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ABSTRACT

Context. To use the data in the future Gaia catalogue it is important to have accurate estimates of the statistical uncertainties and
correlations of the errors in the astrometric data given in the catalogue.
Aims. In a previous paper we derived a mathematical model for computing the covariances of the astrometric data based on series
expansions and a simplified attitude description. The aim of the present paper is to determine to what extent this model provides an
accurate representation of the expected random errors in the astrometric solution for Gaia.
Methods. We simulate the astrometric core solution by making least-squares solutions of the astrometric parameters for one mil-
lion stars and the attitude parameters for a five-year mission, using nearly one billion simulated elementary observations for a total
of 26 million unknowns. Two cases are considered: one in which all stars have the same magnitude, and another with 30% brighter
and 70% fainter stars. The resulting astrometric errors are statistically compared with the model predictions.
Results. In all cases considered, and within the statistical uncertainties of the numerical experiments (typically below 0.4%), the theo-
retically calculated variances and covariances are consistent with the simulations. To achieve this it is however necessary to expand the
covariances to at least third or fourth order, and to apply a (theoretically motivated and derived) “fudge factor” in the kinematographic
model.
Conclusions. The model provides a feasible method to estimate the covariance of arbitrary astrometric data, accurate enough for
most applications, and as such it should be available as part of the user’s interface to the Gaia catalogue. A main assumption in the
current model is that the observational errors are uncorrelated (e.g., photon noise), and further studies are needed on how correlated
modelling errors, in particular in the attitude, can be taken into account.
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1. Introduction

Gaia is the European Space Agency astrometric mission sched-
uled for launch in 2013. It will observe roughly one billion stars,
quasars and other point like objects (hereafter called “sources”),
for which the five astrometric parameters (position, parallax and
proper motion) will be determined. The Gaia catalogue is ex-
pected to become available around 2021. Efficient use of the
catalogue data requires that the astrometric errors are reliably
characterized, and in particular that the standard uncertainties
(or equivalently the variances) are correctly estimated. When
combining several astrometric parameters their statistical corre-
lations (or equivalently the covariances) may also be important.
Thus, in general we need to know the full variance-covariance
matrix (or covariance matrix for brevity) of all the astrometric
parameters. Because of the extremely large number of astromet-
ric parameters (∼5×109), the standard method of estimating the
covariance matrix, involving the inversion of an equally large
normal matrix, cannot be applied.

In Holl & Lindegren (2012, Paper I) we derived an approx-
imate series expansion model to compute the covariance matrix
for arbitrary subsets of the astrometric parameters (or more gen-
erally for arbitrary functions of the astrometric parameters), tak-
ing into account the statistical correlations introduced by the at-
titude estimation errors. The aim of the present paper is to test
the validity of this model by means of numerical experiments
simulating the astrometric core solution for one million sources.

The model formulated in Paper I uses a “kinematographic”
attitude model, where the continuous scanning of Gaia is ap-
proximated by a “step and stare” motion. This greatly reduces
the complexity of computing the attitude contribution to the
covariances since each observation is linked to only one atti-
tude parameter instead of many, as in the case of a continuous
(spline) representation of the attitude. The covariance model al-
lows us to approximate the covariance matrix U between all
the source parameters by means of the series expansion Ũ =
U(0)+U(1)+U(2)+ · · · (Eq. (19) of Paper I, hereafter I:19), where
the top “∼” indicates the approximation. In practice we are in-
terested in the truncated expansion up to some finite α, denoted
by square brackets:

Ũ[α] = U(0) + U(1) + · · · + U(α). (1)

As mentioned in Paper I, we more generally want to characterize
the joint errors of m different scalar quantities y = (y1, . . . , ym)
depending on some subset of n astrometric parameters x =
(x1, . . . , xn). Introducing the m × n Jacobian matrix J with
elements Jμν = ∂yμ/∂xν we have

F ≡ Cov(y) = JUJ ′, (2)

where U = Cov(x) is the covariance matrix of the relevant subset
of astrometric parameters. Using Eq. (1) we can approximate
Eq. (2) as

F̃[α] = F(0) + F(1) + · · · + F(α), (3)
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where F(α) = JU(α) J ′ for α = 0, 1, . . . The algorithm for
the practical computation of covariances described in Sect. 5 of
Paper I uses this more general formulation. The length of the
computations increases by a large factor for each higher-order
term.

The two main issues addressed in this paper concern: (i) the
validity of the approximations introduced in Paper I, in particu-
lar the kinematographic approximation; and (ii) the minimum α
needed for a given relative accuracy of the covariances. They are
discussed in Sect. 4, following a brief description of the numer-
ical simulations (Sect. 2) and a discussion of the methodology
for the numerical validation (Sect. 3).

2. Numerical simulations

2.1. Simulating astrometric solutions using AGISLab

The covariance model developed in Paper I will be validated
through a comparison with numerical results simulating the as-
trometric solution that is a central part of the Gaia data process-
ing. Ideally, the validation should use the models, algorithms and
software developed for the analysis of the real Gaia data, known
as AGIS (Astrometric Global Iterative Solution) and comprehen-
sively described in Lindegren et al. (2012). For practical rea-
sons we use a separate software system called AGISLab, which
has a subset of the most important functionalities of AGIS,
only implemented in a light-weight processing framework more
suitable for small-scale experimental runs on small computers.
Importantly, AGISLab adds a number of features specifically de-
signed for numerical experiments, in particular on-the-fly gen-
eration of simulated input data (“observations”) and the ability
to perform scaled-down experiments (involving much fewer pa-
rameters than a minimum AGIS run) in a meaningful way using
a single scaling parameter S (Holl et al. 2010; Bombrun et al.
2012). The simulations described in this paper use the observa-
tion generator in AGISLab to obtain input data with well-defined
statistical properties, but do not make use of the down-scaling fa-
cility in AGISLab; in other words all observations are generated
for nominal values of the CCD size, focal plane geometry, field-
of-view size, satellite spin rate, and scanning law, equivalent to
S = 1; see, e.g., Table 1 in Lindegren (2010) for a summary of
the main mission parameters of Gaia.

Like virtually all Gaia data processing software, AGIS and
AGISLab are entirely written in the Java language (O’Mullane
et al. 2011) and make extensive use of the common Java tool-
boxes collected and maintained by the Gaia software develop-
ment teams. Consistency between AGIS and AGISLab is en-
sured by the use of common code for many of the central tasks
such as the calculation of the observation equations and the up-
dating of source and attitude parameters. In fact, much of this
code was first developed and tested in AGISLab before it was
introduced in AGIS. Thus we are confident that the present simu-
lation results, obtained with AGISLab, are in all relevant aspects
equivalent to the corresponding AGIS output.

2.2. Requirements for the simulations

The structure of the normal equations depends strongly on the
number of source and attitude parameters that are included.
Ideally we would like to simulate a realistic AGIS solution
with the expected 108 primary sources and an attitude model
having a spline knot interval in the 5–30 s range as expected
for the real mission (due to the CCD observations integra-
tion time of �4.42 s for the majority of the sources, variations
on shorter timescales cannot be distinguished). Given available

computational resources we are able to use a reasonably real-
istic attitude knot interval of 30 s but are however restricted to
a maximum of 106 sources. Distributing these sources randomly
on the sky results in a mean number density of 24.2 deg−2, which
translates into an average of 12 sources simultaneously visible in
each of the two fields of view.

The three-axis attitude of Gaia is reconstructed, as a func-
tion of time, by combining across-scan (AC) measurements of
source positions in the skymappers (SM) of the two fields of
view with along-scan (AL) measurements in the combined as-
trometric field (AF). For a 5 yr mission the mean number of
field-of-view transits for randomly distributed sources is 88.0
(excluding dead-time), corresponding to 16.7 source transits
per 30 s attitude knot interval in the combined fields of view.
Because there is typically one AC observation (in the SM) and
nine AL observations (in the AF) per transit, this results in
16.7 AC observations and 151 AL observations per knot interval,
which is sufficient to ensure a proper attitude determination over
the whole mission duration. It is however (almost) necessary that
the 1 million sources have a uniform random distribution on the
sky, rather than following some more realistic (Galactic) den-
sity distribution: otherwise there would not be a sufficient num-
ber of observations per attitude knot interval when both fields
of view are looking away from the Galactic plane. We have not
considered to use a variable knot interval (which to some degree
would circumvent the density problem) because it would lead to
unrealistically large intervals part of the time.

Although we are only able to simulate 1% of the expected
108 primary sources anticipated for the final astrometric core
solution (Lindegren et al. 2012), the resulting 12 sources per
field of view sample the scanning-law induced structure between
sources on a sufficiently small spatial scale that the resulting
connectivity structure is similar to what we would have for a
(much) larger number of sources1. Holl et al. (2010) found that
the largest correlations between the astrometric parameters of
different sources are obtained for pairs that have an angular sep-
aration much less than the field of view, with a maximum corre-
lation coefficient inversely proportional to the number of sources
in the combined fields of view. Since the present experiments use
much fewer primary sources than the final astrometric solution
for the Gaia catalogue, the experiments are likely to exaggerate
the correlations by a significant factor.

It is no coincidence that the number of field-of-view tran-
sits per attitude interval (∼16) is similar to the mean number of
sources per (combined) field of view (∼24). In simple words one
must determine the next “field pointing” before the current field
moves completely out of view. As a field-of-view transit takes
about 43 s, the attitude interval should be of a similar or shorter
duration, e.g., the adopted 30 s.

2.3. Simulation experiments

The numerical validation of the covariance model was carried
out for the following two cases:

Case A: 1 million randomly distributed sources of a single
magnitude (G = 13);

1 “Connectivity” here refers to the circumstance that two spatially sep-
arated sources may be observed together in the combined field of view,
and thus connected by a common stretch of attitude. The angular sep-
aration between the connected sources could either be small (<∼0.7◦,
the size of the field of view) or close to the basic angle of 106.5◦.
A more general concept is the “distance” d(i, k) between arbitrary
sources i and k introduced in Paper I; the sources are directly connected
if d(i, k) = 2, indirectly connected via a third star if d(i, k) = 4, etc.
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Case B: A random mixture of 0.3 million sources of magnitude
G = 13 and 0.7 million sources with G = 15.

The purpose of Case A is to serve as a reference for subse-
quent experiments: the assumptions are as simple as possible,
and it gives the highest astrometric weight per source and per
unit time that can be achieved with our imposed restriction of
at most 106 primary sources. For the statistical results reported
below the choice of magnitude is in fact irrelevant in Case A,
since all attitude and astrometric errors scale linearly with the
assumed standard deviation of the observational noise (which is
σAL = 92 μas per AL observation in the astrometric field), while
the computed covariances scale with σ2

AL. However, at G = 13
the CCD pixel values at the centre of the stellar images are close
to saturation (above which gating is used to reduce the integra-
tion time), and this σAL therefore represents the expected noise
level also for the brighter sources. Moreover, the minimum den-
sity of stars brighter than G = 13 is approximately 50 deg−2 (i.e.,
around the galactic poles), of which probably half could be used
as primary sources in a real astrometric solution. With a density
of 24.2 deg−2, Case A is therefore not dissimilar to the uniform
grid of primary sources having the highest astrometric weight
that can be achieved in the actual mission.

The purpose of Case B is to study how the covariance model
adapts to different magnitudes. The astrometric results for bright
sources are expected to suffer relatively more from the attitude
uncertainty than those of faint sources. Ideally, we should simu-
late the expected magnitude distribution of the primary sources
(extending down to G = 20), but that would mean a very small
number of bright sources, given our computational restriction of
1 million sources in total. The use of two discrete magnitudes
(G = 13 and 15), their separation by 2 magnitudes (giving a
factor 2.5 in σAL), and the ratio of the number of sources (3:7)
were mainly dictated by the practicalities of the data analysis.
Comparing the results for the two cases at the common mag-
nitude G = 13 allows to estimate how the total weight of the
primary sources affects the attitude errors.

A mission length of 5 yr was assumed (with no dead-time),
which gives on average 880 AL (SM+AF) and 88 AC (SM) ob-
servations per source. In each case we generated the full set of
∼109 observations with a single realization of the Gaussian ob-
servation noise, and performed a least-squares solution for the
5 × 106 astrometric source parameters and 2.1× 107 attitude pa-
rameters (for a spline knot interval of 30 s). Using AGISLab
with the conjugate gradients algorithm described in Bombrun
et al. (2012) the solution was iterated until convergence (rms up-
dates <0.001 μas) from an initial approximation equal to the true
parameter values2. Figure 1 shows the evolution of the rms as-
trometric errors and updates during the iterations in Case A; the
corresponding plot for Case B is very similar.

2.4. Computing the covariance estimates

The implementation of the covariance model used for this paper
follows exactly the description given in Sect. 5 of Paper I. For
both Case A and B the number of sources was 1 million, each
having 5 astrometric parameters. The kinematographic attitude
bin interval (B) was set equal to the attitude spline knot inter-
val of 30 s, resulting in 5.2 × 106 attitude intervals covering the
5 yr mission length. Technical details about the implementation,

2 It was demonstrated in Bombrun et al. (2012) that the converged so-
lution does not depend on the initial values; thus starting from the true
values does not prejudice the results but saves a number of iterations.

Fig. 1. Convergence plot for the astrometric solution in Case A. The
solid curves show the rms errors of the astrometric parameter (i.e., the
rms differences between the calculated and true values) as functions of
the iteration number; the dashed curves show the rms of the correspond-
ing source parameter updates. The different astrometric parameters are
colour coded (green: α∗, blue: δ, red: �, magenta: μα∗, cyan: μδ).

including memory usage and computing times, are found in
Appendix C.

3. Validation methodology

3.1. General considerations

The aim of the validation is to determine to what extent the math-
ematical model described in Paper I provides an accurate statis-
tical representation of the random errors in the astrometric solu-
tion. As discussed in Paper I, a basic assumption for the model is
that the input data (observations) are unbiased and uncorrelated,
with known standard uncertainties. In the present paper the val-
idation is made under the hypothesis that these assumptions are
correct, which may be reasonable if photon noise and CCD read-
out noise are the only sources of errors. In reality there are many
other (although generally less important) error sources, resulting
in observations that are to some extent biased and correlated, and
whose standard uncertainties are not perfectly known. The char-
acterization of the resulting astrometric errors under these condi-
tions is a problem left for future studies (see Sect. 5); the effects
of CCD radiation damage are for example considered by Holl
et al. (2012b). Under the given hypothesis, however, the statis-
tical properties of the astrometric errors are completely defined
by the corresponding least-squares problem, and the validation
can be reduced to a comparison with quantities computed from
the rigorous least-squares solution.

As outlined in the Introduction the covariance model most
generally provides F̃[α], being an approximation of F using
the series expansion with α + 1 terms, for a given Jacobian J .
Provided that the number of rows in J, or m = dim(y), is not too
large, it would be feasible to compute F rigorously by means of
the iterative astrometric solution algorithm. All that is needed (in
principle) is to replace the right-hand side of the normal equa-
tions with the columns of J ′, iterate to obtain the m solution vec-
tors, and left-multiply by J . We have not tried this method, as it
is computationally expensive and would not allow us to sample
a large set of covariances.

The adopted validation methodology is instead based on nu-
merical simulation experiments. Observational noise with well-
defined statistical properties is created, using a good pseudo-
random number generator, and the errors in the resulting
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solutions are analysed in terms of suitable statistics. The sim-
plest and most straightforward way of estimating F would use
Monte Carlo simulations: the solution is repeated many (say K)
times with different (random) observation noise realizations but
otherwise identical conditions (positions and magnitudes of the
sources, the scanning law, etc.). If ek is the vector of astrometric
errors obtained in the kth such experiment, we can then com-
pute the estimate F̂ = K−1∑

k(Jek)(Jek)′ for arbitrary J . As
the relative precision of the sample variance for a sample of
size K is approximately

√
2/K, it follows that a relative preci-

sion of 1% would require about 20 000 experiments, which is
clearly not feasible time wise.

However, since each solution contains one million different
parallax errors (for example), it would seem possible to obtain
very good statistics from just one such solution, and that is in-
deed the approach taken here. The only problem is to define the
relevant statistics for our purpose of validating the covariance
model. Given that we have only one error vector e, our task is
to define statistics that allow us to combine the results for many
sources. This in essence means that we need to combine the in-
dividual errors to quantities that all follow the same (expected)
distribution. Since J can be set up to extract arbitrary subsets of
the astrometric parameters (e.g., the parallaxes for all sources,
or for all sources of a given magnitude), the statistics can always
be formulated in terms of F̃[α] rather than Ũ[α].

In the αth approximation F̃[α] is the estimated covariance of
the transformed errors Je. The statistic

X2 = (Je)′
(
F̃[α]
)−1

(Je) (4)

is therefore expected to follow the chi-square distribution with
ν = dim(F) degrees of freedom, X2 ∼ χ2

ν , if F̃[α] = F. In par-
ticular, the expected value of X2 is ν and the variance is 2ν. For
our purposes a more convenient statistic is the relative deviation,
X2/ν − 1, which should ideally be zero and has an uncertainty
of
√

2/ν. However, it is not practical to compute this statistic for
values of ν that are large enough to obtain a useful precision.
Instead, we use the average over a large number (n) of sources:

S ν,n =
1
n

∑

i

⎛⎜⎜⎜⎜⎝
X2

i

ν
− 1

⎞⎟⎟⎟⎟⎠ , (5)

where X2
i is the chi-square statistic for the transformed errors

of the single source i, evaluated using the corresponding sub-
matrix F̃[α]

ii , and ν is now the number of transformed errors per
source. Assuming that the correlations between the sources are
generally small, the uncertainty of S ν,n is �√2/νn.

As previously remarked, the covariance model neglects the
across-scan (AC) observations, although they are by necessity
used in the simulations and therefore contribute some astromet-
ric weight to the solution. In principle this could result in a slight
overestimation of the variances in the model compared with the
simulations. The maximum size of this effect can be evaluated by
just considering the AC contribution to the total weight. Given
that the standard uncertainty of an AC observation (in SM) is
about six times larger than the AL observation (in AF), and that
there are nine times as many AL observations, the AC observa-
tions only contribute about 0.3% of the total weight, and could at
most lead to a (negative) bias of 0.003 units in S ν,n. This number
is comparable to the uncertainty of the statistics in the numeri-
cal experiments, and therefore will not (significantly) affect the
analysis.

3.2. Covariances for individual sources

By specifying a trivial Jacobian filled with 0’s and 1’s in the ap-
propriate places, the covariance model can return the estimated
covariance matrix Ũ[α]

ii of the five astrometric parameters (α∗, δ,
�, μα∗, μδ) of a single source i. Given the error vectors ei and the
estimated covariance matrices for a set of n sources, we define
one statistic S 5,n and five different statistics S 1,n as follows.

The statistic S 5,n is obtained by averaging X2
i /5−1 over the n

sources, where

X2
i = e′i

(
Ũ[α]

ii

)−1
ei (6)

should ideally follow the chi-square distribution with 5 degrees
of freedom. S 5,n tests the ensemble of 5 × 5 covariance matri-
ces for the sources against the astrometric errors obtained in the
solution.

The diagonal elements in Ũ[α]
ii are the estimated variances

of the five astrometric parameters. These variances are individ-
ually tested by means of the statistics S 1,n obtained by averag-
ing X2

i − 1 over the sources, where Xi in this case is the indi-
vidual astrometric error (e.g., in α∗) divided by the estimated
uncertainty (square root of the corresponding diagonal element
in Ũ[α]

ii ). There are thus five separate statistics, denoted S 1,n(α∗),
S 1,n(δ), etc.

It is also possible to devise separate tests for each of
the 10 non-redundant off-diagonal elements in the sources
covariance matrices, but these statistics are not detailed here.

3.3. Covariances for pairs of sources

With n sources of a particular kind (e.g., in a magnitude bin)
there are n(n− 1)/2 possible pairs to consider, which is typically
far too many. As we are particularly concerned about the corre-
lations on small angular scales (less than the size of the field of
view), we will only compute these statistics for pairs of sources
that are neighbours on the sky. More precisely, each source is
paired with its nearest neighbour among the remaining unpaired
sources, resulting in n/2 unique pairs among n sources.

By appropriate specification of the Jacobian the joint covari-
ance of the astrometric parameters for the pair i j is returned as
a 10 × 10 matrix consisting of Ũ[α]

ii , Ũ[α]
i j , Ũ[α]

ji = Ũ[α]′
i j , and Ũ[α]

j j .
In analogy with Sect. 3.2 we define S 10,n/2 for testing the ensem-
ble of joint covariances for the n/2 different pairs, and 10 sepa-
rate statistics S 1,n/2 for specific combinations of the astrometric
parameters (to be detailed below).

Given the error vectors ei and e j we have for each pair the
statistic

X2
i j =

⎡⎢⎢⎢⎢⎣
ei

e j

⎤⎥⎥⎥⎥⎦
′ ⎡⎢⎢⎢⎢⎢⎢⎣

Ũ[α]
ii Ũ[α]

i j

Ũ[α]
ji Ũ[α]

j j

⎤⎥⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

ei

e j

⎤⎥⎥⎥⎥⎦ , (7)

which ideally should follow the chi-square distribution with
10 degrees of freedom. S 10,n/2 is obtained by averaging
X2

i j/10 − 1 over the n/2 pairs. Note that S 10,n/2 has the same
uncertainty as the S 5,n defined above for single sources, if n is
the same.

Although S 10,n/2 correctly tests the overall level of the co-
variances, it may not be very sensitive to possible spatial corre-
lations, due to the fact that the off-diagonal terms of the inverse
matrix in Eq. (7) can have either sign and therefore to some ex-
tent will cancel. More powerful statistics, and better insight into
the properties of the solution, can be obtained by considering the
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i

j

NCP

Equator

ψi

ψj

θ

Fig. 2. Definition of the angles ψi and ψ j for two sources i
and j separated by the angle θ. NCP is the North Celestial Pole
(δ = +90◦).

predicted variances for some very specific combinations of the
astrometric parameters of the sources. Two such quantities are
the sum and the difference of the parallaxes, Σ� ≡ �i +� j and
Δ� = �i −� j. The former may be used to estimate the distance
to a binary or cluster, using the mean parallax, while the sec-
ond is relevant for example for testing whether the sources are
physically connected. In both cases it is important that the vari-
ance of the combination is correctly estimated. The example is
particularly interesting, since a positive correlation between the
parallax errors would be detrimental for the first purpose, but
beneficial for the second (the reverse is true for negative correla-
tion). Moreover, the transformation from (�i, � j) to (Σ�,Δ�)
is orthogonal and therefore preserves the information in the orig-
inal data. But whereas the variances of the original data do
not depend on the covariance, the variances of the transformed
data do.

Extending this idea to the positions and proper motions is
not so obvious, as their errors are vector quantities in the tan-
gent plane of the celestial sphere. The proposed solution is to
decompose the vectorial errors into components that are paral-
lel and normal to the great-circle arc connecting the two sources
(Fig. 2). For convenience, we introduce a generic variable ϕ rep-
resenting “differential position” in much the same way as μ
is used to represent “proper motion”. Thus ϕα∗ = Δα cos δ
and ϕδ = Δδ. The corresponding components parallel and nor-
mal to the great-circle arc are denoted ϕ|| and ϕ⊥, and similarly
for the proper motion components μ|| and μ⊥. With ψ denot-
ing the position angle of the great-circle arc from i to j at the
respective source, we have:

ϕ|| = ϕα∗ sinψ + ϕδ cosψ
ϕ⊥= −ϕα∗ cosψ + ϕδ sinψ
μ|| = μα∗ sinψ + μδ cosψ
μ⊥= −μα∗ cosψ + μδ sinψ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (8)

We can now define an orthogonal transformation from the 10 as-
trometric parameter errors in ei and e j to the errors in the
10 quantities Σϕ||, Σϕ⊥, Σ�, Σμ||, Σμ⊥, Δϕ||, Δϕ⊥, Δ�, Δμ||,
and Δμ⊥ obtained as the sums and differences of the variables
in Eq. (8). The Jacobian J i j of this transformation is detailed
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Fig. 3. Autocovariance function of the along-scan attitude errors in
Case A, as calculated from the actual errors in the simulation
(solid line), and as estimated by the kinematographic model including
terms to fourth order (dashed line).

in Appendix A, which also gives a recipe for computing the
trigonometric factors in Eq. (8). We can now define the statis-
tics S 1,n/2(Σϕ||), etc., based on the individual transformed er-
rors divided by their estimated standard uncertainties. The lat-
ter are obtained from the diagonal elements of the transformed
covariance matrix,

F̃[α]
i j = J i j

⎡⎢⎢⎢⎢⎢⎢⎣
Ũ[α]

ii Ũ[α]
i j

Ũ[α]
ji Ũ[α]

j j

⎤⎥⎥⎥⎥⎥⎥⎦ J ′i j, (9)

where J i j is given by Eq. (A.1).
It can be noted that some of the transformed errors, viz., Σ�,

Δϕ||, Δ�, and Δμ||, are invariant to a (small) change in the ori-
entation and spin of celestial reference system, and therefore not
affected by the possible issue of the rank-deficient normal matrix
discussed in Sect. 3.2 of Paper I. The two remaining differences,
Δϕ⊥ and Δμ⊥, are less affected by such a change than the re-
maining sums as long as the angular separation of the pair (θ in
Fig. 2) is small.

4. Results

4.1. Attitude errors and the kinematographic approximation

In Paper I it was shown that the covariance of the astrometric
parameters can be written

U = P−1 + P−1RVR′P−1 (10)

(Eq. (17) in Paper I), where P−1 is the (trivially computed) co-
variance of the source parameters in the absence of attitude er-
rors, and the second term is the correction due to the attitude
errors. The correction term contains V, the covariance of the at-
titude parameters, and a connection matrix R specifying how the
astrometric parameters depend on the attitude parameters. Since
the whole point is about estimating this correction term, which
clearly scales with the attitude errors, it is natural to start by
comparing the empirical V (from the simulation experiments)
with its theoretical expectation based on the covariance model
of Paper I. This has the advantage that it brings us immediately
to consider the kinematographic approximation and its possible
improvement by means of the fudge factor ω.
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The solid line in Fig. 3 is the autocovariance function C4(τ)
of the actual along-scan attitude errors for the third (middle) year
of the simulation in Case A, computed according to Eq. (C.1) of
Paper I. The subscript 4 indicates that it is based on the attitude
model using cubic splines (i.e., of order M = 4). On the horizon-
tal axis the delay τ is expressed in units of the spline knot interval
Δt = 30 s. The dashed line is the autocovariance C1(τ) according
to the kinematographic model for a bin width of B = 30 s, cal-
culated according to Paper I by adding terms up to and including
α = 4 and putting ω = 1.

Comparing Fig. 3 with its theoretical counterpart, Fig. C.1
(bottom) in Paper I, two differences stand out. First, the empiri-
cal autocovariance function for the cubic attitude spline in Fig. 3
goes through zero already at the delay τ = 0.74Δt, compared to
the theoretical τ = Δt expected from Fig. C.1 (Paper I). A possi-
ble explanation of this result is given in Appendix D. Secondly,
the variance is correspondingly larger, C4(0) � C1(0)/0.74, mak-
ing the integrals of the two autocovariance functions roughly
equal (which makes sense since the integral is the inverse of
the mean rate of the astrometric weight of the observations). In
Paper I the correlation length L of the attitude autocovariance
function was defined as the value of τ at the first zero crossing;
thus we use L = 22.2 s in the following.

The autocovariance functions in Fig. 3 refer to the instan-
taneous attitude errors e(t) from the simulations or according
to theory. As explained in Appendix C of Paper I, the attitude
error a(t) obtained by averaging e(t) over the nine consecu-
tive CCD observations in the astrometric field is in fact more
relevant for the astrometric errors. In particular, we may esti-
mate the fudge factor ω by comparing the variance of a(t) from
the simulations with the variance according to the fourth-order
kinematographic approximation. The latter is calculated as

Var
[
a[4]
]
=

4∑

α=0

ωα+1Var
[
a(α)
]
, (11)

where the variances on the right-hand side of the equation are
computed as described in Paper I, using ω = 1. Adjusting ω
for equality between Var[a] from the simulation and the sum in
Eq. (11) gives ω = 1.158.

This empirical estimate of ω agrees very well with the theo-
retical prediction from Eq. (C.5) in Paper I. Using the correlation
length L = 22.2 s from Fig. 3, the attitude bin width B = 30 s and
the temporal separation of the CCD observations, T = 4.85 s, we
obtain ω = 1.164. In the subsequent analysis of the astrometric
errors we will consider the two cases ω = 1 and ω = 1.16.

4.2. Astrometric errors

The main results for the astrometric errors are summarised in
Tables 1–4 and discussed hereafter. It should be recalled that
the tables give the statistic S ν,n defined by Eq. (5), which ideally
should be zero. A value of +0.1, for example, means that the cor-
responding variance is underestimated by 10%, in the sense that
it requires correction by the factor 1.1. The corresponding stan-
dard uncertainty is underestimated by �5%, in that it requires a
correction by the factor

√
1.1 � 1.05.

Although the astrometric errors are of course obtained for
all 106 sources in each experiment, the calculation of the the-
oretical covariances was for practical reasons only done for
300 000 sources at each magnitude (i.e., for 300 000 sources in
Case A, and for 300 000 brighter and an equal number of fainter
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Table 1. Single source statistics in Case A.

α = 0 α = 1 α = 2 α = 3 α = 4

ω = 1.00

S 5,n +0.0536 +0.0215 +0.0129 +0.0094 +0.0078
α∗ +0.0504 +0.0184 +0.0099 +0.0065 +0.0049
δ +0.0497 +0.0178 +0.0093 +0.0059 +0.0044
� +0.0553 +0.0232 +0.0148 +0.0116 +0.0102
μα∗ +0.0559 +0.0238 +0.0150 +0.0114 +0.0097
μδ +0.0539 +0.0218 +0.0130 +0.0096 +0.0079

ω = 1.16

S 5,n +0.0536 +0.0166 +0.0051 −0.0002 −0.0030
α∗ +0.0504 +0.0135 +0.0021 −0.0031 −0.0058
δ +0.0497 +0.0128 +0.0015 −0.0036 −0.0063
� +0.0553 +0.0183 +0.0071 +0.0022 −0.0004
μα∗ +0.0559 +0.0188 +0.0071 +0.0017 −0.0013
μδ +0.0539 +0.0168 +0.0052 −0.0001 −0.0030

Notes. S 5,n is the statistic testing the 5 × 5 covariance matrices of
the n sources at different levels of approximation (α). The subsequent
lines give the statistic S 1,n for the different astrometric parameters. The
number of sources considered is n = 3× 105 which gives an uncertainty
of ±0.0012 for S 5,n and ±0.0026 for S 1,n. Results are given for two val-
ues of the fudge factor ω. The results for α = 0 are unaffected by the
value of ω, because the attitude variance is not taken into account in the
zero-order approximation.

sources in Case B). Figure 4 shows the distribution of the separa-
tion angle θ for the 150 000 source pairs considered when com-
puting the source pair statistics in Case A (Table 2) and for the
brighter pairs in Case B (Table 4). The distribution is essentially
the same for the fainter pairs in Case B. The mean separation
is 〈θ〉 = 0.21◦.

4.2.1. Case A (uniform brightness)

In this case we have the simplest possible configuration of
sources (uniform brightness and uniform distribution over the
celestial sphere), implying a constant astrometric weight per ob-
servation, per source, and per attitude bin. The average number
of sources simultaneously visible in the combined field of view
is 24 (the actual number at any time is a Poisson random variable
with mean value 24, and consequently has a standard deviation
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Table 2. Source pair statistics in Case A.

α = 0 α = 1 α = 2 α = 3 α = 4

ω = 1.00

S 10,n/2 +0.0539 +0.0215 +0.0129 +0.0095 +0.0079
Σϕ || +0.0897 +0.0332 +0.0172 +0.0108 +0.0079
Σϕ⊥ +0.0909 +0.0360 +0.0202 +0.0140 +0.0111
Σ� +0.0990 +0.0428 +0.0272 +0.0211 +0.0184
Σμ || +0.1022 +0.0451 +0.0286 +0.0219 +0.0187
Σμ⊥ +0.1025 +0.0470 +0.0308 +0.0242 +0.0211
Δϕ || +0.0051 −0.0026 −0.0036 −0.0038 −0.0039
Δϕ⊥ +0.0086 −0.0009 −0.0022 −0.0025 −0.0026
Δ� +0.0155 +0.0068 +0.0058 +0.0055 +0.0054
Δμ || +0.0078 +0.0000 −0.0010 −0.0013 −0.0014
Δμ⊥ +0.0077 −0.0018 −0.0031 −0.0034 −0.0036

ω = 1.16

S 10,n/2 +0.0539 +0.0166 +0.0052 +0.0001 −0.0027
Σϕ || +0.0897 +0.0247 +0.0036 −0.0060 −0.0111
Σϕ⊥ +0.0909 +0.0277 +0.0070 −0.0025 −0.0075
Σ� +0.0990 +0.0344 +0.0138 +0.0045 −0.0002
Σμ || +0.1022 +0.0365 +0.0148 +0.0046 −0.0009
Σμ⊥ +0.1025 +0.0387 +0.0173 +0.0074 +0.0019
Δϕ || +0.0051 −0.0038 −0.0051 −0.0055 −0.0057
Δϕ⊥ +0.0086 −0.0024 −0.0041 −0.0046 −0.0048
Δ� +0.0155 +0.0055 +0.0041 +0.0036 +0.0034
Δμ || +0.0078 −0.0012 −0.0026 −0.0030 −0.0032
Δμ⊥ +0.0077 −0.0033 −0.0050 −0.0056 −0.0058

Notes. S 10,n/2 is the statistic testing the 10 × 10 joint covariance matri-
ces of the n/2 pairs of sources. The subsequent lines give the statistic
S 1,n/2 for the sums and differences of the astrometric parameters re-
solved along and perpendicular to the arc joining the two sources. Since
n = 3×105 the uncertainty is ±0.0012 for S 10,n/2 and ±0.0037 for S 1,n/2.
Results are given for two values of the fudge factor ω. The results for
α = 0 are unaffected by the value of ω, because the attitude variance is
not taken into account in the zero-order approximation.

of nearly 5). According to Sect. 4.5 in Paper I (see also Holl
et al. 2010), we thus expect that the zero-order covariance esti-
mate U[0] underestimates the variances by (at least) 1/25 � 4%,
and that the (neglected) correlations between sources with a
small angular separation is also of this size.

The single-source statistics S 5,n and S 1,n for Case A, given
in Table 1, show that the underestimation of the variances for
α = 0 is in fact slightly worse, or about 5–6% depending on
which parameter is considered. The smaller value is obtained
for the declination at the mean epoch of observation, δ, and a
larger value is obtained for the proper motion in right ascen-
sion, μα∗. As we shall see, it is a general feature that δ is slightly
less and μα∗ slightly more susceptible to the attitude errors than
the other astrometric parameters. This is probably related to the
more favourable geometry for the determination of δ implied by
the scanning law, also reflected in the generally smaller uncer-
tainties in that parameter (e.g., Eq. (5.5) and Table 3 in Lindegren
2010)3.

In the higher-order approximations (α = 1, 2, . . . ) the de-
gree of underestimation gradually decreases but does not disap-
pear for ω = 1 (upper part of Table 1). Using the fudge factor
ω = 1.16 estimated from the attitude variance gives much bet-
ter results and almost correct variances for α = 3. For α = 4 it
gives a small overestimation of the variances (negative values
in the table), suggesting that a slightly smaller fudge factor

3 The difference would be further accentuated in ecliptical coordinates,
as the scanning law is symmetric with respect to the ecliptic.
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theoretical one.

should perhaps be preferred. Figure 5 shows that the individual
source statistics X2

i (for ν = 5) follow the expected chi-square
distribution for α ≥ 3.

Table 2 gives the results for the source pair statistics S 10,n/2
and S 1,n/2. The overall results given by S 10,n/2 are almost
identical to the S 5,n in Table 1. However, a different picture
emerges when the results are divided up between the sums (Σ)
and differences (Δ) of the errors in a pair. In the zero-order ap-
proximation (α = 0) the variances of the sums are strongly un-
derestimated (by 9–10%), while the differences are only slightly
underestimated (by about 1%). Compared with the single source
statistics in Table 1 the underestimation of the sums Σ is almost
doubled, which can be understood as the combined result of
underestimating the variance of the parameter for each source
(as in Table 1) and neglecting the positive correlation between
them; for the differences Δ the two effects almost cancel since
the correlation enters with the opposite sign.

Going to higher orders (α = 1, 2, . . . ) improves the re-
sults. At α = 3 and 4 and using the fudge factor ω = 1.16 the
agreement is quite good in all cases considered, when the sta-
tistical uncertainties are taken into account. The fact that both
the sums Σ and the differences Δ obtain virtually unbiased vari-
ances indicates that the correlations at the relevant spatial scales
(�0.2◦) are correctly estimated by the model. A more direct val-
idation of this can be made by comparing the sample correla-
tion coefficients from the simulation with the theoretical values.
Figure 6 shows such a comparison for the parallaxes; the results
for the other astrometric parameters are very similar (cf. Holl
et al. 2010). Again, the simulations suggest that, for ω = 1.16,
the best agreement is found for α = 3, alternatively that a slightly
smaller value of ω should be used.

When comparing the results for the parameters that are in-
variant to a change in the reference system (e.g., Σ�) to those
that are not (the remaining Σ parameters), we do not find any
difference that could be related to the rank deficiency of the nor-
mal matrix (Sect. 3.3). We conclude that the rank deficiency is
not an issue at the level of errors considered in this study.
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Table 3. Single source statistics in Case B.

G = 13 G = 15
α = 0 α = 1 α = 2 α = 3 α = 4 α = 0 α = 1 α = 2 α = 3 α = 4

ω = 1.00
S 5,n +0.1416 +0.0619 +0.0394 +0.0302 +0.0258 +0.0207 +0.0078 +0.0045 +0.0031 +0.0025
α∗ +0.1388 +0.0593 +0.0370 +0.0279 +0.0236 +0.0189 +0.0060 +0.0028 +0.0015 +0.0008
δ +0.1365 +0.0572 +0.0351 +0.0262 +0.0220 +0.0199 +0.0070 +0.0037 +0.0025 +0.0019
� +0.1409 +0.0613 +0.0394 +0.0307 +0.0267 +0.0175 +0.0047 +0.0015 +0.0002 −0.0003
μα∗ +0.1464 +0.0664 +0.0435 +0.0340 +0.0294 +0.0223 +0.0093 +0.0060 +0.0046 +0.0040
μδ +0.1416 +0.0619 +0.0393 +0.0300 +0.0255 +0.0221 +0.0092 +0.0059 +0.0046 +0.0039

ω = 1.16
S 5,n +0.1416 +0.0502 +0.0208 +0.0069 −0.0006 +0.0207 +0.0057 +0.0013 −0.0007 −0.0019
α∗ +0.1388 +0.0476 +0.0184 +0.0049 −0.0025 +0.0189 +0.0040 −0.0004 −0.0024 −0.0035
δ +0.1365 +0.0456 +0.0167 +0.0033 −0.0039 +0.0199 +0.0049 +0.0006 −0.0014 −0.0025
� +0.1409 +0.0496 +0.0210 +0.0079 +0.0010 +0.0175 +0.0026 −0.0016 −0.0035 −0.0045
μα∗ +0.1464 +0.0547 +0.0247 +0.0105 +0.0026 +0.0223 +0.0073 +0.0028 +0.0007 −0.0005
μδ +0.1416 +0.0502 +0.0206 +0.0067 −0.0010 +0.0221 +0.0072 +0.0027 +0.0007 −0.0005

Notes. See Table 1 for an explanation of the different lines. The statistical uncertainty is ±0.0012 for S 5,n and ±0.0026 for S 1,n at both magnitudes.

Table 4. Source pair statistics in Case B.

G = 13 G = 15
α = 0 α = 1 α = 2 α = 3 α = 4 α = 0 α = 1 α = 2 α = 3 α = 4

ω = 1.00
S 10,n/2 +0.1415 +0.0599 +0.0375 +0.0285 +0.0243 +0.0213 +0.0083 +0.0050 +0.0037 +0.0031
Σϕ || +0.2475 +0.1046 +0.0630 +0.0461 +0.0381 +0.0400 +0.0172 +0.0110 +0.0086 +0.0074
Σϕ⊥ +0.2433 +0.1048 +0.0641 +0.0475 +0.0397 +0.0327 +0.0107 +0.0047 +0.0023 +0.0011
Σ� +0.2504 +0.1092 +0.0686 +0.0523 +0.0449 +0.0362 +0.0138 +0.0078 +0.0055 +0.0044
Σμ || +0.2601 +0.1158 +0.0731 +0.0554 +0.0468 +0.0350 +0.0123 +0.0061 +0.0035 +0.0022
Σμ⊥ +0.2605 +0.1201 +0.0783 +0.0608 +0.0524 +0.0429 +0.0208 +0.0146 +0.0121 +0.0108
Δϕ || +0.0240 +0.0048 +0.0024 +0.0017 +0.0015 +0.0034 +0.0002 −0.0001 −0.0002 −0.0003
Δϕ⊥ +0.0292 +0.0054 +0.0022 +0.0013 +0.0010 +0.0004 −0.0034 −0.0039 −0.0040 −0.0041
Δ� +0.0345 +0.0129 +0.0101 +0.0094 +0.0091 +0.0025 −0.0010 −0.0014 −0.0015 −0.0015
Δμ || +0.0262 +0.0069 +0.0043 +0.0035 +0.0033 +0.0102 +0.0070 +0.0066 +0.0065 +0.0065
Δμ⊥ +0.0300 +0.0063 +0.0029 +0.0020 +0.0016 +0.0035 −0.0003 −0.0008 −0.0010 −0.0010

ω = 1.16
S 10,n/2 +0.1415 +0.0484 +0.0196 +0.0065 −0.0006 +0.0213 +0.0063 +0.0019 −0.0001 −0.0012
Σϕ || +0.2475 +0.0848 +0.0315 +0.0068 −0.0065 +0.0400 +0.0136 +0.0054 +0.0016 −0.0005
Σϕ⊥ +0.2433 +0.0854 +0.0333 +0.0091 −0.0040 +0.0327 +0.0073 −0.0007 −0.0045 −0.0065
Σ� +0.2504 +0.0896 +0.0374 +0.0137 +0.0013 +0.0362 +0.0103 +0.0024 −0.0012 −0.0032
Σμ || +0.2601 +0.0958 +0.0410 +0.0152 +0.0010 +0.0350 +0.0088 +0.0004 −0.0035 −0.0057
Σμ⊥ +0.2605 +0.1005 +0.0469 +0.0214 +0.0074 +0.0429 +0.0173 +0.0091 +0.0052 +0.0030
Δϕ || +0.0240 +0.0019 −0.0014 −0.0024 −0.0029 +0.0034 −0.0003 −0.0008 −0.0009 −0.0010
Δϕ⊥ +0.0292 +0.0018 −0.0025 −0.0038 −0.0044 +0.0004 −0.0040 −0.0047 −0.0049 −0.0050
Δ� +0.0345 +0.0095 +0.0059 +0.0047 +0.0043 +0.0025 −0.0015 −0.0021 −0.0023 −0.0023
Δμ || +0.0262 +0.0039 +0.0004 −0.0007 −0.0012 +0.0102 +0.0065 +0.0060 +0.0058 +0.0057
Δμ⊥ +0.0300 +0.0026 −0.0018 −0.0033 −0.0039 +0.0035 −0.0009 −0.0016 −0.0018 −0.0019

Notes. See Table 2 for an explanation of the different lines. The statistical uncertainty is ±0.0012 for S 10,n/2 and ±0.0037 for S 1,n/2 at both
magnitudes.

4.2.2. Case B (two different magnitudes)

The total number of observations in Case B is the same as in
Case A, but only 30% of them have the same noise level as
before, σAL = 92 μas (for G = 13), while 70% have σAL =
231 μas (for G = 15). The total astrometric weight is therefore
about 41% of what we had in Case A, and the attitude variance
is expected to be about 2.4 times higher.

The single-source statistics S 5,n and S 1,n for Case B are given
in Table 3. For the brighter sources (G = 13) the underestimation
of the variances for α = 0 is now about 14%, or 2.6 times higher

than in Case A, in reasonable agreement with the increased at-
titude variance. For the fainter sources the underestimation is
only 2%, or 6.8 times smaller than for the brighter sources,
mainly reflecting the weight ratio 6.3 between the observations.

In the higher-order approximations (α = 1, 2, . . . ) the de-
gree of underestimation decreases in much the same way as in
Case A, if one allows for the different overall levels among the
brighter and fainter sources. This is true for both values of the
fudge factor ω. It is especially gratifying to note that the same
factor ω = 1.16 (or perhaps a slightly smaller value) turns out to
be optimal at both magnitudes. Figure 7 shows the distribution
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Fig. 6. Comparison of the sample correlation coefficients (circles) of the
parallax errors of source pairs in Case A with the average theoretical
coefficients (lines) computed for ω = 1.16 in successive approxima-
tions (α). The pairs were grouped in samples of equal size depending
on θ, and the sample correlation coefficient plotted against the average θ
of each group. To reduce the statistical uncertainty of the sample corre-
lation coefficients (indicated by the error bars), many more pairs were
used to compute the sample values than the 150 000 pairs for which
theoretical values were available.

of the individual source statistics X2
i for ν = 5. For α ≥ 3 the em-

pirical distributions follow the theoretical chi-square distribution
for both brighter and fainter sources.

The source pair statistics in Table 4 show a qualitatively sim-
ilar behaviour as discussed in Sect. 4.2.1 for Case A, only even
more pronounced for the brighter sources (and much less for
the fainter). In particular the variances for both the sums and
the differences are essentially correctly estimated for α = 4,
if ω = 1.16 is used. Figure 8 shows the variation of the correla-
tion coefficient in parallax as a function of the separation angle.
As expected, the correlations are much stronger for the brighter
pairs (left) than for the fainter ones (right). Similar to Fig. 6 the
theoretical curves for α = 3 seem to fit the simulations better
than α = 4, while the latter value gives the best match of the
variances especially for the bright sources in Tables 3 and 4. The
reason for this discrepancy is not completely understood, but we
note that the shape of the theoretical autocorrelation curves is
affected by the choice of the attitude bin width, B. Since that pa-
rameter was not optimized for the present study it is possible that
a different combination of B and ω would allow a better match-
ing of the kinematographic model to both the variances and the
correlation values (cf. the discussion at the end of Appendix C
in Paper I).

Case B is somewhat contrived in that weight ratio of a single
bright source to the total weight of the sources in the combined
field of view is quite high, or about 0.10. This is partly a conse-
quence of practical limitations (e.g., the total number of sources
in the simulation), but it also provides a more stringent valida-
tion of the covariance model as the higher-order terms become
relatively more important. The actual weight ratios obtained in
the final astrometric solution for Gaia depends on the number
and selection of primary sources and their distribution on the
celestial sphere. A typical maximum weight ratio of about 0.01
is estimated by assuming that about 80% of the stars down to
G = 16 can be used as primary sources (Hobbs et al. 2010) and
by considering the least favourable case when both fields of view
are at relatively high galactic latitudes (±53◦). In principle we
expect that this should reduce the correlations between different

sources by (at least) a factor of 10 compared with the present
simulations for the brighter sources in Case B. Thus, very good
estimates of the variances can probably be obtained already with
α = 2 or 3.

5. Conclusions and future work
The aim of this paper was to test the validity of the covari-
ance series expansion and associated assumptions, in particular
the kinematographic approximation, using simulated astromet-
ric solutions. As discussed in Sect. 3.1 the validation is made
under the hypothesis that the observational errors are unbiased,
uncorrelated, and with known standard uncertainties. Based on
the numerical experiments reported above we conclude that the
covariance model works very well: remaining differences (at the
appropriate order and using a suitable fudge factor) are essen-
tially within the statistical uncertainties of our numerical tests.
In particular, the following results are noted.

1. The correlation length of the attitude errors is gener-
ally somewhat shorter than the knot interval of the atti-
tude splines, due to the weak constraint on the quaternion
length imposed on the solution. When the reduced correla-
tion length is taken into account, the fudge factor ω, and
hence the attitude variance per field-of-view transit, can
be accurately predicted by means of the formulae given in
Appendix C of Paper I.

2. Using this value of ω, the variances of the astrometric pa-
rameters are correctly estimated in all the cases considered
(including the mixture of brighter and fainter sources in
Case B). In the worst case (the brighter sources in Case B)
the variance estimation errors are <2.5% if a second-order
expansion is used (α = 2) and <1% for a third-order expan-
sion. In the final Gaia solution, using many more primary
sources, the attitude errors should be much smaller resulting
in estimation errors that are at least 10 times smaller.

3. Within the statistical uncertainties of the experiments, the
model correctly estimates the covariances (or correlations)
for pairs of sources separated by �0.2◦, although it would be
desirable to improve the statistics by additional Monte Carlo
experiments and examine the effect of the attitude bin
width B.

The accuracy of the covariance expansion clearly improves if
terms of higher order are included (at least up to α = 4). Since
the higher orders are computationally expensive, it would be
highly interesting if short-cuts could be found by approximation
or extrapolation methods. A very simple extrapolation scheme
would for example combine a truncated series with a somewhat
larger fudge factor. In general the optimal α is a trade-off be-
tween accuracy and computational effort, and will depend on
many factors including the magnitude distribution of the rele-
vant sources and the nature of the scientific problem addressed.
It is therefore not possible to give even an approximate guideline
here for the choice of α.

The numerical experiments described in this paper are highly
idealised, and future experiments need to address a number of
problems resulting from more realistic assumptions, including:
(1) a very non-uniform distribution of primary sources on the ce-
lestial sphere; (2) a much wider range of magnitudes; (3) attitude
modelling errors due to the control system and high-frequency
perturbations; (4) radiation damage and other correlated effects
on the CCD level; (5) robustness issues, e.g., how the observa-
tion downweighting and excess noises (Sect. 5.1.2 in Lindegren
et al. 2012) are propagated to the covariance estimates. The
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Fig. 8. Same as Fig. 6 but for Case B, showing the correlation coefficient for the brighter sources (G = 13) to the left and for the fainter sources
(G = 15) to the right.

present study is therefore a first, but very important step to-
wards a comprehensive modelling of the astrometric errors in
the Gaia catalogue.
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Appendix A: The trigonometric factors in Eq. (8)

The Jacobian in Eq. (9) is

J i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

si ci 0 0 0 s j c j 0 0 0

−ci si 0 0 0 −c j s j 0 0 0

0 0 1 0 0 0 0 1 0 0

0 0 0 si ci 0 0 0 s j c j

0 0 0 −ci si 0 0 0 −c j s j

si ci 0 0 0 −s j −c j 0 0 0

−ci si 0 0 0 c j −s j 0 0 0

0 0 1 0 0 0 0 −1 0 0

0 0 0 si ci 0 0 0 −s j −c j

0 0 0 −ci si 0 0 0 c j −s j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1)

where for conciseness we have put ci = cosψi, si = sinψi, etc.

The angles ψi and ψ j defined in Fig. 2 can be computed us-
ing the equatorial normal triads [pi qi ri] and [p j q j r j] at the
two sources (for the definition of the normal triad, see Eq. (5) in
Lindegren et al. 2012). With θ denoting the angle between the
sources we have

ci ≡ cosψi = q′i r j/ sin θ

si ≡ sinψi = p′i r j/ sin θ

c j ≡ cosψ j = −q′jri/ sin θ

s j ≡ sinψ j = −p′jri/ sin θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (A.2)

where

sin θ = ||ri × r j||. (A.3)

If the position angles are needed they can be obtained as ψi =
atan2(si, ci) and ψ j = atan2(s j, c j), where atan2 is the arctan
function without quadrant ambiguity. Similarly, the angular sep-
aration of the sources can be obtained as θ = atan2(sin θ, cos θ),
where cos θ = r′i r j.

Appendix B: AGISLab

In this section we describe the software tool, AGISLab, used
for the simulations. AGISLab was designed to be a lightweight
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Fig. B.1. Overview of AGISLab showing the block structure and infor-
mation flow.

processing framework to allow small scale realistic experiments,
controlled by a scale factor, S , and to help develop new algo-
rithms which would eventually be used in the real mission data
processing software. AGISLab contains much of the algorith-
mic functionality of AGIS but is designed to generate obser-
vations on-the-fly as simulated input rather than ingesting raw
data (simulated or real) as is done in AGIS. The core algorithms
for the source, attitude and global update blocks were devel-
oped in AGISLab and are now in a common tool box called
AGISTools which allows them to be used also by the AGIS pro-
cessing framework. There are currently two additional blocks in
AGISLab, the calibration and velocity blocks. The calibration
block has not been developed much but merely acts as a place
holder for future studies if needed. Calibration has largely been
developed in AGIS where it is essential for the reduction of real
data but has not yet been needed for our simulations. The ve-
locity block has been used to develop algorithms and study the
problem of determining the barycentric velocity of Gaia using
its own observation data (Butkevich & Klioner 2008). This block
has not yet been included in AGIS.

AGISLab provides features to generate a set of true param-
eter values, including a random distribution of sources on the
celestial sphere and the true attitude (e.g., following the nom-
inal Gaia scanning law), and hence the observations obtained
by adding a Gaussian random number to the computed (“True”)
observation times. Similarly, true values for global, calibration
and velocity blocks can be generated. AGISLab can also gener-
ate starting values for each block’s parameters that deviate from
the true values by random and systematic offsets. The starting
values for each block are created in dedicated generators and
are then used as the “Running” values shown in Fig. B.1. They
are updated each iteration with improved estimates. Both the
“Running” and “True” parameters for each block are stored in
memory via a container and are used to generate errors plots, a
feature that is very useful for analysis but will not be available in
the real mission. AGISLab generates observations in a scanner
based on information held in a satellite container, including for
example the CCD geometry and the satellite orbit. Additionally,
the scanner must compute the source direction via a simple

or a full relativity model. Having generated the observations,
AGISLab sets up the least-squares problem in dedicated proces-
sors for each block. The least squares problem is then solved us-
ing the conjugate gradient algorithm described in Bombrun et al.
(2012). The process is iteratively repeated until convergence is
achieved. Note that the generation of observations is only needed
once at the start and the observation noise is added on-the-fly
to avoid storing two sets of data. Finally, AGISLab contains a
number of utilities to generate statistics and graphical output.

AGIS aims to make astrometric core solutions with up to
some 5 × 108 (primary) sources, based on about 4 × 1011 ob-
servations, and is therefore built on a software framework spe-
cially designed to handle very efficiently the corresponding large
data volumes and systems of equations. It is in practice hardly
possible to run AGIS with less than about 106 primary sources,
which (just) gives a sufficient number of observations per unit
time to do a successful attitude determination. For numerical ex-
periments it is often desirable to use considerably less than 106

sources running in a correspondingly much shorter time, and it
is an important feature of AGISLab is that it can run such scaled-
down versions of AGIS. Moreover, in order to accumulate statis-
tics of the astrometric errors, the small-scale runs may have to
be repeated many times with different noise realisations but oth-
erwise identical conditions, which is easily done in AGISLab
since the simulation of the input data is an integrated part of
the system.

The scaling in AGISLab uses a single parameter S such that
S = 1 leads to an astrometric solution that uses approximately
the current Gaia design and a minimum of 106 primary sources,
while S = 0.1 would only use 10% as many primary sources,
etc. For S < 1 it is necessary to modify the Gaia design used in
the simulations in order to preserve certain key quantities such
as the mean number of sources in the focal plane at any time, the
mean number of field transits of a given source over the mission,
and the mean number of observations per degree of freedom of
the attitude model. In practice this is done by formally reduc-
ing the focal length of the astrometric telescope (in order to get
enough sources in the field of view at any time) and the spin
rate of the satellite by the factor S 1/2, and increasing the time
interval between attitude spline knots by the factor S −1 (to get
enough observations per attitude spline knot interval). The main
considerations are as follows:

1. The total mission length is independent of S . Rationale: the
disentanglement of position, parallax and proper motion de-
pends critically on having a mission length of at least a
few years (nominally 5 yr). Thus it makes no sense to try
to save computations by reducing the mission length.

2. At any time, the expected number of sources in the fo-
cal plane, n, should be independent of S (with n� 1).
Rationale: Gaia can only make relative measurements
among the sources simultaneously visible in the combined
field of view. This depends on having a certain minimum
number at any time.

3. The mean number m of field transits of a given source over
the mission should be independent of S . Rationale: the nom-
inal scanning law is carefully tuned to give at least the
minimum number of transits needed to guarantee success-
ful resolution of the astrometric parameters for any source.
Reducing m could result in bad solutions for at least some
sources.

4. The mean number k of field-of-view transits of primary
sources per attitude knot interval should be independent
of S . Rationale: successful determination of the attitude
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spline coefficients requires a certain minimum number of AL
and AC observations in each knot interval. Reducing k could
result in bad attitude determination in some intervals.

Let L be the mission length, N the total number of primary
sources on the sky (assumed to be uniformly distributed in a sta-
tistical sense), ΦAL and ΦAC the full width of the field of view
in the AL and AC directions, Ω the satellite spin rate, and Δt the
mean time interval between attitude knots. Then

n =
N
π
ΦAL sin

(
1
2ΦAC

)
, (B.1)

m =
1
π
ΩL sin

(
1
2ΦAC

)
, (B.2)

k =
N
π
ΩΔt sin

(
1
2ΦAC

)
, (B.3)

not counting dead-time. For the current Gaia design we have the
nominal parameters L0 = 5 yr, ΦAL,0 = 0.708◦, ΦAC,0 = 0.691◦,
and Ω0 = 60′′ s−1. Assuming N0 = 106 and Δt0 = 30 s we get
n0 � 24, m0 � 88, and k0 � 17.

Now suppose we scale the problem by the factor S (<1),
so that the total number of sources is N = S N0. To keep the
same n we see from Eq. (B.1) that ΦAL and/or ΦAC must be
increased. It is desirable to keep the focal-plane layout fixed
by modifying both angles by the same factor, which can be
achieved my changing the effective focal length F (nominal
value F0 = 35 m). Using the small-angle approximation we
find that ΦAL,AC ∝ F−1 and consequently n ∝ NF−2. Choosing
F = S 1/2F0 therefore makes n independent of S . From Eq. (B.2)
we then find that Ω = S 1/2Ω0 makes m independent of S , and
finally from Eq. (B.3) we find that Δt = S −1Δt0 makes k inde-
pendent of S . We note that the angleΩΔt covered by the attitude
knot interval scales as S −1/2, thus preserving the ratio ΩΔt/ΦAL.
To summarize:

N ∝ S 1, F ∝ S 1/2, ΦAL,AC ∝ S −1/2,

Ω ∝ S 1/2, Δt ∝ S −1, ΩΔt ∝ S −1/2. (B.4)

It can be noted that the AC field size is also related to the spin
rate and precession rate of the spin axis (| ż|) by the condition
that there should be sufficient overlap between successive scans
of the field of view. The prescription for z(t) is independent of
the scaling factor, which is then also the case for | ż|. The change
in the z axis in one spin period (2π/Ω) is consequently inversely
proportional to Ω and scales as S −1/2. But ΦAC ∝ S −1/2, so the
relative amount of field overlap is independent of S .

In conclusion, AGISLab is a versatile tool which allows both
full scale solutions with at least one million sources and small
scale simulations which allow algorithms to be developed and
tested easily. Except for the experiments shown in Fig. D.1 the
simulations presented in this paper did not use the scaling op-
tion (i.e., S = 1 was used), as we wanted to have the maximum
degree of realism compatible with the available computing re-
sources. However, the scaling did help greatly with the develop-
ment and testing of the algorithms, which could be done very
efficiently with a much smaller S .

Appendix C: Implementation details
on the covariance model

This appendix provides some technical details concerning the
implementation of the covariance model used in this paper.

The set-up for the present simulations with 1 million sources
and 5.2 million attitude bins results in the following amount of
data needed by the model:

– for every source i the inverse Cholesky factor P−1/2
i : 15 reals,

in total 1.5 × 107 reals;
– for every source–attitude point combination ip with at least

one observation, the 5 × 1 array hip according to Eq. (I:54):
5 reals. For an average of 88 field-of-view transits, each
taking on average 1.4 attitude intervals, this gives in total
6.1 × 108 reals;

– for every attitude point p, the inverse square root of the
weight w−1/2

p : 1 real, in total 5.2 × 106 reals;
– three arrays defining the structure of the connections. (a) For

every source a list of the attitude points at which it was ob-
served, total: 1.2 × 108 integers. (b) For every attitude point
a list of the sources observed at that point, total: 1.2×108 in-
tegers. (c) The array lookup can be done without any search-
ing by creating one additional array pointing to where in the
source-ordered arrays a particular attitude point is referenced
(or vice versa): 1.2 × 108 integers. From any of the three ar-
rays the other two can be constructed, so only one of them
need to be persisted on disk.

Disregarding the matrix structure overhead and using 4 bytes
per real or integer, the data size is 4 GigaByte (GB), in practice
needing 8 GB when stored uncompressed on disk. Although the
data are stored in single precision (4 bytes), all computations are
done in double precision (8 bytes).

The model is initialised based on all AL observation made by
the AF and SM CCDs. The AC observations are not used in the
model as they contribute only marginally to the source parame-
ters (see the discussion in Sect. 2.1 of Paper I), although they are
by necessity included in the numerical experiments. Note that
the model does not use the observations themselves, only val-
ues related to the partial derivatives, weights, and the structure
of the equations. The inverse Cholesky factor P−1/2

i and the ar-
ray hip are initialised using the partial derivatives with respect to
the true astrometric parameters; the difference compared to using
the final estimated parameters is negligible since the observation
model can be considered linear within the parameter errors. The
weights used in w−1/2

p and hip are computed from the true obser-
vation uncertainties. As mentioned in Sect. 2.3 their actual val-
ues are irrelevant in Case A, and only their relative values matter
in Case B. For the real mission the observation uncertainties will
be accurately estimated partly based on the residual statistics.

To use the model it must be loaded completely into mem-
ory. For any Jacobian mapping to the source or attitude parame-
ters, the model returns an estimate of the covariance matrix, cf.
Eq. (3). Because the internal computation sequentially estimates
terms of increasing order, a stopping criterion might be used,
but in practice terms are estimated up to a pre-defined maxi-
mum order. The sequence of successive approximations can be
returned without additional computational cost. For most of the
tests in this paper a trivial Jacobian is used that results in the
covariance matrix for a single source or pair of sources. With
a total of N sources (5N astrometric parameters) and P attitude
points in the model, and considering the covariance of Q quan-
tities (number of rows in the Jacobian), the model allocates two
large arrays that store the intermediate data of G(α) (see Eq. (52)
in Paper I): one source matrix of size Q × 5N when α is even,
and one attitude matrix of size Q × P when α is odd. For ex-
ample, requesting the covariance matrix for one source requires
Q = 5. For the experiments in this paper both matrices are of size
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�Q×40 MegaByte (MB), using double precision reals. Because
the recursion alternates between the two matrices, the new ver-
sion (of order α) may overwrite the old one (of order α − 2) in
memory.

When a quantity only combines a small number of sources
the source and attitude matrices will start out extremely sparse
but will get increasingly more populated towards higher terms.
Numerical experiments by Holl et al. (2012a) suggest that for
α ≥ 6 all sources are connected, implying that the source and at-
titude matrices will be completely filled. Because the amount of
computations for each next term is proportional to the number of
non-zero elements in the source or attitude matrix of the previous
term, the computation time will increase steeply with the number
of terms evaluated. Computing the next uneven term involves,
for each of the Q quantities, the multiplication of the source
(matrix) parameter element with hip for all attitude points p ob-
served by the source, and storing the results at the corresponding
points in the attitude matrix. The computation of the next even
term involves the multiplication of an attitude (matrix) parame-
ter element with h′ip for all sources i observed at this point, and
storing the results at the corresponding indices in the source ma-
trix. This procedure can easily be multi-threaded by dividing up
the non-zero elements of the initial matrix, as long as the writ-
ing to the target matrix is synchronised (e.g., because different
sources are observed in the same attitude interval). For this study
we used Q = 5 and 10 (for single sources and pairs), meaning
that the internal source and attitude matrices needed some 200
and 400 MB, respectively. On our system, with two dual core
2.3 GHz Intel Xeon processors, the multi-threaded runtime for
computing the covariance of Q = 10 parameters up to fourth
order (α = 4) was about 6 s.

Appendix D: The flexibility of the attitude splines

In Sect. 4.1 it was noted that the autocovariance function of the
along-scan attitude errors, shown in Fig. 3, is compressed along
the time axis compared with the theoretical function given in
Paper I. The correlation length L, defined as the delay at the
first zero of the autocovariance function, is found to be shorter
than the knot interval Δt, while in Fig. C.1 of Paper I we had
L = Δt. The result that L < Δt was at first very surprising to us,
but we now understand that it is related to the numerical attitude
representation, using splines for each of the four components
of the quaternion. This model therefore has four degrees of
freedom per knot interval, whereas the physical attitude only
has three. In the attitude updating of AGIS (and AGISLab)
the solution is rendered unique by means of the regularization
parameter λ (see Eq. (81) in Lindegren et al. 2012), which gently
pushes the length of the quaternion towards 1. The numerical
experiments described in this paper use a very small degree of
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Fig. D.1. Autocorrelation functions of the along-scan attitude errors for
different values of the attitude regularization parameter λ. These curves
were obtained in small-scale simulations of the astrometric solution, us-
ing the AGISLab scaling parameter S = 0.012 for about 12 000 sources
uniformly distributed over the celestial sphere.

regularization, with λ2 = 10−7, resulting in an attitude solution
with (almost) maximum flexibility for the given knot interval,
and hence the smallest correlation length (it may be significant
that we find L/Δt � 3/4, or one degree of freedom per corre-
lation length). Small-scale tests with progressively larger values
of λ indeed result in stiffer attitude solutions, as shown by the in-
creasing correlation lengths in Fig. D.1; in the limit of large λ we
have L � Δt. Thus the flexibility of the attitude spline depends
not only on the knot interval Δt but also on the regularization
parameter used in the solution.
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