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Evidence for the formation of quasibound states in an asymmetrical quantum point contact

Phillip M. Wu,* Peng Li, Hao Zhang, and A. M. Chang
Department of Physics, Duke University, Physics Building, Science Drive, Durham, North Carolina 27708, USA

(Received 27 December 2011; published 10 February 2012)

Features below the first conductance plateau in ballistic quantum point contacts (QPCs) are often ascribed to
electron interaction and spin effects within the single mode limit. In QPCs with a highly asymmetric geometry, we
observe sharp resonance peaks when the point contacts are gated to the single mode regime, and surprisingly, under
certain gating conditions, a complete destruction of the 2e2/h first quantum plateau. The temperature evolution
of the resonances suggest non-Fermi-liquid behavior, while the overall nonlinear characterizations reveal features
reminiscent of the 0.7 effect. We attribute these unusual behaviors to the formation of a quasibound state, which
is stabilized by a momentum mismatch accentuated by asymmetry.

DOI: 10.1103/PhysRevB.85.085305 PACS number(s): 73.23.−b, 73.63.−b

I. INTRODUCTION

The conductance of a quantum point contact (QPC), a
narrow constriction connecting two regions of an electron
gas, is known to be quantized in units of G0 = 2e2/h.1,2

This quantization can be understood within a framework of
noninteracting electrons, where the electrons are backscattered
by the potential created by the walls of the constriction, and
the conductance depends only on the transmission coefficient.3

However, additional features below the first quantized plateau
at 0.7G0 was observed4 and cannot be explained within
the Landauer formalism. This 0.7 structure has instead been
attributed to electron interaction and spin effects.5–9 Several
scenarios have been proposed to account for the 0.7 struc-
ture, including the formation of a quasibound state in the
constriction,10,11 or a novel zigzag Wigner crystal.7 To date,
its origin remains controversial.

In this work we report on unusual features in the con-
ductance of QPCs with an unconventional, asymmetric gate
geometry. In contrast to the standard geometry, where two
symmetrically placed finger gates define the QPC constriction
(with no top gate considered), one of the finger gates is
replaced by a long wall gate. We find new features which
point to the formation of a quasibound state within the QPC
constriction: First, sharp resonance peaks are present when
the QPCs are gated below G0. The resonance line shape
conforms to the derivative of the Fermi function, but with
an effective temperature which exceeds the lattice temperature
at low T . The overall behavior strongly suggests non-Fermi-
liquid behavior—notably within the first quantum channel
where the resonances are most pronounced, the integrated
area under the conductance curve significantly exceeds that
expected for a Fermi liquid. The energy spacing between
successive peaks also exhibits anomalous behavior, and stays
fixed even as their energy position is shifted toward the
next subband continuum. Second and surprisingly, in some
geometries a complete destruction of the first quantized
plateau at 2e2/h is observed. Such a behavior was completely
unexpected, and from a theoretical perspective has only been
seen in numerical simulations when a quasibound state is
introduced.12,13 Other features bear similarity to symmetric
QPCs: Nonlinear characterizations reveal features reminiscent
of the 0.7 structure, such as the 0.25 plateau at high dc
bias, and point to the possibility of ferromagnetic properties.

We attribute these striking behaviors to the formation of
a quasibound state, stabilized by a momentum mismatch
accentuated by asymmetry.14

II. SAMPLE AND MEASUREMENT

Ti/Au gates were patterned using electron beam lithog-
raphy on a GaAs/AlGaAs heterostructure containing a two-
dimensional (2D) electron gas 80 nm below the surface,
with carrier mobility μ = 9 × 105 cm2/Vs and density n2D =
3.8 × 1011 cm−2. Voltages were applied unequally to the QPC
gates by fixing one while sweeping the other. Conductance
traces were obtained by applying an excitation voltage of
Vac = 10 μV (<kBT/e, where kB is the Boltzmann constant)
across the QPC at 17.3 Hz, and measuring the current using
a lock-in amplifier after conversion to a voltage in an Ithaco
1211 current amplifier.

III. NOVEL FEATURES IN THE
ASYMMETRIC GEOMETRY

In Fig. 1 we contrast the behavior in a standard geometry
with symmetric gates [Fig. 1(a)] with those in the asymmetric
geometry of differing gaps [Figs. 1(b)–1(d)]. In the symmetric
case, one finger gate (labeled Vwall) is held fixed, while the
other (labeled Vf ) is swept. The unequal voltage gating shifts
the conductance plateaus as Vwall is stepped. Typical of several
devices made, the 0.7 structure is observable in several traces
between Vf = −2.5 to −1.5 V; no other anomaly is found
regardless of the gap width.15 When the fixed Vwall voltage is
more negative (left to right), the confinement potential across
the gap is expected to become sharper as the total number of
quantized plateaus observed decreases.16 At the same time, the
pinchoff voltage where the conductance is shut to zero shifts
rightward, while the density in the single channel (mode) limit
decreases.

The behaviors in the asymmetric devices are notably
different as shown in Figs. 1(b)–1(d). Numerous features
are present below and above G0; here we focus on the
single channel (mode) limit. In particular, sharp resonances
below G0 are observed for all QPC gaps, and in 300-nm
gap samples a completely suppressed G0 trace is observed.
These conductance features are fully reproducible within
the same cool-down, as shown in Fig. 1(b). For a given
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FIG. 1. (a) Unequally gated conductance traces in the symmetric
geometry. Each trace is obtained with a fixed voltage on one gate
(denoted Vwall) while sweeping the voltage on the other gate (Vf ).
Leftmost trace has Vwall = −2 V, which is decremented in 50 mV
steps until Vwall = −3.5 V in the rightmost trace. (b)–(d) Traces
for asymmetric QPCs with lithographic gap widths of (b) 250 nm,
(c) 450 nm, and (d) 300 nm, respectively. The temperature is 300 mK
for all traces. Doubling of traces in (b) shows reproducibility. Arrow in
(d) indicates a trace with fully suppressed 2e2/h plateau. Inset shows
two QPCs back to back; one is gated shut during measurement.

device, different cool-downs from room temperature also give
qualitatively similar behavior, despite shifts in position, see
Fig. 2. These shifts arise due to the fact that in devices
fabricated on modulation-doped GaAs/AlGaAs crystals, the
donors which give up the electrons to the 2D electron gas
invariably freeze into different configurations for different
cool-downs. Thus the exact shape of the potential landscape
in the QPC varies slightly between cool-downs. To further
underscore the robustness of our findings, in Fig. 3 we show
similar behaviors in yet another 300-nm gap device.

A. Resonances and a simple one-dimensional model of
multiple reflection

Resonances in the conductance have been observed
previously,17–19 but as we discuss below, the mechanism
causing the resonances in our case is completely distinct from
previous work. We emphasize that the resonances arise from
geometry, rather than from an impurity residing within, to
the side, or underneath the channel. Oscillations on the G0

plateau were attributed to multiple reflections off the QPC
entrance and exit.20 However, no sharp resonances below G0

were observed in their case. In our situation, the asymmetric
geometry can produce resonances when multiple reflections
from the QPC entrance and exit become accentuated due to
a momentum mismatch to the wide 2D regions,14 in analogy
to the strictly one-dimensional (1D) case of a free particle
impinging on a rectangular up-step in the potential (see Fig. 4).
As the energy of the incoming particle increases, successive
resonances are produced as the energy matches and crosses
those of quasibound states. In the simplest scenario, the
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FIG. 2. (Color online) (a) Evolution of the suppressed 2e2/h

plateau in an increasing external magnetic field applied perpendicular
to the 2DEG plane at 4.2 K. The 2e2/h plateau recovers around
or below 1 T, suggesting an energy of 0.43–0.85 meV (5–10 K)
(taking the value at midgap for the Landau gap of 1.7 meV at 1 T).
(b) Temperature dependence of the suppression traces offset horizon-
tally for clarity. The 4e2/h plateau is thermally smeared by 6 K, but
the resonance features near e2/h and (0.5)e2/h persist up to 10 K,
consistent with the energy scale set by the field dependence. Even
at 18 K, an inflection in the conductance at e2/h is still discernible.
Dashed line shows the subtracted background for Fig. 10(a). Note that
the slope just above the resonance features appears to be independent
of temperature for traces between 2 and 10 K. (a) and (b) are separate
measurements taken from the same device in two distinct cryogenic
systems.

occurrence of the bounded states are analogous to resonances
in a Fabry-Perot optical interferometer, and corresponds to
fitting a half-integer number of wavelengths (on the step)
within the length of the step. Because the left and right steps
are symmetrical, at a resonance, the transmission is perfect,
and attains a value of unity. For completeness we reproduce
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FIG. 3. (Color online) 300-nm gap sample with 100 nm finger.
Traces measured at 300 mK.
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FIG. 4. Drawings of the 1D model with an up-step in the potential
showing (a) symmetric rise and fall and (b) unequal rise and fall.
(c) Simulated T (E) = (h/e2)G as a function of incident energy for
the model of (b).

the expression for the transmission probability T , the modulus
squared of the transmission coefficient (spin not included):

T (E) = 4k2k′2

4k2k′2cos2(k′b) + (k2 + k′2)2sin2(k′b)
. (1)

Here E is the energy of the particle in the free region
outside of the up-step potential, k = √

2m∗E/h̄, Vo is the
up-step potential value, m∗ is the effective mass, and k′ =√

2m∗(E − Vo)/h̄ is the wave number on the step.
In our experiment, there is no reason to expect the lithogra-

phy to be so ideal as to give rise to a perfectly symmetrical step
in its rise and fall. To account for a difference in the coupling at
the entrance and at the exit of the QPC, we introduce additional
thin regions at the rise and fall of the potential step, where the
barriers are not identical [either differing in barrier height, or
in thickness, or both, see Fig. 4(b)]. This simple model without
the inclusion of electron-electron Coulomb interaction is able
to produce traces as a function of incident electron energy,
which qualitatively resembles our data [Fig. 4(c)].

Our simple model is further supported by results from a
longer channel device (see Fig. 5). Up to five resonance fea-
tures are visible instead of two. This indicates that the number
of resonances increases as the channel length increases, as
one would expect from the geometry. The similar behavior

−1.35 −1.325 −1.3 −1.275 −1.25 −1.225 −1.2 −1.175 −1.15 −1.125

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
f
 (V)

G
 (

2e
2 /h

)

Sample #2
250 nm gap
500 nm channel

V
wall

=−1.05 V

V
wall

=−1.15 V

FIG. 5. 250-nm gap, 500-nm-long device showing up to five
resonant features at 4.2 K.

observed for all asymmetric devices under multiple thermal
cycles suggest that the asymmetric constriction geometry gives
rise to the resonances, and this distinguishes our results from
those that arise from accidental hydrogenic impurities17 or
from the presence of an intentional side channel in parallel
with the QPC.18,19 Finally, to make even closer contact
with the theoretical literature which analyzed conductance
through a QPC, it is worthwhile to point out that early on
several groups, including Szafer and Stone,21 van der Marel
and Haanappel,22 Kirczenow,23 Bagwell,24 and others, had
analyzed more realistic models with a 2D region coupled
to a 1D channel, and with varying degree of abruptness in
the transition between the two regions. There they found that
when the transition is abrupt, many resonance-like oscillations
are produced. In these analyses, typically the entrance and
exit have identical transition regions. Thus at T = 0, the
transmission becomes unity on resonance. Otherwise, the
similarity with the behavior found in our simple model is quite
substantial. On the experimental front, Lindelof and Aagesen
also reported interference type oscillations on the plateau.20

They ascribed these to multiple reflections. However, sharp
resonances were not observed.

B. Unusual characteristics of resonance peaks—Peak width

The resonances we observed exhibit unusual character-
istics. One unusual characteristic of the resonance peaks
is the apparent constancy of the peak width, even as the
peak moves upward on the rising background. The width is
estimated using two methods. In the first method, the full-
width-at-half-maximum (FWHM) is estimated by taking the
difference between the positions to each side of the peak con-
ductance, where the conductance takes on 1/2 the amplitude
between the peak and respective trough values. An alternative
method is based on first subtracting a background, and then
fitting to the derivative of the Fermi-Dirac function: G =
(e2/h)�[π/(4kBT ∗)]{cosh[α(Vf − Vpk)/(2kBT ∗)]}−2. Here
α is the lever-arm parameter, Vpk the voltage at a resonance
peak, and � is the intrinsic width of the resonance. The
precise form of the background is difficult to determine. A
similar difficulties arises in our 1D model shown in Fig. 4.
In this situation we initially attempted a somewhat arbitrary
background in the form constant[(Vf − Vp)/x]y , with Vp the
pinchoff voltage, but later found that using a linear background
did not appreciably change the extracted value of the width.

The lever-arm α, which relates Vf measured from pinchoff
to an energy, is estimated from magnetic subband depopulation
in a perpendicular magnetic field.25–27 For example, at a typical
setting of Vwall ∼ −1.6V in Fig. 2(a), we find the Fermi energy
EF to be approximately linear in Vf . At the center of the first
conductance plateau, EF has a value 5–7 meV, depending on
whether a harmonic oscillator or a square well is used to model
the lateral confinement potential. This value is expected to
increase as the confinement becomes sharper. For the 300-nm
gap device, using the lower bound of EF ∼ 5 meV and the
difference �Vf ≈ 200 mV between threshold and the center
of the conductance plateau we find a value of α = 1/40e, while
at the high end of 7 mV, α ∼ 1/60e.

The two methods for extracting width yielded similar values
when scaled by a constant (see Fig. 6) and when translated
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FIG. 6. (Color online) The effective temperature width T ∗ for the
peak in the 300-nm gap QPC in Fig. 3(a) (top), and for the left peak in
the 250-nm gap QPC in Fig. 3(c) (bottom). The results from the two
different methods of extracting the width are plotted for comparison.

into an effective temperature T ∗, the widths (T ∗ > 700 mK)
exceed the ambient temperature, indicating that the peaks
are lifetime broadened. For the 1/2 amplitude method, the
effective temperature is obtained by dividing the width by
3.5kB . In Fig. 7 we show expanded views of the resonances
and their respective FWHM deduced using the first method for
the 300 and 250-nm gap devices shown in Fig. 1. In Fig. 7(b)
the FWHW is found to be nearly constant over the range
−2.45� Vwall � −2.25 V. On the other hand, the background
conductance at the peak position has increased by a factor
of ∼5. A similar trend is found for a double peak in the
250-nm gap device [Figs. 7(c) and 7(d)]. In a Fermi liquid
the background conductance is roughly proportional to the
inverse lifetime of the resonance, as is the width. They may
be expected to scale together. In our devices this scaling is
grossly violated, indicating unconventional behavior.
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FIG. 7. (Color online) (a) Expanded conductance vs Vf plot for
asymmetric geometry with 300-nm gap, at Vwall = −2.25 V, showing
a resonance peak. (b) The full-width-at-half-maximum (FWHM) as
a function of Vwall. (c) Expanded plot for asymmetric geometry with
250-nm gap, at Vwall = −1 V. (d) FWHM for the left peak and double-
peak spacing �Vf as a function of Vwall. The FWHM for right peak
exhibits a similar trend. The temperature is 300 mK.

C. Unusual characteristics of resonances reaks—Peak spacing

A second unusual signature is found in the energy spacing
between resonances, measured in the difference in their
Vf positions, �Vf . The simplest interpretation of a double
resonance is that the quasibound state size is relatively large,
allowing two energy levels to exist below the second subband
continuum. In Fig. 7(d) we show the energy spacing �Vf for
the 250-nm gap device of Fig. 1(b). Surprisingly, the spacing
is independent of Vwall to roughly ±10%. The position of the
double peak relative to pinchoff Vf varies monotonically as
Vwall is varied. Thus the energy position shifts correspondingly.
For a Fermi liquid this spacing tends to decrease as the states
come closer in energy position to the continuum (second
subband). Here this does not occur, and the spacing is nearly
constant. This highly unexpected behavior is found in all
devices exhibiting a double peak, including those of Figs. 1(b)
and 1(c), and three additional devices as well. This type of
relative constant spacing is typically more associated with
Coulomb blockade, although there one may expect larger
variations in the spacing approaching full transmission in the
first channel.

D. Temperature evolution—Evidence for
non-Fermi-liquid behavior

A third indication of unusual behavior is found in the
temperature evolution of the single-channel regime, where the
resonances reside. To analyze the behavior we divide each
trace into two regions in Vf , the first within the first channel,
from threshold (∼−2.9 V) to −2.5 V (where G ∼ 1e2/h),
and the second between −2.5 and −1.0 V (where G ∼ 9e2/h).
Below a conductance value of 1e2/h the temperature evolution
of the conductance traces presented in Fig. 2(b) show strong
deviation from the expected behavior of a Fermi liquid. This
deviation is significant when compared to the agreement
achieved in the region above 1e2/h, up to an upper cutoff of
∼9e2/h. In this upper region the Fermi-liquid scenario works
extremely well, to ∼1% accuracy.

To be more precise, the division of the lower and upper
regions should be placed at G ∼ 2e2/h, where the first channel
resides. In fact, in Fig. 8 we will show that deviation from
Fermi-liquid behavior is present up to this point. Here we
wish to highlight the region containing the resonances close to
threshold. Thus we set the division at 1e2/h instead.

We place our focus in the temperature range 2–10 K, as
above 10 K the resonances peaks become difficult to resolve
due to excessive thermal smearing. It then becomes difficult
to determine the threshold of conduction with sufficient
precision; often the threshold can shift at higher temperatures
due to residual rearrangement in the configuration of donor
dopants. When the resonances are clearly visible, the positions
of the resonances provide reliable reference points in order to
line up traces at different temperatures.

Aside from such shifts in the threshold, differences in
gating characteristics invariably occurs as the temperature
rises. As an example, the positions where G = 4e2/h and
G = 6e2/h in the center of the second and third quantized
plateaus, respectively, are expected to be temperature invariant.
However, experimentally, this invariance is rarely seen, as a
result of the slight rearrangement of dopant configuration. To
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FIG. 8. (Color online) The conductance trace for the second
300-nm gap QPC device. Raw data is from Fig. 2(b) (shown as
thin dashed lines here). Raw data plotted vs rescaled Vf to account
for changes in the gating due to a temperature rise (solid lines).
The simulated Fermi-liquid behavior, obtained by the convolution of
Eq. (2) is also shown (thick dotted lines). Note that below G ∼ 1e2/h,
the simulation fails to reproduce the data, and falls below it.

account for this effect we first utilize the positions of the
resonances to account for any shift, followed by a rescaling
of the Vf values to match the positions of the G = 4e2/h and
G = 6e2/h plateau centers at all temperatures. The ideal value
of the scale factor is of course 1 (unity). We find that at 10 K,
which gives the largest scale factor, a scale factor of 1.05 is
required.

In Fig. 8 we present the raw data for T between 2 and
10 K in thin dashed lines, and the shifted/scaled data in solid
lines. Successive temperatures are offset for clarity. To test
the validity of the Fermi-liquid picture in each region, below
1e2/h for the lower and above 1e2/h up to 9e2/h for the
upper region, we generate a series of theoretical curves for
each temperature, shown as thick dotted lines. For a Fermi
liquid the conductance at a finite temperature is given by the
convolution of the derivative of the Fermi-Dirac function, with
the transmission probability:

G = I/V = e2

h

∫ ∞

−∞

[
∂f (E − E′,kT )

∂E′

]
T (E′)dE′, (2)

where T (E′) is the transmission probability at energy E′
at T = 0. For our calculations we take G[α(Vf − Vth)] =
I (E)/V , which relates the measured quantities in terms of
the finger gate Vf to an energy, where α is the lever arm.

If we take E′ = E1, T (E1) represents the transmission
probability for incident energy E1 at zero temperature. Ideally,
T (E1) = (h/e2)G(E1,T = 0). However, our data set has a
lowest temperature of T = 2 K. We thus approximate T (E1)
by T (E1) ≈ (h/e2)G(E1,T = 2 K). To achieve consistency of
the widths for both peaks relative to the temperature, we set EF

at the high end with EF = 7 meV, rather than 5 meV, yielding
a value for α of α = 7 meV/450 mV = 0.0156e ≈ 1/65e.
Based on these values, the left peak in the 2 K trace is thermally
broadened, while the right peak, at roughly twice the width, is
lifetime broadened.
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FIG. 9. (Color online) Convolution of the simulated T (E1) =
(h/e2)G based on the model of Fig. 4(b) (spin not included), with the
derivative of the Fermi-Dirac function, to gauge the error introduced
by approximating the T (E1) value (for T = 0) (yellow), with that
deduced from the G(E1) conductance trace at T = 2 K (blue). At
T = 4.2 K the convolution with the approximate T (E1) (red) shows
minimum deviation from the convolution with the T = 0 T (E1)
(black).

Since all other temperatures are at least a factor of 2 higher
than 2 K, with the next lowest at 4.2 K, one may suspect that
this approximation of using the T = 2 K curve to approximate
the T = 0 transmission may be adequate. To demonstrate this,
we perform a comparison with the simulated trace shown in
Fig. 4(c), for the 1D “rectangular” up-step model. In Fig. 9 the
solid line represents the simulated zero temperature value for
T (E1). A convolution using Eq. (2) is performed at T = 4.2 K
to produce the dotted curve. Next, a convolution at T = 2 K
produces an approximate T (E1), which in turn is used in a
convolution at 4.2 K to yield the dashed curve. It is clear that
the difference between the two curves (dotted and dashed) is
minimal, and appears to be comparable to or less than the noise
in the data of Fig. 8.

It is apparent in Fig. 8 that in the upper region beyond
1e2/h, the convolution reproduces the data with a high degree
of accuracy, while in the lower region the convolution falls
significantly below the data. Notably, the convolution fails to
capture the qualitative behavior in the lower region as can be
seen in Fig. 10(a), which plots the results of the convolution
compared with data for T = 10 K. The featureless simulated
curve corresponds to a conversion of kT to a Vf , 10 K : kT →
63 mV, which is based on our best estimate for the Fermi
energy (EF ≈ 7 meV) at the position of the first channel, at
which the center of the 12e2/h normally resides. This trace
falls below the experimental curve and is completely devoid of
any hint of the resonances due to excessive thermal smearing.
To simulate the broadened peaks visible in the data, it was
necessary to reduce the correspondence to kT ′ → 33 mV, an
unphysical value, yielding the second convolution trace. In this
case, the overall trace falls even lower.

To characterize these simulated traces and compare to
experiment, we calculated the integrated area underneath each
conductance curve for the lower and upper regions referenced
to the 2 K value [Fig. 10(b)]. It is striking that in the upper
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FIG. 10. (Color online) (a) Conductance trace of Fig. 2 for
T = 10 K, below G ∼ 1e2/h (blue). The Fermi-liquid temperature
convolution using Eq. (1), based on kT being equivalent to 63 mV
(green). To reproduce the broadened resonances seen in the data,
it was necessary to reduce the correspondence to an unphysical
kT ′ value of 33 meV (red). (b) The integrated areas contrasting
the agreement of the Fermi-liquid convolution with data in the
upper (background) region, where 1e2/h � G � 9e2/h (bottom
three curves) vs the striking disagreement within the lower region
for G < 1e2/h.

region where one expects the Fermi-liquid picture to be
valid, agreement between data and the convolution curves
at the ∼1% level is readily achieved. In stark contrast, for
the lower region below 1e2/h, a substantial discrepancy in
excess of 10% is found, well in excess of noise. This provides
clear evidence that the Fermi-liquid description is no longer
adequate. This enhanced integrated area is a signature of a 1D
Luttinger liquid in which interaction modifies the temperature
evolution of the conductance, leading to an enhancement. In
a sense, this is a remarkable result. Our channel length is
short, with a lithographic length of 100 nm. Accounting for
a depletion distance from the gating, the channel will not
exceed 300 nm in length, and only 5–8 electrons will reside
in the single-mode channel. Normally, when a short Luttinger
liquid is strongly coupled to 2D leads, the signature of the
Luttinger liquid correlation is difficult to observe, as the long
wavelength characteristics is cut off by the finite size. Here,
with the presence of the resonances, which are coupled with
intermediate strength to the channel, we have uncovered clear
indications of non-Fermi-liquid behavior.

IV. ABSENCE OF THE 2e2/ h FIRST QUANTIZED
CONDUCTANCE PLATEAU

Aside from the resonances, surprisingly, for the 300-nm
gap, the 2e2/h plateau is completely absent under certain
gating conditions. In Fig. 1(d) the arrow indicates the trace for
which this first plateaus has been fully suppressed. Starting
from threshold in the conductance, the trace rises directly
toward a plateau close to but below 4e2/h in value, without
any hint of a 2e2/h plateau. A similar behavior is found for a

second 300-nm gap device, as can be seen in Fig. 2, as well as
for a third device in Fig. 3. This suppression is also seen in a
250-nm gap device, while the general weakening of the plateau
(less flat) is observed in all devices. For some devices, this
weakening occurs quasiperiodically in Vwall settings. Because
the Vf values adjust to Vwall, the effective channel length is
correspondingly modulated due to carrier depletion adjacent
to the Vf gate.

This suppression is associated with a sizable energy scale.
One estimate of the energy scale is obtained by applying a
magnetic field Bz perpendicular to the 2DEG plane, as shown
in Fig. 2(a). No change is observed up to 0.5 T, which provides
a lower bound estimate of ∼0.43 meV (∼5 K) (taking the
value at half the Landau gap). At 1 T, an inflection near
2e2/h is noticeable, suggesting an upper bound of 10 K.
This is a rather large energy scale. Beyond 3 T, the system
enters the filling factor ν = 2 quantum Hall regime (only
the ground subband remains), and a 2e2/h plateau is clearly
visible, which indicates that the cyclotron confinement has
exceeded the suppression scale. The suppression of double
peak features near 0.5e2/h and e2/h in a magnetic field
suggests that these are not resonances associated with localized
impurities, as they would strengthen at stronger confinement
in an applied Bz. Instead, their suppression is in accord with
a multiple-reflection scenario. At stronger fields, signature of
the Zeeman spin gap at e2/h re-develops. In a magnetic field
applied parallel to the the 2DEG of up to 6 T (data not shown),
no change is observed, suggesting the spins may already be
polarized at zero field.

Temperature dependence of the suppressed 2e2/h plateau
is shown in Fig. 2(b). The quantized conductance of the
4e2/h plateau is washed out by thermal averaging above 6 K;
however, there still appears to be a clear feature below ∼e2/h,
which persists up to 10 K. At 18 K the features near pinchoff
are thermally smeared, but an inflection in the curvature near
e2/h remains. This supports the high energy scale estimate of
electron interactions in the conducting channel. Based on our
estimate, the 2e2/h plateau should return once the temperature
exceeded ∼6–10 K. Unfortunately, that is not observable
as above 6 K conductance quantization is already thermally
smeared.

The behavior found in our 300-nm devices of a direct jump
in conductance from pinchoff to ∼4e2/h has been suggested
to be related to formation of an incipient lattice in the case of
a symmetric QPC.28–30 Alternatively, numerical simulations
have shown such features to be possible when considering
a quantum dot embedded in the 1D channel, when the dot
potential is attractive and gives rise to a quasibound state.12,13

Importantly, the dot potential contained a repulsive boundary
region. One possible cause of the suppression may be that
the effective potential seen in the first channel possesses a
sufficiently high barrier, arising from this repulsive boundary
region, which even at the center of the first channel is able to
partially block the transmission.12

Theoretically stabilization of a quasibound state have been
proposed to arise from Coulomb interaction.10,11 Thus the
suppression may also require a high energy scale Coulomb
interaction in the QPC bound state, despite a recent theoretical
calculation suggesting that momentum mismatch alone is
sufficient to give rise to a quasibound state.14 The presence
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FIG. 11. dc source drain bias dependence (VSD) for the 250-nm
gap sample [Fig. 1(b)] at zero applied magnetic field and Vwall =
−1.2 V. Strong bunching at e2/h and transitions to 1.5e2/h at ∼1 mV
are seen. All traces measured at 300 mK in an Oxford He3 refrigerator.

of multiple reflections could lead to a build-up of carrier
density in different positions. When under the right conditions,
this build-up may appear at an end of the QPC, causing
a repulsive bump within a self-consistent picture. Whereas
in symmetric QPCs the existence of a quasibound state is
strongly debated,10,30 and detailed studies appears to rule
out their presence, in the asymmetric QPCs studied here the
momentum mismatch could be accentuated, and in conjunction
with Coulomb interaction, accentuated multiple reflections
may render a quasibound state more likely to occur.

V. NONLINEAR DIFFERENTIAL CONDUCTANCE d I/dV

In Fig. 11 the differential conductance versus dc source-
drain bias at 300 mK is presented, obtained by adding an ac bias
to the dc bias and measuring the ac signal in a lock-in amplifier.
The bunching of the traces in the differential conductance
versus dc bias corresponds to quantization plateaus in the
nonlinear differential conductance. Note that an e2/h plateau
typically develops under a strong magnetic field which spin
polarizes the electrons. Here no magnetic field is applied. At a
high dc bias around 1 mV, the e2/h bunch evolves to 1.5e2/h,
which is reminiscent of the 0.7 effect.4 Based on this voltage,
we estimate the spin splitting to correspond to an applied field
of nearly 40 T.6 Formation of a ground state magnetic moment
is often surmized in light of the strong electron interaction
effects in our QPC.9 More specifically, Hund rule coupling of
the electrons strongly bounded to the QPC can give rise to the
magnetic moment.14 Although the detailed magnetic behavior
and additional ripples in the differential conductance remain
to be understood, these traces provide further evidence for the
formation of a quasibound state in the QPC.

In Fig. 12 the differential conductance dI/dV versus
dc source-drain bias taken at 4.2 K is shown for several
asymmetric gate settings: (a) where a 1.5e2/h (or 0.7 effect)
feature is clearly visible at Vwall = −1.5 V and (b) conductance
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FIG. 12. (Color online) Differential conductance vs dc source-
drain bias VSD. (a) Traces where strong feature at 1.5e2/h exists
in the conductance (black) are shown along with the corresponding
response under dc bias (blue). (b) A dc bias trace (blue) with a strongly
suppressed 2e2/h (conductance vs gate in black). All traces are taken
at 4.2 K.

with the 2e2/h plateau completely suppressed to e2/h, taken
during a separate cool-down. There is a weak plateau at e2/h

even at zero dc bias in (b), but there is no 2e2/h plateau as in
(a). In contrast to the peak structure in (a) from 1.5 to 2e2/h,
the differential conductance in (b) is strongly suppressed
throughout. This is in contrast to6 where zero bias peaks exist
below e2/h and are suppressed under a parallel magnetic field
of 7 T. The suppression observed here is another possible
indication of spin polarization. At higher bias, plateaus at
0.5e2/h develop in both panels.

VI. CONCLUSION

In conclusion, we present evidence for the formation of
quasibound states in an asymmetrical QPC. The presence
of resonances is unique to our geometry, and provides a
direct indication for the existence of quasibound states. The
quasibound state is likely stabilized from an exaggerated
momentum mismatch at the openings of the asymmetric
geometry. Second, the unusual suppression of the 2e2/h

plateau also suggests a bound state,14 and possibly strong
interaction effects.28 Third, we find evidence of electron
interaction effects. These are manifest in the temperature
evolution of the resonance peaks in the single-channel regime.
These unusual features are still far from understood, and their
relation with novel correlated states, such as the zigzag Wigner
crystal states7,28 still remains to be investigated.
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