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Abstract

Background: Effective dose represents the potential risk to a population of
stochastic effects of ionizing radiation (mainly lethal cancer). In recent years, there
have been a number of revisions and updates influencing the way to estimate the
effective dose. The aim of this work was to recalculate the effective dose values for
the 338 different radiopharmaceuticals previously published by the International
Commission on Radiological Protection (ICRP).

Method: The new estimations are based on information on the cumulated activities
per unit administered activity in various organs and tissues and for the various
radiopharmaceuticals obtained from the ICRP publications 53, 80 and 106. The
effective dose for adults was calculated using the new ICRP/International
Commission on Radiation Units (ICRU) reference voxel phantoms and decay data
from the ICRP publication 107. The ICRP human alimentary tract model has also
been applied at the recalculations. The effective dose was calculated using the new
tissue weighting factors from ICRP publications 103 and the prior factors from ICRP
publication 60. The results of the new calculations were compared with the effective
dose values published by the ICRP, which were generated with the Medical Internal
Radiation Dose (MIRD) adult phantom and the tissue weighting factors from ICRP
publication 60.

Results: For 79% of the radiopharmaceuticals, the new calculations gave a lower
effective dose per unit administered activity than earlier estimated. As a mean for all
radiopharmaceuticals, the effective dose was 25% lower. The use of the new adult
computational voxel phantoms has a larger impact on the change of effective doses
than the change to new tissue weighting factors.

Conclusion: The use of the new computational voxel phantoms and the new
weighting factors has generated new effective dose estimations. These are supposed
to result in more realistic estimations of the radiation risk to a population
undergoing nuclear medicine investigations than hitherto available values.

Keywords: Radiopharmaceuticals; Internal dosimetry; Diagnostics; Nuclear medicine;
ICRP
2014 Andersson et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
ttribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
edium, provided the original work is properly credited.
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Background
The sum of the radiation-risk weighted equivalent dose to organs and tissues in

the human body (the effective dose) represents the potential risk from stochastic

effects (mainly lethal cancer) of radiation. Thus, it makes it possible to compare

various procedures involving ionizing radiation for radiation protection purposes.

The effective dose is primarily intended as an important parameter for the plan-

ning and optimization of radiation protection and not as a quantity for individual

risk estimates, as patient-specific parameters may vary significantly from the as-

sumptions made in the risk models [1]. Moreover, the effective dose cannot be ap-

plied for therapy with radiopharmaceuticals as it only considers the stochastic

effects.

The effective dose is based upon risk data used to obtain the sex-averaged tissue

weighting factors. The idea was first introduced by the International Commission

on Radiological Protection (ICRP) in 1977 [2], and later, at the Stockholm meeting

[3], the ICRP assigned the term ‘effective dose equivalent’ and the symbol ‘HE’ to

this new concept. Up to now, the weighting factors have been revised twice and

the name of the quantity changed to effective dose (E) [1,4]. The absorbed doses

to organs and tissues and the effective dose per unit administered activity for ra-

diopharmaceuticals found in the ICRP publications 53, 80 and 106, are all calcu-

lated based on biokinetic data from these publications and using the mathematical

Medical Internal Radiation Dose (MIRD) phantoms from Cristy and Eckerman

[5]. The adult male and adult female ICRP/International Commission on Radi-

ation Units (ICRU) computational voxel phantoms were in 2007 approved by

ICRP and adopted by ICRU in 2008 as reference phantoms for dosimetric calcula-

tions [6]. These phantoms were constructed by adjusting the voxel phantoms

Golem [7] and Laura [8] to the organ masses given in the ICRP publication 89 [9].

Unlike for the previous phantoms, specific-absorbed fractions (SAF values) for

electrons are now also simulated using Monte Carlo methods and published by

Zankl et al. [10].

In the present study, the absorbed dose is calculated for males and females sep-

arately using the new phantoms, and the effective dose is then obtained by apply-

ing the organ-specific weighting factors to the arithmetic mean of the male and

female dose equivalent [1]. For calculating the absorbed dose to organ and tissues

as well as the effective dose, a computer program was developed [11]. The pro-

gram includes the new adult phantoms and the present ICRP assumptions and

definitions.

The previously used mathematically describable MIRD-phantoms were developed

using highly simplified organ shapes, which sometimes resulted in less realistic dis-

tances within and between organs. For a limited number of radiopharmaceuticals,

and for adults, it has been shown that there is a difference between earlier estima-

tions of the effective dose and the results of the calculations using the new ICRP/

ICRU reference phantoms and the new ICRP tissue weighting factors [10-12]. The

aim of this work was to use published biokinetic data [13-15] as a base for a

complete recalculation of the effective dose for all radiopharmaceuticals hitherto

published by the ICRP, using the new adult reference phantoms [6] and the ICRP

publication 103 tissue weighting factors [1].



Andersson et al. EJNMMI Physics 2014, 1:9 Page 3 of 13
http://www.ejnmmiphys.com/content/1/1/9
Method
Absorbed dose and effective dose

The mean absorbed dose to a target region (rT) is calculated by [16]

D rT ;TDð Þ ¼
X
rs

~A rs;TDð ÞS rT←rsð Þ Gy½ � ð1Þ

where Ã(rs,TD) is the time-integrated activity, i.e. the total number of disintegrations, in

source region rS from intake to the time TD, and S(rT← rS) is the mean absorbed dose

in target region rT per nuclear transformation in source region rS.

The total number of disintegrations is calculated by ~A rs;TDð Þ ¼
Z TD

0
A rs; tð Þdt

where A(rS,t) is the activity of the radiopharmaceutical in source region rS at time t.

The S(rT← rS) is generated with radionuclide decay scheme and Monte Carlo simu-

lated absorbed fractions

S rT←rSð Þ ¼
X
i

ΔΦ rT←rS; Eið Þ Gy=Bq½ � ð2Þ

where Δi = Ei Yi and Φ(rT← rS,Ei) = φi(rr← rS,Ei)/m(rT)_ is the mass of the target organ

T, φi is the absorbed fraction, Yi is the yield and Ei is the mean energy of the ith nuclear

transition of the radionuclide. The S(rT← rS) is in units of gray per becquerel if M(rT)

is in kilograms and E is in Joules.

To estimate the risk for radiation-induced cancer and heritable diseases for a general

population, the mean absorbed dose to the total body is insufficient information. In

order to correlate stochastic effects and ionizing radiation, two types of weighting fac-

tors are used to calculate the effective dose:

E ¼
X
T

wT

X
R

wRDR rT ;TDð Þ Sv½ � ð3Þ

where DR(rT,TD) is the mean absorbed dose, wR is the radiation weighting factor of radi-

ation type R, and wT is the tissue weighting factor assigned by the ICRP to the different

organs and tissues representing the relative detrimental effects [1]. For all radiation

types used in diagnostic medical exposure, wR is 1.

From MIRD adult phantom to ICRP/ICRU adult reference male and female phantoms

The adult ICRP/ICRU reference computational phantoms for male and female include

63 source organs and 73 target organs [6]. For every source-target combination, the

specific absorbed fractions have been calculated for electrons ranging from 10 keV to

10 MeV [10]. The MIRD adult phantoms include 25 source organs and 25 target organs

[5], and 12 SAF values ranging from 10 keV to 4 MeV have been calculated for mono-

energetic photons only. For the stylized phantom the biokinetic model describing the

gastrointestinal tract is presented in ICRP publication 30 [17]. It was built up from the

four regions: stomach, small intestine, upper large intestine and lower large intestine.

In the new voxel phantom, which is designed to agree with the human alimentary tract

model described in ICRP publication 100 [18], the gastrointestinal tract is now seg-

mented as oral cavity, oesophagus, stomach, small intestine, right colon, left colon and

rectosigmoid colon [9,19].
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Assumptions in the estimation of the effective dose

All calculations were made with the decay properties (energies and yields) tabulated in

the ICRP publication 107 database [20]. For the photons, a cutoff SAF value was intro-

duced for large distances between source and target regions and low initial energies.

For decay energies less than the cutoff energy for the simulations, a restrictive approach

was used by applying the corresponding cutoff SAF value.

In the biokinetic model, the urinary bladder filling and emptying follows the ICRP

standardized voiding interval [15] to calculate the time-integrated activity in the urinary

bladder content. For the calculation of the absorbed dose to the urinary bladder wall as

well as to other organs and tissues, the urinary content is assumed to have a constant

volume of 200 ml [5].

To calculate the absorbed dose to radiosensitive organs and tissues from the data for

‘Cumulated activity in organ or tissue S per unit administered activity’ published by

ICRP in publication 53, 80 or 106 [13-15] for different radiopharmaceuticals, some fur-

ther adjustments were made:

Gastrointestinal system

For all radiopharmaceuticals that are excreted through the gastrointestinal system, cal-

culations are made applying the new ICRP human alimentary tract model [18] to esti-

mate the total number of disintegrations in the new regions of the gastrointestinal

tract.

Bone

For bone-seeking radiopharmaceuticals or radionuclides, for which the distribution of

cumulated activity between the cortical and trabecular bone is unknown, the assump-

tion is that substances with an effective half-time shorter than 15 days are surface-

deposited; otherwise, they are distributed uniformly throughout the entire volume of

trabecular and cortical bone [13].

Other organs and tissue

For the source region defined as ‘other organs and tissues,’ the dose calculations are

performed applying a method using a formally exact solution, derived by Roedler and

Kaul [21]. The value is generated by adjusting the source regions ‘total body’ by remov-

ing the contribution of the source regions already accounted for and calculated as

S rT←rOther organs and tissues
� � ¼ mTBS rT←rTBð Þ−

X
S
mSS rT←rSð Þ

mTB−
X

S
mS

ð4Þ

where S(rT← rB) is the dose conversion factor from the source region ‘total body’ to

the target region rT. mTB and mS are the masses of the total body and the source region

S, respectively and S(rT← rS) is the dose conversion factor from one source organ S to

the target region T.

Blood

Radiopharmaceuticals, which to a significant extent are present in circulating blood,

were in ICRP publication 53 [13] assumed to be distributed by the fractional blood
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volume. For ICRP publication 80 and 106, the circulating blood was described using

Leggett and Williams' blood circulation model [22]. For calculations with the new

phantoms, the reference values for blood content given in ICRP publication 89 were

used to distribute the activity in the circulating blood [9]. In a few cases, a substitute

region was used when the different source regions were inconsistent, e.g. heart content

was used as a substitute for the aorta.

Walls of the colon

In the case where radionuclides were deposited in the walls of the colon, the distribu-

tion to the activity in the walls was recalculated from the ‘old gastrointestinal tract re-

gions’ to the regions described in the ICRP Human alimentary tract model [18]. The

time-integrated activity in the upper large intestine and the lower large intestine was

converted to the right colon, left colon and rectosigmoid colon by a conversion factor

based on the masses of the different regions [9,19]

~A rRight colon;TD
� � ¼ 0:71 � ~A rUpper large intestine;TD

� � ð5Þ

~A rLeft colon;TDð Þ ¼ 0:29 � ~A rUpper large intentine;TD
� �þ 0:56

� ~A rLower large intentine;TD
� � ð6Þ

~A rRectosigmoid colon;TD
� � ¼ 0:44 � ~A rLower large intestine;TD

� � ð7Þ

where Ã(rUpper large intestine,TD) and Ã(rLower large intestine,TD) is the time integrated

activity in the upper large intestine wall and lower large intestine wall respectively

and Ã(rRectosigmoid colon,TD), Ã(rLeft colon,TD) and Ã(rRight colon,TD) are the total number of

disintegrations in the new regions.

ICRP tissue weighting factors in Publication 60 versus those in Publication 103

One major difference between the ICRP publication 60 and 103 is that the tissue

weighting factor for the remainder is now equally divided between 13 specified organs

for males and females respectively [1]. When calculating the effective dose according to

the ICRP 60 system, the weighting factor for the remainder was applied to a mass

weighted absorbed dose to a number of specified remaining organs, there was also a

splitting rule that stated that the half weighting factor (0.25) should be applied to a sin-

gle remaining organ, if this organ receives the highest absorbed dose of all organs.

Effective dose comparison

The organ and tissue equivalent dose values obtained with the voxel phantom were

used to determine the effective doses based on the tissue weighting factors from ICRP

publication 60 as well as those from publication 103. To calculate the dose to the

colon, the same assumption was used as earlier mentioned to convert from the new in-

testine regions to the older ones. The equivalent doses for the Reference Male and the

Reference Female are multiplied with the ICRP publication 103 tissue weighting factors

and then averaged to estimate the effective dose for a Reference Person [1]. Calcula-

tions were also performed for each gender separately. The ICRP publication 60 tissue

weighting factors were all applied to organ-absorbed doses averaged between males and

females in order to obtain the effective dose.



Andersson et al. EJNMMI Physics 2014, 1:9 Page 6 of 13
http://www.ejnmmiphys.com/content/1/1/9
Calculations were performed for each radiopharmaceutical in two different ways, ei-

ther (a) the effective dose was calculated using the new voxel phantom with weighting

factors from ICRP publication 60 [4] or (b) the calculations were made using the new

phantoms and the new ICRP publication 103 tissue weighting factors [1]. Some of the

radiopharmaceuticals published in ICRP publication 53 [13] are included in the recal-

culation from effective dose equivalent [2] to effective dose in ICRP publication 80 [14]

or have been completely modified in the later ICRP publication 106 [15]. The others

were calculated using the absorbed doses in ICRP publication 53 to get the effective

dose. In some cases in the ICRP publication 53 [13], two different biokinetic models

are presented, one describing the biokinetics in the whole body and one organ-specific

model. If so, the time-integrated activities for the specific organs are chosen and their

contribution is subtracted from the ‘total body’. The remaining activities are used as

the source region ‘other organs and tissues’.
Results
New values of effective dose per unit administered activity (E/A0) for adults and for the

55 different radiopharmaceuticals included in ICRP publication 106 are presented in

Table 1. The new values for all the 338 radiopharmaceuticals are available as a supple-

ment to the present paper (Additional file 1: Table S1). The calculated values are lower

than earlier presented values for 79% of the radiopharmaceuticals. As a mean for all

338 radiopharmaceuticals, the values are 25% lower. The observed reduction depends

to a larger degree on the use of the new adult computational voxel phantoms than on

the change to new tissue weighting factors. The effective doses are larger for females

than for males in 62% of all 338 radiopharmaceuticals. The black bars in Figure 1 rep-

resent the distribution of the percentage difference between the new and the old effect-

ive dose for all radiopharmaceuticals. The grey bars show the differences between the

effective doses calculated with the new phantoms and the previous phantom using the

previous tissue weighting factors. Only for 125I Iodine Hippuran with unilateral renal

blockage and an abnormal kidney function there is a difference of more than 100% be-

tween the new and the old E/A0 values.
Discussion
The effective dose has been calculated using the new computational phantom, recent

radionuclide decay data, the new human alimentary tract model and the tissue weight-

ing factors given in ICRP publication 103. How these new data and calculation assump-

tions affect the effective dose depends on both the source regions included in the

biokinetic model and the physical decay for each radiopharmaceutical. Hadid et al. [12]

have investigated in detail what the main differences are between the old and the new

phantoms with respect to the effective dose, and they have also calculated the absorbed

and effective dose for 15 commonly used radiopharmaceuticals. The two major factors

influencing the calculation results of the absorbed dose to the target regions are the im-

proved data on absorbed fractions for electrons, especially for walled organs, and the

use of a realistic voxel phantom instead of the stylized phantom used earlier [12]. Both

of these factors cause a reduction in the estimations of the effective dose. Figure 1

shows that changing the phantoms has a larger impact on the effective dose than the



Table 1 Effective dose from the 55 radiopharmaceuticals in ICRP publication 106, determined using three different methods

(E/A0)1 [mSv/MBq] (E/A0)2 [mSv/MBq] ((E/A0)2 − (E/A0)1)/
(E/A0)1 [%]

(E/A0)3 [mSv/MBq] ((E/A0)3 − (E/A0)1)/
(E/A0)1[%]

(E/A0)3 male
[mSv/MBq]

(E/A0)3 female
[mSv/MBq]

Phantom MIRD ICRP/ICRU ICRP/ICRU ICRP/ICRU ICRP/ICRU

wT ICRP 60 ICRP 60 ICRP 103 ICRP 103 ICRP 103

Radiopharmaceuticals
3H Tritium-labelled neutral fat & free fatty acids 2.2E-01 9.34E-02 −58 1.72E-01 −22 2.38E-01 1.05E-01
11C Carbon acetate 3.5E-03 4.37E-03 25 4.20E-03 20 4.08E-03 4.31E-03
11C Carbon amino acids 5.6E-03 4.43E-03 −21 4.62E-03 −18 4.89E-03 4.34E-03
11C Carbon brain receptor substances 4.3E-03 3.22E-03 −25 3.56E-03 −17 3.69E-03 3.42E-03
11C Carbon methionine 8.4E-03 5.39E-03 −36 5.49E-03 −35 5.69E-03 5.28E-03
11C Carbon (2-11C)thymidine 2.7E-03 2.36E-03 −13 2.53E-03 −6 2.61E-03 2.45E-03
11C Carbon, realistic maximum 1.1E-02 4.99E-03 −55 5.46E-03 −50 6.12E-03 4.79E-03
14C Carbon-labelled neutral
fat and free fatty acids

2.1E + 00 1.75E + 00 −17 2.75E + 00 31 3.37E + 00 2.16E + 00

14C Carbon-labelled urea, normal case, orally
administered

3.1E-02 2.32E-02 −25 2.65E-02 −15 2.64E-02 2.66E-02

15O Oxygen water 1.1E-03 9.07E-04 −18 8.29E-04 −25 8.30E-04 8.29E-04
18F Fluoride-labelled amino acids 2.3E-02 1.75E-02 −24 1.86E-02 −19 1.97E-02 1.74E-02
18F Fluoride-labelled brain receptor substances 2.8E-02 1.89E-02 −33 1.91E-02 −32 1.93E-02 1.89E-02
18F Fluoride FDG 1.9E-02 1.50E-02 −21 1.59E-02 −16 1.66E-02 1.53E-02
18F Fluoride L-dopa 2.5E-02 1.51E-02 −40 1.68E-02 −33 1.85E-02 1.52E-02
51Cr Chromium EDTA 2.0E-03 1.39E-03 −31 1.56E-03 −22 1.76E-03 1.36E-03
67Ga Gallium citrate 1.0E-01 7.66E-02 −23 8.59E-02 −14 8.58E-02 8.59E-02
68Ga Gallium-labelled EDTA 4.0E-02 2.35E-02 −41 2.37E-02 −41 2.45E-02 2.29E-02
75Se Selenium-labelled amino acids 2.2E + 00 2.03E + 00 −8 2.21E + 00 0 2.33E + 00 2.09E + 00
75Se Selenium-labelled bile acid SeHCAT 6.9E-01 2.37E-01 −66 2.77E-01 −60 2.76E-01 2.77E-01
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Table 1 Effective dose from the 55 radiopharmaceuticals in ICRP publication 106, determined using three different methods (Continued)
99mTc Technetium apcitide 4.7E-03 1.90E-03 −60 2.05E-03 −56 2.01E-03 2.09E-03
99mTc Technetium-labelled small colloids,
intratumoural adm. time to removal 18 h

2.0E-03 3.14E-03 57 3.96E-03 98 3.49E-03 4.43E-03

99mTc Technetium-labelled small colloids,
intratumoural adm time to removal 6 h

1.2E-03 1.78E-03 48 2.24E-03 87 1.98E-03 2.50E-03

99mTc Technetium EC, normal renal
function

6.3E-03 3.69E-03 −41 4.23E-03 −33 5.12E-03 3.33E-03

99mTc Technetium ECD 7.7E-03 5.36E-03 −30 5.75E-03 −25 6.13E-03 5.36E-03
99mTc Technetium furifosmin, exercise 8.9E-03 6.25E-03 −30 6.67E-03 −25 6.73E-03 6.60E-03
99mTc Technetium furifosmin, resting
subject

1.0E-02 6.53E-03 −35 6.99E-03 −30 7.07E-03 6.91E-03

99mTc Technetium-labelled HIG 7.0E-03 4.72E-03 −33 4.59E-03 −34 4.89E-03 4.29E-03
99mTc Technetium-labelled HM-PAO 9.3E-03 1.06E-02 14 1.01E-02 9 9.93E-03 1.04E-02

Tc-99 m Technetium-labelled IDA derivatives,
normal hepato-biliary conditions

1.7E-02 7.70E-03 −55 8.62E-03 −49 8.58E-03 8.66E-03

99mTc Technetium-labelled MAA 1.1E-02 1.29E-02 17 1.02E-02 −7 9.54E-03 1.08E-02
99mTc Technetium-labelled MAG3, normal renal
function

7.0E-03 4.05E-03 −42 4.65E-03 −34 5.68E-03 3.62E-03

99mTc Technetium-labelled non-absorbable
markers, orally administered fluids

1.9E-02 9.88E-03 −48 1.06E-02 −44 1.04E-02 1.08E-02

99mTc Technetium-labelled non-absorbable
markers, orally administered solids

2.4E-02 1.08E-02 −55 1.14E-02 −53 1.11E-02 1.18E-02

99mTc Technetium-labelled MIBI, exercise 9.0E-03 6.06E-03 −33 6.55E-03 −27 6.57E-03 6.52E-03
99mTc Technetium-labelled MIBI, resting subject 7.9E-03 6.58E-03 −17 7.03E-03 −11 6.95E-03 7.11E-03
99mTc Technetium-labelled monoclonal
antibodies, intact antibody

1.2E-02 8.27E-03 −31 8.18E-03 −32 7.95E-03 8.40E-03

99mTc Technetium pertechnegas 1.2E-02 1.46E-02 22 1.46E-02 22 1.41E-02 1.50E-02
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Table 1 Effective dose from the 55 radiopharmaceuticals in ICRP publication 106, determined using three different methods (Continued)
99mTc Technetium pertechnetate, intravenous
blocking agent given

4.2E-03 3.66E-03 −13 4.12E-03 −2 4.47E-03 3.78E-03

99mTc Technetium pertechnetate, intravenous
no blocking agent given

1.3E-02 1.55E-02 19 1.59E-02 22 1.55E-02 1.64E-02

99mTc Technetium pertechnetate orally, no
blocking agent

1.4E-02 6.02E-03 −57 6.38E-03 −54 6.33E-03 6.43E-03

99mTc Technetium-labelled phosphates and
phosphonates, normal uptake and excretion

5.8E-03 3.80E-03 −34 4.31E-03 −26 4.86E-03 3.75E-03

99mTc Technetium-labelled erythrocytes 7.0E-03 2.57E-03 −63 2.69E-03 −62 2.67E-03 2.71E-03
99mTc Technetium technegas 1.5E-02 1.87E-02 25 1.36E-02 −9 1.24E-02 1.49E-02
99mTc Technetium tetrofosmin, exercise 6.9E-03 5.18E-03 −25 5.76E-03 −17 5.86E-03 5.66E-03
99mTc Technetium tetrofosmin, resting subject 8.0E-03 5.84E-03 −27 6.29E-03 −21 6.36E-03 6.22E-03
99mTc Technetium-labelled white blood cells
(leukocytes)

1.1E-02 9.60E-03 −13 7.17E-03 −35 6.81E-03 7.54E-03

111In Indium-labelled HIG 1.7E-01 1.39E-01 −18 1.41E-01 −17 1.44E-01 1.38E-01
111In Indium-labelled monoclonal antibodies,
intact antibody

3.3E-01 2.14E-01 −35 2.24E-01 −32 2.17E-01 2.32E-01

111In Indium octreotide 5.4E-02 8.02E-02 49 6.87E-02 27 6.79E-02 6.96E-02
123I Iodide, thyroid uptake 35% 2.2E-01 2.72E-01 24 2.33E-01 6 2.12E-01 2.53E-01
123I Iodine BMIPP 1.6E-02 1.37E-02 −14 1.57E-02 −2 1.62E-02 1.52E-02
123I Iodine IPPA 1.6E-02 1.38E-02 −14 1.58E-02 −1 1.63E-02 1.53E-02
123I Iodine-labelled brain receptor substances 5.0E-02 3.33E-02 −33 3.30E-02 −34 3.18E-02 3.43E-02
123I Iodine Hippuran, normal renal function 1.2E-02 7.41E-03 −38 8.32E-03 −31 1.00E-02 6.62E-03
123I Iodine MIBG 1.3E-02 1.14E-02 −12 1.32E-02 2 1.36E-02 1.27E-02
123I Iodine-labelled monoclonal antibodies,
intact antibody

2.9E-02 2.33E-02 −20 2.18E-02 −25 1.11E-03 1.24E-03

124I Iodide, thyroid uptake 35% 1.5E + 01 1.51E + 01 1 1.28E + 01 −15 1.14E + 01 1.41E + 01
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Table 1 Effective dose from the 55 radiopharmaceuticals in ICRP publication 106, determined using three different methods (Continued)
125I Iodide, thyroid uptake 35% 1.4E + 01 1.98E + 01 41 1.66E + 01 19 1.50E + 01 1.83E + 01
131I Iodide, thyroid uptake 35% 2.4E + 01 2.72E + 01 13 2.22E + 01 −8 2.03E + 01 2.41E + 01
131I Iodine, Hippuran, normal renal function 5.2E-02 1.65E-02 −68 1.80E-02 −65 2.10E-02 1.51E-02
131I Iodine-labelled monoclonal antibodies,
intact antibody

4.7E-01 3.13E-01 −33 2.57E-01 −45 2.49E-01 2.66E-01

131I Iodine NP59 1.8E + 00 1.94E + 00 8 1.73E + 00 −4 1.62E + 00 1.84E + 00
201Tl Thallium ion 1.4E-01 1.21E-01 −14 1.02E-01 −27 1.07E-01 9.76E-02

(E/A0)1 is the previously published effective dose per unit administered activity (E/A0) by ICRP, (E/A0)2 is (E/A0) dose calculated with the new phantoms and old tissue weighting factors while (E/A0)3 is with the new
phantoms and new weighting factors. (E/A0)2 − (E/A0)1))/(E/A0)1 and ((E/A0)3 − (E/A0)1)/(E/A0)1 is the difference in percentage (%) of the new values compared to the old. (E/A0)3 male and (E/A0)3 female are the
estimations generated from the equivalent dose of each gender separately using the new phantoms and new weighting factors.
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Figure 1 A histogram of the relative difference between different dose values. The relative difference
between the old published effective dose per unit administered activity and the effective dose values
calculated with the new phantom (ICRP 110) and with (1) the new (ICRP 103) and (2) the previous (ICRP 60)
tissue weighting factors. The arrow indicates identical results between old and new estimations.
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new tissue weighting factors. The effective dose per unit administered activity is on

average larger for women than for men. The main difference between the effective

doses for women and men occurs for radiopharmaceuticals administered orally. For ra-

diopharmaceuticals with a significant uptake in adipose tissue as for 14C- and 3H-

labelled neutral fat and free fatty acids or in the male gonads, the effective dose will be

higher for males than for females. It should also be noted that the differences in the ef-

fective dose between genders is due to the phantoms. The stochastic effects for a spe-

cific radiosensitive organ can vary between genders. However, the tissue weighting

factors are published as sex-averaged and the biokinetic models are also non-gender

specific, except for the 4 h longer female transit time in the colon. There are also some

other general observations. As earlier shown [23] for intravenous-administered radio-

pharmaceuticals labelled with a radionuclide of short physical half-life, the variation of

E/A0 is limited. For 18F-labelled substances, E/A0 varies between 0.013 and 0.019 mSv/

MBq (less than a factor of 1.5). For 11C-substances, E/A0 varies between 0.0025 and

0.0055 mSv/MBq (around a factor of 2.2). Also for 99mTc-labelled substances, the range

of E/A0 values is limited to 0.0017 to 0.016 mSv/MBq (a factor of 9.6). For radiophar-

maceuticals where the radionuclide has a longer physical half-life, the differences be-

tween various substances are larger and more dependent on the biokinetic behaviour of

the substances. For all the 18F substances, there is a reduction in effective dose estima-

tion by 29% in average. For 11C-substances, two radiopharmaceuticals show a higher ef-

fective dose and 11 have a lower effective dose than previously published values. In 50

of the 62 99mTc-substances, the effective dose estimations give lower values than previ-

ous estimations.

In Sweden, the collective effective dose from diagnostic examinations in nuclear

medicine was estimated to 334 manSv in 2012 using the old effective dose estimations.

Using the new estimations, the collective effective dose is estimated at 292 manSv, i.e.

13% lower value than earlier estimated.
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Conclusions
This study shows that the introduction of more realistic gender-specific voxel phan-

toms will lead to a reduction of the estimated effective dose for a majority of radiophar-

maceuticals. The impact of the new phantom, improved calculation methods and tissue

weighting factors is still within a factor of two of the former values for almost all

radiopharmaceuticals.

For 268 radiopharmaceuticals out of 338, the new calculations show lower effective

dose values than previous estimates. For 68 radiopharmaceuticals, the new calculations

results in an increased value of the estimated effective dose. Therefore, hospitals, refer-

ring physicians, research groups and ethical committees should be encouraged to use

the updated versions of the effective dose estimations to be in line with the current

dosimetric methods and radiation risk estimations.
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by ICRP, (E/A0)2 is (E/A0) dose calculated with the new phantoms and old tissue weighting factors while (E/A0)3 is with
the new phantoms and new weighting factors. (E/A0)2− (E/A0)1))/(E/A0)1 and ((E/A0)3− (E/A0)1)/(E/A0)1 is the
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