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Abstract

A fundamental problem in robotics is generating the motion for a task. How to trans-
late a task to motion or a series of movements is a non-trivial problem. The com-
plexity of the task, the structure of the robot, and the desired performance determine
the sequence of movements, the path, and the course of motion as a function of time,
namely the trajectory. As we discuss in this thesis, a trajectory can be acquired from
a human demonstration or generated by carefully designing an objective function.
In the first approach, we examine a number of robotic setups that are suitable for
human demonstration. More notably, admittance control as a new dimension to the
robot-assisted teleoperation is investigated. We also describe a free-floating behav-
ior which makes robust lead-through programming possible, especially in scenarios
where a robot comes into contact with stiff materials. As a way to utilize these se-
tups, we present some ideas for developing a high-level language for an event-based
programming common to assembly tasks.

For an acquired or a mathematically designed trajectory, so to say a motion
template, we show how time and coordinate scaling as well as a time-dependent
coordinate transformation can be used to extend the template to a larger workspace.
The time-dependent coordinate transformation lays the ground for a closed-loop
approach to trajectory generation for fixed-time problems. In the closed-loop ap-
proach, a desired reference signal (possibly time varying) is tracked by acting upon
the feedback from the actual state of a robot. Using the Hamilton-Jacobi-Bellman
equation we derive a closed-loop solution to the fixed-time trajectory-generation
problem with a minimum-jerk cost functional. In this case, it turns out that the time-
dependent coordinate transformation does not affect the optimality of the solution.
Moreover, we show the resulting trajectory coincides with a fifth-order polynomial
function of time that instantaneously updates due to the changes in the reference
signal and/or the robot states.

We make a short comparison between kinematic and dynamic models for gener-
ating trajectories. The conclusion is that given conservative kinematic constraints,
both models behave in a similar way. Having this in mind, we derive an analytic
solution to the problem of fixed-time trajectory generation with a quadratic cost
function under velocity and acceleration constraints. Despite the simplicity of this
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problem, it has a wide range of applications within motion planning. The advantage
of the analytic solution compared to an on-line optimization approach lies in the
efficiency of the calculation and the accuracy of the solution.

To extend the idea of closed-loop trajectory generation, by accommodating a
more generic form of system dynamics and constraints, we adapt the Model Predic-
tive Control (MPC) framework. MPC is traditionally applied to tracking problems,
i.e., when there is an explicit reference signal. Thus, it is a common practice to have
a separate layer that generates the reference signal. We have proposed an integrated
approach by introducing a final state constraint in the formulation. Additionally,
we give the interpretation that the difference between tracking and point-to-point
trajectory-planning problems is in the density of the specified desired reference sig-
nal. In other words, in the tracking problem the desired output at every sample is
specified while in the point-to-point trajectory planning, it is limited to certain sam-
ples only. We utilize a strategy to reduce the discretization time successively. This
way, we respect the real-time constraints for computation time while the accuracy
of the solution is gradually improved as the deadline approaches. We have verified
our proposed MPC approach to trajectory generation in a ball-catching experiment.
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1
Introduction

1.1 Background and Motivation

Trajectory generation is an inherent problem in motion control for robotic systems,
such as industrial manipulators and mobile platforms, in order to transfer the system
from one initial state to another desired state [Kröger and Wahl, 2010].

A common strategy to motion planning is the decoupled approach [LaValle,
2006; Verscheure et al., 2009] since it reduces the complexity of the complete
motion-planning problem. This strategy means that a path is first determined taking
into account the geometry of the task and the environment, e.g., obstacles or other
robots in a shared workspace. Subsequently, a trajectory planning is performed in
order to achieve tracking of the a priori planned geometric path.

Various modeling assumptions have to be made. A major difference is due to
whether a pure kinematic model is considered, or if the complete linear or nonlinear
dynamics of the system are modeled and considered. Obviously, the latter is more
complex and the computations are significantly more time consuming. In general, a
dynamic model is required to guarantee satisfaction of the physical constraints such
as actuator limitations. This can limit the performance of the decoupled approach
or even give rise to infeasible trajectories for a certain path.

A prerequisite for modern robot control is the sensor measurements of both in-
ternal robot quantities (typically by joint encoders/resolvers in manipulators and
wheel encoders on mobile platforms) and external sensors providing information
about the state of the workspace (such as vision and force/torque sensors) [Kröger
and Wahl, 2010]. Consequently, another desired characteristic of the motion plan-
ning in uncertain or unstructured environments is the ability to react to sensor inputs.
In practice, this means that the path as well as the corresponding trajectory need to
be recomputed online with real-time constraints.

In many applications, the trajectory generation is desired to be performed such
that the time for executing a task, or the energy consumed, during the motion is min-
imized. Hence, motion-planning problems are often formulated as optimal-control
problems. The cost functional implicitly results in a coordination between the dif-
ferent degrees-of-freedom (DOF) of the system.
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Chapter 1. Introduction

As an alternative to the decoupled approach in cases where only the initial and
final states are of interest, a direct integrated approach to motion planning can be
pursued. Ultimately, this leads to a motion planning where the full potential of the
system is utilized, since the geometric, kinematic, and dynamic constraints can be
considered directly when performing an optimal motion planning [Choset, 2005].
The usage of this approach, though, has been limited because of the time required
for computing solutions online for complex dynamic systems such as industrial
robots with multiple DOF.

Algorithms and methods for offline trajectory generation for time-optimal path
tracking for industrial manipulators were already developed in the 1980s [Bobrow
et al., 1985; Shin and McKay, 1985]. An overview of trajectory-generation methods
for robots is provided in [Kröger, 2010]. Most of the previously suggested methods
for online trajectory generation for mechanical systems were based on a library
of analytic expressions, parametrized in the initial and final states of the desired
motion and certain constraints [Kröger and Wahl, 2010; Kröger, 2011a]. Efficient
algorithms and data structures for online trajectory generation based on this method
were implemented and distributed as part of the Reflexxes motion library [Kröger,
2011b]. Other approaches to online trajectory generation based on parametrized
motion patterns were considered in [Castain and Paul, 1984], [Macfarlane and Croft,
2003], and [Haschke et al., 2008].

The major advantage of the existing analytic solutions is that they can be com-
puted extremely fast. Nevertheless, they typically address time-optimal problems
and are limited in the constraints that can be handled in the motion planning. Al-
ternatively, in [Verscheure et al., 2009] it was shown how the time-optimal path-
tracking problem can be solved using convex optimization techniques under certain
assumptions on the robot model.

While the minimum-time trajectories are of interest for defining an upper bound
for productivity of a robotic system, they put the system under maximal stress.
In practice, (e.g., in a production line) several components are involved and there
is a sequence of dependent operations that determines the required time. Hence,
the solution to fixed-time problems can prove valuable by reducing wear and tear
of the robotic system. It appears that the fixed-time optimal trajectory-planning
problems are relatively underexplored. Sub-optimal solution to fixed-time trajec-
tory planning for robot manipulators was proposed by [Duleba, 1997]. In another
approach, the fixed-time optimal solution in the space of parametrized trajectories
were found [Yang et al., 2012].

The motivation for this thesis is to examine some new ideas for trajectory gener-
ation to address some of the existing issues or to extend the previous methods. Ini-
tially, we investigate robotic setups for acquiring trajectories from human demon-
stration as faithfully as possible. Fast algorithms to obtain solutions to fixed-time
point-to-point trajectory generation is a major theme in this work. We propose a
closed-loop approach as well as various optimal strategies to this problem.
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1.2 Contributions

1.2 Contributions

The major contributions of this thesis are:

• Derivation of a closed-loop minimum-jerk trajectory generation,

• Derivation of an analytic solution for point-to-point fixed-time trajectory
planning under maximum velocity and maximum acceleration constraints,

• Extension of Model Predictive Control framework to point-to-point trajectory
generation,

• Robot-assisted teleoperation by means of compliance,

• Passive lead-through using free-floating motion,

• Extending guarded motion with fault management and priority notions.

1.3 Publications

The thesis is, by and large, a standalone piece of work, except the contents of Sec-
tions 2.3 and 4.4 which are based on the papers below.

Ghazaei Ardakani, M. M., J. H. Cho, R. Johansson, and A. Robertsson (2014). “Tra-
jectory generation for assembly tasks via bilateral teleoperation”. In: Proc. of the
19th IFAC World Congress. Vol. 19. 1. Cape Town, South Africa, pp. 10230–
10235. DOI: 10.3182/20140824-6-ZA-1003.02559.

Ghazaei Ardakani, M. M., B. Olofsson, A. Robertsson, and R. Johansson (2015).
“Real-time trajectory generation using model predictive control”. Unpublished
manuscript.

The idea of the first paper is due to the first author, by whom the major part of
the implementation was carried out. The second author was responsible for the im-
plementation of the interface to the master device and contributed in the preparation
of the manuscript. The third and fourth authors were involved in proof-reading and
improving the manuscript.

The problem formulation of the second paper is due to the first author. The
verification of the ideas and the implementation of algorithms were done together
with the second author. The manuscript was prepared by the first and the second
author, while proof-reading and improvements of the text were suggested by the
third and the fourth co-authors.

Code generation and the interface for programming a guarded motion in ABB
RobotStudio was developed by Maj Stenmark [Stenmark et al., 2014]. The pro-
gramming concept and the improvements in the robotic architecture and their re-
lated implementations are due to the author of this thesis.
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Chapter 1. Introduction

The author has used some of the results from the EU/FP7 ROSETTA project1.
Specifically, the iTaSC [De Schutter et al., 2007] implementation in Simulink was
done as part of this project. Additionally, the gravity and friction models are due to
Andreas Stolt [Stolt, 2012].

The derivation of the analytic solution to the fixed-time trajectory planning (Sec-
tion 4.3) was done together with Meike Stemmann. The author has completed the
solution and provided numerical results.

Other publications:
The following list of papers, in which the author has contributed, were decided not
to be a part of this thesis.

From, P. J., J. H. Cho, A. Robertsson, T. Nakano, M. Ghazaei, and R. Johansson
(2014). “Hybrid stiff/compliant workspace control for robotized minimally in-
vasive surgery”. In: Proc. 5th IEEE RAS EMBS Int. Conf. Biomedical Robotics
and Biomechatronics, 2014, pp. 345–351.

Ghazaei Ardakani, M. M. and R. Johansson (2012). “Interpolation and spectral es-
timation of non-uniformly sampled signals”. Unpublished manuscript.

Ghazaei Ardakani, M. and B. Bernhardsson (2014). Spurious convergence of itera-
tive learning control. Poster presented at Reglermöte 2014, June 3–4, Linköping
University, Linköping, Sweden.

Ghazaei Ardakani, M., H. Jörntell, and R. Johansson (2011). “ORF-MOSAIC for
adaptive control of a biomimetic arm”. In: Proc. IEEE Int. Conf. Robotics and
Biomimetics (ROBIO), 2011, pp. 1273–1278.

1.4 Thesis Outline

In Chapter 2, we present methods to acquire human-generated trajectories as faith-
fully as possible. Additionally, a software architecture for programming robots us-
ing these methods is proposed. Chapter 3 presents methods for extending a trajec-
tory to a larger workspace and a closed-loop perspective on trajectory generation.
Some of the optimization-based approaches to trajectory generation are presented in
Chapter 4. First, we study the applicability of simple kinematic models compared to
dynamic models. Second, an analytic solution to fixed-time trajectory planning with
state constraints is derived. Third, we adapt Model Predictive Control for point-to-
point trajectory generation. Finally, conclusions are drawn in Chapter 5 and ideas
for future research are presented.

1 European Community’s Seventh Framework Programme FP7/2007-2013 – Challenge 2 — Cognitive
Systems, Interaction, Robotics – under grant agreement No. 230902 – ROSETTA
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2
Human-Generated
Trajectories via Haptic
Interface

2.1 Introduction

Robots have been used for decades to conduct repetitive tasks, e.g., assembly and
pick-and-place operations, to replace human workers. Numerous industrial environ-
ments have utilized robotic systems to increase the amount of outcomes, improve
the efficiency of processes, and to improve the work environment for human work-
ers by delegating the monotonous tasks to robots. New generation of robots, such
as ABB YuMi [ABB Robotics, 2015; Kock et al., 2011] shown in Fig. 2.1, has
been built to work side-by-side with human workers, hence requiring a more intu-
itive way of programming and interaction with humans. However, programming of
robot systems for complex and flexible tasks has still remained a challenging prob-
lem. There are numerous suggested solutions in the literature, many of which rely
on trajectory programming prior to operation. In general, those methods requiring
state-event modeling are not easily implementable or compatible for different tasks.

Generating robotic motions is usually based on teaching via some human–robot
interface (HRI) or 3D simulation programming environments. The manipulation of
the robotic systems is possible not only using a teach pendant but also with di-
rect manipulation, so called lead-through programming. The direct manipulation
of robots is much more intuitive than the conventional text-based programming or
even graphical simulation since trajectories are generated via human demonstration.
For teaching by demonstration, if the robot does not have a similar kinematic struc-
ture as human, the mapping between robot motion and human motion will not be
trivial. By using the robot as part of the demonstration of a task, this problem could
be entirely avoided. Therefore, this approach has been widely used in human skill
acquisitions, [Argall et al., 2009; Lee et al., 2012].
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Chapter 2. Human-Generated Trajectories via Haptic Interface

Figure 2.1 ABB YuMi Robot [ABB Robotics, 2015; Kock et al., 2011] used
mainly for experiments in Sections 2.2 and 2.4.

Despite this, the interface between humans and robots can be inconvenient and
difficult for accurately transferring motions due to mechanical properties of robots
such as inertia and friction. Hence, this approach is mainly used for small and
lightweight robots. Although compliant motion control could be employed to re-
duce inertial/friction forces, direct teaching of industrial robots is still limited.

In this chapter we present two setups suitable for teaching robots. In Section 2.2,
we describe a simple, yet quite robust approach for direct teaching. Using admit-
tance control and motion constraints, we explain how the robot system could help
an operator to accomplish a task in Section 2.3. An event-based programming ap-
proach is sketched in 2.4 which can utilize the setups described in this chapter. The
conclusions are drawn in Section 2.5.

2.2 Free-Floating Motion

Typical implementation of lead-through requires knowledge of forces and torques
at the end-effector. To implement a behavior for manipulators to react to the forces
applied to an arbitrary point, force sensing at each joint might be required. While
the cost of sensors and practical problems have made the implementation of robots
with joint sensors quite limited, the estimation of forces at each joint provides a
reasonable alternative. Nevertheless, the accuracy of the estimation and the inherent
uncertainty due to Coulomb friction creates limitations for in-contact operation.

If a robot has low mass and the motors are back-drivable (low gear ratio is
required), we do not have to fully cancel out the dynamics of the robot. For a kines-
thetic teaching, the dominating undesirable dynamics is the effect of the gravity and
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2.2 Free-Floating Motion

friction. Therefore, gravity and friction compensation can drastically improve the
interaction with the robot.

In our proposed approach, the friction will partly be on our side since it stabilizes
the robot. The natural deadzone due to the static friction adds robustness against
model uncertainties too. When switching to free-floating motion, we disable the
internal feedback controller and use only a feedforward signal calculated by

τ f f = g(q)+FC(q, q̇)+L(q)+ kJ(q)hex. (2.1)

Here, q represents joint angles, q̇ is the vector of joint velocities, the geometric
Jacobian is denoted by J(q), hex denotes the force/torque measurements from a
wrist-mounted sensor, k is a static gain, FC(q, q̇) denotes the friction model used for
friction compensation, L(q) is a model for increasing the stiffness close to the joint
limits, and g(q) is the gravity compensation term.

Note that in our implementation, it was not possible to reset the integrators of the
internal controller. Therefore, special care was taken to make a bumpless transition
between the free-floating and the closed-loop modes.

Partially Closing the loop
In robot programming by jogging or by lead-through demonstration, it is often de-
sired to lock the orientation and/or the translation along certain axes in Cartesian
space. This is possible by implementing a PID controller [Siciliano and Villani,
1999]

Fimp = Kt∆p−Dv+
1
s

Ki∆p (2.2)

τimp = Koηε−Doω +
1
s

Kioηε. (2.3)

Here, ∆p ∈ R3 is the error in the Cartesian space and η and ε are defined such that
q = (η ,ε) is a unit quaternion [Chou, 1992] representing the rotational error, and
v and ω are the translational and the rotational velocities, respectively. We use the
diagonal matrices Kt ,D,Ki ∈R3×3 for the translation part and Ko,Do,Kio ∈R3×3 for
the rotational part. The elements of Kt , Ki, and D corresponding to free translational
axes (not locked) are set to zero. In a similar way, the elements of Ko, Do, and Kio
corresponding to free rotational axes are set to zero.

After disabling the internal controller, the torque delivered to the robot will be

τ = τ f f + τcl , (2.4)

where

τcl = JT (q)
(

Fimp
τimp

)
. (2.5)

15



Chapter 2. Human-Generated Trajectories via Haptic Interface

Results and Discussion
In this section the results of the free-floating motion is presented. In the first three
experiments, we investigate the effect of friction compensation term and the term
related to the force sensor kJ(q)hex according to (2.1). The objective is to lead-
through the robot along each Cartesian axis while keeping the orientation constant.
This task is more difficult than moving a single joint, since the friction of several
joints add up together. Figure 2.2 shows the result for the case when only the gravity
compensation is active. The operator follows a predefined path in each experiment,
starting from the gripper in touch with a table and finishing at the same point. The
gripper is moved in the positive z-direction defined upwards with respect to the
table, then followed by a motion forward and then backward in y-direction, defined
perpendicular to the robot base and parallel to the table, and then in the positive
x-direction away from the robot base and back again. Finally the gripper is brought
to its initial position by moving in the negative z-direction.

Figure 2.3 shows the result of a similar experiment. This time, the friction com-
pensation was activated as soon as motion was detected. The method adds an addi-
tional feedforward torque to each joint equal to 40% of its estimated static friction
band. In Fig. 2.4 corresponding to the third experiment, the friction compensation
was lowered to 30%. However, it was activated as soon as an external force was de-
tected. Additionally, the external force was amplified with a factor of two and added
to the feedforward torque signal according to 2.1. The external torques were ignored
since they contribute by reducing the rotational resistance, which contradicted the
point of this experiment.

Although Figs. 2.2, 2.3, and 2.4 look qualitatively similar, the force values in
x and y directions are almost halved with the introduction of every new feature.
This indicates that the operator could achieve the same task by a reduced amount of
effort, i.e., in the last experiment by a quarter of the forces required in the first ex-
periment. This advocates integrating both friction compensation and a force sensor.
Free-floating motion proved to be extremely robust. It is because of the passivity
of the mechanical system and the lack of any feedback loop. However, the gravity
and the friction compensation methods require special attention, since in an entirely
open-loop strategy there is no way to compensate for model errors. Using adaptive
control for re-tuning models can be a possible solution in this case.

The fourth experiment shows the result of partially closing the loop. In this ex-
periment, we have locked the position while letting the orientation of the gripper to
be adjusted. Figures 2.5 and 2.6 show the orientation of the gripper represented by a
unit quaternion and joint angles, respectively. As seen, both the orientation and the
joint angles are varied over a large domain. Nevertheless, the displacement in the
flange position shown in Fig. 2.7 is less than 3 [mm]. This value can probably be
improved. However, due to the non-linearities, especially the backlash and the un-
modeled friction, in addition to the inherent limitations in the mechanical stiffness
of the robot and its actuation, the stiffness cannot be arbitrarily large.
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Figure 2.2 Experiment 1 (only gravity compensation): lead-through of the gripper
following the sequence (+z,+y,−y,+x,−x,−z) while trying to keep the orientation
constant. The components of the force applied to the gripper are depicted in the upper
part and the position coordinates in the lower part.
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Figure 2.3 Experiment 2 (friction compensation activated): lead-through of the
gripper following the sequence (+z,+y,−y,+x,−x,−z) while trying to keep the
orientation constant. The components of the force applied to the gripper are depicted
in the upper part and the position coordinates in the lower part. Compare the forces
with the baseline in Fig. 2.2.
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Figure 2.4 Experiment 3 (friction compensation and force sensor activated): lead-
through of the gripper following the sequence of (+z,+y,−y,+x,−x,−z) while try-
ing to keep the orientation constant. The components of the force applied to the
gripper are depicted in the upper part and the position coordinates in the lower part.
Compare the forces with the baseline in Fig. 2.2.
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Figure 2.5 Experiment 4: reorientation of the gripper by interacting with an ar-
bitrary point on the arm while the flange position is locked; the curves show the
orientation of the gripper represented by a unit quaternion Q = (Q1,Q2,Q3,Q4).
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Figure 2.6 Experiment 4: reorientation of the gripper by interacting with an arbi-
trary point on the arm while the flange position is locked; the curves show the joint
angels. The joint values for wrist (q7) have been omitted.
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Figure 2.7 Experiment 4: reorientation of the gripper by interacting with an ar-
bitrary point on the arm while the flange position is locked; the curves show the
displacement of the locked position in different directions due to the limited stiff-
ness.
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Chapter 2. Human-Generated Trajectories via Haptic Interface

2.3 Robot-Assisted Teleoperation

An alternative approach to the kinesthetic teaching for generating trajectories is
teleoperation of a robot. In the teleoperation setup, a human operator manipulates
a “master device" to control a “slave robot" in a remote environment. The master
device is to decode the commands issued by an operator and forward them to the
slave robot. For precise remote control of the slave robot, it is required to provide
sensory feedback such as visual, haptic, or auditory feedback to the operator. Haptic
feedback provides the operator with the sense of touch of what the robot may per-
ceive in contact operation with the work space or the environment. Thus, receiving
haptic feedback is essential when there is a contact between the slave robot and the
environment. Besides the visual feedback, the haptic feedback establishes a bilateral
communication channel between the operator and the robot.

The control of bilateral teleoperation systems has been extensively studied for
decades, see [Hokayem and Spong, 2006] and the references therein. A schematic
diagram of a bilateral teleoperation system is illustrated in Fig. 2.8. The control
architecture represents which information has to be exchanged between the two
sides [Aliaga et al., 2004]. The ultimate goal of bilateral teleoperation is to achieve
transparency by means of two-directional position and force tracking [Lawrence,
1993; Yokokohji and Yoshikawa, 1994]. Despite recent advances in bilateral tele-
operation in the task space [Liu and Chopra, 2012; Wang, 2013], experiments are
still mainly limited to robots with a few degrees of freedom (DOF). In general, the
design of a bilateral controller for industrial robots is challenging due to practical
problems including inertia, friction, control bandwidth, and time delay.

In this section, we propose a convenient framework to generate robotic trajecto-
ries within the teleoperation setup. Since delay makes it very difficult to handle stiff
contacts in bilateral teleoperation [Colgate and Hogan, 1989], a compliant motion
control has been employed. Moreover, the targeted compliance of the slave robot
can be adjusted by the operator in real-time. This tele-admittance idea increases the
flexibility for various tasks. We implemented the proposed approach in a 6-DOF
setting and verified it with a couple of assembly tasks.

Operator

devicecontroller

Environment

controllerdevice

SlaveSlave Master Master

d
el

ay

Figure 2.8 Bilateral teleoperation system: information is exchanged between the
master and the slave in a bilateral manner.
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2.3 Robot-Assisted Teleoperation

The remainder of this section is organized as follows. Firstly, a mapping be-
tween a master device and a slave robot is defined. Secondly, the control architec-
ture of the system is described in terms of tele-admittance and haptic feedback to
the operator. Thirdly, the experimental results are illustrated by the interaction with
a solid block, a peg-in-hole experiment, and a snap-fit task, respectively. Finally,
the issues raised in the experiments and some ideas for further improvements are
discussed.

Kinematic Chain
A mapping between the degrees of freedom of a master device and a slave robot
must be defined. To have a natural and generic approach we make use of the follow-
ing feature frames. Each feature frame defines a coordinate frame and is attached to
an object according to the iTaSC formalism [De Schutter et al., 2007].
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Figure 2.9 Visualization of slave (robot) frames: 1) Slave Base Frame, 2) Slave
Task Frame, 3) Flange Frame, 4) Slave Frame, 5) Sensor Frame, 6) Wrist Frame.
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For the master device, we make use of:

1. Master Base frame: this is the basic coordinate system provided by the haptic
device. The position and orientation values are relative to this frame.

2. Master Task frame: this defines a natural frame for the manipulation tasks,
which might be rotated, e.g., with respect to the orientation of the haptic de-
vice.

3. Handle frame: this is a frame firmly attached to the handle of the haptic device
and is usually predefined.

4. Master frame: this allows for an offset between the handle frame and the
desired one, e.g., when the handle is augmented with a tool.

Similarly, for the slave (robot) we define:

1. Slave Base frame: this is the default coordinate frame for a robot, which nor-
mally has its origin at the base of a robot.

2. Slave Task frame: this frame defines a coordinate system which is more con-
venient for specifying a task.

3. Flange frame: this is a frame firmly attached to the flange of the robot.

4. Slave frame (Tool frame): the origin of this frame is located at the tool center
point (TCP). The frame defines the tool coordinate system.

5. Sensor frame: this frame is attached to the force/torque sensor and is aligned
with its coordinate system.

6. Wrist frame: this is a frame for active compliance of the robot. The origin of
this frame acts as a virtual joint with respect to external forces. The designated
principal moments of inertia are aligned with this frame.

Various slave coordinate frames are illustrated in Fig. 2.9. The relationships be-
tween these frames are represented in Fig. 2.10. Each transformation corresponds
to a translation and a rotation. The solid arrows represent the given transformations
(either fixed or measurable). The dashed arrows correspond to the inferred transfor-
mations.

We define the mapping between the haptic interface and the robot as the trans-
lational and the rotational velocity coupling between the master frame with respect
to the master task frame and the slave frame with respect to the slave task frame.
In case of no scaling of motion and no interaction forces, this is equivalent to the
matching of the slave frame and the master frame relative to their corresponding
task frames

T211 = T111. (2.6)
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Figure 2.10 Scene graph: world (w), master base frame (mbf), master task frame
(mtf), master frame (mf), slave base frame(sbf), slave task frame (stf), slave frame
(sf), handle, flange, sensor and wrist frames.

This can equivalently be described in terms of typical master and slave transforma-
tions

T211 = T221T22T−1
21 (2.7)

T111 = T121T12T−1
11 (2.8)

T22 = T−1
221T121T12T−1

11 T21. (2.9)

In order to allow for position references by other devices, such as a teach-
pendant, an offset between the master frame and the slave frame needs to be calcu-
lated. The offset could be used also to compensate for an initial mismatch between
the two frames. Adding an offset to T111 is equivalent to updating the translational
part of T11 and the rotational part of T121.

Compliant frame
In case of external forces, we superimpose a displacement ∆T to the equation of the
motion at the wrist point

T212 = T222T−1
221T211 = ∆T T222T−1

221T111. (2.10)

Taking into account the compliant frame, we get a new transformation between the
flange frame and the robot base frame

T̃22 = T−1
222∆T T222T22. (2.11)

For the representation purpose, instead of transformation matrices, we use a
vector of p ∈ R3 and a quaternion q ∈ R4 with the unity constraint ||q|| = 1. If
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Chapter 2. Human-Generated Trajectories via Haptic Interface

n corresponds to the axis of rotation and θ the amount of rotation, this can be
represented by q = (η ,εεε). The scalar part is η = cos(θ/2) and the vector part is
εεε = sin(θ/2) ·n [Chou, 1992; Hamilton, 1847].

The immediate benefit of such a representation is that it is singularity-free. All
computation of rotations can be carried out by making use of quaternion algebra,
specifically quaternion multiplication and inversion. Additionally, we can describe
the equations of the controller corresponding to the ∆T transformation in terms of
q and p.

Control Architecture
We employ a modified force-velocity control architecture, which requires position
information of the master device and force information of the slave robot. Let us
denote vm as the translation velocity of the master frame with respect to the master
task frame. Then, vm is transmitted to the slave side with a motion scaling factor γ
and used as a reference velocity for the slave robot. To enable micro motion at the
slave side, γ is generally set to less than one.

Tele-admittance Often due to limitations such as bandwidth and delay, it is not
possible to have a fully transparent haptic teleoperation. Therefore, it is desirable
to give the robot some extent of autonomy. Specially, when dealing with contact
forces, the delay in the feedback might impede the operator to react in time. Conse-
quently, a stiff industrial robot may cause workpiece or tool damages. A human-like
strategy to mitigate this problem is to adjust the arm impedance. In case of high un-
certainties, decreasing the impedance results in reducing the interaction forces. It
was shown by [Ajoudani et al., 2012] that transferring the desired impedance is an
effective strategy for teleoperation. Thus, we allow the operator to adjust it remotely.

A 6-DOF admittance controller was implemented to achieve active compliance
at the tool center point (TCP), [Siciliano and Villani, 1999; Caccavale et al., 1999;
Hogan, 1985]. The controller provides an isotropic translational and rotational ad-
mittance behavior with tunable parameters. The robot acts as a mass-spring-damper
system. The rotational part allows for different moments of inertia along each axis.

Similar to [Villani and De Schutter, 2008], we use the notation m,kt ,D ∈ R for
the translation part and M ∈ R3×3, and ko,Do ∈ R for the rotational part. Using the
admittance controller, we enforce the following dynamics for the wrist frame due to
the vector of the external force Fi and the vector of torque τττ i

ṗ = v (2.12)
mv̇ =−ktp−Dv+Fi (2.13)

q̇ =
1
2

ω̃ωω⊗q (2.14)

Mω̇ωω =−2koηεεε−Doωωω−ωωω×Mωωω + τττ i, (2.15)
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2.3 Robot-Assisted Teleoperation

where p is the displacement vector of the wrist from the commanded position, v is
the velocity vector, ω̃ωω = (0,ωωω), and “⊗” and “×” indicate quaternion multiplication
and cross product, respectively.

We choose the wrist frame for numerical integration of Eqs. (2.12)–(2.15). Since
we have assumed that the principal moments of inertia are aligned with this frame,
the matrix M becomes diagonal in (2.15). To ensure the unity constraint on the
quaternion, it is normalized after the numerical integration.

Assuming we have an ideal reference tracking, we equate the reference signals
with the position of the calculated compliant frame above.

Haptic feedback On the master side, the haptic feedback to the operator given in
the master task frame, FMT F

f b , can be designed as follows. We denote the vector of
forces at the TCP point given in the slave task frame by FST F

i and the translational
velocity of the slave frame with respect to the slave task frame by vs. Note that these
variables appear delayed.

FMT F
f b = γ(D2−D1)vs−D2vm +αFST F

i , (2.16)

where vm is the translation velocity of the master frame with respect to the master
task frame, α represents a force scaling factor to adjust direct haptic feedback to
the operator, and D1 and D2 correspond to the free-motion damping and in-contact
damping, respectively. When there is no contact between the slave and the environ-
ment and the delay is not significant, FST F

i and vm− γvs are almost equal to zero
so that the operator perceives only some damping force corresponding to D1. On
the other hand, in contact vs ≈ 0 and the operator perceives a scaled force with the
other damping coefficient, D2. Two damping factors were deployed to enhance the
contact detection and stability.

Let R11 be the rotation of T11 transformation. The force feedback in the master
base frame then can be calculated as

F f b = R11FMT F . (2.17)

Experimental Setup
Our setup consisted of a Force Dimension Omega-7 device which is a 7-DOF haptic
interface with closed loop stiffness of 14.5 (N/mm), see [Omega-7 Overview]. We
used the extra DOF of the device (the extent of the openness of the gripper) to adjust
admittance remotely. Moreover, an industrial robot, ABB IRB 140 [ABB Robotics,
2014], a wrist mounted six axis force/torque transducer with internal electronics,
JR3 100M40A were used. The controller was implemented in Simulink® and using
the Real-time Workshop, the code was compiled for ExtCtrl, [Blomdell et al., 2010].
The final code runs at 250 Hz on a Fedora Xenomai machine connected via the
ExtCtrl interface to the robot.

See Fig. 2.11 for the setup. Table 2.1 represents the nominal parameters of the
slave controller.
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Figure 2.11 Peg-in-hole setup: (Front) Master side with Omega-7 haptic interface.
(Back) IRB140 robot with metal pipe held in the gripper.

Results
Three different scenarios were tested. The operator sequentially touched three sides
of a solid block in the first experiment. The second experiment was a peg-in-hole
operation. The third one involved a more challenging task of snap-fit assembly.

The pushing task was meant to demonstrate the compliant behavior of the slave
robot. The operator starts from the right hand side of the block and pushes the block.
Then the end-effector is moved behind the block to push it along the x-axis. Finally,
the end-effector is moved to the top of the block and to push it downward; see
Figs. 2.12, 2.13, 2.14, and 2.15 for details. Note that the last interaction is almost
perpendicular to the surface and does not cause any torque.

As expected, the robot gives way to the external forces according to the de-
manded admittance. In general, the slave robot lags behind the master device. This
is due to imperfect tracking and delay.

The peg-in-hole problem is a classical assembly operation. In this experiment,
the operator inserts a small metal pipe inside a valve by using teleoperation. Fig-
ure 2.11 shows the setup for this task. By opening/closing the gripper of the master

Table 2.1 Controller parameters

m kt Dt
1.5 10 0.4

Mxx Myy Mzz ko Do
0.2669 0.2669 0.0338 18 5
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Figure 2.12 Pushing a solid block. The trajectory is in blue, force vectors are in
red, and torque vectors are in green.
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Figure 2.13 Pushing a solid block. Comparison of master (blue) and slave (red)
trajectories.

device—i.e., by changing the relative distance between the index finger and the
thumb—the operator can adjust the stiffness in the algorithm. The slave frame su-
perimposed on the trajectory is illustrated in Fig. 2.16. Figure 2.17 visualizes the
interaction forces and torques.

The third task involves installing a switch in an emergency button box, see
Fig. 2.18. The operator must approach the box with a specific orientation of the
switch. After alignment, the switch should be rotated and pressed until it snaps.
Figure 2.19 illustrates the trajectory and the slave frame. In Fig. 2.20, the interac-
tion forces and torques are visualized. This task will be called the snap-fit task.

Discussion
Stability Since the bilateral teleoperation system is coupling two dynamical sys-
tems (master and slave), it leads potentially to instability. The analysis and synthe-
sis are made difficult by several factors including transmission time delays between
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Figure 2.14 Pushing a solid block. Comparison of master (blue) and slave (red)
orientations described by the quaternion Q = (Q1,Q2,Q3,Q4).
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Figure 2.15 Pushing a solid block. Interaction forces and torques.
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Figure 2.16 Peg-in-hole operation. The trajectory and the tool frame are illustrated.
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Figure 2.17 Peg-in-hole operation zoomed in. The trajectory is in blue. The red
arrows are proportional to the contact forces and green arrows to the torques (the
right-hand convention).

master and slave, and uncertain dynamics of operator and environment [Hokayem
and Spong, 2006]. The use of an industrial robot as a slave device may increase
these factors in terms of control bandwidth and nonlinear dynamics.

Although the given experimental setup provides relatively high update rate for
an industrial robot, it is less than the recommended update rate of 1 kHz for haptic
interfaces [Burdea and Brooks, 1996]. Therefore, it may cause an additional de-
lay in tracking reference trajectories on the slave. There is also a time delay over
the Ethernet network between the master and slave. There are some solutions to
deal with the network delays; see [Kristalny and Cho, 2012] and references therein.
However, they are not practical for the internal delays.

As a remedy, we employed a force scaling factor α on the haptic feedback
to the operator. The scaling factor contributes to the closed-loop stability by de-
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Figure 2.18 Snap-fit experiment: a part of an emergency switch is to be assembled;
the dark-gray electric switch is to be fastened by snapping it to the rail of the light-
gray box.
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Figure 2.19 Snap-fit operation. The trajectory and the slave frame are illustrated.
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Figure 2.20 Snap-fit operation zoomed in. The trajectory is in blue. The red arrows
are proportional to the contact forces and green arrows to the torques.
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creasing the overall loop gain (motion of master→motion of slave→environment’s
reaction→force feedback). Although a lower α may disturb the perception of the
environment, it provides closed-loop stability under several uncertainties discussed
above. To achieve higher α , the control bandwidth and delays can be addressed by
time-domain passivity [Ryu and Preusche, 2007] or other approaches.

Autonomy in operation As discussed earlier, it is not always possible to build a
transparent teleoperation system. This problem is more prominent if we do not have
a 4-channel teleoperation system [Tavakoli et al., 2007]. The master device used in
our experiment provides only the measurement of the position and not the forces.
Additionally, it is not possible to feedback the torques to the operator. To mitigate
these problems, we have implemented an admittance control algorithm. By choos-
ing a suitable wrist frame and adjusting the admittance parameters, ∆T in (2.11) can
in practice fill the gaps. For example, in the snap-fit task the indirect force control
strategy helped the switch glide into its final position without demanding an ac-
curate operation from the operator. Hence, the admittance control provides a loose
coupling between the master and the slave. From this perspective, we have equipped
the robot with a certain degree of autonomy.

This setup could be viewed as a cooperation between the operator and the slave
robot. This can be complemented with enforcing pure kinematic constraints on the
motion of the slave robot, which can relax the operator from taking them directly
into account.

For comparison, we performed the same tasks while either turning off the force
controller in the robot or the force feedback to the operator. Through a series of
experiments, we realized that tasks could be performed in a shorter time and with
lower values of interaction forces in the cooperative scenario when using the sug-
gested force control as compared to the other scenarios.

Extension: Imposing Kinematic Constraints
Suppose the orientation is constrained while the position in the Cartesian space
could vary. We can formulate this as a minimization problem between the original
desired motion and the constrained one as below

minimize
¯̇q

‖Jt ¯̇q− Jt q̇‖

s. t. Jo ¯̇q = 0.
(2.18)

Here q̇ denotes the desired motion, ¯̇q is the projected motion to the null-space
of Jo, Jt is the translational part of the Jacobian and Jo is the Jacobian for the orien-
tation.

From the constraint equation we conclude, that ¯̇q lies in the null space of Jo.
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Therefore,

¯̇q = Nu (2.19)

N := I− (J†
o Jo) (2.20)

where u is an arbitrary vector and J†
o is the Moore-Penrose pseudoinverse of Jo.

Now, we can remove the constraint by substituting (2.19) in the objective func-
tional of (2.18) to get

minimize
u

‖JtNu− Jt q̇‖ (2.21)

The solution to (2.21) or the least-squares solution in case of additional redun-
dancy can readily be found to be

u = (JtN)†Jt q̇. (2.22)

Now, we substitute (2.22) back into (2.19) to get

¯̇q = Mq̇ (2.23)

M := N(JtN)†Jt . (2.24)

In the case of assisted teleoperation, we can imagine that using the projected
motion, the operator can focus on controlling the position after fixing the orien-
tation. A straightforward generalization of this approach is to partition the Jaco-
bian matrix into rows corresponding to hard constraints (in this example Jo) and
rows corresponding to soft constraints (in this example Jt ). For a robot, such as
YuMi [ABB Robotics, 2015; Kock et al., 2011] with 7 degrees of freedom for each
arm, we may augment the Jacobian with partial or full Jacobians for other points
than the end-effector (e.g., the elbow) and proceed as in the example. The approach
presented here is similar to the task priority concept proposed for controlling redun-
dant robots [Nakamura et al., 1987].

2.4 Programming Using Guarded Motion

Guarded motions provide a rich vocabulary for event-based programming common
in assembly tasks. In such scenarios, a task requires the fulfillment of certain geo-
metric or force-related constraints. Earlier works utilizing guarded motions, show
the flexibility of this approach [Stolt et al., 2011; Stolt et al., 2013; Stenmark et al.,
2014]. Guarded motions can be utilized as a step in a Sequential Function Chart
(SFC). The SFC allows for sequencing, branching, and parallelism between dif-
ferent steps. In this section, we present some enhancements to a guarded motion
compared to earlier works. The main contributions of this section are as follows

• Formalizing guarded motions
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• Extending guarded motions with fault management and the notion of priority

• An infrastructure to facilitate programming of guarded motion parameters by
demonstration

To encapsulate information required for specifying guarded motions typical in
assembly scenarios, we define a guarded motion by the following elements:

• frame1 and frame2

• Features

• Motion Constraint

• Maintenance Constraint

• Terminal Condition

• Terminal Action

• Failure Condition

• Failure Recovery Action

• Priority

These elements are described in detail in the rest of this section.
Relations between surfaces can be described by attaching a local frame to each

surface. Each frame is associated with a kinematic chain defined from a fixed refer-
ence coordinate system to the frame. Therefore, frames contain information about
fixed and actuated elements of their transformation. The relation between frames
can in turn be defined by the resulting feature coordinates. Basically, each feature
coordinate corresponds to a degree of freedom between two frames. If we denote
the transformation of frame1 from a fixed coordinate system by T w

1 and the transfor-
mation of frame2 by T w

2 , the feature coordinates are defined such that the resulting
transformation Tf fulfills T w

2 = T w
1 Tf ; see Fig. 2.21.

The frames in a guarded motion, frame1 and frame2, are specified by their kine-
matic chains. A kinematic chain is an ordered list of either fixed or actuated trans-
formations. The kinematics of robots are predefined and are given a name to avoid
unnecessary redefinition. Multiple consecutive fixed transformations can be com-
bined to form a single transformation too. Thus, for each frame we define a robot or
“none” and at most two fixed transformations such that

T w
i = Ti1TirTi2, i ∈ {1,2} (2.25)

Here Ti1 and Ti2 denote the fixed transformations and Tir is determined by the name
of the robot. If no robot is selected, then the only required fixed transformation is the
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Figure 2.21 The kinematic loop concerning feature coordinates. Each transfor-
mation from world to a frame is subdivided into three transformations such that
T w

i = Ti1TirTi2, where Tir corresponds to an actuated chain, and Ti1 and Ti2 to fixed
transformations.

world-to-frame transformation, which could be defined by setting either Ti1 and Ti2.
Otherwise, Ti1 and Ti2 represent world-to-base and robot-to-frame transformations,
respectively.

Typically, the world-to-frame transformation corresponds to the frame attached
to a workpiece and robot-to-frame to the transformation between flange and tool.
Hence, the name of a robot often specifies the transformation from its base to its
flange. For Features, a chain of named elementary transformations completing the
kinematics loop is specified. The elementary transformations belong to the set of
{x,y,z,Rot x,Rot y,Rot z} and has the interpretation of translation and rotation about
the axes of the current frame. The features are often chosen to be

(x,y,z,Rot z,Rot y,Rot x), (2.26)

equivalent to specifying the origin of frame2 by Cartesian coordinates in frame1 and
its orientation by Roll-Pitch-Yaw (RPY) angles. Other orders or combinations are
valid as long as they completely specify the number of degrees of freedom between
the two frames.

Moreover, we define feature forces in a consistent way with the feature coordi-
nates. A feature force is a component of the forces and torques applied to frame1
along a feature axis. Based on this definition, if a feature coordinate is equal to zero
or the frames are in rigid contact with an object which is not accelerated, it does not
matter if the sensor measurements are taken from the side of frame1 or frame2. Oth-
erwise, in order to use the sensor attached to the side of frame2, some assumptions
about the object being manipulated need to be made.

Motion Constraint specifies a set of constraints regarding the variation of one or
several feature coordinates as a function of time. Constant velocity is the simplest
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type of motion with two parameters, a feature axis and a velocity. Depending on the
axes used and the specification of the features, constant velocity motion can result in
a variety of motions such as linear, circular, spiral, etc. A circular motion around an
axis can be achieved by adding an offset to the robot-frame transformation. For ex-
ample, if we use the typical specification of the features in (2.26), a circular motion
around the z-axis is obtained by the displacement of the robot-frame transforma-
tion with the desired radius in a plane perpendicular to this axis. Setting a motion
constraint for the axis corresponding to Rot z leads to the desired motion. A spiral
motion can be achieved by combination of two constant velocity motions.

In this approach, it is quite important to explicitly define the constraints. For
example, if we specify a planar motion by setting motion constraints for the x- and
y-axes, the motion in z-direction and the orientation are still free. If this is not de-
sired, a Maintenance Constraint can be defined for the constraint that is supposed to
be maintained under the motion. Maintenance constraints include position, orienta-
tion, impedance, or force constraints. A maintenance constraint as well as a motion
constraint specifies a value for a controlled quantity. Each controlled quantity in
turn depends on a controller.

Terminal Condition defines a set of conditions that determines a successful com-
pletion of a guarded motion and results in a state transition to the Terminal Action.
Since there is no guarantee that a guarded motion successfully terminates, the con-
dition for detecting a fault scenario is specified by the Failure Condition and the
Failure Recovery Action is taken if the condition is satisfied. The conditions are
expressed with relational operators, e.g., ==, >, and < and a mathematical ex-
pression based on the measured or estimated quantities, e.g., feature force, feature
coordinate, sensor readings, and time. Note that both terminal and failure actions
are steps outside of a guarded motion in an SFC and can be other guarded motions
or generic commands such as gripper open/close, turn on/off spindle, or commands
to the robot’s native controller (e.g., RAPID program).

We have adopted JGrafchart for the implementation of SFC in our work [Årzén
et al., 2002; Theorin, 2013]. Hence, a guarded motion is a macro step in JGrafchart.
Following the execution model of JGrafchart, the terminal action is activated as soon
as the terminal condition is satisfied. The guarded motions which run in parallel
share the same terminal action, which is activated when all the terminal conditions
are satisfied. Any sequence of guarded motions could be united to form a composite
guarded motion. This allows for hierarchical design and hiding details. For example,
if for a special system after each motion a small amount of back-off is required, both
the main guarded motion and the terminal correction could be combined to form a
new composite guarded motion. The frames are by default inherited from the parent
to avoid redefinition.

There can be several motion and maintenance constraints in one guarded mo-
tion. Additional constraints can be imposed by parallel guarded motions. This is
useful when a single guarded motion only partially constrains the motion and extra
degrees of freedom need to be constrained using other frames, e.g., in a dual-arm
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Figure 2.22 Architecture of the system for programming using guarded motion

assembly task. Priorities affect the way the constraints are evaluated in parallel
guarded motions. Motion constraints with lower priority are evaluated subject to
higher priority constraints. For example, if a peg-in-hole operation needs to be done
and there is redundancy in the task, a parallel guarded motion with lower priority
can move the elbow away from a potential danger zone without affecting the task.
After taking into account priorities, over- and under-constrained motions are man-
aged automatically by constraint handling according to the iTaSC framework [De
Schutter et al., 2007]. For more advanced constraint handling, we consider using a
higher level scheduler.

The guarded motions presented in this section are partially implemented [Stolt
and Linderoth, 2011; Ghazaei and Hofele, 2014]. Additionally, using the setups
described in Sections 2.2 and 2.3, we have developed a robotic architecture that fa-
cilitates programming using guarded motions. In this system, there are two modes
of operation, teaching and execution. In the teaching mode, the architecture allows
the flow of information from sensors and controller to the engineering tool ABB
RobotStudio, where the operator creates a new task. Each task is a composition of
guarded motions or other tasks. An SFC is generated for the task which is loaded
into JGrafchart [Theorin, 2013] and executed on the robot. The supervisor block
depicted in Fig. 2.22 is responsible for switching between teaching and execution
modes and receives feedback from measurements and the status of the robot. The
teaching block is another SFC which implements the logic of various teaching mod-
ules. The execution block is loaded dynamically as soon as the code generation by
RobotStudio is finished.

An example of an SFC for a task is shown in Fig. 2.23. The task is to move
downwards until a pin is detected and then pick it up. The representation of the
pick-up task in RobotStudio is on the left side. “Search -z” is a guarded motion
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with constraint on the motion in negative z direction and two terminal conditions;
either a force threshold or a guard distance. A failure situation can be detected by
the fault condition. In this case, the fault condition is the same as the guard distance
(not shown in the figure).

In this section, we took the first step to formalize a domain specific language
based on guarded motions for robots. We put forward ideas that enhance the guarded
motions for a broader application in assembly tasks. We proposed a combination of
sequential programming and some behavioral elements such as task priorities and
handling of simultaneous constraints. The parallel guarded motions and consistent
feature forces make scenarios with multiple robots easier to define and manage.
Integration of the fault detection directly into the guarded motion together with
hierarchical structure allows easier development and maintenance of robust skills.

Figure 2.23 An example of a task implemented in JGrafchart [Theorin, 2013] on
the right and the representation in RobotStudio on the left: picking up a pin by
searching in negative z direction with respect to the feature coordinate system.
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2.5 Conclusions

The free-floating mode provides a robust lead-through teaching interface to a robot.
In this mode, the internal feedback loop of the robot is disabled. The robot is free-
floating by compensating for the gravity and friction. As a result of an open-loop
control the stability of this approach, when the robot is in contact with stiff materi-
als, is unparalleled. This approach was successfully implemented on the ABB YuMi
robot [ABB Robotics, 2015].

To generate trajectories for assembly tasks, the detection of contacts by the op-
erator plays an important role. The task can be simplified by providing force feed-
back to the operator. We have introduced the notion of slave-assisted teleoperation
by means of force control. The active compliance on the slave side together with
a tele-admittance strategy gives the operator more freedom to manipulate objects
with lower risk of damaging a workpiece. Moreover, we have introduced a struc-
tured way to define required coordinate frames for teleoperation. This facilitates a
quick setup of multi-degrees of freedom teleoperation and customizing it according
to the preference of an operator.

The developed setups in this chapter aimed for collecting both position and force
data for assembly tasks. The data is used for providing the parameters of guarded
motions. We have extended guarded motions with the notion of priority and fault
management. Furthermore, we can imagine processing the data for learning pur-
poses. The force/torque measurement provides valuable information for triggering
segmentation and defining tolerances.
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3
Instantaneous Trajectory
Generation Based on a
Motion Template

3.1 Introduction

Consider a robot assignment to pick different objects from a conveyor belt. The best
gripping is achieved when the gripper has a relative velocity of zero with respect to
the object. However, the speed of the conveyor belt can vary due to varying loads.
The current estimates of the position and velocity as well as an estimate of the
arrival of the object are provided by a camera system. Moreover, to increase the
service life of the robot and not to excite its vibration modes, the motion has to
follow a predefined trajectory profile.

The main motivation for this chapter is to provide answers to the following
questions: how to continuously update the trajectories for moving targets and how to
ensure that there is a smooth transition between trajectory generation and tracking.
This leads us to the formulation of the trajectory generation as a dynamical system
with a trajectory-generation controller. In contrast to mathematically designed or
optimal trajectories purely as a function of time, we regard a trajectory as an output
of a dynamical system.

For time-optimal problems, methods for closed-loop trajectory generation have
already been considered [Kröger and Wahl, 2010]. In this chapter, we propose a
solution for a fixed-time problem. The fixed-time problems are of importance when
a less aggressive strategy than a minimum-time solution is sufficient. Moreover,
fixed-time motions lend themselves to the coordination between several entities and
scheduling of tasks.

Assume that the motion of a robot is described by

ẋ = f (t,x, r̂), x(0) = x0 (3.1)
y = g(t,x)
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Traj. Generator
Controller Robot

r̂
Θ

u y

Figure 3.1 Block diagram of trajectory generation.

where y represents the position of the robot and r̂(t) the effect of exogenous inputs.
Given the structure depicted in Fig. 3.1, we wish to generate a control signal u =
k(r̂,x, t,Θ), which results in the desired motion. In the control law, Θ denotes a
set of parameters and r̂ correspond to a high-level reference signal. The high-level
reference signal is typically a set-point related to the future value of the target.
For example, the current desired reference can be the position of an object on the
conveyor belt in d seconds ahead in time. If r(t) denotes the current position, we
have

r̂(t) = r(t +d). (3.2)

In general, the motion patterns can be acquired via human demonstra-
tion [Khansari-Zadeh and Billard, 2011] or designed by a mathematical for-
mula [Paul, 1979; Taylor, 1979]. We call these patterns motion templates. Specifi-
cally, we focus on the one-dimensional problem and study a fifth-order polynomial
template, i.e., a trajectory generated by a fifth-order polynomial traveling one unit
of distance in one unit of time. The template can mathematically be expressed as

y = p0 +(p0−1)(−10(t− t0)3 +15(t− t0)4−6(t− t0)5), (3.3)

where p0 and t0 denote the initial position and initial time, respectively. All the
methods described in this chapter concern the generalization of this template. Nev-
ertheless, the main focus is to present a closed-loop solution to trajectory generation.
Simple operations such as time and coordinate scaling are introduced. We use these
techniques later to extend our template to the whole workspace while respecting
certain constraints. As a generalization of this template, we consider a larger class
of trajectories that are obtained by a minimum-jerk model.

Since having hard constraints on the final time poses certain robustness issues
when there is a disturbance, we propose three methods to relax this constraint. In
the first method, a smooth transition between a finite-horizon problem and an infi-
nite horizon problem is suggested by limiting the minimum remaining time. In the
second method, the remaining time is reset whenever it is impossible to meet the
deadline given the constraints. In the third method, the explicit dependency on time
and the duration is removed. Instead, a new set of parameters is derived based on the
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scaling techniques introduced in Section 3.2. Irrespective of the method used for re-
laxing the final time constraint, all of the methods can reproduce an approximation
of the template.

3.2 Basic Operations on Trajectories

Trajectories can be generalized by applying a set of operations. The simplest one
is translation, which implies adding an offset to each coordinate. In the planar or
three-dimensional case, it is possible to consider rotation [Paul, 1979]. In this sec-
tion, we consider a few operations that allow us to extend a trajectory to a larger
workspace while preserving some desired properties of the original trajectory, such
as the average velocity.

Time Scaling
Here, we consider the change of the system (3.1) under scaling of time. Dynamic
scaling [Hollerbach, 1984; Dahl and Nielsen, 1990] can be considered as a special
case, when time scaling is applied to the dynamic equations of a robot. Let us intro-
duce a new variable for time, denoted by t̃, which is an increasing and differentiable
function of time

t̃ := α(t)⇒ t = α−1(t̃). (3.4)

The impact of this change of variable on the output and its derivatives is as follows,

ỹ(t̃) =y(t) (3.5)

ỹ′(t̃) =
ẏ(t)
α̇(t)

(3.6)

ỹ′′(t̃) =
ÿ(t)

α̇2(t)
− α̈(t)

α̇3(t)
ẏ(t) (3.7)

ỹ′′′(t̃) =
...y (t)
α̇3(t)

−3
α̈(t)
α̇4(t)

ÿ(t)+
(

3
α̈2(t)
α̇5(t)

−
...
α(t)
α̇4(t)

)
ẏ(t) (3.8)

where {·}′ := d{·}/dt̃ and ˙{·} := d{·}/dt.
As an example, we can choose α(t) = α to be constant. Then, t̃ = αt and

ỹ(t̃) =y
(

t̃
α

)
(3.9)

ỹ′(t̃) =α−1ẏ
(

t̃
α

)
(3.10)

ỹ′′(t̃) =α−2ÿ
(

t̃
α

)
(3.11)

ỹ′′′(t̃) =α−3...y
(

t̃
α

)
(3.12)
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Coordinate Scaling
Now consider the scaled output ỹ. The impact of this change of variable on the
output ỹ := β (y) is as follows

ỹ = β (y) (3.13)
˙̃y = β ′(y)ẏ (3.14)
¨̃y = β ′′(y)ẏ2 +β ′(y)ÿ (3.15)

...
ỹ = β ′′′(y)ẏ3 +3β ′′(y)ÿẏ+β ′(y)

...y (3.16)

Similar to the time scaling, we can choose β (y)= β to be constant. Then, ỹ= βy
and

ỹ(t) = βy(t) (3.17)
˙̃y(t) = β ẏ(t) (3.18)
¨̃y(t) = β ÿ(t) (3.19)

...
ỹ (t) = β

...y (t) (3.20)

By combining the coordinate scaling and time scaling operations, it is possi-
ble to parametrize the classes of position-, velocity-, and acceleration-preserving
transformations. Considering (3.17)–(3.20) and (3.9)–(3.12) corresponding to the
constant scaling factors, we can choose β = α , β = α2, or β = α3 to achieve av-
erage velocity-, average acceleration-, or average jerk-preserving transformations,
respectively. Note that in these cases, it is possible to reach all the positions in the
workspace by changing only one parameter.

Coordinate Transformation
Assume that we are given an autonomous dynamical system whose states go from
any initial condition to zero. Considering the servo problem to follow an arbitrary
reference [Glad and Ljung, 2011], it is possible to use the transformation e(t) =
r(t)− y(t). This implies that the trajectory generation is composed of a tracking
term r(t) plus a non-linear shaping function e(t). This strategy is advantageous as
long as the current value of the reference (target) provides some useful information
for the robot (tracker). To clarify this point, rewrite the transformation as

y(t) = r(t)− e(t) (3.21)

where r(t) denotes the target position and e(t) the shaping function. The shaping
function satisfies

e(t0) = r(t0)− y(t0) (3.22)
e(t f ) = 0. (3.23)
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Traj. Generator
Controller Robot+
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−

Figure 3.2 Modified block diagram of trajectory generation.

Note that (3.21) does not necessarily specify a causal relation between e(t) and y(t).
Thus, both of these signals could be caused by r(t) as in Fig. 3.2. Additionally, in
this setup we make use of the current value of r(t) instead of r̂(t) = r(t +d), which
is an estimated value in the future. The underlying assumption for the modified
model in Fig. 3.2 compared to Fig. 3.1 is that the generated trajectory depends only
on r(t)− y(t).

As an example, consider the robot is supposed to reach position y f , velocity
v f , and acceleration a f from y0, v0, and a0 with duration d. Firstly, note that the
continuity of higher derivatives is of no concern since no explicit constraint is given
for them. Secondly, from the discussion above, we can equivalently describe the
problem as reaching a target that has a constant acceleration a f and reaches y f
with velocity v f in d seconds. The target motion can be described by the following
equations

r1(t) = y f + v f (t−d)+
1
2

a f (t−d)2 (3.24)

r2(t) = v f +a f (t−d) (3.25)
r3(t) = a f . (3.26)

On the other hand, the motion of the robot can be derived by Eq. (3.21) to be

y(t) = y f + v f (t−d)+
1
2

a f (t−d)2− e1(t) (3.27)

v(t) = v f +a f (t−d)− e2(t) (3.28)
a(t) = a f − e3(t). (3.29)

By setting t = 0 and t = d in Eq. (3.27)–(3.29), we obtain the following relationships

e1(0) = y f − v f d +
1
2

a f d2− y0 (3.30)

e2(0) = v f −a f d− v0 (3.31)
e3(0) = a f −a0 (3.32)
e1(d) = 0 (3.33)
e2(d) = 0 (3.34)
e3(d) = 0. (3.35)
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The conditions can equivalently be written as

e1(0) = ytarget
0 − yrobot

0 (3.36)

e2(0) = vtarget
0 − vrobot

0 (3.37)

e3(0) = atarget
0 −arobot

0 (3.38)
e1(d) = 0 (3.39)
e2(d) = 0 (3.40)
e3(d) = 0. (3.41)

3.3 Minimum-Jerk Model

Using piece-wise polynomials is a common approach to trajectory generation [Paul,
1972; Paul, 1979; Lin et al., 1983; Taylor, 1979]. Specially, a fifth-order polyno-
mial allows for specifying both initial and final values of position, velocities, and
accelerations. Fifth-order polynomials have attracted researchers from a different
perspective too. Namely, they show up as the solution to a simplistic kinematic de-
scription of human-generated trajectories by a minimum-jerk model [Flash, 1987].
An important feature of this model is the ability to predict the bell-shaped velocity
profile of the arm movement. In a planar case, the cost functional to be minimized
is [Flash, 1987]:

C =
1
2

t f∫
0

(...
X 2 +

...
Y 2
)

dt, (3.42)

where X and Y represent the coordinates, dots denote time derivative, and t f the du-
ration of the movement. First, note that since the X and Y coordinates in (3.42) are
independent, it is possible to solve two one-dimensional optimization problems in-
stead. Using the variational principle, the solution is easily found to be a fifth-order
polynomial [Shadmehr, 2005]. Here, we adopt the control-problem formulation in
order to derive the result. This formulation gives us new insights for trajectory gen-
eration.

For minimizing the jerk, a triple integrator can represent the dynamical system
for each direction as ẋ1

ẋ2
ẋ3

=

0 1 0
0 0 1
0 0 0

x1
x2
x3

+

0
0
1

u (3.43)

y = x1 (3.44)
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or equivalently,

ẋ = f (t,x,u) =

x2
x3
u

 . (3.45)

According to the Pontryagin maximum principle [Pontryagin et al., 1962; Liber-
zon, 2011],

ẋ∗ = Hp(x∗,u∗, p∗, p∗0) (3.46)
ṗ∗ =−Hx(x∗,u∗, p∗, p∗0) (3.47)

x∗(t0) = x0, x∗(t f ) = x f (3.48)

Here, H denotes the Hamiltonian, the subscripts denote partial derivatives with re-
spect to the given variable, x and p are the states and the costates, respectively, t0
and t f denote the initial and final time, respectively, and variables with star denote
the optimal solution. For this optimization problem, we have the Hamiltonian

H(x,u, p, p0) = 〈p, f (x,u)〉+ p0L(x,u) (3.49)

=
(

p1 p2 p3
)x2

x3
u

+ p0u2 (3.50)

By the partial differentiation of H with respect to u, we find the extremum as
below,

∂H
∂u

= 2p0u+ p3 = 0 (3.51)

⇒ u∗ =− p3

2p0
. (3.52)

Consequently, the Hamiltonian is

H(x∗,u∗, p∗, p∗0) = p1x2 + p2x3−
p2

3
4p0

, (3.53)

where

ṗ1 =−Hx1 = 0 (3.54)
ṗ2 =−Hx2 =−p1 (3.55)
ṗ3 =−Hx3 =−p2. (3.56)

These equations combined with (3.52) result in

u = k1t2 + k2t + k3 (3.57)
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Integrating the control signal three times results in x1 which is apparently a
fifth-order polynomial. By matching the initial and final conditions, we obtain

y = x1 = p0 +(p0− p f )(−10t3
n +15t4

n −6t5
n ) (3.58)

+ v0dtn + v0dtn(−6t2
n +8t3

n −3t4
n )− v f dtn(4t2

n −7t3
n +3t4

n )

+
a0

2
d2t2

n +
a0

2
d2t2

n (−3tn +3t2
n − t3

n )−
a f

2
d2t2

n (−tn +2t2
n − t3

n )

ẏ = x2 =
p0− p f

d
(−30t2

n +60t3
n −30t4

n ) (3.59)

+ v0 + v0(−18t2
n +32t3

n −15t4
n )− v f (12t2

n −28t3
n +15t4

n )

+a0dtn +
a0

2
dtn(−9tn +12t2

n −5t3
n )−

a f

2
d2tn(−3tn +8t2

n −5t3
n )

ÿ = x3 =
p0− p f

d2 (−60tn +180t2
n −120t3

n ) (3.60)

+
v0

d
(−36tn +96t2

n −60t3
n )−

v f

d
(24tn−84t2

n +60t3
n )

+a0 +a0(−9tn +18t2
n −10t3

n )−a f (−3tn +12t2
n −10t3

n ),

and the control signal is
...y = u =

p0− p f

d3 (−60+360tn−360t2
n ) (3.61)

+
v0

d2 (−36+192tn−180t2
n )−

v f

d2 (24−168tn +180t2
n )

+
a0

d
(−9+36tn−30t2

n )−
a f

d
(−3+24tn−30t2

n )

where tn := t/d is the normalized time with respect to the duration.
Let us now consider the Hamilton-Jacobi-Bellman (HJB) equation [Bellman and

Kalaba, 1965; Liberzon, 2011]

−Vt(t,x) = inf
u∈U
{L(t,x,u)+ 〈Vx(t,x), f (t,x,u)〉}, (3.62)

with the cost function J and the value function V defined as

J(t,x,u) =
∫ t f

t
L(s,x(s),u(s))ds+K(x(t f )) (3.63)

V (t,x) := inf
u[t,t f ]

J(t,x,u). (3.64)

Here, U ⊂ R defines the control set and K(·) denotes the terminal cost.
For the minimum-jerk problem, we have

L(t,x,u) =u2, K(x(t f )) = 0 (3.65)

−Vt(t,x) = inf
u∈U
{u2 + 〈Vx(t,x), f (t,x,u)〉} (3.66)

=min
u∈R
{u2 +Vx1x2 +Vx2x3 +Vx3u} (3.67)
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where we use the notation

Vxk :=
∂V
∂xk

. (3.68)

The optimum is achieved where

∂ (u2 +Vx1x2 +Vx2x3 +Vx3u)
∂u

= 0⇒ (3.69)

u =−Vx3

2
. (3.70)

Therefore,

−Vt(t,x) =−
V 2

x3

4
+Vx1x2 +Vx2x3. (3.71)

As a result of the application of the maximum principle, we obtained an expres-
sion for

...y along the optimal path. For the sake of simplicity, we consider the final
state to be the origin. Therefore, Eq. (3.61) can be written as

...y =
y0

d3 (−60+360tn−360t2
n ) (3.72)

+
v0

d2 (−36+192tn−180t2
n )

+
a0

d
(−9+36tn−30t2

n ).

Additionally, we consider that the total duration is 1. Considering the value function
in (3.64), i.e., the cost to go, and using the definition of the cost functional in (3.63),
d has to be substituted with the remaining time 1− t and tn with the normalized
elapsed time (s− t)/(1− t). This results in

V (t,x) =
∫ 1

t

...y 2(s)ds. (3.73)

It is straightforward to verify that this value function satisfies the HJB equation.
Accordingly, from (3.70) we derive

u =−
V 2

x3

2
=−

(
60

x1

(1− t)3 +36
x2

(1− t)2 +9
x3

1− t

)
. (3.74)

This reformulation gives us a feedback law for generating the trajectory. The
feedback signal is linear in the states, but non-linear with respect to the time. Note
that the same result can be obtained from (3.61). Interpreting the current point as
the new initial point, we can set tn = 0 to obtain

u =
...y =−

(
60

x1− y f

(d− t)3 +
36x2 +24v f

(d− t)2 +
9x3−3a f

d− t

)
. (3.75)
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Equation (3.75) gives us a solution for arbitrary initial and final points and duration
d.

An obvious issue with this model is that it is quite sensitive to the errors in the
states when the time approaches d. Without loss of generality, assume there is some
noise ε(t) in the velocity measurement. The closed-loop system in this case is

...y =−
(

60
y

(d− t)3 +36
ẏ

(d− t)2 +9
ÿ

d− t

)
+36

ε(t)
(d− t)2 . (3.76)

As t approaches d, a very small noise can blow up the control signal. A remedy
to this problem would be switching to an infinite-horizon problem when d̃ = d− t
becomes small. In the following, we show that this transition can be done smoothly.

Consider the diagram of the closed-loop poles of the system for a fixed t in
Fig. 3.3. The characteristic equation of the closed-loop system for a fixed remaining
time d̃ is

d̃3s3 +9d̃2s2 +36d̃s+60 = 0. (3.77)

If p is a solution for d̃ = 1 in (3.77), then p/d̃ is a solution for a given d̃. Therefore,
arg(p) is independent of the remaining time while the poles move toward infinity as
the remaining time approaches zero.
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Figure 3.3 Eigenvalues for varying values of the remaining time d̃ = [1 : −0.01 :
0.06].

48



3.4 Generalization of Template

We can further rewrite the characteristic equation as

(s+aω)(s2 +2ζ ωs+ω2) = 0 (3.78)

where (ω d̃)2 = 12− 2 3√32 + 6 3
√

3 ≈ 16.493, ζ = (6− 3√32 + 3
√

3)/2ω d̃ ≈ 0.66,
and a = (3+ 3√32− 3

√
3)/ω ≈ 0.896. Given the above values and the knowledge

of the noise in the system, it is possible to find a minimum acceptable value for d̃.
Therefore, a smooth transition is obtained by saturating d̃ from below.

3.4 Generalization of Template

Consider the system obtained by normalizing time to 1 and the final state to the
origin

ẋ1 = x2 (3.79)
ẋ2 = x3 (3.80)

ẋ3 =−
(

60
x1

(1− t)3 +36
x2

(1− t)2 +9
x3

1− t

)
. (3.81)

The aim of this section is to generalize the motion trajectories generated by this sys-
tem to the whole workspace and to different timing requirements. Although (3.75)
is already in its general form, we consider using the coordinate transformation in-
troduced in Section 3.2 instead. In doing this we have several purposes. In the first
place, the coordinate transformation allows us to use the current value of the refer-
ence signal instead of its predicted value. Secondly, we can show how the scaling
methods can be applied to a dynamical system. We will take advantage of this in
Section 3.6 where the scaling provides a new parametrization for the trajectory gen-
eration. Thirdly, we apply the coordinate transformation to our solution of the HJB
equation to show that Eq. (3.75) indeed gives us the correct feedback law if r̂(t) is
preferred.

First, we consider time scaling t̃ = αt. Let us define

x̃1(t̃) = α0x1(t) (3.82)

x̃2(t̃) = α−1x2(t) (3.83)

x̃3(t̃) = α−2x3(t). (3.84)

This results in

x̃′1 = x̃2 (3.85)
x̃′2 = x̃3 (3.86)

x̃′3 =−α−3

(
60

x̃1(
1− t̃

α

)3 +36
α x̃2(

1− t̃
α

)2 +9
α2x̃3

1− t̃
α

)
. (3.87)
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Chapter 3. Instantaneous Trajectory Generation Based on a Motion Template

The choice of new variables is done so that the first two differential equations remain
the same.

Since the variable names do not matter, we can rewrite the equations as below

ẋ1 = x2 (3.88)
ẋ2 = x3 (3.89)

ẋ3 =−
(

60
x1

(α− t)3 +36
x2

(α− t)2 +9
x3

α− t

)
. (3.90)

In this case it is not a surprise that α amounts to the total time. Note that the new
initial conditions are calculated according to (3.82)-(3.84).

Now, we consider coordinate scaling. We define

x̃1(t) = βx1(t) (3.91)
x̃2(t) = βx2(t) (3.92)
x̃3(t) = βx3(t). (3.93)

With these changes of variables,

˙̃x1 = x̃2 (3.94)
˙̃x2 = x̃3 (3.95)

˙̃x3 =−
(

60
x̃1

(α− t)3 +36
x̃2

(α− t)2 +9
x̃3

α− t

)
. (3.96)

Note that all the equations remain unchanged and the only change is in the initial
conditions. This is not a surprise since the control law derived is valid for any initial
condition, i.e., any coordinate scaling. Thus, the control signal considering the effect
of both time and coordinate scaling is

u =−
(

60
x̃1

(α− t)3 +36
x̃2

(α− t)2 +9
x̃3

α− t

)
. (3.97)

Now, we show that Eq. (3.75) can be derived from Eqs. (3.85)–(3.87). Note that
the coordinate transformation introduced in Section 3.2 does affect jerk (its third
time derivative is equal to zero) and hence the cost functional in the special case of
minimum-jerk is invariant under this transformation. Therefore, the solution after
the transformation is optimal for the new initial and final states.

According to Fig. 3.2, the inputs to trajectory generator controller is e(t). There-
fore, by changing α to d from (3.85)–(3.87) we have

ė1 = e2 (3.98)
ė2 = e3 (3.99)

ė3 =−
(

60
e1

(d− t)3 +36
e2

(d− t)2 +9
e3

d− t

)
. (3.100)
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3.5 Resetting Time

By renaming y(t), v(t), and a(t) in Eqs. (3.27)–(3.29) to x1, x2, and x3, respectively,
we obtain

x1(t) = y f + v f (t−d)+
1
2

a f (t−d)2− e1(t) (3.101)

x2(t) = v f +a f (t−d)− e2(t) (3.102)
x3(t) = a f − e3(t). (3.103)

The time derivatives of (3.101)–(3.103) are

ẋ1 = v f +a f (t−d)− ė1 (3.104)
ẋ2 = a f − ė2 (3.105)
ẋ3 =−ė3, (3.106)

respectively. These equations can be rewritten using (3.98)–(3.100) to get

ẋ1 =v f +a f (t−d)− e2 = x2 (3.107)
ẋ2 =a f − e3 = x3 (3.108)

ẋ3 =−
(

60
e1

(d− t)3 +36
e2

(1− t)2 +9
e3

d− t

)
(3.109)

−
(

60
x1− y f

(d− t)3 +
36x2 +24v f

(d− t)2 +
9x3−3a f

d− t

)
. (3.110)

The rightmost sides of the equations are derived by substituting e(t) from (3.101)–
(3.103). This completes the proof of the validity of (3.75).

3.5 Resetting Time

If a new target appears or there is a large variation in the previous target, we might
wish to reset the remaining time. A new d̃ can be calculated to satisfy a set of
constraints. For instance, to find the minimum d such that the average velocity will
be unchanged. This is readily possible if the maximum of each state for d = 1 from
any initial state is known. Using the time scaling introduced in Section 3.2, we can
make sure the constraints are respected.

Generally speaking, resetting time can be triggered by detecting a large change
in the target point. In case of minimum-jerk trajectories, we can make use of the
fact that d5y/dt5 is a constant of motion, i.e., as long as we the curve is traversed,
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Chapter 3. Instantaneous Trajectory Generation Based on a Motion Template

this value is constant. By differentiating (3.61) we obtain,

d4y
dt4 =

y0− y f

d4 (360−720tn)

+
v0

d3 (192−360tn)−
v f

d3 (−168+360tn)

+
a0

d2 (36−60tn)−
a f

d2 (24−60tn) (3.111)

d5y
dt5 =

y0− y f

d5 (−720)+
v0 + v f

d4 (−360)+
a0−a f

d3 (−60) (3.112)

Define c to be the constant value of a desired trajectory, such that d5y/dt5 = c.
We can use this value to detect deviations in the trajectory. Consequently, a new
d can be calculated to satisfy a desired property as described earlier. For example,
by solving the following fifth-order equation we find a new d such that the value
of d5y/dt5 is unchanged. Rewriting Eq. (3.112) gives us a fifth-order equation to
calculate d,

cd5 +60(a0−a f )d2 +360(v0+ v f )d +720(x0− x f ) = 0.

Figure 3.4 illustrates curves with d5y/dt5 = 720. Note that there is a drift in the
final time for all the curves except the blue one, which starts in x(0) = (−1,0,0).
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Figure 3.4 Curves starting from x0 =−1, v0 = [−2 : 1 : 2], a0 = [−5 : 2.5 : 5] with
d5y/dt5 = 720. For the legends, see Fig. 3.5
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3.6 Time-Invariant Model

v0 :

−5 −2.5 0 2.5 5a0 :

−2 −1.0 0 1.0 2

Figure 3.5 Legends for Figs. 3.4, 3.8, 3.9, 3.10, and 3.11.

Figure 3.6 The remaining time as a function of the state for a fixed d5y/dt5 = 720
and a = 0.

Figure 3.6 visualizes the remaining time d as a function of the initial state given
the assumption of d5y/dt5 = 720.

3.6 Time-Invariant Model

Time-invariant models, which typically arise in time-optimal or infinite time solu-
tions, do not suffer from some of the limitations imposed by the fixed-time prob-
lems. This implies that the variations in the target automatically reset the time.
Hence, no signal indicating a new target needs to be calculated. In this section, we
examine an approximate time-invariant model. The idea is to build an approximator
of the remaining time from the states. Considering the following model,

1− t ≈
∣∣∣k0 sgn(y) 3

√
|y|+ k1 sgn(ẏ)

√
|ẏ|+ k2ÿ+ k3

∣∣∣ , (3.113)

where y denotes the position. The model is heuristically designed such that it gives a
low error for the estimation of the remaining time along the motion template in (3.3).
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Chapter 3. Instantaneous Trajectory Generation Based on a Motion Template

We use the least-squares method to estimate the coefficients of the model for the
template. The mean-square-error for the motion template is 0.0365; see Fig. 3.7 for
the impact of the initial value on the quality of the approximation. According to
Fig. 3.7, the remaining time is overestimated for negative initial velocities (moving
away from the target) and underestimated for positive velocities (moving toward the
target).
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Figure 3.7 The approximated remaining time versus the actual time for x0 = −1,
v0 = [−2 : 1 : 2], a0 = [−3 : 1.5 : 3]. The black line shows the ideal case. The approx-
imation when v0 = 0 and a0 = 0 coincides well with the ideal case, MSE ≈ 0.0365.

Using the generalization method discussed in Section 3.4, we can easily extend
the time-invariant model to different time and coordinate scales.

3.7 Simulations

In this section, we show the simulation results of the closed-loop trajectory genera-
tion. We assume that the states are measurable. Therefor, instead of the output y in
Fig. 3.2, the states x are used. To visualize the evolution of the states, we use phase
portraits.

The first experiment shows the result of the control law in Eq. (3.97) with the
change of α − t to min(α − t,0.06). The reference is set to zero and the initial
position is set to −1. The initial velocity and the initial acceleration are varied.
With α = 1, we are supposed to obtain the template, i.e., a fifth order polynomial
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3.7 Simulations

moving one unit of distance in one unit of time. In Fig. 3.8, the solid blue line in
the middle corresponds to this trajectory. Pay special attention to the final state and
the final time. For this control law, for a fixed α irrespective of the initial state,
the final state is equal to the reference signal and the final time is equal to α = 1.
Figure 3.9 shows the corresponding phase portrait. Note that the trajectories in the
phase plane cross each other since the state-space has a higher dimension than two
and the system is time-variant.

The second experiment deals with the time-invariant model obtained by ap-
proximating the remaining time along the template according to Eq. (3.113), see
Figs. 3.10 and 3.11. Although similar to the previous experiment the solid blue
curve matches the template, the fixed-time is not respected for other initial condi-
tions. The final position is reached later than 1 [s] for the negative initial velocities
and earlier for the positive initial velocities. This is due to the fact that the approx-
imation depicted in Fig. 3.7 overestimates the remaining time for negative initial
velocities and underestimates for positive initial velocities.

The third experiment shows the result of the closed-loop trajectory generation
for a moving target. The blue and green curves correspond to the current position
of a target and the robot, respectively. Every second, a new target is activated. The
objective in Figs. 3.12 and 3.13 is to hit the target in 0.8 [s] and to continue tracking
it until a new target is detected. The trajectory generator is the same as the one in
the first experiment. As expected, there is a smooth transition to tracking mode after
reaching the target. In Figs. 3.14 and 3.15, the simulation results of reaching the
same target with a shorter time interval of 0.4 [s] are shown. Changing the duration
is done by setting the parameter α . Note how the velocity, the acceleration and the
jerk are scaled in these figures compared to Figs. 3.12 and 3.13.

The fourth experiment investigates the effect of changing the parameters α
and β for the time-invariant model described in Section 3.6. We consider the unit
step response (i.e., a target 1 [m] away) and a step response with amplitude 2 in
Fig. 3.16. Note the following interpretation of the parameters: starting from rest, a
target which is located β [m] away is reached in α [s]. If the target is closer than
β , it is reached earlier than α and if it is further away, it is reached later. Note
also the effect of the scaling on different quantities described by Eqs. (3.9)–(3.12)
and (3.17)–(3.20).

In the final experiment, we employ the resetting-time strategy according to Sec-
tion 3.5. Deviations in the trajectory due to disturbances are detected by evaluating
d5y/dt5. Every time d5y/dt5 changes more than a threshold of 0.01, a new remain-
ing time is calculated such that the constraint on |d5y/dt5| < c is satisfied. In this
experiment, the measured states are affected by an additive white Gaussian noise
with a variance of 0.02. The results are shown in Figs. 3.17 and 3.18.
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Figure 3.8 Experiment 1: curves starting from x0 = −1, v0 = [−2 : 1 : 2], a0 =
[−5 : 2.5 : 5] with α = 1 for the control law of (3.97). For the legends, see Fig. 3.5
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Figure 3.9 Experiment 1: phase portrait for trajectories of Fig. 3.8 starting from
x0 = −1, v0 = [−2 : 1 : 2], a0 = [−5 : 2.5 : 5] with α = 1. For the legends, see
Fig. 3.5
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Figure 3.10 Experiment 2: curves starting from x0 = −1, v0 = [−2 : 1 : 2], a0 =
[−5 : 2.5 : 5] for the time-invariant model using (3.113) and α = 1. For the legends,
see Fig. 3.5
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Figure 3.11 Experiment 2: phase portrait for trajectories of Fig. 3.10 starting from
x0 = −1, v0 = [−2 : 1 : 2], a0 = [−5 : 2.5 : 5] with an approximation of d. For the
legends, see Fig. 3.5
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Figure 3.12 Experiment 3: intercepting a moving target in 0.8 [s]: positions, ve-
locities and the error as a function of time. The blue and green curves correspond to
the target and the robot, respectively. Every second, a new target is activated.
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Figure 3.13 Experiment 3: intercepting a moving target in 0.8 [s]: acceleration and
jerk as a function of time.
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Figure 3.14 Experiment 3: intercepting a moving target in 0.4 [s]: positions, ve-
locities and the position error as a function of time. The blue and green curves corre-
spond to the target and the robot, respectively. Every second, a new target is activated.
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Figure 3.15 Experiment 3: intercepting a moving target in 0.4 [s]: acceleration and
jerk as a function of time.
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Figure 3.16 Experiment 4: effect of changing parameters for the time-invariant
model: α ∈ {0.5,1,1.5} corresponds to green, blue, and red, respectively, and β ∈
{0.5,1,1.5} corresponds to dashed, solid, and dash-dot line, respectively. On the left
the step response with magnitude 1 and on the right the step response with magnitude
2 are illustrated.
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Figure 3.17 Resetting time: an additive Gaussian noise with variance 0.02 affects
the states. The remaining time is reset so that the condition d5y/dt5 ≤ 4000 is main-
tained.
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Figure 3.18 Resetting time: an additive Gaussian noise with variance 0.02 affects
the states. The remaining time d is reset so that the condition d5y/dt5 ≤ 4000 is
maintained. The upper plot shows d5y/dt5 and the lower plot illustrates d.
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3.8 Discussion

There are at least two strategies for the planning problems when the target is mov-
ing. One can estimate a time t̂ f and a desired future value for the states, such that
the generated trajectory meets this point, i.e., y(t̂ f ) = r̂ f . The procedure is repeated
as soon as a better estimate is obtained. The other strategy is that the generated tra-
jectory should track the current value of the target but additionally superimpose a
motion which eliminates the initial offset. These strategies do not necessarily lead
to the same solution. The first strategy works better than the second one if a good
model of the target’s motion for estimation is available. However, the second strat-
egy leads to a smooth transition between trajectory planning and tracking. Since the
states in many physical systems cannot change discontinuously, the second strategy
is advantageous when the time horizon is short. This justifies the modified model of
the trajectory generation in Fig. 3.2, which depends only on the error r(t)− y(t) in
comparison to Fig. 3.1.

It is required to pay special attention to the source of changes when designing
trajectory generation in a closed-loop setting. Variations in the target point do not
necessarily have to impact the trajectory in the same way as the disturbances on the
robot. This requires a controller with two degrees of freedom where, for instance,
different filters are used for the state feedback and the reference signal.

In its current form, the controller assumes the full knowledge of the states of
the robot. Therefore, an observer will be required if the states are not measurable.
The benefit of an observer is that the trajectory generation will be less sensitive
to the measurement noise. With regard to this, we can for example use an internal
model together with the trajectory-generator controller such that the actual feedback
from the robot is only limited to certain instances. The generated trajectory is then
tracked by a common feedback controller. The update of the state of the internal
model is only triggered when the deviation between the internal model and the robot
is too large. This way, we have obtained a two-degrees-of-freedom controller with
different responses to measurement noise and to changes in the reference signal.

In general, both finite-time and minimum-time controller models for trajectory
generation perform poorly for disturbance rejection close to the target. The former
eliminates the disturbances in the same fixed-time period as it generates the trajec-
tory. Thus, as the time runs out, the controller needs to increase its effort for com-
pensation. On the other hand, the optimal-time controller uses the maximum effort
all the time. So, when the current state is in the vicinity of the desired state, the noise
can lead to an aggressive control signal. One suggestion to mitigate this problem is
to relax the constraint at the final time and instead introduce a cost for it. This can
for example be realized by introducing a time-dependent or state-dependent cost for
a Linear Quadratic Regulator (LQR) controller.

If in a real setup the state feedback is going to be used, the robustness of the
closed-loop for a non-ideal robot model needs to be studied. Also, in the approxi-
mation methods introduced in Section 3.6, an important aspect is ensuring a global
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attractor for the approximated system, i.e., any initial error is reduced to zero.

3.9 Conclusions

Time and coordinate scaling are powerful operators for extending trajectories to a
wider workspace. The coordinate transformation in Section 3.2 made it possible to
generalize trajectories to follow an arbitrary reference signal. This transformation
did not affect the optimality of the minimum-jerk trajectories.

We proposed a controller model for trajectory generation with continuous reac-
tions to the changes in the target. We solved the Hamilton-Jacobi-Bellman equation
in order to find the optimal minimum-jerk controller. The result was a time-varying
linear feedback law which produces fifth-order polynomials. For this controller, we
showed that saturating the remaining time from below naturally leads to a smooth
transition between trajectory generation and tracking modes.

The closed-loop system in our reformulation of the minimum-jerk model gen-
erates trajectories which have a bell-shaped velocity profile. Therefore, our results
offer an alternative solution to some of the bio-inspired approaches; see for ex-
ample [Degallier et al., 2011]. An extension of our work can be the derivation of
a controller for trajectory generation for more complex dynamical models than a
triple integrator.
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4
Optimization-based
Trajectory Generation

4.1 Introduction

Assume a control system

ẋ = f (t,x,u), x(t0) = x0 (4.1)

where x ∈ X ⊂ Rn is the state, u ∈U ⊂ Rm is the control signal, t ∈ R is the time,
t0 is the initial time, and x0 is the initial state.

An optimal control problem is usually characterized by a cost functional to be
minimized. A generic cost functional for a deterministic setting, can be formulated
as below [Liberzon, 2011]

J(u) :=
∫ t f

t0
L(t,x(t),u(t))dt +K(t f ,x f ) (4.2)

Here t f and x f := x(t f ) are the final (or terminal) time and state, L : R×Rn ×
U → R is the running cost, and K : R×Rn→ R is the terminal cost. In addition to
constraints imposed on the input and output signals by the dynamical system, other
constraints corresponding to the control set U , possible states X , initial and target
sets can be considered.

Several interesting trajectory planning problems can be cast in this framework.
For solving a trajectory planning problem, it is usually beneficial to solve the path-
planning problem first and then find a trajectory by assigning time to each point
along the path. Nevertheless, for the specification of the problem, such a separation
seems unnecessary since both problems could be specified in a unified way in the
optimization framework.

We enumerate a few trajectory planning problems in the following with no in-
tention to be comprehensive. In the list, Q and R are appropriate weighting matrices,
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4.1 Introduction

F and G are constraint matrices for the states and the inputs, correspondingly, g(·)
and h(·) are two possibly non-linear functions defining terminal constraints and path
constraints, respectively, r is the reference signal, and y is a function of the state.

1. Tracking problem (variable end-point, fixed-time)

J(u) =
∫ t f

0

(
eT Qe+uT Ru

)
dt (4.3)

subject to Fx≤ b, Gu≤ a, where e = xr− x

2. Point-to-point planning (fixed end-point, fixed-time)

J(u) =
∫ t f

0
(xT Qx +uT Ru)dt +K(x(t f )) (4.4)

subject to Fx≤ b, Gu≤ a, and y(t f ) = y f

3. Hitting a (moving) target (fixed/variable end-point, free-time)

J(u, t f ) =
∫ t f

0
(xT Qx +uT Ru)dt +K(x(t f )) (4.5)

subject to Fx≤ b, Gu≤ a, t f < Tf , and y(t f ) = g(t f )

4. Time-optimal point-to-point planning (fixed end-point, free-time), subject to
Fx≤ b, Gu≤ a, and y(t f ) = y f

5. Time-optimal given a path (variable end-point, free-time), subject to Fx ≤
b, Gu≤ a and y(t f ) = y f , and h(x(t)) = 0

6. Time-optimal given a trajectory profile (variable end-point, free-time), sub-
ject to Fx≤ b, Gu≤ a, y(t f ) = y f and J(u, t f )≤V (t f ), where

J(u, t1) =
∫ t1

0
(xT Qx +uT Ru)dt, (4.6)

and

V (t) = min
u

J(u, t) (4.7)

with neither state nor input constraints.

Note that to be strictly correct if y(t f ) does not fully constrain the states, the problem
is usually not called fixed end-point.

Trajectory generation based on nonlinear optimization has been proposed in
[Bauml et al., 2010] and [Lampariello et al., 2011] for ball-catching robot systems.
Model Predictive Control (MPC) has been proposed for control and path tracking
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for mobile robots; see, for example [Klančar and Škrjanc, 2007], [Howard et al.,
2010], and [Kanjanawanishkul and Zell, 2009]. In [Shim and Sastry, 2007], MPC is
used for tracking of linearly interpolated way-points. A two-layer architecture, with
a generic optimal control formulation at the high-level and MPC at the low-level to
track the high-level solution, is proposed in [Norén, 2013].

The motivation for this chapter is to improve the efficiency of trajectory plan-
ning expressed in the optimization framework. The impact of model selection for
optimal control problems is briefly studied. Specifically, we compare a kinematic
model with a dynamic model in Section 4.2. In the following sections, the prob-
lem of planning a trajectory between an initial and a final state at a given time for
mechanical systems is tackled. In Section 4.3, we find an analytic solution to a
kinematic model with kinematic constraints. In Section 4.4, as opposed to previous
research we propose MPC [Garcia et al., 1989; Rawlings and Mayne, 2009] as a
way to simultaneously solve both the path planning and the trajectory generation
problems. To fulfill real-time constraints in modern motion controllers for robotic
systems, we develop a method relying on convex optimization. The results from the
experiments on an industrial robot in a demanding task of ball-catching are pro-
vided in the same section. Section 4.5 provides an example in which the full power
of MPC for solving the trajectory and path planning can be utilized. Conclusions
are drawn in Section 4.6.

4.2 Comparison of Kinematic and Dynamic Models

In this section, we study the relevance of kinematic models for optimal control of
robots.

Kinematic Model
Let us assume that we have a robot with two degrees of freedom. The kinematics of
the robot can be described by a two-dimensional double-integrator as

ẋ = vx (4.8)
ẏ = vy

v̇x = ux

v̇y = uy

The coordinates x and y can be interpreted as generalized coordinates, i.e., de-
pending on the structure of a robot, as either Cartesian coordinates or joint values.

Dynamic Model
The equations of motion for a serial robot are usually derived by the Lagrange
equations. These equations have a generic form of

H(q)q̈+C(q, q̇)q̇+E(q, q̇)+G(q) = τ, (4.9)
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x

y

θ2

θ1

Figure 4.1 Schematic of two-link robot

where H(q) is a symmetric positive definite inertia matrix, C(q, q̇)q̇ the vector of
centripetal and Coriolis torques, E(q, q̇) the effect of an external force field and
G(q) the term due to gravity, q ∈ Rn denotes the vector of joint angles, and its time
derivative is denoted by the dot operator. The system is driven by the torque vector
τ ∈ Rn.

For the sake of simplicity, a two-link planar robot is considered. If we limit the
motion in a horizontal plane, the effect of the gravity can be ignored. In this case,
the matrices corresponding to (4.9) are

H(q) =
(

a1 +2a3 cos(q2)+a2 a3 cos(q2)+a2
a3 cos(q2)+a2 a2

)
(4.10)

C (q, q̇) =
(
−a3 sin(q2)q̇2 −a3 sin(q2)(q̇1 + q̇2)
a3 sin(q2)q̇1 0

)
(4.11)

a1 =m2L2
1 +m1r2

1 + I1 (4.12)

a2 =m2r2
2 + I2 (4.13)

a3 =m2L1r2 (4.14)

where the subscripts of q indicate its elements, with indices denoting the link num-
ber, m, L, r, and I referring to link mass, link length, the distance between the previ-
ous joint to the center of gravity of the link, and moment of inertia around the center
of mass, respectively. For a numerical experiment, values are chosen according to
Table 4.1.

Table 4.1 Geometrical and dynamical parameters for the numerical simulation

m L r I
[kg] [m] [m] [kg·m2]

Link 1 1.59 0.3 0.13 0.0216
Link 2 1.44 0.35 0.14 0.0089
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Problem Formulation
Minimum Time Problem A few different problems are considered.

P1: With state constraints purely on kinematic variables:

minimize
u,t f

t f

subject to (4.8)
|ux| ≤ 1, |uy| ≤ 1
x(0) = 2, y(0) = 1
vx(0) = 0, vy(0) = 0
x(t f ) = y(t f ) = 0
vx(t f ) = vy(t f ) = 0

(4.15)

P2: With state constraints purely on dynamic variables:

minimize
τ,t f

t f

subject to (4.9)
|τ1| ≤ 1, |τ2| ≤ 1
q1(0) = π/4, q2(0) = π/10
ω1(0) = ω2(0) = 0
q1(t f ) = q2(t f ) = 0
ω1(t f ) = ω2(t f ) = 0

, (4.16)

where ωi(·) := q̇i(·), i ∈ {1,2}.

P3: With state constraints purely on kinematic variables:

minimize
τ,t f

t f

subject to (4.9)
|ω̇1| ≤ 2, |ω̇2| ≤ 2
q1(0) = π/4, q2(0) = π/10
ω1(0) = ω2(0) = 0
q1(t f ) = q2(t f ) = 0
ω1(t f ) = ω2(t f ) = 0

(4.17)
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P4: With constraints on both kinematic and dynamic variables:

minimize
τ,t f

t f

subject to (4.9)
|ω̇1| ≤ 10, |ω̇2| ≤ 10
|τ1| ≤ 1, |τ2| ≤ 1
q1(0) = π/4, q2(0) = π/10
ω1(0) = ω2(0) = 0
q1(t f ) = q2(t f ) = 0
ω1(t f ) = ω2(t f ) = 0

(4.18)

Additional Constraints
The time-optimal control problem for systems of more than one degree of free-
dom can be under-constrained. This can easily be understood when the constraints
in one dimension (in the first example x) determine the final time. In such cases,
various motions in other dimensions can meet the final time without violating the
constraints. In order to get a unique solution, it is necessary to add penalties for the
states and/or the input signals. We can also without compromising the optimal time,
solve a second optimization problem. The new problem is fixed-time and a combi-
nation of states and input signals can be penalized in the cost function according
to

minimize
u

∫ t f

0
v2

x + v2
y +0.001(u2

x +u2
y)dt

subject to (4.8)
x(0) = 2, y(0) = 1
|ux| ≤ 1, |uy| ≤ 1
x(t f ) = y(t f ) = 0
vx(t f ) = vy(t f ) = 0

(4.19)

minimize
τ

∫ t f

0
ω2

1 +ω2
2 +0.01(τ2

1 + τ2
2 )dt

subject to (4.9)
|τ1| ≤ 1, |τ2| ≤ 1
q1(0) = π/4, q2(0) = π/10
ω1(0) = ω2(0) = 0
q1(t f ) = q2(t f ) = 0
ω1(t f ) = ω2(t f ) = 0.

(4.20)
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Adding penalties on the derivatives of the input signals can also be beneficial for
smoothing out the signals. Another interesting cost function is the length of the
curve, i.e.,

∫ t f
0

√
v2

x + v2
y dt

Obstacle Avoidance It is also interesting to include some non-convex constraints.
Such constraints usually appear in obstacle-avoidance problems. The effect of a
constraint of the following form has been studied

(y− y0)
2 +(x− x0)

2 ≥ c2. (4.21)

Results
The solutions to the optimization problems (4.15)–(4.18) are presented in this sec-
tion. The optimization problems were solved by numerical methods based on direct
collocation [Biegler et al., 2002]. The implementation relied on the open-source
software platform JModelica.org [Åkesson et al., 2010; JModelica.org 2015].

As we see in Figs. 4.2 and 4.6, one of the control signals switches rapidly. This
is due to the fact that there is no unique solution to those time-optimal problems,
which results in the strange behavior of the solver.
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Figure 4.2 Solution of (4.15): the blue and green curves correspond to motion
along the x- and y-axis, respectively. In the X–Y plot, the solid line corresponds to
the position in 2D.
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Figure 4.3 Solution of (4.15) after the second optimization. The blue and green
curves correspond to motion along the x-axis and y-axis, respectively. In the X–Y
plot, the solid line corresponds to the position in 2D.

Conclusion
The time-optimal solution for a problem with multiple degrees of freedom is typ-
ically non-unique. Given the minimum time, we can solve a second optimization
problem with penalties on the states and/or the inputs.

In the case of no constraints on dynamic variables or tight constraints on kine-
matic variables, the dynamic model can be ignored and the whole dynamics be
approximated by a double integrator. This is due to the fact that the matrix H(q) is
positive definite and thus invertible [Siciliano et al., 2009]. Consequently, it is al-
ways possible to calculate the required τ within the constraints to achieve the same
bang-bang solution as in (4.15).
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Figure 4.4 Solution of (4.15) with obstacle avoidance. The blue and green curves
correspond to motion along the x-axis and y-axis, respectively.
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Figure 4.5 Solution of (4.16). The blue and green curves correspond to joint one
and two, respectively. In the X–Y plot, the solid and the dashed line correspond to
the position of the end-effector and the second joint, respectively.
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Figure 4.6 Solution of (4.16) after the second optimization. The blue and green
curves correspond to joint one and two, respectively. In the X–Y plot, the solid and
the dashed line correspond to the position of the end-effector and the second joint,
respectively.
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Figure 4.7 Solution of (4.16) with obstacle avoidance. The blue and green curves
correspond to joint one and two, respectively.
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Figure 4.8 Solution of (4.17) with only active kinematic constraints after the sec-
ond optimization.
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Figure 4.9 Solution of (4.18) with both kinematic and dynamic constraints after
the second optimization. The blue and green curves correspond to joint one and two,
respectively. In the X–Y plot, the solid and the dashed line correspond to the position
of the end-effector and the second joint, respectively.
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4.3 An Analytic Solution to Fixed Time Trajectory
Planning

In this section, we present two main theorems in order to find a solution to an
optimal control problem with state variable inequality constraints (SVIC) based
on [Seierstad and Sydsæter, 1987; Hartl et al., 1995]. These theorems are derived
from the maximum principle [Pontryagin et al., 1962] and concern direct and indi-
rect adjoining approaches. Furthermore, we apply the direct adjoining approach to
solve a trajectory planning problem for a double integrator model. The results are
compared with the numerical solution obtained by an interior-point method [Boyd
and Vandenberghe, 2004].

Problem Formulation
The aim is to find the maximum of the following objective functional J subject to
the constraints on states and control signals [Seierstad and Sydsæter, 1987; Hartl
et al., 1995]:

J(u) =
∫ t f

0
F(x(t),u(t), t)dt +S(x(t f ), t f ) (4.22)

ẋ(t) = f (x(t), t), x(0) = x0

g(x(t),u(t), t)≥ 0 (4.23)
h(x(t), t)≥ 0

a(x(t f ), t f )≥ 0
b(x(t f ), t f ) = 0,

where

h :En×E→ Eq, g : En×Em×E→ Es (4.24)

a :En×E→ E l , b : En×E→ E l′ . (4.25)

General Definition and Condition
The order of pure-state constraints as well as junction times are defined here. Ad-
ditionally, a constraint qualification condition is presented. The definition and the
condition are used when the theories are presented. Note that when two symbols
appear after each other, depending on the dimensions, dot product or matrix multi-
plication is intended.
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Order of Pure State Constraints

h0(x,u, t) = h = h(x, t)

h1(x,u, t) = ḣ = hx(x, t) f (x,u, t)+ht(x, t)

h2(x,u, t) = ḣ1 = h1
x(x, t) f (x,u, t)+h1

t (x, t)
...

hp(x,u, t) = ḣp−1 = hp−1
x (x, t) f (x,u, t)+hp−1

t (x, t) (4.26)

The state constraint is of order p iff

hi
u(x,u, t) = 0, for 0≤ i≤ p−1, hp

u(x,u, t) 6= 0, (4.27)

Junction Times With respect to the ith constraint, an interval [τ1,τ2] is called a
boundary interval if hi(x(t), t) = 0 for all t ∈ [τ1,τ2]. A subinterval (τ1,τ2)⊂ [0, t f ]
is called an interior interval of a trajectory x(·) if hi(x(t), t) > 0 for all t ∈ (τ1,τ2).
If an interior interval ends at τ1 and a boundary interval starts at τ1, the instant τ1 is
called an entry time. Correspondingly, τ2 is called an exit time if there is a boundary
interval ending at t = τ2 and an interior interval starting at τ2. A contact time is
the instant that the trajectory just touches the boundary, i.e., h(x(τ),τ) = 0 and the
trajectory is in the interior just before and after τ . Entry, exit, and contact times are
called junction times.

Constraint Qualification The constraint qualification must hold for terminal con-
straints:

rank
[

∂a/∂x diag(a)
∂b/∂x 0

]
= l + l′ (4.28)

Additionally, for mixed constraints, i.e., the constraints involving both states and
input signals, we have

rank[∂g/∂u diag(g)] = s (4.29)

Direct Adjoining approach
In this approach the mixed constraints as well as the pure constraints are directly
adjoined to the Hamiltonian denoted by H to form the Lagrangian denoted by L.

Hamiltonian and Lagrangian (D-form):

H(x,u,λ0,λ , t) = λ0F(x,u, t)+λ f (x,u, t) (4.30)
L(x,u,λ0,λ ,µ,ν , t) = H(x,u,λ0,λ , t)+µg(x,u, t)+νh(x,u, t) (4.31)

The costate is a mapping λ (·) : [0, t f ]→ En and multiplier functions µ(·) and ν(·)
are mappings

[
0, t f

]
into Es and Eq, respectively.
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Control region:

Ω(x, t) = {u ∈ Em |g(x,u, t)≥ 0} (4.32)

THEOREM 1—DIRECT ADJOINING APPROACH
[Hartl et al., 1995] Let {x∗(·),u∗(·)} be an optimal pair for problem (4.22)–(4.25)

over [0, t f ] such that

• u∗(·) is right-continuous with left-hand limits

• constraint qualification holds for every tripple {t,x∗(t),u} , t ∈ [0, t f ],u ∈
Ω(x∗(t),u)

• Assume x∗(t) has only finitely many junction times,

then there exists

• a constant λ0 ≥ 0

• a piecewise absolutely continuous costate trajectory λ (·) mapping
[
0, t f

]
into

En

• piecewise continuous multiplyer functions µ(·) and ν(·) mapping
[
0, t f

]
into

Es and Eq, respectively

• a vector η(τi) ∈ Eq for each point τi of discontinuity of λ (·)

• α ∈ E l and β ∈ E l′ , γ ∈ Eq, not all zero,

such that the following conditions hold almost everywhere:
Hamiltonian maximization

u∗(t) = argmax
u∈Ω(x∗(t),t)

H(x∗(t),u,λ0,λ (t), t) (4.33)

and conditions on the optimal Hamiltonian and Lagrangian, costates and multipliers

L∗u [t] = H∗u [t]+µg∗u[t] = 0 (4.34)

λ̇ (t) =−L∗x [t] (4.35)
µ(t)≥ 0, µ(t)g∗ [t] = 0 (4.36)
ν(t)≥ 0, ν(t)h∗ [t] = 0 (4.37)

and dH∗ [t]/dt = dL∗ [t]/dt = L∗t [t], ∂L∗[t]/∂ t. (4.38)

At the terminal time t f , the transversality conditions hold:

λ (t−f ) = λ0S∗x
[
t f
]
+αa∗x

[
t f
]
+βb∗x

[
t f
]
+ γh∗x

[
t f
]

(4.39)

α ≥ 0, γ ≥ 0, αa∗
[
t f
]
= γh∗

[
t f
]
= 0 (4.40)
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For any time τ in the boundary interval and for any contact time τ , the costate
trajectory may have a discontinuity given by the following conditions

λ (τ−) = λ (τ+)+η(τ)h∗x [τ] (4.41)

H∗
[
τ−
]
= H∗

[
τ+
]
−η(τ)h∗t [τ] (4.42)

η(τ)≥ 0, η(τ)h∗ [τ] = 0. (4.43)
2

Indirect Adjoining approach
To form the Lagrangian, first or higher-degrees derivatives of the pure-state con-
straints h(x(t), t) in (4.23), are adjoined to the Hamiltonian. Here we present the
theorem for first-order constraints.

Hamiltonian and Lagrangian (P-form):

H(x,u,λ0,λ , t) = λ0F(x,u, t)+λ f (x,u, t) (4.44)

L(x,u,λ0,λ ,µ,ν , t) = H(x,u,λ0,λ , t)+µg(x,u, t)+νh1(x,u, t) (4.45)

Control region:

Ω(x, t) =
{

u ∈ Em |g(x,u, t)≥ 0, h1(x,u, t)≥ 0 if h(x, t) = 0
}

(4.46)

THEOREM 2—INDIRECT ADJOINING APPROACH
[Hartl et al., 1995] Let {x∗(·),u∗(·)} be an optimal pair for problem (4.22)–(4.25)

such that

• x∗(·) has only finitely many junction times,

• strong constraint qualification (4.28) and (4.29) hold,

then there exist

• a constant λ0 ≥ 0,

• a piecewise absolutely continuous costate trajectory λ mapping
[
0, t f

]
into

En,

• piecewise continuous multiplyer functions µ(·) and ν(·) mapping
[
0, t f

]
into

Es and Eq, respectively,

• a vector η(τi) ∈ Eq for each point τi of discontinuity of λ (·),

• α ∈ E l and β ∈ E l′ , not all zero,
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such that the following conditions hold almost everywhere:
Hamiltonian maximization

u∗(t) = argmax
u∈Ω(x∗(t),t)

H(x∗(t),u,λ0,λ (t), t) (4.47)

and conditions on the optimal Hamiltonian and Lagrangian, costates and multipliers

L∗u [t] = 0 (4.48)

λ̇ (t) =−L∗x [t] (4.49)
µ(t)≥ 0, µ(t)g∗ [t] = 0. (4.50)

Here, νi is nondecreasing on boundary intervals of hi, i = 1,2, · · · ,q, with

ν(t)≥ 0, ν̇(t)≤ 0, ν(t)h∗ [t] = 0 (4.51)
and dH∗ [t]/dt = dL∗ [t]/dt = L∗t [t] , (4.52)

whenever these derivatives exist. At the terminal time t f , the transversality condi-
tions

λ (t−f ) = λ0S∗x
[
t f
]
+αa∗x

[
t f
]
+βb∗x

[
t f
]
+ γh∗x

[
t f
]

(4.53)

α ≥ 0, γ ≥ 0, αa∗
[
t f
]
= γh∗

[
t f
]
= 0 (4.54)

hold. At each entry or contact time, the costate trajectory λ may have a discontinuity
of the form:

λ (τ−) = λ (τ+)+η(τ)h∗x [τ] (4.55)

H∗
[
τ−
]
= H∗

[
τ+
]
−η(τ)h∗t [τ] (4.56)

η(τ)≥ 0, η(τ)h∗ [τ] = 0 (4.57)

and η(τ1)≥ ν(τ+1 ) for entry time τ1. (4.58)
2

Example
We consider a double integrator as the model of our system and consider a quadratic
cost function. The system is supposed to be at rest initially and to finally arrive at
the origin with zero velocity. There are constraints on both input and on the velocity,
i.e., u and x2, correspondingly. Q is assumed to be diagonal.

minimize
∫ t f

0
xT Qx+uT Rudt (4.59)

subject to ẋ(t) =
(

0 1
0 0

)
x(t)+

(
0
1

)
u(t) (4.60)

|u(t)| ≤ 1 (4.61)
|x2(t)| ≤ c (4.62)

x(0) =
(
xi, 0

)T x(1) = 02×1 (4.63)

79



Chapter 4. Optimization-based Trajectory Generation

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

x
[m

],
v
[m

/
s]

x
v

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

t[s]

u
[m

/
s2 ]

Figure 4.10 Numerical solution to the example in (4.59)–(4.65) with 1000 dis-
cretization points.

For the numerical solution shown in Fig. 4.10, the following values are used

R = r = 0.1, Q =

(
1 0
0 10

)
(4.64)

c = 0.22, xi = 0.17, t f = 1. (4.65)

Now we customize the conditions and the result of the direct adjoining approach
to our example.

Parameters, Hamiltonian and Lagrangian for Direct Approach By compar-
ing (4.59)–(4.63) with (4.22), we identify

F(x(t),u(t), t) =−(xT Qx+uT Ru) (4.66)
S(t f ) = 0 (4.67)

f1(x(t),u(t), t) = x2(t) (4.68)
f2(x(t),u(t), t) = u(t) (4.69)
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Similarly, from (4.30) and (4.31)

H =−λ0(q1x1(t)2 +q2x2(t)2 + ru(t)2)+λ1(t)x2(t)+λ2(t)u(t) (4.70)
L = H +µ1(t)(1−u(t))+µ2(t)(1+u(t)) (4.71)

+ν1(t)(c− x2(t))+ν2(t)(c+ x2(t)) (4.72)

Constraints Identification of the constraints with (4.23) results in

h(x(t)) =
(

c− x2(t)
c+ x2(t)

)
(4.73)

g(u(t)) =
(

1−u(t)
1+u(t)

)
(4.74)

b(x(t)) =
(

x1(t)
x2(t)

)
(4.75)

We find the order of the constraints as below

h0 =

(
c− x2
c+ x2

)
⇒ h0

u = 0 (4.76)

h1 =

(
−ẋ2(t)
ẋ2(t)

)
=

(
−u(t)
u(t)

)
⇒ h1

u =

(
−1
1

)
(4.77)

Thus, the order of the constraints is p = 1. The constraint qualification condition
holds too, since

rank
(
−1 1−u 0
1 0 1+u

)
= 2 = s ∀u (4.78)

Hamiltonian Maximization Without constraints, the Hamiltonian is maximized
for

û(t) =
1
2

1
r

λ2(t)
λ0

(4.79)

Considering the constraints, the optimal solution is

u∗(t) =


−1 if λ2(t)<−2r
1
2

1
r

λ2(t)
λ0

if −2r ≤ λ2(t)≤ 2r

1 if λ2(t)> 2r

(4.80)
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By comparing with the numerical solution in Fig. 4.10, we get the following time-
dependent optimal solution u∗:

u∗(t) =



−1 for t < τ1
1
2

1
r

λ2(t)
λ0

for τ1 ≤ t ≤ τ2

0 for τ2 < t < τ3
1
2

1
r

λ2(t)
λ0

for τ3 ≤ t ≤ τ4

1 for τ4 < t

(4.81)

The Conditions We evaluate conditions (4.34)–(4.37) here:

L∗u[t] = H∗u [t]+µg∗u[t] = 0
⇒−2ru(t)+λ2(t)−µ1(t)+µ2(t) = 0 (4.82)

λ̇ (t) =−L∗x [t]

⇒
{

λ̇1(t) = 2λ0q1x1(t)
λ̇2(t) = 2λ0q2x2(t)−λ1(t)+ν1(t)−ν2(t)

(4.83)

µ(t) =
(
µ1(t) µ2(t)

)T ≥ 0
µ(t)g∗[t] = 0⇒ (µ1(t)+µ2(t))− (µ1(t)−µ2(t))u∗(t) = 0 (4.84)

ν(t) =
(
ν1(t) ν2(t)

)T ≥ 0, ν̇(t)≤ 0,
ν(t)h∗(t) = 0⇒ (ν1(t)+ν2(t))c− (ν1(t)−ν2(t))x2(t) = 0 (4.85)

Similarly, (4.38) results in

dH∗[t]
dt

=
dL∗

dt
= L∗t [t]⇒

−2q1x1(t)x2(t)−2q2x2(t)u(t)−2ru(t)u̇(t)+λ1(t)u(t)

+ λ̇1(t)x2(t)+λ2(t)u̇(t)+ λ̇2(t)u(t) = 0 (4.86)
u̇(t)(µ1(t)−µ2(t))+(µ̇1(t)− µ̇2(t))u(t)

− (µ̇1(t)+ µ̇2(t))+(ν1(t)−ν2(t))u(t)

+(ν̇1(t)− ν̇2(t))x2(t)− c(ν̇1(t)+ ν̇2(t)) = 0 (4.87)

Transversality conditions

λ (t−f ) = βb∗x [t f ]+ γh∗x [t f ](
λ1[1−]
λ2[1−]

)
= I2×2

(
β1
β2

)
+

(
0 −1
0 1

)(
γ1
γ2

)
(4.88)

γ ≥ 0,γh[t f ] = 0⇒ (γ1 + γ2)c− (γ1− γ2)x2(t f ) = 0
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Since x2(t f ) = 0, we conclude
γ1 = γ2 = 0. (4.89)

In view of (4.81), the solution is divided into different regions. We consider
each case separately and calculate expressions for the states, the costates and the
the multiplier functions using the knowledge of u∗(t) in each specific region and
considering conditions (4.82)–(4.87).

Case 1, u∗(t) =−1, t < τ1: Assuming that xi > 0

x1(t) =−
1
2

t2 + xi

x2(t) =−t (4.90)

From (4.82) follows

2r+λ2(t)−µ1(t)+µ2(t) = 0 (4.91)

From (4.84) follows
µ1(t) = 0, µ2(t) free (4.92)

From (4.85) follows

ν1(t) =
t− c
t + c

ν2(t) (4.93)

From (4.87) follows

2µ̇1 +(t + c)ν̇1− (t− c)ν̇2 +(ν1−ν2) = 0 (4.94)

From (4.83) follows{
λ̇1(t) =−q1t2 +2q1xi

λ̇2(t) =−2q2t−λ1(t)+ν1(t)−ν2(t)
(4.95)

Combined with (4.86) follows

ν1(t) = ν2(t) (4.96)

From (4.93) and (4.96) follows

ν1(t) = ν2(t) = 0

From (4.95) follows{
λ1(t) =− 1

3 q1t3−q1xit +K1

λ2(t) = 1
12 q1t4− (q1xi +q2)t2 + tK1 +K2,

(4.97)

where K1 and K2 are appropriate constants.
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Case 2, u∗(t) = 0, τ2 < t < τ3:

x1(t) =−ct +K6

x2(t) =−c (4.98)

From (4.82) follows
λ2(t)−µ1(t)+µ2(t) = 0 (4.99)

From (4.84) follows
µ1(t) = µ2(t) = 0 (4.100)

From (4.85) follows
ν1(t) = 0, ν2(t) free (4.101)

Equation (4.87) provides no new information. From (4.83) follows

λ̇1(t) =−2q1ct +2q1K6

λ̇2(t) =−λ1(t)−2q2c−ν2(t) (4.102)

Equation (4.86) gives the same equation for λ̇1(t) as (4.83). From (4.99) and (4.100)
we conclude λ2(t) = 0. Considering this, (4.102) simplifies to

ν2(t) =−λ1(t)−2q2c (4.103)

λ1(t) =−q1ct2 +K6t +K7 (4.104)

Case 3, u∗(t) = 1, t > τ4:

x1(t) =
1
2

t2 +K9t +K8

x2(t) = t +K9 (4.105)

From (4.82) follows

−2r+λ2(t)−µ1(t)+µ2(t) = 0 (4.106)

From (4.84) follows
µ1(t) free, µ2(t) = 0 (4.107)

From (4.85) follows

(c− t)ν1(t)+(c+ t)ν2(t)− (ν1(t)−ν2(t))K9 = 0 (4.108)

From (4.87) follows

ν1(t)−ν2(t)+(ν̇1(t)− ν̇2(t))(t− c+K9) = 0 (4.109)
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From (4.83) follows{
λ̇1(t) = 2q1(

1
2 t2 +K9t +K8)

λ̇2(t) = 2q2(t +K9)−λ1(t)+ν1(t)−ν2(t)
(4.110)

Combined with (4.86) follows

ν1(t) = ν2(t) (4.111)

From (4.108) and (4.111) follows ν1(t) = ν2(t) = 0. From (4.110) follows
λ1(t) =− 1

3 q1t3 +q1K9t2 +2q1K8t +K10

λ2(t) = 1
12 q1t4− 1

3 q1K9t3 +(q2−q1K8)t2

+(2q2K9−K10)t +K11

(4.112)

Case 4, u∗(t) = 1
2r λ2(t), τ1 < t < τ2, τ3 < t < τ4: From (4.82) follows

u(t) =
λ2(t)−µ1(t)+µ2(t)

2r
(4.113)

⇒µ1(t) = µ2(t) (4.114)

From (4.84) follows
µ1(t)+µ2(t) = 0 (4.115)

Therefore, µ1(t) = µ2(t) = 0.
From (4.85) follows

c(ν1(t)+ν2(t))− (ν1(t)−ν2(t))x2(t) = 0 (4.116)

From (4.87) follows

(ν1(t)−ν2(t))
λ2(t)

2r
+(ν̇1(t)− ν̇2(t))x2(t)− c(ν̇1(t)+ ν̇2(t)) = 0 (4.117)

From (4.86) follows (
−2q2x2(t)+λ1(t)+ λ̇2(t)

)
λ2(t) = 0 (4.118)

If λ2(t) 6= 0,
−2q2x2(t)+λ1(t)+ λ̇2(t) = 0. (4.119)

Comparing with (4.83) and using (4.85), we conclude that ν1(t) = ν2(t) = 0. Using
(4.119), system dynamics, and u∗(t) = 1

2r λ2(t), we can conclude

λ (4)
2 (t) =

1
r
(q2λ̈2(t)−q1λ2(t)) (4.120)
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From this follows that

λ2(t) =C1e−σ1t +C2eσ1t +C3e−σ2t +C4eσ2t , (4.121)

with

σ1 =

√√√√q2 +
√

q2
2−4rq1

2r

σ2 =

√√√√q2−
√

q2
2−4rq1

2r
,

and Ci are appropriate constants of integration. From the system equations (4.60)

ẋ2(t) =u(t)⇒

x2(t) =
1
2r

(
−C1

σ1
e−σ1t +

C2

σ1
eσ1t − C3

σ2
e−σ2t +

C4

σ2
eσ2t
)
+κ1 (4.122)

ẋ1(t) =x2(t)⇒

x1(t) =
1
2r

(
C1

σ2
1

e−σ1t +
C2

σ2
1

eσ1t +
C3

σ2
2

e−σ2t +
C4

σ2
2

eσ2t
)

+κ1t +κ2 (4.123)

With (4.119) it follows

λ1(t) =
(

σ1−
q2

σ1r

)(
C1e−σ1t −C2eσ1t)

+

(
σ2−

q2

σ2r

)(
C3e−σ2t −C4eσ2t)+2q2κ1 (4.124)

Additionally, substituting (4.123) and (4.124) into (4.83) results in(
q2−

q1

σ2
1
− rσ2

1

)(
C1e−σ1t +C2eσ1t)

+

(
q2−

q1

σ2
2
− rσ2

2

)(
C3e−σ2t +C4eσ2t)

= 2rq1 (κ1t +κ2) (4.125)

The equations derived in this part apply to two regions though with different con-
stants of integration. For the first interval, τ1 < t < τ2, we will keep constants
Ci, i ∈ {1..4} unchanged but κ1 and κ2 will be substituted with K12 and K13, re-
spectively. For the second interval, τ3 < t < τ4, constants Di, K14, and K15 will be
used.
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Initial and Final Conditions: Initial condition on x are already used in (4.90).
Final conditions for x:

x1(1) = 0, x2(1) = 0 (4.126)

Therefore, from (4.105), when u = 1, follows

K8 =
1
2
, K9 =−1 (4.127)

Continuity of u: We evaluate the control signal at junction times from below and
above and equate the expressions:

u(τ+1 ) =−1⇒ λ2(τ+1 ) =−2r⇒
C1e−σ1τ1 +C2eσ1τ1 +C3e−σ2τ1 +C4eσ2τ1 =−2r (4.128)

u(τ−2 ) = 0⇒ λ2(τ−2 ) = 0⇒
C1e−σ1τ2 +C2eσ1τ2 +C3e−σ2τ2 +C4eσ2τ2 = 0 (4.129)

u(τ+3 ) = 0⇒ λ2(τ+3 ) = 0⇒
D1e−σ1τ3 +D2eσ1τ3 +D3e−σ2τ3 +D4eσ2τ3 = 0 (4.130)

u(τ−4 ) = 1⇒ λ2(τ−4 ) = 2r⇒
D1e−σ1τ4 +D2eσ1τ4 +D3e−σ2τ4 +D4eσ2τ4 = 2r (4.131)

Continuity of x: We evaluate the states at junction times from below and above
and equate the expressions:

x1(τ−1 ) = x1(τ+1 )⇒

− 1
2

τ2
1 + xi =

1
2r

(
C1

σ2
1

e−σ1τ1 +
C2

σ2
1

eσ1τ1 +
C3

σ2
2

e−σ2τ1 +
C4

σ2
2

eσ2τ1

)
+K12τ1 +K13 (4.132)

x2(τ−1 ) = x2(τ+1 )⇒

− τ1 =
1
2r

(
−C1

σ1
e−σ1τ1 +

C2

σ1
eσ1τ1 − C3

σ2
e−σ2τ1 +

C4

σ2
eσ2τ1

)
+K12 (4.133)

x1(τ−2 ) = x1(τ+2 )⇒
1
2r

(
C1

σ2
1

e−σ1τ2 +
C2

σ2
1

eσ1τ2 +
C3

σ2
2

e−σ2τ2 +
C4

σ2
2

eσ2τ2

)
+K12τ1 +K13

=−cτ2 +K6 (4.134)
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x2(τ−2 ) = x2(τ+2 )⇒
1
2r

(
−C1

σ1
e−σ1τ2 +

C2

σ1
eσ1τ2 − C3

σ2
e−σ2τ2 +

C4

σ2
eσ2τ2

)
+K12 =−c (4.135)

x1(τ−3 ) = x1(τ+3 )⇒

− cτ3 +K6 =
1
2r

(
D1

σ2
1

e−σ1τ3 +
D2

σ2
1

eσ1τ3 +
D3

σ2
2

e−σ2τ3 +
D4

σ2
2

eσ2τ3

)
+K14τ3 +K15 (4.136)

x2(τ−3 ) = x2(τ+3 )⇒

− c =
1
2r

(
−D1

σ1
e−σ1τ3 +

D2

σ1
eσ1τ3 − D3

σ2
e−σ2τ3 +

D4

σ2
eσ2τ3

)
+K14 (4.137)

x1(τ−4 ) = x1(τ+4 )⇒
1
2r

(
D1

σ2
1

e−σ1τ4 +
D2

σ2
1

eσ1τ4 +
D3

σ2
2

e−σ2τ4 +
D4

σ2
2

eσ2τ4

)
+K14τ4 +K15

=
1
2

τ2
4 +

1
2
− τ4 (4.138)

x2(τ−4 ) = x2(τ+4 )⇒
1
2r

(
−D1

σ1
e−σ1τ4 +

D2

σ1
eσ1τ4 − D3

σ2
e−σ2τ4 +

D4

σ2
eσ2τ4

)
+K14 = τ4−1 (4.139)

Continuity of λ : The adjoint function λ is not in general continuous. However,
this example fulfills the condition of Proposition 4.2 in [Hartl et al., 1995], thus
the continuity at junction times is guaranteed. From the dimensions of constraint
functions h(·) and g(·), we have s = q = 2. The control signal u? is assumed to be
continuous and

rank
(

∂g∗[τ]/∂u diag(g∗[τ]) 0 0
∂h1∗[τ]/∂ 0 0 diag(h∗[τ])

)
(4.140)

= rank


−1 1−u(τ) 0 0 0
1 0 1+u(τ) 0 0
−1 0 0 c− x2(τ) 0
1 0 0 0 c+ x2(τ)

= 4 = s+q (4.141)
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We evaluate the costates at junction times from below and above and equate the
expressions:

λ1(τ−1 ) = λ1(τ+1 )⇒

− 1
3

q1τ3
1 −q1xiτ1−K1 =

(
σ1−

q2

σ1r

)(
C1e−σ1τ1 −C2eσ1τ1

)
+

(
σ2−

q2

σ2r

)(
C3e−σ2τ1 −C4eσ2τ1

)
+2q2K12 (4.142)

λ2(τ−1 ) = λ2(τ+1 )⇒
1

12
q1τ4

1 − (q1xi +q2)τ2
1 + τ1K1 +K2

=C1e−σ1τ1 +C2eσ1τ1 +C3e−σ2τ1 +C4eσ2τ1 (4.143)

λ1(τ−2 ) = λ1(τ+2 )⇒(
σ1−

q2

σ1r

)(
C1e−σ1τ2 −C2eσ1τ2

)
+

(
σ2−

q2

σ2r

)(
C3e−σ2τ2 −C4eσ2τ2

)
+2q2K12

=−q1cτ2
2 +K6τ2 +K7 (4.144)

λ2(τ−2 ) = λ2(τ+2 )⇒
C1e−σ1τ2 +C2eσ1τ2 +C3e−σ2τ2 +C4eσ2τ2 = 0 (4.145)

λ1(τ−3 ) = λ1(τ+3 )⇒

−q1cτ2
3 +K6τ3 +K7 =

(
σ1−

q2

σ1r

)(
D1e−σ1τ3 −D2eσ1τ3

)
+

(
σ2−

q2

σ2r

)(
D3e−σ2τ3 −D4eσ2τ3

)
+2q2K14 (4.146)

λ2(τ−3 ) = λ2(τ+3 )⇒
0 = D1e−σ1τ2 +D2eσ1τ3 +D3e−σ2τ3 +D4eσ2τ3 (4.147)

λ1(τ−4 ) = λ1(τ+4 )⇒(
σ1−

q2

σ1r

)(
D1e−σ1τ4 −D2eσ1τ4

)
+

(
σ2−

q2

σ2r

)(
D3e−σ2τ4 −D4eσ2τ4

)
+2q2K14 =−

1
3

q1τ3
4 −q1τ2

4 +K10 +q1τ4 (4.148)
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λ2(τ−4 ) = λ2(τ+4 )⇒
D1e−σ1τ2 +D2eσ1τ4 +D3e−σ2τ4 +D4eσ2τ4

=
1

12
q1τ4

4 +
1
3

q1τ3
4 +(q2−

1
2

q1)τ2
4 +(−2q2−K10)τ4 +K11 (4.149)

Evaluation of Equation (4.125): Note that (4.125) must hold in Case 4. There-
fore, it must hold even when the time approaches the junction times. Evaluation of
this equation at junction times gives us four additional equations.(
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2

)(
C3e−σ2τ1 +C4eσ2τ1

)
= 2rq1 (K12τ1 +K13) (4.150)

(
q2−

q1

σ2
1
− rσ2

1

)(
C1e−σ1τ2 +C2eσ1τ2

)
+

(
q2−

q1

σ2
2
− rσ2
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)(
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2

)(
C3e−σ2τ3 +C4eσ2τ3

)
= 2rq1 (K14τ3 +K15) (4.152)
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)(
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)
+

(
q2−

q1

σ2
2
− rσ2

2

)(
C3e−σ2τ4 +C4eσ2τ4

)
= 2rq1 (K14τ4 +K15) (4.153)

These conditions result in 24 unknowns and 24 equations, most of them nonlin-
ear. By solving these equations, the junction times and the integration constants are
determined and hence the solution to the optimal control problem.
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Figure 4.11 Comparison of the numerical and analytic solutions. The blue and
green pieces in the lower plot belong to the analytic solution. The velocities and
positions are almost indistinguishable.

Results
Except for two trivial equations which determine K8 and K9, the rest of the equations
are nonlinear. Note that if there is no solution that satisfies 0≤ τ1≤ τ2≤ τ3≤ τ4≤ 1,
other scenarios where there is no state/input saturation, must be considered. The
problem is infeasible if there is no solution to either of these scenarios.

We found a numerical solution to these equations. The numerical solution ob-
tained by the interior method and the analytic solution are compared in Fig. 4.11. To
further compare the algorithms, we ran 10 experiments starting from a random ini-
tial guess for the solution of the nonlinear equations. The fsolve function in Matlab
could find a solution on average in 1.27 [s] on an Intel(R) Core(TM) i7-3770K CPU
@ 3.50GHz running Fedora 20. The same problem was solved by using CVX pack-
age [Grant and Boyd, 2014; Grant and Boyd, 2008] in Matlab, with the sampling
time of h = 1 [ms]. The interior point method approach took on average 14.232 [s],
and including the overheads 53.753 [s]. The average cost obtained by CVX was
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386.08h while the analytical approach resulted in 385.35h.

Conclusion
Since the Hamiltonian H to the fixed-time trajectory planning problem is concave,
we can conclude that the solution to our example, found by the direct approach,
is optimal, according to the Mangasarian-type sufficient condition [Mangasarian,
1966; Hartl et al., 1995]. Note that, although we used a numerical approach to find
the constants, this approach is independent of the number of discretization points
compared to the interior point method. In other words, there is an analytic expres-
sion for the solution that is parametrized by the unknowns. However, the complex-
ity of this approach, without developing special software, makes it impractical for
larger systems.

4.4 Model Predictive Control Approach

In this section, we study a scenario with a ball-catching robot [Linderoth et al.,
2010; Linderoth, 2013], where the estimates of the contact position of the ball are
delivered online using a vision system. The more vision data is collected, the lower
is the uncertainty in the new estimates. Thus, a new trajectory needs to be computed
when new estimates become available.

The focus of this section is trajectory generation for mechanical systems using
a direct approach. More specifically, we propose an approach to trajectory genera-
tion based on Model Predictive Control (MPC) [Mayne et al., 2000; Maciejowski,
1999] and the receding-horizon principle. The MPC principle is used in our exper-
iments to compute reference values (joint position and velocity reference values)
for the underlying motion-control system. For a long time, MPC has been ham-
pered by comparably long computation times, thus implying a lower bound on the
sampling times that can be achieved. However, MPC problems with quadratic cost
functions and linear constraints have been efficiently solved since more than ten
years ago [Bemporad, 2004] and with recent advances in algorithms and computing
power within milliseconds [Mattingley and Boyd, 2012; Boyd and Vandenberghe,
2004]. Therefore, solutions to motion-planning problems can be computed quickly
under certain assumptions on the model and on the constraints, which enables real-
time motion planning under high sampling frequencies. With this approach, it is also
possible to find solutions to motion planning problems where analytic solutions are
not available.

Problem Formulation
In many robotic applications, it is desired to achieve a certain state of the robot at
a given time. This will result in a reference tracking problem, if the desired state is
specified as a function of time during the whole execution. On the other hand, if the
desired state is discontinuous in time, we need to do planning between the points,
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Figure 4.12 Trajectory generation using Model Predictive Control, r is the refer-
ence signal, u is the control signal, and w is the measurement noise.

i.e., transferring the robot from an initial state to the next state in a given time. In
either case, the motion of the robot must fulfill certain constraints. Moreover, we
wish to define a desired behavior, which can be specified by an objective function.

We propose using the model predictive approach to solve this type of prob-
lems. A central notion in MPC is using a model to predict the behavior of a system.
Accordingly, it is possible to optimize the objective function over a receding hori-
zon considering the predicted outputs. The optimization is usually carried out in a
feedback loop and only the first control action of a whole sequence is applied [Ma-
ciejowski, 1999; Mayne et al., 2000]. Figure 4.12 shows a schematic of trajectory
planning using MPC.

In this framework, we require an objective function, a model of the system, state
constraints, and a time horizon. Following the presentation in [Mayne et al., 2000],
the cost for state x at time k is defined as

V (x,k,U ) =
k+N−1

∑
i=k

`(xxx(i),u(i))+F (x(k+N)) , (4.154)

where U = [u(k),u(k+1), · · · ,u(k+N−1)]T , N is the time horizon, and xxx(i) is the
state trajectory resulting from an initial state x(k) and a control sequence U . The
terminal time k+N increases with time k which is referred to as a receding horizon.
The system to be controlled is described by the following equations

x(k+1) = f (x(k),u(k)), (4.155)
y(k) = h(x(k)). (4.156)

The control and state sequence must satisfy

u(k) ∈ U (4.157)
x(k) ∈ X (4.158)

x(k+N) ∈ XXX f ⊂ X, (4.159)
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where U is a compact subset of Rm and X is a closed subset of Rn.
Given the initial state x(k), the following optimization problem is solved in each

iteration:
minimize

U
V (x,k,U )

subject to (4.155), (4.156)
u(i) ∈ U
x(i) ∈ X
x(k+N) ∈ XXX f ⊂ X

(4.160)

It is desired to investigate how the MPC framework is applicable to the trajec-
tory generation for point-to-point and reference tracking problems. Furthermore,
we wish to find a set of assumptions and methods which allow for real-time imple-
mentation.

Methods
In this section, we introduce instances of the MPC problem which are suitable for
fast trajectory generation. In order to establish a concrete example at the end of this
section, various aspects of the MPC problem are explained.

Linear Models with Quadratic Cost Functions
In this case, the system dynamics are assumed to be linear and given by

x(k+1) = Adx(k)+Bdu(k) (4.161)
y(k) =Cdx(k)+Ddu(k) (4.162)

z(k) = C̃x(k)+ D̃u(k), (4.163)

where z(k) denotes the controlled states [Maciejowski, 1999].
Given the system equations, we can formulate the following cost function for

the trajectory generation problem:

V (x,k,U ) =
k+N

∑
i=k
‖z(i)− r(i)‖2

Q(i)+
k+N−1

∑
i=k
‖u(i)‖2

R(i) , (4.164)

where the norm is defined as ‖a‖2
W = aTWa and Q and R are time-dependent weight

matrices. The reference signal is denoted by r(i).
We also consider linear constraints

FU (k)≤ f , (4.165)
GZ (k)≤ g, (4.166)

where Z (k) = [z(k+1),z(k+2), · · · ,z(k+N)]T , F , and G are matrices whose di-
mensions are determined by the number of constraints and the time horizon.
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Note that in (4.164), r does not need to define the desired controlled states at
every sample. To make this clear, assume that Ψ(k) ⊂ {k, · · · , k+N} denotes the
set of indices for which there are desired values for the control states. Accordingly,
we can rewrite (4.164) as

V (x,k,U ) = ∑
i∈Ψ(k)

‖z(i)− r(i)‖2
Q(i)+

k+N

∑
i=k
‖z(i)‖2

Q̄(i)

+
k+N−1

∑
i=k
‖u(i)‖2

R(i) , (4.167)

where, Q̄(i) = Q(i) if i /∈Ψ(k) and rT (i)Q̄(i)r(i) = 0, if i ∈Ψ(k).
For reference tracking problems, usually the first and the last terms are impor-

tant. Provided that constraints for the desired controlled states are defined, the first
term can be ignored in the point-to-point trajectory generation. Nevertheless, if soft
constraints are preferred, all of the terms might be used. The benefit is immediate if
the optimization problem with explicit constraints on z(i), i ∈Ψ, is infeasible.

Since the optimization runs in the control loop, it is possible to account for
changes in the target or deviation of the robot. If perfect tracking for the robot is
assumed, the loop can be closed around the model too, providing an open-loop
control strategy.

Although it is possible to introduce constraints on the states at any discrete time,
we might limit ourselves to the value at the final time, i.e., z(k+N). This strategy is
advantageous if no information about the next target is available ahead in time or we
do not want this information to impact the current decision. In such cases, we can
successively reduce the sampling time while keeping the number of discretization
points constant—i.e., the time horizon in discrete time remains constant while the
time horizon in continuous time gradually decreases. This allows for improving the
resolution of the solution as the system follows the trajectory towards the target
state.

General Considerations
Convexity and Optimality In general, there might exist several local optima to
the underlying optimization problem. The global optimum may not be easy to find,
considering a solution exists. In case of multiple local optima, it is also required to
use approaches such as a warm start of the optimization to avoid jumping between
different solutions. On the other hand, at the cost of limiting the scope of the prob-
lems, we can use a convex cost function and convex and compact constraint sets, as
were used here. Under these conditions, we are assured that if a solution exists, it is
globally optimal [Boyd and Vandenberghe, 2004].

Models The models for trajectory planning must specify the relation between the
actuation and the motion. The motion can be specified in any set of generalized
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coordinates. However, choosing a certain coordinate system can significantly sim-
plify the equations. Also, depending on the application it is sometimes more natural
to use for example Cartesian coordinates rather than joint values. Furthermore, the
motion can be specified in terms of position, velocity, or higher order time deriva-
tives.

A control variable can be a dynamic variable such as force and torque. Typically,
the dynamic equations are highly non-linear. Without using any form of approxima-
tion (e.g., linearization), this fact is usually a limiting factor for many optimization
algorithms.

Cost Function In general, the cost does not need to have a physical interpretation.
For trajectory generation, we might consider punishing high values of the acceler-
ation or velocities. However, we might choose the cost V (x,k,U ) to model, for
instance, the distance traveled by a robot or the mechanical energy.

Let ∆X denote the changes in the vector of position, then the length is approx-
imately proportional to (∑∆X2)1/2. Also, introducing cost in the form of ∑ Ẋ2 can
lead to keeping the kinetic energy low.

Constraints In addition to the constraints related to the final state or the states
of the via points, physical constraints can be included. Bounds on the actuation,
velocity, and joint angles can be expressed directly as state or control constraints.
Workspace and obstacles can also be considered. Specially, a typical workspace can
be expressed as a set of linear equations

G
[

X(k)
1

]
≤ 0 (4.168)

where X is a subset of coordinates and G is a matrix. By including velocities in
X , it is possible to define velocity dependent boundaries too. Obstacles are more
conveniently approximated by ellipsoids as below

XT GX ≥ 1. (4.169)

These type of constraints are not convex.

Interpolation of Trajectories Due to time constraints of real-time systems, it is
always required to have a valid trajectory. This is true even if the optimization algo-
rithm fails. This can happen if the problem is infeasible or the maximum number of
iterations has been reached. Therefore, we consider piece-wise trajectories. In other
words, the previous trajectory is valid until the new one is ready to be switched to.
If there is no new point, the robot stays still in its final position.

Furthermore, it is required to interpolate between calculated trajectory points.
Interpolation makes it possible to have a lower sampling rate for the optimization
than for the controlled system. Assuming T is a vector of increasing time instants
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and X the corresponding states,

T =
(
t1, t2, · · · , tn

)
(4.170)

X =
(
x1, x2, · · · ,xn

)
, (4.171)

we can consider a linear interpolation such that

x(t) = xn +
xn+1− xn

tn+1− tn
t, tn ≤ t < tn+1 (4.172)

Discretization In the MPC framework, the dynamics of a system are described by
difference equations. Assuming the following linear model and h as the sampling
time,

ẋ(t) = Ax(t)+Bu(t) (4.173)
y(t) =Cx(t), (4.174)

the discretized equations of the system by the predictive first-order-hold sampling
method [Åström and Wittenmark, 2011] can be obtained as follows

x(k+1) = Φx(k)+
1
h

Γ1u(k+1)+(Γ− 1
h

Γ1)u(k), (4.175)

y(k) =Cx(k), (4.176)

where

(
Φ Γ Γ1

)
=
(
I 0 0

)
exp

A B 0
0 0 I
0 0 0

h

 . (4.177)

Note that (4.175) can be rewritten in the standard form by a change of variables

ζ (k+1) = Φζ (k)+
(

Γ+Φ(I− 1
h

Γ1)

)
u(k) (4.178)

y(k) =Cζ (k)+(
1
h

CΓ1)u(k). (4.179)

This choice of discretization is motivated by the linear interpolation of the tra-
jectories as described earlier.

Example
To illustrate the approach, we consider a robotic model concerning only the kine-
matic variables. Accordingly, a multi-dimensional multi-stage integrator can be
used as a model. Since robots have various structures, we choose generalized coor-
dinates q for the representation of the states. In this way, q might represent either the
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joint values or the Cartesian coordinates depending on the application. Specifically,
we choose the state vector as

x =
[
q1, q̇1, q̈1, · · · ,qd , q̇d , q̈d

]T
, (4.180)

where d is the number of DOF.
The continuous-time model according to (4.174) for triple integrators for d DOF

is specified by the matrices,

A = diag
(
[Ã, · · · , Ã]

)
, B = [B̃T , · · · , B̃T ]T , (4.181)

C = I3d (4.182)

where A ∈ R3d×3d , B ∈ R3d×1 , and

Ã =

0 1 0
0 0 1
0 0 0

 , B̃ =

0
0
1

 . (4.183)

Assuming C̃ = I3d , the matrices for the discretized model concerning the con-
trolled states can be calculated as

Φ = diag
(
[Φ̃, · · · , Φ̃]

)
, Γ1 = [Γ̃1

T
, · · · , Γ̃1

T
]T , (4.184)

Γ = [Γ̃T , · · · , Γ̃T ]T , (4.185)

where Φ ∈ R3d×3d , Γ1,Γ ∈ R3d×1, and

Φ̃ =

1 h h2

2
0 1 h
0 0 1

 , 1
h

Γ̃1 =


h3

24
h2

6
h
2

 , Γ̃ =


h3

6
h2

2

h

 . (4.186)

In this problem, it is straightforward to include constraints on linear combina-
tions of the kinematic variables. From a practical perspective, we consider limit-
ing joint values, velocities, accelerations, and jerks. We form matrices F and G
in (4.165) and (4.166), respectively, such that

|u(i)| ≤
[
u1

max, · · · , un
max
]T

, k ≤ i < k+N (4.187)

z j
max =

[
q j

max, v j
max, a j

max

]
, 1≤ j < d (4.188)

|z(i)| ≤
[
z1

max, · · · , zd
max
]T

, k ≤ i < k+N (4.189)

z(k+N) = r f , (4.190)

where r f is the desired final state.
Now, assuming (4.167) with Ψ(k) = /0 and Q̄(k+N) = 0, i.e., ignoring the first

term and the cost on the final state, we have a full specification of the MPC problem
for point-to-point trajectory generation. Note that the desired target state is intro-
duced as a constraint on the final state. This means that we can successively reduce
the sampling time, as described in the last paragraph in Section 4.4.
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Implementation
The method proposed in Section 4.4 was implemented and experimentally evalu-
ated on an industrial robot system. The system consisted of an IRB140 industrial
manipulator [ABB Robotics, 2014], combined with an IRC5 control cabinet. The
control system was further equipped with a research interface, ExtCtrl [Blomdell et
al., 2010], in order to enable implementation of the proposed trajectory-generation
method as an external controller. The research interface permits low-level access to
the joint-position and velocity controllers in the axis computer of the control cabinet
at a sample rate of 4 [ms]. More specifically, reference values for the joint positions
and velocities can be specified and sent to the joint controllers, while the mea-
sured joint positions and velocities and the corresponding reference joint torques
were sent back to the external controller from the main control cabinet with the
same sample rate. The implementation of the trajectory generation was made in the
programming language Java and the communication with the robot controller was
handled using the LabComm communication protocol [LabComm Protocol 2014].

The inverse kinematics of the industrial manipulator is required in order to trans-
form the desired final point in Cartesian space to joint space that can be used in the
motion planning. The required kinematics were also available in Java from a previ-
ous implementation [Linderoth, 2013].

For implementation of the solution of the MPC optimization problem in Sec-
tion 4.4, the CVXGEN code generator [Mattingley and Boyd, 2012] was used. The
generator produced C code, which subsequently was interfaced with the Java pro-
gram using the Java Native interface. The generated C code was optimized for per-
formance in terms of time complexity. It enabled solution of the required quadratic
programs in the MPC within 0.5 [ms]—i.e., each optimization cycle including over-
head required approximately 1–4 [ms] (for four DOF used for the considered task
and a time horizon of 20 samples) on a standard personal computer with an Intel
i7 processor with four cores. In order to preserve the numerical robustness of the
solver also in the case of short sampling periods, a scaling of the equations, the
inputs, and the state constraints was introduced in the optimization. This was im-
portant considering the fact that the matrices might be poorly conditioned close to
the final time.

For evaluating the performance of the proposed trajectory-generation approach
in a challenging scenario, we considered the task of catching balls with the robot.
We employed the computer-vision algorithms and infrastructure developed in [Lin-
deroth, 2013] for detection of the balls thrown and prediction of the target point.
Two cameras detected the ball thrown towards the robot, and the image analysis
algorithm estimated the position and velocity which provided the basis for the pre-
diction of the target state. A photo of the experimental setup is shown in Fig. 4.13.
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Figure 4.13 The experimental setup used for evaluation of the trajectory genera-
tion method. The task is to catch a ball in the box on the end-effector; two cameras
(not visible in the figure) were used for detection of the ball.

Experiments and Results
The proposed approach to trajectory generation was evaluated in three different
experiments in order to validate the correctness and to quantify the performance.
The experiments concerned trajectory generation on joint level. The first experi-
ment was performed in simulation, whereas the second and the third experiments
were executed on the robot setup described in Section 4.4. In the experiments on
the robot, the open-loop strategy was employed—i.e., no feedback from the robot
measurements was used. The time horizon was set to 20 samples. We assumed no
coupling between the degrees of freedom. Therefore, for each degree of freedom
we employed the constant weighting matrices Q = diag([0, 1, 1]) and R = 0.001.

Single Target Point In the first experiment, a target state was provided to the tra-
jectory generator. Starting at rest at an angle of q = 0 [rad], the desired final state
was to reach q = 1 [rad] at t = 1 [s] with v = 0.5 [rad/s] and a = 0 [rad/s2]. The
constraints in the optimization were chosen as qmax = 2 [rad], vmax = 1.2 [rad/s],
amax = 100 [rad/s2], and umax = 250 [rad/s3]. The results of the experiment are pro-
vided in Fig. 4.14. Initially, a trajectory with comparably low time resolution was
computed as an approximation of the true trajectory for transferring the system from
the initial state to the final state. With a period of 200 [ms], the same target state was
sent to the trajectory generator. A new optimal trajectory was computed with the ini-
tial state being the state at the current time from the previously computed trajectory.
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This resulted in a new trajectory with increased time resolution. Considering that
this procedure was repeated during the execution, a sequential refinement of the
trajectory was achieved when moving closer to the target state where accuracy was
required, see Fig. 4.14.

Sequence of Target Points In the second experiment, a sequence of different tar-
get states was provided to the trajectory generator, with 2 [s] between each new
target state. The different target points were located at the perimeter of a rectan-
gle centered at the home position of the robot end-effector in the workspace. Thus,
these targets required motion along different Cartesian directions of the robot. Each
target state was desired to be reached after 200 [ms], with the robot being at rest.
The constraints in the optimization were chosen as qmax = 2 [rad], vmax = π [rad/s],
amax = 45 [rad/s2], and umax = 1500 [rad/s3]. Each target state was sent with a sam-
ple period of 20 [ms], resulting in the successive refinement of the trajectory as
described in the previous subsection. Once the robot reached the target state and
paused for 50 [ms], a new trajectory for returning to the home position was exe-
cuted. The resulting trajectories obtained for the angle, velocity, and acceleration of
joint 1 and 2 are shown in Fig. 4.15.

In order to further evaluate the performance of the trajectory generator, a de-
tailed view of the position reference given by the optimal trajectory and the cor-
responding measured joint position for joint 2 is depicted in Fig. 4.16. The figure
indicates the time instants at which the target state was sent and consequently when
a new trajectory generation was performed. The computation time for each trajec-
tory generation was below the sample rate of the robot, which meant that the optimal
trajectory could be executed immediately.

Ball-Catching Experiments The most demanding evaluation performed was the
computation of optimal trajectories for the robot to catch balls thrown towards it.
The time period from the detection of the ball until it reached the robot was dis-
tributed in the interval [200,800] [ms]. Hence, the quality of the task depended on
the satisfaction of the real-time constraints in order to transfer the robot from the
home position to the desired final state at the desired, predicted arrival time. During
the throws, as soon as new data from the vision sensors were available, the estimated
contact positions (and the corresponding arrival times) of the ball were updated,
leading to sequential recomputations of the optimal trajectory. Since not all DOF of
the robot were required for the task, joints 4 and 6 were not used during the exper-
iment. The trajectories were generated such that the robot should be at rest at the
target point at the predicted arrival time with some margin. After reaching the final
target, the robot paused there shortly in order to catch the ball, and finally returned
to the home position. In the case that the estimated arrival time was already passed,
no optimal trajectory was computed. If the robot given the velocity and accelera-
tion constraints could not meet the arrival time—i.e., the optimization problem was
infeasible—we still commanded the robot to the target position at an estimate of
the minimum required time. This improved the ball-catching performance since the
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Figure 4.14 Results from a simulation where the same target point was sent to the
trajectory generator at the time instants indicated by the vertical, dashed red lines.
A clear increase in the time resolution of the trajectory is observed when moving
closer to the target. Also, it is clear that the constraint on the velocity is active during
a major part of the motion.
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Figure 4.15 Experimental results from joint 1 and 2 of the robot, where a sequence
of four target states were sent to the trajectory generator, each followed by a new
target state coinciding with the home position of the robot. The good tracking of
the computed optimal trajectories is clear from the experiments with different target
states, corresponding to different points in the robot workspace.
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Figure 4.16 A detailed view of one of the motion segments in Fig. 4.15. The time
instants at which the target state was sent are indicated by the vertical, dashed red
lines in the figure. The delay between the reference and the performed trajectory is
≈ 1 [ms].

initial target point estimates had larger uncertainty. By moving towards the target
point, there was a higher chance of catching the ball as more accurate estimates
were obtained. Moreover, the constraints in the optimization were chosen based on
physical considerations of the joint properties as qmax = 2 [rad], vmax = π [rad/s],
amax = 45 [rad/s2], and umax = 1500 [rad/s3].

Several experiments were performed with balls thrown with random initial ve-
locities and along different directions. The results with regard to trajectory gener-
ation from one representative experiment are presented in Fig. 4.18 for the joints
that were active in the robot motion. It is clear that the robot tracks the position and
velocity references computed by the trajectory generator closely. In the figure, the
time instants at which new sensor data arrived are also indicated. During the motion
of the ball towards the robot, the computer-vision algorithm sent the current esti-
mate of the contact point at an approximate sampling period of 4 [ms], initiating a
trajectory generation with a possibly updated target state. The online replanning is
also visible in the trajectory data shown in Fig. 4.18. The figure also shows the time
margin—i.e., the difference between the arrival time and the earliest possible time
for reaching the ball, given the constraints.

In order to verify that the real-time constraints of the trajectory generation
method were satisfied in this task, the computation times were measured for 100
cycles of optimization during a sequence of ball throwing. The results are visual-
ized in Fig. 4.19. It can be observed that all computations are within the sample
period of the robot at 4 [ms] with the average of 2.7 [ms].
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Figure 4.17 Results from the ball-catching experiment. As the ball moved towards
the robot, new estimates of the contact position and the arrival time were obtained,
thus the trajectory was recalculated. A new estimate was obtained on the rising or
falling edge of the signal shown in the lower left plot. The lower right plot shows the
time margin as defined in the text.
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Figure 4.18 Results from the ball-catching experiment. As the ball moved towards
the robot, new estimates of the contact position and the arrival time were obtained,
thus the trajectory was recalculated. A new estimate was obtained on the rising or
falling edge of the signal shown in the lower left plot. The lower right plot shows the
time margin as defined in the text.
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horizontal, dashed red line represents the sample period of the robot system, i.e., the
deadline for the trajectory generation in real-time.

Discussion
As an alternative to previously suggested methods for online trajectory generation
with real-time constraints for mechanical systems, we have proposed an approach
based on the idea of Model Predictive Control. The main characteristic of the pro-
posed method is that it allows generation of trajectories that are optimal with respect
to a quadratic cost function, and satisfying linear constraints on the input and state
variables. In contrast to the typical application of MPC for tracking purposes, we
have considered a trajectory generation perspective. Experimental evaluations were
carried out in a demanding and time-critical ball-catching task with online updates
of the estimated target state from a vision system as the ball approached the robot.
The computation times were below the sample rate of the robot system used for the
evaluation, enabling real-time trajectory generation.

Another characteristic feature of our algorithm is that it improves the accuracy
of the optimal trajectory when approaching the desired final state, by increasing
the time resolution. Hence, even though a small number of discretization points are
used in the initial trajectory generation, a successive refinement of the trajectory is
achieved. In the case of modeling uncertainty and disturbances in the online robot
execution—i.e., discrepancies between the computed optimal trajectories and the
robot trajectories—feedback from the measurements of the actual trajectory track-
ing would be beneficial. This would be possible based on our algorithm as well;
however, it requires a theoretical analysis of the dynamics of the closed-loop tra-
jectory generation in order to guarantee stability under given assumptions on the
model uncertainty and the disturbance characteristics. This would require using a
robust MPC approach [Maciejowski, 1999].

Compared to previously suggested methods for real-time generation of trajecto-
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ries, in particular [Kröger and Wahl, 2010; Haschke et al., 2008], and [Macfarlane
and Croft, 2003], our method gives the solution of the fixed-time problem and adds
more freedom in the formulation of the motion-planning problem since it allows
quadratic cost functions and arbitrary linear constraints. The computation times for
our method is longer than the times reported for the algorithms in the mentioned
references. In our implementation, no effort was made to optimize the code with
respect to the overhead in the implementation. Despite this, it satisfied the real-time
requirements of 4 [ms] [Blomdell et al., 2010]. In cases where the DOF can be de-
coupled, such as for the implementation presented in this section, an efficient way
to reduce the time-complexity is to distribute the computation for each DOF on the
different cores of the CPU. This would allow to scale the proposed algorithm to a
high number of DOF, since the major part of the computation time is spent on solv-
ing convex optimization problems. Moreover, it allows for an increased resolution
of the discretization grid, if prompted by the accuracy requirements of the task.

Finally, since the estimate of the ball positions are inaccurate in the beginning,
we can imagine improving the performance of ball-catching by a two-step approach.
First a rough planning with a punishment on the deviation from the target state is
performed. As soon as we have a low enough variance in the target point estimate,
it is possible to perform an accurate trajectory planning with an equality constraint
on the target state. By this strategy, the robot starts moving already from the first
estimate toward the target, so increasing the chance of catching it later.

4.5 Cartesian Space Planning

Constraints related to each joint, such as maximum angles or angular velocities, are
naturally expressed in the joint space. On the other hand, constraints on the motion
of the end-effector are more conveniently expressed in the Cartesian space. Ide-
ally, both joint-space and Cartesian-space constraints could exist and the relation
between the variables could be established by forward or inverse kinematics. How-
ever, due to the complexity of the forward and inverse kinematics, this might lead to
difficult nonlinear equations or in general irregular and non-convex constraint sets
in one or the other variable sets.

In this section, we present an example to show that certain geometrical con-
straints in the task space could be approximated by a convex set in the joint space.
In such case, numerical methods can effectively find a solution for the planning
problem. For example, if the workspace limits could be approximated by a convex
set in the joint space, the full power of the MPC approach for planning a trajectory
to ball-catching scenario could be utilized.

Assume a robotic arm with three degrees of freedom with DH parameters given
in Table 4.2. The inverse kinematics of this arm with all 8 solutions are given by [Si-
ciliano et al., 2009]
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Link ai αi di θi
1 0 π/2 0 q1
2 a2 0 0 q2
3 a3 0 0 q3

Table 4.2 DH parameters for an anthropomorphic arm

c3 =
x2 + y2 + z2−a2

2−a2
3

2a2a3
(4.191)

s3 =
√

1− c2
3 (4.192)

b =
√

x2 + y2 (4.193)

q3,I = Atan2(s3,c3) (4.194)
q3,II = Atan2(−s3,c3) (4.195)
q2,I = Atan2((a2 +a3c3)z−a3s3b,(a2 +a3c3)b+a3s3z) (4.196)

q2,II = Atan2((a2 +a3c3)z+a3s3b,−(a2 +a3c3)b+a3s3z) (4.197)
q2,III = Atan2((a2 +a3c3)z−a3(−s3)b,(a2 +a3c3)b+a3(−s3)z) (4.198)
q2,IV = Atan2((a2 +a3c3)z+a3(−s3)b,−(a2 +a3c3)b+a3(−s3)z) (4.199)

q1,I = Atan2(y,x) (4.200)
q1,II = Atan2(−y,−x) . (4.201)

Limiting ourselves to the (q1,I ,q2,I ,q3,I)-configuration, Fig. 4.20 shows an ap-
proximation of a thin spherical cap (a portion of a sphere cut off by a plane) in
the Cartesian space by another spherical cap in the joint space. In this example, the
parameters are a2 = 1.0 [m] and a3 = 1.4 [m].

4.6 Conclusions

Various trajectory generation problems including tracking, point-to-point, and time-
optimal given a path or a trajectory profile problems can be formulated in the op-
timal control framework. We showed, given conservative constraints on kinematic
variables—i.e., on the position, velocity, and the acceleration—a kinematic model
corresponding to a multiple degree-of-freedom double integrator could suffice in
many applications.

An analytic solution to the fixed-time optimal point-to-point trajectory planning
problem with velocity and acceleration constraints was derived. The benefit of the
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Figure 4.20 A thin spherical cap in the joint space and its corresponding image in
the Cartesian space.

analytic solution is that its computation time is independent of the number of dis-
cretization points. Compared to time-optimal solutions, in the fixed-time problem
the synchronization between degrees of freedom is not a problem since all motions
must follow the same given fixed-time.

We showed that model predictive control can offer a framework for generating
trajectories, which goes beyond tracking problems. In this framework, the path plan-
ning can be integrated as part of the trajectory generation, as long as a desired time
is given. We highlighted similarities between trajectory planning, i.e., the problem
of finding a proper control signal which transfers the system from the current states
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to a desired final state at a given time, and the tracking problem.
A subset of MPC problems—i.e., with quadratic cost functions and linear

constraints—has the potential of being efficiently implemented to satisfy the re-
quirements of modern robotic systems. This fact allowed us to make a real-time
implementation of point-to-point trajectory planning for the task of ball-catching
with the feature of successive refinement of the planned trajectory.
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5
Conclusions and Future
Research

In this thesis, two robotic setups were proposed for collecting human-generated tra-
jectories and interaction forces in a natural way. In the first approach, the operator
can directly interact with a robot in a so-called free-floating mode. The resulting
passive lead-through programming is quite robust and does not suffer from com-
mon instability issues for interacting with stiff objects. In the robot-assisted teleop-
eration, a systematic way to define a 6-DOF teleoperation setup was described. We
utilized an admittance controller on the slave side in order to enhance operator expe-
rience. Commanding a robot with admittance parameters instead of purely positions
or forces has the benefit of allowing the robot to naturally follow the direction of
external forces, hence assisting the operator. While in the single-arm lead-through
programming, there is an unavoidable mechanical coupling between the operator,
the manipulator, and the workpiece, using teleoperation decouples the operator–
robot interface from the robot–workpiece interface. Thanks to this separation, it
is possible to interact with the workpiece with a higher degree of transparency,
which results in less unwanted demonstration side-effects compared to typical lead-
through approaches.

A programming concept based on guarded motions was briefly discussed. We
proposed enhancements to the existing models of the guarded motion by introducing
a fault recovery mechanism and a more advanced constraint handling. With the help
of the robotic setups for collecting human-generated trajectories and the designed
infrastructure, an operator can interactively provide the required parameters of the
guarded motions to build a task.

There are many applications in which only initial and final states matter for
defining a task. To motivate the use of simplistic models for robots, we compared
kinematic and dynamic models. Provided that kinematic constraints are conserva-
tive enough, our examples showed that kinematic models would be sufficient for
trajectory planning. Having this in mind, we considered point-to-point trajectory
planning and proposed a few solutions. We derived an analytic solution to the prob-
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lem of fixed-time optimal trajectory planning with maximum velocity and maxi-
mum acceleration constraints using the maximum principle. In another approach,
rather than finding an optimal trajectory, we developed an instantaneous trajectory
generator in the form of an optimal controller using the Hamilton-Jacobi-Bellman
equation. The controller updates the trajectory in a closed-loop fashion as a result
of the changes in the state of the target and/or the state of the robot. Along the
same line of thought, we proposed Model Predictive Control (MPC) for point-to-
point trajectory planning. MPC enabled us to consider a wider range of constraints
and models. The MPC approach was evaluated in a ball-catching experiment with
real-time constraints.

The ultimate goal in trajectory generation can be viewed as developing meth-
ods to arrive at a low-level representation of motion (and its corresponding input to
a system) from a high-level specification and available inputs. In this sense, a tra-
jectory planner is no different than a controller which maps set-points and current
measurements to a control signal.

As there are many ways to synthesize a controller, there exist many approaches
to design a trajectory and a trajectory planner. In any case, it is of great importance
how we specify tasks and how we measure performance. For instance, in guarded
motion-based programming, we proposed a way to specify sensor-based piece-wise
trajectories to accomplish a task. This is in essence similar to what is called procedu-
ral programming. On the other hand, we could have specified relationships between
objects and tolerances in a declarative way to come up with such a procedure. Us-
ing the optimal control framework, i.e., defining a cost functional, constraints, and
models was a step toward this goal.

This thesis can naturally be extended in different directions. Firstly, the models
can be improved to better capture the dynamics of robots, e.g., by introducing the
element of uncertainty in both models and measurements. Secondly, the constraints
and the cost functional could be revised to be more representative of the tasks.
Thirdly, the representation and reuse of human-generated trajectories can be investi-
gated thoroughly. Trajectories augmented with sensory inputs, such as force/torque
measurements, provide information-rich data for programming robots. A possible
use of this information in the context of the optimal control is to warm start opti-
mization algorithms from a demonstrated feasible solution.
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