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Secondary Structure Changes in ApoA-I Milano (R173()
Are Not Accompanied by a Decrease in Protein Stability crosvr
or Solubility

Jitka Petrlova', Jonathan Dalla-Riva', Matthias Morgelin?, Maria Lindahl’, Ewa Krupinska®,
Karin G. Stenkula’, John C. Voss?, Jens O. Lagerstedt'*

1 Department of Experimental Medical Science, Lund University, Lund, Sweden, 2 Department of Infection Medicine, Lund University, Lund, Sweden, 3 School of Medicine,
University of California Davis, Davis, California, United States of America

Abstract

Apolipoprotein A-l (apoA-l) is the main protein of high-density lipoprotein (HDL) and a principal mediator of the reverse
cholesterol transfer pathway. Variants of apoA-l have been shown to be associated with hereditary amyloidosis. We
previously characterized the G26R and L178H variants that both possess decreased stability and increased fibril formation
propensity. Here we investigate the Milano variant of apoAl (R173C; apoAl-M), which despite association with low plasma
levels of HDL leads to low prevalence of cardiovascular disease in carriers of this mutation. The R173C substitution is located
to a region (residues 170 to 178) that contains several fibrillogenic apoA-l variants, including the L178H variant, and
therefore we investigated a potential fibrillogenic property of the apoAl-M protein. Despite the fact that apoAl-M shared
several features with the L178H variant regarding increased helical content and low degree of ThT binding during
prolonged incubation in physiological buffer, our electron microscopy analysis revealed no formation of fibrils. These results
suggest that mutations inducing secondary structural changes may be beneficial in cases where fibril formation does not
occur.
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Introduction profile, carriers of the apoAlI-M variant display no increase in
cardiovascular disease or events at the preclinical level [10]. In
fact, the RCT capacity of apoAI-M carriers is enhanced and the
variant also exhibits anti-inflammatory and plaque stabilizing
properties [11]. The beneficial effect of infusion of recombinant
apoAI-M has been shown by reduction of atherosclerotic lesions in
experimental animal models [12,13]. Clinical trials have also
demonstrated a reduction of atheromas after repeated adminis-
tration of apoAl-M/phospholipid complexes to patients with
coronary disease [14,15]. Clearly, the Milano variant provides
positive effects on the cardiovascular system.

However, the location of the R173C amino acid substitution is
in a region of the apoA-I primary structure that is known to harbor
several fibrillogenic variants (i.e., variants that form fibrils
composed of beta-sheet rich amyloid structure, or other type of
fibril-structure), which lead to tissue specific plaque formation of
the fibrillogenic protein and consequent organ failure [16-18].
Considering the location of the amino acid substitution to this
region and that the Milano variant is currently under investigation
as an infusion therapy in cardiovascular disease, we wished to
understand its susceptibility to aggregation. We have here
examined the intrinsic propensity of the apoAI-M variant to
aggregate into fibrils.

Apolipoprotein A-I (apoA-I) is the main protein of high-density
lipoprotein (HDL) and mediates efflux of cellular cholesterol from
the peripheral tissues to the liver for excretion from the body in
feces [1]. This transport process, the so-called reverse cholesterol
transfer (RCT) pathway, involves a number of participating
membrane proteins and plasma enzymes including ATP-binding
cassette transporters Al and G1 (ABCAI and ABCG1), scavenger
receptor BI (SR-BI) [2,3], and lecithin cholesterol-acyl transferase
enzyme (LCAT), the latter being associated with maturation of
HDL in plasma [4]. In addition, HDL is involved in anti-
inflammatory and anti-oxidant processes that occur through non-
RCT pathways [5,6].

Several variants of apoA-I with altered functionality have been
identified. The first naturally occurring variant of apoA-I
described was the apoA-I Milano (apoAI-M) variant, which was
identified in a family originating from the village of Limone sul
Garda in northern Italy [7]. The single mutation of this variant
results in a substitution of Arg to Cys in the primary structure at
residue 173 [8]. Described carriers of the Milano variant of apoA-I
are heterozygotes and have very low plasma levels of apoA-I and
HDL cholesterol as well as normal or moderately elevated plasma
triglycerides [9]. Despite this pro-arteriosclerotic lipoprotein
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Materials and Methods

Production of Recombinant Protein

A bacterial expression system consisting of pNFXex plasmid in
Escherichia coli strain BL21(DE3) pLysS cells (Invitrogen) was used
to produce the apoAI-WT and apoAI-M proteins, as previously
described [16,19]. Primer-directed PCR mutagenesis was used to
create the R173C mutation. The mutation was verified by dideoxy
automated fluorescent sequencing (GATC Biotech). After purifi-
cation of apoA-I proteins on Ni**-chelated columns (GE
Healthcare) and desalting to remove imidazole, Tobacco etch
virus (TEV) protease treatment was employed to cleave the His-
tag. This was followed by a second Ni**- column passage where
the TEV protease and the cleaved His-tag were retained on the
column. The flow-through containing cleaved apoA-I proteins was
desalted into phosphate buffered saline, pH 7.4, 150 mM NaCl,
concentrated with 10 kDa molecular weight cut-oft Amicon Ultra
centrifugal filter devices (Millipore) and stored at 4°C prior to use.
Protein purity was confirmed by sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis with Coomassie blue staining
and protein concentrations were determined by use of a Nanodrop
2000c spectrophotometer (Thermo scientific).

Limited Proteolysis

Protein (5 pg) in phosphate buffered saline, pH 7.4, 150 mM
NaCl, was treated with 1:2000 ratio (wt/wt) of high purity
chymotrypsin (Sigma-Aldrich #C3142) for the indicated periods
of times. Reactions were stopped with protease inhibitor cocktail
(Roche #05892791001) followed by addition of SDS loading
buffer. Samples were stored at —20°C until analysis with SDS-
PAGE.

Circular Dichroism Spectroscopy

Circular dichroism spectroscopy (CD) measurements were
performed on a Jasco J-810 spectropolarimeter equipped with a
Jasco CDF-4268S Peltier set to 25°C. Averages of five scans were
baseline-subtracted (PBS buffer; 25 mM phosphate, 150 mM
NaCl) and the alpha-helical content was calculated from the
molar ellipticity at 222 nm as previously described [16].

For thermal stability experiments, spectra were obtained from
25°C to 80°C with 2.5°C increments. ApoA-I was diluted to
0.2 mg/ml in PBS (final concentration was 25 mM phosphate,
150 mM NaCl, pH 7.4), placed in a 1 mm quartz cuvette and,
after extensive purging with nitrogen, scanned in the region 200 to
260 nm (scan speed was 20 nm/min). The Boltzmann function
within the GraphPad software (GraphPad Software, Inc., CA,
USA) was used to fit the molar ellipticity values at 222 nm of the
temperature gradient to a sigmoidal fit curve.

Thioflavin T (ThT) Binding Assay

ApoAI-M, apoAI-WT and apoAl-Iowa(G26R) variant (0.2 mg/
ml) were incubated at 37°C and diluted with ThT stock solution at
time of use. 180 pl of protein was incubated for 10 min in the dark
with 20 pl of a ThT (100 pM)/glycine (10 mM) solution (ThT
stock: 1 mM stored in the dark at 4°C; Glycine buffer stock: 0.1 M
at pH 8.5 stored at 4°C). ThT fluorescence was then measured
using a VICTOR3 Multilabel Plate Counter (PerkinElmer,
Waltham, MA, USA) spectrofluorometer at an excitation wave-
length of 450 nm and an emission wavelength of 545 nm, with
excitation and emission slit widths of 10 nm [16].

Electron Microscopy

Protein samples incubated at 37°C for 30 days were diluted and
analyzed by negative stain electron microscopy as described
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previously [20]. Five microliter aliquots were adsorbed onto
carbon-coated grids for 1 min, washed with two drops of water,
and stained on two drops of 0.75% uranyl formate. The grids were
rendered hydrophilic by glow discharge at low pressure in air.
Specimens were observed in a JEOL JEM 1230 electron
microscope operated at 80 kV accelerating voltage, and images
were recorded with a Gatan Multiscan 791 CCD camera [16].
Control experiments comparing apoA-I-W'T and apoA-I-Iowa are
shown in Figure S1.

ApoA-I in vivo Analysis

Male C57/Bl6 mice purchased from Taconic (Ry, Denmark)
were used at the age of 10-11 weeks. Mice fasted overnight (12 h)
were injected intraperitoneally (i.p.) with apoAI-WT or apoAl-M
(14 mg/kg) (control animals received NaCl). Blood samples were
collected three hours following treatment. Serum samples (2 pL)
were separated by SDS-PAGL, in the presence or absence of the
reducing agent dithiothreitol (Sigma), and transferred to nitrocel-
lulose membranes, probed with anti-human apoA-I antibodies
(Abcam) and immune detection performed with HRP-conjugated
secondary antibodies (GE Healthcare). Blots were imaged using
the Odyssey Fc system (LI-COR) and quantified using Image
studio v2.0 software. The animal procedures were approved by the
Malmi/Lund Commuttee for Animal Experiment Ethics.

Results and Discussion

Quality Assessment of apoAl-M Protein

Although the structural basis for the positive effect of the Milano
mutation on cardiovascular health is unclear, the protein is known
to form disulfide-linked dimers via R173C [21,22]. We therefore
carried out analyses to ensure adequate protein purity as well as
functional Cys-Cys-linked dimer formation of apoAl-M. SDS-
PAGE analysis in the absence or presence of reducing agent was
used to detect Cys-Cys-linked dimer formation of the human
apoAI-M protein. As can be seen in Figure 1, purified apoAI-M
protein formed covalently attached dimers (arrow in Figure 1A)
that can be separated with the addition of a reducing agent,
whereas apoAI-WT proteins did not form covalent bonds. To
confirm that the @ vitro analyses of the proteins represent the in vivo
oligomeric organization, human apoAI-WT and apoAI-M pro-
teins were injected intraperitoneally in mice followed by serum
sampling at 3 hours post-injection. The serum samples were
separated on SDS-PAGLE in the presence and absence of reducing
agent followed by western blot analysis with antibodies specific for
human apoA-I protein. The antibodies used do not detect mouse
apoA-I (see negative NaCl control in Figure 1B). The results
showed that Cys-Cys-linked apoAI-M dimers were also present
in vivo (arrow in Figure 1B). The results are in agreement with
earlier studies that describe the presence of monomer and homo-
dimer in human plasma of apoAI-M carriers and in the plasma of
a mouse model expressing human apoAIl-M [21,22]. Finally,
native gel separation followed by western blot analysis of the serum
samples shows that both apoAI-M and apoAI-WT are fully
lipidated 3 hours post-injection, and have formed lipid-protein
complexes of comparable sizes (not shown). In conclusion, the
produced human apoAI-M protein forms disulfide-linkages n vitro
and i vivo, and 13 capable of assembly into HDL particles.

Comparison of Susceptibility to Proteolytic Cleavage
Our earlier analyses showed that the L1786H and G26R
mutations lead to increased protease sensitivity in the N-terminus
(16, 18). We here used limited proteolysis to investigate if also the
R173C substitution led to increased susceptibility to proteolytic
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Figure 1. Covalent Cys-Cys binding and dimer formation of
ApoAlI-M. A, Purified apoAl-M (M) and apoAl-WT (WT) proteins (2 ug)
were analyzed by SDS-PAGE (4-15% Tris-glycine) in the presence or
absence of the reducing agent DTT. Formed apoAl-M dimers are
indicated (arrow). B, Western blot analysis of apoAl-M (M) and apoAI-WT
(WT) proteins in plasma samples from mice treated with the respective
apoA-l protein. The SDS-PAGE separation was performed in the
presence or absence of the reducing agent DTT to distinguish protein
in covalently attached Cys-Cys dimers (arrow). Analysis of mouse plasma
from control animals treated with saline (NaCl) was included to show
specificity of the antibodies for human apoA-l protein. Data shown is
representative of three experiments/animals.
doi:10.1371/journal.pone.0096150.g001

cleavage. Figure 2 shows protein and protein fragments of apoAl-
WT, apoAI-M, apoAI-L178H, and apoAl-Iowa (G26R) after
incubation with chymotrypsin at indicated times. In agreement
with earlier findings, chymotrypsin cleaves apoAI-WT at one main
site leading to a protein fragment corresponding to residues 1-225
that is stable also after 240 min of incubation (18). Similarly,
chymotrypsin treatment of apoAI-M resulted in one major cut in
the primary structure leading to stable protein fragments of
comparable sizes as the WT protein. In contrast, proteolytic
cleavage of the G26R and L178H proteins led to an array of
peptide fragments, and the case of L178H, eventually to complete
degradation of the protein. Based on the findings we conclude that
the R173C substitution is more protected than G26R and L178H
to limited proteolysis, but not different to apoAI-WT.

Changes in the Secondary Structure of apoAl-M as
Determined by CD

We have previously shown that the LL178H variant aggregates
and form fibrils via a process that includes substantial increases in
alpha helical content of the protein (from about 50% helical
structure in the native, non-aggregated protein to about 80%
helical structure after fibrillization) [16]. Given the close proximity
of R173C to amino acid residue 178 in the primary structure, we
tested whether the R173C substitution also results in a time-
dependent increase of alpha helical structure.

Circular dichroism (CD) spectroscopy was first used to estimate
the secondary structure content of the purified apoAl-M and
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Figure 2. Limited proteolysis of apoA-l proteins to assay for
structure accessibility. ApoA-| proteins (0.3 mg/ml) were incubated
with chymotrypsin at 37°C for indicated times followed by SDS-PAGE
separation and coomassie staining of the gel. Arrows indicate migration
distance of full-length proteins.
doi:10.1371/journal.pone.0096150.9g002
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apoAI-W'T proteins in solution at a concentration of 0.2 mg/ml at
time zero. Using the 222 nm values the helical content was
estimated to 55.0%£1.3% and 45.8%1.6% (SEM; n= 3; p<<0.01) at
25°C for apoAI-M and apoAI-WT, respectively (Figure 3A). This
is in good agreement with Suurkkuss et al. [23] who reported an
alpha-helical content of apoAI-M to about 50-59% (depending on
oligomeric state), and with Alexander et al. [22] who reported an
alpha-helical content of 44+4% for apoAI-WT.

CD analysis was then performed on 0.2 mg/ml of apoAI-M and
apoAI-WT during a 3-week incubation time period at 37°C in
PBS buffer, pH 7.4 (Figure 3B). The apoA-I variants Iowa (G26R)
[18] and L178H [16], which are both linked to hereditary
amyloidosis [17,24] and are known to display increased content of
beta-strand structure and alpha helical structure, respectively,
under these conditions were used as controls. While the CD
spectra for wild-type protein was unchanged throughout the time
course (Figure 3B, upper left), the Milano (R173C) variant showed
a change in spectra that corresponds to an increase in the alpha
helical content (Figure 3B, upper right). The t; /o for this change
was about 8 days (alpha helical content is plotted in Figure 3C as a
function of time), which is significantly shorter than that previously
reported for the L178H variant (=12 days) [16], and as shown
here (Figure 3B, lower left). As expected the Iowa variant displayed
CD spectra that correspond to significant beta-strand structure
content (Figure 2B, lower right).

The structures of aggregation-prone variants of apoA-I are
typically less stable than wild-type apoA-I protein. CD spectros-
copy was therefore used to determine the thermal stability of
apoAI-M compared to apoAI-WT, which was compared to our
published results on the L178H variant [16]. Unfolding of apoAl-

Solubility and Stability of ApoA-I Milano

M and apoAI-WT caused by step-wise increase of temperature
resulted in sigmoidal, monophasic transition with an apparent T},
50.9%x1.4°C and T,, 55.9%1.4°C (SEM; n = 3), respectively. The
difference was not significant (not shown). The apparent thermal
stability of the Milano variant was similar to those previously
described (T,,~53°C in [22,23]), whereas the apoA-I-WT Tm was
slightly lower compared to earlier analyses using CD spectroscopy
(T,,=58-60°C in [22,23,25,26,27]) and higher or comparable to
those determined by calorimetry (T,,=52-57°C in [27,28]). The
finding that the Tm of apoAI-M is clearly higher than that of
L178H (45£0.6°C; as previously described in [16]) suggests that
the faster conversion to alpha helical structure of the apoAI-M
variant is not due to decreased protein stability.

Low Affinity of the Amyloidophilic Dye Thioflavin T to
Milano Variant

We next analyzed if the secondary structure conversion of the
Milano variant was associated with formation of beta sheet
containing amyloids (Figure 4). Thioflavin T (Th'T) is a fluorescent
dye used to study the amyloidogenic properties of proteins by
specifically binding to beta sheet structure of amyloid fibrils with
resulting increase in fluorescence. In this experiment we compared
ThT binding to apoAI-M with apoAI-WT and the amyloidogenic
Iowa variant (G26R) as negative and positive controls respectively.
The results show that while the Iowa variant increasingly binds
ThT during the time course, the apoAI-M has approximately the
same low binding affinity to ThT as apoAI-WT. We therefore
conclude that amino acid substitution from Arg to Cys at residue
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Figure 3. Structural transitions of apoA-I proteins assayed by CD spectroscopy. A, The alpha helical content was calculated from the value
of molar ellipticity at the wavelength 222 nm at the time point 0 days for apoAI-WT and apoAl-M (25°C). B, Circular dichroism spectroscopy was used
to analyze secondary structure changes over time. Scans ranging from 200 nm to 260 nm of apoAl-lowa (G26R), apoAl-Milano (R173C), apoAl-L178H
and apoAI-WT proteins (at concentrations of 0.2 mg/ml) incubated at 37°C for up to 21 days (0, 7, 14 and 21 days of incubation) are shown. While the
secondary structure of apoAl-WT protein is unchanged during the time course, the spectral changes of the apoAl-Milano and the apoAl-L178H
proteins indicate increased alpha-helical content (as indicated by an increase in molar ellipticity at 222 nm), whereas the amyloidogenic apoAl-lowa
displays a reduction in alpha helical secondary structure with time. C, The percentage of alpha helix was measured during 16 days of incubation at
37°C at different time points (0, 4, 8, 12 and 16 days). Boltzmann function was used to determinate the transition time of the apoAl-Milano variant.
ApoAl-WT did not exhibit any significant changes in the alpha helical content when incubated at identical conditions during same time period. **p<
0.01, n=3.

doi:10.1371/journal.pone.0096150.g003
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Figure 4. The amyloidophilic dye ThT does not bind to the
apoAl-Milano protein. The binding of thioflavin T (ThT) to apoAl-M
was assessed and compared to apoAl-WT. No significant binding of ThT
to apoAl-WT and apoAl-M was observed over a four-week period of
incubation at 37°C. This result is in contrast to apoAl-lowa protein,
known for its propensity to form cross-beta amyloids, which had higher
ThT binding than both apoAl-WT and apoAl-M, and thus higher beta
sheet content. *p<<0.05, n=3; **p<0.01, n=3.
doi:10.1371/journal.pone.0096150.9004

173 of the apoAI-M protein does not lead to an elevated intrinsic
propensity to form beta-sheet containing amyloid.

Negative Stain Electron Microscopy Analysis

Our previous analyses on the L178H variant showed formation
of twisted, helical fibrils (with a diameter of about 10 nm and with
lengths ranging from 30 to 120 nm) despite no specific increase in
binding to ThT [16]. We reasoned that the R173C variant would
possibly form similar helical fibrils that were undetected by the
beta-amyloid specific ThT dye. Negative stain electron microscopy
(EM) was therefore used to analyze for a potential formation of
apoAI-M fibrils. Milano variant and wild-type protein were
incubated in PBS buffer at 37°C for 4 weeks followed by dilution
in tris-buffer saline (pH 7.4) and then analyzed by EM. As can be
seen in Figure 5 (left panel), rounded molecular aggregations, but
no elongated fibrils, were observed for the apoAI-M samples,
which was consistent with the appearance of the incubated apoAl-
WT protein (Figure 5, middle panel). Similar structures of apoA-I-
WT were previously shown by Ramella et al [29] when incubated
at physiological conditions. As a positive control for aggregate
formation, the amyloidogenic variant apoAl-Iowa was used, which
exhibited a strong propensity to aggregate as shown by formation
of elongated pre-fibrillar structures and aggregates (Figure 5, right
panel; Figure S1). Thus, in contrast to the L178H variant, the
apoAI-M protein does not form fibrils under the experimental
conditions used.

Conclusions

Our data suggest that despite the fact that the apoAI-M protein
shares several features with the L178H wvariant, including
increased helical secondary structure formation during incubation,
the R173C substitution does not carry an intrinsic propensity to
form fibrils and/or amorphous aggregates. The finding is partly
unexpected as the mutation is located to a domain of the apoA-I
structure where amino acid substitution can result in increased
susceptibility to proteolysis and/or subsequent fibril formation.
This may be explained by the ability of apoAl-M to maintain
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ApoAl-M

ApoAl-lowa

Figure 5. Electron microscopy (negative stain) analysis shows
no fibril formation of apoA-I-M after four weeks of incubation
at 37°C. ApoAl-Milano (R173C), apoAlI-WT and apoAl-lowa (G26R)
proteins were incubated at 37°C for four weeks followed by negative
stain EM analysis. While the positive control apoAl-lowa formed
elongated fibrils (right panel), neither apoAl-WT (middle panel) nor
apoAl-M (left panel) displayed any fibril formation. Size bars are 100 nm.
doi:10.1371/journal.pone.0096150.g005

protein stability via covalent disulphide bridge interaction.
Another distinct difference between the two variants is the change
in charge of the side-chains (hydrophobic to basic in L178H and
basic to neutral in R173C), which may be a contributing factor to
the observed differences. In addition, the increase in helical
structure can potentially be attributed to an increase in coiled-coil
formation in the dimeric organization of the protein, which is
likely induced by the —S-S- covalent bonds between the proteins.
Therefore, the occurrence of disulfide bridging by Milano proteins
may not only result in a therapeutically-beneficial form of the
protein, but may also prevent the formation of large fibril
assemblies, which would likely result in a pathogenic state.

Proteases, e.g. chymase and tryptase [30], are expected to be
crucial for the maturation of fibrils as N-terminal fragments (the
first 80-95 amino acids of the extreme N-terminal domain) are
commonly found in plaques [31]. However, there are also
examples of variants/conditions that lead to aggregation of full-
length apoA-I. Those include the presence of full-length apoA-I
protein in plaques of humans carrying the L178H variant [17],
aggregation of apoA-I-W'T at low pH [29], and fibril-formation of
apoA-I-WT following methionine oxidation [25]. Thus, while our
study defines a lack of intrinsic propensity of the apoAI-M protein
to form fibrils i wvitro, further experimental work will be needed to
analyze the potential role of extrinsic factors in vivo (plasma
proteins, proteases, extracellular matrix components, efc.) on
apoAI-M aggregation propensity.

Supporting Information

Figure S1 Transmission electron micoscopy (TEM) images of
WT and IOWA apoA-I. WT (A) and IOWA (B) apoA-I proteins at
a protein concentration of 0.2 mg/ml were incubated at 37 C for
28 days followed by TEM analyses. Size bars are 100 nm. (black
bars) or 2 um (white bars).
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