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Abstract

In this thesis, simulation of coupled dynamic models, denoted sub-systems,
is analyzed and described in a co-simulation context. This means that the
respective coupled systems contain their own internal integrator, hidden
from the coupling interface. Co-Simulation is an interesting and active
research field where industry is a driving force. The problems where co-
simulation is an interesting approach is two-fold. On one-hand, there is the
coupling of sub-systems between tools. Consider the case where tools use
different representation of the sub-systems and the problem presented by
the coupling of the two. On the other hand, there is the performance issue.
There is a potential performance increase for the overall system simulation
when using a tailored integrator for each sub-system compared to using a
general integrator for the monolithic system. The aim of this thesis is to
develop a testing framework for currently used co-simulation approaches
and to describe the state of the art in co-simulation. Additionally, the aim
is to be able to test the approaches on industrially relevant models and
academic test models.

Using co-simulation for simulation of coupled systems may result in sta-
bility problems depending on the approach used, and the intention here is to
describe when it occurs and how to handle it. The commonly used methods
use fixed step-size for determining when information between the models
are to be exchanged. A recent development for co-simulation of coupled
systems using a variable step-size method is described together with the
requirements for performing such a simulation.

Attaining the goals of the thesis has required a substantial effort in soft-
ware development to create a foundation in terms of a testing framework.
For gaining access to models from industry, the newly defined Functional
Mock-up Interface has been used and a tool for working with these type of
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models, called PyFMI, has been developed. Another part is access to inte-
grators, necessary for evaluating the impact of the internal integrator in the
sub-systems. A tool providing a unified high-level interface to various inte-
grators has been developed and is called Assimulo. The key component is
the algorithm for performing the co-simulation. It has been developed to be
easily extensible and to support the currently used co-simulation methods.

The developed framework has been proven to be successful in evaluating
co-simulation approaches on both academic test examples and on industri-
ally relevant models as will be shown in the thesis.



Popular Scientific
Description

In almost every field of science such as engineering, physics and economics
there are processes that can be modeled mathematically. By a mathematical
model of the process, further insight and a deeper understanding of the
behavior of a process can be given. In the industry there are economic
incentives for developing a mathematical model of a process and perform the
evaluation of the design virtually instead of building prototypes. Modifying
a virtual model is substantially easier and more cost effective than modifying
a prototype.

Consider a ball that is dropped from a height h0 under the influence of
the gravity g. This system can be described by the single equation,

ḧ = −g, h(t0) = h0, ḣ(t0) = 0 (1)

where ḧ is the acceleration of the ball. This type of equation is called
an Ordinary Differential Equation. From this equation it is possible to
calculate the height of the ball at a given time. It is even possible to solve
the equation analytically,

h(t) = h0 −
gt2

2 . (2)

Unfortunately, there are very few models that can be solved analytically
leaving the only option to compute an approximation of the model solution
using algorithms from scientific computing. For the industry, it is tremen-
dously important to have access to reliable algorithms which can be used
to calculate solutions for their models and to be able to trust the result.
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As the models grow in complexity and as multiple domains need to be
combined in the same model, problems arise. In a vehicle model there can be
electrical parts together with mechanical parts which are typically modeled
in different modeling software. To understand the vehicle properties these
two parts need to be coupled together and evaluated as a single unit.

Due to restrictions posed by modeling programs or due to the fact that
specialized algorithms are used, it may not always be possible to access the
model equations directly. Instead, it may only be possible to set inputs to
a model and after a certain time retrieve the outputs. In a co-simulation
approach, this is exactly the case, a complex model that is comprised by a
number of components without exposed equations. The question asked is
how to calculate the solution of the coupled complex models, and how to
develop reliable algorithms for which the result can be trusted.
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Chapter 1

Introduction

Designing large complex engineering system models is difficult and the de-
mand for these high fidelity models is ever increasing. A representative
system is that of a vehicle, which involves several engineering domains.
Typically a vehicle model involves mechanics for the dynamic behavior of
the chassis and wheels, electrical components for the engine and the safety
systems (brakes etc.) and also thermodynamics for the air conditioning.

The traditional approach where the component models were evaluated
and tested separately is no longer a valid option for the complex system
models. Instead, the fully coupled system model needs to be simulated
and evaluated as a single unit in order to take into account the interac-
tion between the components and fully investigate the complete dynamic
behavior.

There is a strong tradition among domain experts, guided also by the
availability, to use specialized modeling and simulation environments for
component models. These tools are also favored due to that they usually
offer larger libraries of components and features specific to the domain com-
pared to a multi-domain tool. Problems arise when trying to investigate a
coupled system model, which means that component models from various
tools needs to be coupled which is usually problematic as there is no stan-
dard way of coupling the components. The problem is not only that of
multi-domain modeling, it may also be that the know-how of a component
model needs to be protected. Thus, the problem is still how to connect
the component models into a monolithic simulation model and perform the
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2 CHAPTER 1. INTRODUCTION

necessary evaluations to compute the solution profiles. In Figure 1.1, a
typical situation for a system with different domains is shown where the
components are coupled together.

Hydraulics

Airconditioning

Engine

Figure 1.1: A schematic figure of a multi-domain coupled system.

Coupling the components together into a monolithic model can be per-
formed via two different approaches, strong-coupling and weak-coupling.
Given that the model exposes its internal dynamics, i.e. that it is possible
to directly evaluate the model equations, one can straightforward assemble
these equations which can in turn be solved by standard time integration
algorithms. This approach is commonly called strong-coupling. However, if
the model equations are not exposed but instead hidden behind an interface
with the only options to set the inputs and retrieve the outputs, see Figure
1.2, the strong-coupling is no longer possible. In these cases one resorts to
the weak-coupling where the separate models contain an internal integra-
tor and the information exchange, via inputs and outputs, to the connected
models is only performed at specified communication points. This approach
has several benefits as it allows tailored integrators for component models,
and also it allows for them to be run in parallel. Moreover, the component
models may have widely different time scales which can be exploited by the
internal integrator. This is evident by comparing electrical components to
multibody components. However, it also introduces difficulties in how the
information exchange should be performed in order for a stable simulation
of the weakly-coupled system.

In recent years, a new standard for exchanging dynamic system models
between modeling and simulation tools has been developed. The standard
was developed as part of the MODELISAR project with participants both
from industry with tool vendors and users, and from academia. The stan-
dard is called the Functional Mock-up Interface (FMI). The standard fills
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Hydraulics OutputsInputs

Figure 1.2: A schematic figure of an input / output model.

the gap where before there has been costly custom solutions for coupling
specific simulation environments, which was highlighted at the recent SAE
World Congress [35] . What is particularly exciting is the amount of atten-
tion the standard has received and the number of vendors that has adopted
the standard and implemented support for either importing models or ex-
porting models.

This thesis discusses simulation of weakly-coupled systems, i.e. co–
simulation, and is outlined as follows. In Chapter 1, an introduction to
co-simulation is given together with an overview of previous research on
co-simulation. In Chapter 2, the functional mock-up interface is introduced
which serves as a basis for the discussion of co-simulation. Chapter 3 dis-
cusses co-simulation in more detail with regard to the stability requirements,
i.e. what are the requirements on the algorithm and/or the model for a per-
forming a stable simulation? Moreover, error estimation in a co-simulation
context allowing for a variable step-size algorithm is discussed. Chapter
4 focus on the developed software and the developed software capabilities
which is the main focus of the thesis. The software is a key contribution and
necessary in order to evaluate, experiment and verify different co-simulation
approaches. By supporting various approaches within the same environ-
ment, a fair comparison is possible. The chapter presents the Assimulo
package for solving ordinary differential equations. PyFMI for working with
models following the FMI and finally the master algorithm for simulating
weakly-coupled systems. In Chapter 5, the developed software capabilities
is shown on examples. Chapter 6 summarizes the thesis and presents future
work.

1.1 What is Co-Simulation?
Co-Simulation is about how to simulate two or more dynamic systems which
are connected. The systems are described as discrete on the interface level,
meaning that the transition from a time Tn to a time Tn+1 is done internally
for each system. The solver used to make this transition is usually unknown
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in a co-simulation scenario. This means that domain specific integrators
can be used, which may have a superior performance when compared to a
general purpose integrator.

One separates between performing a global integration step (or macro-
step) and a local integration step (micro-step). A global integration step
is the transition of the system model from Tn to Tn+1 while the local in-
tegration steps, tn,m, are the steps taken by the internal solver in each
sub-system, Tn = tn,0 < tn,1 < . . . < tn,m = Tn+1.

As an example of a co-simulation scenario, consider the following equa-
tion,

ż = Az (1.1)

where A is a 2 × 2 matrix. Decoupling the system into two separate sub-
systems with the first being,

ẋ[1] = a11x
[1] + a12u

[1] (1.2a)
y[1] = x[1] (1.2b)

where x[1] is the state, u[1] is the input and y[1] are the output. The super-
script y[1] specifies the first sub-system. The second sub-system is similarly,

ẋ[2] = a22x
[2] + a21u

[2] (1.3a)
y[2] = x[2]. (1.3b)

In a co-simulation approach these two systems use their own internal in-
tegrator for solving the differential equation. The first could for instance
be solved with the Implicit Euler method while the second could be solved
with the Explicit Euler method. However, this is usually unknown and the
only interactions with other sub-systems are done through the inputs and
the outputs.

The interactions are specified via coupling equations which are in this
case,

u[1] = y[2] (1.4a)
u[2] = y[1]. (1.4b)

These coupling equations are in a sense "outside" the individual sub-systems.
The question is now how the decoupling impact the result and the stability
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of the overall system? Also, how should the exchange of information be-
tween the two systems be performed? By extrapolating the inputs using an
appropriate polynomial? By introducing an ordering so that some signals
are interpolated while some are extrapolated? Or something else entirely?

The most commonly used co-simulation method is to let the individual
models run in parallel and at predefined global time points exchange in-
formation. The inputs in between the global steps are kept constant, see
Figure 1.3.

𝑇𝑛 𝑇𝑛+1 𝑇𝑛+2

Sub-system 1 𝑡

𝑡Sub-system 2

𝑢 𝑢 𝑢

Figure 1.3: Schematic figure of two sub-systems that are run in parallel with
data exchange at predefined global time points.

An algorithm for determining the exchange of information, the type of
extrapolation/interpolation, the ordering and all information related to a
simulation of the coupled system is called a Master Algorithm.

More generally we consider N coupled systems of the type,

ẋ[i] = f [i](t, x[i], u[i]), i = 1, . . . , N (1.5a)
y[i] = g[i](t, x[i], u[i]), i = 1, . . . , N (1.5b)
u = c(y) (1.5c)

if g[i] is dependent on u[i], i.e. ( ∂g
[i]

∂u[i] 6= 0) we say that the sub-system is a
feed-through system, i.e. the output y[i] directly depends on the input u[i].
The function c determine the coupling between the systems.

Co-Simulation may also be referred to as modular simulation or sim-
ulation of weakly-coupled systems and the separate dynamic systems are
sometimes refereed to as slaves. In this thesis, we reserve the name sub-
system for a separate dynamic system and co-simulation for a simulation of
coupled dynamic systems.
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1.2 Previous Work

Dividing a set of equations into sub-systems and solving them separately
has been discussed for decades and dates back to the late 1970s where An-
drus [8] discussed solution of a set of equations divided into sub-systems of
"fast" components and "slow" components. The discussion centered around
the benefits and performance gains of using different time scales in the in-
tegrator for the components. These type of methods are called multi-rate
and a lot of research has been performed in this area. Gear and Wells [19],
for instance, discussed improvements for automatic step-size selection of
multi-rate methods for linear multistep methods.

The difference between multi-rate methods and methods for co-simulation
is that in the latter case, the equations are not exposed directly and that
the integrator responsible for solving the system is hidden and unknown. In
co-simulation, the sub-systems are essentially black boxes with inputs and
outputs.

In [15], an overview of co-simulation approaches are discussed. The par-
allel and staggered scheme are explained together with more sophisticated
schemes. The parallel scheme is basically to let the sub-systems simulate
the same global time-step, once all sub-systems are finished, exchange infor-
mation between them. Using this approach, the multi-core nature of todays
processors can easily be exploited for improving the simulation efficiency.
The staggered scheme on the other hand, requires an ordering, i.e. the
first sub-system is solved for a global time-step. Once completed, the next
sub-system is simulated over the same global time-step.

In [30, 31], co-simulation is discussed from the point of view of block
representation where the blocks contained the internal dynamics of a sub-
system, inaccessible from the outside. A block interacted with another block
via its inputs and via its outputs through coupling equations outside of the
blocks. The blocks where represented in a general state-space formulation,
see Equation 1.5a and 1.5b, which is widely used in control theory. The
coupling equations, Equation 1.5c, was in their case assumed to be linear,
u = Ly. The articles centered around stability issues and covered the cases
where there is direct feed-through and when there is not. Constraints on the
feed-through was highlighted in order to guarantee a stable simulation of
the coupled system. The articles by Kübler et al later served as a foundation
for the definition of the FMI standard for co-simulation [1].

The release of the FMI standard triggered a renewed interest in co-
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simulation, especially in industry. The potential of coupling state of the
art modeling tools using a standardized format and being able to utilize
each tools strength was met with much interest. In [4], it was shown that
the multi-domain environment SimulationX [27] and the multibody envi-
ronment SIMPACK, [5], can be coupled together using FMI components.
The application was to simulate a power-train of a heavy-duty truck where
parts was modeled independently in the separate tools and then coupled
together for analysis.

The interest from industry, regarding co-simulation, is not only triggered
by the coupling of the environments but also by the potential efficiency gain
of decoupling a large system model. This is exemplified in [25] where a
model of an engine is decoupled into sub-systems. By decoupling the chain
drive into a sub-system, an decrease of the simulation time by an order of
magnitude was achieved.

Research on the stability issues when using co-simulation has been active
in recent years. In [11], Arnold et al discussed stability of coupled differen-
tial algebraic equations and formulated a contractivity condition that must
be fulfilled in order to guarantee a stable error propagation. Stabilization
of these systems was further discussed in [9, 10] where the Jacobian infor-
mation was utilized for performing a stable integration. Another technique
proposed in [40] was based on applying the constraint equations in a differ-
ential algebraic equation to more than one sub-system.

The commonly used approach in industry is to use constant extrapola-
tion and manually tune the global integration step-size until the coupled
system produces "satisfactory" results. This is a costly and time consuming
approach but has been known to work in practice. Improving the situation
requires that an error estimation procedure is developed so that the step-size
can be automatically tuned according the local integration error. In [41, 39],
an error estimation procedure for coupled systems was proposed. The error
estimate was based on Richardson extrapolation and the assumption that
the sub-systems were integrated exactly. In an engineering setting, this can
be achieved by requiring higher accuracy on the sub-systems. The idea is
that a global step is performed twice with step-size H and H/2 following a
comparison of the two results.

Another technique used for co-simulation is the Transmission Line Mod-
eling (TLM) which introduces delays between the sub-systems in order to
decouple the problem. The delays that are introduced changes the models
and introduces errors, but on the other hand, this delay can usually be mo-
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tivated by physics and the error can be dealt with explicitly. In this thesis
TLM will not be covered, see [17].

1.3 Contributions
The contribution of this thesis are mainly that of building a solid foundation
with a developed software framework for experimenting and evaluating co-
simulation techniques. The software framework consists of three connected
programs that has been developed. The programs are,

• PyFMI

• Assimulo

• The Master Algorithm

PyFMI, which is a joint project at Modelon AB based on the freely available
FMI Library [3] and Assimulo are necessary tools for the evaluation of co-
simulation approaches. The first give access to models following the FMI
standard and thus models from a number of different tools. The second
give access to ODE solvers which can be used together with FMUs following
the model exchange standard to mimic a co-simulation FMU. This allows
for the evaluation of various ODE solvers in a co-simulation setting. The
master algorithm is the final tool that connects the mentioned programs
and is responsible for performing the actual co-simulation. The framework
developed will serve as an experimentation platform for further theoretical
research.

Apart from the software framework, co-simulation in general with focus
on stability, integration restart and error estimation is discussed. Specific
contributions,

• Analysis of the stability of the parallel co-simulation approach.

• Analysis of the requirements for an integration restart of linear mul-
tistep method.

• Analysis of an error estimation procedure.
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1.3.1 Publications
The thesis is based on the following publications.
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bench for Multibody Systems ODE and DAE Solvers". The Sec-
ond Joint International Conference on Multibody System Dynamics
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• C. Andersson, J. Åkesson, C. Führer and M. Gäfvert. "Import
and Export of Functional Mock-up Units in JModelica.org". In 8th
International Modelica Conference, 2011".

For the first publication, the author has contributed with software imple-
mentation of the workbench, the evaluation on test models together with
being primary responsible for drafting the manuscript. For the second pub-
lication, the author has contributed with software implementation for the
import of functional mock-up units and the evaluation of the same together
with being primary responsible for drafting the manuscript.

Other publications by the author.

• P. Grover and C. Andersson. "Optimized three-body gravity as-
sists and manifold transfers in end-to-end lunar mission design". 22nd
AAS/AIAA Space Flight Mechanics Meeting 2012.

• S. Gedda, C. Andersson, J. Åkesson and S. Diehl. "Derivative-
free Parameter Optimization of Functional Mock-up Units". In 9th
International Modelica Conference, 2012

For the first publication, the author has contributed with software imple-
mentation of optimization methods, modeling and calculation of the final
segment of the trajectory into the moon orbit. The author additionally
aided in writing of the manuscript. For the second publication, the author
has assisted in improving on the software implementation and in drafting
the manuscript.
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Chapter 2

The Functional Mock-up
Interface

Different simulation and modeling tools often use their own definition of
how a model is represented and how model data is stored. Complications
arise when trying to model parts in one tool and importing the resulting
model in another tool, or when trying to verify a result by using a different
simulation tool. FMI is a standard to provide a unified model execution
interface for exchanging dynamic system models between modeling tools
and simulation tools. The idea is that tools generate and exchange models
that adheres to the FMI specification. Such models are called Functional
Mock-up Units (FMUs), see Figure 2.1. This approach enables users to
create models in one modeling environment, connect them in a second and
finally simulate the complete system using a third simulation tool.

The generated models, FMUs, are distributed and shared as compressed
archives. They include either or both the source files for the model, allow-
ing a user full access to the internals, or a shared object file containing the
model information which is accessed through the FMI interface. The archive
additionally contains an XML file containing metadata of the model, such
as the sizes of the dynamic system and the names of the variables, parame-
ters, constants and inputs. There can also be additional information in the
archive, which does not impact a simulation of the model, but which may
be of interest to distribute with the FMU, for example documentation.

FMI was developed in a European project, MODELISAR, focused on

11



12 CHAPTER 2. THE FUNCTIONAL MOCK-UP INTERFACE

Dymola

JModelica.org

SIMPACK

SimulationX

Functional 
Mock-up 
Interface

Functional Mock-up Unit

Figure 2.1: Export of Functional Mock-up Units.

improving the design of systems and of embedded software in vehicles. The
standard is now maintained and developed by the Modelica Association.

Figure 2.2: Functional Mock-up Interface1.

2.1 FMI 1.0
FMI 1.0 consists of two specifications, one for model exchange [2] and one
for co-simulation [1].

2.1.0.1 Model Exchange

For model exchange, the standard describes an interface for discontinuous
ordinary differential equations, with means to set the continuous states and

1 c©Modelica Association
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time as well as evaluating the model equations, i.e. the right-hand-side, and
specifying inputs.

The standard describes a model as,

ẋ = f(t, x, u; d) (2.1)

where t is the time, x are the continuous states, u are the inputs and d are
the discrete variables that are kept constant between events. Additionally,
the standard supports three kinds of events which can impact the model
behavior. The three events are

• State Events
These events are dependent on the state solution profiles and thus not
known a prior. The model provides a set of event indicators that the
integrator monitors during the integration process. If one of the event
indicators switches domain, there is a state event. The integrator is
then responsible for finding the time when the event occurred.

• Time Events
These events on the other hand are known a prior, meaning that
for each simulation segment it is known when the time event occur
and thus this time is set as the simulation end time for that segment.
Typically it can be that after a certain elapsed time in the integration,
a force is applied on the model.

• Step Events
These last type of events are events that typically do not influence
the model behavior, instead they are events to ease the numerical
integration. For instance it can be a change of the continuous states in
the model as the current states are no longer appropriate numerically.

Simulating a model exchange FMU requires that an external integrator
is connected to the FMI model, see Figure 2.3.

2.1.0.2 Co-Simulation

For co-simulation, the standard rather describes a discrete interface to the
underlying dynamic model, i.e. given the current internal state, input un
and time Tn of the model, return the outputs, yn+1, at a time Tn + H =
Tn+1.

yn+1 = Φ(Tn, un) (2.2)
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DLL XML

FMUTool

SolverSolver

Figure 2.3: A model exchange FMU and the connection to a tool for simulation.
Note that the solver is outside of the FMU.

The advancement of the states and time are completely hidden for the mas-
ter algorithm and is also not specified by the standard, see Figure 2.4. This

DLL XML

FMUTool

Solver

Figure 2.4: A co-simulation FMU and the connection to a tool for simulation.
Note that the solver is inside the FMU.

allows for specialized solvers to be used for the particular sub-system at
hand which may give an increased performance and a more stable simula-
tion. In FMI, advancing the solution to the next communcation point is
performed using the do_step method. At a communcation point, values
inside the model can be retrieved and inputs be set. There is additionally
a capability flag that determines if higher order derivatives may be set for
the inputs. These are represented by a vector,[

du

dt
(Tn), d

2u

dt2
(Tn), d

3u

dt3
(Tn), . . . , d

ku

dtk
(Tn)

]
(2.3)

and the input is evaluated during the next global integration step as,

u(t) = u(Tn) +
k∑
i=1

1
i!
diu

dti
(t− Tn)i, t ∈ [Tn, Tn+1]. (2.4)

2.1.1 Reception
FMI 1.0 for model exchange was the first release of the standard and was
released in January 2010 and has since then received a significant amount of
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attention among vendors and users. There are currently 34 tools that sup-
port or plan to support FMI. Examples include the commercial products
Dymola [42] and Simpack [5] as well as the open-source platform JMod-
elica.org [37]. The large number of tool vendors that have adopted the
standard shows that there is a real and pressing need to be able to export
and import dynamic system models between existing tools and also to be
able to develop custom simulation environments.

2.2 FMI 2.0
The demand for accomplishing more with the standard triggered the de-
velopment of FMI 2.0. One feature requested was the ability to get the
directional derivatives and another an improved interface for restoring the
model state completely to a previous time point. Both of these features are
included in FMI 2.0.

The added feature of providing the directional derivatives give the user
the ability to calculate, for model exchange, the directional derivatives at a
specific time point. For co-simulation it give the user the ability to calculate
the directional derivatives at a specific communication point. For model ex-
change it is particularly useful when using an implicit method for simulating
the FMU. Implicit methods require the Jacobian in order to advance the
solution,

J = ∂f

∂x
. (2.5)

The Jacobian can be approximated using finite differences, however, the
ability to provide an analytical or one generated by automatic differentiation
may give an increased performance. For co-simulation, understanding how,
if any, the direct feed-through terms influence the outputs is important.
Using the directional derivatives, we can calculate the partial derivative of
the outputs, g, with respect to the inputs and use this information in a
master algorithm,

D = ∂g(t, x, u)
∂u

. (2.6)

The directional derivatives is an optional feature in the standard.
The other important change to the standard is the ability to store a

complete model state, for co-simulation it includes the internal solver, and
the ability to restore a previous stored state. This is useful for both model
exchange and co-simulation. In co-simulation there is a demand for variable
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step-size algorithms when simulating coupled co-simulation FMUs. In order
to adapt the step-size, an error estimate is needed which requires in one way
or another that the same global step is performed more than once. This in
turn requires that we are able to go back in time and with this feature, it is
possible. Another use-case, for both model exchange and co-simulation, is
when a model contains a transient requiring a substantial amount of work
and the interest is after the transient has settled. In this case, the model
can be simulated past the transient once and the model state be stored. For
each experiment, the model is simply restored to the stored state.

The specification for co-simulation and model exchange is also intended
to be merged into a uniformed specification. This will simplify both the
implementation for export of FMUs and also import of FMUs. The type of
the FMU is instead defined by a capability flag in the XML description.

In addition there has been numerous changes and clarifications to the
specification for problems and inconsistencies detected by vendors and users
alike. An overview of the specification can be found in [12].



Chapter 3

Co-Simulation

This chapter gives an overview of co-simulation and the different approaches
used. The intention is to discuss the stability in regards to the parallel
approach and to show when and why stability problems may occur when
performing co-simulation. The final section is dedicated to discussing error
estimation and integration restart which are necessary in order to be able
to perform a variable step-size integration of the coupled system.

3.1 Approaches
The classical approaches in co-simulation is the parallel setup, Section 3.1.1,
and the serial setup, Section 3.1.2. More complex setups have been dis-
cussed, for example in [15], but they will not be considered here.

3.1.1 Parallel
In a parallel approach, the sub-systems are all treated in parallel and the
inputs/outputs are extrapolated from the previous global time-steps. A
major benefit of this approach is its obvious parallelism where a global time-
step is performed simultaneously for all the sub-systems. This approach
bears similarities with the Jacobi iteration for linear equations and is also
referred to as a Jacobi-like approach. In Figure 3.1 an overview of the
scheme is shown.

17
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Figure 3.1: Overview of Jacobi.

3.1.2 Staggered
In a staggered approach, the sub-systems are ordered and for a global time-
step simulated sequentially. If an input to sub-system i belongs to a sub-
system that has already been solved for the current global time-step, this
input is interpolated. If it does not belong to a sub-system that has already
been solved, the input is instead extrapolated from the previous global
time-step. A drawback of this approach is that the sub-systems are solved
sequentially and additionally the question of how the sub-systems should be
ordered arises. However, this approach may give a more stable simulation
if the ordering is done in an appropriate way. As the parallel approach
bears similarities with the Jacobi iteration, the staggered approach is similar
to the Gauss-Seidel iteration for linear equations and is in the same way
referred to as a Gauss-Seidel-like approach. In Figure 3.2 an overview of
the scheme is shown.

Figure 3.2: Overview of Gauss-Seidel.
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3.2 Stability Analysis

In the analysis of co-simulation one is interested in how the coupling effect
the overall simulation with regard to stability and accuracy. In this section
we focus on the stability issues that may be influenced, depending on the
simulation approach. In the analysis we focus on the Jacobi method for the
overall simulation. As it is the coupling that is of interest we assume that
the sub-systems are solved exactly and only study how the coupling impacts
the simulation. In practice this means that the sub-systems are solved with
higher accuracy as to not influence the stability or error estimation of the
coupled system.

The aim in this section is to determine a propagation matrix Ψ(H) which
advances the solution using old known values of the states and outputs,

[xn+1, yn+1, . . . , yn+1−k]T = Ψ(H)[xn, yn, . . . , yn−k]T. (3.1)

Depending on the co-simulation approach, this matrix will have different
properties which will influence the stability. The history, i.e. the number of
known values of the outputs used in advancing the solution is determined
by the parameter k, which in turn is dependent on the approach used. In
order to prove stability we have to check the spectral radius of Ψ(H),

ρ(Ψ(H)) ≤ 1 (3.2)

We have in case of multiple eigenvalues 1 to ensure that their algebraic
and geometric multiplicity is the same. A minimal requirement is that
Equation 3.2 holds at least for H = 0. Classically this separates stability
of the discretization method from the stability of the problem. This leads
to the notion of zero stable methods. All methods we use in this thesis
are zero stable but in contrast to the classical case we will see, that in the
co-simulation context the problem and in particular the feed-trough terms
matter even in the case H = 0. So zero stability of a method is not sufficient
to guarantee stability for H = 0. We have to set up conditions on the feed
through term as well. We follow the lines of Kübler [31] in the derivation
of the conditions.

In the analysis we consider N coupled linear systems with a linear cou-
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pling,

ẋ[i] = A[i]x[i] +B[i]u[i], i = 1, . . . , N (3.3a)
y[i] = C [i]x[i] +D[i]u[i], i = 1, . . . , N (3.3b)
u = Ly (3.3c)

the connection between the system is determined by the coupling matrix L,
which maps the outputs y to the inputs u. For convenience we write,

A =


A[1] · · · 0
...

. . .
...

0 · · · A[N ]

 , B =


B[1] · · · 0
...

. . .
...

0 · · · B[N ]



C =


C [1] · · · 0
...

. . .
...

0 · · · C [N ]

 , D =


D[1] · · · 0
...

. . .
...

0 · · · D[N ]


where A, B, C and D are block diagonal matrices and Equation 3.3 simpli-
fies to,

ẋ = Ax+Bu (3.4a)
y = Cx+Du (3.4b)
u = Ly (3.4c)

The monolithic system can additionally be simplified to

ẋ = (A+BL(I −DL)−1C)x (3.5)

where (I − DL) is assumed to be non-singular so that Equation 3.4 is an
index one system with y and u being the algebraic variables.

Now, consider that each sub-system in Equation 3.3a is solved exactly,
we get for Equation 3.4a,

Φ(xn, un) =
∫ Tn+1

Tn

eA(Tn+1−τ)Bu(τ)dτ + eA(Tn+1−Tn)x(Tn) (3.6)

where we have used the definition for the matrix exponential.
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Definition 3.2.1 (Matrix exponential). The exponential of a square matrix
is defined as,

eA =
∞∑
i=0

1
i!A

i.

The algorithm proceeds by first solving for the states xn+1 and then
solving the outputs yn+1 together with the inputs un+1 we get,

xn+1 = Φ(xn, un) (3.7a)
yn+1 = Cxn+1 +Dun+1 (3.7b)
un+1 = Lyn+1 (3.7c)

Note that this requires that we are able to solve Equation 3.7b and Equation
3.7c together and therefor it is an implicit method. However, in a co-
simulation framework this may not always be possible. In the general case,

y[i] = g[i](t, x[i], u[i]), i = 1, . . . , N (3.8a)
u = c(y) (3.8b)

an iteration on the output and input variables should be performed in order
to solve y[i] and u together.

Going back to Equation 3.7 and by eliminating u we get,

xn+1 = Φ(xn, Lyn) (3.9a)
yn+1 = (I −DL)−1Cxn+1 (3.9b)

which is the algorithm we will investigate.
The exact solution for the states in [Tn, t] is given by,

x(t) =
∫ t

Tn

eA(t−τ)BLy(τ)dτ + eA(t−Tn)x(Tn). (3.10)

In the next step, the solution is approximated using constant extrapolation
for the inputs, i.e,

y(τ) := y(Tn), τ ∈ [Tn, Tn+1]. (3.11)
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Denoting the numerical approximation of x(Tn) as xn we get the full ap-
proximation for a global step as,

xn+1 = Φ(xn, Lyn) (3.12a)

=
∫ Tn+1

Tn

eA(Tn+1−τ)dτBLyn + eA(Tn+1−Tn)xn (3.12b)

= A−1(eAH − I)BLyn + eAHxn (3.12c)

where H is the global step-size which we assume to be the same for all steps.
Together with yn+1 = (I −DL)−1Cxn+1 we finally get,[

I 0
−C I −DL

] [
xn+1
yn+1

]
=
[
eAH A−1(eAH − I)BL

0 0

] [
xn
yn

]
(3.13)[

xn+1
yn+1

]
=
[

eAH A−1(eAH − I)BL
(I −DL)−1CeAH (I −DL)−1CA−1(eAH − I)BL

] [
xn
yn

]
.

(3.14)

Fixing T = nH,

H → 0 =⇒
[
xn+1
yn+1

]
=
[

I 0
(I −DL)−1C 0

] [
xn
yn

]
(3.15)

and the eigenvalues are,

λ1,...,k = 1, λk+1,...,k+l = 0 (3.16)

where k are the total number of states and l are the total number of outputs.
Alternatively to Equation 3.7, often a formulation explicit in u is used

for co-simulation,

xn+1 = Φ(xn, un) (3.17a)
yn+1 = Cxn+1 +Dun (3.17b)
un+1 = Lyn+1. (3.17c)

Note that while Equation 3.7b and 3.7c are only solvable for yn+1 in case of
det(I −DL) 6= 0, the Equations 3.17b,c has always a solution. For D = 0,
the two algorithms are identical, however when D 6= 0 which is the case if
any sub-system has feed-through, the stability and convergence depends on
this coupling.
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As before, eliminating the inputs u,

xn+1 = Φ(xn, Lyn) (3.18a)
yn+1 = Cxn+1 +DLyn. (3.18b)

A global step for the states is determined by the same approach as in Equa-
tion 3.12,

xn+1 = A−1(eAH − I)BLyn + eAHxn (3.19)

inserting this into Equation 3.18b,

yn+1 = CA−1(eAH − I)BLyn + CeAHxn +DLyn (3.20)
= (CA−1(eAH − I)BL+DL)yn + CeAHxn. (3.21)

A global step is then calculated as,[
xn+1
yn+1

]
=
[

eAH A−1(eAH − I)BL
CeAH CA−1(eAH − I)BL+DL

] [
xn
yn

]
. (3.22)

Now, fixing T = nH,

H → 0 =⇒
[
xn+1
yn+1

]
=
[
I 0
C DL

] [
xn
yn

]
(3.23)

and the eigenvalues are,

λ1,...,k = 1, λk+1,...,k+l = eig(DL). (3.24)

where k are the total number of states and l are the total number of outputs.
For stability, we require that the eigenvalues of DL is less or equal to one,
ρ(DL) ≤ 1 and those equal to one being simple.

Example 3.2.1 (Linear Stability Example). Consider a linear coupled sys-
tem of two sub-systems which both consists of one state, x, one input u and
one output y. The coupling is determined by the values of two parameters,
d[1] and d[2]. By setting both to zero we end up with a fully decoupled system.
System one is determined by,

ẋ[1] = −x[1] + u[1] (3.25a)
y[1] = x[1] + d[1]u[1] (3.25b)
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and system two defined by,

ẋ[2] = −x[2] + u[2] (3.26a)
y[2] = x[2] + d[2]u[2]. (3.26b)

The coupling is determined by,[
u[1]

u[2]

]
=
[
0 1
1 0

]
︸ ︷︷ ︸

L

[
y[1]

y[2]

]
. (3.27)

Discretizing the coupled system using constant extrapolation for the signals
as described by Equation 3.18, and by letting H → 0 we obtain,[

y
[1]
n+1
y

[2]
n+1

]
=
[
1 0
0 1

]
︸ ︷︷ ︸

C

[
x

[1]
n+1
x

[2]
n+1

]
+
[
d[1] 0
0 d[2]

]
︸ ︷︷ ︸

D

[
0 1
1 0

]
︸ ︷︷ ︸

L

[
y

[1]
n

y
[2]
n

]
(3.28)

The coupled system is stable if the spectral radius ρ(DL) ≤ 1. The
eigenvalues are,

λ1,2 = ±
√
d[1]d[2] (3.29)

In Figure 3.3 simulations using the Jacobi method and using constant ex-
trapolation for the inputs with different values on the parameters d[1] and
d[2] are shown. As can be seen, the simulations are stable if ρ(DL) ≤ 1
and unstable for ρ(DL) > 1. In Figure 3.4, the same coupled system is
simulated using Equation 3.9, and as can be seen from the figure, there is
no problem related to the stability.

In this section, we have used constant extrapolation for the inputs and
defined the cases where we have zero-stability. Changing the extrapolation
to use a higher order polynomial, when do we have zero-stability in these
cases? In Figure 3.5, Example 3.2.1 where simulated using constant, linear,

un+1 = un +H
(un − un−1

H

)
(3.30)

and quadratic extrapolation,

un+1 = un +H
(un − un−1

H

)
+ H2

2

(un − 2un−1 + un−2

H2

)
. (3.31)
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Figure 3.3: Result of simulating Model 3.25 and Model 3.26 in parallel using
Equation 3.18 and for varying values on d1 and d2.

where old values was used in the calculation of the output variables. As can
be seen from the figure, the stability is affected by the extrapolation order.
The question is how the requirement for a zero-stable integration changes
with the extrapolation order.

3.2.1 Linear Extrapolation
Equation 3.17 is based on the assumption that constant extrapolation was
used in-between the global time-steps. If we instead assume linear extrap-
olation (Equation 3.30) we find that,

xn+1 = Φ(xn, un, un−1) (3.32a)

yn+1 = Cxn+1 +D
(
un +H

(un − un−1

H

))
(3.32b)

un+1 = Lyn+1 (3.32c)

eliminating u,

xn+1 = Φ(xn, Lyn, Lyn−1) (3.33a)
yn+1 = Cxn+1 +D

(
2Lyn − Lyn−1

)
. (3.33b)
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Figure 3.4: Result of simulating Model 3.25 and Model 3.26 in parallel using
Equation 3.9 and for varying values on d1 and d2.

Still assuming that the states are solved exactly in each sub-system,

x(t) =
∫ t

Tn

eA(t−τ)BLy(τ)dτ + eA(Tn−t)x(Tn) (3.34)

and using the linear extrapolation we find for the states,

xn+1 = Φ(xn, Lyn, Lyn−1) (3.35a)

=
∫ Tn+1

Tn

eA(Tn+1−τ)BL
(
yn + (τ − Tn)

(yn − yn−1

H

))
dτ (3.35b)

+ eA(Tn+1−Tn)xn (3.35c)
=
[
τ̄ = τ − Tn

]
(3.35d)

=
∫ H

0
eA(H−τ̄)BL

(
yn + τ̄

(yn − yn−1

H

))
dτ̄ (3.35e)

+ eA(Tn+1−Tn)xn (3.35f)
= c1yn + c2

(
yn − yn−1

)
+ eAHxn (3.35g)

= (c1 + c2)yn − c2yn−1 + eAHxn (3.35h)
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Figure 3.5: Result of simulating Model 3.25 and Model 3.26 in parallel using
constant, linear and quadratic extrapolation and using old values in the calculation
of the output variables.

where,

c1 = A−1(eAH − I)BL (3.36)
c2 = A−2(eAH − I −Ah)BLH−1. (3.37)

For the outputs we get,

yn+1 = Cxn+1 + 2DLyn −DLyn−1 (3.38a)
= C(c1 + c2)yn − Cc2yn−1 + CeAHxn (3.38b)

+ 2DLyn −DLyn−1 (3.38c)
= (Cc1 + Cc2 + 2DL)yn (3.38d)

+ (−Cc2 −DL)yn−1 (3.38e)
+ CeAHxn. (3.38f)

The resulting global step is performed as, xn+1
yn+1
yn

 =

 eAH c1 + c2 −c2
CeAH C(c1 + c2) + 2DL −Cc2 −DL

0 I 0

 xn
yn
yn−1


(3.39)
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Using this approach, what is the requirements for the method to be stable?
Fixing T = nH,

H → 0 =⇒
[
c1 = 0
c2 = 0

]
(3.40)

we get,  xn+1
yn+1
yn

 =

 I 0 0
C 2DL −DL
0 I 0

 xn
yn
yn−1

 . (3.41)

The eigenvalues are,

λ1,...,k = 1, λk+1,...,k+2l = eig
([

2DL −DL
I 0

])
(3.42)

where k are the total number of states and l are the total number of outputs.
For stability, the requirement is that |λk+1,...,k+2l| ≤ 1 and those being equal
to one are simple.

If we look again at the consistent approach, Equation 3.9, where the
output equations and the coupling equations are solved, but this time with
linear extrapolation,

xn+1 = Φ(xn, Lyn, Lyn−1) (3.43a)
yn+1 = (I −DL)−1Cxn+1. (3.43b)

The states are calculated as Equation 3.35 and inserting this into Equation
3.43b,

yn+1 = (I −DL)−1C((c1 + c2)yn − c2yn−1 + eAhxn) (3.44)

and a global step is calculated with [c3 = (I −DL)−1C] as, xn+1
yn+1
yn

 =

 eAH c1 + c2 −c2
c3e

Ah c3(c1 + c2) −c3c2
0 I 0

 xn
yn
yn−1

 (3.45)

Fixing T = nH,

H → 0 =⇒
[
c1 = 0
c2 = 0

]
(3.46)
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and,  xn+1
yn+1
yn

 =

 I 0 0
(I −DL)−1C 0 0

0 I 0

 xn
yn
yn−1

 (3.47)

with the eigenvalues,

λ1,...,k = 1, λk+1,...,k+2l = 0 (3.48)

where k are the total number of states and l are the total number of outputs.
In this case we have stability.

In Figure 3.6 the regions for which the inconsistent approaches are stable
are shown for constant, linear and quadratic extrapolation. The require-
ments for quadratic extrapolation can be found straightforward from above.
In Figure 3.7 and in Figure 3.8, result is shown for simulating Example 3.2.1
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Figure 3.6: Regions for which the inconsistent approaches are convergent in
terms of ρ(DL) using different extrapolation approaches.

using linear and quadratic extrapolation respectively with the inconsistent
approach.
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Figure 3.7: Result of simulating Model 3.25 and Model 3.26 in parallel using
linear extrapolation and for varying values on d1 and d2.

3.3 Variable Step-Size Integrators
In order to develop an efficient and robust simulation method, a key compo-
nent is the ability to vary the step-size depending on the local behavior. If
the local behavior is "slowly changing" we may use a larger step-size as the
simulation method better approximates the solution. If the local behavior
is "rapidly changing" we want to use a smaller step-size. A requirement for
varying the step-size is the ability to estimate the error. How this is done
depends on the simulation method. Another important component is the
ability to reject an integration step and redo the step with different options
which is typically done in the case when an estimated error is larger then a
user defined tolerance.

3.3.1 Restart of Integration
Creating error estimators in a co-simulation environment requires that the
global time-step Tn+H → Tn+1 is performed more than once with different
options. In order to be able to perform a global time-step multiple times
the possibility to store the current solver state is required. Note, that
for a global time-step, multiple local time-steps may have been performed,
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Figure 3.8: Result of simulating Model 3.25 and Model 3.26 in parallel using
quadratic extrapolation and for varying values on d1 and d2.

discarding possible history of the internal solver already. It should also be
noted that applying the stored state to the solver again is not the same as
re-initializing the solver. The aim is here that, in the case for variable step-
size, variable-order multistep methods to store the complete set of step-size
history and order history etc, which will not result in the same simulation
as if one simply re-initialize the solver with a blank history.

Example 3.3.1 (The Van der Pol Oscillator). The Van der Pol oscillator
is given by the equations,

ẋ1 = x2, x1(t0) = 2 (3.49a)
ẋ2 = 106((1− x2

1)x2 − x1), x2(t0) = −0.6. (3.49b)

The intention is to simulate the problem using CVODE from t0 = 0 →
t1 = 0.5. At t1, the simulation is interrupted and the solver state is stored.
The simulation is then continued until t2 = 0.75. The calculated solution
is compared with a simulation where the solver state is restored at t1 and
with a simulation where the solver is re-initialized at t1. In Figure 3.9, the
result is shown where one clearly sees that re-initializing a solver produces
different result as compared to applying a stored solver state. Comparing
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the number of function evaluations, we find that for the restored and the
continued simulation the number of function evaluations was 268 while for
the re-initialized simulation, 330.
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Figure 3.9: Step-size history comparison for when applying a stored solver state
at t1 = 0.5 with re-initializing the same solver at t1. Note that the baseline overlaps
the restart line.

For explicit fixed step-size one-step methods such as Explicit Euler, stor-
ing the solver state is trivial. Explicit Euler does not have any history or
other internal settings so the solver state is simply the problem states xi.
However, simply looking at Implicit Euler things become more tricky, as
it involves solving a nonlinear system with possibly Jacobian information
that may or may not need to be stored depending on the approach. In
a state-of-the art BDF code, such as CVODE [23], storing a solver state
becomes increasingly complex.

In CVODE which is a variable-order variable step-size integrator, there
are heuristics for changing the order, updating the Jacobian and chang-
ing the step-size. Throughout the integration, the order of the method is
continuously evaluated for possible order increase or order decrease with
heuristics for determining if it is allowed or not. For instance, have enough
steps been performed on the current order for an order increase? All this
needs to be taken into account when storing the solver status.
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None of the currently most used solvers such as CVODE, DASSL [36]
and RADAU5 [21] provide this feature by default. The information neces-
sary is usually located in an internal memory, not accessible to the user.

In case of discontinuous problems, storing only the solver state is not
enough. For a discontinuous problem, information about the discrete vari-
ables that determine the mode of "operation" or which influence the behav-
ior of the problem need also to be stored. These variables are typically not
part of the continuous solution found by the solver but they influence the
behavior through the events.

3.3.1.1 CVODE

Storing the solver state of an advanced simulation code like CVODE is a
complex task. This section is intended as a guide through the algorithmic
parts of CVODE where the necessary information for storing the solver state
is highlighted. In addition to the algorithmic information needed there are
also heuristics that need to be taken into consideration.

CVODE implements multistep methods for solving an ordinary differ-
ential equation,

q∑
i=0

αn,iyn−i + hn

q∑
i=0

βn,if(tn−i, yn−i) = 0 (3.50)

where q determines the number of steps in the formula. CVODE supports
both an Adams-Moulton method for non-stiff problems with q varying be-
tween 1 and 12. For stiff problems, a BDF method in fixed leading coefficient
form is implemented with q varying between 1 and 5. The coefficients α
and β determine the method and they are additionally dependent on the
step-size history and order.

As CVODE implements multistep methods, access to the solution his-
tory is needed during the integration. The solution history is stored as a
Nordsieck history array,

zn−1 =
[
yn−1, hẏn−1, . . . ,

hqy
(q)
n−1
q!

]
. (3.51)

From the solution history zn−1, an prediction to zn is calculated as,

zn(0) = zn−1A(q) (3.52)
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where A(q) is a matrix with Pascal’s triangle in its lower left part. The
correction to zn is performed as,

zn = zn(0) + len, l = [l0, . . . , lq] (3.53)

where l is depends on the step-size history and the order. The correction
vector e is,

en = yn − yn(0). (3.54)
What is left is calculating the solution yn. Using Equation 3.50 an equation
for yn is found, rearranging, the resulting equation is,

G(yn) = 0 (3.55)

which can be solved by either functional iteration or Newton iteration. In
case of Newton iteration,

Myn(m+1) −Myn(m) = G(yn(m)), M ≈ I − γ ∂f
∂y

γ = hnβn,0. (3.56)

where m is the iteration counter and yn is the finally accepted iteration
result.

In a variable step-size method, the error is estimated at every step and
used for determining step-size changes and order changes. The local trun-
cation error estimate (LTE) is calculated as,

LTEq = Cqen (3.57)

where Cq depends on the step-size history. The error is additionally esti-
mated for the corresponding q − 1 and q + 1 step methods as,

LTEq−1 = Cq−1en (3.58)
LTEq+1 = Cq+1en (3.59)

where Cq−1 depends on the step-size history while Cq+1 depends on the
step-size history and the previous correction vector en+1

When performing order changes, the history array needs to be updated
accordingly. When considering an order change, either q − 1 or q + 1, the
history array zn is updated as,

z∗n =
{

z̄n + hqy(q)
n

q! d for q − 1
z̃n + enc for q + 1

(3.60)
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where z̄n is the history array without the last column and z̃n is the history
array appended by a zero valued column. The coefficient vector c is depen-
dent on the step-size history and the correction vector en while d is only
dependent on the step-size history. If the step-size is changed by a factor
η, h′ = ηh the solution history is updated as,

z∗n = zndiag[1, η, . . . , ηq] (3.61)

The new order and step-size is set according to maximize the length of
the next step.

Summarizing the algorithmic requirements for storing the solver state,

• The Nordsieck history vector, zn−1.

• The step-size history τ from which l, c and d can be calculated.

• The current order q.

• The step-size to be tried on the next step, h.

• The calculated correction vector, en

In an advanced solver such as CVODE there are control parameters
included for improving the robustness. An order change for instance, is only
considered if q+1 steps have been successfully been computed, without any
convergence failure or error test failure, since the last change. An update
of M in Equation 3.56, occurs when 20 steps have been taken since the last
update or if an error test or convergence failure occurred. Additionally an
update occurs if |γ/γold−1| > 0.3. Similarly, the Jacobian in Equation 3.56
is updated after 50 steps since the last update, after a convergence failure
which forced a step-size reduction and after a convergence failure with an
outdated M together with |γ/γold − 1| < 0.2.

Summarizing the control parameters requirements for storing the solver
state,

• Number of steps to wait before considering an order change, qwait

• The Jacobian factor, γold

• Number of steps since last M update

• Number of steps since last Jacobian update
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As a final step, the run-time statistics needs to be stored.
Regarding the practical considerations, this information is all stored in

an internal data structure which is not accessible in a default installation
of CVODE. In order to store the solver state, the installation needs modi-
fication so that this data structure can be accessed. Additionally, method
for performing duplication and restoration are needed.

For a detailed description of CVODE, see [13, 23, 24, 14, 28].

3.3.1.2 Restart of an FMU

In the FMI version 1.0 for co-simulation, storing the complete model state,
including the solver state, is not possible. This severely limits the options
for implementing an advanced general master algorithm. As discussed in
Section 2.2, the FMI version 2.0 includes an API for just saving and restor-
ing the full state, which significantly improves the interface in case of co-
simulation. The model support for this is determined by an optional capa-
bility flag.

3.3.2 Error Estimation
Estimating the local error for a method is essential in order to be able to
adapt the step-size. For co-simulation, a method based on using Richard-
son extrapolation was proposed in [41] where the idea is to compare two
simulations using different step-sizes. The first simulation with a global in-
tegration step of 2H and the another by performing two steps with a global
integration step of H, see Figure 3.10. Between the two steps in the second
simulation, input and output data is exchanged between the sub-models.
Richardson extrapolation is a reliable and robust algorithm for producing
higher order approximations using low-order methods. The idea is to com-
bine the two approximations in such a way that their largest error terms
cancel. See [20] for information about Richardson extrapolation.

Theorem 3.3.1 (Local error without feed-through). The error in the out-
puts, y, in Equation 3.74, calculated using one step of step-size 2H (y2H)
and using two steps of step-size H (yH) where coupling data is exchanged
satisfies,

y(Tn+2)− y2H(Tn+2) = c1(2H)k+2 +O(Hk+3) (3.62)
y(Tn+2)− yH(Tn+2) = 2c1Hk+2 +O(Hk+3) (3.63)
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Figure 3.10: Error estimation procedure using Richardson extrapolation.

whenever there is no direct feed-through and where k is the order of the
extrapolation of the inputs u and c1 is a factor independent on H.

Proof. See Section 3.3.2.1.

The resulting solutions for the two simulations are then compared at
Tn+2 = Tn + 2H and an estimate for the error is calculated using Theorem
3.3.1 and neglecting the higher order terms as,

yH(Tn+2)− y2H(Tn+2) = c1(2H)k+2 − 2c1Hk+2 (3.64)

2c1Hk+2 = yH(Tn+2)− y2H(Tn+2)
2k+1 − 1 (3.65)

and finally the error estimate,

EST = yH(Tn+2)− y2H(Tn+2)
2k+1 − 1 (3.66)

Theorem 3.3.2 (Local error with feed-through). The error in the out-
puts, y, in Equation 3.74, calculated using one step of step-size 2H (y2H)
and using two steps of step-size H (yH) where coupling data is exchanged
satisfies,

y(Tn+2)− y2H(Tn+2) = c2(2H)k+1 +O(Hk+2) (3.67)
y(Tn+2)− yH(Tn+2) = (I +DL)︸ ︷︷ ︸

c3

c2H
k+1 +O(Hk+2) (3.68)

when there is direct feed-through and where k is the order of the extrapolation
of the inputs u and c2,c3 are factors independent on H.
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As with Theorem 3.3.1, we compare the two simulations at Tn+2 =
Tn + 2H from Theorem 3.3.2,

yH(Tn+2)− y2H(Tn+2) = c2(2H)k+1 − c3c2Hk+1 (3.69)
c3c2H

k+1 = (2k+1c−1
3 − I)−1(yH(Tn+2)− y2H(Tn+2))

(3.70)

and the estimate,

EST = (2k+1c−1
3 − I)−1(yH(Tn+2)− y2H(Tn+2)) (3.71)

A modified approach, compared to performing a step of size 2H and two
steps of size H, was proposed in [41] to mitigate the high cost of the error
estimation. The modified approach was to perform a step of size H for both
simulations and then for the first simulation, continue with another step of
size H. For the second simulation, information was exchanged among the
sub-systems before performing the second step of H.

In a simulation code, the error estimate, Equation 3.66 and Equation
3.71, is usually normalized using user supplied tolerances, both an absolute
tolerance and an relative tolerance,

ERR =

√√√√ 1
n

n∑
i=1

ESTi
ATOLi +RTOL‖yH(Tn+2)‖ , (3.72)

ERR ≤ 1 results in an accepted step, otherwise the step has to be rejected
and repeated with a smaller global step-size.

The normalized error is then used to adapt the global step-size such that
it meets the user supplied tolerances while performing the largest possible
step [20],

hnew = hprev
1

ERR

1
k+2

. (3.73)

3.3.2.1 Error Analysis

In our error analysis we start from the nonlinear coupled system,

ẋ[i] = f [i](t, x[i], u[i]), i = 1, . . . , N (3.74a)
y[i] = g[i](t, x[i], u[i]), i = 1, . . . , N (3.74b)
u = c(y) (3.74c)
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and we will investigate the error propagation when using an approxima-
tion for the inputs ū[i](t) ≈ u[i](t). In the sequel, the solutions resulting
from the approximation will be denoted with bars and the superscript is
dropped for the individual sub-systems. Comparing the solution with the
approximation, gives

ẋ− ˙̄x = f(x, u)− f(x̄, ū) (3.75a)
y − ȳ = g(x, u)− g(x̄, ū) (3.75b)
u− ū = c(y)− c(ȳ). (3.75c)

Expanding the functions on the right-hand side in a Taylor series, we get
for the states,

ẋ− ˙̄x = df
dx

∣∣∣∣
x(Tn),u(Tn)︸ ︷︷ ︸
A

(x− x̄) + df
du

∣∣∣∣
x(Tn),u(Tn)︸ ︷︷ ︸
B

(u− ū) (3.76)

and for the outputs,

y − ȳ = dg
dx

∣∣∣∣
x(Tn),u(Tn)︸ ︷︷ ︸
C

(x− x̄) + dg
du

∣∣∣∣
x(Tn),u(Tn)︸ ︷︷ ︸
D

(u− ū) (3.77)

and finally for the inputs,

u− ū = dc
dy

∣∣∣∣
y(Tn)︸ ︷︷ ︸
L

(y − ȳ). (3.78)

Note that here we are assuming that higher order terms are negligible,
i.e. products and powers of the difference between the solution and the
approximation. From the following calculations this assumption will be
made clear as other terms contribute to the error significantly more.

The approximation for the inputs is an extrapolation from previous
known values and the extrapolation error is defined for t ∈ [Tn, Tn+1] as,

u(t)− ū(t) = u(k+1)(ξ)
(k + 1)! (t− Tn)k+1, ξ ∈ [Tn, Tn+1] (3.79)

u(t)− ū(t) = u(k+1)(Tn)
(k + 1)! (t− Tn)k+1 +O((t− Tn︸ ︷︷ ︸

H

)k+2) (3.80)
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where ū is the kth degree Taylor polynomial and assuming that u ∈ Ck+2.

x(t)− x̄(t) =
∫ t

Tn

eA(t−τ)B(u(τ)− ū(τ))dτ + eAt(x(Tn)− x̄(Tn)) (3.81)

y(t)− ȳ(t) = C(x(t)− x̄(t)) +D(u(t)− ū(t)) (3.82)

Considering first the error in a step Tn → Tn+1 of step-size H for the
states,

x(Tn+1)− x̄(Tn+1) =
∫ Tn+1

Tn

eA(Tn+1−τ)B(u(τ)− ū(τ))dτ (3.83a)

+ eATn+1(x(Tn)− x̄(Tn)). (3.83b)

Using Equation 3.80 together with Equation 3.83 and using that in the first
step x(Tn) = x̄(Tn), we find,

x(Tn+1)− x̄(Tn+1) =
∫ Tn+1

Tn

eA(Tn+1−τ)B
(u(k+1)(Tn)

(k + 1)! (τ − Tn)k+1 + . . .

(3.84a)

+O((τ − Tn)k+2)
)

dτ. (3.84b)

Changing the integration limits using τ̄ = τ − Tn,

x(Tn+1)− x̄(Tn+1) =
∫ H

0
eA(H−τ̄)B

(u(k+1)(Tn)
(k + 1)! τ̄k+1 +O(τ̄k+2)

)
dτ̄

(3.85a)

=
∫ H

0
eA(H−τ̄)τ̄k+1dτ̄B u

(k+1)(Tn)
(k + 1)! (3.85b)

+
∫ H

0
eA(H−τ̄)O(τ̄k+2)dτ̄B. (3.85c)

Using the definition for the matrix exponential we get a first order ap-
proximation,

eA =
∞∑
i=0

1
i!A

i =⇒ eA(H−τ) ≈ I +O(H), τ ∈ [0, H] (3.86)
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which is appropriate as the first term will dominate the error. Finally for
the states, we get,

x(Tn+1)− x̄(Tn+1) =
∫ H

0
(I +O(τ̄))τ̄k+1dτ̄B u

k+1(Tn)
(k + 1)! (3.87a)

+
∫ H

0
(I +O(τ̄))O(τ̄k+2)dτ̄B (3.87b)

= B
u(k+1)(Tn)

(k + 2)! Hk+2 +O(Hk+3) (3.87c)

and for the outputs,

y(Tn+1)− ȳ(Tn+1) = C(x(Tn+1)− x̄(Tn+1)) (3.88a)
+D(u(Tn+1)− ū(Tn+1)) (3.88b)

= CB
u(k+1)(Tn)

(k + 2)! Hk+2 +O(Hk+3) (3.88c)

+D
u(k+1)(Tn)

(k + 1)! Hk+1 +DO(Hk+2). (3.88d)

In the next step, Tn+1 → Tn+2, we denote the resulting solution and the
approximation with double bars (¯̄u). The approximation error for the inputs
in this second step includes the error accumulated in the first step,

u(t)− ¯̄u(t) = u(k+1)(Tn+1)
(k + 1)! (t− Tn+1)k+1 +O((t− Tn+1)k+2) (3.89)

+ L(y(Tn+1)− ȳ(Tn+1)).

Additionally, we have that x̄(Tn+1) = ¯̄x(Tn+1) and we get for the states,

x(Tn+2)− ¯̄x(Tn+2) =
∫ Tn+2

Tn+1

eA(Tn+2−τ)B(u(τ)− ¯̄u(τ))dτ (3.90a)

+ eAH(x(Tn+1)− x̄(Tn+1)). (3.90b)

Following the same approach as in the first step and using Equation 3.89,
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Equation 3.86 and Equation 3.87c,

x(Tn+2)− ¯̄x(Tn+2) =
∫ H

0
(I +O(τ̄))B

(u(k+1)(Tn+1)
(k + 1)! τ̄k+1 +O(τ̄k+2)

(3.91a)

+ L(y(Tn+1)− ȳ(Tn+1))
)

dτ̄ (3.91b)

+ (I +O(H))
(
B
u(k+1)(Tn)

(k + 2)! Hk+2 +O(Hk+3)
)

(3.91c)

which simplifies to,

x(Tn+2)− ¯̄x(Tn+2) = B
u(k+1)(Tn+1)

(k + 2)! Hk+2 +BLD
u(k+1)(Tn)

(k + 1)! Hk+2

(3.92a)

+B
u(k+1)(Tn)

(k + 2)! Hk+2 +O(Hk+3). (3.92b)

For the outputs at Tn+2,

y(Tn+2)− ¯̄y(Tn+2) = C(x(Tn+2)− ¯̄x(Tn+2)) +D((u(Tn+2)− ¯̄u(Tn+2))

(3.93a)

= CB
u(k+1)(Tn+1)

(k + 2)! Hk+2 + CB
u(k+1)(Tn)

(k + 2)! Hk+2

(3.93b)

+D
u(k+1)(Tn+1)

(k + 1)! Hk+1 +DLD
u(k+1)(Tn)

(k + 1)! Hk+1

(3.93c)
+DO(Hk+2) +O(Hk+3). (3.93d)

Similarly as the error in the first step (Tn → Tn+1), the error in a step
of size 2H, Tn → Tn+2 is,

y(Tn+2)− ỹ(Tn+2) = CB
u(k+1)(Tn)

(k + 2)! (2H)k+2 +D
u(k+1)(Tn)

(k + 1)! (2H)k+1

(3.94a)
+DO(Hk+2) +O(Hk+3) (3.94b)
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So if there is no direct feed-through in the systems, i.e. D = 0 we get
for the two approximations,

y(Tn+2)− ỹ(Tn+2) = CB
u(k+1)(Tn)

(k + 2)! (2H)k+2 +O(Hk+3) (3.95)

y(Tn+2)− ¯̄y(Tn+2) = CB
u(k+1)(Tn)

(k + 2)! 2Hk+2 +O(Hk+3) (3.96)

which corresponds to Theorem 3.3.1. While if D 6= 0 we have instead,

y(Tn+2)− ỹ(Tn+2) = D
u(k+1)(Tn)

(k + 1)! (2H)k+1 +O(Hk+2) (3.97)

y(Tn+2)− ¯̄y(Tn+2) =
(
I +DL

)
D
u(k+1)(Tn)

(k + 1)! Hk+1 +O(Hk+2) (3.98)

which corresponds to Theorem 3.3.1 with c3 = I +DL.

Example 3.3.2 (Without feed-through). Consider a mass-spring-damper
problem with three coupled springs and three coupled dampers which are
connected between two fixed points and two masses, see Figure 3.11. The

𝒎𝟐𝒎𝟏

𝒌𝟏 𝒌𝟐 𝒌𝟑

𝒄𝟏 𝒄𝟐 𝒄𝟑

Figure 3.11: Mass-spring-damper problem.

problem is governed by the equations,

m1ẍ1 = −(k1 + k2)x1 − (c1 + c2)ẋ1 + k2x2 + c2ẋ2 (3.99a)
m2ẍ2 = −(k3 + k2)x2 − (c3 + c2)ẋ2 + k2x1 + c2ẋ1. (3.99b)

Dividing the problem into two sub-systems where the position and velocity
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k1 = 10 Nm−1 k2 = 25 Nm−1 k3 = 50 Nm−1 m1 = 1 kg
c1 = 1 Nsm−1 c2 = 0.1 Nsm−1 c3 = 2 Nsm−1 m2 = 1 kg

Table 3.1: Parameters used in the Example 3.3.2.

are both the inputs and outputs from the models, i.e,

m1ẍ1 = −(k1 + k2)x1 − (c1 + c2)ẋ1 + k2u11 + c2u12 (3.100a)
y1 = [x1, ẋ1]T (3.100b)

m2ẍ2 = −(k3 + k2)x2 − (c3 + c2)ẋ2 + k2u21 + c2u22 (3.100c)
y2 = [x2, ẋ2]T. (3.100d)

The coupling equations are defined by,

u11 = y21, u21 = y11 (3.101a)
u12 = y22, u22 = y12. (3.101b)

The problem is solved using a parallel co-simulation approach with different
extrapolations and the estimated local error is compared against the analyt-
ical local error. The problem parameters are listed in Table 3.1.

In Figure 3.12 the estimated local error using Richardson extrapolation for
constant extrapolation is shown and in Figure 3.13 it is shown for linear
extrapolation. Note the difference in the step-sizes that is due to that in
the linear case, the internal tolerance of the sub-systems impacted the error
estimation when H = 0.0001 was used. The internal tolerances of the sub-
systems was set to 10−11.

In Example 3.3.2, it was shown that the error estimate is in good agree-
ment with the analytical error. However, the error estimate is based on
the assumption that the sub-systems are solved exactly, which is not en-
tirely true. In the example, the sub-systems were solved using a very low
tolerance 10−11 in order to mimic the assumption that the sub-systems are
solved exactly. By changing the tolerance on the sub-systems however, the
estimate becomes overly optimistic, see Figure 3.14. The figure shows the
importance of using an appropriate tolerance on the sub-systems.
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Figure 3.12: Estimated local errors together with the analytical local error for
constant extrapolation of Example 3.3.2. In the left figure, the local errors are
shown for a simulation over one second for a given step-size of H = 0.001. In the
right figure, the local errors are shown for various step-sizes.

Example 3.3.3 (With feed-through). Looking again at Equation 3.99 in
Example 3.3.2,

m1ẍ1 = −(k1 + k2)x1 − (c1 + c2)ẋ1 + k2x2 + c2ẋ2 (3.102a)
m2ẍ2 = −(k3 + k2)x2 − (c3 + c2)ẋ2 + k2x1 + c2ẋ1. (3.102b)

Using, as before, the position and the velocity as output from the first sub-
system,

m1ẍ1 = −k1x1 − c1ẋ1 + k2u11 + c2u12 (3.103a)
y1 = [x1, ẋ1]T. (3.103b)

However, the input is instead the difference in position and velocity between
the two sub-systems. In the second sub-system, the output is the difference
between the position and the velocity,

m2ẍ2 = −(k3 + k2)x2 − (c3 + c2)ẋ2 + k2u21 + c2u22 (3.104a)
y2 = [x2, ẋ2]T − [u21, u22]T (3.104b)

and the input for this second sub-system is the position and velocity of the
first sub-system. So the coupling equations are the same as before, and thus
the coupling equations are defined by,

u11 = y21, u21 = y11 (3.105a)
u12 = y22, u22 = y12. (3.105b)
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Figure 3.13: Estimated local errors together with the analytical local error for
linear extrapolation of Example 3.3.2. In the left figure, the local errors are shown
for a simulation over one second for a given step-size of H = 0.01. In the right
figure, the local errors are shown for various step-sizes.

In Figure 3.15 the error estimate is shown together with the analytical local
error when using Richardson extrapolation. A step-size of H = 0.01 was
used together with linear extrapolation. As can be seen from the figure, the
estimate is slightly overestimating the error. Further investigation is needed
as to find the cause of the discrepancy.
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Figure 3.14: Result of simulating Example 3.3.2 with constant extrapolation
and using a step-size of H = 0.05 together with changing the tolerance of the
sub-systems.
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Figure 3.15: Estimated local errors together with the analytical local error for
linear extrapolation of Example 3.3.3 for all components.
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Chapter 4

Software Framework

This chapter describes the main contributions of this thesis. It describes
a developed framework used for testing purposes and evaluations of co-
simulation approaches. It describes a developed framework for evaluating
ordinary differential equation (ODE) solvers, Assimulo and it describes a
framework for working with models following the FMI standard, PyFMI.

The purpose of the framework is to evaluate various co-simulation ap-
proaches on both academic test examples and on models with industrial
relevance. For the latter, we want to achieve the ability to import indus-
trial models developed within closed industrial software tools into PyFMI
and Assimulo for experimentation. Possibly together with the former class
of models.

The following prerequisites is necessary for attaining our goals,
• Access to industrial examples
By using the FMI standard, access to models from other tools sup-
porting the standard is achieved as FMI is a project that aims at
serving as a bridge between different tools and for exchanging models.
The developed software PyFMI allows interaction and manipulation
of FMUs.

• Ability to investigate solver impact
The Assimulo package has been developed to provide a unified high-
level interface to a number of state-of-the art solvers. Switching be-
tween them is an easy operation allowing investigation of the impact
of the solver in sub-systems.

49
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• Access to an extensible master algorithm
A master algorithm has been developed with the ability to evaluate
and test the various co-simulation approaches discussed in Chapter 3.

Looking at the requirements from an algorithmic point of view and from
the discussion of co-simulation in Chapter 3, we find that there are a number
of features that need to be supported both by the sub-systems and the mas-
ter algorithm to be able to test and validate the co-simulation approaches.
For the sub-systems, the ability to perform repeated evaluation of the out-
puts at a global time-step is necessary in order to find a consistent set of
input signals in case of feed-through. Additionally the ability of storing the
model and solver state is necessary in case a step is rejected by the master
algorithm. For the master algorithm, the ability to handle an arbitrary
number of sub-systems simulated using the parallel or serial approach is
necessary together with handling signal interpolation and extrapolation of
various degrees and additionally to perform error estimations. Support for
these features has been implemented in the master algorithm.

Assimulo and PyFMI have been implemented in the Python program-
ming language. Python is a high-level versatile programming language
where readability and ease of use is of high importance. It is an object-
oriented, powerful and dynamically typed language with a large supporting
community. There are packages available for performing a large number of
tasks and analyses. For scientific computing, the most notable are NumPy
[34], SciPy [29] and Matplotlib [26], which combined offer similar function-
ality as MATLAB. An aspect that has contributed to Python’s popularity
is the ability to easily use external code written in, for example, FORTRAN
or C. This is important as many algorithms are written in either of these
languages. The execution speed of code written in Python is not compara-
ble to code written in low-level languages. However, the ability to connect
algorithms from external code and perform the bulk of the operations in
the these algorithms reduce the performance hit. The performance hit is
usually outweighed by the ease of which a program is created in Python.

PyFMI and Assimulo are necessary tools for the evaluation of co-
simulation approaches as the former gives access to models following the
FMI standard and thus models from a number of different tools. The latter
gives access to ODE solvers which can be used together with FMUs fol-
lowing the model exchange standard to mimic a co-simulation FMU. The
advantage with this approach is that the influence of the solver and solver
options can be investigated even though the tool providing the FMU does



4.1. ASSIMULO 51

not support the particular solver. These two packages are also an integral
part of the JModelica.org platform [37] and are both freely available at
http://www.jmodelica.org as open source software. In Section 4.1, As-
simulo is described and in Section 4.2, PyFMI is described. Section 4.3
describes the implemented master algorithm which combines PyFMI and
Assimulo and allows co-simulation of FMUs using various approaches and
options.

4.1 Assimulo

Assimulo [7] is a package for solving ordinary differential equations. The
primary aim of Assimulo is not to develop new integration algorithms
but to provide a high-level interface for a wide variety of solvers, both
new and old and solvers of industrial standards as well as experimental
solvers. Furthermore, the aim is to allow comparison of solvers for a given
problem without the need to define the problem in a number of different
programming languages to accommodate the different solvers.

Assimulo separates between a problem (or model), which contains the
problem equations (in most cases the physics) and the actual solver used for
integrating the problem. For instance, the tolerances, which are important
quantities to control the solver, are attributes of the solver class and are
kept separate from the problem description. The problem definitions are
not only limited to, for instance the right-hand-side of the problem, but they
may also contain event functions in order to support hybrid systems with
state, step and time events. Additionally, a problem definition can specify
options related to the problem such as which states are actually algebraic
variables.

4.1.1 Problem Formulations

Various problem types are supported by Assimulo and can be used together
with appropriate solvers. The most general formulation available is a fully
implicit ordinary differential equation, also referred to as a differential–
algebraic equation, DAE,

F (t, y, ẏ) = 0, y(t0) = y0, ẏ(t0) = ẏ0. (4.1)

http://www.jmodelica.org
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Additionally, there is support for systems of explicit ordinary differential
equations (ODE),

ẏ = f(t, y), y(t0) = y0. (4.2)

and mechanical systems in overdetermined implicit DAE form,

ṗ = v (4.3a)
M(p)v̇ = f(t, p, v)−GT (p)λ (4.3b)

0 = gconstr(p) (4.3c)
0 = G(p)v (4.3d)

where p is the position and v the velocity. The constraints are given by
gconstr and noticing that dgconstr

dp = G.
Problem formulations can also be transformed into a more general de-

scription, for instance, an explicit ODE can always be transformed into a
fully implicit DAE. This is useful when comparing solvers written for DAEs
with solvers written for ODEs.

Assimulo focuses on hybrid problems in such a way, that it helps to
express them in a general sense and that it simplifies the handling of the
events once they have been detected by the solver. Consider a problem that
is defined as follows,

ẏ = f(t, y, sw), y(t0) = y0 (4.4a)
0 = g(t, y, sw) (4.4b)

where f is the right-hand-side of an explicit ODE and g are the state event
functions (root functions). Apart from time, t, and states, y, there is an
extra argument, sw, which is a set of switches. They are input variables,
which are not altered by the solver. Their purpose is to indicate which
internal branch of f and g is to be evaluated. These switches are (re-)set
once the integration has been stopped, due to an event detection, triggered
by a sign change in one of the components of the vector valued function g.
How these switches have to be set depends on the problem and has to be
defined in the problem definition by providing a handle-event function.

4.1.2 Solvers
In the present state, Assimulo provides interfaces to production quality
solvers like CVODE and IDA from the SUNDIALS [23] suite developed
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at the Lawrence Livermore National Laboratory (LLNL). SUNDIALS is a
further development of the codes VODE and DASPK dating back to the
1980s. CVODE solves problems defined by explicit ODEs, ẏ = f(t, y) or
hybrid explicit ODEs, ẏ = f(t, y, sw). A method flag allows to use for
stiff problems BDF methods and for non-stiff problems Adams-Moulton
methods. CVODE uses a variable-order and variable step-size algorithm.
IDA, on the other hand solves the more general problem described as hy-
brid DAEs. It uses BDF methods of variable order and variable step-size.
While primarily intended to solve index-1 problems (in mechanics, problems
with constraints on acceleration level), it allows to exclude certain solution
components from the step-size selection procedure and thus at least techni-
cally enables the possibility to solve higher index systems, e.g. mechanical
systems with constraints on position or velocity level. As the method toler-
ances are used to control both step-size selection and the corrector iteration
process even the tolerances on the algebraic components have to be raised
in order to avoid corrector convergence failures.

One important purpose of Assimulo is to give the simulation and mod-
eling engineer access to the wide spread flora of research integrators. A
typical representative for this class of codes is GLIMDA [43] which is now
accessible in Assimulo. GLIMDA is an implementation of general linear
multistep methods to solve low index DAEs. These methods can be viewed
as a blend of the collocation approach of implicit Runge–Kutta methods
with the interpolation-based linear multistep methods. These techniques
allows to adapt the methods coefficients to the special stability characteris-
tics of the problem at hand. Assimulo’s concept exposes this method class
to a wide range of mechanical problems and helps this way to gain expe-
rience of this relatively new method class based on large and industrially
relevant models.

The implicit Runge–Kutta method RADAU5 [21], shares stability prop-
erties with the implicit Euler method but promises higher accuracy due to
its larger order. A classical implementation of this method by Hairer is
interfaced with Assimulo. The solvers DOPRI5 [20] and RODAS [21], are
additionally available for problems on the form ẏ = f(t, y). The solvers
are different Runge–Kutta type methods with variable step-size and where
RADAU5 and RODAS are suitable for stiff problems.

The codes wrapped into Assimulo are kept in their original form, only
I/O parts and user communication is lifted to the Python level in order
to provide a homogeneous handling of accessing a solver and using the
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computed result. But Assimulo also supports contribution of experimen-
tal code directly written in Python. A constant step-size Runge–Kutta
method, an explicit Euler method and an implicit Euler method, all im-
plemented in Python, are included in Assimulo. Assimulo also aims to
expose historically interesting codes together with modern industrial codes
and more unknown research codes. Among the classical codes we name the
solver LSODAR from ODEPACK [22] which is a multistep method that de-
pending on the stiffness of the problem switches between an Adams method
and a BDF method. Also ODASSL [18] is provided as a code specialized
on mechanical systems described by the problem class of overdetermined
DAEs. It is a variant of DASSL with the linear algebra part of the correc-
tor iteration replaced by a special pseudo-inverse reflecting a transformation
to state space form.

Most of the solvers mentioned do not natively support problems with
discontinuities. Exceptions are CVode, IDA and LSODAR. This triggered
the work in [16], where a general event localization scheme was implemented
in Assimulo. The algorithm requires a continuous representation of the
solution which in addition has been implemented for the solvers that do not
provide one by default. The algorithm has been added to all solvers except
GLIMDA and ODASSL and shown to locate the events accurately, despite
the fact of order drops due to the use of the continuous representation.

An overview of the available solvers in Assimulo together with the
problem formulations and their connections as-well as the connection to
FMUs is given in Figure 4.1. Additionally in Table 4.1, a list of the solvers
are given together with if they support hybrid problems or not. Solvers
supporting hybrid problems and either ODE or DAE problems can be used
together with FMUs.

4.1.3 Example - The Van der Pol Oscillator
This example is intended to show how Assimulo can be used to solve the
Van der Pol oscillator, defined by Equation 3.49. The oscillator is again
given here for convenience,

ẏ1 = y2 (4.5a)
ẏ2 = µ((1− y2

1)y2 − y1) (4.5b)
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Figure 4.1: The available solvers and problem formulations in Assimulo to-
gether with the planned additions. The arrows between the problem formulations
indicate how the problem can be reformulated. The arrows between the problems
and the solvers indicate which problem formulation the particular solver supports.

with the initial conditions, y1(t0) = 2, y2(t0) = −0.6 together with µ = 200.
In order to solve this problem, the right-hand-side needs to be defined

as a Python function,
# Define the rhs
def rhs(t,y):

my = 1.0/5.0e-3

yd_0 = y[1]
yd_1 = my*((1.0-y[0]**2)*y[1]-y[0])

return array ([yd_0 ,yd_1])

Once the right-hand-side is defined, the problem can be specified by creating
an Explicit Problem using the right-hand-side function together with a set
of initial conditions. The Explicit_Problem class needs additionally be
imported from Assimulo.
from assimulo . problem import Explicit_Problem

y0 = [2.0,-0.6] # Initial conditions

exp_mod = Explicit_Problem (rhs ,y0) # Define an Assimulo problem
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Solver Problem type Hybrid support Language
CVODE ODE Yes C
IDA DAE Yes C
DOPRI5 ODE Yes Fortran
LSODAR ODE Yes Fortran
GLIMDA DAE No Fortran
ODASSL ODAE No Fortran
Explicit Euler ODE Yes Python
Implicit Euler ODE Yes Python
Runge-Kutta 34 ODE Yes Python
Runge-Kutta 4 ODE No Python
RODAS ODE Yes Fortran
RADAU5 ODE/DAE Yes Fortran

Table 4.1: The currently available solvers in Assimulo and the type of problems
a solver support. Also shown is the language in which the solver is written together
with if it supports hybrid models or not. Solvers supporting hybrid problems and
either ODE or DAE problems can be used together with FMUs.

Now that we have an explicit problem, a solver object can be created by
using a solver from Assimulo. The various solvers have different options
to be set. Here, a change of the relative tolerance is used to show how they
are set.

from assimulo . solvers import CVode # Import the solver

# Define an explicit solver
exp_sim = CVode ( exp_mod ) # Create a CVode solver

# Sets the options
exp_sim .rtol = 1e-4 # The relative tolerance

The final step is the actual simulation which is performed by invoking the
simulate method.

# Simulate
t, y = exp_sim . simulate (2.0) # Simulate 2 seconds

The returned vectors t and y contains the calculated result. In Figure 4.2,
the result is visualized.

There are many more options and supported features than what this
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Figure 4.2: Result of a simulation of the Van der Pol Oscillator, from Section
4.1.3, using the solver CVode.

example shows. In Assimulo there are about 25 examples demonstrating
the various features and may serve as starting points or reference for solving
a particular problem.

4.2 PyFMI
PyFMI [6] is a Python package for interacting with models adherent with
the FMI standard based on the FMI library. It is designed to provide a
high-level, easy to use, interface for working with FMUs. It connects the
full set of methods in the FMI specification in an object-oriented approach.
There is support for both model exchange and co-simulation FMUs. In
preparation for the new version of the FMI standard, support for the beta
version has been implemented in PyFMI [33].

A model is imported into Python using just a few lines of code,
from pyfmi import load_fmu

model = load_fmu (" Pendulum .fmu")

A simulation of an FMU, either a model exchange or a co-simulation FMU,
is performed using the high-level simulate method,
res = model . simulate ( final_time =10)
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where the returned object, res, contains the calculated result. Additionally
there are convenience functions available for accessing and working with the
model data.

A key feature is the connection to Assimulo, Section 4.1, which provides
capabilities for performing simulations of model exchange FMUs using ODE
solvers interfaced with Assimulo. Another feature is the capability of
writing result files and visualize the result. See Figure 4.3 for an overview.
The result file format used is readable by multiple tools such as the leading
Modelica tool, Dymola [42].

Functional Mock-up Unit

PyFMI ASSIMULO

Figure 4.3: The connection between PyFMI, the Functional Mock-up Interface
and Assimulo.

4.2.1 Interacting with a Model
The starting point for interacting with an FMU in PyFMI is the load_fmu
method.
def load_fmu (fmu , path = ’.’, enable_logging = True ,

log_file_name = "", kind = ’auto ’):

The method is a factory method meaning that depending on the provided
input, i.e. the FMU, it returns an instance of an appropriate class. The
class returned is one of four possible,

• FMUModelME1 - For models following FMI 1.0 for model exchange

• FMUModelCS1 - For models following FMI 1.0 for co-simulation

• FMUModelME2 - For models following FMI 2.0 for model exchange

• FMUModelCS2 - For models following FMI 2.0 for co-simulation
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The other arguments are for specifying where the FMU is located, if logging
should be turn on or not, and if true, the name of log file. In FMI 1.0, an
FMU is either a model exchange or a co-simulation, however in FMI 2.0
an FMU can be both and for those cases the final argument to load_fmu
specifies the type of model class to be returned. In Figure 4.4, the hierarchy
of the model classes are shown together with their parents which collects
common functionality.

ModelBase

FMUModelBase1 FMUModelBase2

FMUModelME1 FMUModelME2 FMUModelCS2FMUModelCS1

Figure 4.4: The model class hierarchy in PyFMI.

During the loading process, the object file is connected to the model
class and the model metadata is read from the XML file. Once the process
has finished, the model is instantiated and ready for initialization and sim-
ulation. Prior to the initialization, variable and parameter values can be set
to the model for those with a defined start value in the metadata. Values
are set using the set method.
model .set(" gravity ", 10)

The name of the variables are not defined in the object file, however the
information can be retrieved from the metadata. A useful method in PyFMI
is the get_model_variables which retrieves these names and information
about them.
vars = model . get_model_variables ()

The returned dictionary, vars, contain all the variables, parameters and
constants defined in the model. The method additionally allows for filtering
on which information should be returned. For instance, only variables that
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are not an aliased variable, only variables that are inputs, only variables that
are of type real and only variables whose name contains the string chassis.
There are additionally methods for retrieving all information provided in
the metadata.

In addition to the high-level methods, the low-level methods defined in
the FMI standard is provided. In certain cases it might be more efficient to
directly use these methods. For example, the set_real method is provided.

model . set_real ([432 ,423 ,122], [-1.0, 2.0, 4.0])

The first list specifies the value references, i.e. the identification of the
variables to be set. The second list are the actual values to be set. Using
these methods directly one need to be particularly careful in case of aliased
variables.

4.2.2 Simulating a Model
Simulation of a loaded model, be it a model exchange or a co-simulation, is
performed using the simulate method.

res = model . simulate ( start_time =’Default ’, final_time =’Default ’,
input =() , algorithm =’AssimuloFMIAlg ’, options ={})

The only difference between simulating a model exchange FMU or a co-
simulation FMU using this method is the default algorithm. For model
exchange it is AssimuloFMIAlg and for co-simulation it is FMICSAlg. By
default, the method initializes the model by calling the underlying FMI
method for initialization and then performs a simulation using default val-
ues. The default values are retrieved from the metadata, i.e. information
about the start time and the final time together with the tolerance.

Inputs can be provided to the model using the input argument in the
simulate method. The input defines the input trajectories to the model
and can be specified in one of two ways. Either as a data matrix where
the values are interpolated linearly or as a general function. In both cases,
a tuple is provided where the first index contain the variable names of the
input variables and the second index the data or a function, see below.

#In case of input data
input_object = ([’u1 ’,’u2 ’],input_data )
#In case of an input function
input_object = ([’u1 ’,’u2 ’],input_function )
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For the data matrix, the requirement is that the first column contain the
time vector and the following columns correspond to the input variables. In
case of a function, the argument is required to be the time and the output
correspond to the input variables.

The option argument in the simulate method allows for specifying
general options for the simulation, such as how the result is to be handled,
specifying the solver and solver options in case of a model exchange FMU.
Options for an algorithm is retrieved using the simulate_options method.

opts = model . simulate_options ( algorithm =’AssimuloFMIAlg ’)

The returned argument, opts, is a modified dictionary containing the avail-
able options for that particular algorithm. The modification allows for
providing a description of the object which is helpful when using Python
interactively. Changing the options, for example the solver, in case of a
model exchange FMU, and the result file name is performed using the be-
low code.

# Change from the default solver to Explicit Euler
opts[" solver "] = " ExplicitEuler "
# Change the result file name
opts[" result_file_name "] = " vdp_result .txt"

In Figure 4.5, the class hierarchy for both the algorithms the options are
shown.

FMICSAlgOptions AssimuloFMIAlgOptions

AlgorithmBase

AssimuloFMIAlg FMICSAlg

OptionsBase

Figure 4.5: In the left figure, the class hierarchy is shown for the available
algorithms in PyFMI. In the right figure, the class hierarchy for the algorithm
options are shown.

By default, during a simulation, the result is continuously written to
file. After a simulation has been successful, the result is read and returned.

res = model . simulate ()
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The object res contain primarily the resulting solution trajectories which
are easily accessible for further computations or visualizations.

t = res["time"] # Retrieve the time vector
x1 = res["x1"] # Retrieve the trajectory for the variable x1

Using the options, the variables of interest can be specified such that result
are only stored for those variables and additionally if they should be stored
directly in memory.

4.3 Master Algorithm
This section describes the implemented master algorithm. The algorithm
implements the various approaches used for co-simulation and will serve as
a basis for future evaluation of new approaches and new ideas.

The implementation supports simulation of a coupled system via a par-
allel approach and a staggered approach. Interpolation or extrapolation us-
ing constant polynomials and up to cubic polynomials may be used together
with an error estimation based on Richardson extrapolation. Iteration on
the output variables is also implemented. In other words, the approaches
discussed in Chapter 3, are implemented.

4.3.1 Extended Model Definition
In order to evaluate the influence of the underlying ODE solver in an co-
simulation FMU and the impact of the options provided to the solver, such
as the tolerances, we need access to the solver. We need also the ability to
change the underlying solver. In the FMI specification, there is currently
no way of providing options to the underlying solver or changing the solver
as these are statically compiled in when it is created. A way of mimicking
a co-simulation FMU is instead to use an FMU for model exchange and
dynamically bundling it together with an integrator. A way of achieving

AssimuloFMI 1.0 ME FMI 1.0 CS

Figure 4.6: By bundling Assimulo together with an FMU for model exchange
an co-simulation FMU is created.
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this is to extend PyFMI’s interface for an model exchange FMU and im-
plemented the necessary methods, i.e. the coupling to an integrator, using
Assimulo to provide the API of a co-simulation FMU, see Figure 4.6. This
allows full access to the solver with the ability to investigate the impact
of different solvers and options. In addition, as the solver is exposed, the
ability to store the solver state is available for those solvers that support
the feature as discussed in Section 3.3.1.1.

The crucial methods to implement is the initialization method, where
an Assimulo integrator is setup, and the method for performing a global
step, using the integrator. The methods are called fmi_initialize_slave
and fmi_do_step in the FMI specification. Once these has been defined
one can easily pick a model exchange FMU, load it into the framework, and
the output is a co-simulation FMU with the added benefit of allowing solver
options to be set and the solver to be changed. An additional benefit is that
the interpolation/extrapolation is done outside of the FMU allowing a user
the freedom to specify a different representation than what is defined in the
specification for co-simulation. The default behavior is although the same
as in the specification,

u(t) = u(Tn) +
k∑
i=1

1
i!
diu

dti
(t− Tn)i, t ∈ [Tn, Tn+1] (4.6)

where the derivatives are approximated using backward differences. For the
kth derivative at Tn we have,

dkun
dtk

= 1∏k
m=1(tn−m+1 − tn−m)

k∑
m=0

(
k

m

)
(−1)mun−m. (4.7)

4.3.2 Approaches
The approaches supported in the master algorithm is the parallel, i.e where
all the sub-systems are simulated in parallel over the same global integration
step and all input signals are extrapolated, see Algorithm 1. The extrapola-
tion is possible using either constant, linear, quadratic or cubic polynomials.
Additionally a staggered approach may be used where the sub-systems are
integrated in the order provided to the master algorithm. The signals are
either interpolated, if the sub-system has already been solved for the cur-
rent global integration step, or extrapolated if it has not been solved, see 2.
The degree of the polynomial can be set to the same as in the Jacobi case.
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Algorithm 1 Parallel step, (Tn → Tn+1)
Require: The models, the number of models N , the extrapolation order

K.
1: for i = 1 to N do
2: Set the ith model input, u[i]

n .
3: if K > 0, i.e. if using higher order extrapolation then
4: for k = 1 to K do
5: Set the kth input derivative to the ith model, dku[i]

n

dtk .
6: end for
7: end if
8: Perform global time step, Tn → Tn+1 for the ith model.
9: end for
10: for i = 1 to N do
11: Retrieve model outputs, y[i]

n+1.
12: end for

4.3.3 Error Estimations
Based on the method presented in [41], an error estimation procedure has
been implemented. The estimate is based on performing a global integration
step twice using different input, see Section 3.3.2. A first step is performed
using a step-size H. This step is compared with two steps of a step-size
H/2 where inputs and outputs between the sub-systems are updated before
taking the second step of step-size H/2. Error rejection is however difficult
as FMI 1.0 does not support a method for storing the internal state at a
previous time point. Using the extended model definition as described in
Section 4.3.1 one can however store the solver state, which for a model
exchange FMU without discontinuities is enough and step rejections are
possible. This is however not the entire truth as an model exchange FMU
may contain internal iteration variables that are not exposed and may cause
problems, but for "simple" FMUs, it is enough. In FMI 2.0, there is capabil-
ities for storing the full model state, including the solver, which will remove
this limitation.

4.3.4 Interface
The master algorithm is implemented in the Python programming language
and contained in a package called master. The main implementation and
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Algorithm 2 Staggered step, (Tn → Tn+1)
Require: The models, the number of models N , the extrapolation order

K.
1: for i = 1 to N do
2: if inputs are from a model < i then
3: Set the ith model input, u[i]

n+1.
4: if K > 0, i.e. if using higher order extrapolation then
5: for k = 1 to K do
6: Set the kth input derivative to the ith model, dku

[i]
n+1

dtk .
7: end for
8: end if
9: else
10: Set the ith model input, u[i]

n .
11: if K > 0, i.e. if using higher order extrapolation then
12: for k = 1 to K do
13: Set the kth input derivative to the ith model, dku[i]

n

dtk .
14: end for
15: end if
16: end if
17: Perform global time step, Tn → Tn+1 for the ith model.
18: Retrieve model outputs, y[i]

n+1.
19: end for
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the user entry-point is the Master class which needs to be imported from
the package.
from master import Master

The interface supports both models described by the FMI CS standard,
see Section 2.1, and models described by the FMI ME standard with the
additional coupling to Assimulo, see Section 2.1 and 4.3.1. The CS FMUs
can be loaded into Python via PyFMI, see Section 4.2, and the ME FMUs
are loaded using the extended model definition available in the package.
from pyfmi .fmi import FMUModelCS1 # For CS FMUs
from master import FMUModelME1Extended # For ME FMUs

For use in the Master class, the FMUs need to be loaded into a list.
models = [ FMUModelCS1 (" Subsystem1 "), FMUModelCS1 (" Subsystem2 ")]

This list may contain an arbitrary number of FMUs and a mix between
the variants. If the Jacobi approach is used for the overall simulation, the
ordering in the list is irrelevant. However, in the case of the Gauss-Seidel
approach, the ordering influence which model is simulated first, second and
so forth.

In order to simulate a coupled system, the coupling needs to specified.
Here the following convention is used. First, from which model is the vari-
able data coming from? It should be an index mapping to the model list,
starting from zero. Second, the name of the variable in the model where
data is coming from. Thirdly, the index of the receiving model and finally
the name of the receiving variable.
connections = [( var_from_ind ," x_chassi ",var_to_ind ," x_chassi "),

( var_from_ind ," v_chassi ",var_to_ind ," v_chassi ")]

The connection list can contain an arbitrary number of connections.
The models together with the their connections can then be loaded into

the Master class,
master_simulator = Master (models , connections )

and simulated using the simulate method.
res = master_simulator . simulate ( start_time =0.0, final_time =1.0)

The available options to the master algorithm is listed below.
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set_method
Specifies which approach to use in the simulation. Available methods
are the Jacobi and the Gauss-Seidel.
master_simulator . set_method (" JACOBI ")

set_step_size
Specifies the global step-size to be used in the simulation in case that
a fixed step-size method is used.
master_simulator . set_step_size (0.01)

set_extrapolation_order
Specifies the extrapolation order to be used in the simulation.
master_simulator . set_extrapolation_order (2)

use_richardson
Specifies if Richardson extrapolation, see Section 3.3.2, should be used
to produce an error estimation for which to base the step-size on.
master_simulator . use_richardson (True)

set_atol
Specifies the absolute tolerance to be used in case of step-size control,
i.e if error estimation has been activated. The tolerance is used to
control the step-size according to Equation 3.72.
master_simulator . set_atol (1e-4)

set_rtol
Specifies the relative tolerance to be used in case of step-size control,
i.e if error estimation has been activated. The tolerance is used to
control the step-size according to Equation 3.72.
master_simulator . set_rtol (1e-4)
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Chapter 5

Experiments

This chapter applies the software described in Chapter 4 on examples. The
intention is to demonstrate the capabilities of the software. The elapsed
simulation time is not shown in the examples as the focus, in this thesis,
is not on the performance. The focus is rather on the feature set and the
capabilities allowing for experimentation regarding co-simulation.

5.1 The Woodpecker

This example is intended to show how Assimulo can be used to solve hybrid
systems. The problem is that of a toy woodpecker, originally presented in
[32]. The difference is that in our case we consider impacts without friction.
The model consists of a vertical bar attached to the ground, a sleeve able
to slide along the bar and the woodpecker which is attached to the sleeve
via a spring, see Figure 5.1.

The model can be in either one of three states. In the first state, there is
no blocking and the sleeve is free to move along the bar. In the second state,
the sleeve is fixed with the bar at the upper left corner and the lower right
corner of the sleeve. Finally in the third state, the sleeve is also blocked
against the bar at the upper right corner and the lower left corner. The

69
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Figure 5.1: Schematic figure of the woodpecker.

linearized equations of motion are for the first state given by,

f1(z̈, ϕ̈S , ϕ̈B) = −(mS +mB)g (5.1a)
f2(z̈, ϕ̈S , ϕ̈B) = cp(ϕB − ϕS)−mBlSg − λ1 (5.1b)
f3(z̈, ϕ̈S , ϕ̈B) = cp(ϕS − ϕB)−mBlGg − λ2 (5.1c)

0 = λ1 (5.1d)
0 = λ2 (5.1e)

where,

f1(z̈, ϕ̈S , ϕ̈B) = (mS +mB)z̈ +mBlSϕ̈S +mBlGϕ̈B (5.2a)
f2(z̈, ϕ̈S , ϕ̈B) = (mBlS)z̈ + (JS +mBl

2
S)ϕ̈S + (mBlSlG)ϕ̈B (5.2b)

f3(z̈, ϕ̈S , ϕ̈B) = (mBlG)z̈ + (mBlSlG)ϕ̈S + (JB +mBl
2
G)ϕ̈B . (5.2c)

For the second state, the equations of motion are given by,

f1(z̈, ϕ̈S , ϕ̈B) = −(mS +mB)g (5.3a)
f2(z̈, ϕ̈S , ϕ̈B) = cp(ϕB − ϕS)−mBlSg − hSλ1 − rSλ2 (5.3b)
f3(z̈, ϕ̈S , ϕ̈B) = cp(ϕS − ϕB)−mBlGg (5.3c)

0 = hSϕ̈S (5.3d)
0 = ż + rSϕ̇S . (5.3e)
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mS = 3.0e-4 kg mB = 4.5e-3 kg JS = 5.0e-9 kgm JB = 7.0e-7 kgm
r0 = 2.5e-3 m rS = 3.1e-3 m hS = 5.8e-3 m lS = 1.0e-2 m
lG = 1.5e-2 m lB = 2.01e-2 m hB = 2.0e-2 m cP = 5.6e-3 N/rad
g = 9.81 m/s2

Table 5.1: Parameters used in the woodpecker example, see Section 5.1.

Finally for the third state, the equations of motion are given by,

f1(z̈, ϕ̈S , ϕ̈B) = −(mS +mB)g − λ2 (5.4a)
f2(z̈, ϕ̈S , ϕ̈B) = cp(ϕB − ϕS)−mBlSg + hSλ1 − rSλ2 (5.4b)
f3(z̈, ϕ̈S , ϕ̈B) = cp(ϕS − ϕB)−mBlGg (5.4c)

0 = −hSϕ̈S (5.4d)
0 = ż + rSϕ̇S . (5.4e)

The parameter values are defined in Table 5.1.

A change of state is determined by switching conditions. Changing from
the first state, where the sleeve is free to slide, occurs when,

hSϕS > rS − r0 and ϕ̇B > 0 (5.5)

or when
hSϕS < −(rS − r0) and ϕ̇B < 0. (5.6)

In the first case, the state is changed to the third state and in the second
case the state is changed to the second state. Changing to the first state
from the second or the third state occurs when,

λ = 0. (5.7)

There is one additional state change that can occur, namely when the wood-
pecker hits the bar. However, after the impact, the state is directly changed
to the previous state. The woodpecker hits the bar when,

hBϕB > lS + lG − lB − r0. (5.8)
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This leads to four event indicators (or root functions) that needs to be
monitored during the integration. The event indicators are given by,

g1 = hSϕS + (rS − r0) (5.9a)
g2 = hSϕS − (rS − r0) (5.9b)
g3 = λ1 (5.9c)
g4 = hBϕB − lS − lG + lB + r0. (5.9d)

When the model changes to either of the blocking states, the momentum
is preserved, i.e I− = I+. The momentum prior to the impact, I−, is given
by,

I− = mBlGż
− + (mBlSlG)ϕ̇−S + (JB +mBlG)ϕ̇−B (5.10)

where the superscript ż− indicates the value prior to the impact. Post
impact, the sleeve is in a blocking state and thus ż+ = 0 and ϕ̇+

S = 0,
allowing computation of ϕ̇+

B using that,

I+ = mBlGż
+ + (mBlSlG)ϕ̇+

S + (JB +mBlG)ϕ̇+
B . (5.11)

For the case when the woodpecker hits the bar, the angular velocity of the
woodpecker, ϕ̇B , changes sign.

Simulating the model using Assimulo requires that first the problem
class and the solver class is imported into Python.
from assimulo . problem import Implicit_Problem
from assimulo . solvers import IDA

the model is a hybrid DAE and in this case we imported the solver IDA for
performing the simulation. The residual is defined in a method res using
Equation 5.1, 5.3 and 5.4,
def res(t,y,yd ,sw):

z,phiS ,phiB ,zp ,phiSp ,phiBp ,lam1 ,lam2 = y
zpp ,phiSpp , phiBpp = yd[3:6]

pre1 = (mS+mB)*zpp+mB*lS* phiSpp +mB*lG* phiBpp
pre2 = mB*lS*zpp+(JS+mB*lS**2)* phiSpp +mB*lS*lG* phiBpp
pre3 = mB*lG*zpp+mB*lS*lG* phiSpp +(JB+mB*lG**2)* phiBpp

res_01 = y[3]-yd[0]
res_02 = y[4]-yd[1]
res_03 = y[5]-yd[2]
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if sw[0]: # State 1
res_1 = pre1+(mS+mB)*g
res_2 = pre2-cP*(phiB-phiS)+mB*lS*g+lam1
res_3 = pre3-cP*(phiS-phiB)+mB*lS*g+lam2
res_4 = lam1
res_5 = lam2

if sw[1]: # State 2
res_1 = pre1+(mS+mB)*g+lam2
res_2 = pre2-cP*(phiB-phiS)+mB*lS*g+hS*lam1+rS*lam2
res_3 = pre3-cP*(phiS-phiB)+mB*lG*g
res_4 = hS* phiSpp
res_5 = zp+rS* phiSp

if sw[2]: # State 3
res_1 = pre1+(mS+mB)*g+lam2
res_2 = pre2-cP*(phiB-phiS)+mB*lS*g-hS*lam1+rS*lam2
res_3 = pre3-cP*(phiS-phiB)+mB*lG*g
res_4 = -hS* phiSpp
res_5 = zp+rS* phiSp

return N. array ([res_01 ,res_02 ,res_03 ,res_1 ,res_2 ,res_3 ,res_4
, res_5 ])

The argument sw are the switches which are kept constant during the inte-
gration and only changed at an event. The event indicators, Equations 5.9,
are defined in a state_events method.
def state_events (t,y,yd ,sw):

z,phiS ,phiB ,zp ,phiSp ,phiBp ,lam1 ,lam2 = y
zpp ,phiSpp , phiBpp = yd[3:6]

event_1 = hS*phiS+(rS-r0)
event_2 = hS*phiS-(rS-r0)
event_3 = lam1
event_4 = hB*phiB-lS-lG+lB+r0

return N. array ([event_1 ,event_2 ,event_3 , event_4 ])

The third method that is defined handle the events once they have been
detected. This is the method responsible for the actual transition between
the states and it is called once an event indicator has indicated an event.
def handle_event (solver , event_info ):

events = event_info [0]
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if solver .sw[0]: #We are in the first state
if events [0] and solver .y[5] < 0: # Switch from 1 to 2

solver .sw[0] = False
solver .sw[1] = True

solver .y[5] = 1./(JB+mB*lG**2)*(mB*lG* solver .y[3]+mB
*lG*lS* solver .y[4]+(JB+mB*lG**2)* solver .y[5])

solver .y[3] = 0.0
solver .y[4] = 0.0

return

if events [1] and solver .y[5] > 0: # Switch from 1 to 3
solver .sw[0] = False
solver .sw[2] = True

solver .y[5] = 1./(JB+mB*lG**2)*(mB*lG* solver .y[3]+mB
*lG*lS* solver .y[4]+(JB+mB*lG**2)* solver .y[5])

solver .y[3] = 0.0
solver .y[4] = 0.0

return

if solver .sw[1]: #We are in the second state
if events [2]: # Switch from 2 to 1

solver .sw[1] = False
solver .sw[0] = True
return

if solver .sw[2]: #We are in the third state
if events [2] and solver .y[5] < 0: # Switch from 3 to 1

solver .sw[2] = False
solver .sw[0] = True
return

if events [3] and solver .y[5] > 0: # Woodpecker hit
solver .y[5] = - solver .y[5]

return

Prior to starting the simulation, initial conditions are specified. They
are specified such that the woodpecker start in the second state.

y0 = [0.0, -0.1, -0.65 , 0.0 ,0.0 ,0.0 ,0.0 , 0.0]
yd0 = [0.0, 0.0, 0.0, 0.0 ,0.0 ,0.0 ,0.0, 0.0]
switches0 = [False ,True , False ]
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Using the initial conditions together with the residual method, an implicit
problem is created.
woody = Implicit_Problem (res ,y0 ,yd0 ,sw0= switches0 )

Additional information is provided to the problem, such as the event indi-
cators, how to handle an event once it has been detected and also the name
of the problem together with which variables are the states and which are
the algebraic.
woody . state_events = state_events # Provide the event indicators
woody . handle_event = handle_event # How to handle an event
woody .name = " Woodpecker w/o friction "

# Specify the state (1) and the algebraic (0) variables
woody . algvar = [1]*6+[0]*2

A simulation is finally performed using the simulate method, where
we have additionally specified that the algebraic variables is to be excluded
from the error test.
sim = IDA( woody )

# Specify simulation options
sim. suppress_alg = True # Suppress the algebraic variables

# from the error test .

t,y,yd = sim. simulate (0.16)

The computed solution trajectories are returned and stored in t, y and yd.
In Figure 5.2, the result is shown for when simulating the woodpecker

0.16 seconds and 1.0 second using the solver IDA. The simulations were
performed with the default tolerance 10−6 for the absolute and the relative
tolerance. For the first simulation, the woodpecker hit the bar two times
and for the second simulation 11 times.

In this example is has been shown that Assimulo is able to handle
hybrid DAEs. The flexibility in defining events and how to handle them are
additionally highlighted.

5.2 The Monolithic Race Car
For racing applications, finding the maximal performance of the car is cru-
cial. One method to quickly estimate the impact on performance of a change
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Figure 5.2: Simulation results for when simulating the woodpecker from Section
5.1. The model was simulated using the solver IDA for 0.16 seconds (left figure)
and 1.0 seconds (right figure). The tolerances was set to 10−6 for both the absolute
and the relative tolerance.

to the vehicle setup is to solve for the steady state limits under different
driving conditions. Identifying a set of critical points along a race track and
calculating the maximum achievable speed for each point can give a good
indication on how the change will affect the lap time. To investigate the
dynamic response, simulations can be carried out with predefined input or
by a feedback loop using either a simulator or a virtual driver model.

In this example, a race car is modeled in Dymola and exported to an
model exchange FMU. In the example, the car is driven by a virtual driver
that tries to stay onto an eight shaped course with increasing velocity in or-
der to investigate the dynamic response of the car, especially when changing
the turning direction.

This example is intended as a demonstration that PyFMI together with
Assimulo is able to simulate large complex models. The model contains
about 90k parameters, constants and variables resulting in that the XML
data file is 700k lines. There are 47 continuous states and 44 event indica-
tors.

The FMU is imported into Python, by means of PyFMI, and made
available for simulation using the integrators in Assimulo. A simulation is
performed by creating a Python script which imports the necessary packages
and then load the FMU into a Python object. Parameters and solver options
are in turn changed with the available high-level interface. Once the options
have been specified, if any, a call to simulate performs the simulation.
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Finally, the result can be retrieved and visualized using either the graphical
user interface or directly using the Matplotlib package. Below, a Python
script for a simulation of the race car is shown.
from pyfmi import load_fmu

model = load_fmu (" FormulaStudent_Eight .fmu")

# Change the initial position of the steering wheel
model .set(" steeringInEight . left_turn ", -1.0)

# Change the number of result points ( ncp)
opts = model . simulate_options ()
opts["ncp"] = 1000

# Simulate the model with the specified options
res = model . simulate ( final_time =30 , options =opts)

The model is simulated using the solver CVODE in Assimulo for 30
seconds. In Figure 5.3, the resulting angle of the steering wheel is shown
together with the position of the race car.
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Figure 5.3: Results from a simulation of the race car, in Section 5.2, driving on
an eight shaped course. The left figure shows the angle of the steering wheel while
the right figure shows the position of the race car. The model was generated as an
FMU from Dymola and simulated in Assimulo using the solver CVODE.

The result can easily be compared with simulations of the original model
in Dymola and with different integrators connected in Assimulo. In Figure
5.4, a comparison is made of the angle of the steering wheel when using
two different integrators in Assimulo, CVODE and LSODAR, versus a
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simulation with the integrator DASSL on the original model in Dymola. The
tolerances was set to 10−6, both for the relative and the absolute tolerance
for the Assimulo integrators while in DASSL, 10−10. As can be seen from
the figures, both CVODE and LSODAR produces comparable results with
DASSL.
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Figure 5.4: Comparison between a simulation of the original model of the race
car, in Section 5.2, in Dymola using DASSL with simulations of an FMU of the
race car using the integrators LSODAR and CVODE from Assimulo. The left
figure shows the difference of the steering wheel angle between the different inte-
grators while the right figure shows the actual angle calculated using the different
integrators.

The example demonstrates the potential of the presented software to
connect industrial models from acknowledged modeling software to a wide
range of ODE integrators.

5.3 Quarter Car
In this example, a quarter car, see Figure 5.5, is simulated with step-size
control. In a co-simulation setup, this example was discussed in [41]. The
quarter car is governed by the equations,

mcẍc = kc(xw − xc) + dc(ẋw − ẋc) (5.12a)
mwẍw = kw(0.1− xw) + kc(xw − xc) + dc(ẋw − ẋc) (5.12b)
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Figure 5.5: The quarter car from Section 5.3.

with the constants, mw = 40kg, mc = 400kg, kw = 150000N/m, kc =
15000N/m and dc = 1000Ns/m.

The system is decoupled with the chassis being one sub-system and the
wheel another. The coupling is given by

y = I


xc
ẋc
xw
ẋw

 (5.13a)

u =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 y (5.13b)

where there is no direct feed-through.
FMUs of the sub-systems was generated using JModelica.org 1.10 as

model exchange FMUs. The intention is to use the extended model defini-
tion of a model exchange FMU, as discussed in Section 4.3.1. This due to
that we need to store the solver state in order to repeat a global step which
is needed in the step-size control.

To use the implemented master algorithm described in Section 4.3 to
simulate the coupled system the extended model definition and the algo-
rithm itself needs to be imported.
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from master import Master
from master import FMUModelME1Extended

The FMUs are then loaded into Python.

# Load the FMUs using the extended model definition
model_wheel = FMUModelME1Extended ( fmu_wheel )
model_chassi = FMUModelME1Extended ( fmu_chassi )

The coupling is specified by a connection matrix where the first number
specifies the index in the models list from where the output should be
retrieved from. The second part specifies to what sub-system the values
should be provided and to which variable.

# Specify the coupling
connections = [(0," x_chassi ",1," x_chassi "),

(0," v_chassi ",1," v_chassi "),
(1," x_wheel ",0," x_wheel "),
(1," v_wheel ",0," v_wheel ")]

The next step is to load the master algorithm and specify optional options.

models = [ model_chassi , model_wheel ]

# Load the models into the master algorithm
master_simulator = Master (models , connections )

# Set the option to use error estimation based
#on Richardson extrapolation
master_simulator . use_richardson (True)
master_simulator . set_atol (1e-4)
master_simulator . set_rtol (1e-4)

The use of Richardson for the error estimation is specified as well as both
the absolute and the relative tolerance. The tolerances was set to 10−4.
Finally the coupled system can be simulated using the simulate method.

# Simulate the coupled system
res = master_simulator . simulate ( final_time =1)

In Figure 5.6 the result is shown for both the position and the velocity. The
figures also show the reference trajectory which was calculated by simulating
the monolithic system using the solver CVode with a tolerance of 10−12. The
monolithic system was exported as an model exchange FMU using the same
version of JModelica.org and simulated using PyFMI/Assimulo. In Figure
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Extrapolation order 0 1 2
Number of global steps 300 92 71
Number of error test failures 4 1 5

Table 5.2: Simulation statistics for when simulating the Quarter Car in Section
5.3 using various order on the extrapolation. The simulation was performed using
the parallel approach together with variable step-size and an absolute and a relative
tolerance of 10−4.

5.7 the estimated error is shown together with the global step-size and the
time points where a step rejection occurred.

0.0 0.2 0.4 0.6 0.8 1.00.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Po
si

tio
n 

[m
]

x_chassi
x_chassi (ref)

0.0 0.2 0.4 0.6 0.8 1.00.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

x_wheel
x_wheel (ref)

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

0.2

0.0

0.2

0.4

0.6

Ve
lo

ci
ty

 [m
/s

]

v_chassi
v_chassi (ref)

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

3
2
1
0
1
2
3
4
5

v_wheel
v_wheel (ref)

Quarter car using constant extrapolation

Figure 5.6: The velocity and the position of the quarter car from Section 5.3
together with the reference solution.

Simulations using higher order extrapolation was additionally carried
out to investigate the influence of the extrapolation order on the number
of steps. In Table 5.2, simulation statistics is shown for when using various
order on the extrapolation. As can be seen from the table, using a higher
order extrapolation polynomial results in a decrease of the number of steps.



82 CHAPTER 5. EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

10-3

10-2

10-1

100

101 Quarter car using constant extrapolation

Error
Step-size
Rejected Steps

Figure 5.7: The normalized estimated error together with the global step-size and
the time points for where a step was rejected when simulating the quarter car from
Section 5.3. The simulation was carried out using constant extrapolation together
with a relative and an absolute tolerance of 10−4.

The example shows that we are able to reproduce the results in [41]
using the developed tools.

5.4 Race Car
Revisiting the race car from Section 5.2, where we had a model of a race
car driven by a virtual driver, see Figure 5.8. The aim of the simulation
is to investigate the dynamic response of the car when the driver tries to
stay onto an eight shaped course with increasing velocity. In Section 5.2,
simulations was carried out on the monolithic model, in this section, the
model will be simulated in a co-simulation setting. The race car and the
driver is divided into five separate sub-systems, the chassis and the driver
consisting of one sub-system and each of the wheels as one sub-system. The
chassis and the driver sub-system is from now on referred to as the chassis
sub-system. The separation of the system is a valid approach considering
that it is not uncommon that the wheel-models are provided externally.

The chassis does not contain any direct feed-through terms. However,
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Figure 5.8: Visualization of the race car in Section 5.4.

there is direct feed-through in the wheels. The chassis contain 37 continuous
states and the wheels 3 each.

The full system model was modeled in Dymola 2014 and exported as
an model exchange FMU. The reference solution was calculated using the
solver CVode from Assimulo with a relative tolerance of 10−8. The sub-
systems was additionally generated from Dymola, both as co-simulation
FMUs and model exchange FMUs, where the wheels are represented by the
same FMU.

Simulating the coupled system requires that the models are loaded into
Python. This is performed by the following statements,

from pyfmi import load_fmu

model_chassi = load_fmu (" Chassis .fmu")
model_wheel_rf = load_fmu (" TyreForcesSlick .fmu")
model_wheel_lf = load_fmu (" TyreForcesSlick .fmu")
model_wheel_rb = load_fmu (" TyreForcesSlick .fmu")
model_wheel_lb = load_fmu (" TyreForcesSlick .fmu")

This loads the co-simulation FMUs into Python. If instead, an extended
model exchange FMU is to be used, the load_fmu method should be re-
placed by FMUModelME1Extended. The second step is to specify the connec-
tion between the sub-systems, there is a total of 172 connections. For each
wheel, there are six outputs connecting to the chassis and 37 inputs from
the chassis. Using the method get_model_variables and filtering on the
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inputs and outputs together with a name filter, the connections can easily
be created. The method defined below is used as a helper method as the
connections are the same for all wheels, except for a number representing
where the wheel is connected to the chassis.
def create_connections (m_c , m_w , wheel_number ):

# Get the inputs and outputs from the wheel
vars_in_w = m_w. get_model_variables ( causality =FMI_INPUT ,

include_alias = False )
vars_out_w = m_w. get_model_variables ( causality = FMI_OUTPUT ,

include_alias = False )

# Get the inputs and outputs from the chassi
vars_in_c = m_c. get_model_variables ( causality =FMI_INPUT ,

include_alias =False , filter ="?"+str( wheel_number )+"???")
vars_out_c = m_c. get_model_variables ( causality = FMI_OUTPUT ,

include_alias =False , filter =["* Frame "+str( wheel_number )+
"*","* Velocity "+str( wheel_number )])

# Create the connection list
connection_list = []
for var in vars_out_w .keys ():

connection_list . append (( wheel_number ,var ,0,var. replace ("
1",str( wheel_number ),1)))

for var in vars_out_c :
connection_list . append ((0,var , wheel_number ,var. replace (

str( wheel_number ),"",1)))

return connection_list

The actual connection list is created calling this method for each wheel.
connections = []
connections . extend ( create_connections ( model_chassi ,

model_wheel_rf ,1))
connections . extend ( create_connections ( model_chassi ,

model_wheel_lf ,2))
connections . extend ( create_connections ( model_chassi ,

model_wheel_rb ,3))
connections . extend ( create_connections ( model_chassi ,

model_wheel_lb ,4))

The number represents the position of the wheel, number 1 represents right
front, 2 left front, 3 right back and number 4 represents the left back wheel.

Initializing the coupled system requires that the sub-systems are initial-
ized in a specific order. First, the chassis sub-system is initialized and when
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finished, the values computed in the chassis for the connection variables is
set to the wheels. The wheels are in turn initialized.
model_chassi . initialize (0.0, tf , True)

# Exchange data
for conn in connections :

# Connection from model ( chassi ) 0 to model ( wheel rf) 1
if conn[0] == 0 and conn[2]==1:

model_wheel_rf .set(conn[3],model_chassi .get(conn[1]))

# Connection from model ( chassi ) 0 to model ( wheel lf) 2
if conn[0] == 0 and conn[2]==2:

model_wheel_lf .set(conn[3],model_chassi .get(conn[1]))

# Connection from model ( chassi ) 0 to model ( wheel rb) 3
if conn[0] == 0 and conn[2]==3:

model_wheel_rb .set(conn[3],model_chassi .get(conn[1]))

# Connection from model ( chassi ) 0 to model ( wheel lb) 4
if conn[0] == 0 and conn[2]==4:

model_wheel_lb .set(conn[3],model_chassi .get(conn[1]))

model_wheel_rf . initialize (0.0, tf , True)
model_wheel_lf . initialize (0.0, tf , True)
model_wheel_rb . initialize (0.0, tf , True)
model_wheel_lb . initialize (0.0, tf , True)

The arguments to the initialization method is the start time of the simu-
lation, the final time of the simulation and if the final simulation time is
known.

The sub-systems together with the connections is next provided to the
master class.
models = [ model_chassi , model_wheel_rf , model_wheel_lf ,

model_wheel_rb , model_wheel_lb ]
master_simulator = Master (models , connections )

The options in the master class is modified using the methods below.
master_simulator . set_step_size ( step_size )
master_simulator . set_extrapolation_order ( extrapolation_order )
master_simulator . use_output_iteration ( output_iteration )

The coupled system was simulated both as a native co-simulation FMU and
as an extended model exchange FMU. The simulate method was invoked
as shown below.
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res = master_simulator . simulate ( final_time =5, initialize_slaves =
False )

As the sub-systems already are initialized, the initialization flag to the
simulate method is set to false.

In Figure 5.9 the result is shown for a simulation of both the native
FMUs and the extended FMUs, with the solver CVode, using a global step-
size of H = 0.001 and using the parallel approach. In Figure 5.10, the result
is shown for the cases where iteration on the output variables is used. As
the results show, the impact of using iteration on the output variables is
negligible in this case.
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Figure 5.9: Comparison between a simulation of the monolithic model of the
race car, in Section 5.4, as an model exchange FMU using the solver CVode from
Assimulo with a relative tolerance of 10−8 with simulations of the coupled system,
both using native FMUs and extended FMUs. The global step-size was H = 0.001.
The left figure shows the difference of the position of the race car while the right
figure shows the difference of the steering wheel angle.

In this example, it has been shown that co-simulating a race car using
the developed sofware is possible.
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Figure 5.10: Comparison between a simulation of the monolithic model of the
race car, in Section 5.4, as an model exchange FMU using the solver CVode from
Assimulo with a relative tolerance of 10−8 with simulations of the coupled system,
both using native FMUs and extended FMUs. The global step-size was H = 0.001
and iteration on the output variables was used. The left figure shows the difference
of the position of the race car while the right figure shows the difference of the
steering wheel angle.
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Chapter 6

Discussion

6.1 Summary

Co-Simulation is an interesting and active research field where industry
is a driving force, especially after the release of the Functional Mock-up
Interface. The potential of coupling state-of-the art modeling tools using a
standardized format and being able to utilize each tools strength was met
with much interest. In this thesis simulation of coupled systems in a co-
simulation approach has been presented from the view of the Functional
Mock-up Interface and block representation of the sub-systems. Different
methods for co-simulation has been presented and tested in a developed
framework. The stability problems that may occur when simulating coupled
systems has been described and additionally how it can be handled. An
approach for error estimation has been discussed and tested.

The thesis has presented an open framework for evaluating and testing
co-simulation approaches. It has described the developed software, PyFMI
and Assimulo together with the master algorithm. The framework devel-
oped has been successful in being able to evaluate co-simulation approaches
on both academic test examples and on industrially relevant models.

The main contribution has been the developed software which will serve
as a foundation for future research.

89
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6.2 Future Work
Co-Simulation is an active research field with areas still unaddressed. There
is however, a growing community targeting them, especially around the
Functional Mock-up Interface. To name a few areas,

Discontinuous Systems
An area which is largely unexplored is co-simulation of discontinuous sys-
tems. Consider when there is a state event in one of the sub-systems, which
leads to discontinuities in the solution. How should this information be
propagated and handled by the master algorithm? What if the discontinu-
ity triggers an event in another sub-system? In FMI 1.0 for instance, there
is no way of knowing if an event has occurred or not which could lead to
unsatisfactory behavior.

Sub-System Errors
Another area worth exploring is whether or not the knowledge of the sub-
system errors, i.e. the error estimate of the local solvers, can be used to
improve the master algorithm. Especially in the case when trying to adapt
the global step-size to a meet a user defined tolerance. Currently the er-
ror estimation procedure discussed in Section 3.3.2 assumes that the sub-
systems are solved exactly which is not the case. Knowledge of the errors
may be used to create an even more accurate estimation of the error in the
master algorithm.

Impact of the solver
Choosing an appropriate solver to be used in export of FMUs is an area
also worth further exploration. For example, using one of the acknowledged
and popular multistep methods, for instance CVode, might not be the best
choice depending on the use of the FMU. If using the FMU together with
constant extrapolation, resulting in a piece-wise constant input trajectory,
which in turn is similar to integrating over a discontinuity. This results in
problem for the integrator where it has to reduce the step-size significantly
in order to possibly be able to pass the discontinuity. If on the other hand
a one-step method was used in the FMU, the problem is no longer present
and a possible performance increase is achieved.
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Investigating the options provided to the underlying solver is also of
interest as the options may impact the performance. An example is the size
of the initial step.
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