f I
f1

χ f I I

f2
χ f I I I

o2q2

Figure 9.1 Illustration of how the frames are connected by the joint
coordinates, q, and the feature coordinates, χ f .

frames and the world frame, w, are depicted in Fig. 9.1, and below is a
description of the frames and guidelines for how to choose them.

• o1 – object frame 1. Usually attached to the object to manipulate;

• f1 – feature frame 1. Usually attached to a feature on the object to
manipulate;

• f2 – feature frame 2. Usually attached to a feature on the robot;

• o2 – object frame 2. Usually attached to the robot.

The feature coordinate vector, χ f , can be partitioned into three parts
between the different frames according to Fig. 9.1 with

χ f = (χ f IT χ f I I
T χ f I I I

T )T . (9.1)

The six DOFs of χ f can be distributed between χ f I , χ f I I and χ f I I I as
appropriate for the task at hand. Similarly, for two-arm operations, it is
convenient to partition the robot joint coordinates as q = (q1T q2

T )T ,
where q1 and q2 each represents the joint coordinates for one arm.
The quantities to be constrained are chosen by specifying outputs:

y= f (q, χ f ). (9.2)

The outputs can be functions of the joint coordinates and the feature
coordinates, but if the kinematic chains are chosen properly, each output
can often be made to directly correspond to one of the feature coordinates.
The fact that the transformations in Fig. 9.1 form a kinematic loop,

imposes a constraint on the relation between the joint coordinates and
the feature coordinates, which can be expressed as

l(q, χ f ) = 0, (9.3)

144



9.2 Task Specification and Control Framework

where the function l depends on the kinematic chains chosen for the task.
This relation can also be expressed in terms of the individual transfor-
mations as a constraint on the total transformation matrix:

T o1w (q1)T f1o1 (χ f I)T
f2
f1 (χ f I I)T o2f2(χ f I I I)Two2(q2) = I4$4, (9.4)

where Tba denotes the transformation from frame a to frame b.

Control The control is performed on the velocity level. Consequently, a
relation between the time derivatives of the different variables is needed.
Taking the time derivative of the output equation (9.2) gives

ẏ= Cqq̇+ Cf χ̇ f , (9.5)

where Cq = � f /�q and Cf = � f/�χ f . Similarly, taking the time derivative
of the kinematic loop constraint (9.3) gives

Jqq̇+ J f χ̇ f = 0Z[ (9.6)
χ̇ f = −J−1f Jqq̇, (9.7)

where Jq = �l/�q and J f = �l/�χ f . Substituting (9.7) into (9.5) now
gives

ẏ = Aq̇, (9.8)
A = Cq − Cf J−1f Jq (9.9)

Equation (9.8), hence, relates the outputs, y, (the signals one wants to
control) to the joint coordinates, q, (the signals that can be commanded).
The robot motion is described in terms of the outputs on the velocity

level:

ẏ○d = ẏd + C (9.10)

where ẏd is a feedforward velocity for the desired trajectory and C is
a controller using feedback from sensors, e.g., force sensors, cameras or
measured robot joint positions. The feedforward and the control output are
added to form ẏ○d; the reference output derivative that is used to calculate
the commands to the robot. The desired robot joint velocities, q̇d, can then
be obtained as a solution to

ẏ○d = Aq̇d (9.11)

Unless y and q have equal dimensions and A has full rank, some kind of
pseudoinverse of A has to be used to solve (9.11). For underconstrained
systems one possibility is

q̇d = A# ẏ○d, A# = M−1AT
(
AM−1AT

)−1 (9.12)

145



Chapter 9. Robotic Assembly

which is the solution to the optimization problem

min
q̇d
q̇TdMq̇d

s. t. ẏ○d = Aq̇d
(9.13)

The matrix M is a weighting matrix that is used to choose the op-
timization criterion. If the desired weighting is more easily described
in Cartesian space, then this property can easily be handled by using
M = JTq (q)M̄ Jq(q), where M̄ describes the weights in the Cartesian
space.
Since the above equations work on the velocity level, q̇d from (9.12)

has to be integrated w.r.t. time to provide qd. The generated qd and q̇d
are used as reference trajectories. Low-level joint controllers of the robot
are assumed to make the robot track these references.

Calculation of Feature Coordinates

In order to calculate (9.8), both q and χ f must be known, but only q can be
measured directly. The corresponding feature coordinates, χ f , that solve
(9.4) can be obtained iteratively, which corresponds to calculating the
inverse kinematics of a robot. For the purpose of finding χ f , q can be
considered to be constant, and the left hand side of (9.4) can be expressed
as Tq(χ f ), which should satisfy

Tq(χ f ) = I (9.14)

Assume that there is an initial guess χ̂0f of χ f . If χ̂ if ,= χ f this results
in an error, ∆T i, satisfying

Tq(χ̂ if ) = ∆T i, (9.15)

∆T i =
[

∆Ri ∆ti

0 1

]

(9.16)

where ∆Ri is a rotation matrix, which can be converted to a rotation
vector ∆vi in axis/angle representation [Spong et al., 2006]. Using a linear
approximation around χ̂ if , the error of the feature coordinates, ∆χ if , is
given by

J f (χ̂ if )∆χ if =
[

∆ti

∆vi

]

(9.17)

The feature coordinates χ f can then be obtained iteratively with

χ̂ i+1f = χ̂ if − ∆χ if = χ̂ if − J−1f (χ̂ if )
[

∆ti

∆vi

]

, (9.18)

146



9.2 Task Specification and Control Framework

which can be seen as a special case of the Gauss-Newton algorithm.
If the system were linear, a single iteration would be needed to arrive

at the correct solution. If χ f is estimated in each time step, and the values
only change slightly in between consecutive steps, then the estimate from
the previous time step can be used as an initial guess, and one or a few
iterations are usually sufficient for convergence.

Feedback Control Strategies

In order to enforce the constraints specified for the outputs, the compo-
nents of y had independent scalar feedback controllers in (9.10). One of
the following three controllers was used for each component, depending
on the type of constraint.

Position control Each output component that had a position reference
was governed by a proportional controller:

ẏ○d = ẏd + K (yd − y), (9.19)

where yd is the reference (desired) output value and K is the proportional
gain. The task of this type of controller was mainly to handle errors that
were accumulated when integrating the velocity references generated by
(9.12), while load disturbances were handled by the low-level joint con-
trollers.

Velocity control Velocity control was particularly easy, since the iTaSC
framework used was velocity based. The controller used only included a
feedforward term:

ẏ○d = ẏd, (9.20)

where ẏd was the desired velocity.

Impedance control Impedance control was used to make the robot be-
have as if it were a body with mass M , a viscous damping D and a force
Fre f acting on it. This was realized by

ÿ○d =
1
M
(F − Fre f − Dẏ○d) , (9.21)

where F is the measured force acting on the robot, given in the space of
the outputs.

Position-Controlled Motions

Motions that did not require any force feedback could be specified using
standard programming languages for industrial robots. For this purpose

147



Chapter 9. Robotic Assembly

the ABB RAPID language was used. It let the programmer specify target
poses of the robot, maximum speed and acceleration for different motions,
and whether the trajectory generation should be done in joint space or
Cartesian space, etc. The RAPID language was easier to use than the
above described interface for force-controlled motions and should therefore
be used whenever possible.

Execution Platform

A framework for executing iTaSC-based motion control was implemented
in Matlab/Simulink, performing the most time-critical and low-level op-
erations, including controller calculations, overload protection, coordi-
nate transformations, kinematics calculations, and gravity compensation.
The program was compiled by the Real-Time Workshop toolbox [Real-
Time Workshop, 2011] and executed on a real-time Linux PC [Xenomai,
2013], which connected to the robot controllers via the ExtCtrl interface
[Blomdell et al., 2010].
The iTaSC-based skills were described by state machines implemented

in JGrafchart [Årzén, 2002; JGrafchart 2013]. Each state generated a set
of outputs specifying the behavior of the motion controller described in
the previous paragraph. The outputs from the state machine consisted of
the following time-variable parameters:

• kinematic chains to be used;

• active outputs;

• reference values for the outputs;

• controller types (position, velocity or impedance);

• controller parameters.

The conditions for state transitions were typically that a force was de-
tected or that a position was reached.
The main program flow was handled in RAPID, where the main pro-

gram could execute skills that were implemented either in RAPID (for
position-based control) or JGrafchart (for operations that needed force
sensing).

9.3 Shield-Can Use Case

A part of a mobile phone assembly was chosen as a use case for robotic
assembly. The operation considered was the attachment of a shield can
to the PCB (printed circuit board) of the phone, see Fig. 9.2. The shield

148



9.3 Shield-Can Use Case

Figure 9.2 Illustration of the frames used in the shield-can assembly
task.

can had flexible edges and was attached by pressing it onto a socket on
the PCB. The size of the shield can was 38 mm $ 23 mm. This section
describes how the assembly was performed with a robot.

Tooling

To make it possible to perform the mobile phone assembly, special tooling
was produced. A fixture was designed for keeping the PCB in position. A
suction tool was used to grasp the shield can, see Fig. 9.3. The maneu-
verability in contact was good in the vertical direction (the f2 z-direction
in Fig. 9.2), but worse orthogonal to this direction ( f2 x- and y-directions
in Fig. 9.2), since the shield can might slide. A 6 degrees-of-freedom ATI
Mini40 force/torque sensor was mounted beneath the PCB fixture (see
Fig. 9.4).

149



Chapter 9. Robotic Assembly

Figure 9.3 The vacuum gripper used in the experiments, without and
with the shield can.

Task Modeling

The task was modeled using the iTaSC framework, described in Sec. 9.2.
The assembly operation was described using the four frames that are
shown in Fig. 9.2 and listed here:

• Object frame o1 was attached to the fixture holding the PCB.

• Feature frame f1 was attached to a corner of the socket on the PCB.

• Feature frame f2 was attached to a corner on the shield can.

• Object frame o2 coincided with the flange frame of the robot.

The transformation between frames f1 and f2 consisted of a series of
three translations along the axes of frame f1, followed by three reorien-
tations forming XYZ Euler angles.
Uncertainties in the task included the exact location and orientation

of the fixture holding the PCB, and also how the shield can had been
gripped. The uncertainty of the PCB pose could be modeled by introducing
an uncertainty frame f1′. This frame represented the modeled position
of the socket corner on the PCB, while f1 gave the real position. It was
assumed that the fixture was mounted such that the PCB was placed
in the horizontal plane, but the exact location and orientation in this
plane was uncertain. This was modeled by introducing three uncertain
translations and one uncertain reorientation angle (around the f1 z-axis),
see Fig. 9.4. Similarly, in the grasp the orientation around the z-axis and
the translations along the x- and y-axes in frame f2 were uncertain. The
uncertainties were assumed to be a few millimeters and a few degrees
respectively.

Assembly Strategy

The assembly strategy was designed such that the uncertainties were
resolved in a robust way. A suitable strategy was to put the shield can

150



9.3 Shield-Can Use Case

zu

xu φ
u

yu f1

f1'

Figure 9.4 Illustration of the uncertainties in the shield-can assembly
task. The magnitude of the uncertainty is scaled up to make room for the
frames and the labels. A small part of the cylindrical force sensor can be
seen underneath the fixture.

Figure 9.5 Snapshots from the shield-can assembly sequence to illus-
trate how the corner was found. The arrows indicate in which direction
the shield can was in contact. In the leftmost photo the robot was in the
end of state 4 and had sensed contact in the y-direction, in the middle
photo the robot was in the end of state 5 and had sensed contact in the
x-direction, and in the rightmost photo the robot was in the end of state 6
and had found the corner.

151



Chapter 9. Robotic Assembly

in a tilted position, see Fig. 9.2, and then find a corner of the socket by
executing a sequence of guarded search motions, i.e., the search motions
were stopped once the appropriate contact forces were sensed. Once the
corner was found, the shield can was rotated to the correct orientation to
press it onto the socket.
A suitable corner to try to find was the one where frame f1 is placed,

see Fig. 9.2. The area in front of this corner had almost no components
that the shield can could get stuck on when sliding over the PCB surface
during the assembly. It was further large enough to be possible to find,
considering the position uncertainties involved.
A detailed assembly sequence is given below, and snapshots from a

few of the steps are shown in Fig. 9.5.

1. Pick up shield can from tray

2. Go to start position

3. Search for contact in negative f1 z-direction

4. Search for contact in positive f1 y-direction

5. Search for contact in negative f1 x-direction

6. Find corner of socket by another search in positive f1 y-direction

7. Make a rotational search around the f2 x-axis and the f2 y-axis

8. Press shield can into position

9. Release shield can and move away from PCB

9.4 Emergency-Stop-Button Use Case

The assembly of an emergency stop button was used as a second use case
for robotic assembly. An assembly graph for the scenario is displayed in
Fig. 9.6.
In the top subassembly in the upper right corner of Fig. 9.6 the red

button should be inserted into the hole of the yellow box, and then be
attached by screwing a nut onto the black part of the button. In the bottom
subassembly, shown in the upper left corner of Fig. 9.6, the electrical
switch should be attached to the gray box by a snap-fit operation. Finally
the top subassembly should be put on top of the bottom subassembly to
finish the assembly task. The dimensions of the bottom surface of the box
was 101 mm $ 74 mm.

152



9.4 Emergency-Stop-Button Use Case

Workcell

A photo of the workcell that was designed for the assembly scenario is
displayed in Fig. 9.7. The robot was equipped with three different gripping
tools to accomplish the assembly task. All tools were mounted on tool
exchangers, and a tool stand was used to enable tool exchanging during
the assembly procedure. The different components for the assembly were
placed in different trays in the workcell. The metal plate in the bottom of
Fig. 9.7 was mounted on a force sensor and could be used as a fixture for
a gray or a yellow box during different parts of the assembly.
Force measurements could be acquired either from the force sensor

under the fixture or from the internal sensing of the robot, using the
methods described in Chapter 10.

Set of Skills

The assembly task was divided into the following set of skills, described
in more detail on pages 155–164.

• Pick yellow case

• Put yellow case on fixture

• Pick red button

• Insert red button into yellow case

• Pick nut

• Lift red button and yellow case and turn them around

• Screw nut

• Align yellow case against fixture

• Check whether yellow case should be turned 180 degrees

• Put yellow case in intermediate storage

• Change tool

• Pick gray box

• Put gray box on fixture

• Pick switch

• Do snap fit of switch

• Put switch and gray box on table

153



Chapter 9. Robotic Assembly

Figure 9.6 Assembly graph for the emergency stop button assembly sce-
nario.

Figure 9.7 The workcell for the emergency stop button assembly sce-
nario.

154



9.4 Emergency-Stop-Button Use Case

• Pick yellow case from intermediate storage

• Put yellow case on top of gray box and slide them to the side

• Change tool

Different tools were needed when assembling the top and bottom sub-
assemblies. In order to avoid excessive tool exchanges, several top sub-
assemblies could be assembled first, and put in an intermediate storage
tray. After that, one arm changed tool to assemble the bottom subassem-
bly. When a bottom subassembly was finished, a top subassembly was
picked from the intermediate storage and put on top of the bottom part
to finish the assembly operation.

Position-Controlled Skills

All picking skills could be performed using pure position control, since all
parts were placed in well-defined trays, and the design of the grippers
allowed some tolerance on the gripping position. The tool-exchange skill
was another position-controlled skill, which was performed with a fixed
tool stand. Putting the gray box with the switch on the table and putting
the yellow box on top of it could also be done with position control, since
the contact surfaces were slightly slanted, reducing the position accuracy
needed for this operation.
Picking a nut was an operation where significant position uncertainty

was present, but it was resolved without using any force sensing. The nuts
were picked from a slide, which can be seen in the right part of Fig. 9.7.
The bottom part of the slide was designed such that the nut to pick should
end up in a pre-determined position, but when a nut had been picked and
the rest of the nuts slid down, it quite frequently happened that the next
nut to pick did not end up in the desired position. Examples of different
nut positions are displayed in Fig. 9.8. The position could be corrected by
always pushing the nut, first from the right side and then from the left
side, before the nut was picked, even when the position was correct in

Figure 9.8 Close-ups of the nut slide. Left:Nut too far to the left.Middle:
Nut in the correct position. Right: Nut too far to the right.

155



Chapter 9. Robotic Assembly

the first place. In the absence of appropriate feedback signals to measure
the position of the nut, this type of robust picking skill could be used to
prevent errors.

Force-Controlled Skills

The skills described on pages 156–164 required force sensing to be per-
formed robustly. Most of them contained guarded search motions, which
searched for objects by moving along a path until a contact force in the
direction of motion was detected. Once the contact was found, the position
where it took place could be used as the base for a position reference in the
subsequent motions, or the contact force could be maintained using force
control. The force sensing could also be used for supervision, e.g., detect-
ing if contact forces became too large and risked damaging equipment.

Putting boxes on the force sensor or intermediate storage Putting
a yellow or gray box on the force sensor was performed by three search
motions. First, the box was moved to an initial position close to the force
sensor, using position control. The initial position was slightly further in
the positive directions of the x-, y-, and z-axes than the final position, as
shown in Fig. 9.9. The box was then moved in the negative z-direction
until it made contact with the force sensor and a force was detected.
While using force control to maintain the contact force in the z-direction,
a search motion was then performed in the negative x-direction. Finally,
a search motion in the negative y-direction was performed until the box
slid down into the slot and a contact force in the y-direction was detected.
Putting the top subassembly in the intermediate storage was per-

formed in a similar manner, but it started in a tilted pose, as shown
in Fig. 9.9(c), so that the corner at the origin of frame f2 was the first
to make contact with the table. Once the corner at the origin of frame

(a) Yellow box on force sensor. (b) Gray box on force sensor. (c) Intermediate storage.

Figure 9.9 Putting boxes on the force sensor or in the intermediate
storage tray.

156



9.4 Emergency-Stop-Button Use Case

Figure 9.10 Putting the red button on the yellow box, a peg-in-hole
operation.

f1 had been found by performing three guarded search motions, the sub-
assembly was rotated so the f2 z-axis pointed straight downward and the
subassembly stood securely in the tray.

Peg-in-hole insertion of red button into yellow box Putting the red
button in the yellow box was a peg-in-hole operation. In the approach
phase the button was tilted as in Fig. 9.10. The tilted orientation gave the
button a more pointed contact surface, and hence less position accuracy
was needed to hit the hole in the yellow box.
Once contact was made, the button was pressed downward and the

forces in the radial directions of the hole were controlled to zero in order
to center the button in the hole. The button was then tilted until the
center axis was in the vertical direction and the button slid down in the
hole due to a force reference pressing the button downward.

Screwing The screwing skill was the most complex skill. It was per-
formed to fasten the button to the yellow case by screwing the nut. One
robot arm held the button with the case on top, and the other arm held
the nut and performed the screwing. The initial configuration before the
screwing was started is displayed in Fig. 9.11, and the frames used for
modeling the relative motion between the arms are illustrated in Fig. 9.12.
Two kinematic chains were used for the nut-screw scenario. Chain a

was used to specify the relative motion between the arms, and chain bwas
used to specify the motion of the arm holding the button with the case
on top. For both kinematic chains, the feature coordinates described the
transformation between frames f1 and f2; first three translations along
the axes of f1 and then three Euler angles to describe the reorientation.

157



Chapter 9. Robotic Assembly

Figure 9.11 Illustration of the two kine-
matic chains used in the nut-screw assem-
bly skill. Chain a was used to specify the
motion of the left arm w.r.t. the right arm.
Chain b was used to specify the motion of
the right arm w.r.t. the world frame.

Figure 9.12 A detailed
view of kinematic chain a
in the nut-screw assembly
skill. The superscript of the
frames has been omitted in
this figure.

As an example, increasing the z-coordinate in chain a resulted in the arms
moving apart.
The nominal assembly strategy was as follows

1. Initial positioning

2. Put nut on the button by a search in f1a z-direction

3. Re-grip nut

4. Screw until nut is tightened

5. Release nut and move away

Because of various types of uncertainties this assembly strategy was
very unlikely to succeed. To make the execution more robust, both proac-

158



9.4 Emergency-Stop-Button Use Case

tive and reactive schemes were included in the assembly strategy. A sketch
of the actual state machine coordinating the assembly skill is displayed
in Fig. 9.13.
To start with, the red button with the yellow case on it was placed in

a vertical position, as shown in Fig. 9.12. The other arm, with the nut in
the gripper, approached the button and tried to put the nut on it. This
was made as a guarded search motion in f1a z-direction. If the distance
between the arms was small enough when a contact force was detected,
the nut was put on the button, and this scenario corresponded to the
nominal strategy. If the distance between the arms was to large when
contact was made, the hole had been missed and the nut got stuck on top
of the button. The recovery strategy was to move the robot back, slightly
modify the position in the f1a x- and y-directions, and try again. This
continued with a search pattern in the x- and y-positions until the nut
was successfully put on the button.
The gripper for the nut could grasp the nut in two ways, as shown

in Fig. 9.14. The first kind of grip gave a rigid grip of the nut and was
used for putting the nut on the button. It could, however, not be used for
screwing, since it would make the gripper collide with the yellow box. The
nut therefore had to be released and re-gripped, and this might cause a
movement of the nut. To be robust against this type of error, a proactive
strategy was applied, namely to push on the nut to make sure it was in
contact with the thread on the button. The next step was to go down to
the nut, grip it, and start screwing. The robot could screw one revolution
before it had to release the nut and rotate back to the original orientation
again.
It was known that it took 2.5 to 3.5 revolutions to tighten the nut,

depending on the orientation of the nut when the screwing was started.
Detecting that the nut was tightened could not be done by means of the
estimated torque around the screwing axis, due to too large disturbances
in the torque measurements. What usually happened when the nut was
tightened, was that one of the two fingers lost its grip of the nut, so the
nut was pushed to the side instead of rotated. This resulted in a large side
force (a force in the x − y plane) that could be detected. If this happened
during the third or the fourth revolution of screwing, it was assumed that
the reason was that the nut was tightened. Sometimes the gripper did not
lose the grip of the nut when the nut was tightened, and the red button
slid in its grip instead during the rest of the revolution. This was what
was assumed to have happened if no large side forces had been detected
after four revolutions.
During screwing, there was a risk that the nut was gripped in a non-

centric way, which could cause large side forces although the nut was
not yet tightened. This was particularly likely to happen in the beginning

159



Chapter 9. Robotic Assembly

Figure 9.13 The state machine used for modeling the assembly strategy
for the nut-screwing skill.

of the screwing, before the nut was properly on the thread. If a large
side force was detected during the first two revolutions, the screwing was
stopped. The nut was then released, the robot arms are moved slightly
apart, the nut was gripped again, and the screwing continued. This set
of actions was another example of an automatic error recovery strategy,
which led to more robust execution.

160



9.4 Emergency-Stop-Button Use Case

(a) Rigid grip used for putting the nut on
the button.

(b) ’Finger tip’ grip used for screwing the
nut.

Figure 9.14 Different grips of the nut.

Snap fit The switch was attached to the gray box by a snap-fit oper-
ation. The feature coordinates used to describe the pose of the switch
were (x, y, z), parameterizing three translations, followed by a reorien-
tation described by (ϕ ,θ ,ψ ), forming Euler ZYX angles. The assembly
strategy used could handle a position uncertainty of a few millimeters.
Figure 9.15 shows snapshots from the assembly sequence with step num-
bers given by

1. Move to start position.

2. Search for contact in negative z-direction.

3. Start force control in the z-direction and search for contact in the
negative y-direction.

4. Start force control in the y-direction and search for contact in the
negative x-direction.

5. Start force control in the x-direction and search for contact in the
negative ψ -direction.

6. Start torque control in ψ -direction and search for contact in the
negative ϕ -direction as the switch slips down into its slot.

7. Start torque control in the ϕ -direction and search for contact in the
negative ψ -direction.

8. Lift the assembly in the positive z-direction.

161



Chapter 9. Robotic Assembly

Figure 9.15 Attaching the switch to the gray box by a snap-fit operation.
The red arrows show the direction of motion in the different steps.

162



9.4 Emergency-Stop-Button Use Case

Figure 9.16 Example of initial position for
the align box skill. The orientation of the yel-
low case in the gripper was unknown after
screwing due to sliding in the gripper.

Figure 9.17 Checking the
position of the small peg on
the yellow box.

Aligning the box after screwing The orientation of the yellow case
was unknown after the screwing, as the red button might slide in its
gripper. An aligning phase against the fixture on the force sensor was
therefore performed. A simple strategy would be to start from the po-
sition displayed in Fig. 9.16 and then perform a search motion towards
the fixture until contact was established. The box could then be given its
desired orientation by pushing it against the fixture and controlling the
torque around the symmetry axis of the button to zero. It was, however,
difficult to make the torque controller fast without running into problems
with instability.
To make the procedure faster, the following strategy was applied, ex-

ploiting that the distance between the button and the fixture was the
smallest when box was aligned with the fixture.

1. Go to start position (beside the fixture as in Fig. 9.16).

2. Search for contact against fixture.

3. If distance to fixture is not small enough, move away from the fix-
ture, rotate a given angle, and go back to step 2.

4. Rotate to make contact with opposite corner of the same long edge
of the case (rotation direction determined from measured torque).

5. Rotate to the angle half way between the angles found in steps 3
and 4.

163



Chapter 9. Robotic Assembly

6. Search for contact against sensor.

7. Control torque to zero.

The skill had two extra phases compared to the simple strategy. The first
phase tried out a discrete set of angles (steps 2 and 3) to quickly get
to an orientation that was approximately correct, similar to the one in
Fig. 9.16. To illustrate the second phase (steps 4 and 5), assume that the
box had the same orientation as in Fig. 9.16. The box was then rotated
counterclockwise in step 4 until the corner that was behind the red button
in the figure made contact with the fixture. Step 5 could then compute an
orientation very close to the correct one, so the torque control in step 7
could converge quickly.

Check orientation of yellow case It may look like you could turn the
yellow case 180 degrees around the center axis of the hole in the case,
and it would still fit on top of the gray box. This rotation was, however,
not possible, due to a small peg in the yellow case and a corresponding
slot in the gray box, illustrated in Fig. 9.18.
When the assembly was performed, it was assumed that the orienta-

tion of the gray box was known in its tray. After the screwing and aligning
of the yellow case, it was not known whether the case was in its desired
orientation or turned 180 degrees.
To determine the orientation of the yellow case, it was put in contact

with the fixture on the force sensor, as shown in Fig. 9.17. The box was
then moved in the positive y-direction, and if a force in the y-direction was
detected by the force sensor, the peg was in the corner with the largest
x- and y-coordinates. If the box could be moved a given distance without

Figure 9.18 Image showing the small peg on the yellow case and the
matching slot on the gray box.

164



9.5 Experimental Results

any detected force in the y-direction, the peg was in the corner with the
smallest x- and y-coordinates.

9.5 Experimental Results

Robots

All assembly operations described in Secs. 9.3 and 9.4 were performed
using the ABB FRIDA robot [Kock et al., 2011], see Fig. 9.7. It is a dual-
arm manipulator developed for automation of assembly operations. It has
low mass, weak motors, and padded surfaces to be able to work safely
next to humans. Each of the two arms is redundant with 7 degrees of
freedom. The snap-fit operation, attaching the switch to the gray box,
was also performed with an ABB IRB 140 robot [ABB, 2013], equipped
with a wrist-mounted JR3 100M40A force/torque sensor [JR3, 2013]. The
IRB 140 is a conventional 6-axis industrial robot with a maximum payload
of 6 kg, reach of 810 mm and position repeatability of ±0.03 mm. An image
of the robot can be seen in Fig. 2.2. The robots were controlled with the
ABB IRC5 robot control system. This system was extended with an open
control system [Blomdell et al., 2005; Blomdell et al., 2010], which made
it possible to modify the references for the low-level joint control loops.
An ATI Mini40 6-DOF force/torque sensor was mounted under the

PCB for the shield-can assembly and under the fixture for the emergency-
stop-button assembly. Contact forces could also be estimated by using
internal sensing of the robot, namely the joint control errors or the motor
torques of the robot, as described in Chapter 10. The force estimation
based on internal sensing was less accurate than the measurements from
the force sensor, but it was necessary for operations that could not be
performed on the force sensor, e.g., screwing the nut and putting the top
subassembly into the intermediate storage.

Shield Can

The implementation of the shield-can assembly achieved an assembly time
of approximately 4 s, slightly longer than it would take a human to do
it. A video of the assembly can be accessed through [Stolt et al., 2012].
In an experiment where the assembly operation was performed 30 times,
the attempts succeeded 25 times. To make the task extra challenging, the
shield can was gripped in different ways by moving it up to 3 mm from
its nominal pick-up position. Had the shield can been displaced farther, it
would have ended up out the supporting pins of the gripper, see Fig. 9.3,
and could not have been gripped properly. When the assembly task failed
it was usually due to one of the following reasons:

165



Chapter 9. Robotic Assembly

• In step 5 of the assembly sequence (p. 152), the shield can was
pushed along the surface of the PCB, instead of pulled as in the other
sliding operations. Because of this, the shield can could get stuck and
cause large x-forces before before reaching its target contact surface.

• When the shield can was pushed against the corner of the socket in
step 6, the compliance of the grip let the shield can rotate around
the f2 z-axis so it aligned itself with the socket. Sometimes this
alignment failed, so the socket could not be pressed onto the socket
in step 8.

• Sometimes the shield can slipped over the corner when it searched
for a corner of the socket in step 6.

Emergency Stop Button

The snap-fit attachment of the switch to the gray box was performed both
with an IRB 140 and a FRIDA. The IRB 140 performed the operation in
9 s, while FRIDA did it in 4 s. Since IRB 140 is much stiffer and heavier
than FRIDA, contact forces increased much faster for IRB 140 than for
FRIDA when they made contact at the same speed. Hence, the search
motions had to be made much slower for IRB 140 than for FRIDA to have
time to react to contact forces before they became too large.
The entire assembly sequence for the emergency stop button was im-

plemented with FRIDA. A video of the assembly is given in [Stolt et al.,
2013]. The total time for one cycle was 59 s. The measured time for the
different skills are given in Table 9.1. Some of the skills could be per-
formed in parallel, such as the picking of the red button and the picking
of the yellow box, while some skills had to wait for other skills to finish
using the shared resources, i.e., the fixture together with the force sensor.

The cycle time for a human performing the assembly sequence was
about 10–15 s, if the human was allowed to perform the assembly with-
out restrictions. If the human had to perform the assembly using the fix-
ture, in the same way as the robot, then the cycle time became 17 s. The
measured time for each particular skill is given in Table 9.2. The human
obviously did not need to change tool, and could also skip the alignment
skill. Further, the human also waited with checking the 180 degree ori-
entation of the yellow box until finalizing the assembly and putting it on
top of the gray box.

166



9.6 Discussion and Lessons Learned

Skill Time Right arm Left arm
Pick yellow box 3 [s] - X
Put yellow box in fixture 2 [s] - X
Pick red button 3 [s] X -
Insert red button in yellow box 5 [s] X -
Pick nut 4 [s] - X
Turn yellow box and red button 5 [s] X X
Put nut on thread 6 [s] X X
Screw nut 13 [s] X X
Move from screwing to alignment 4 [s] X -
Align yellow box 2 [s] X -
Check orientation 3 [s] X -
Put in intermediate storage 6 [s] X -
Change tool 6 [s] - X
Pick gray box 3 [s] - X
Put gray box in fixture 2 [s] - X
Pick switch 2 [s] - X
Do snap fit 4 [s] - X
Put gray box and switch on table 1 [s] - X
Pick from intermediate storage 2 [s] X -
Put yellow box on top of gray box 3 [s] X -
Change tool 5 [s] - X

Table 9.1 Time taken for the skills in the assembly scenario with the
robot implementation. The table also shows which of the arms was per-
forming which skills.

9.6 Discussion and Lessons Learned

Based on the experiments performed, the cycle time of the robot imple-
mentation was approximately 3.5 times slower than that of a skilled hu-
man assembly worker. The robot implementation could be speeded up a
little bit, by for instance optimizing trajectories for free space motions
and minimizing the time the arms had to wait for each other during the
assembly sequence. It is, however, not reasonable to believe that the cycle
time can be made as fast as the human with the current workcell, i.e.,
with the only external sensor being the table-mounted force sensor. The
human has several superior advantages. One is the vision feedback com-
ing from the eyes, which makes it possible to start all assembly operations
much closer to the contact configurations. For many assembly operations
the human used force/tactile feedback, with a strategy similar to that of
the robot, but the human force control capabilities are much better than
those of the robot for the purposes of these assembly operations.

167



Chapter 9. Robotic Assembly

Skill Time Note
Pick yellow box 1 [s]
Put yellow box in fixture 1 [s]
Pick red button 1 [s]
Insert red button in yellow box 1 [s]
Pick nut 2 [s]
Turn yellow box and red button 2 [s]
Put nut on thread 0 [s] Done while turning
Screw nut 4 [s]
Move from screwing to alignment 0 [s] Skipped by human
Align yellow box 0 [s] Skipped by human
Check orientation 1 [s]
Put in intermediate storage 2 [s]
Change tool 0 [s] Not necessary
Pick gray box 1 [s]
Put gray box in fixture 1 [s]
Pick switch 1 [s]
Do snap fit 1 [s]
Put gray box and switch on table 1 [s]
Pick from intermediate storage 1 [s]
Put yellow box on top of gray box 1 [s]
Change tool 0 [s] Not necessary

Table 9.2 Time taken for the skills in the assembly scenario with the
human.

The robot performed the screwing in 13 s, and the human in 4 s. The
human hand is really much more suited for this kind of task than the
gripper used for the robot, as the human can use a finger to spin the nut
to efficiently fasten it. If the robot would not have needed to screw back
after each revolution, because of limits of the robot joints, then the time
needed for the screwing would be more than halved, and thus comparable
to that of the human. It could for instance also be possible for the robot to
use a specialized screwing tool in the work space. Then it could actually
be possible to do it faster than the human.
An advantage with a robot is that it can work 24 hours per day, and 7

days per week, and it will in this time have enough time to complete about
10 000 stop buttons (with a cycle time of 59 s). This can be compared to
a human that works 8 hours per day, and 5 days per week, who will be
able to complete about 8 500 stop buttons. In this sense, the current robot
implementation has a cycle time comparable to that of a human assembly
worker.
The analysis so far has been made with the assumption that nothing

168



9.6 Discussion and Lessons Learned

goes wrong. Some of the skills were extended, so that they could detect and
recover from common errors, but there were still many errors that were
not handled by the system. The success rate was approximately 75 % when
the system was properly tuned, and when the assembly failed it might
take a couple of minutes for a human to restore the workcell. Producing
10 000 stop buttons per week with the current implementation is therefore
unrealistic. The most realistic path towards the goal of reaching the same
productivity as a human is probably to make the robot capable of detecting
and recovering from more errors, rather than making sure no errors occur.
The brief description of the emergency stop button on page 152 would

probably be sufficient for most humans to perform the assembly. It is
even likely that many people could perform the assembly if they only
were provided with the parts in the top line of Fig. 9.6, without any
instruction. In contrast, the simplified description of how the robot was
programmed takes up pages 152–165. This hints at the vast amount of
prior knowledge that humans use to perform such operations. Replicating
similar capabilities in robotic systems, being able to perform assembly
with minimal task-specific instructions, provides a huge challenge for the
future.
The picking operations were performed using position control, since

the available sensing was not sufficient to perform force-controlled pick-
ing. Many of the parts would tilt out of their positions if they were pushed
in their trays, and the force estimation based on internal sensing could
not detect sufficiently small forces to use force control for picking. On a
few occasions during the work on the stop button, the positions of the as-
sembly task had to be re-tuned, since the robot was exchanged by another
robot or the workcell was moved to a new table. Re-tuning all positions
of the picking skills and tool switching with high precision was tedious
work. The force-controlled skills required much less precision on the start-
ing positions, and starting positions that worked were much easier to find,
if they had to be modified at all. These events demonstrated the power
of force control w.r.t. position disturbances. On the other hand, the force-
controlled skills required more work the first time they were programmed,
since they needed tuning of force thresholds and force-feedback parame-
ters.
The snap-fit operation performed to attach the switch to the gray box

was implemented for both IRB 140 and FRIDA, with the conclusion that
FRIDA was much more suited for small-parts assembly. A very common
operation in the force-controlled assembly operations was to perform a
search for contact, meaning that the robot was moving along a path until
a contact force was detected. The contact event could be seen as a collision,
and if the robot did not stop quickly the contact force would continue in-
creasing, possibly to levels that might damage equipment. In comparison

169



Chapter 9. Robotic Assembly

to FRIDA, IRB 140 was stiff and heavy, meaning that the contact force
increased much faster when contact was made. Due to these properties,
FRIDA could make much faster search motions without risking too large
contact forces, thus finishing the assembly operations faster.

In a few skills where we expected force control to be useful, it turned
out that other strategies were more useful. One example is in the as-
sembly sequence for the shield can, see page 152. Once contact had been
made with the PCB in step 3, the contact in the z-direction during the
subsequent sliding motions could be maintained using force control, but
the friction disturbances from sliding on the PCB made it difficult to both
move fast and control the z-force. In this example the orientation of the
PCB was well known and there was some compliance in the grip of the
shield can, so steps 4–6 could be performed using position control in the
z-direction, and the motions could be made much faster than when force
control was used in the z-direction.

The alignment skill on page 163 is another example of where the use
force/torque control was not the best solution. The first approach im-
plemented was to push the box against the force sensor and control the
torque around the symmetry axis of the button to zero. It was, however,
difficult to design a fast well-damped torque controller. A strategy that
turned out to be much faster was to search for contact with the force sen-
sor for a fixed set of rotations of the box. This strategy quickly found an
approximately correct angle, and with such a good initial angle, finding
a more correct alignment angle, using torque control, did not take very
long.

The iTaSC framework was chosen as the base for specification of force-
controlled motions due to its generality. It served its purpose well, but in
practice most motions were described by a single kinematic chain with
three translations along the basis axes of frame f1 of the specific motion,
followed by three rotations describing the orientation in an Euler-angle
fashion. These parameterizations did not require the full power of the
iTaSC framework, but it was good to have the functionality in place if the
need should turn up.

Using Euler angles for describing orientation can be problematic due
to the existence of representation singularities. They were still extensively
used for task specification in the implementations described in this chap-
ter, since they are intuitive to use. They also provide a convenient way
to specify operations where torque control is used for one or two direc-
tions, while position control is used for the remaining rotational degrees
of freedom, as in steps 6 and 7 of the snap-fit operation described on
page 161.

170



9.7 Conclusions

9.7 Conclusions

The work presented in this chapter demonstrated how robots can be used
to assemble objects designed for human assembly. The assembly speed
was, however, significantly lower than for a human worker and the failure
rate was far too high to be used in the industry. Much work on increasing
the speed and robustness still lies ahead of us before such a system can
be used for production.

171



10

Robotic Force Estimation

without any Force Sensor

10.1 Introduction

The traditional way of programming industrial robots is to use position
control and follow pre-defined trajectories, using the joint position sen-
sors. Modern robot controllers implement this strategy well and perform
motions both fast and with high accuracy. In tasks where the robot has
to physically interact with the environment, however, this control strat-
egy is less advantageous. The accuracy of the robot and the location and
geometry of everything in the work space have to be known with high
precision, and this is usually hard to achieve. A remedy to this problem
is to introduce additional sensing, e.g., a force sensor that gives the robot
capabilities to handle position uncertainties by sensing the contact forces.
Different sensor setups are possible, e.g., using a force/torque sensor

mounted on the wrist of the robot or under a fixture, or having one torque
sensor in each joint as in the DLR light-weight robot [Albu-Schäffer et al.,
2007]. The main drawbacks with using force sensors are that they may
be very expensive and add weight to the system. A 6-axis force/torque
sensor for industrial use costs roughly $10 000, while the price of a 3-axis
force sensor is approximately $1 000. This should be compared to a typi-
cal small industrial robot, which costs $20 000 – $30 000. The DLR light-
weight robot with integrated joint torque sensors costs approximately
$120000.
An alternative to using force sensors is to estimate the external forces

applied to the robot based on sensing already available in the robot. Usu-
ally this includes position sensors in the joints, and torques exerted by the
motors. A significant problem with using motor torques is that they are
affected by disturbances originating from friction, the mechanical trans-
mission between the motor and the robot link, etc. In contrast, the torque

172



10.2 Force Estimation Using Joint Control Errors

sensors of the DLR light-weight arm are mounted on the link sides of the
joints and are, hence, not affected by these particular disturbances.
Force estimation has been considered many times before in the litera-

ture. A common approach is to use model-based disturbance observers. A
dynamical model of the robot is used and forces are estimated by an ob-
server based on the deviations from the model. Apart from a model of the
robot, these methods need a model for interaction with the environment.
Examples of previous work using this technique can be found in [Ohishi
et al., 1992; Eom et al., 1998; Alcocer et al., 2003].
Force estimation functionality is also available in a commercial indus-

trial robot system by Toshiba [Toshiba, 2012]. Only a brief description of
the principles used is available. The system is, however, designed for and
reported to work well for force magnitudes of 25–75 N, and would there-
fore not be suitable for use in tasks where it is important to react already
for forces of a few Newtons, which is considered in this chapter.
In previous work, e.g., [Murakami et al., 1993; Ohishi, 1993; Rocco

et al., 1997; Simpson et al., 2002], it was assumed that the joints were
always moving, and no attention was given to the large uncertainties in
the friction torques at velocities close to zero. It has also been common to
only consider experiments with three or fewer joints.
In [Popovic and Goldenberger, 1998; Simpson et al., 2002] the perfor-

mance of force estimation was improved by modeling the friction carefully
and considering position-dependent torque variations, and [Olsson et al.,
1998; Du and Nair, 1999] included modeling of low-velocity friction phe-
nomena. These models, however, require knowledge of many parameters
that are challenging to identify and prone to change, due to temperature
and wear etc. Making good estimates of the low-velocity friction torques
may also require velocity measurements of a high accuracy that is not
available on standard robots.
The following two sections will present two new methods for perform-

ing robotic force estimation without any force sensor.

10.2 Robotic Force Estimation Using Joint

Position-Control Errors

Method

This section describes an approach for estimating forces that can be used
when each joint on the lowest level has an individual position controller,
which is a standard solution in industrial robots. By disabling the inte-
gral action in the joint controllers, they will act as virtual springs, and
the deviation of each joint angle from its reference will correspond to a
joint torque, as illustrated in Fig. 10.1. Due to friction and gravity, the

173



Chapter 10. Robotic Force Estimation without any Force Sensor

Figure 10.1 Illustration of how the joint torques are estimated. The
controlled joint acts as a virtual spring, and when a force is applied to it,
the deflection is used to estimate the joint torque.

joint position errors may become large if the integral action is removed
completely, leading to poor performance in the robot positioning and bias
in the force estimate. One remedy to this problem is to use a small inte-
gral part, which allows force transients to be detected, but over time the
position errors will be removed. Estimation of forces based on joint errors,
using small integral action, results in a high-pass filtered version of the
forces.
The previous paragraph proposed a method for estimating the joint

torques, but usually the contact forces at the tool are more useful. The
joint torques, τ , and the end-effector forces, F, are related by

τ = J(q)T F + e, (10.1)

where J(q) is the robot Jacobian, q is the robot joint joint coordinates,
and e are disturbance joint torques with the assumption E[e] = 0 and
E[eeT ] = Re. The minimum variance estimate of the force is then given
by

F̂ = (JR−1e JT )−1JR−1e τ , (10.2)

but if the disturbances are large, the estimate may be of very poor quality.
By adopting a Bayesian approach and using prior knowledge about the
particular assembly operation, it may be possible to improve the force
estimates. Assume that the prior knowledge about F can be described by
E[F] = F̄ and E[

(
F − F̄

) (
F − F̄

)T ] = RF , and that the distribution of τ
conditioned on F is given by (10.1), then the minimum-variance unbiased
estimate of F is

F̂ = (JR−1e JT + R−1F )−1(JR−1e τ + R−1F F̄) (10.3)

For example, it may be known that the contact torques on the end effec-
tor may be very small during an assembly operation. By reflecting this

174



10.2 Force Estimation Using Joint Control Errors

0 1 2 3 4 5 6 7

0

5

10

0 1 2 3 4 5 6 7

0

5

10

0 1 2 3 4 5 6 7

0

5

10

0 1 2 3 4 5 6 7

0

10

20

 

 

F
or
ce
[N
]

F
or
ce
[N
]

F
or
ce
[N
]

F
or
ce
[N
]

Time [s]

Ki = Ki0

Ki = 0.1Ki0

Ki = 0.01Ki0

Ki = 0

Force measured by force sensor
Force estimated from joint errors

Figure 10.2 Estimated force and measured force in one direction for dif-
ferent values of the integral gain, Ki, in the joint controllers. The nominal
integral gain is Ki0.

knowledge in the choice of the F̄ and RF used for the calculations, the
estimates of the contact forces can be improved.

Calibration

The force estimation is affected by how the detuning of the joint con-
trollers has been performed. If the integral part is removed completely,
gravity and friction cause offsets in the positions, which in turn cause
offsets in the estimated forces. Keeping the integral part, however, makes
it impossible to estimate constant forces, since the integral action elim-
inates stationary errors. The position-control errors will then resemble
the contact forces passed through a high-pass filter, allowing detection
of transients. The behavior for different detunings of the integral action
is shown in Fig. 10.2, where the force sensor was used to find contact
in one direction and control the contact force to a constant value. It can

175



Chapter 10. Robotic Force Estimation without any Force Sensor

be seen in the diagrams that a high integral gain gives a transient with
a short duration, which may be hard to detect. Removing the integral
action completely, however, introduces a bias in the estimate. The final
controller detuning chosen for use in the assembly task was with the in-
tegral gain Ki = 0.03Ki0, where Ki0 is the nominal integral gain in the
joint controllers.
A large disturbance acting on the force estimates is friction in the

joints. Experiments were performed to estimate the friction magnitude
in each joint, which mostly consisted of Coulomb friction. These values
were used to choose the diagonal elements of Re, i.e., the variance of the
disturbance torques in (10.1). The effect of gravity was assumed to vary
slowly, such that the integral part in the joint controllers could compen-
sate for it. Plugging the estimated friction disturbances into (10.2), the
force estimation errors were predicted to be in the order of magnitude of
1 N, which agreed with the errors measured during the execution of the
assembly task, see Fig. 10.3.
To determine the spring constants of the joints, forces or torques were

applied to the tool of the robot, and the amplitude of the resulting joint
error transients were recorded. Doing this for three different arm config-
urations, it was possible to determine the stiffness of all joints.

Experimental Results

The shield-can assembly scenario, described in Sec. 9.3, was used to eval-
uate the force estimation. The assembly was performed by an ABB FRIDA
robot. An ATI Mini40 force/torque sensor was mounted under the PCB
fixture to provide ground-truth data, but it was not used for control during
the assembly experiments.
The major part of the assembly was performed with only a point con-

tact, coinciding with the origin of frame f2, see Fig. 9.2. Hence, the con-
tact torques around this point should be zero. Modeling errors of course
contributed to some torques, but they should be small. This insight could
be used as prior information, i.e., it could be used to choose the F̄ and
RF used for the estimation. No bias force was expected, giving F̄ = 0.
The variance RF was chosen to be large for the forces and small for the
torques.
The high-pass characteristic of the force estimates put limitations on

how the assembly could be performed, since it made it impossible to con-
trol constant forces. If a force sensor would be used, search motions could
be followed by force control to maintain the contact, but when force esti-
mation was used, the contact had to be maintained using position control
after the contact force transient was detected. Since the contact torque
estimates were unreliable, the rotational search for a contact torque in

176



10.2 Force Estimation Using Joint Control Errors

state 7 (see page 152) was replaced by a position-controlled motion to the
expected final orientation of the shield can. To be able to do this maneu-
ver robustly it had to be assumed that the mounting plane of the PCB
was known with good accuracy, which was a reasonable assumption to
make, as the PCB was placed in a fixture parallel to the table. Gripping
uncertainties, corresponding to small rotations around the f2 z-axis, were
not expected to be a problem, as the gripper was compliant in this direc-
tion and because the shield can was rotated down when in contact with a
corner of the socket, such that the shield can was forced onto the socket
by its edges.
Force data from an experimental execution is given in Fig. 10.3. The

high-pass filtered measurements from the force sensor serve as ground
truth for the force estimates. Two versions of the estimated force are
shown, with and without a priori information about the low contact
torques. The first state shown is the search for contact in the f1 z-
direction. The transition condition, a large positive z-force can be seen
in all force curves at t = 0.5 s. The following state was the search in the
positive y-direction and it made contact at t = 0.7 s, which can be seen
by a large negative y-force. State 5 was a search in the x-direction. The
search motion was made with contact in both the z- and the y-direction,
and this initially caused a friction peak in the x-force (at t = 0.8 s) be-
fore the actual contact was made at t = 1.2 s. The transition to the next
state was finally made at t = 1.2 s. The final search for the corner of the
socket was then made in two steps; first a y-search in state 6 and then
an x-search in a new state, here called 6.5. The transition condition for
the y-search can be seen at t = 1.6 s and the transition condition for the
x-search at t = 1.9 s. State 7 was the position control of the orientation,
such that the shield can was rotated down onto the socket. The rotation
was made around the origin of frame f2. Modeling errors in the position
of this frame was the reason for the large z-forces around t = 2.7 s, as
the rotation was not made exactly around the origin of f2. These forces
were detected and the reference position in the z-direction was adjusted.
The shield can was pressed onto the socket with a large force in state 8,
which can be seen in the z-force at t = 3.0 s. Finally, the robot waited
0.3 seconds in state 8.5 and then moved away in state 9.
Measured and estimated contact torques from the experimental execu-

tion are given in Fig. 10.4. It can be seen from the sensor measurements
that torques significantly different from zero were present only during
the last stage of the assembly, i.e., during state 7 and 8. The estimates
that were made without a priori information about small torques were
very poor, and neither the magnitude nor the shape showed much resem-
blance with measured data. Also for the estimates that were made with
a priori information, the shape correlated very poorly with the measured

177



Chapter 10. Robotic Force Estimation without any Force Sensor

0 0.5 1 1.5 2 2.5 3 3.5

4

6

8

0 0.5 1 1.5 2 2.5 3 3.5

−6

−4

−2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5

−12

−10

−8

−6

−4

−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5

−5

0

5

10

15

20

25

 

 

S
ta
te

x
-F
or
ce
[N
]

y-
F
or
ce
[N
]

z-
F
or
ce
[N
]

Time [s]

Measurements from force sensor
High-pass filtered measurements from force sensor
Estimated forces without prior
Estimated forces with prior

Figure 10.3 Measured and estimated forces from the assembly exper-
iment together with the state sequence. The data from the force sensor
is included for comparison and was not used for control. The high-pass
filtered measurements from the force sensor were used as ground truth.

178



10.2 Force Estimation Using Joint Control Errors

0 0.5 1 1.5 2 2.5 3 3.5

4

6

8

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5

−0.4

−0.2

0

0.2

0.4

 

 

S
ta
te

x
-T
rq
.
[N
m
]

y-
T
rq
.
[N
m
]

z-
T
rq
.
[N
m
]

Time [s]

Measurements from force sensor
High-pass filtered measurements from force sensor
Estimated torques without prior
Estimated torques with prior

Figure 10.4 Measured and estimated torques from the assembly exper-
iment together with the state sequence. The data from the force sensor
is included for comparison and was not used for control. The high-pass
filtered measurements from the force sensor were used as ground truth.

179



Chapter 10. Robotic Force Estimation without any Force Sensor

torques, and could not be used to detect contact torques. The estimates
using the a priori information were, however, much closer to the actual
torques, which provided for making the simultaneously estimated contact
forces being more accurate than without a priori information.

Discussion

Estimating forces from the joint errors instead of using a force sensor
introduces some difficulties in the implementation of the assembly oper-
ation. It requires the choice of an appropriate detuning of the joint con-
trollers, and the assembly strategy may have to be altered to not include
any control of constant forces. Since the disturbances in the estimates may
be quite large, special care must be taken when choosing force thresholds
in the design of the assembly sequence.
When the robot was not moving, the Coulomb friction in the joints

made it particularly hard to estimate the forces, since the contribution
from gravity and other disturbance forces was unknown, and it was very
difficult to predict how much additional torque was needed in the var-
ious different directions to overcome the friction and to make the joint
move. When the robot was moving, however, the Coulomb friction torque
was close to constant and even a small external force (e.g., caused by a
collision) could affect the motion and be seen as a transient in the joint
errors. Since the disturbances from the friction were very similar between
different executions of the same motion, the situation became even better
and it was possible to robustly detect forces with the same order of mag-
nitude as the friction disturbances. Since the disturbances were velocity
dependent, there might, however, be a need to retune the force thresholds
if the speed of motion was changed.
The fact that the disturbances to a large extent were systematic, in-

dicates that adaptation or learning techniques could be successful in im-
proving the performance. By further on considering the entire signal in-
stead of its instantaneous value it is probably possible to find more robust
transition conditions.
The disturbances on the force estimates increased with the speed. One

reason for this could be that the actual joint positions (that were used to
estimate the forces) lagged behind the position references at high speeds.
Other reasons could be unmodeled dynamic forces or viscous friction.
The detuning of the joint controllers reduced the position accuracy of

the robot, but it can also be seen as a way to achieve low-level impedance
control, which may be beneficial for contact operations.
For the proposed force-estimation method, no gravity compensation

was needed, which is closely coupled to the property that only high-pass
filtered torques could be estimated. Not having to compensate for gravity

180



10.3 Force Estimation Using Motor Torques

can be useful in particular when manipulating objects of unknown mass.
In the experiment displayed in Fig. 10.3, the estimated forces were the

best during the first 1.9 seconds, when the joint velocities were relatively
low and the main disturbance was the joint friction. After t = 1.9 s, the
estimates were poor in the z-direction up to t = 2.6 s and in the x-direction
during the rest of the execution. One reason for the large disturbances
could be that the assumption of small contact torques around the corner
of the shield can was violated from t = 2.6 s to t = 3.5 s, when the shield
can was pressed onto the socket. Another source of the large error could
be that some robot joints were moving faster during states 7 and 9, which
could cause disturbances as discussed in the previous paragraph. These
errors did, however, not affect the performance of the assembly task.
In the shield-can assembly scenario the sensing problem was very

hard, since the contact forces were in the same order of magnitude as the
disturbances caused by friction in the joints, and using a priori knowledge
about the small contact torques around the corner of the shield can turned
out to be crucial for the example assembly task. Without it, the transitions
triggered by positive x-force at t = 1.2 s, negative y-force at t = 1.6 s, and
negative x-force at t = 1.9 s could probably not have been detected prop-
erly. In a different scenario, with contact torques larger than the friction
disturbances, it should be possible to estimate the torques and perform
assembly without making assumptions about small contact torques.
The prior distribution of the contact torques was much smaller than

the uncertainties of the contact torque estimates originating from the
control errors if no prior was used. Hence, the contact torques estimated
using both the control errors and the prior were not much better than
what would be achieved by using the prior only. Consequently, using the
prior did not make it possible to detect contact torques, but it improved
the accuracy of the estimated forces.
The expression (10.3) provides the maximum-likelihood estimate of the

forces if all distributions are Gaussian, which is not the case in practice,
but in lack of more detailed knowledge about the distributions, Eq. (10.3)
serves as a useful approximation.

10.3 Robotic Force Estimation Using Motor Torques and

Modeling of Low-Velocity Friction Disturbances

Background and Introduction

Measured motor torques are often available in robots and can be used for
force estimation, but they contain large disturbances. An example of mea-
sured motor torques from a dual-arm assembly execution is displayed in
Fig. 10.5, together with external joint torques derived from a force sensor.

181



Chapter 10. Robotic Force Estimation without any Force Sensor

0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

 

 

0 2 4 6
−0.75

−0.5

−0.25

0

0.25

0.5

0 2 4 6
−5

−4

−3

−2

−1

0

1

0 2 4 6

−0.5

−0.25

0

0.25

0.5

Time [s] Time [s]

Jo
in
t
2_
3
to
rq
u
e
[N
m
]

Jo
in
t
2_
5
to
rq
u
e
[N
m
]

Jo
in
t
1_
1
to
rq
u
e
[N
m
]

Jo
in
t
1_
6
to
rq
u
e
[N
m
]

Motor torque

External torque

Figure 10.5 Measured motor torque and applied external torque from
an assembly sequence. The diagrams in the left column show data from
the left arm, which was controlled to move, and the diagrams in the right
column show data from the right arm, which was controlled to be still.
The upper diagrams show data from base joints, and the lower diagrams
show data from wrist joints. The joints chosen for display are those where
the external torques were the most visible, thus making it comparatively
easy to detect the external torques in the motor torque data. Still, the
disturbances were as large or even larger than the signal of interest.

The right robot arm was controlled to be still while the left robot arm
was manipulating an object held by the right robot arm. For the left arm
you can see the motor torques jumping between two levels corresponding
to the magnitude of the Coulomb friction. On top of this binary pattern
you can see irregularities resembling the external torques, but they were
typically smaller than the friction disturbances. For the right arm, which
was controlled not to move, the friction torques were less predictable and
the external torques were even harder do distinguish in the signature of
the motor torques than for the left arm.
This section presents a method for estimating external forces based

on motor torques in the presence of friction disturbances. The focus of
the method is not on estimating the friction torques of the individual
joints rigorously, but on modeling the velocity-dependent uncertainties in
the friction torques and combining measurements from multiple joints to

182



10.3 Force Estimation Using Motor Torques

compute an accurate estimate of the contact force. In particular, it takes
the noise in the velocity measurement into account, and models that the
Coulomb friction is quite well known when a joint is moving, but has much
larger uncertainty for velocities close to zero. The force is estimated by
solving a convex optimization problem in real time, and an approximate
confidence interval is also calculated.
The validity of the approach was investigated by comparing the esti-

mated forces to measurements from a force sensor. The method was finally
tested in a dual-arm screwing assembly task, part of the emergency-stop-
button assembly described in Sec. 9.4.

Method

Modeling The method used for force estimation is based on the mea-
sured joint motor torques. The model used is

τm = τ�rav + τdynamic + τ ext + τ e (10.4)

where τm denotes the measured motor torques, τ�rav denotes the torques
originating from gravity, τdynamic denotes dynamic torques originating
from accelerations of the robot, τ ext denotes external torques, and τ e de-
notes disturbances due to friction, measurement noise, modeling errors,
etc.
The influence from gravity, τ�rav, can be calculated if the mass and cen-

ter of mass are known for each link of the robot. If they are not known,
it is fairly easy to perform identification experiments to find these pa-
rameters. The actual calculation is described in [Spong et al., 2006, p.
271]. The dynamic torques, τdynamic, can also be calculated if the dynamic
parameters of the robot are known, i.e., moment of inertia for each link
of the robot. The dynamic torques will, however, be small in tasks where
it is interesting to use force estimation, as the robot will be interacting
with the environment and thus needs to move quite slow. It is therefore
assumed that the dynamic torques can be neglected.
The external joint torques originate from external forces and torques

applied to the robot. If it is assumed that all external forces are applied
to the end effector of the robot, the external joint torques are given by

τ ext = J(q)T F (10.5)

where J(q) is the Jacobian of the robot, q the joint coordinates, and F
denotes the force/torque applied to the end effector.

Disturbance torques The disturbance, τ e, influencing each joint mostly
consists of Coulomb friction, which can be modeled to give the following

183



Chapter 10. Robotic Force Estimation without any Force Sensor

contribution for joint i

τ iCoulomb =
{

τ iC,max , q̇i > 0
τ iC,min , q̇i < 0

(10.6)

where q̇i denotes the velocity of joint i, and τ iC,max and τ iC,min denote the
constant friction levels for positive and negative velocities respectively.
What happens at zero velocity is not given by the model, and the torque
may be anywhere in the interval [τ iC,min,τ iC,max]. Therefore, for low veloci-
ties close to zero, the Coulomb friction contribution can be modeled by a
uniform random variable.
Another type of friction is viscous friction. It can be modeled to give

the following contribution for joint i

τ iviscous = ci q̇i (10.7)

where ci is a constant specific for each joint.
Another large disturbance is measurement noise, which can be mod-

eled to have a zero-mean Gaussian distribution.

Disturbance model To find out the disturbance characteristics, an
identification experiment was performed for each joint. The joint was then
moving back and forth with a low piecewise constant acceleration, without
any external forces applied to the robot. Two versions of this experiment
are displayed in Fig. 10.6; the upper diagram shows an experiment with
low velocities, and the lower diagram an experiment with higher veloc-
ities. The raw data, sampled at 250 Hz, were low-pass filtered with the
discrete-time filter (10.8) to reduce the influence of the noise.

H(z) = 0.4
1− 0.6z−1 (10.8)

The Coulomb friction is easy to see in both experiments. As was sug-
gested earlier, the amount of friction for zero velocities varies between
τC,min and τC,max, and due to noise in the velocity measurements this is
true also for measured velocities slightly different from zero. Aside from
Coulomb friction, the experiment with large velocities shows viscous fric-
tion. Further, there is also noise present.
A probabilistic model of the disturbances is therefore that the Coulomb

and the viscous friction are the outcome of a uniform random variable
with a velocity-dependent range. This range is zero for large velocities
and the range grows for low velocities. One way to describe this range is
by using sigmoid functions for describing the upper and the lower limits.
To incorporate also viscous friction, a term linear in velocity is added.

184



10.3 Force Estimation Using Motor Torques

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−3

−2

−1

0

1

2

3

 

 

−1.5 −1 −0.5 0 0.5 1 1.5
−5

0

5

 

 

Joint velocity [rad/s]

Joint velocity [rad/s]

M
ot
or
to
rq
u
e
[N
m
]

M
ot
or
to
rq
u
e
[N
m
]

Raw data
Filtered data
Gaussian std
Uniform limits

Figure 10.6 Experimental data from an experiment where one joint of
the robot was controlled to move back and forth with piecewise constant
acceleration. The upper diagram shows an experiment with only low veloc-
ities, and the lower diagram shows an experiment with higher velocities.
The disturbance characteristics are clearly visible in this experiment. Also
shown is one standard deviation of the measurement noise multiplied with
a velocity dependent factor, and the upper and lower limits for the uniform
distribution describing the Coulomb and the viscous friction.

The upper and lower limit for each joint can be described by the following
functions (joint index omitted)

τ f ,max(q̇) = τC,min +
τC,max − τC,min
1+ e−A(q̇+B) + cq̇

τ f ,min(q̇) = τC,min +
τC,max − τC,min
1+ e−A(q̇−B) + cq̇

(10.9)

The parameter A determines the slope of the sigmoid function, and the
parameter B the width of the area between the curves. Parameters for
such functions were manually tuned for each joint of the robot, and an
example is seen as magenta curves in Fig. 10.6.
A Gaussian noise term is used to account for measurement noise, un-

certainty in the friction limits and unmodeled disturbances. In Fig. 10.6,
it can be seen that the variance of the noise increases when the veloc-

185



Chapter 10. Robotic Force Estimation without any Force Sensor

ity increases. The model used is therefore that the variance of the noise
is velocity dependent and the standard deviation for different velocities
is calculated as the standard deviation for low velocities multiplied with
a factor (1 + kpq̇ip). One standard deviation of the noise is displayed in
Fig. 10.6. Data recorded during assembly operations indicated that the
actual disturbances at high velocities were higher than the measured
data in Fig. 10.6 indicate. Hence, the one-standard-deviation limit may
appear overly pessimistic in this figure.
To conclude, the total disturbance torque is modeled as

τ e = τ f + e (10.10)
where τ f ,min(q̇) ≤ τ f ≤ τ f ,max(q̇), and e is zero-mean Gaussian with diag-
onal covariance matrix E[eeT ] = Re(q̇) = diag(1+ kpq̇p)2Re(0).
Force estimation Let τ̄ be the motor torques compensated for gravity,
calculated as

τ̄ = τm − τ�rav (10.11)
Using (10.4), (10.5), (10.10), and the assumption that the dynamic torques
are negligible, this gives

τ̄ = τ ext + τ e

= JT F + τ f + e
(10.12)

where τ̄ and J are given by measurements, and τ f and e are random
variables with uniform and Gaussian distributions respectively. The ML
(Maximum Likelihood) estimate of F is then given by the solution to

minimize
over F,τ f

(
τ̄ − JT F − τ f

)T
R−1e

(
τ̄ − JT F − τ f

)

subject to τ f ,min ≤ τ f ≤ τ f ,max

(10.13)

The estimate given by (10.13) can be improved by adopting a Bayesian
approach and using prior knowledge of F in the particular task, just like
in Sec. 10.2. The type of prior knowledge that can be used is, for instance,
that the contact torques are small compared to the torque disturbances,
and by reflecting this knowledge in the distribution of F it is possible to
improve the quality of the estimated contact forces.
Assuming that the prior on F is Gaussian with E[F] = F̄ and

E[(F − F̄)(F − F̄)T ] = RF , and that F and e are uncorrelated, the ML
estimate of F is given by the solution to

minimize
over F,τ f

(
τ̄ − JT F − τ f

)T
R−1e

(
τ̄ − JT F − τ f

)

+
(
F − F̄

)T
R−1F

(
F − F̄

)

subject to τ f ,min ≤ τ f ≤ τ f ,max

(10.14)

186



10.3 Force Estimation Using Motor Torques

P
D
F

τ e

τ f ,min τ f ,maxτ con f ,min τ con f ,max

Figure 10.7 Illustration of the proposed confidence interval on the prob-
ability density function (PDF) of τ e = τ f + e, a flat part and two Gaussian
tails. The blue areas indicate the portion of the measurements expected
to be outside the confidence interval.

The problem (10.14) is convex and can be solved numerically in real time,
as described on page 189.

Confidence interval estimation The uncertainty of the estimate given
by (10.14) varies significantly with the velocity of the different joints and
the robot Jacobian, etc. Hence, it is important to calculate the uncertainty
of every estimate individually.
It is difficult to compute exact quantiles for the solution of (10.14),

but this section describes a method for extracting approximate confidence
intervals that can be computed in real time. The method is first described
for the case with a single robot joint without prior, and then generalized
to handle multiple joints and a prior distribution on F.

Confidence interval estimation — One-dimensional case The pro-
posed confidence interval for the case of a single robot joint with no prior
and the Jacobian J = 1 is illustrated in Fig. 10.7. The limits are calculated
as

τ con f ,min = τ f ,min − λσ

τ con f ,max = τ f ,max + λσ
(10.15)

where σ is the standard deviation of the Gaussian tails and λ is a pa-
rameter deciding the confidence level of the confidence interval.
For the special case where τ f ,min = τ f ,max (the distribution of τ e is

Gaussian), the portion of the measurements outside the confidence inter-
val is 2(1 − Φ(λ)), where Φ(⋅) is the cumulative distribution function of
the zero-mean unit-variance Gaussian distribution.
An alternative way of finding the limits (10.15), is to minimize the

negative log-likelihood function of τ e and adding a gradient to push the
solution toward the upper or lower limit. The log-likelihood of a zero-mean

187



Chapter 10. Robotic Force Estimation without any Force Sensor

Gaussian with standard deviation σ is given by

logL(e) = − e
2

2σ 2
+ const. (10.16)

d

de
(logL(e)) = − e

σ 2
(10.17)

Hence, at the limits of the confidence interval, the derivative of the neg-
ative log-likelihood function of τ e is

− d
de
(logL(±λσ )) = ±λ

σ
(10.18)

Consequently, adding a gradient with one of the slopes (10.18) to the neg-
ative log-likelihood of τ e and finding the minimum, gives one of the limits
(10.15) as the solution. This way of calculating the limits is described
because it generalizes to higher dimensions better than (10.15).
Confidence interval estimation — Multi-dimensional case For the
multi-joint problem (10.14), first assume that τ f ,min = τ f ,max, (i.e., Gaus-
sian distribution). The standard deviation σ of the marginal distribution
of F in the direction of the unit vector v is then given by

σ =
√

vT
(

JSR−1e J
T + R−1f

)−1
v (10.19)

where S is the identity matrix for the Gaussian case but may have other
values for the general case, as described later in this section. The limits of
the confidence interval in the direction v are then given by the F solving

minimize
over F,τ f

(
τ̄ − JT F − τ f

)T
R−1e

(
τ̄ − JT F − τ f

)

+
(
F − F̄

)T
R−1F

(
F − F̄

)
∓ λ

σ v
T F

subject to τ f ,min ≤ τ f ≤ τ f ,max

(10.20)

where the “−” in the “∓” is for the upper limit, and the “+” is for the
lower limit. This formulation is obtained by adding the gradient (10.18)
to the problem (10.14).
Returning to the general case, when τ f ,min ,= τ f ,max, some of the joints

may get an estimated τ e in the range τ f ,min < τ e < τ f ,max. The cost function
for that joint is then locally flat, cf. Fig. 10.7, and should not be considered
when calculating (10.19).
To find out for which joints the estimated τ e ends up in the Gaussian

part of the distribution, we propose the following algorithm. It is assumed
that n joints are used for force estimation and that Re is diagonal.

188



10.3 Force Estimation Using Motor Torques

1. Set S = 0n$n.

2. Calculate (10.19).

3. Solve (10.20).

4. For the joints where τ f = τ f ,min or τ f = τ f ,max, set the corresponding
diagonal elements of S to 1.

5. If S was modified in step 4), go to step 2). Else quit.

The intuition behind the above algorithm is the following. The prob-
lem (10.20) is first solved using a gradient based only on the prior. If
the Coulomb friction for all joints is large, the resulting τ e may all be
within the flat part of the distribution (cf. Fig. 10.7) and only the prior
is used for determining the confidence interval. If any of the estimated τ e
reaches the Gaussian parts of the distributions, the gradient based only
on the prior will not be able to push the estimate sufficiently far down the
Gaussian tails. The value of σ in (10.19) is then modified to include all
joints where the τ e estimate is in the Gaussian part, resulting in a steeper
gradient, which may in turn push the estimate of additional joints to the
Gaussian part of the distribution. The process (steps 2–5) is iterated until
convergence.

Implementation The optimization problem (10.14) is a convex opti-
mization problem of fairly small size and can be solved in real time in a
reliable manner. To this purpose, CVXGEN [Mattingley and Boyd, 2012]
was used. It is a code generator for embedded convex optimization. The
generated code is library-free C code, and this code was connected to the
robot controller via an Ethernet connection.
The generated solver was run on a Linux PC and the computation time

to arrive to a solution was in the order of 0.3 ms. The robot controller was
run with a sampling time of 4 ms, and the speed of the solver was there-
fore sufficient to be run in each sample. The solution with the Ethernet
connection introduced a delay of one sample, as the indata to the solver
was sent one sample before the solution was returned.

Assembly Scenario

A part of the assembly of the emergency stop button described in Sec. 9.4
was considered to illustrate the use of the force-estimation method. The
subtask considered was the attachment of the button onto the box by
screwing a nut. This assembly operation was performed in a dual-arm
setting, with one arm holding the button with the yellow box on, and
the other arm performing the screwing (2.5–3.5 revolutions). Figure 10.8

189



Chapter 10. Robotic Force Estimation without any Force Sensor

(a) Overview of the workcell. The force/torque sensor,
mounted at the wrist of the robot’s right arm, was only
used for verification and evaluation of the estimated
forces.

z

x
y

(b) Zoom in and illustration of
the frame in which the contact
forces were measured.

Figure 10.8 The setup for the assembly task used in the experiments.

shows the robot cell just before the assembly operation was started. The
task was modeled and specified using the iTaSC framework [De Schutter
et al., 2007], described in Sec. 9.2.
The arm holding the button was static, which means that it was con-

trolled not to move, but forces applied to it could cause it to move slightly,
since a small joint-position error was needed before the controller could
act upon it.
The assembly sequence consisted of first putting the nut on the thread

of the button, using the contact forces to find the hole of the nut, though
the exact grip of the button was uncertain. Before the nut was properly
screwed onto the thread, large side forces could be caused by a bad grip
of the nut. If such a force was detected during the first two revolutions,
the gripper was opened and re-closed, which usually gave a more centric
grip. Due to the way that the nut was gripped, large side forces were
generated when the nut was tightened, which could be used to detect
when the screwing operation was completed. More details can be found in
Sec. 9.4.
The robot used in the assembly scenario was the ABB FRIDA [Kock

et al., 2011]. It is a dual-arm manipulator with 7 joints in each arm, devel-

190



10.3 Force Estimation Using Motor Torques

oped for automation of assembly operations. The robot was controlled with
the IRC5 control system, extended with an open control system [Blomdell
et al., 2005; Blomdell et al., 2010], which made it possible to modify the
references for the low-level joint control loops. The motor torques used for
force estimation were calculated from the motor currents. The ATI Mini40
force sensor, which was normally mounted under a fixture on the table,
was for this experiment mounted on the wrist on one of the arms to give
ground truth force data, see Fig. 10.8(a).

Experimental Results

Calibration An experiment where the robot was programmed to slowly
move around in its work space was performed to identify the parameters
used for calculating the gravity torque, τ�rav. The resulting parameters
resulted in a mean absolute error ranging from 0.05 Nm for the wrist
joints to 0.3 Nm for the base joints.
The friction parameters were tuned by performing experiments of the

type that was described on page 184.

Force estimation The force estimation method was tested in an exper-
iment where forces were applied to a static arm (controlled not to move).
The estimated forces and confidence intervals are displayed in Fig. 10.9,
together with ground truth data from the force sensor. All confidence in-
tervals displayed in this chapter were estimated with λ = 1.96 in (10.20),
which would give a 95 % confidence interval for a Gaussian random vari-
able. The parameter k was set to 5 s/rad.
Fig. 10.9 shows that the estimated force tracked the measured force

well, but the confidence intervals seem to be overly pessimistic. The
Coulomb friction was, however, a very large disturbance for low veloci-
ties. When the robot was moving, the uncertainty in the Coulomb friction
was much smaller, as can be seen on the magenta-colored curve in the
upper diagram of Fig. 10.6. Large external forces made the robot move
slightly, and this gave significantly tighter confidence intervals than when
the robot was still, as can be seen, for example, on the z-force at t = 15 s
and t = 18 s in Fig. 10.9.
Screwing assembly task Estimated and measured forces from an exe-
cution of the screwing assembly task are displayed in Fig. 10.10. The forces
are given in the coordinate frame illustrated in Fig. 10.8(b). It can be seen
that the estimated forces tracked the measured forces, at least when the
measured forces were non-zero, i.e., during contact operations. When the
measured forces were zero, however, the estimated forces were sometimes
a bit wrong, e.g., in the y- and the z-directions around t = 1.6 s. These
estimation errors were most likely due to modeling errors, as the robot
was moving quite fast in this part of the assembly, but it was known that

191



Chapter 10. Robotic Force Estimation without any Force Sensor

0 2 4 6 8 10 12 14 16 18

−5

0

5

 

 

0 2 4 6 8 10 12 14 16 18

−5

0

5

10

 

 

0 2 4 6 8 10 12 14 16 18

−10

0

10

20

 

 

Time [s]

x
-f
or
ce
[N
]

y-
fo
rc
e
[N
]

z-
fo
rc
e
[N
]

Conf. Int.

Conf. Int.

Conf. Int.

Estimated

Estimated

Estimated

Measured

Measured

Measured

Figure 10.9 Data from an experiment where forces were applied to the
end effector of a static arm. A wrist-mounted force sensor was used to
measure a ground truth, and data from this are shown with black lines.
The estimated force is displayed together with a confidence interval.

0 2 4 6 8 10 12

−5

0

5

 

 

0 2 4 6 8 10 12
−4

−2

0

2

4

 

 

0 2 4 6 8 10 12

−5

0

5

10

15

 

 

Time [s]

x
-f
or
ce
[N
]

y-
fo
rc
e
[N
]

z-
fo
rc
e
[N
]

Conf. Int.

Conf. Int.

Conf. Int.

Estimated

Estimated

Estimated

Measured

Measured

Measured

Figure 10.10 Measured and estimated contact forces from an execu-
tion of the screwing assembly task. The forces are given in the coordinate
frame illustrated in Fig. 10.8(b). The computed confidence intervals are
also shown.

192



10.3 Force Estimation Using Motor Torques

12 12.2 12.4 12.6 12.8 13 13.2

−5

0

5

 

 

12 12.2 12.4 12.6 12.8 13 13.2

−2

0

2

4

 

 

12 12.2 12.4 12.6 12.8 13 13.2
−5

0

5

10

 

 

Time [s]

x
-f
or
ce
[N
]

y-
fo
rc
e
[N
]

z-
fo
rc
e
[N
]

Conf. Int.

Conf. Int.

Conf. Int.

Estimated

Estimated

Estimated

Measured

Measured

Measured

Figure 10.11 A zoom in on the measured and estimated force data from
Fig. 10.10.

0 2 4 6 8 10 12

−0.5

0

0.5

 

 

0 2 4 6 8 10 12

−0.5

0

0.5

 

 

0 2 4 6 8 10 12
−0.5

0

0.5

 

 

Time [s]

x
-t
or
qu
e
[N
m
]

y-
to
rq
u
e
[N
m
]

z-
to
rq
u
e
[N
m
]

Conf. Int.

Conf. Int.

Conf. Int.

Estimated

Estimated

Estimated

Measured

Measured

Measured

Figure 10.12 Measured and estimated contact torques from an execution
of the screwing assembly task. The torques are given in the coordinate
frame illustrated in Fig. 10.8(b). The computed confidence intervals are
also shown.

193



Chapter 10. Robotic Force Estimation without any Force Sensor

the motion would be performed in free space when the robot was moving
fast, and therefore it was not crucially important to get a perfect force
estimate.
For the assembly task, some of the important forces to detect were the

contact forces in the z-direction when the nut was put on the thread. They
were correctly detected at t = 0.2 s and t = 3 s, and the confidence interval
was tight at these moments. The screwing was finished when a large side
force was detected at t = 12.6 s; a zoom in on this part of the data is
displayed in Fig. 10.11. It can be seen that the force estimate was both
quite correct and confident when the forces occurred. Some oscillations
can be seen in the force estimate, e.g., in the z-force around t = 12.2 s.
This might be caused by unmodeled disturbances, like cogging torques in
the motors or mechanical resonances.
The estimated contact torques together with those measured with the

force sensor are displayed in Fig. 10.12. For most samples, the confidence
intervals of the estimated contact torques included the zero torque, since
the friction torques were very large in comparison to the contact torques.
Consequently, larger contact torques would be required for the estimator
to be able to detect them reliably.
The force estimates presented in Figs. 10.10-10.12 were calculated us-

ing data from both arms, and in Table 10.1 they are compared to estimates
based on only the right (static) or left (moving) arm. It can be seen that
the estimate using the static arm, gave the most measurements within the
confidence interval. This data should, however, only be used to evaluate
the quality of the confidence intervals, not the force estimates. When the
joints were not moving, the large uncertainty in the Coulomb friction re-
sulted in wide confidence intervals, and hence many measurements were
inside the confidence intervals. When the robot was moving, however, the
model seemed to be a bit too confident about the estimate. Only looking
at the samples when external forces were present did not change much.
The lower part of Table 10.1 shows the mean absolute estimation error.

Here it can be seen, that when all samples were considered, the estimates
from the static arm were the best, but only slightly better than the esti-
mate using both arms. It may be surprising that using only one arm can
give better results than using both arms, but when only the static arm
was used, the confidence interval was large and usually enclosed the prior,
which was F̄ = 06$1 in our example. Hence most estimates were pulled to
the prior, which was almost equal to the actual forces for most samples in
this particular sequence. When there were external forces present, which
is the situation when the force estimation is really useful, the estimates
based on both arms were significantly better than those based on any
single arm, as seen in the lower right part of Table 10.1.

194



1
0
.3
F
o
rce
E
stim

a
tio
n
U
sin
g
M
o
to
r
T
o
rq
u
es

All samples Samples when external force was non-zero
Percentage of ground truth force/torque measurements within confidence interval

Wrench component Static arm Moving arm Both arms Static arm Moving arm Both arms
x-force 96.2 % 66.7 % 78.6 % 91.2 % 65.2 % 70.7 %
y-force 95.6 % 64.4 % 82.4 % 90.0 % 64.2 % 74.8 %
z-force 91.7 % 61.9 % 58.4 % 81.2 % 67.5 % 57.2 %
x-torque 97.1 % 87.4 % 86.9 % 93.2 % 64.7 % 80.5 %
y-torque 97.9 % 80.5 % 72.2 % 95.3 % 85.8 % 78.4 %
z-torque 99.8 % 72.8 % 67.7 % 99.6 % 89.9 % 77.5 %

Mean absolute error
Wrench component Static arm Moving arm Both arms Static arm Moving arm Both arms
x-force 0.60 1.08 0.60 1.05 1.23 0.62
y-force 0.63 1.40 0.64 1.14 1.42 0.64
z-force 0.91 1.38 1.09 1.33 1.29 1.02
x-torque 0.066 0.22 0.095 0.16 0.25 0.096
y-torque 0.036 0.15 0.11 0.073 0.13 0.099
z-torque 0.014 0.050 0.074 0.036 0.057 0.091

Table 10.1 Statistics for the force estimation in the screwing assembly task. The upper half shows the percentage of the
samples where the measured force was within the computed confidence interval. The lower half shows the mean absolute
estimation error (forces in N, torques in Nm). The left part shows statistics for when the entire assembly sequence is
considered, while the right part only considers those samples when the measured force was non-zero, i.e., when the arms
were in contact.

195



Chapter 10. Robotic Force Estimation without any Force Sensor

Discussion

Experiments showed that, when the arms were in contact, complementing
motor torque data from a moving arm with data from a static arm signif-
icantly improved the quality of the estimated forces. The static arm could
not have been exploited properly with previously published force estima-
tion methods, which do not account for the uncertainty of the Coulomb
friction at low velocities.

Using a prior distribution on F with small variance on the contact
torques, can be seen as putting a soft constraint on the contact torques.
Instead of estimating a 3-DOF force and a 3-DOF torque, the problem
is then almost reduced to estimating only a 3-DOF force. The increased
redundancy in the problem gives a better force estimate.

The prior distribution on F was chosen to be Gaussian, which is a
really crude approximation of the true distribution. Using a Gaussian
prior, however, leads to fast calculations and can be a useful approxi-
mation when there is not much information about the true distribution
available. The variance of the prior should be chosen according to process
knowledge; how large forces and torques that are expected.

The magnitudes of the contact torques used in this chapter were small
compared to the uncertainties in the torque estimates. This was mainly
caused by the relatively large disturbances. The contact torques consid-
ered were in the order of 0.1–0.3 Nm, which was in the same order of
magnitude as the errors in the gravity torque compensation. Also errors
in the Coulomb friction modeling gave disturbances in the same order of
magnitude as the contact torques. Estimating forces was more advanta-
geous, as relatively small forces could give rise to relatively large joint
torques through long lever arms.

There is no fundamental limitation of the method preventing estima-
tion of contact torques. In an application where the contact torques are
larger compared to the torque disturbances the full 6D force/torque could
be estimated.

Some of the parameters used for force estimation were manually tuned,
including A and B in (10.9), the low-pass filter, and the velocity depen-
dence of the Gaussian noise term. This should be possible to do in an au-
tomatic fashion, i.e., make experiments of the type presented on page 10.3
and choose the parameters by optimizing some criterion. This would fur-
ther simplify the use of the method and it is considered some of the future
work.

196



10.4 Conclusions

10.4 Conclusions

This chapter presents two approaches for estimating forces without any
force sensor, and both methods were experimentally validated in small-
part assembly tasks. The estimated forces had larger disturbances than
forces measured by a force sensor, but due to the large cost of force sen-
sors the force estimation methods can still be relevant for practical appli-
cations.
The method presented in Sec. 10.2 requires detuning of the joint con-

trollers, which reduces the position accuracy of the robot, but the reduced
stiffness can be advantageous for contact operations. The robot model is
very simple and does not require any gravity compensation, but on the
other hand only high-pass filtered forces are estimated, making it impos-
sible to measure constant forces.
The method based on motor torques, presented in Sec. 10.3 models

the robot more carefully and gives more reliable force estimates. It also
provides confidence intervals, which is particularly useful since the dis-
turbances vary significantly with the joint speeds. Further, there is no
need to detune the joint controllers. The detuning is not necessarily a bad
thing, but with the method based on motor torques the detuning is op-
tional and can be done without affecting the force estimates. A drawback
compared to the method based on control errors is that gravity compen-
sation is needed.

197





Conclusions





11

Conclusions

11.1 Vision-Based Control

This thesis presents work on how fast and accurate vision can be used for
reactive robot control, demonstrated by the realization of a ball-catching
robot. Compared to ball-catching robots developed in other labs, my system
demonstrated better spatial accuracy and faster response time.
The color of an object provides useful information to the image anal-

ysis, but color-based methods are sensitive to varying illumination con-
ditions. The thesis presents a way of designing a constant classifier that
can identify an object based on its color for a wide range of illumination
conditions.
Objects that are moving have a risk of causing motion blur in images,

in particular in conditions of moderate lighting intensities. A very fast
method for detecting where motion blur occurred is proposed. By means
of this method it was possible to improve how accurately the positions and
sizes of thrown balls could be estimated in images.
A new way of initializing the Kalman filter has been presented, mak-

ing it possible to calculate a state estimate that without any need for
information about the initial value of the state. Instead the estimate can
be determined completely based on the first measurements. This was ac-
complished by choosing a new state representation where the directions
with infinite variance were orthogonal to as many basis vectors as possi-
ble.
A strategy for tracking dynamical objects with computer vision was

described. It provides a simple way to fuse data from an arbitrary number
of pictures captured simultaneously. In combination with a dynamical
model of the tracked object, it also enables determination of the position
of the object in 3D space without any two images being captured at the
same time. Furthermore, it also allows tracking of objects in 3D space,
using only a single static camera.

201



Chapter 11. Conclusions

A method for generating trajectories with dynamically updated tar-
get points was described. It pays attention to the deadline and uses the
smallest acceleration possible to reach the goal in time. When a new target
point is received, the trajectory is smoothly modified in real time during
the robot motion. The effect of jerk limitation on trajectory generation was
also investigated.
Whereas the direct practical applications of a ball-catching robot may

be limited, it serves to demonstrate the potential and capabilities of
robots. If robots should take the step out of the controlled factory to
more dynamic environments they need perception and the capability to
react quickly to impressions. For such applications, parts of the knowledge
gained from developing a ball-catching system could be reused.

11.2 Force Control and Estimation

The thesis presents work on how force sensing can be used for robotic
assembly. Two use cases were implemented to evaluate the feasibility of
the approach. It was shown that force sensing allowed the robot to perform
assembly operations that would not have been possible using only position
control.
Two methods for performing robotic force estimation without any force

sensor were presented and used to successfully perform assembly oper-
ations. The estimated forces were not as good as the measurements one
could get from a force sensor, but on the other hand, a force sensor costs
a significant amount of money. Considering the tradeoff between cost and
performance, force estimation can, hence, be a competitive option.
Though force sensing expands the domain of tasks that robots can

perform, there is still a long way until robots can perform all assembly
operations with the same speed and robustness as humans. When con-
sidering that robots can work around the clock, the production rates were
comparable, but the robotic assembly system still lacked in robustness.
One factor limiting the assembly speed of the system used was that

it could not perform compliant motions with the same performance as
humans. Though this is one important limitation, I believe that the main
problem to solve before force-based assembly becomes widely adopted in
industry is the task specification. The assembly operations described in
Chapter 9 were developed through trial and error, and they required tun-
ing of force thresholds and control parameters. Over time the most com-
mon error cases were identified, and the assembly strategies were man-
ually updated to detect and recover from these errors.
Humans can learn diverse assembly tasks with a small amount of

task-specific information and can recover from small errors in a natural

202



11.3 Concluding Remarks

way. Until robots come close to these capabilities, humans will still be
needed in many assembly operations, but the use of force control expands
the set of tasks that can be automated.

11.3 Concluding Remarks

This thesis treats two classes of robot control based on sensor data from
the work space: vision and force sensing, which both are important ele-
ments for the progress of cognitive robotics.
Computer vision has the benefit that it can give information about a

large work volume without coming in contact with or affecting the envi-
ronment, but has lower spatial accuracy than many other measurement
methods. Force sensing can be used to perform mechanical work or accu-
rately infer contact situations, but it is less advantageous in the presence
of very large position uncertainties. To quickly find an object in a large
volume by searching for a contact force, the robot has to move fast, but
high speeds also result in undesirable high collision impact forces when
contact with the object is made, due to inertia and control delays.
Here, the two classes of sensor data were treated separately. By contin-

uing the work on combining their respective strengths, the performance
of robots can be increased further.

203



A

Fundamentals of Robotics

and Computer Vision

This chapter describes a few concepts from robotics and computer vision
that are used in this thesis.

A.1 Homogeneous Coordinates

Rigid Transformations

Assume that you have a point in 3D space described by the coordinate
vector [X Y Z]T . It can then be described by the homogeneous coordinate
vector

X =







X

Y

Z

1







(A.1)

Let Xa be the coordinate of a point in frame Oa, and let Xb be the co-
ordinate of the same point in frame Ob. These homogeneous coordinate
vectors are then related by a transformation matrix, T , by







Xa
Ya
Za
1






=
[
R3$3 t3$1
01$3 1

]

︸ ︷︷ ︸

T







Xb
Yb
Zb
1







(A.2)

where t is the vector from Oa to Ob, described in the coordinate frame of
Oa, and R is a rotation matrix defined by

R =
[
ex ey ez

]
(A.3)

204



A.1 Homogeneous Coordinates

Oa

Ob

ex

ey

ez

t

Figure A.1 Illustration of the frames used to describe transformation
matrices.

where ex, ey, and ez are the basis vectors of frame Ob described in the
frame of Oa, cf. Fig. A.1. The rotation matrix has the properties RTR = I
and det(R) = 1.
By means of homogeneous coordinates and transformation matrices,

rigid transformations (rotation + translation) can be performed as linear
operations on the form (A.2).

Projective Geometry

This section gives a short introduction to camera modeling and the use
of homogeneous coordinates in projective geometry. More details can be
found in, for example, [Ma et al., 2003].
When using homogeneous coordinates in projective geometry [Möbius,

1827; Graustein, 1930] it is convenient to introduce the relation “∼”, which
is defined according to

x1 ∼ x2 Z[
x1 = λx2 for some λ ,= 0 (A.4)

where x1 and x2 are homogeneous coordinate vectors. If Eq. A.4 is ful-
filled, x1 and x2 represent the same point, even if λ ,= 1. To recover the
point that is represented by a homogeneous coordinate vector, scale it so
that its last element becomes equal to 1. To illustrate this, consider a 2D
example:

x =





x1
x2
x3



 ∼





x1/x3
x2/x3
1



 (A.5)

In (A.5), [x1 x2 x3]T is a homogeneous coordinate representation of the
2D coordinate [x1/x3, x2/x3].

205



Appendix A. Fundamentals of Robotics and Computer Vision

X

x

Z = 1

X

Y

Z

Oc

r

Figure A.2 Illustration of normalized coordinates for pin-hole camera.

Pin-hole camera Let X be the coordinate of a 3D point, expressed in
the coordinate frame of a pin-hole camera, Oc, cf. Fig. A.2. The origin
of Oc is the focal point of the camera. Let r be the line that intersects
the focal point and the point X. The normalized image coordinate of the
projection of X is defined as the X -Y coordinate where r intersects the
plane Z = 1. Furthermore, let x ∼ [x y 1]T denote the normalized image
coordinate of the projection of X. Then, x is given by

x =





X /Z
Y/Z
1



 ∼





X

Y

Z



 (A.6)

This shows that the normalized homogeneous 2D coordinate of an image
point is proportional to the coordinate vector of the corresponding 3D
point.
Equation (A.6) is valid only for normalized image coordinates, and X

must be given in the camera coordinate frame. A more general expression

206



A.1 Homogeneous Coordinates

is given by





x

y

1





︸ ︷︷ ︸

x

∼





γ f s f x0
0 f y0
0 0 1





︸ ︷︷ ︸

K

[
R3$3 t3$1

]

︸ ︷︷ ︸

G

︸ ︷︷ ︸

P







X

Y

Z

1







︸ ︷︷ ︸

X

(A.7)

The matrix G contains the extrinsic coordinates, depending on the pose of
the camera, and defines a rigid transformation (cf. Eq. (A.2)), transform-
ing the 3D point to the coordinate system of the camera. The matrix K
contains the intrinsic parameters. They consist of an offset, [x0, y0], a scal-
ing, f , a skewness parameter, s, and a parameter telling how rectangular
the coordinate system is, γ .
To conclude, the properties of a pin-hole camera can be captured in a

matrix, P ∈ R
3$4. A 3D point, X, and its camera projection, x, are related

by the equation

x ∼ PX (A.8)

Lines and Planes

Homogeneous coordinates can be used to define lines and planes in a
convenient way.
Let the coordinates in 2D space be described by a homogeneous coor-

dinate vector:

x =





x

y

1



 (A.9)

A vector l = [l1 l2 l3]T can then be used to specify a line as all points
satisfying

lTx = 0Z[ (A.10)

[
l1 l2 l3

]





x

y

1



 = 0 (A.11)

The vector [l1 l2] is normal to the line l.
Similarly, a vector π = [π1 π2 π3 π4]T can be used to specify a plane

207



Appendix A. Fundamentals of Robotics and Computer Vision

in 3D space as all points X satisfying

π
TX = 0Z[ (A.12)

[
π1 π2 π3 π4

]







X

Y

Z

1






= 0 (A.13)

The vector [π1 π2 π3] is normal to the plane π.

Figure A.3 Illustration of base frame, Ob, and tool frame, Ot, for a robot.

A.2 Robot Kinematics

This section gives a short introduction to robot kinematics. More details
can be found in, for example, [Spong et al., 2006].
For a serial robot with revolute joints, let q denote the joint angles of

the robot arm:

q =








q1
q2
...
qn








(A.14)

208



A.2 Robot Kinematics

where n is the number of joints. In Fig. A.3, Ob denotes the robot base
frame and Ot denotes the tool frame.
The forward kinematics describes the pose of the tool frame in the

coordinate system of the base frame as a function of the joint coordinates,
q. The relation can be described by a homogeneous transformation matrix,
T(q), on the form given in (A.2).
For the inverse kinematics problem, the pose of Ot and the correspond-

ing transformation, T0, are known. The task is to find a q that satisfies
T(q) = T0. Depending on the kind of robot, the inverse kinematics prob-
lem may or may not have an analytic solution, and there are usually more
than one valid solution.
Let v ∈ R

3$1 and ω ∈ R
3$1 be the translational and rotational veloc-

ities of Ot, respectively. The robot Jacobian, J(q), relates the velocity of
the tool frame to the joint velocities according to

[
v

ω

]

= J(q)q̇ (A.15)

The Jacobian can also be used to relate the joint torques to the force
and torque in the tool frame according to

τ = J(q)T
[
F

M

]

(A.16)

where τ ∈ R
n$1 are the joint torques, F ∈ R

3$1 is the tool force vector,
and M ∈ R

3$1 is the tool torque vector.

209



Bibliography

ABB (2013). Robots. URL: http://www.abb.com/product/us/9AAC100735.

aspx.

Albu-Schäffer, A., S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and
G. Hirzinger (2007). “The DLR lightweight robot: design and control
concepts for robots in human environments”. Industrial Robot: An In-
ternational Journal 34:5, pp. 376–385.

Alcocer, A., A. Robertsson, A. Valera, and R. Johansson (2003). “Force es-
timation and control in robot manipulators”. In: Proc. 7th IFAC Symp.
Robot control (SYROCO’03). Wrocław, Poland, pp. 31–36.

Årzén, K.-E. (2002). “JGrafchart: sequence control and procedure han-
dling in Java”. In: Proc. Reglermöte 2002. Linköping, Sweden.

Balkenius, C., A. J. Johansson, and A. Balkenius (2003). “Color constancy
in visual scene perception”. Lund University Cognitive Science, Lund,
Sweden. ISSN: 1101-8453.

Ballard, D. (1981). “Generalizing the hough transform to detect arbitrary
shapes”. Pattern Recognition 13:2, pp. 111–122. ISSN: 0031-3203. DOI:
http://dx.doi.org/10.1016/0031-3203(81)90009-1. URL: http://

www.sciencedirect.com/science/article/pii/0031320381900091.

Barteit, D., H. Frank, and F. Kupzog (2008). “Accurate prediction of inter-
ception positions for catching thrown objects in production systems”.
Proc. IEEE Intl. Conf. Industrial Informatics (INDIN), Daejon, Korea,
pp. 893–898.

Basler (2005). Basler A600f User’s Manual, Document number
DA00056107. URL: http : / / www . baslerweb . com / beitraege /

unterbeitrag_en_23042.html.

Bätz, G., A. Yaqub, H. Wu, K. Kuhnlenz, D. Wollherr, and M. Buss (2010).
“Dynamic manipulation: nonprehensile ball catching”. In: Control Au-
tomation (MED), 2010 18th Mediterranean Conference on, pp. 365–370.
DOI: 10.1109/MED.2010.5547695.

210



Bibliography

Bäuml, B., T. Wimböck, and G. Hirzinger (2010). “Kinematically optimal
catching a flying ball with a hand-arm-system”. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS2010),
pp. 2592–2599. DOI: 10.1109/IROS.2010.5651175.

Bäuml, B., O. Birbach, T. Wimböck, U. Frese, A. Dietrich, and G.
Hirzinger (2011a). “Catching flying balls with a mobile humanoid: sys-
tem overview and design considerations”. In: Humanoid Robots (Hu-
manoids2011), 11th IEEE-RAS International Conference on, pp. 513–
520. DOI: 10.1109/Humanoids.2011.6100837.

Bäuml, B., F. Schmidt, T. Wimböck, O. Birbach, A. Dietrich, M. Fuchs,
W. Friedl, U. Frese, C. Borst, M. Grebenstein, O. Eiberger, and G.
Hirzinger (2011b). “Catching flying balls and preparing coffee: mobile
humanoid Rollin’ Justin perfoms dynamic and sensitive tasks”. In:
Proc. IEEE Intl. Conf. Robotics and Automation (ICRA2011), May 9-

13, Shanghai, China, pp. 3443–3444.

Birbach, O. and U. Frese (2009). “A multiple hypothesis approach for
a ball tracking system”. In: Fritz, M. et al. (Eds.). ICVS. Vol. 5815.
Lecture Notes in Computer Science. Springer, pp. 435–444. ISBN: 978-
3-642-04666-7.

Birbach, O. and U. Frese (2011). “Estimation and prediction of mul-
tiple flying balls using probability hypothesis density filtering”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS2011), pp. 3426–3433. DOI: 10.1109/IROS.2011.6094622.

Birbach, O., J. Kurlbaum, T. Laue, and U. Frese (2008). “Tracking of ball
trajectories with a free moving camera-inertial sensor”. In: Iocchi, L.
et al. (Eds.). RoboCup. Vol. 5399. Lecture Notes in Computer Science.
Springer, pp. 49–60. ISBN: 978-3-642-02920-2.

Birbach, O., U. Frese, and B. Bäuml (2011). “Realtime perception for
catching a flying ball with a mobile humanoid”. In: Proc. IEEE Intl.
Conf. Robotics and Automation (ICRA2011), May 9-13, Shanghai,

China. IEEE, pp. 5955–5962.

Birchfield, S. (1998). “Elliptical head tracking using intensity gradients
and color histograms”. In: Proceedings IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, (CVPR 1998),
pp. 232–237. DOI: 10.1109/CVPR.1998.698614.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secau-
cus, NJ, USA. ISBN: 0387310738.

Blomdell, A., G. Bolmsjö, T. Brogårdh, P. Cederberg, M. Isaksson, R.
Johansson, M. Haage, K. Nilsson, M. Olsson, T. Olsson, A. Roberts-
son, and J. Wang (2005). “Extending an industrial robot controller–

211



Bibliography

Implementation and applications of a fast open sensor interface”. IEEE
Robotics & Automation Magazine 12:3, pp. 85–94.

Blomdell, A., I. Dressler, K. Nilsson, A. Robertsson, and I. Dressler (2010).
“Flexible application development and high-performance motion con-
trol based on external sensing and reconfiguration of ABB industrial
robot controllers”. In: Proc. ICRA 2010 Workshop on Innovative Robot
Control Architectures for Demanding (Research) Applications. Anchor-
age, AK, pp. 62–66.

Borst, C., T. Wimböck, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias,
P. Giordano, R. Konietschke, W. Sepp, S. Fuchs, C. Rink, A. Albu-
Schäffer, and G. Hirzinger (2009). “Rollin’ justin - mobile platform
with variable base”. In: Robotics and Automation, 2009. ICRA ’09.
IEEE International Conference on, pp. 1597–1598. DOI: 10.1109/ROBOT.

2009.5152586.

Bouguet, J.-Y. (2010). Camera calibration toolbox for matlab. URL: http:

//www.vision.caltech.edu/bouguetj/calib_doc/.

Bruyninckx, H., T. Lefebvre, L. Mihaylova, E. Staffetti, J. De Schutter,
and J. Xiao (2001). “A roadmap for autonomous robotic assembly”.
In: Proc. Intl. Symp. Assembly and Task Planning. Fukuoka, Japan,
pp. 49–54.

Comaniciu, D. and P. Meer (1999). “Mean shift analysis and applications”.
In: The Proceedings of the Seventh IEEE International Conference on
Computer Vision, (ICCV 1999). Vol. 2, pp. 1197–1203. DOI: 10.1109/

ICCV.1999.790416.

Dahl, O. and L. Nielsen (1989). “Torque limited path following by on-
line trajectory time scaling”. In: Proceedings, IEEE International Con-
ference onRobotics and Automation (ICRA’89), 1122–1128 vol.2. DOI:
10.1109/ROBOT.1989.100131.

Dai, S., M. Yang, Y. Wu, and A. K. Katsaggelos (2006). “Tracking
motion-blurred targets in video”. In: Proc. Intl. Conf. Image Processing
(ICIP2006). Atlanta, Georgia, USA, pp. 2389–2392.

De Schutter, J., T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbeliën,
K. Claes, and H. Bruyninckx (2007). “Constraint-based task specifica-
tion and estimation for sensor-based robot systems in the presence of
geometric uncertainty”. Intl. J. Robotics Research 26:5, pp. 433–455.

Debrouwere, F., W. Van Loock, G. Pipeleers, Q. Tran Dinh, M. Diehl, J.
De Schutter, and J. Swevers (2013). “Optimal robot path following for
minimal time versus energy loss trade-off using sequential convex pro-
gramming”. In: Proc. IEEE International Conference on Mechatronics.
Venice, Italy, pp. 316–320.

212



Bibliography

Di Lello, E., T. De Laet, and H. Bruyninckx (2012). “Hierarchical dirichlet
process hidden markov models for abnormality detection in robotic
assembly”. In: Workshop on Bayesian Nonparametric Models (BNPM)
For Reliable Planning And Decision-Making Under Uncertainty (NIPS

2012). Lake Tahoe, USA.

Ding, T., M. Sznaier, and O. Camps (2007). “A rank minimization ap-
proach to fast dynamic event detection and track matching in video se-
quences”. In: 46th IEEE Conference on Decision and Control, pp. 4122–
4127. DOI: 10.1109/CDC.2007.4434324.

Douxchamps, D. (2012). libdc1394. URL: http://damien.douxchamps.net/

ieee1394/libdc1394/.

Du, H. and S. Nair (1999). “Modeling and compensation of low-velocity
friction with bounds”. IEEE Trans. Control Systems Technology 7:1,
pp. 110–121.

Ebner, M. (2007). Color Constancy. John Wiley & Sons, Chichester, Eng-
land. ISBN: 9780470058299.

Einhorn, E., C. Schröter, H.-J. Böhme, and H.-M. Gross (2007). “A hybrid
Kalman filter based algorithm for real-time visual obstacle detection”.
Proc. 52nd Intl. Scientific Colloquium (IWK) II, pp. 353–358.

Eom, K., I. Suh, W. Chung, and S. Oh (1998). “Disturbance observer
based force control of robot manipulator without force sensor”. In: Proc.
Intl. Conf. Robotics and Automation (ICRA1998). Leuven, Belgium,
pp. 3012–3017.

Erkorkmaz, K. (2004). Optimal trajectory generation and precision track-
ing control for multi-axis machines. PhD thesis. Department of Me-
chanical Engineering, University of British Columbia.

Forsyth, D. A. and J. Ponce (2002). Computer Vision: A Modern Approach.
Prentice Hall Professional Technical Reference. ISBN: 0130851981.

Fox, B. and K. Kempf (1985). “Opportunistic scheduling for robotic as-
sembly”. In: Proceedings. IEEE International Conference on Robotics
and Automation (ICRA’85). Vol. 2, pp. 880–889. DOI: 10.1109/ROBOT.

1985.1087274.

Frese, U., B. Baeuml, G. Schreiber, I. Schaefer, M. Haehnle, G. Hirzinger,
and S. Haidacher (2001). “Off-the-shelf vision for a robotic ball
catcher”. In: Proc. IEEE/RSJ Intl. Conf. Intelligent Robots and Sys-
tems (IROS2001), October 2001, Maui, pp. 1623–1629.

Geraerts, R. and M. H. Overmars (2002). “A comparative study of prob-
abilistic roadmap planners”. In: Proc. Workshop on the Algorithmic
Foundations of Robotics (WAFR’02), pp. 43–57.

213



Bibliography

Graustein, W. C. (1930). Homogeneous Cartesian Coordinates. Linear De-
pendence of Points and Lines. Ch. 3 in Introduction to Higher Geome-

try. Macmillan, New York, pp. 29–49.

Hagander, P. (1973). Operator Factorization and Other Aspects of the Anal-
ysis of Linear Systems. PhD thesis TFRT-1005. Department of Auto-
matic Control, Lund University, Sweden.

Harris, J. L. (1966). “Image evaluation and restoration”. J. Opt. Soc. Am.
56:5, pp. 569–570. DOI: 10.1364/JOSA.56.000569. URL: http://www.

opticsinfobase.org/abstract.cfm?URI=josa-56-5-569.

Haschke, R., E. Weitnauer, and H. Ritter (2008). “On-line planning of
time-optimal, jerk-limited trajectories”. In: IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS2008), pp. 3248–3253. DOI: 10.

1109/IROS.2008.4650924.

Hogan, N. (1985). “Impedance control: an approach to manipulation”.
ASME J. Dynamic Systems, Measurement, and Control 107, pp. 1–
24.

Hong, W. (1995). “Robotic catching and manipulation using active vision”.
In: Master’s thesis, Department of Mechanical Engineering, MIT.

Hove, B. and J. Slotine (1991). “Experiments in robotic catching”. In:
Proceedings of the 1991 American Control Conference (ACC’91). Vol. 1.
Boston, MA, USA, pp. 380–385.

Hyland, J. (2002). “An iterated-extended Kalman filter algorithm
for tracking surface and sub-surface targets”. In: OCEANS ’02
MTS/IEEE. Vol. 3. Biloxi, MS, USA, pp. 1283–1290.

JGrafchart (2013). URL: http://www.control.lth.se/Research/tools/

grafchart.html.

Jia, J., J. Sun, C.-K. Tang, and H.-Y. Shum (2006). “Drag-and-drop past-
ing”. In: ACM Transactions on Graphics (SIGGRAPH 2006). Boston,
Massachusetts, USA, pp. 631–636.

Jörg, S., J. Langwald, C. Natale, J. Stelter, and G. Hirzinger (2000). “Flex-
ible robot-assembly using a multi-sensory approach”. In: IEEE Intl.
Conf. Robotics and Automation (ICRA 2000). Vol. 4. San Francisco,
CA, USA, pp. 3687–3694.

JR3 (2013). URL: http://www.jr3.com.

Kailath, T., A. Sayed, and B. Hassibi (2000). “Linear estimation”. Prentice
Hall, Upper Saddle River, NJ, pp. 310–361.

Kalman, R. (1960). “A new approach to linear filtering and prediction
problems”. Transactions of the ASME–J. Basic Engineering 82:Series
D, pp. 35–45.

214



Bibliography

Khatib, O. (1987). “A unified approach for motion and force control of robot
manipulators: The operational space formulation”. IEEE J. Robotics
and Automation 3:1, pp. 43–53.

Kober, J., M. Glisson, and M. Mistry (2012). “Playing catch and juggling
with a humanoid robot”. In: Proc. IEEE-RAS Intl. Conf. Humanoid
Robots. Osaka, Japan.

Kock, S., T. Vittor, B. Matthias, H. Jerregård, M. Källman, I. Lundberg,
R. Mellander, and M. Hedelind (2011). “Robot concept for scalable,
flexible assembly automation: a technology study on a harmless dual-
armed robot”. In: Proc. IEEE Int. Symp. Assembly and Manufacturing
(ISAM2011). Tampere, Finland, pp. 1–5.

Kröger, T. and F. M. Wahl (2010). “On-line trajectory generation: Ba-
sic concepts for instantaneous reactions to unforeseen events”. IEEE
Trans. on Robotics 26:1, pp. 94–111.

Kröger, T., A. Tomiczek, and F. M. Wahl (2006). “Towards on-line trajec-
tory computation”. In: Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS2006). Beijing, China, pp. 736–
741.

LabComm (2013). URL: http://wiki.cs.lth.se/moin/LabComm.
Lalonde, J.-F., D. Hoiem, A. A. Efros, C. Rother, J. Winn, and A. Criminisi
(2007). “Photo clip art”. ACM Trans. Graph. 26:3. ISSN: 0730-0301. DOI:
10.1145/1276377.1276381. URL: http://doi.acm.org/10.1145/

1276377.1276381.
Land, E. H. (1983). “Recent advances in retinex theory and some impli-
cations for cortical computations: color vision and the natural image”.
Proc. National Acadmy of Sciences USA 80, pp. 5163–5169.

Lane, J. D. (1980). Assembly Automation 1:1, pp. 36–46.
Lavalle, S. M. and J. J. Kuffner (2000). “Rapidly-exploring random trees:
progress and prospects”. In: Donald, B. R. et al. (Eds.). Algorithmic
and Computational Robotics: New Directions. Wellesley, MA, pp. 293–
308.

Levin, A., D. Lischinski, and Y. Weiss (2008). “A closed-form solution to
natural image matting”. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 30:2, pp. 228–242. ISSN: 0162-8828. DOI: 10 .

1109/TPAMI.2007.1177.
Linderoth, M. (2008). Vision Based Tracker for Dart Catching Robot.
Master’s Thesis ISRN LUTFD2/TFRT--5830--SE. Department of Au-
tomatic Control, Lund University, Sweden. URL: http://www.control.

lth.se/Publication/5830.html.
Linderoth, M. (2009). Robot catching balls and darts. URL: http://www.

youtube.com/watch?v=Fxzh3pFr3Gs.

215



Bibliography

Linderoth, M. (2011). Robotic Work-Space Sensing and Control. Licenti-
ate Thesis ISRN LUTFD2/TFRT--3251--SE. Department of Automatic
Control, Lund University, Sweden. URL: http://www.control.lth.se/

Publication/linderoth2011lic.html.
Linderoth, M., A. Robertsson, K. Åström, and R. Johansson (2010). “Ob-
ject tracking with measurements from single or multiple cameras”.
In: Proc. International Conference on Robotics and Automation (ICRA
2010). Anchorage, AK, USA, pp. 4525–4530.

Lippiello, V. and F. Ruggiero (2012a). “3D monocular robotic ball catching
with an iterative trajectory estimation refinement”. In: Proc. IEEE
Intl. Conf. Robotics and Automation (ICRA 2012). Saint Paul, Min-
nesota, USA, pp. 3950–3955.

Lippiello, V. and F. Ruggiero (2012b). “Monocular eye-in-hand robotic ball
catching with parabolic motion estimation”. In: Preprints 10th IFAC
Intl. Symp. Robot Control (SYROCO’12). Dubrovnik, Croatia.

Lotto, B. (2011). Lotto Lab Studio, Illusions in colour perception. URL:
http://www.lottolab.org/articles/illusionsoflight.asp.

Lowe, D. G. (1999). “Object recognition from local scale-invariant fea-
tures”. In: Proceedings of the International Conference on Computer
Vision-Volume 2 - Volume 2 (ICCV ’99). Corfu, Greece, pp. 1150–1157.
ISBN: 0-7695-0164-8. URL: http : / / dl . acm . org /citation. cfm? id=

850924.851523.
Lu, J., E. Poon, and K. N. Plataniotis (2006). “Restoration of motion
blurred images”. In: Proc. IEEE Intl. Conf. Multimedia and Expo
(ICME 2006). Toronto, Ontario, Canada, pp. 1193–1196.

Lublinerman, R., M. Sznaier, and O. Camps (2006). “Dynamics based
robust motion segmentation”. In: Proceedings IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, (CVPR’06).
Vol. 1. New York, NY, USA, pp. 1176–1184.

Ma, Y., S. Soatto, J. Kosecka, and S. S. Sastry (2003). An Invitation to
3-D Vision: From Images to Geometric Models. Springer Verlag. ISBN:
0387008934.

Macfarlane, S. (2001). On-Line Smooth Trajectory Planning for Manipu-
lators. M.A.Sc. thesis. Dept. Mech. Eng., Univ. British Columbia, Van-
couver, Canada.

Maciejowski, J. (2002). Predictive Control with Constraints. Prentice Hall,
Pearson Education, England.

Mason, M. T. (1981). “Compliance and force control for computer con-
trolled manipulators”. IEEE Transactions on Systems, Man and Cy-
bernetics 11:6, pp. 418–432. ISSN: 0018-9472. DOI: 10.1109/TSMC.1981.

4308708.

216



Bibliography

Mattingley, J. and S. Boyd (2012). “CVXGEN: a code generator for embed-
ded convex optimization”. Optimization and Engineering 13:1, pp. 1–
27. URL: http://cvxgen.com/.

Möbius, F. (1827). Die Barycentrische Calcül, Reprinted 1967 in Gesam-
melte Werke, vol. 1, pp. 36–49. Dr. M. Saendig oHG, Wiesbaden, Ger-
many.

Morrow, J., B. Nelson, and P. Khosla (1995). “Vision and force driven
sensorimotor primitives for robotic assembly skills”. In: Proceedings.
1995 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS’95). Vol. 3, pp. 234–240. DOI: 10 . 1109 / IROS . 1995 .

525977.

Murakami, T., F. Yu, and K. Ohnishi (1993). “Torque Sensorless Con-
trol in Multidegree-of-Freedom Manipulator”. IEEE Trans. Industrial
Electronics 40:2, pp. 259–265.

Nägele, F., M. Naumann, and A. Verl (2012). “A framework for a fault
tolerant and learning robotic assembly system”. In: Proceedings of
ROBOTIK 2012 - 7th German Conference on Robotics. Munich, Ger-
many, pp. 434–439.

Ohishi, K. (1993). “Sensorless force control using H∞; acceleration con-
troller”. In: Proc. Asia-Pacific Workshop on Advances in Motion Con-
trol, pp. 13–18. DOI: 10.1109/APWAM.1993.316179.

Ohishi, K., M. Miyazaki, and M. Fujita (1992). “Hybrid control of force
and position without force sensor”. In: Proc. Int. Conf. Industrial Elec-
tronics, Control, Instrumentation, and Automation, Power Electronics

and Motion Control. San Diego, USA, pp. 670–675.

Olsson, H., K. Åström, C. Canudas de Wit, M. Gäfvert, and P. Lischinsky
(1998). “Friction models and friction compensation”. European Journal
of Control 4:3, pp. 176–195.

Perez, P., C. Hue, J. Vermaak, and M. Gangnet (2002). “Color-based proba-
bilistic tracking”. In: In Proc. European Conference on Computer Vision
(ECCV 2002). Copenhagen, Denmark, pp. 661–675.

Popovic, M. and A. Goldenberger (1998). “Modeling of friction using spec-
tral analysis”. IEEE Transactions on Robotics and Automation 14:1,
pp. 114–122.

Raibert, M. H. and J. J. Craig (1981). “Hybrid position/force control of
manipulators”. ASME Journal of Dynamic Systems, Measurement, and
Control 103, pp. 126–133.

Real-Time Workshop (2011). URL: http://www.mathworks.com/products/

simulink-coder/index.html.

217



Bibliography

Reid, D. (1979). “An algorithm for tracking multiple targets”. IEEE Trans-
actions on Automatic Control 24:6, pp. 843–854. ISSN: 0018-9286. DOI:
10.1109/TAC.1979.1102177.

Riley, M. and C. Atkeson (2000). Robot catching. URL: http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6087.

Rocco, P., G. Ferretti, and G. Magnani (1997). “Implicit Force Control for
Industrial Robots in Contact with Stiff Surfaces”. Automatica 33:11,
pp. 2041–2047.

Salari, V. and I. Sethi (1990). “Feature point correspondence in the pres-
ence of occlusion”. IEEE Transactions on Pattern Analysis and Machine
Intelligence 12:1, pp. 87–91. ISSN: 0162-8828. DOI: 10.1109/34.41387.

Schmidt, S. F. (1966). “Applications of state space methods to navigation
problems”. Advanced Control Systems 3. Ed. by C. T. Leondes, pp. 293–
340.

Schweitzer, H., J. W. Bell, and F. Wu (2002). “Very fast template match-
ing”. In: Proceedings of the 7th European Conference on Computer
Vision-Part IV (ECCV ’02). Copenhagen, Denmark, pp. 358–372. ISBN:
3-540-43748-7. URL: http://dl.acm.org/citation.cfm?id=645318.

649271.

Sezan, M. I. and A. M. Tekalp (1990). “Survey of recent developments in
digital image restoration”. Optical Engineering 29:5, pp. 393–404.

Shen, C., J. Kim, and H. Wang (2010). “Generalized kernel-based visual
tracking”. IEEE Trans. Circuits Syst. Video Techn. 20:1, pp. 119–130.

Simpson, J., C. Cook, and Z. Li (2002). “Sensorless force estimation for
robots with friction”. In: Proc. Australasian Conf. Robotics and Au-
tomation (ACRA 2002). Auckland, New Zealand, pp. 94–99.

Soriano, M., B. Martinkauppi, S. Huovinen, and M. Laaksonen (2000).
“Skin detection in video under changing illumination conditions.” In:
Proc. 15th Intl. Conf. Pattern Recognition (ICPR 2000). Barcelona,
Spain, pp. 839–842.

Spong, M. W., S. Hutchinson, and M. Vidyasagar (2006). Robot Modeling
and Control. John Wiley & Sons, Hoboken, NJ. ISBN: 0471649902.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2012). “Force
controlled robotic assembly without a force sensor”. In: Proc. Interna-
tional Conference on Robotics and Automation (ICRA 2012). St. Paul,
Minnesota, USA, pp. 1538–1543.

Stolt, A., M. Linderoth, A. Robertsson, and R. Johansson (2013). “Robotic
assembly of emergency stop buttons”. In: Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2013).
Tokyo, Japan.

218



Bibliography

Toshiba (2012). Sensor-less compliance control for assembly robots. URL:
http://www.toshiba-machine.co.jp/en/technology/tech_catalog/

e3.html.

Viola, P. and M. Jones (2001). “Robust real-time object detection”. Inter-
national Journal of Computer Vision 57:2, pp. 137–154.

Wang, C., L.-S. Ho, and D. J. Cannon (1998). “Heuristics for assembly
sequencing and relative magazine assignment for robotic assembly”.
Computers & Industrial Engineering 34:2, pp. 423–431. ISSN: 0360-
8352. DOI: http://dx.doi.org/10.1016/S0360-8352(97)00140-

X. URL: http : / / www . sciencedirect . com / science / article / pii /

S036083529700140X.

Weiner, L. B. (1981). “Kalman filter initialization with large initial un-
certainty and strong measurement nonlinearity”. Proc. Region 3 Conf.
and Exhibit, Huntsville, AL; United States, pp. 150–151.

Wu, Y., J. Cheng, J. Wang, and H. Lu (2009). “Real-time visual track-
ing via incremental covariance tensor learning”. In: IEEE 12th Inter-
national Conference on Computer Vision (ICCV 2009). Kyoto, Japan,
pp. 1631–1638.

Wu, Y., H. Ling, J. Yu, F. Li, X. Mei, and E. Cheng (2011). “Blurred target
tracking by blur-driven tracker”. In: Proceedings of the 2011 Interna-
tional Conference on Computer Vision (ICCV 2011). IEEE Computer
Society, Washington, DC, USA, pp. 1100–1107. ISBN: 978-1-4577-1101-
5. DOI: 10.1109/ICCV.2011.6126357. URL: http://dx.doi.org/10.

1109/ICCV.2011.6126357.

Xenomai (2013). URL: http://www.xenomai.org.

Yilmaz, A., O. Javed, and M. Shah (2006). “Object tracking: a survey”.
ACM Computing Surveys 38:4.

Yitzhaky, Y., R. Milberg, S. Yohaev, and N. S. Kopeika (1999). “Compari-
son of direct blind deconvolution methods for motion-blurred images”.
Appl. Opt. 38:20, pp. 4325–4332. DOI: 10.1364/AO.38.004325. URL:
http://ao.osa.org/abstract.cfm?URI=ao-38-20-4325.

219


