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Optimizing Positively Dominated Systems

Anders Rantzer

Abstract—It has recently been shown that several
classical open problems in linear system theory, such
as optimization of decentralized output feedback con-
trollers, can be readily solved for positive systems
using linear programming. In particular, optimal so-
lutions can be verified for large-scale systems using
computations that scale linearly with the number of
interconnections. Hence two fundamental advantages
are achieved compared to classical methods for mul-
tivariable control: Distributed implementations and
scalable computations. This paper extends these ideas
to the class of positively dominated systems. The re-
sults are illustrated by computation of optimal spring
constants for a network of point-masses connected by
springs.

Classical methods for multi-variable control, such as

LQG and H∞-optimization, suffer from a lack of scal-

ability that make them hard to use for large-scale sys-

tems. The difficulties are partly due to computational

complexity, but also absence of distributed structure

in the resulting controllers. Complexity growth can

be traced back to the fact that stability verification

of a linear system with n states generally requires a

Lyapunov function involving n2 quadratic terms, even

if the system matrices are sparse. In this paper we

will see that the situation improves drastically if we

restrict attention to closed loop dynamics described

by system matrices with nonnegative off-diagonal en-

tries. Then stability and performance can be verified

using a Lyapunov function with only n linear terms.

Sparsity can be exploited in performance verification

and even synthesis of distributed controllers can be

done with a complexity that grows linearly with the

number of nonzero entries in the system matrices.

These observations have far-reaching implications for

control engineering:

1) The conditions that enable scalable solutions
hold naturally in many application areas, such

as stochastic systems, economics, transportation

networks, chemical reactions and power systems.

2) In this paper, the essential mathematical prop-
erty is extended to frequency domain models that

are “positively dominated”.

3) A large-scale control system can often be struc-
tured into local control loops that give positive

dominance, thus enabling scalable methods for

optimization of the global performance.

A. Rantzer is with Automatic Control LTH, Lund University, Box
118, SE-221 00 Lund, Sweden, rantzer at control.lth.se.

I. BACKGROUND

The study of matrices with nonnegative coefficients

has a long history, dating back to the Perron-Frobenius

Theorem in 1912. A classic book on the topic is [2]. The
theory is used in Leontief economics [11], where the
states denote nonnegative quantities of commodities.

Systems defined by nonnegative matrices (so called
positive systems) appear in the study of Markov chains
[17], where the states denote nonnegative probabilities
and in compartment models [7], where the states could
denote populations of species. A nice introduction to

the subject is given in [12].
A fundamental property of linear maps described

by a positive matrix is that they are contractive in

Hilbert’s projective metric [3], [9]. This metric is closely
related to the Lyapunov function max{x1, . . . , xn} −
min{x1, . . . , xn}, used in analysis of consensus algo-
rithms [17], [20]. See also [13], [18].
A nonlinear counterpart to positive systems is mono-

tone systems, characterized by the property that a

partial ordering of initial states is preserved by the

dynamics. Such systems were studied by Hirsch [5], [6],
showing that monotonicity generally implies conver-

gence almost everywhere. Positive systems have also

gained increasing attention in the control literature

during the last decade. See for example [21], [4], [8].
Basic control theory for nonlinear monotone systems

was developed in [1]. Feedback stabilization of positive
linear systems was studied in [10], [15]. Stabilizing
static output feedback controllers were parameterized

in [14] using linear programming. A recent result by
Tanaka and Langbort [19] also shows that decentral-
ized controllers can be optimized for positive systems

using semi-definite programming.

II. NOTATION

The inequality X > 0 (X ≥ 0) means that all ele-
ments of the matrix (or vector) X are positive (non-
negative). For a symmetric matrix X , the inequality
X ≻ 0 means that the matrix is positive definite. A
square matrix is said to be Hurwitz if all eigenvalues

have positive real part. It is Schur if all eigenvalues

are strictly inside the unit circle. Finally, the matrix

is said to be Metzler if all off-diagonal elements are

nonnegative. The notation CH
n$m
∞ represents the set

of n $ m matrices whose entries are analytic in the
right half plane and continuous on the imaginary axis

(including infinity) .
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Fig. 1. Level curves of Lyapunov functions correspond-
ing to the conditions (1.2), (1.3) and (1.4) in Proposition 1:
If Aξ < 0, then V (x) = maxi(xi/ξ i) is a Lyapunov function with
rectangular level curves. If zT A < 0, then V (x) = zT x is a linear
Lyapunov function. Finally if ATP + PA ≺ 0 and P ≻ 0, then
V (x) = xTPx is a quadratic Lyapunov function for the system
ẋ = Ax.

III. DISTRIBUTED STABILITY VERIFICATION

We start be reviewing some properties of positive

systems. For further details see [16].
Proposition 1: Let A ∈ R

n$n be Metzler. Then the

following are equivalent:

(1.1) The matrix A is Hurwitz.
(1.2) There exists ξ ∈ Rn with ξ > 0 and Aξ < 0.
(1.3) There exists z ∈ R

n with z > 0 and zTA < 0.
(1.4) There exists a diagonal matrix P ≻ 0 such

that ATP+ PA ≺ 0.
(1.5) The matrix −A−1 exists and −A−1 ≥ 0.

Moreover, if ξ = (ξ1, . . . ,ξn) and z = (z1, . . . , zn) satisfy
the conditions of (1.2) and (1.3) respectively, then the
matrix P = diag(z1/ξ1, . . . , zn/ξn) satisfies (1.4).

Remark 1. Each of the conditions (1.2), (1.3) and (1.4)
corresponds to a Lyapunov function of a specific form.

See Figure 1.

A discrete time counterpart to Proposition 1 can be

stated as follows:

Proposition 2: Let B ∈ R
n$n
+ . Then the following

statements are equivalent:

(2.1) The matrix B is Schur stable.
(2.2) There exists ξ ∈ R

n with ξ > 0 and Bξ < ξ .
(2.3) There exists z ∈ R

n with z > 0 and BT z < z.
(2.4) There exists a diagonal matrix P ≻ 0 such

that BTPB ≺ P.
(2.5) The matrix (I−B)−1 exists and (I−B)−1 ≥ 0.

Moreover, if ξ = (ξ1, . . . ,ξn) and z = (z1, . . . , zn) satisfy
the conditions of (2.2) and (2.3) respectively, then the
matrix P = diag(z1/ξ1, . . . , zn/ξn) satisfies (2.4).
One of the main observations of [16] was that verifi-

cation and synthesis of positive control systems can be

done with methods that scale linearly with the number

of interconnections. For stability, this claim follows

directly from Proposition 1: Given ξ , verification of the
inequality Aξ < 0 requires a number of scalar addi-
tions and multiplications that is directly proportional

to the number of nonzero elements in the matrix A.

In fact, the search for a feasible ξ also scales linearly,
since integration of the differential equation ξ̇ = Aξ
with ξ (0) = ξ0 for an arbitrary ξ0 > 0 generates a
feasible ξ (t) in finite time provided that A is Metzler
and Hurwitz. Two examples are illustrative:

x1

x2

x3

x4

Fig. 2. A graph of interconnected systems. In Example 1 the
interpretation is a transportation network and each arrow indicates
a transportation link. In Example 2 the interpretation is instead
a vehicle formation and each arrow indicates the use of a distance
measurement.

Example 1. Linear transportation network. Con-
sider a dynamical system interconnected according to
the graph illustrated in Figure 2:






ẋ1
ẋ2
ẋ3
ẋ4






=







−1− {31 {12 0 0
0 2− {12 − {32 {23 0
{31 {32 3− {23 − {43 {34
0 0 {43 −4− {34













x1
x2
x3
x4







(1)

The model could for example be used to describe an

transportation network connecting four buffers. The

states x1, x2, x3, x4 represent the contents of the buffers

and the parameter {i j determines the rate of transfer
from buffer j to buffer i. Without such transfer the

content of the second and third buffer would grow

exponentially due to the diagonal elements 2 and 3,

corresponding to unstable internal dynamics of those

buffers.
Notice that the dynamics can be written as ẋ = Ax

where A is a Metzler matrix provided that every {i j
is nonnegative. Hence, by Proposition 1, stability is
equivalent to existence of numbers ξ1, . . . ,ξ4 > 0 such
that






−1− {31 {12 0 0
0 2− {12 − {32 {23 0
{31 {32 3− {23 − {43 {34
0 0 {43 −4− {34













ξ1
ξ2
ξ3
ξ4






<







0
0
0
0







Given these numbers, stability can be verified by a

distributed test where the first buffer verifies the first

inequality, the second buffer verifies the second and

so on. In particular, the relevant test for each buffer

only involves parameter values at the local node and

the neighboring nodes, so a global model is not needed

anywhere. 2

Example 2. Vehicle formation (or distributed
Kalman filter). Another system structure, which can
be viewed as a dual of the previous one, is the follow-

ing:


















ẋ1 = −x1 + {13(x3 − x1)

ẋ2 = {21(x1 − x2) + {23(x3 − x2)

ẋ3 = {32(x2 − x3) + {34(x4 − x3)

ẋ4 = −4x4 + {43(x3 − x4)

(2)

This model could for example be used to describe a

platoon of four vehicles. The parameters {i j represent
position adjustments based on distance measurements
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between the vehicles. The terms −x1 and −4x4 re-
flect that the first and fourth vehicle are equipped to

maintain stable positions on their own, but the second

and third vehicle rely on the distance measurements

for stabilization. Again, stability can be verified by

a distributed test where the first vehicle verifies the

first inequality, the second vehicle verifies the second

inequality and so on. 2

IV. INPUT-OUTPUT PERFORMANCE OF POSITIVE SYSTEMS

A connection between stability and performance is

established by the following extension of a result in

[16]:

Proposition 3: Suppose G(s) = C(sI − A)−1B + D
with A ∈ Rn$n Metzler and B ∈ Rn$1+ , C ∈ R1$n+ , D ∈
R+. Define qGq∞ = supω pG(iω )p. Then the following
statements are equivalent:

(3.1) The matrix A is Hurwitz and qGq∞ < γ .

(3.2) The matrix

[

A B

C D − γ

]

is Hurwitz.

(3.3) There exists a diagonal P ≻ 0 such that all
solutions to ẋ = Ax + Bw satisfy

d

dt
x(t)TPx(t) + pCx(t) + Dw(t)p2 ≤ γ 2pw(t)p2

(3)

with strict inequality when (x,w) ,= (0, 0).

(3.4) There exists p ∈ R
n such that p > 0 and all

solutions to ẋ = Ax + Bw satisfy

d

dt

(

pT px(t)p
)

+ pCx(t) + Dw(t)p ≤ γ pw(t)p

(4)

with strict inequality when (x,w) ,= (0, 0).

A discrete time version can be stated as follows:

Proposition 4: Let G(z) = C(zI − A)−1B + D where
A ∈ Rn$n+ , B ∈ Rn$1+ , C ∈ R1$n+ and D ∈ R+. Define

qGq∞ = supω pG(e
iω )p. Then the following conditions

are equivalent:

(4.1) The matrix A is Schur and qGq∞ < γ .

(4.2) The matrix

[

A B

γ −1C γ −1D

]

is Schur.

(4.3) There exists a diagonal matrix P ≻ 0 such
that

px(t+ 1)p2P + pCx(t) + Dw(t)p
2 ≤ px(t)p2P + γ 2pw(t)p2

for all solutions to x(t+ 1) = Ax(t) + Bw(t).

(4.4) There exists a p ∈ Rn such that p > 0 and

pT px(t+ 1)p + pCx(t) + Dw(t)p ≤ pT px(t)p + γ pw(t)p

for all solutions to x(t+ 1) = Ax(t) + Bw(t).

V. DISTRIBUTED CONTROL SYNTHESIS BY LINEAR

PROGRAMMING

Equipped with scalable analysis methods for stabil-

ity and performance, we are now ready to consider

synthesis of controllers by distributed optimization.

We will start by re-visiting an example of section III.

Example 3. Consider again the transportation net-

work (1), this time with the flow parameters {31 = 2,
{34 = 1 and {43 = 2 fixed:








ẋ1
ẋ2
ẋ3
ẋ4









=









−3 {12 0 0

0 2− {12 − {32 {23 0

2 {32 1− {23 1

0 0 2 −5

















x1
x2
x3
x4









(5)

We will ask the question how to find the remaining

parameters {12, {23 and {32 in the interval [0, 10] such
that the closed loop system (5) becomes stable. Accord-
ing to Proposition 1, stability is equivalent to existence

of ξ1, . . . ,ξ4 > 0 such that








−3 {12 0 0

0 2− {12 − {32 {23 0

2 {32 1− {23 1

0 0 2 −5

















ξ1
ξ2
ξ3
ξ4









< 0

At first sight, this looks like a difficult problem due to

multiplications between the two categories of parame-

ters. However, a closer look suggests the introduction

of µ12 := {12ξ2, µ32 := {32ξ2 and µ23 := {23ξ3. The
problem then reduces to linear programming: Find

ξ1,ξ2,ξ3,ξ4 > 0 and µ12,µ32,µ23 ≥ 0 such that








−3 0 0 0

0 2 0 0

2 0 1 1

0 0 2 −5

















ξ1
ξ2
ξ3
ξ4









+









1 0 0

−1 −1 1

0 1 −1
0 0 0













µ12
µ32
µ23



 < 0

µ12 ≤ 10ξ2 µ32 ≤ 10ξ2 µ23 ≤ 10ξ3

with the solution (ξ1,ξ2,ξ3,ξ4) = (43, 12.8, 10.1, 4.2)
and (µ12,µ32,µ23) = (128, 0, 101). The corresponding
stabilizing gains can then be computed as

{12 = µ12/ξ2 = 10 {32 = µ32/ξ2 = 0 {23 = µ23/ξ3 = 10

2

The idea can be generalized into the following:

Theorem 5: Let the matrices A ∈ R
n$n, E ∈

Rn$m, F ∈ Rm$n, K ∈ Rm$m be given and let D be the

set of m $ m diagonal matrices with entries in [0, 1].
Suppose that (I−LK )−1 exists and A+E(I−LK )−1LF
is Metzler for all L ∈ D . If F and K have nonnega-
tive coefficients, then the following two conditions are

equivalent:

(5.1) There exists L ∈ D such that A + E(I −
LK )−1LF is Hurwitz.

(5.2) There exist ξ ∈ R
n
+, µ ∈ R

m
+ with µ ≤ Fξ +

Kµ and Aξ + Eµ < 0.

Alternatively, if E and K have nonnegative coeffi-

cients, then (5.1) is equivalent to
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(5.3) There exist p ∈ Rn+, q ∈ Rm+ with q ≤ E
T p+

K Tq and AT p+ FTq < 0.

Remark 2. If the diagonal elements ofD are restricted

to R+ instead of [0, 1], then the condition µ ≤ Fξ+Kµ
is replaced by 0 ≤ Fξ + Kµ.

Remark 3. Each row of the vector inequalities can be

verified separately to get a distributed test.

Remark 4. It is natural to compare the expression A+
E(I − LK )−1LF with the “state feedback” expression
A + BL of standard linear quadratic optimal control.
A major difference is the presence of F and K which

make the optimization into a problem of “static output

feedback” rather than state feedback. Another differ-

ence is the diagonally structured L instead of a full

matrix. The diagonal structure gives a much higher

degree of flexibility, particularly in the specification of

distributed controllers.

Proof of Theorem 5. Suppose (5.1) holds. Let A +
E(I − LK )−1LF be Hurwitz and define ξ ∈ R

n
+ with

[A+ E(I − LK )−1LF]ξ < 0. Let µ = (I − LK )−1LFξ .
Then µ = L(Fξ + Kµ) and Aξ + Eµ = (A + E(I −
LK )−1LF)ξ < 0.
Conversely, suppose that (5.2) holds. Choose L ∈D

to get µ = (I − LK )−1LFξ . Then

[A+ E(I − LK )−1LF]ξ = Aξ + Eµ < 0

so A+E(I−LK )−1LF is Hurwitz. The equivalence be-
tween (5.1) and (5.3) follows immediately by replacing
A+ E(I − LK )−1LF with its transpose. 2

Combining Proposition 3 with Theorem 5 also gives

a linear programming formulation of the problem to

minimize input-output gain:

Corollary 6: Let D be the set of m $ m diagonal
matrices with entries in [0, 1]. Suppose that D is scalar
and that A+ ELF is Metzler for all L ∈D .
If the matrices B,C,D and F have nonnegative

coefficients, then the following two conditions are

equivalent:

(6.1) There exists L ∈ D such that A + ELF is
Hurwitz and

qC[sI − (A+ ELF)]−1B + Dq∞ < γ . (6)

(6.2) There exist ξ ∈ R
n
+, µ ∈ R

m
+ with

Aξ + Eµ + B < 0 Cξ + D < γ µ ≤ Fξ

If ξ ,µ satisfy (6.2), then (6.1) holds for every L such
that µ = LFξ .
Alternatively, if B,C,D and E are nonnegative, then

(6.1) is equivalent to

(6.3) There exist p ∈ Rn+, q ∈ Rm+ with

AT p+ FTq+ CT < 0 BT p+ D < γ q ≤ ET p

If p, q satisfy (6.3), then (6.1) holds for every L such
that q = LET p.

Remark 5. It is interesting to compare Corollary 6 with

the corresponding synthesis method proposed in [19],
which exploits (1.4) of Proposition 1 as criterion for
stability rather than (1.2) and (1.3). An advantage of
the approach in [19] is that the Metzler property of
the closed loop system matrix can be enforced in the

synthesis procedure as a constraint, rather than being

verified a priori for all L ∈ D . On the other hand,
the linear programming approach proposed here has

a simpler structure, where the distributed and scalable

nature of the conditions is apparent.

Proof. According to Proposition 3, condition (6.1) holds
if and only if there exists ξ ∈ Rn+ with

[

A+ ELF B

C D − γ

] [

ξ
1

]

< 0 (7)

Given (7), the inequalities of (6.2) hold with µ =
LFξ . Conversely, given (6.2), the inequalities of (7)
follow provided that µ = LFξ . This proves the desired
equivalence between (6.1) and (6.2). The equivalence
between (6.1) and (6.3) follows immediately by replac-
ing G(s) with its transpose. 2

Example 4. Disturbance rejection in vehicle for-

mation. Consider the vehicle formation model


















ẋ1 = −x1 + {13(x3 − x1) +w1

ẋ2 = {21(x1 − x2) + {23(x3 − x2) +w2

ẋ3 = {32(x2 − x3) + {34(x4 − x3) +w3

ẋ4 = −4x4 + {43(x3 − x4) +w4

(8)

where w1, . . . ,w4 are external disturbances acting on

the vehicles. Our problem is to find feedback gains

gains {i j ∈ [0, 1] that stabilize the formation and
minimize the gain from w to x. The problem can be

solved by applying condition (6.2) with

A = diag{−1, 0, 0,−4} D = 0

C =
(

1 1 1 1
)

K = 0

E =









1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1









B =









1

1

1

1









L = diag{{13, {21, {23, {32, {34, {43}

F =

















−1 0 1 0

1 −1 0 0

0 −1 1 0

0 1 −1 0

0 0 −1 1

0 0 1 −1

















The optimal L = diag{0, 1, 1, 0, 1, 0} gives γ = 4.125.

If instead B =
(

10 10 1 1
)T
, the minimal value

γ = 15.562 is attained with L = diag{1, 1, 1, 0, 1, 0}.

Conversely, B =
(

1 1 10 10
)T
gives the mini-

mum γ = 12.750 for L = diag{0, 1, 0, 1, 1, 0}. 2
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There is one important limitation that becomes ap-

parent in the example of a vehicle formation: Only

single integrators can be used as vehicle models. With

double integrators, the Metzler structure breaks down

and none of the results above can be applied. This

motivates the introduction a new concept in the next

section.

VI. POSITIVELY DOMINATED SYSTEMS

G ∈ CH
m$n
∞ is called positively dominated if every

matrix entry satisfies pG jk(iω )p ≤ G jk(0) for ω ∈ R.

The set of all such matrices is denoted PH
m$n
∞ . Some

properties follow immediately:

Proposition 7: LetG,H ∈ PH
n$n
∞ . ThenGH ∈ PH

n$n
∞

and aG + bH ∈ PH
n$n
∞ when a, b ∈ R+. Moreover

qGq∞ = qG(0)q.
The following property is also fundamental:

Theorem 8: Let G ∈ PH
n$n
∞ . Then (I−G)−1 ∈ PH

n$n
∞

if and only if G(0) is Schur.

Proof. That (I − G)−1 is stable and positively domi-
nated implies that [I −G(0)]−1 exists and is nonnega-
tive, so G(0) must be Schur according to Proposition 2.
On the other hand, if G(0) is Schur we may choose
ξ ∈ R+ and ǫ > 0 with G(0)ξ < (1 − ǫ)ξ . Then for
every z ∈ C

n with 0 < pzp < ξ and s ∈ C with Re s ≥ 0
we have

pG(s)tzp ≤ G(0)tpzp < (1− ǫ)tpzp for t = 1, 2, 3, . . .

Hence
∑∞
k=0G(s)

tz is convergent and bounded above

by
∑∞
k=0G(0)

tpzp = [I − G(0)]−1pzp. The sum of the
series solves the equation [I − G(s)]

∑∞
k=0G(s)

tz = z,
so therefore

∑∞
k=0G(s)

tz = [I − G(s)]−1z. This proves
(I − G)−1 is stable and positively dominated and the
proof is complete. 2

The ideas of the previous section can now be ex-

tended to positively dominated systems:

Theorem 9: Let D be the set of m$m diagonal ma-
trices with entries in [0, 1]. Suppose that B ∈ PH

n$1
∞ ,

C ∈ PH
1$n
∞ , D ∈ PH∞ and A + ELF ∈ PH

n$n
∞ for all

L ∈D .
If F ∈ PH

m$n
∞ , then the following are equivalent:

(9.1) Some L ∈D gives (I −A−ELF)−1 ∈ PH
n$n
∞

and qC(I − A− ELF)−1B+Dq∞ < γ

(9.2) There exist ξ ∈ R
n
+, µ ∈ R

m
+ with

A(0)ξ + E(0)µ +B(0) < ξ

C(0)ξ +D(0) < γ

F(0)ξ ≥ µ

If instead E ∈ PH
n$m
∞ , then (9.1) is equivalent to

(9.3) There exist p ∈ R
n
+, q ∈ R

m
+ with

A(0)T p+ F(0)Tq+C(0)T < p

B(0)T p+D(0) < γ

E(0)T p ≥ q

If (9.2) holds and µ = LF(0)ξ , then (9.1) holds too.
Similarly, if (9.3) holds and q = LE(0)T p, then (9.1)
follows.

Proof. Theorem 8 shows that (9.1) holds if and
only if A(0) − E(0)LF(0) is Schur and C[I − A(0) −
E(0)LF(0)]−1B(0) + D(0) < γ . According to Proposi-
tion 4, this is true if and only if

[

A(0) + E(0)LF(0) B(0)
γ −1C(0) γ −1D(0)

]

(9)

is Schur. By Proposition 2 this is equivalent to exis-

tence of ξ ∈ R
n
+ such that

[

A(0) + E(0)LF(0) B(0)
γ −1C(0) γ −1D(0)

] [

ξ
1

]

<

[

ξ
1

]

This is equivalent to (9.2) if we set µ = LF(0)ξ ,
so the desired equivalence between (9.1) and (9.2) in
Theorem 9 follows. The equivalence between (9.1) and
(9.3) is obtained by replacing G(s) with its transpose.
2

Example 5.With the new concept at hand, we can now

return to the vehicle formation, but this time model

each vehicle as a double integrator. Alternatively,

the interconnection can be viewed as a mechanical

structure consisting of N point-masses connected by

springs. The dynamics is described by the equations

ẍi =
∑

j

{i j(x j − xi) + ui +wi i = 1, . . . ,N

where ui is a local control force, wi is a disturbance and

{i j is the spring constant between the point masses
i and j. Suppose local control laws ui = −kixi − di ẋ
are given and consider the problem to find spring

constants {i j ∈ [0, {i j ] that minimize the gain from w1
to x1.

The closed loop system has the following frequency

domain description

(

s2 + dis+ ki +
∑

j

{i j

)

Xi(s)

=
∑

j

(

{i jX j(s) + ({i j − {i j)Xi(s)

)

+Wi(s)

After dividing both sides with s2+dis+ ki+
∑

j {i j , we
write this on matrix form as

X = (A+ ELF)X +BW

The transfer matrices B, E and A+ELF are positively
dominated for all L ∈D provided that di ≥ ki+

∑

j {i j .
Hence Theorem 9 can then be applied to find the

optimal spring constants. Notice that {i j and { ji must
be optimized separately, even though by symmetry

they must be equal at optimum. 2
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VII. CONCLUSIONS

The results above indicate that the monotonicity

properties of positive systems and positively domi-

nated systems bring remarkable benefits to control

theory. Most important is the opportunity for scalable

verification and synthesis of H∞ optimal performance.

In particular, the optimal solution comes with a cer-

tificate (the numbers ξk, µk) that makes it possible
to verify optimality locally, without access to a global

model.

Many important problems remain open for future

research. Here are two examples:

• How can the scalable methods for verification

be extended to monotone nonlinear systems in a

nonconservative way?

• How can local controllers be designed to get pos-

itively dominated interactions with optimal prop-

erties? (This would be in contrast with the mass-
spring example where the local control parameters

di and ki were fixed a priori.)
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